JP2011210411A - Cell stack device, fuel cell module, and fuel cell device - Google Patents

Cell stack device, fuel cell module, and fuel cell device Download PDF

Info

Publication number
JP2011210411A
JP2011210411A JP2010074579A JP2010074579A JP2011210411A JP 2011210411 A JP2011210411 A JP 2011210411A JP 2010074579 A JP2010074579 A JP 2010074579A JP 2010074579 A JP2010074579 A JP 2010074579A JP 2011210411 A JP2011210411 A JP 2011210411A
Authority
JP
Japan
Prior art keywords
current collecting
fuel
cell
piece
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010074579A
Other languages
Japanese (ja)
Other versions
JP5534893B2 (en
Inventor
Tatsu Miyaji
達 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010074579A priority Critical patent/JP5534893B2/en
Publication of JP2011210411A publication Critical patent/JP2011210411A/en
Application granted granted Critical
Publication of JP5534893B2 publication Critical patent/JP5534893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cell stack device improved in current collection efficiency.SOLUTION: In the cell stack device, a current collection member 4 has a plurality of first current collection members 4a of belt shape which are connected to fuel battery cells on one side and extend along the width direction of the fuel battery cell and second current collection members 4b of belt shape which are connected to fuel battery cells on the another side and extend along the width direction of the fuel battery cell in the longitudinal direction of the fuel battery cell, and has a connection part to connect the first current collection members 4a and the second current collection members 4b. The cross-sectional area along the longitudinal direction of the fuel battery cell of the first current collection member 4a and the second current collection member 4b located at the other end part side in the longitudinal direction of the fuel battery cell is larger than the cross-sectional area along the longitudinal direction of the fuel battery cell of the first current collection member 4a and the second current collection member 4b located at one end part side in the longitudinal direction of the fuel battery cell, thereby, the current generated in the cell stack can be collected efficiently and the power generation output performance is improved.

Description

本発明は、複数個の柱状の燃料電池セルを立設して配列し、電気的に接続してなるセルスタックを備えてなるセルスタック装置、燃料電池モジュールおよび燃料電池装置に関する。   The present invention relates to a cell stack device, a fuel cell module, and a fuel cell device each including a cell stack in which a plurality of columnar fuel cells are arranged upright and electrically connected.

近年、次世代エネルギーとして、反応ガス(燃料ガス)と酸素含有ガス(通常、空気である。)とを用いて電力を得ることができる柱状の燃料電池セルを複数個立設して配列し、電気的に直列に接続してなるセルスタック装置を収納容器に収納してなる燃料電池モジュールや、燃料電池モジュールを具備してなる燃料電池装置が提案されている(例えば、特許文献1参照。)。   In recent years, as next-generation energy, a plurality of columnar fuel cells that can obtain electric power using a reaction gas (fuel gas) and an oxygen-containing gas (usually air) are arranged upright, There have been proposed a fuel cell module in which cell stack devices electrically connected in series are housed in a storage container, and a fuel cell device having a fuel cell module (see, for example, Patent Document 1). .

セルスタック装置は、内部に反応ガスを流すためのガス流路を有し、一端部が反応ガスの導入口とされ、他端部が反応ガスの排出口とされた燃料電池セルの複数個を集電部材を介して立設させた状態で配列して、電気的に直列に接続してなるセルスタックを備えて構成されている。   The cell stack apparatus includes a plurality of fuel cells each having a gas flow path for flowing a reaction gas therein, one end portion serving as a reaction gas introduction port, and the other end portion serving as a reaction gas discharge port. The cell stack is arranged in a state of being erected via a current collecting member and electrically connected in series.

また、集電部材としては、一方の燃料電池セルに接続する複数の第1集電片と、他方の燃料電池セルに接続する複数の第2集電片と、第1集電片の一端と第2集電片の他端とを接続する第1導電片と、第2集電片の一端と他の第1集電片の他端とを接続する第2導電片とを基本構成とし、燃料電池セルの長手方向に連続的に連なって構成されている集電部材が提案されている(例えば、特許文献2参照。)。   Further, as the current collecting member, a plurality of first current collecting pieces connected to one fuel battery cell, a plurality of second current collecting pieces connected to the other fuel battery cell, one end of the first current collecting piece, The first conductive piece for connecting the other end of the second current collecting piece, and the second conductive piece for connecting one end of the second current collecting piece and the other end of the other first current collecting piece, as a basic configuration, There has been proposed a current collecting member configured to be continuously connected in the longitudinal direction of the fuel cell (see, for example, Patent Document 2).

特開2003−308857号公報JP 2003-308857 A 特開2009−231168号公報JP 2009-231168 A

ところで、燃料電池セルの一端部に反応ガスを供給して発電を行なうと、燃料電池セルは発電する際に熱を生じるため、燃料電池セルのガス流路を流れる反応ガスが、ガス流路を流れるうちに加熱され、燃料電池セルの他端部側を加熱することとなる。そのため、燃料電池セルの他端部側の温度が燃料電池セルの一端部側の温度に比べ高くなり、それに伴い燃料電池セルと接続する集電部材の他端部側の温度が高くなり、結果として集電部材の他端部側における導電率が低下する。それにより、集電部材の他端部側の集電効率が低下するおそれがある。   By the way, when a reaction gas is supplied to one end of the fuel cell to generate power, the fuel cell generates heat when generating power, so that the reaction gas flowing through the gas channel of the fuel cell passes through the gas channel. It is heated while flowing, and the other end side of the fuel cell is heated. Therefore, the temperature on the other end side of the fuel cell becomes higher than the temperature on one end side of the fuel cell, and accordingly, the temperature on the other end side of the current collecting member connected to the fuel cell increases. As a result, the electrical conductivity on the other end side of the current collecting member decreases. Thereby, there exists a possibility that the current collection efficiency by the other end part side of a current collection member may fall.

それゆえ、本発明は、集電部材の他端部側の集電効率が低下することを抑制できる集電部材を備えることにより発電出力性能の向上したセルスタック装置、燃料電池モジュールおよび燃料電池装置を提供することを目的とする。   Therefore, the present invention provides a cell stack device, a fuel cell module, and a fuel cell device that have improved power generation output performance by including a current collecting member that can suppress a decrease in current collecting efficiency on the other end side of the current collecting member. The purpose is to provide.

本発明のセルスタック装置は、内部に反応ガスを流すためのガス流路を有し、一端が前記反応ガスの導入口とされ、他端が前記反応ガスの排出口とされた燃料電池セルの複数個を集電部材を介して立設させた状態で配列して、電気的に直列に接続してなるセルスタックを備えるセルスタック装置であって、前記集電部材は、一方の前記燃料電池セルと接続
され、該燃料電池セルの幅方向に沿って伸びる帯状の第1集電片と、他方の前記燃料電池セルと接続され、該燃料電池セルの幅方向に沿って伸びる帯状の第2集電片とを、前記燃料電池セルの長手方向に複数備えるとともに、前記第1集電片および前記第2集電片を接続する接続部を備えてなり、前記燃料電池セルの長手方向における他端部側に位置する前記第1集電片および前記第2集電片の前記燃料電池セルの配列方向に沿って、かつ前記燃料電池セルの一端から他端にかけて沿った断面の断面積が、前記燃料電池セルの長手方向における一端部側に位置する前記第1集電片および前記第2集電片の前記燃料電池セルの配列方向に沿って、かつ前記燃料電池セルの一端から他端にかけて沿った断面の断面積よりも大きいことを特徴とする。
The cell stack device of the present invention has a gas flow path for flowing a reaction gas therein, one end of which serves as an introduction port for the reaction gas, and the other end serves as a discharge port for the reaction gas. A cell stack device comprising a cell stack in which a plurality are arranged in a standing state via a current collecting member and electrically connected in series, wherein the current collecting member is one of the fuel cells A band-shaped first current collecting piece connected to the cell and extending along the width direction of the fuel cell, and a band-shaped second current collector connected to the other fuel cell and extending along the width direction of the fuel cell. A plurality of current collecting pieces are provided in the longitudinal direction of the fuel battery cell, and a connecting portion for connecting the first current collecting piece and the second current collecting piece is provided, and the other in the longitudinal direction of the fuel battery cell. The first current collector piece and the second current collector located on the end side The cross-sectional area of the cross section along the arrangement direction of the fuel cells of the piece and from one end to the other end of the fuel cells is located on the one end side in the longitudinal direction of the fuel cells. It is characterized by being larger than the cross-sectional area of the cross section along the arrangement direction of the fuel battery cells of the electric piece and the second current collecting piece and from one end to the other end of the fuel battery cell.

このようなセルスタック装置においては、集電部材が、一方の燃料電池セルと接続され、燃料電池セルの幅方向に沿って伸びる帯状の第1集電片と、他方の燃料電池セルと接続され、燃料電池セルの幅方向に沿って伸びる帯状の第2集電片とを、燃料電池セルの長手方向に複数備えるとともに、第1集電片および第2集電片を接続する接続部を備えてなり、燃料電池セルの長手方向における他端部側に位置する第1集電片および第2集電片の燃料電池セルの配列方向に沿って、かつ燃料電池セルの一端から他端にかけて沿った断面の断面積が、燃料電池セルの長手方向における一端部側に位置する第1集電片および第2集電片の前記燃料電池セルの配列方向に沿って、かつ燃料電池セルの一端から他端にかけて沿った断面の断面積よりも大きいことから、集電部材の他端部側の温度が上昇して導電率が低下した場合においても、発電した電流を効率よく集電することができ、集電部材の他端部側の集電効率が低下することを抑制できることから、発電出力性能が向上したセルスタック装置とすることができる。   In such a cell stack device, the current collecting member is connected to one fuel cell, and is connected to the first strip-shaped current collecting piece extending along the width direction of the fuel cell and the other fuel cell. A plurality of strip-shaped second current collecting pieces extending in the width direction of the fuel battery cells in the longitudinal direction of the fuel battery cells, and a connecting portion for connecting the first current collecting pieces and the second current collecting pieces Along the arrangement direction of the fuel cells of the first current collector piece and the second current collector piece located on the other end side in the longitudinal direction of the fuel cell and from one end of the fuel cell to the other end The cross-sectional area of the cross section is along the arrangement direction of the fuel battery cells of the first current collector piece and the second current collector piece located on one end side in the longitudinal direction of the fuel battery cell and from one end of the fuel battery cell Larger than the cross-sectional area of the cross section along the other end Therefore, even when the temperature on the other end side of the current collecting member rises and the conductivity decreases, the generated current can be collected efficiently, and the current collecting on the other end side of the current collecting member Since it can suppress that efficiency falls, it can be set as the cell stack apparatus which the power generation output performance improved.

また、本発明のセルスタック装置は、それぞれの前記第1集電片および前記第2集電片の前記燃料電池セルの長手方向における長さが同じであり、かつそれぞれの前記第1集電片および前記第2集電片の前記燃料電池セルの配列方向における幅が、前記燃料電池セルの長手方向における他端部側に位置する前記第1集電片および前記第2集電片の方が前記燃料電池セルの長手方向における一端部側に位置する前記第1集電片および前記第2集電片よりも広いことが好ましい。   In the cell stack device of the present invention, the length of each of the first current collection piece and the second current collection piece in the longitudinal direction of the fuel cell is the same, and each of the first current collection pieces And the width of the second current collecting piece in the arrangement direction of the fuel cells is that the first current collecting piece and the second current collecting piece located on the other end side in the longitudinal direction of the fuel cells. It is preferable that the fuel cell is wider than the first current collection piece and the second current collection piece located on one end side in the longitudinal direction of the fuel cell.

このようなセルスタック装置においては、それぞれの第1集電片および第2集電片の燃料電池セルの長手方向における長さが同じであり、かつそれぞれの第1集電片および第2集電片の燃料電池セルの配列方向における幅が、燃料電池セルの長手方向における他端部側に位置する第1集電片および第2集電片の方が燃料電池セルの長手方向における一端部側に位置する第1集電片および前記第2集電片よりも広いことから、集電部材の他端部側の温度が上昇した場合においても、発電した電流を効率よく集電することができ、集電部材の他端部側の集電効率が低下することを抑制できる。   In such a cell stack device, the lengths of the first current collecting piece and the second current collecting piece in the longitudinal direction of the fuel cells are the same, and the first current collecting piece and the second current collecting piece are the same. The width of the fuel cells in the arrangement direction of the fuel cells is such that the first current collecting piece and the second current collecting piece located on the other end side in the longitudinal direction of the fuel cells are on the one end side in the longitudinal direction of the fuel cells. Since it is wider than the first current collecting piece and the second current collecting piece located at the same position, even when the temperature on the other end side of the current collecting member rises, the generated current can be collected efficiently. It can suppress that the current collection efficiency by the other end part side of a current collection member falls.

また、本発明のセルスタック装置は、前記接続部が、前記第1集電片の一端と前記第2集電片の他端とを接続する帯状の第1接続部と、前記第1集電片の他端と前記第2集電片の一端とを接続する帯状の第2接続部を有し、前記集電部材が、前記第1集電片、前記第1接続部、前記第2集電片および前記第2接続部をこの順に前記燃料電池セルの長手方向に複数配置してなるとともに、それぞれの前記接続部の前記燃料電池セルの長手方向における長さが同じであり、かつそれぞれの前記接続部の前記燃料電池セルの配列方向における幅が、前記燃料電池セルの長手方向における他端部側に位置する前記接続部の方が前記燃料電池セルの長手方向における一端部側に位置する前記接続部よりも広いことが好ましい。   In the cell stack device of the present invention, the connection portion includes a first connection portion in a band shape that connects one end of the first current collection piece and the other end of the second current collection piece, and the first current collection device. A strip-shaped second connecting portion that connects the other end of the piece and one end of the second current collecting piece, and the current collecting member includes the first current collecting piece, the first connecting portion, and the second current collecting member. A plurality of electrical pieces and the second connection portion are arranged in this order in the longitudinal direction of the fuel cell, and the lengths of the connection portions in the longitudinal direction of the fuel cell are the same, and The width of the connecting portion in the arrangement direction of the fuel cells is located on the other end side in the longitudinal direction of the fuel cells, and the connecting portion is located on one end portion in the longitudinal direction of the fuel cells. It is preferable that it is wider than the said connection part.

このようなセルスタック装置においては、集電部材が、第1集電片、第1接続部、第2集電片および第2接続部をこの順に燃料電池セルの長手方向に複数配置してなるとともに
、それぞれの接続部の燃料電池セルの長手方向における長さが同じであり、かつそれぞれの接続部の燃料電池セルの配列方向における幅が、燃料電池セルの長手方向における他端部側に位置する接続部の方が燃料電池セルの長手方向における一端部側に位置する接続部よりも広いことから、燃料電池セルの長手方向における他端側に位置する接続部の温度が上昇して導電率が低下した場合においても、接続部が電流を効率よく流すことができ、集電部材の他端部側の集電効率が低下することを抑制することができる。
In such a cell stack device, the current collecting member is formed by arranging a plurality of first current collecting pieces, first connecting portions, second current collecting pieces and second connecting portions in this order in the longitudinal direction of the fuel cell. In addition, the lengths of the fuel cells in the longitudinal direction of each connection portion are the same, and the width in the arrangement direction of the fuel cells of each connection portion is located on the other end side in the longitudinal direction of the fuel cells. Since the connecting portion is wider than the connecting portion located on one end side in the longitudinal direction of the fuel cell, the temperature of the connecting portion located on the other end side in the longitudinal direction of the fuel cell rises and the conductivity Even when the voltage drops, the connecting part can efficiently flow current, and the current collecting efficiency on the other end side of the current collecting member can be prevented from being lowered.

また、本発明のセルスタック装置は、前記接続部が、複数の前記第1集電片の一端と複数の前記第2集電片の一端とを接続する帯状の第1接続部と、複数の前記第1集電片の他端と複数の前記第2集電片の他端とを接続する帯状の第2接続部とを有し、前記集電部材が、これらを1ユニットとして前記燃料電池セルの長手方向に複数有し、隣り合う前記ユニットを導電性連結片を介して接合してなるとともに、それぞれの前記接続部の前記燃料電池セルの長手方向における長さが同じであり、かつ平それぞれの前記接続部の前記燃料電池セルの配列方向における長さが、前記燃料電池セルの長手方向における他端部側に位置する前記接続部の方が前記燃料電池セルの長手方向における一端部側に位置する前記接続部よりも長いことが好ましい。   Further, in the cell stack device of the present invention, the connection portion includes a strip-shaped first connection portion that connects one end of the plurality of first current collection pieces and one end of the plurality of second current collection pieces, A belt-like second connecting portion that connects the other end of the first current collecting piece and the other end of the plurality of second current collecting pieces, and the current collecting member serves as one unit for the fuel cell. A plurality of adjacent units are joined to each other in the longitudinal direction of the cell via conductive connecting pieces, and the length of each of the connecting portions in the longitudinal direction of the fuel cell is the same. The length of each of the connecting portions in the arrangement direction of the fuel cells is such that the connecting portion located on the other end side in the longitudinal direction of the fuel cells is on one end side in the longitudinal direction of the fuel cells. It is preferable that it is longer than the said connection part located in

このようなセルスタック装置においては、接続部が、複数の第1集電片の一端と複数の第2集電片の一端とを接続する第1接続部と、複数の第1集電片の他端と複数の第2集電片の他端とを接続する第2接続部とを有し、集電部材が、これらを1ユニットとして燃料電池セルの長手方向に複数有し、隣り合うユニットを導電性連結片を介して接合してなるとともに、それぞれの接続部の燃料電池セルの長手方向における長さが同じであり、かつそれぞれの接続部の燃料電池セルの配列方向における長さが、燃料電池セルの長手方向における他端部側に位置する接続部の方が燃料電池セルの長手方向における一端部側に位置する接続部よりも厚いことから、燃料電池セルの長手方向における他端側に位置する接続部の温度が上昇して導電率が低下した場合においても、接続部が電流を効率よく流すことができ、集電部材の他端部側の集電効率が低下することを抑制することができる。   In such a cell stack device, the connecting portion includes a first connecting portion that connects one end of the plurality of first current collecting pieces and one end of the plurality of second current collecting pieces, and a plurality of first current collecting pieces. A second connecting portion that connects the other end and the other ends of the plurality of second current collecting pieces, and the current collecting member includes a plurality of the current collecting members in the longitudinal direction of the fuel cell as one unit. And the length of each connecting portion in the longitudinal direction of the fuel cells, and the length of each connecting portion in the arrangement direction of the fuel cells, Since the connecting portion located on the other end side in the longitudinal direction of the fuel cell is thicker than the connecting portion located on one end side in the longitudinal direction of the fuel cell, the other end side in the longitudinal direction of the fuel cell The temperature of the connection located at Even when the connecting portion is able to flow efficiently current collecting efficiency of the other end of the current collecting member it can be prevented from being lowered.

本発明の燃料電池モジュールは、上記のセルスタック装置を収納容器内に収納してなることを特徴とすることから、発電出力性能の向上した燃料電池モジュールとすることができる。   The fuel cell module of the present invention is characterized in that the above-described cell stack device is housed in a housing container, so that a fuel cell module with improved power generation output performance can be obtained.

本発明の燃料電池装置は、上記の燃料電池モジュールと燃料電池モジュールを動作させるための補機とを外装ケースに収納してなることを特徴とすることから、発電出力性能の向上した燃料電池装置とすることができる。   The fuel cell device according to the present invention is characterized in that the fuel cell module and an auxiliary machine for operating the fuel cell module are housed in an outer case, so that the fuel cell device with improved power generation output performance is provided. It can be.

本発明のセルスタック装置は、集電部材が、一方の燃料電池セルと接続され、燃料電池セルの幅方向に沿って伸びる帯状の第1集電片と、他方の燃料電池セルと接続され、燃料電池セルの幅方向に沿って伸びる帯状の第2集電片とを、燃料電池セルの長手方向に複数備えるとともに、第1集電片および第2集電片を接続する接続部を備えてなり、燃料電池セルの長手方向における他端部側に位置する第1集電片および第2集電片の燃料電池セルの配列方向に沿って、かつ燃料電池セルの一端から他端にかけて沿った断面の断面積が、燃料電池セルの長手方向における一端部側に位置する第1集電片および第2集電片の前記燃料電池セルの配列方向に沿って、かつ燃料電池セルの一端から他端にかけて沿った断面の断面積よりも大きいことから、集電部材の他端部側の温度が上昇して導電率が低下した場合においても、発電した電流を効率よく集電することができ、集電部材の他端部側の集電効率が低下することを抑制できることから、発電出力性能が向上したセルスタック装置とすることができる。また、このセルスタック装置を収納容器内に収納することで、発電出力性能の向上した燃料電池モジュールとすることができ、さらにこの燃料電池モジュー
ルと燃料電池モジュールを動作させるための補機とを外装ケース内に収納することで、発電出力性能が向上した燃料電池装置とすることができる。
In the cell stack device of the present invention, the current collecting member is connected to one of the fuel cells, and is connected to the first current collecting strip in the belt shape extending along the width direction of the fuel cells, and the other fuel cell. A plurality of strip-shaped second current collecting pieces extending in the width direction of the fuel battery cell are provided in the longitudinal direction of the fuel battery cell, and a connecting portion for connecting the first current collecting piece and the second current collecting piece is provided. And along the arrangement direction of the fuel cells of the first current collector piece and the second current collector piece located on the other end side in the longitudinal direction of the fuel cell, and from one end of the fuel cell to the other end The cross-sectional area of the cross section is different from one end of the fuel cell along the arrangement direction of the fuel cell of the first current collector piece and the second current collector piece located on one end side in the longitudinal direction of the fuel cell. Because it is larger than the cross-sectional area of the cross section along the edge Even when the temperature on the other end side of the current collecting member rises and the conductivity decreases, the generated current can be collected efficiently, and the current collecting efficiency on the other end side of the current collecting member decreases. Therefore, the cell stack device with improved power generation output performance can be obtained. Further, by storing the cell stack device in the storage container, a fuel cell module with improved power generation output performance can be obtained, and further, the fuel cell module and an auxiliary device for operating the fuel cell module are installed on the exterior. By storing in the case, a fuel cell device with improved power generation output performance can be obtained.

本発明のセルスタック装置の一例を示し、(a)はセルスタック装置を概略的に示す側面図、(b)は(a)のセルスタック装置の点線枠で囲った部分の一部を拡大して示す平面図である。1 shows an example of a cell stack device of the present invention, (a) is a side view schematically showing the cell stack device, and (b) is an enlarged view of a part surrounded by a dotted frame of the cell stack device of (a). FIG. 図1における集電部材を示し、(a)は斜視図、(b)は(a)の集電部材の他端部側における点線枠で囲った部分の一部を拡大して示す平面図、(c)は(a)の集電部材の他端部側における点線枠で囲った部分の一部を拡大して示す平面図である。The current collecting member in FIG. 1 is shown, (a) is a perspective view, (b) is a plan view showing an enlarged part of a portion surrounded by a dotted frame on the other end side of the current collecting member in (a), (C) is a top view which expands and shows a part of part enclosed with the dotted-line frame in the other end part side of the current collection member of (a). 本発明のセルスタック装置の他の一例を構成する集電部材を示し、(a)は斜視図、(b)は(a)の集電部材の他端部側における点線枠で囲った部分の一部を拡大して示す平面図、(c)は(a)の集電部材の一端部側における点線枠で囲った部分の一部を拡大して示す平面図である。The current collection member which constitutes another example of the cell stack device of the present invention is shown, (a) is a perspective view, (b) is the part enclosed with the dotted line frame in the other end side of the current collection member of (a). The top view which expands and shows a part, (c) is a top view which expands and shows a part of part enclosed with the dotted-line frame in the one end part side of the current collection member of (a). (a)は、本発明のセルスタック装置のさらに他の一例を構成する集電部材の他端部側の平面図であり、(b)は、本発明のセルスタック装置のさらに他の一例を構成する集電部材の他端部側の平面図である。(A) is a top view by the side of the other end part of the current collection member which comprises further another example of the cell stack apparatus of this invention, (b) is another example of the cell stack apparatus of this invention. It is a top view of the other end part side of the current collection member which constitutes. 本発明の燃料電池モジュールの一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of the fuel cell module of this invention. 本発明の燃料電池装置の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of the fuel cell apparatus of this invention.

図1は、本発明のセルスタック装置1の一例を示したものであり、(a)はセルスタック装置1を概略的に示す側面図、(b)は(a)のセルスタック装置1の一部を拡大した平面図であり、(a)で示した点線枠で囲った部分を抜粋して示している。また、同一の部材については同一の番号を付するものとし、以下同様とする。なお、(b)において(a)で示した点線枠で囲った部分に対応する部分を明確とするために矢印にて示している。   1A and 1B show an example of a cell stack device 1 according to the present invention. FIG. 1A is a side view schematically showing the cell stack device 1, and FIG. 1B is a diagram of the cell stack device 1 of FIG. It is the top view which expanded the part, and has shown and extracted the part enclosed with the dotted-line frame shown to (a). The same members are assigned the same numbers, and so on. In addition, in (b), in order to clarify, the part corresponding to the part enclosed with the dotted-line frame shown by (a) is shown with the arrow.

ここで、セルスタック装置1は、一対の対向する平坦面をもつ柱状の導電性支持体12(以下、支持体12と略す場合がある。)の一方側の平坦面上に内側電極層としての燃料極層8と、固体電解質層9と、外側電極層としての空気極層10とを順に積層してなる柱状(中空平板状)の燃料電池セル3の複数個を、それぞれの燃料電池セル3間に集電部材4を介して立設させた状態で配列して、電気的に直列に接続してセルスタック2を形成し、セルスタック2を燃料電池セル3の配列方向(以下、セル配列方向と略す場合がある。)の両端から集電部材4を介して導電部材5により挟持し、燃料電池セル3の一端部(下端部)を、燃料電池セル3に燃料ガスを供給するマニホールド7に固定して構成されている。   Here, the cell stack device 1 is provided as an inner electrode layer on a flat surface on one side of a columnar conductive support 12 having a pair of opposed flat surfaces (hereinafter sometimes abbreviated as support 12). A plurality of columnar (hollow flat plate) fuel cells 3 formed by sequentially stacking a fuel electrode layer 8, a solid electrolyte layer 9, and an air electrode layer 10 as an outer electrode layer are connected to each fuel cell 3. The cell stacks 2 are arranged in a state where they are erected via the current collecting members 4 and are electrically connected in series to form the cell stack 2. The cell stack 2 is arranged in the arrangement direction of the fuel cells 3 (hereinafter referred to as cell arrangement). A manifold 7 that supplies fuel gas to the fuel cell 3 at one end (lower end) of the fuel cell 3. It is fixed and configured.

また、燃料電池セル3の他方側の平坦面上にはインターコネクタ11が設けられており、支持体12の内部には、燃料電池セル3の一端(下端)から他端(上端)まで貫通した燃料ガス(反応ガス)を流すためのガス流路13が所定の間隔をあけて複数設けられている。そして燃料電池セル3の内部(ガス流路13)に燃料ガスを流し、酸素含有ガス(空気)を燃料電池セル3の外部に流すことにより、燃料電池セル3は発電する。また、発電に使用されなかった燃料ガスを燃料電池セル3の他端部側(上端部側)にて燃焼させることにより、セルスタック装置1を温めることができ、効率のよい運転をすることができる。   Further, an interconnector 11 is provided on the other flat surface of the fuel cell 3 and penetrates from one end (lower end) to the other end (upper end) of the fuel cell 3 in the support 12. A plurality of gas flow paths 13 for flowing fuel gas (reactive gas) are provided at predetermined intervals. The fuel cell 3 generates electric power by flowing fuel gas through the fuel cell 3 (gas flow path 13) and flowing oxygen-containing gas (air) outside the fuel cell 3. In addition, by burning the fuel gas that has not been used for power generation on the other end side (upper end side) of the fuel battery cell 3, the cell stack device 1 can be warmed, and an efficient operation can be performed. it can.

なお、燃料極層8、固体電解質層9および空気極層10がこの順に積層された部位において、燃料電池セル3は発電する。また、以降の説明において、特に断りのない限り、内側電極層を燃料極層8とし、外側電極層を空気極層10として説明し、セルスタック装置
1は、燃料電池セル3の上端部側(上方)において発電に使用されなかった燃料ガスを燃焼させる構成として説明する。
In addition, the fuel cell 3 generates electric power at a portion where the fuel electrode layer 8, the solid electrolyte layer 9, and the air electrode layer 10 are laminated in this order. In the following description, unless otherwise specified, the inner electrode layer will be described as the fuel electrode layer 8 and the outer electrode layer will be described as the air electrode layer 10, and the cell stack device 1 is connected to the upper end side of the fuel cell 3 ( In the upper part, the fuel gas that has not been used for power generation is burned.

また、インターコネクタ11の外面(上面)にはP型半導体層14を設けることもでき、図1においてはP型半導体層14を設けた例を示している。集電部材4をP型半導体層14を介してインターコネクタ11に接続させることにより、両者の接続がオーム接続となり、電位降下を少なくし、集電効率の低下を有効に回避することが可能となる。   Further, the P-type semiconductor layer 14 can be provided on the outer surface (upper surface) of the interconnector 11, and FIG. 1 shows an example in which the P-type semiconductor layer 14 is provided. By connecting the current collecting member 4 to the interconnector 11 via the P-type semiconductor layer 14, the connection between the two becomes an ohmic connection, the potential drop can be reduced, and a reduction in current collecting efficiency can be effectively avoided. Become.

また、支持体12を燃料極層8を兼ねるものとし、その一方側表面上に固体電解質層9および空気極層10を順次積層して燃料電池セル3を構成することもできる。   Alternatively, the fuel cell 3 may be configured by using the support 12 also as the fuel electrode layer 8 and sequentially laminating the solid electrolyte layer 9 and the air electrode layer 10 on one surface thereof.

なお、本発明において燃料電池セル3としては、各種燃料電池セルが知られているが、発電性能のよい燃料電池セル3とする上で、固体酸化物形燃料電池セル3とすることができる。それにより、単位電力に対して燃料電池装置を小型化することができるとともに、家庭用燃料電池で求められる変動する負荷に追従する負荷追従運転を行なうことができる。   Various fuel cells are known as the fuel cell 3 in the present invention. However, in order to obtain a fuel cell 3 with good power generation performance, the fuel cell 3 can be a solid oxide fuel cell 3. Accordingly, the fuel cell device can be reduced in size with respect to unit power, and a load following operation that follows a fluctuating load required for a household fuel cell can be performed.

以下に、図1において示すセルスタック装置1を構成する各部材について説明する。   Below, each member which comprises the cell stack apparatus 1 shown in FIG. 1 is demonstrated.

燃料極層(内側電極層)8は、一般的に公知のものを使用することができ、多孔質の導電性セラミックス、例えばYやYb等の希土類元素が固溶しているZrO(安定化ジルコニアと称する)とNiおよび/またはNiOとから形成することができる。 As the fuel electrode layer (inner electrode layer) 8, generally known ones can be used, and porous conductive ceramics, for example, ZrO 2 (stabilized) in which rare earth elements such as Y and Yb are dissolved. Zirconia) and Ni and / or NiO.

燃料極層8において、NiおよびNiOのうち少なくとも一方と、希土類元素が固溶しているZrOの含有量は、焼成−還元後における体積比率が、NiO:希土類元素が固溶しているZrO(例えば、NiO:YSZ)が35:65〜65:35の範囲にあるのが好ましい。さらに、この燃料極層8の気孔率は、15%以上、特に20〜40%の範囲にあるのが好ましく、その厚みは、1〜30μmであるのが好ましい。 In the fuel electrode layer 8, at least one of Ni and NiO and the content of ZrO 2 in which the rare earth element is in solid solution are such that the volume ratio after calcination-reduction is ZrO in which NiO: rare earth element is in solid solution. 2 (for example, NiO: YSZ) is preferably in the range of 35:65 to 65:35. Further, the porosity of the fuel electrode layer 8 is preferably 15% or more, particularly preferably in the range of 20 to 40%, and the thickness thereof is preferably 1 to 30 μm.

固体電解質層9は、電極間の電子の橋渡しをする電解質としての機能を有しているとともに、燃料ガスと酸素含有ガスとのリークを防止するためにガス遮断性を有することが必要とされ、3〜15モル%の希土類元素が固溶したZrOから形成される。なお、上記特性を有する限りにおいては、他の材料等を用いて形成してもよい。 The solid electrolyte layer 9 has a function as an electrolyte that bridges electrons between the electrodes and is required to have a gas barrier property in order to prevent leakage between the fuel gas and the oxygen-containing gas. It is formed from ZrO 2 in which 3 to 15 mol% of a rare earth element is dissolved. In addition, as long as it has the said characteristic, you may form using another material etc.

さらに、固体電解質層9は、ガス透過を防止するという点から、相対密度(アルキメデス法による)が93%以上、特に95%以上の緻密質であることが望ましく、かつその厚みが5〜50μmであることが好ましい。   Further, the solid electrolyte layer 9 is desirably a dense material having a relative density (according to Archimedes method) of 93% or more, particularly 95% or more in terms of preventing gas permeation, and a thickness of 5 to 50 μm. Preferably there is.

空気極層(外側電極層)10は、導電性セラミックス(例えば、ABO型のペロブスカイト型酸化物)から形成することができ、ガス透過性を有する必要があることから、気孔率が20%以上、特に30〜50%の範囲にあることが好ましい。さらに、空気極層10の厚みは、集電性という点から30〜100μmであることが好ましい。 The air electrode layer (outer electrode layer) 10 can be formed from conductive ceramics (for example, ABO 3 type perovskite oxide) and needs to have gas permeability, so the porosity is 20% or more. In particular, it is preferably in the range of 30 to 50%. Furthermore, the thickness of the air electrode layer 10 is preferably 30 to 100 μm from the viewpoint of current collection.

インターコネクタ11は、導電性セラミックスから形成することができるが、燃料ガス(水素含有ガス)および酸素含有ガス(空気等)と接触するため、耐還元性及び耐酸化性を有することが必要であり、それゆえランタンクロマイト系のペロブスカイト型酸化物(LaCrO系酸化物)が好適に使用される。インターコネクタ11は導電性支持体12に形成された複数の燃料ガス流路13を流通する燃料ガス、および導電性支持体12の外側を流通する酸素含有ガスのリークを防止するために緻密質でなければならず、93%以上、特に95%以上の相対密度を有していることが好ましい。 Although the interconnector 11 can be formed from conductive ceramics, it needs to have reduction resistance and oxidation resistance because it comes in contact with a fuel gas (hydrogen-containing gas) and an oxygen-containing gas (air, etc.). Therefore, a lanthanum chromite-based perovskite oxide (LaCrO 3 -based oxide) is preferably used. The interconnector 11 is dense in order to prevent leakage of the fuel gas flowing through the plurality of fuel gas passages 13 formed in the conductive support 12 and the oxygen-containing gas flowing outside the conductive support 12. It has to have a relative density of 93% or more, in particular 95% or more.

また、インターコネクタ11の厚みは、ガスのリーク防止と電気抵抗の増大を抑制という理由から、10〜50μmであることが好ましい。この範囲よりも厚みが薄いと、ガスのリークを生じやすく、またこの範囲よりも厚みが大きいと、電気抵抗が大きく、電位降下により集電機能が低下してしまうおそれがある。   Further, the thickness of the interconnector 11 is preferably 10 to 50 μm for the purpose of preventing gas leakage and suppressing an increase in electrical resistance. If the thickness is smaller than this range, gas leakage is liable to occur. If the thickness is larger than this range, the electric resistance is large, and the current collecting function may be lowered due to a potential drop.

支持体12としては、燃料ガスを燃料極層8まで透過するためにガス透過性であること、さらには、インターコネクタ11を介して集電するために導電性であることが要求される。したがって、支持体12としては、かかる要求を満足するものを材質として採用する必要があり、例えば導電性セラミックスやサーメット等を用いることができる。   The support 12 is required to be gas permeable in order to allow the fuel gas to permeate to the fuel electrode layer 8 and to be conductive in order to collect current via the interconnector 11. Therefore, as the support 12, it is necessary to adopt a material satisfying such a requirement as a material, and for example, conductive ceramics, cermet, or the like can be used.

また、支持体12は、所要ガス透過性を備えるために開気孔率が30%以上、特に35〜50%の範囲にあるのが好適であり、そしてまたその導電率は50S/cm以上、より好ましくは300S/cm以上、特に440S/cm以上であるのが好ましい。   In addition, the support 12 preferably has an open porosity of 30% or more, particularly 35 to 50% in order to have the required gas permeability, and its conductivity is 50 S / cm or more, more It is preferably 300 S / cm or more, particularly preferably 440 S / cm or more.

P型半導体層14としては、遷移金属ペロブスカイト型酸化物からなる層を例示することができる。具体的には、インターコネクタ11を構成するランタンクロマイト系のペロブスカイト型酸化物(LaCrO系酸化物)よりも電子伝導性が大きいもの、例えば、BサイトにMn、Fe、Coなどが存在するLaMnO系酸化物、LaFeO系酸化物、LaCoO系酸化物などの少なくとも一種からなるP型半導体セラミックスを使用することができる。このようなP型半導体層15の厚みは、一般に、30〜100μmの範囲にあることが好ましい。 An example of the P-type semiconductor layer 14 is a layer made of a transition metal perovskite oxide. Specifically, a material having higher electron conductivity than a lanthanum chromite-based perovskite oxide (LaCrO 3 -based oxide) constituting the interconnector 11, for example, LaMnO in which Mn, Fe, Co, etc. are present at the B site. P-type semiconductor ceramics made of at least one of three- based oxides, LaFeO 3 -based oxides, LaCoO 3 -based oxides and the like can be used. In general, the thickness of the P-type semiconductor layer 15 is preferably in the range of 30 to 100 μm.

そして、それぞれの燃料電池セル3は集電部材4を介して電気的に直列に接続されることでセルスタック2が構成される。なお、詳しくは後述するが集電部材4は、弾性を有する金属または合金からなる部材により構成することができる。   Each fuel battery cell 3 is electrically connected in series via a current collecting member 4 to constitute a cell stack 2. In addition, although mentioned later in detail, the current collection member 4 can be comprised with the member which consists of a metal or alloy which has elasticity.

上記のように構成されたセルスタック2をセル配列方向の両端から集電部材4を介して、導電部材5により挟持し、これらを燃料電池セル3および導電部材5の下端部側を燃料電池セル3に燃料ガスを供給するためのマニホールド7に固定することで、セルスタック装置1が構成されている。   The cell stack 2 configured as described above is sandwiched by the conductive member 5 from both ends in the cell arrangement direction via the current collecting member 4, and these are connected to the fuel cell 3 and the lower end side of the conductive member 5 as the fuel cell. 3 is fixed to a manifold 7 for supplying fuel gas to the cell stack device 1.

マニホールド7は、各燃料電池セル3に燃料ガスを供給するため、上部が開口した形状をしており、この開口の内部に所定の治具を用いてセルスタック2を配置し、ガラス等のシール材によりガスシールを行なう。これにより、燃料電池セル3の内部に供給される燃料ガスがガスリークすることを抑制することができる。なお、マニホールド7を構成する材料は、後述する集電部材4と同様の材料を用いることができる。   The manifold 7 has a shape in which an upper portion is opened to supply fuel gas to each fuel cell 3, and the cell stack 2 is disposed inside the opening using a predetermined jig, and a seal such as glass is provided. Gas seal with material. Thereby, it can suppress that the fuel gas supplied into the inside of the fuel cell 3 leaks. In addition, the material which comprises the manifold 7 can use the material similar to the current collection member 4 mentioned later.

導電部材5は、セルスタック2の端部に配置された燃料電池セル3と対向する平板部(図示せず)と、セル配列方向に沿って外側に向けて延びた形状で、セルスタック2(燃料電池セル3)の発電により生じる電流を引出すための電流引出部6を具備しており、セルスタック2で発電した電流を電流引出部6から外部に取り出すことができる。なお、導電部材5を構成する材料は、後述する集電部材4の材料と同じものを用いることができる。   The conductive member 5 has a flat plate portion (not shown) opposed to the fuel cell 3 disposed at the end of the cell stack 2 and a shape extending outward along the cell arrangement direction. A current extraction unit 6 for extracting a current generated by the power generation of the fuel cell 3) is provided, and the current generated by the cell stack 2 can be taken out from the current extraction unit 6. In addition, the material which comprises the electrically-conductive member 5 can use the same material as the material of the current collection member 4 mentioned later.

ここで、本発明のセルスタック装置1を構成する集電部材4を説明する。   Here, the current collection member 4 which comprises the cell stack apparatus 1 of this invention is demonstrated.

図2は、図1における集電部材を示し、(a)は斜視図、(b)は(a)の集電部材の他端部側(上端部側)における点線枠で囲った部分の一部を拡大して示す平面図、(c)は(a)の集電部材の一端部側(下端部側)における点線枠で囲った部分の一部を拡大して示す平面図である。なお、(b)、(c)において(a)で示した点線枠で囲った部分
に対応する部分を明確とするために矢印にて示している。
2 shows the current collecting member in FIG. 1, (a) is a perspective view, and (b) is a part enclosed by a dotted line frame on the other end side (upper end side) of the current collecting member in (a). The top view which expands and shows a part, (c) is a top view which expands and shows a part of part enclosed with the dotted-line frame in the one end part side (lower end part side) of the current collection member of (a). In addition, in (b) and (c), the part corresponding to the part enclosed by the dotted line frame shown in (a) is indicated by an arrow for clarity.

集電部材4は、隣り合う一方の燃料電池セル3と接続され、燃料電池セル3の幅方向(以下、セル幅方向と略す場合がある。)に沿って伸びる帯状の第1集電片4aと、隣り合う一方の燃料電池セル3と接続され、セル幅方向に沿って伸びる帯状の第2集電片4bと、第1集電片4aの一端と第2集電片4bの他端とを接続する第1接続部4cと、第1集電片4aの他端と第2集電片4bの一端とを接続する第2接続部4dを有しており、第1集電片4a、第1接続部4c、第2集電片4bおよび第2接続部4dをこの順に燃料電池セル3の長手方向(以下、セル長手方向と略す場合がある。)に複数配置して構成されている。   The current collecting member 4 is connected to one adjacent fuel battery cell 3 and extends in the width direction of the fuel battery cell 3 (hereinafter sometimes abbreviated as the cell width direction). And a strip-shaped second current collecting piece 4b connected to one adjacent fuel cell 3 and extending along the cell width direction, one end of the first current collecting piece 4a and the other end of the second current collecting piece 4b And a second connection portion 4d for connecting the other end of the first current collecting piece 4a and one end of the second current collecting piece 4b, and the first current collecting piece 4a, A plurality of first connecting portions 4c, second current collecting pieces 4b, and second connecting portions 4d are arranged in this order in the longitudinal direction of the fuel cell 3 (hereinafter sometimes abbreviated as the cell longitudinal direction). .

集電部材4は、酸化雰囲気に曝されることに加え、高温下に曝されることからCrを含有する合金により形成されることが好ましく、合金に含有されるCrが合金外に拡散していくことを抑制するために、Crの拡散を抑制するコーティング等を施すことが好ましい。また、Crを含有する合金により導電部材5やマニホールド7を作製することも好ましい。Crを含有する合金としては、フェライト系のステンレスやSUS等の合金を用いることができる。   In addition to being exposed to an oxidizing atmosphere, the current collecting member 4 is preferably formed of an alloy containing Cr because it is exposed to a high temperature, and Cr contained in the alloy diffuses out of the alloy. In order to suppress this, it is preferable to apply a coating or the like that suppresses the diffusion of Cr. It is also preferable to produce the conductive member 5 and the manifold 7 from an alloy containing Cr. As the alloy containing Cr, an alloy such as ferritic stainless steel or SUS can be used.

集電部材4の第1集電片4aは隣り合う一方の燃料電池セル3の空気極層10と接続されており、第2集電片4bは隣り合う他方の燃料電池セルの3のインターコネクタ11(P型半導体層14)と接続されている。効率よく集電するために、集電部材4のセル幅方向の幅は空気極層10と同程度が好ましく、集電部材4のセル長手方向の長さは空気極層10と同程度が好ましい。   The first current collecting piece 4a of the current collecting member 4 is connected to the air electrode layer 10 of one adjacent fuel cell 3 and the second current collecting piece 4b is the three interconnectors of the other adjacent fuel cell. 11 (P-type semiconductor layer 14). In order to collect current efficiently, the width of the current collecting member 4 in the cell width direction is preferably about the same as that of the air electrode layer 10, and the length of the current collecting member 4 in the cell longitudinal direction is preferably about the same as that of the air electrode layer 10. .

ここで、燃料電池セル3の下端部をマニホールド7に固定し、燃料電池セル3の下端部に燃料ガスを供給して発電を行なうと、燃料電池セル3は発電する際に熱を生じるため、燃料電池セル3のガス流路13を流れる燃料ガスが、ガス流路13を流れるうちに加熱され、燃料電池セル3の上端部側が加熱され、上端部側の温度が下端部側の温度に比べて高くなる場合がある。それに伴い、燃料電池セル3と接続する集電部材4の上端部側の温度が高くなり、結果として、特に集電部材4の上端部側において、集電部材4を構成するCrを含有する合金の導電率が低下して集電効率が低下し、セルスタック装置1の発電出力性能が低下するおそれがある。さらに、燃料電池セル3の上方において発電に使用されなかった燃料ガスを燃焼させた場合、さらに燃料電池セル3の上端部側の温度が、下端部側の温度に比べてさらに高くなる場合がある。   Here, when the lower end portion of the fuel cell 3 is fixed to the manifold 7 and fuel gas is supplied to the lower end portion of the fuel cell 3 to generate power, the fuel cell 3 generates heat when generating power. The fuel gas flowing through the gas flow path 13 of the fuel cell 3 is heated while flowing through the gas flow path 13, the upper end side of the fuel battery cell 3 is heated, and the temperature on the upper end side is compared with the temperature on the lower end side. May be expensive. Accordingly, the temperature on the upper end side of the current collecting member 4 connected to the fuel cell 3 is increased, and as a result, the alloy containing Cr constituting the current collecting member 4 particularly on the upper end side of the current collecting member 4. As a result, the current collection efficiency of the cell stack device 1 may be reduced, and the power generation performance of the cell stack device 1 may be reduced. Furthermore, when fuel gas that has not been used for power generation is burned above the fuel cell 3, the temperature on the upper end side of the fuel cell 3 may further be higher than the temperature on the lower end side. .

それゆえ、図2に示す集電部材4においては、集電部材4の上端部側に配置された第1集電片4aおよび第2集電片4bのセル配列方向に沿って、かつ燃料電池セル3の一端から他端にかけて沿った断面の断面積が、集電部材の下端部側に配置された第1集電片4aおよび第2集電片4bのセル配列方向に沿って、かつ燃料電池セル3の一端から他端にかけて沿った断面の断面積に比べて大きい構成となっている。具体的には、集電部材4の上端部側に配置された第1集電片4aおよび第2集電片4bのセル配列方向の幅が、集電部材の下端部側に配置された第1集電片4aおよび第2集電片4bのセル配列方向の幅に比べて広くなっている。   Therefore, in the current collecting member 4 shown in FIG. 2, the fuel cell is arranged along the cell arrangement direction of the first current collecting piece 4a and the second current collecting piece 4b arranged on the upper end side of the current collecting member 4. The cross-sectional area of the cross section from one end to the other end of the cell 3 is along the cell arrangement direction of the first current collecting piece 4a and the second current collecting piece 4b disposed on the lower end side of the current collecting member, and the fuel The battery cell 3 has a configuration that is larger than the cross-sectional area of the cross section taken from one end to the other end of the battery cell 3. Specifically, the width in the cell arrangement direction of the first current collecting piece 4a and the second current collecting piece 4b arranged on the upper end side of the current collecting member 4 is the first width arranged on the lower end side of the current collecting member. It is wider than the width of the first current collecting piece 4a and the second current collecting piece 4b in the cell arrangement direction.

それにより、集電部材4の上端部側に配置された第1集電片4aおよび第2集電片4bのセル配列方向に沿って、かつ燃料電池3セルの一端から他端にかけて沿った断面の断面積が、集電部材4の下端部側に配置された第1集電片4aおよび第2集電片4bのセル配列方向に沿って、かつ燃料電池セル3の一端から他端にかけて沿った断面の断面積に比べて大きくなっていることから、集電部材4の上端部側の温度が上昇して上端部側の導電率が低下した場合においても、燃料電池セル3で発電された電流が第1集電片4aおよび第
2集電片4bをセル幅方向に流れやすくなることから、発電した電流を効率よく集電することができ、集電部材4の上端部側の集電効率が低下することを抑制できる。そのため、発電出力性能の向上したセルスタック装置1とすることができる。
Thereby, the cross section along the cell arrangement direction of the 1st current collection piece 4a and the 2nd current collection piece 4b arrange | positioned at the upper end part side of the current collection member 4, and from one end of the fuel cell 3 cell to the other end Of the first current collecting piece 4a and the second current collecting piece 4b arranged on the lower end side of the current collecting member 4 and from one end of the fuel cell 3 to the other end. Therefore, even when the temperature on the upper end side of the current collecting member 4 rises and the conductivity on the upper end side decreases, the fuel cell 3 generates power. Since the current easily flows in the cell width direction through the first current collecting piece 4a and the second current collecting piece 4b, the generated current can be collected efficiently, and the current collecting on the upper end side of the current collecting member 4 can be performed. It can suppress that efficiency falls. Therefore, the cell stack device 1 with improved power generation output performance can be obtained.

このような集電部材4は、合金を圧延により延ばす際に、厚みが異なるように作製した板部材をプレス加工により、所定の形状に打ち抜き、打ち抜いた部材を折り曲げることで容易に作製することができる。また、集電部材4の第1集電片4aおよび第2集電片4bをそれぞれ厚みの異なる板により作製した後、溶接等により接合することで作製することもできる。なお、厚みが均一な一枚の板部材をプレス加工により、所定の形状に打ち抜いた後、セル配列方向の幅を広くしたい第1集電片4aおよび第2集電片4bに、第1集電片4aと第2集電片4bと同じ形状の板部材を接合することにより、作製することもできる。   Such a current collecting member 4 can be easily manufactured by punching a plate member manufactured to have a different thickness when the alloy is rolled by rolling into a predetermined shape by pressing and bending the punched member. it can. Moreover, after producing the 1st current collection piece 4a and the 2nd current collection piece 4b of the current collection member 4 by the board from which thickness differs, respectively, it can also produce by joining by welding etc. In addition, after punching a single plate member having a uniform thickness into a predetermined shape by pressing, the first current collecting piece 4a and the second current collecting piece 4b whose width in the cell arrangement direction is desired to be widened are first collected. It can also be produced by joining plate members having the same shape as the electric piece 4a and the second current collecting piece 4b.

なお、集電部材4の上端部側とは、集電部材4の上端を含む領域を示し、本発明のセルスタック装置1においては、集電部材4の上端から3分の1の領域とすることができる。また、集電部材4の下端部側とは、集電部材4の下端を含む領域を示し、本発明のセルスタック装置1においては、集電部材4の下端から3分の1の領域とすることができる。なお、セルスタック装置の構成に合わせてそれぞれ適宜設定すればよい。   In addition, the upper end part side of the current collection member 4 shows the area | region containing the upper end of the current collection member 4, and it is set as 1/3 area | region from the upper end of the current collection member 4 in the cell stack apparatus 1 of this invention. be able to. Moreover, the lower end part side of the current collection member 4 shows the area | region containing the lower end of the current collection member 4, and it is set as 1/3 area | region from the lower end of the current collection member 4 in the cell stack apparatus 1 of this invention. be able to. In addition, what is necessary is just to set suitably according to the structure of a cell stack apparatus, respectively.

ここで、セルスタック2は、複数個の燃料電池セル3を集電部材4を介して配列してなるため、セル配列方向の中央部側に位置する燃料電池セル3は、セル配列方向の両端部側に位置する燃料電池セル3に比べ、隣り合う燃料電池セル3の個数が多いことから、セル配列方向における中央部側の温度が、セル配列方向の両端部側の温度に比べて高くなる場合がある。   Here, since the cell stack 2 is formed by arranging a plurality of fuel cells 3 via the current collecting members 4, the fuel cells 3 located on the center side in the cell arrangement direction are arranged at both ends in the cell arrangement direction. Since the number of fuel cells 3 adjacent to each other is larger than the number of fuel cells 3 located on the part side, the temperature on the center side in the cell arrangement direction is higher than the temperature on both ends in the cell arrangement direction. There is a case.

そのため、セル配列方向の中央部側に配置された燃料電池セル3の温度(特にセル長手方向の上端部側の温度)が高温となり、セル配列方向の中央部側に配置された燃料電池セル3に接続された集電部材4の温度が高くなり、結果として集電部材4の導電率が低下することで、集電部材4の集電効率が低下するおそれがある。   Therefore, the temperature of the fuel cell 3 arranged on the center side in the cell arrangement direction (particularly the temperature on the upper end side in the cell longitudinal direction) becomes high, and the fuel cell 3 arranged on the center side in the cell arrangement direction. The temperature of the current collecting member 4 connected to the temperature increases, and as a result, the electrical conductivity of the current collecting member 4 decreases, so that the current collecting efficiency of the current collecting member 4 may decrease.

そこで、本発明のセルスタック装置1において、セル配列方向の中央部側に配置された集電部材4の上端部側に配置された第1集電片4aおよび第2集電片4bのセル配列方向における幅を、セル配列方向の両端部側に配置された集電部材4の上端部側に配置された第1集電片4aおよび第2集電片4bのセル配列方向における幅よりも広くすることで、セル配列方向における中央部側に配置された集電部材4の導電率が、セル配列方向における両端部側に配置された集電部材4の導電率が低下した場合においても、燃料電池セル3で発電された電流が第1集電片4aおよび第2集電片4bをセル幅方向に流れやすくなることから、発電した電流を効率よく集電することができ、集電部材4の上端部側の集電効率が低下することを抑制できる。そのため、発電出力性能の向上したセルスタック装置1とすることができる。   Therefore, in the cell stack device 1 of the present invention, the cell arrangement of the first current collecting pieces 4a and the second current collecting pieces 4b arranged on the upper end side of the current collecting members 4 arranged on the center side in the cell arrangement direction. The width in the direction is wider than the width in the cell arrangement direction of the first current collecting piece 4a and the second current collecting piece 4b arranged on the upper end side of the current collecting member 4 arranged on both end sides in the cell arranging direction. Thus, even when the conductivity of the current collecting member 4 arranged on the center side in the cell arrangement direction is lowered, the conductivity of the current collecting member 4 arranged on both end sides in the cell arrangement direction is reduced. Since the current generated by the battery cell 3 easily flows in the cell width direction through the first current collecting piece 4a and the second current collecting piece 4b, the generated current can be collected efficiently, and the current collecting member 4 It can suppress that the current collection efficiency of the upper end part side fallsTherefore, the cell stack device 1 with improved power generation output performance can be obtained.

図3は、本発明のセルスタック装置の他の一例を構成する集電部材を示し、(a)は斜視図、(b)は(a)の集電部材の上端部側における点線枠で囲った部分の一部を拡大して示す平面図、(c)は(a)の集電部材の下端部側における点線枠で囲った部分の一部を拡大して示す平面図である。なお、(b)、(c)において(a)で示した点線枠で囲った部分に対応する部分を明確とするために矢印にて示している。   3A and 3B show a current collecting member constituting another example of the cell stack device of the present invention, wherein FIG. 3A is a perspective view, and FIG. 3B is surrounded by a dotted line frame on the upper end side of the current collecting member of FIG. FIG. 5C is a plan view showing a part of the portion enlarging, and FIG. 8C is a plan view showing a part of the part surrounded by a dotted frame on the lower end side of the current collecting member of FIG. In addition, in (b) and (c), the part corresponding to the part enclosed by the dotted line frame shown in (a) is indicated by an arrow for clarity.

集電部材15は、隣り合う一方の燃料電池セル3と接続され、セル幅方向に沿って伸びる帯状の第1集電片15aと、隣り合う一方の燃料電池セル3と接続され、セル幅方向に沿って伸びる帯状の第2集電片15bと、複数の第1集電片15aの一端と複数の第2集
電片15bの一端とを接続する第1接続部15cと、複数の第1集電片15aの他端と複数の第2集電片15bの他端とを接続する第2接続部15dを有しており、これらを1ユニット(図示せず)として燃料電池セル3の長手方向に複数有し、隣り合うユニットを導電性連結片15eを介して接合して構成されている。
The current collecting member 15 is connected to one adjacent fuel cell 3 and is connected to the first strip-shaped current collecting piece 15a extending along the cell width direction and one adjacent fuel cell 3 to the cell width direction. A strip-shaped second current collecting piece 15b extending along the first connecting portion 15c, one end of the plurality of first current collecting pieces 15a and one end of the plurality of second current collecting pieces 15b, and a plurality of first current collecting pieces 15b. It has the 2nd connection part 15d which connects the other end of the current collection piece 15a, and the other end of several 2nd current collection piece 15b, These are made into 1 unit (not shown), and the longitudinal direction of the fuel cell 3 There are a plurality of adjacent units in the direction, and adjacent units are joined via the conductive connecting piece 15e.

そして、集電部材15は、集電部材15の上端部側に位置する第1集電片15aおよび第2集電片15bのセル配列方向に沿って、かつ燃料電池セル3の一端から他端にかけて沿った断面の断面積が、集電部材15の下端部側に位置する第1集電片15aおよび第2集電片15bのセル配方向に沿った断面積よりも大きい構成となっている。具体的には、集電部材15の上端部側に位置する第1集電片15aおよび第2集電片15bのセル配列方向の長さが、集電部材15の下端部側に位置する第1集電片15aおよび第2集電片15bのセル配列方向の長さよりも長くなっている。   And the current collection member 15 is along the cell arrangement direction of the 1st current collection piece 15a located in the upper end part side of the current collection member 15, and the 2nd current collection piece 15b, and the other end from the one end of the fuel cell 3 The cross-sectional area of the cross section along the line is larger than the cross-sectional area along the cell distribution direction of the first current collecting piece 15a and the second current collecting piece 15b located on the lower end side of the current collecting member 15. . Specifically, the length of the first current collecting piece 15 a and the second current collecting piece 15 b located on the upper end side of the current collecting member 15 in the cell arrangement direction is the first length located on the lower end side of the current collecting member 15. It is longer than the length of the first current collecting piece 15a and the second current collecting piece 15b in the cell arrangement direction.

それにより、集電部材15の上端部側の温度が上昇し、上端部側の導電率が低下した場合においても、セルスタック装置1で発電された電流が第1集電片15aおよび第2集電片15bをセル幅方向に流れやすくなることから、発電した電流を効率よく集電することができ、集電部材15の上端部側の集電効率が低下することを抑制できる。そのため、発電出力性能の向上したセルスタック装置1とすることができる。   Thereby, even when the temperature on the upper end side of the current collecting member 15 is increased and the conductivity on the upper end side is decreased, the current generated by the cell stack device 1 is converted into the first current collecting piece 15a and the second current collecting piece 15a. Since it becomes easy to flow through the electric strip 15b in the cell width direction, it is possible to efficiently collect the generated current, and it is possible to suppress a decrease in the current collecting efficiency on the upper end side of the current collecting member 15. Therefore, the cell stack device 1 with improved power generation output performance can be obtained.

なお、集電部材15は、集電部材4と同様の方法で作製することができる。   The current collecting member 15 can be manufactured by the same method as the current collecting member 4.

また、図3においては、3本の第1集電片15aと、3本の第2集電片15bとを第1接続部15cおよび第2接続部15dに接続し、1つのユニットを構成する例を示したが、1つのユニットを構成する第1集電片15aおよび第2集電片15bの数は、セルスタック装置1の構成に合わせて適宜設定すればよい。また、図3において、4つのユニットからなる集電片15の例を示したが、集電部材15を構成するユニット数は、セルスタック装置1の構成に合わせて適宜設定すればよい。   In FIG. 3, three first current collecting pieces 15a and three second current collecting pieces 15b are connected to the first connecting portion 15c and the second connecting portion 15d to constitute one unit. Although an example has been shown, the number of the first current collecting pieces 15a and the second current collecting pieces 15b constituting one unit may be appropriately set according to the configuration of the cell stack device 1. Further, in FIG. 3, an example of the current collecting piece 15 including four units is shown, but the number of units constituting the current collecting member 15 may be set as appropriate according to the configuration of the cell stack device 1.

図4は、(a)は、本発明のセルスタック装置のさらに他の一例を構成する集電部材16上端部側における平面図であり、(b)は、本発明のセルスタック装置のさらに他の一例を構成する集電部材17の上端部側における平面図である。   4A is a plan view on the upper end side of the current collecting member 16 constituting still another example of the cell stack apparatus of the present invention, and FIG. 4B is still another example of the cell stack apparatus of the present invention. It is a top view in the upper end part side of the current collection member 17 which comprises an example.

図4の(a)に示す、集電部材16は、上端部側に配置された、第1集電片16aおよび第2集電片16b、第1接続部16cおよび第2接続部16dにおけるセル幅方向に沿って伸びる部位16eのセル配列方向における幅が広くなっており、その他の構成は、図2に示す集電部材4と同じである。   The current collecting member 16 shown in FIG. 4A is a cell in the first current collecting piece 16a and the second current collecting piece 16b, the first connecting part 16c and the second connecting part 16d, which are arranged on the upper end side. The width | variety in the cell arrangement direction of the site | part 16e extended along the width direction is large, and the other structure is the same as the current collection member 4 shown in FIG.

ここで、セルスタック装置1の作動時において、各燃料電池セル3が変形することがある。このような燃料電池セル3の変形としては、セル配列方向に沿って反る変形である反り(以下、反りという場合がある。)のほか、上下方向に伸びる変形(以下、伸びという場合がある。)が例示される。   Here, when the cell stack device 1 is operated, each fuel cell 3 may be deformed. Such deformation of the fuel cell 3 may be a warp that is warped along the cell arrangement direction (hereinafter sometimes referred to as warp), or a deformation that extends in the vertical direction (hereinafter referred to as stretch). .) Is exemplified.

またセルスタック装置1は、燃料電池セル3の下端部がマニホールド7に固定されていることから、燃料電池セル3の上端部側において燃料電池セル3の変形が大きくなり、集電部材16と燃料電池セル3とが剥離を生じ、集電部材16の上端部側において、集電効率が低下するおそれがある。   Further, since the lower end portion of the fuel cell 3 is fixed to the manifold 7 in the cell stack device 1, the deformation of the fuel cell 3 becomes large on the upper end side of the fuel cell 3, and the current collecting member 16 and the fuel The battery cell 3 may be peeled off and the current collection efficiency may be reduced on the upper end side of the current collection member 16.

図4(a)に示す集電部材16は、上端部側に配置された、第1集電片16aおよび第2集電片16b、第1接続部16cおよび第2接続部16dにおけるセル幅方向に沿って伸びる部位16eのセル配列方向における幅が広くなっていることから、接続部の屈曲す
る部位のセル幅方向の幅を広くすることなく、第1集電片16aおよび第2集電片16b、第1接続部16cおよび第2接続部16dにおけるセル幅方向に沿って伸びる部位のセル配列方向における幅を広くすることができ、集電部材16の上端部側の剛性を高くすることなく、集電部材16の上端部側における集電効率を向上させることができる。そのため、集電部材4と燃料電池セル3との剥離を抑制できるとともに、効率よく集電することができ、発電出力性能の向上したセルスタック装置1とすることができる。
The current collecting member 16 shown in FIG. 4A is arranged in the cell width direction at the first current collecting piece 16a and the second current collecting piece 16b, the first connecting part 16c and the second connecting part 16d, which are arranged on the upper end side. Since the width in the cell arrangement direction of the portion 16e extending along the line is widened, the first current collecting piece 16a and the second current collecting piece can be obtained without increasing the width in the cell width direction of the portion where the connection portion bends. 16b, the first connecting portion 16c and the second connecting portion 16d can be widened in the cell arrangement direction at the portion extending along the cell width direction without increasing the rigidity on the upper end side of the current collecting member 16. The current collection efficiency on the upper end side of the current collection member 16 can be improved. Therefore, separation between the current collecting member 4 and the fuel battery cell 3 can be suppressed, current can be collected efficiently, and the cell stack device 1 with improved power generation output performance can be obtained.

図4の(b)に示す、集電部材17は、上端部側に配置された、第1集電片17aおよび第2集電片17bの燃料電池セル3と接触する部位17e、第1接続部17cおよび第2接続部17dのセル配列方向における長さが長くなっており、その他の構成は、図3に示す集電部材15と同じである。   A current collecting member 17 shown in FIG. 4 (b) is disposed on the upper end side, a portion 17e of the first current collecting piece 17a and the second current collecting piece 17b that comes into contact with the fuel cell 3 and the first connection. The lengths of the portion 17c and the second connection portion 17d in the cell arrangement direction are longer, and the other configurations are the same as those of the current collecting member 15 shown in FIG.

図4(b)に示す集電部材17は、第1集電片17aおよび第2集電片17bの燃料電池セル3と接触しない部位(屈曲する部位)の長さを長くすることなく、第1集電片17aおよび第2集電片17bの燃料電池セルと接触する部位17e、第1接続部17cおよび第2接続部17dのセル配列方向における長さが長くなっていることから、集電部材16の剛性を高くすることなく、集電部材16の上端部側における集電効率を向上させることがでる。そのため、集電部材4と燃料電池セル3との剥離を抑制できるとともに、効率よく集電することができ、発電出力性能の向上したセルスタック装置1とすることができる。   The current collecting member 17 shown in FIG. 4B has the first current collecting piece 17a and the second current collecting piece 17b without increasing the length of the portion that does not contact the fuel cell 3 (the portion to bend). Since the length of the portion 17e, the first connecting portion 17c, and the second connecting portion 17d of the first current collecting piece 17a and the second current collecting piece 17b that are in contact with the fuel cells is increased in the cell arrangement direction. The current collection efficiency on the upper end side of the current collecting member 16 can be improved without increasing the rigidity of the member 16. Therefore, separation between the current collecting member 4 and the fuel battery cell 3 can be suppressed, current can be collected efficiently, and the cell stack device 1 with improved power generation output performance can be obtained.

また、上述の説明において、平面視における第1接続部17cおよび第2接続部17dのセル配列方向の長さを大きくした例を示したが、第1接続部17cおよび第2接続部17dのセル長手方向における長さを大きくしてもよい。その場合においても、集電部材17の上端部側のセル配列方向に沿った第1接続部17cおよび第2接続部17dの断面積を大きくすることができ、集電部材17の剛性を高くすることなく、集電効率を向上させることができ、発電出力性能の向上したセルスタック装置とすることができる。   In the above description, the example in which the length of the first connecting portion 17c and the second connecting portion 17d in the cell arrangement direction in plan view is increased is shown. However, the cells of the first connecting portion 17c and the second connecting portion 17d are shown. The length in the longitudinal direction may be increased. Even in that case, the cross-sectional areas of the first connection portion 17c and the second connection portion 17d along the cell arrangement direction on the upper end side of the current collection member 17 can be increased, and the rigidity of the current collection member 17 is increased. Therefore, the current collection efficiency can be improved, and a cell stack device with improved power generation output performance can be obtained.

なお、集電部材16、17は、均一の厚みの板をプレス加工した後、折り曲げて作製した後に、薄くしたい部位を研磨等の加工により、削ることにより容易に作製することができる。また、平面視においてセル配列方向の長さを長くしたい部位に部材を接合させることにより、作製することもできる。   The current collecting members 16 and 17 can be easily manufactured by pressing a plate having a uniform thickness, bending the plate, and then cutting the portion to be thinned by a process such as polishing. Moreover, it can also produce by joining a member to the site | part which wants to lengthen the length of a cell arrangement direction in planar view.

図5は、本発明の燃料電池モジュール20の一例を示す外観斜視図であり、直方体状の収納容器21の内部に、本発明のセルスタック装置1を収納して構成されている。   FIG. 5 is an external perspective view showing an example of the fuel cell module 20 of the present invention. The cell stack device 1 of the present invention is housed in a rectangular parallelepiped storage container 21.

なお、燃料電池セル3にて使用する燃料ガスを得るために、天然ガスや灯油等の原燃料を改質して燃料ガスを生成するための改質器22をセルスタック2の上方に配置している。そして、改質器22で生成された燃料ガスは、ガス流通管23を介してマニホールド7に供給され、マニホールド7を介して燃料電池セル3の内部に設けられたガス流路(図示せず)に供給される。   In order to obtain fuel gas used in the fuel cell 3, a reformer 22 for reforming raw fuel such as natural gas or kerosene to generate fuel gas is disposed above the cell stack 2. ing. The fuel gas generated by the reformer 22 is supplied to the manifold 7 via the gas flow pipe 23, and a gas flow path (not shown) provided inside the fuel battery cell 3 via the manifold 7. To be supplied.

なお、図5においては、収納容器21の一部(前後面)を取り外し、内部に収納されているセルスタック装置1および改質器22を後方に取り出した状態を示している。ここで、図5に示した燃料電池モジュール20においては、セルスタック装置1を、収納容器21内にスライドして収納することが可能である。   FIG. 5 shows a state in which a part (front and rear surfaces) of the storage container 21 is removed and the cell stack device 1 and the reformer 22 housed inside are taken out rearward. Here, in the fuel cell module 20 shown in FIG. 5, the cell stack device 1 can be slid and stored in the storage container 21.

また収納容器21の内部に設けられた酸素含有ガス導入部材24は、図5においてはマニホールド7に並置されたセルスタック2の間に配置されるとともに、酸素含有ガスが、燃料ガスの流れに合わせて、燃料電池セル3の側方を下端部側から上端部側に向かって流
れるように、燃料電池セル3の下端部側に酸素含有ガスを供給するように構成されている。そして、燃料電池セル3のガス流路より排出される余剰の燃料ガスを燃料電池セル3の上端部側で燃焼させることにより、燃料電池セル3の温度を上昇させることができ、セルスタック装置1の起動を早めることができる。また、燃料電池セル3の上端部側にて、燃料電池セル3の燃料ガス流路から排出される燃料ガスを燃焼させることにより、セルスタック2の上方に配置された改質器22を温めることができる。それにより、改質器22で効率よく改質反応を行うことができる。
In addition, the oxygen-containing gas introduction member 24 provided inside the storage container 21 is disposed between the cell stacks 2 juxtaposed to the manifold 7 in FIG. 5, and the oxygen-containing gas matches the flow of the fuel gas. Thus, the oxygen-containing gas is supplied to the lower end side of the fuel cell 3 so that the fuel cell 3 flows from the lower end side toward the upper end side. The surplus fuel gas discharged from the gas flow path of the fuel cell 3 is burned on the upper end side of the fuel cell 3, whereby the temperature of the fuel cell 3 can be raised, and the cell stack device 1 Can be started earlier. Further, the reformer 22 disposed above the cell stack 2 is warmed by burning the fuel gas discharged from the fuel gas flow path of the fuel battery cell 3 on the upper end side of the fuel battery cell 3. Can do. Thereby, the reforming reaction can be efficiently performed in the reformer 22.

このような燃料電池モジュール20においては、上述したように、発電出力性能の向上したセルスタック装置1を収納容器21に収納して構成されることにより、発電出力性能の向上した燃料電池モジュール20とすることができる。   In such a fuel cell module 20, as described above, the cell stack device 1 with improved power generation output performance is housed in the storage container 21, so that the fuel cell module 20 with improved power generation output performance can do.

図6は、外装ケース内に図5で示した燃料電池モジュール20と、燃料電池モジュール20を動作させるための補機(図示せず)とを収納してなる本発明の燃料電池装置の一例を示す分解斜視図である。なお、図6においては一部構成を省略して示している。   FIG. 6 shows an example of the fuel cell device of the present invention in which the fuel cell module 20 shown in FIG. 5 and an auxiliary machine (not shown) for operating the fuel cell module 20 are housed in an outer case. It is a disassembled perspective view shown. In FIG. 6, a part of the configuration is omitted.

図6に示す燃料電池装置25は、支柱26と外装板27から構成される外装ケース内を仕切板28により上下に区画し、その上方側を上述した燃料電池モジュール20を収納するモジュール収納室29とし、下方側を燃料電池モジュール20を動作させるための補機を収納する補機収納室30として構成されている。なお、補機収納室30に収納する補機を省略して示している。   The fuel cell device 25 shown in FIG. 6 has a module housing chamber 29 in which an inside of an exterior case composed of a support column 26 and an exterior plate 27 is vertically divided by a partition plate 28 and the upper side thereof houses the above-described fuel cell module 20. The lower side is configured as an auxiliary equipment storage chamber 30 for storing auxiliary equipment for operating the fuel cell module 20. In addition, the auxiliary machine accommodated in the auxiliary machine storage chamber 30 is abbreviate | omitted and shown.

また、仕切板28には、補機収納室30の空気をモジュール収納室29側に流すための空気流通口31が設けられており、モジュール収納室29を構成する外装板27の一部に、モジュール収納室29内の空気を排気するための排気口32が設けられている。   Further, the partition plate 28 is provided with an air circulation port 31 for flowing the air in the auxiliary machine storage chamber 30 to the module storage chamber 29 side, and a part of the exterior plate 27 constituting the module storage chamber 29 An exhaust port 32 for exhausting air in the module storage chamber 29 is provided.

このような燃料電池装置25においては、上述したように、発電出力性能の向上した燃料電池モジュール20をモジュール収納室29に収納し、燃料電池モジュール20を動作させるための補機を補機収納室30に収納して構成されることにより、発電出力性能の向上した燃料電池装置25とすることができる。   In such a fuel cell device 25, as described above, the fuel cell module 20 with improved power generation output performance is stored in the module storage chamber 29, and an auxiliary machine for operating the fuel cell module 20 is provided in the auxiliary device storage chamber. By being housed in 30, the fuel cell device 25 with improved power generation output performance can be obtained.

以上、本発明について詳細に説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。   Although the present invention has been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications and improvements can be made without departing from the scope of the present invention.

例えば、上述したセルスタック装置1においては、燃料電池セル3内のガス流路13に燃料ガスを供給し、燃料電池セル3の外側に酸素含有ガスを供給する例を示しているが、ガス流路13に酸素含有ガスを供給し、燃料電池セル3の外側に燃料ガスを供給する構成としてもかまわない。その場合においては、内側電極層を空気極層10とし、外側電極層を燃料極層8とする構成の燃料電池セル3とすればよい。   For example, in the cell stack device 1 described above, an example in which the fuel gas is supplied to the gas flow path 13 in the fuel cell 3 and the oxygen-containing gas is supplied to the outside of the fuel cell 3 is shown. The oxygen-containing gas may be supplied to the passage 13 and the fuel gas may be supplied to the outside of the fuel cell 3. In that case, what is necessary is just to set it as the fuel cell 3 of the structure which makes an inner side electrode layer the air electrode layer 10, and makes an outer side electrode layer the fuel electrode layer 8. FIG.

また、集電部材の上端部側に位置する各部材のそれぞれの角部をC面取りや、R面取り等の面取りをしてもよい。それにより、集電部材の上端部側に位置する各部材が高温な酸化条件に曝されて、異常酸化が発生することを抑制することができる。   Further, each corner portion of each member located on the upper end side of the current collecting member may be chamfered such as C chamfering or R chamfering. Thereby, it can suppress that each member located in the upper end part side of a current collection member is exposed to high-temperature oxidation conditions, and abnormal oxidation generate | occur | produces.

また、集電部材の上端部側の第1集電片、第2集電片、第1接続部および第2接続部のセル長手方向に沿った断面積を大きくする方法として、セル配列方向の長さを長くする構成を示したが、第1集電片、第2集電片、第1接続部および第2接続部のセル長手方向における長さを長くしてもよい。その場合においても、第1集電片、第2集電片、第1接続部および第2接続部大きくすることができ、集電部材の上端部側の集電効率を向上させる
ことができる。
Further, as a method of increasing the cross-sectional area along the cell longitudinal direction of the first current collecting piece, the second current collecting piece, the first connecting part and the second connecting part on the upper end side of the current collecting member, Although the structure which lengthens length was shown, you may lengthen the length in the cell longitudinal direction of a 1st current collection piece, a 2nd current collection piece, a 1st connection part, and a 2nd connection part. Even in this case, the first current collecting piece, the second current collecting piece, the first connecting portion and the second connecting portion can be increased, and the current collecting efficiency on the upper end side of the current collecting member can be improved.

さらに、セル長手方向やセル配列方向において、温度分布に合わせて、領域ごと第1集電片および第2集電片のセル配列方向に沿って、かつ燃料電池セル3の一端から他端にかけて沿った断面の断面積を段階的に変化させてもよく、漸次変化させてもよい。   Furthermore, in the cell longitudinal direction and the cell arrangement direction, according to the temperature distribution, along the cell arrangement direction of the first current collection piece and the second current collection piece for each region, and from one end of the fuel cell 3 to the other end. The cross-sectional area of the cross section may be changed stepwise or gradually.

1:セルスタック装置
2:セルスタック
3:燃料電池セル
4、15、16、17:集電部材
4a、15a、16a、17a:第1集電片
4a、15a、16a、17a:第2集電片
4a、15a、16a、17a:第1接続部
4a、15a、16a、17a:第2接続部
4e:導電性連結片
5:導電部材
6:電流引出部
7:マニホールド
20:燃料電池モジュール
25:燃料電池装置
1: Cell stack device 2: Cell stack 3: Fuel cell 4, 15, 16, 17: Current collecting members 4a, 15a, 16a, 17a: First current collecting pieces 4a, 15a, 16a, 17a: Second current collecting Piece 4a, 15a, 16a, 17a: 1st connection part 4a, 15a, 16a, 17a: 2nd connection part 4e: Conductive connection piece 5: Conductive member 6: Current extraction part 7: Manifold 20: Fuel cell module 25: Fuel cell device

Claims (6)

内部に反応ガスを流すためのガス流路を有し、一端部が前記反応ガスの導入口とされ、他端部が前記反応ガスの排出口とされた燃料電池セルの複数個を集電部材を介して立設させた状態で配列して、電気的に直列に接続してなるセルスタックを備えるセルスタック装置であって、
前記集電部材は、一方の前記燃料電池セルと接続され、該燃料電池セルの幅方向に沿って伸びる帯状の第1集電片と、他方の前記燃料電池セルと接続され、該燃料電池セルの幅方向に沿って伸びる帯状の第2集電片とを、前記燃料電池セルの長手方向に複数備えるとともに、前記第1集電片および前記第2集電片を接続する接続部を備えてなり、
前記燃料電池セルの長手方向における他端部側に位置する前記第1集電片および前記第2集電片の前記燃料電池セルの配列方向に沿って、かつ前記燃料電池セルの一端から他端にかけて沿った断面の断面積が、前記燃料電池セルの長手方向における一端部側に位置する前記第1集電片および前記第2集電片の前記燃料電池セルの配列方向に沿って、かつ前記燃料電池セルの一端から他端にかけて沿った断面の断面積よりも大きいことを特徴とするセルスタック装置。
A current collecting member having a plurality of fuel cells each having a gas flow path for flowing a reaction gas therein, one end serving as the reaction gas introduction port, and the other end serving as the reaction gas discharge port A cell stack device comprising cell stacks arranged in an upright state and electrically connected in series,
The current collecting member is connected to one of the fuel battery cells, and is connected to the first current collecting strip in the width direction of the fuel battery cell and the other fuel battery cell, and the fuel battery cell A plurality of strip-shaped second current collecting pieces extending in the width direction of the fuel cell, and a connecting portion for connecting the first current collecting piece and the second current collecting piece. Become
The first current collecting piece and the second current collecting piece located on the other end side in the longitudinal direction of the fuel battery cell along the arrangement direction of the fuel battery cells, and from one end of the fuel battery cell to the other end The cross-sectional area of the cross section extending along the direction of the fuel cell along the arrangement direction of the fuel cells of the first current collector piece and the second current collector piece located on one end side in the longitudinal direction of the fuel cell, and A cell stack device characterized by being larger than a cross-sectional area of a cross section taken from one end to the other end of a fuel cell.
それぞれの前記第1集電片および前記第2集電片の前記燃料電池セルの長手方向における長さが同じであり、かつそれぞれの前記第1集電片および前記第2集電片の前記燃料電池セルの配列方向における幅が、前記燃料電池セルの長手方向における他端部側に位置する前記第1集電片および前記第2集電片の方が前記燃料電池セルの長手方向における一端部側に位置する前記第1集電片および前記第2集電片よりも広いことを特徴とする請求項1に記載のセルスタック装置。   The length of each of the first current collecting piece and the second current collecting piece in the longitudinal direction of the fuel cell is the same, and the fuel of each of the first current collecting piece and the second current collecting piece The first current collecting piece and the second current collecting piece whose width in the arrangement direction of the battery cells is located on the other end side in the longitudinal direction of the fuel battery cell are one end in the longitudinal direction of the fuel battery cell. The cell stack device according to claim 1, wherein the cell stack device is wider than the first current collecting piece and the second current collecting piece located on a side. 前記接続部が、前記第1集電片の一端と前記第2集電片の他端とを接続する帯状の第1接続部と、前記第1集電片の他端と前記第2集電片の一端とを接続する帯状の第2接続部とを有し、前記集電部材が、前記第1集電片、前記第1接続部、前記第2集電片および前記第2接続部をこの順に前記燃料電池セルの長手方向に複数配置してなるとともに、それぞれの前記接続部の前記燃料電池セルの長手方向における長さが同じであり、かつそれぞれの前記接続部の前記燃料電池セルの配列方向における幅が、前記燃料電池セルの長手方向における他端部側に位置する前記接続部の方が前記燃料電池セルの長手方向における一端部側に位置する前記接続部よりも広いことを特徴とする請求項2に記載のセルスタック装置。   The connection part is a band-shaped first connection part that connects one end of the first current collection piece and the other end of the second current collection piece; the other end of the first current collection piece; and the second current collection A strip-shaped second connecting portion that connects one end of the piece, and the current collecting member includes the first current collecting piece, the first connecting portion, the second current collecting piece, and the second connecting portion. A plurality of the fuel cells are arranged in this order in the longitudinal direction of the fuel cells, and the lengths of the connecting portions in the longitudinal direction of the fuel cells are the same, and the fuel cells of each of the connecting portions have the same length. The width in the arrangement direction is wider at the connecting portion located on the other end side in the longitudinal direction of the fuel cell than the connecting portion located on one end side in the longitudinal direction of the fuel cell. The cell stack device according to claim 2. 前記接続部が、複数の前記第1集電片の一端と複数の前記第2集電片の一端とを接続する帯状の第1接続部と、複数の前記第1集電片の他端と複数の前記第2集電片の他端とを接続する帯状の第2接続部とを有し、
前記集電部材が、これらを1ユニットとして前記燃料電池セルの長手方向に複数有し、隣り合う前記ユニットを導電性連結片を介して接合してなるとともに、それぞれの前記接続部の前記燃料電池セルの長手方向における長さが同じであり、かつそれぞれの前記接続部の前記燃料電池セルの配列方向における長さが、前記燃料電池セルの長手方向における他端部側に位置する前記接続部の方が前記燃料電池セルの長手方向における一端部側に位置する前記接続部よりも長いことを特徴とする請求項2に記載のセルスタック装置。
The connection part is a belt-like first connection part that connects one end of the plurality of first current collection pieces and one end of the plurality of second current collection pieces, and the other end of the plurality of first current collection pieces A strip-shaped second connecting portion that connects the other ends of the plurality of second current collecting pieces,
The current collecting member has a plurality of these as a unit in the longitudinal direction of the fuel cell, and the adjacent units are joined via a conductive connecting piece, and the fuel cell of each connecting portion The length in the longitudinal direction of the cells is the same, and the length of each of the connecting portions in the arrangement direction of the fuel cells is the other end of the connecting portion in the longitudinal direction of the fuel cells. The cell stack device according to claim 2, wherein the length is longer than the connection portion located on one end side in the longitudinal direction of the fuel cell.
請求項1乃至4のいずれかに記載のセルスタック装置を収納容器内に収納してなることを特徴とする燃料電池モジュール。   5. A fuel cell module comprising the cell stack device according to claim 1 stored in a storage container. 請求項5に記載の燃料電池モジュールと、該燃料電池モジュールを動作させるための補機とを外装ケース内に収納してなることを特徴とする燃料電池装置。   6. A fuel cell device comprising: the fuel cell module according to claim 5; and an auxiliary machine for operating the fuel cell module, housed in an outer case.
JP2010074579A 2010-03-29 2010-03-29 Cell stack device, fuel cell module and fuel cell device Active JP5534893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010074579A JP5534893B2 (en) 2010-03-29 2010-03-29 Cell stack device, fuel cell module and fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010074579A JP5534893B2 (en) 2010-03-29 2010-03-29 Cell stack device, fuel cell module and fuel cell device

Publications (2)

Publication Number Publication Date
JP2011210411A true JP2011210411A (en) 2011-10-20
JP5534893B2 JP5534893B2 (en) 2014-07-02

Family

ID=44941267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010074579A Active JP5534893B2 (en) 2010-03-29 2010-03-29 Cell stack device, fuel cell module and fuel cell device

Country Status (1)

Country Link
JP (1) JP5534893B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258112A (en) * 2012-06-14 2013-12-26 Osaka Gas Co Ltd Method for producing collector member for solid oxide fuel cell, and collector member for solid oxide fuel cell
JP2014179245A (en) * 2013-03-14 2014-09-25 Kyocera Corp Electrochemical cell stack device and electrochemical apparatus
JP2018170117A (en) * 2017-03-29 2018-11-01 京セラ株式会社 Cell stack device, module and module housing device
WO2024106477A1 (en) * 2022-11-15 2024-05-23 京セラ株式会社 Electrochemical cell device, module, and module accommodating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346989A (en) * 2004-05-31 2005-12-15 Kyocera Corp Current-collecting member, fuel battery cell stack, and fuel battery
JP2007227203A (en) * 2006-02-24 2007-09-06 Kyocera Corp Fuel cell stack and power collecting member
JP2008135195A (en) * 2006-11-27 2008-06-12 Kyocera Corp Cell stack, and fuel battery
JP2008192347A (en) * 2007-02-01 2008-08-21 Kyocera Corp Fuel cell system
JP2009158123A (en) * 2007-12-25 2009-07-16 Kyocera Corp Fuel cell stack device, fuel cell module, and fuel cell device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346989A (en) * 2004-05-31 2005-12-15 Kyocera Corp Current-collecting member, fuel battery cell stack, and fuel battery
JP2007227203A (en) * 2006-02-24 2007-09-06 Kyocera Corp Fuel cell stack and power collecting member
JP2008135195A (en) * 2006-11-27 2008-06-12 Kyocera Corp Cell stack, and fuel battery
JP2008192347A (en) * 2007-02-01 2008-08-21 Kyocera Corp Fuel cell system
JP2009158123A (en) * 2007-12-25 2009-07-16 Kyocera Corp Fuel cell stack device, fuel cell module, and fuel cell device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258112A (en) * 2012-06-14 2013-12-26 Osaka Gas Co Ltd Method for producing collector member for solid oxide fuel cell, and collector member for solid oxide fuel cell
JP2014179245A (en) * 2013-03-14 2014-09-25 Kyocera Corp Electrochemical cell stack device and electrochemical apparatus
JP2018170117A (en) * 2017-03-29 2018-11-01 京セラ株式会社 Cell stack device, module and module housing device
WO2024106477A1 (en) * 2022-11-15 2024-05-23 京セラ株式会社 Electrochemical cell device, module, and module accommodating device

Also Published As

Publication number Publication date
JP5534893B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5542568B2 (en) Cell stack device, fuel cell module, and fuel cell device
JP5207729B2 (en) Fuel cell stack device, fuel cell module and fuel cell device
JP5334456B2 (en) Cell stack device, fuel cell module, and fuel cell device
JP2010129270A (en) Fuel battery cell stack device, fuel battery module, and fuel battery device
JP2012094398A (en) Fuel battery cell device, fuel battery module, and fuel battery device
JP5409333B2 (en) Fuel cell module and fuel cell device
JP5618849B2 (en) Cell stack and fuel cell module
JP2012084411A (en) Fuel battery cell device, fuel battery module and fuel battery device
JP5534893B2 (en) Cell stack device, fuel cell module and fuel cell device
JP5856024B2 (en) Cell stack device, fuel cell module and fuel cell device
JP5289009B2 (en) Fuel cell stack device, fuel cell module and fuel cell device
JP5241430B2 (en) Fuel cell stack device, fuel cell module and fuel cell device
JP5334797B2 (en) Cell stack device, fuel cell module, and fuel cell device
JP5334731B2 (en) Fuel cell stack device, fuel cell module and fuel cell device
JP5448917B2 (en) Cell stack device, fuel cell module and fuel cell device
JP5388818B2 (en) Fuel cell module and fuel cell device
JP2010192273A (en) Fuel battery cell stack device, fuel battery module, and fuel battery device
JP6687463B2 (en) Cell stack device, module and module storage device
JP2010108687A (en) Current collecting member, cell stack device including the same, fuel cell module and fuel cell device
JP2010231919A (en) Fuel cell module and fuel cell device
JP6626660B2 (en) Cell stack, module and module housing device
JP6117690B2 (en) Cell stack device, fuel cell module and fuel cell device
JP2011113828A (en) Cell stack device, fuel cell module, and fuel cell device
JP5441468B2 (en) Fuel cell stack device, fuel cell module and fuel cell device
JP5164630B2 (en) Cell stack and fuel cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140422

R150 Certificate of patent or registration of utility model

Ref document number: 5534893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150