WO2024106444A1 - 着床促進薬とそのスクリーニング系 - Google Patents

着床促進薬とそのスクリーニング系 Download PDF

Info

Publication number
WO2024106444A1
WO2024106444A1 PCT/JP2023/041000 JP2023041000W WO2024106444A1 WO 2024106444 A1 WO2024106444 A1 WO 2024106444A1 JP 2023041000 W JP2023041000 W JP 2023041000W WO 2024106444 A1 WO2024106444 A1 WO 2024106444A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
peptide
implantation
present
cell
Prior art date
Application number
PCT/JP2023/041000
Other languages
English (en)
French (fr)
Inventor
徹 松浦
幸樹 池田
真子 吉田
Original Assignee
学校法人関西医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西医科大学 filed Critical 学校法人関西医科大学
Publication of WO2024106444A1 publication Critical patent/WO2024106444A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to an integrin activator containing a specific peptide, an artificial uterus containing endometrial stromal cells, a hydrogel mainly composed of extracellular matrix, and uterine epithelial organoids arranged so as to be surrounded by the hydrogel, and a method for screening infertility treatment agents using the artificial uterus.
  • infertility treatments consist of three stages: hormone therapy to improve the condition of the uterus, artificial insemination, in which sperm and eggs are artificially injected into the uterus, and advanced assisted reproductive technology such as in vitro fertilization and intracytoplasmic sperm injection.
  • hormone therapy to improve the condition of the uterus
  • artificial insemination in which sperm and eggs are artificially injected into the uterus
  • advanced assisted reproductive technology such as in vitro fertilization and intracytoplasmic sperm injection.
  • the focus is on infertility treatments that focus on gametes, such as artificial insemination and intracytoplasmic sperm injection.
  • Existing infertility treatments can dramatically improve the probability of sperm and eggs meeting, but the subsequent implantation is left to nature.
  • the implantation rate of artificially inseminated embryos decreases with age: 35% in the early 30s, 25% in the late 30s, and less than 10% in those over 40.
  • the objective of the present invention is therefore to provide a drug that can improve the embryo implantation rate and that can be used in combination with drugs used in existing infertility treatments, as well as a screening method that can reliably evaluate such drugs.
  • the present inventors have studied existing infertility treatments and have noticed that, while these treatments can dramatically improve the probability of sperm and eggs meeting, they leave the subsequent implantation to nature.
  • the present inventors first came up with the idea of simplifying the complex mechanism of implantation, which actually occurs in the living body, in which various mechanisms act from both the endometrium and the embryo to attach to the embryo and then invade the endometrial stromal layer, and establishing it as a screening system. By establishing such a screening system, it is possible to quickly and reliably evaluate a large number of samples, which would ultimately lead to the acquisition of substances that can improve the implantation rate.
  • the present inventors came up with the idea of controlling the environment in which the uterine epithelial organoids exist and the polarity of the uterine epithelial organoids to allow natural implantation simply by contacting the embryo (blastocyst) with the uterine epithelial organoids, and as a result of their intensive research, they have succeeded in establishing the screening method of the present invention.
  • the inventors used the completed screening method of the present invention to confirm that substances that activate integrins can actually improve the rate of embryo implantation. Based on the three-dimensional structure of integrins, the inventors predicted the structures of substances that can change their activity, and then evaluated over 60,000 substances. Based on these findings, the inventors conducted further research, which led to the completion of the present invention.
  • the present invention is as follows. [1] (1) a peptide consisting of KFEEERMRCKWMT, (2) a peptide consisting of KFEEERSRCKWMT, (3) An integrin activator comprising a peptide having an amino acid sequence in which one to three amino acids have been deleted, substituted and/or added in (1) or (2), or (4) a peptide in any one of (1) to (3) to which a membrane-permeable molecule has been bound. [2] The agent according to [1], wherein the membrane-permeable molecule is myristic acid. [3] The agent described in [1] or [2] for promoting embryo implantation.
  • a treatment for infertility comprising the agent according to any one of [1] to [3] and a hormone agent.
  • An artificial uterus comprising: a hydrogel containing endometrial stromal cells and having an extracellular matrix as its main component; and a uterine epithelial organoid arranged so as to be surrounded by the hydrogel.
  • An artificial uterus as described in [5] which has an opening facing upward in the hydrogel arranged to surround the uterine epithelial organoid.
  • the artificial uterus described in [5] or [6], wherein the extracellular matrix contains laminin and/or fragments thereof.
  • kits for creating an artificial uterus comprising a device having a support with an objective surface and at least one protrusion protruding from the objective surface, and a solution whose main component is an extracellular matrix.
  • a method for producing an artificial uterus comprising: (1) filling a culture vessel with a solution containing endometrial stromal cells and mainly composed of extracellular matrix; (2) pressing a device having a support with an objective surface and at least one protrusion protruding from the objective surface into the filled solution; and (3) removing the pressed device after the filled solution has gelled.
  • [11] (1) contacting a fertilized egg with the artificial uterus according to any one of [5] to [8] in the presence or absence of a test substance; (2) measuring the implantation rate between uterine epithelial organoids and fertilized eggs; and (3) selecting the test substance as a candidate substance for treating or preventing infertility when the implantation rate is higher in the presence of a candidate substance in step (2) compared to the absence of the test substance.
  • a method for promoting embryo implantation in a subject the method comprising administering an agent described in [1] or [2].
  • a method for treating infertility in a subject the method comprising administering a therapeutically effective amount of the agent described in [1] or [2].
  • a hormone agent a peptide consisting of KFEEERMRCKWMT, (2) a peptide consisting of KFEEERSRCKWMT, (3) A peptide having an amino acid sequence in which one to three amino acids have been deleted, substituted and/or added in (1) or (2), or (4) an agent for promoting embryo implantation or an agent for treating infertility, comprising a peptide having a membrane-permeable molecule bound thereto in any of (1) to (3).
  • an agent according to [I] wherein the peptide to which the membrane-permeable molecule is bound is a myristoylated peptide.
  • An artificial uterus comprising a hydrogel containing endometrial stromal cells and having an extracellular matrix as its main component, and a uterine epithelial organoid arranged so as to be surrounded by the hydrogel, the artificial uterus having an opening facing upward in the hydrogel arranged so as to surround the uterine epithelial organoid.
  • the artificial uterus described in [V] wherein the extracellular matrix contains laminin and/or fragments thereof.
  • An artificial uterus described in [V] wherein the uterine epithelial organoid has an apical side on the outside of the organoid.
  • a kit for creating an artificial uterus comprising a device having a support with an objective surface and at least one protrusion protruding from the objective surface, and a solution whose main component is an extracellular matrix.
  • [IX] 1.
  • a method for producing an artificial uterus comprising: (1) filling a culture vessel with a solution containing endometrial stromal cells and mainly composed of extracellular matrix; (2) pressing a device having a support with an objective surface and at least one protrusion protruding from the objective surface into the filled solution; and (3) removing the pressed device after the filled solution has gelled.
  • [X] (1) contacting a fertilized egg with the artificial uterus described in [V] in the presence or absence of a test substance; (2) measuring the implantation rate between uterine epithelial organoids and fertilized eggs; and (3) selecting the test substance as a candidate substance for treating or preventing infertility when the implantation rate is higher in the presence of a candidate substance in step (2) compared to the absence of the test substance.
  • [XI] For use in promoting embryo implantation or in treating infertility, (1) a peptide consisting of KFEEERMRCKWMT, (2) a peptide consisting of KFEEERSRCKWMT, (3) A peptide consisting of an amino acid sequence in which one to three amino acids have been deleted, substituted and/or added in (1) or (2), or (4) a peptide in any one of (1) to (3) to which a membrane-permeable molecule has been bound.
  • [XII] For use in integrin activation: (1) a peptide consisting of KFEEERMRCKWMT, (2) a peptide consisting of KFEEERSRCKWMT, (3) A peptide consisting of an amino acid sequence in which one to three amino acids have been deleted, substituted and/or added in (1) or (2), or (4) a peptide in any one of (1) to (3) to which a membrane-permeable molecule has been bound.
  • [XIII] The peptide according to [XI] or [XII], wherein the peptide to which the membrane-permeable molecule is bound is a myristoylated peptide.
  • [XV] For the preparation of an integrin activator, (1) a peptide consisting of KFEEERMRCKWMT, (2) a peptide consisting of KFEEERSRCKWMT, (3) Use of a peptide consisting of an amino acid sequence in which one to three amino acids have been deleted, substituted and/or added in (1) or (2), or (4) use of a peptide in any of (1) to (3) to which a membrane-permeable molecule has been bound. [XVI] The use according to [XIV] or [XV], wherein the peptide to which the membrane-permeable molecule is bound is a myristoylated peptide.
  • the present invention by activating integrins, it is possible to improve the implantation rate of embryos after natural conception or artificial insemination. Furthermore, since the agent of the present invention can be used in combination with drugs used in conventional infertility treatments, it could be one solution to the declining birthrate, and also lead to a reduction in the cost of infertility treatment and the increasing subsidies related to said treatment. Furthermore, since the present invention makes it possible to rapidly and reliably evaluate substances that can improve the implantation rate of embryos, the present invention is also extremely useful in obtaining such substances.
  • Figure 1 shows an overview of the artificial uterus (in vitro implantation system) of the present invention.
  • Figure 1A shows that the uterine organoid is a spherical cell mass consisting of a single layer of columnar epithelial cells in Matrigel.
  • Figure 1B shows the artificial uterus of the present invention in which the uterine organoid (endometrium epithelial organoid) and the blastocyst from which the zona pellucida was removed are placed in holes in a hydrogel mainly composed of an extracellular matrix (Matrigel TM ) containing endometrial stromal cells.
  • Mogel TM extracellular matrix
  • Figures 1C to 1E show that the stromal cells were suspended in Matrigel, placed on a glass-bottom dish, and solidified by placing a mold made with a 3D printer (Figure 1C) on top to create a structure with a hole of 200 ⁇ m in diameter ( Figures 1D and E).
  • the right side of Figure 1F shows that in the uterine organoid cultured in Matrigel, the nuclei and actin fibers are oriented from the outside to the inside of the sphere.
  • the left panel of Figure 1F shows that in uterine organoids cultured in an ultra-low attachment dish, nuclei and actin filaments are oriented from the inside to the outside of the sphere.
  • FIG. 2 shows one embodiment of the artificial uterus and the kit for producing an artificial uterus of the present invention.
  • Figure 3 shows an overview of the artificial uterus (in vitro implantation system) of the present invention and its preparation.
  • Figure 4 (A and B) shows the results of an in vitro implantation (IVIM) system observed by confocal microscopy.
  • Figure 4A shows that the blastocysts initially contact the uterine organoids, but gradually invade into them, and also show interactions with the surrounding stromal cells.
  • Figure 4B shows that mCherry fluorescence is observed in the blastocysts, suggesting that they eliminate epithelial cells by phagocytosis and invade.
  • Figure 5 shows the results for the in vitro implantation (IVIM) system.
  • Figure 5 shows that the results observed in Figures 4A and 4B were also observed in blastocysts and uterine organoids/stromal cells stained with Cell Explorer TM Live Cell Tracking Kit Green Fluorescence and Red Fluorescence.
  • Figure 6 shows the results regarding fusing endometrial epithelium and embryo after IVIM.
  • Figure 6A shows that when no implantation-like reaction occurs in the in vitro implantation experiment, the embryo (Fig. 6A left) and uterine organoid (Fig. 6A right) removed from the experimental system remain separated.
  • Figure 6B shows that when an implantation-like reaction occurs, the removed embryo remains fused and does not separate.
  • Figure 6C shows the results of single-cell RNA expression analysis in which all cells were removed 72 hours after placing the blastocyst in the in vitro implantation experimental system, treated with trypsin, and isolated into single cells. Based on gene expression patterns, the cells were broadly classified into three groups: placenta-like cells, endometrial epithelial cells, and endometrial stromal cells.
  • FIG. 7A-F shows the results of single-cell RNA expression analysis to confirm the expression of genes known to play a role in implantation.
  • Cells expressing implantation-related genes such as WNT signaling (Fig. 7A), Notch signaling (Fig. 7B), metalloprotease (Fig.
  • FIG. 7C shows the results of measuring the integrin activation ability of two peptides (Iznm-1 and Iznm-2) selected from over 60,000 peptides. At a concentration of 8 ⁇ M, Iznm-1 showed an approximately 5-fold activation effect, while Iznm-2 showed an approximately 14-fold activation effect.
  • Figure 9 shows the results confirming that the peptide drug Iznm-2 induces integrin activation (Active-Integrin ⁇ 1) in embryos. As a result, compared to the control group (Fig.
  • FIG. 10A-C shows the results of Iznm-2 promoting adhesion of embryos (mouse blastocysts) to glass surfaces. Embryos in the control group did not adhere, but in the experimental group to which Iznm-2 was added, embryos were observed to adhere to the glass surface (Fig. 10A, B). Furthermore, the rate was 0/13 in the control group and 13/14 in the Iznm-2-added group, and a significant difference was detected between the two groups (p ⁇ 0.01, chi-square test, Fig. 10C).
  • Figure 11 shows the results regarding the effects of peptide drugs (Iznm-1 and 2) in an in vitro implantation system (the percentage of implantation reactions observed in the in vitro implantation system).
  • Figure 12 shows an outline of a study on the effect of Iznm-2 on implantation and development of transplanted embryos. By shifting the number of days after mating between the embryos for transplantation and the recipient mice, a shift in the implantation window was reproduced.
  • Figure 13 (Fig. 13A-D) shows the results of the effect of Iznm-2 on implantation and development of transplanted embryos. Compared to the control in Fig. 13A, in the experimental group in which 8 ⁇ M Iznm-2 was added at the time of embryo transfer in Fig.
  • Figure 14 shows the results of the effect of Iznm-2 on the implantation and development of transplanted embryos.
  • Figure 14A shows the morphology of embryos at E15.5
  • Figure 14B shows HE staining images of FFPE sections of embryos at E15.5.
  • the present invention provides an artificial uterus, comprising a hydrogel containing endometrial stromal cells and mainly composed of an extracellular matrix, and a uterine epithelial organoid arranged so as to be surrounded by the hydrogel.
  • endometrial stromal cells refers to cells that constitute the supporting tissue for endometrial epithelial cells, and are cells contained in the endometrial stromal layer.
  • the endometrial stromal cells used in the present invention may be primary endometrial stromal cells isolated from endometrial tissue, or may be endometrial stromal cells that have been established, or may be endometrial stromal cells induced from (artificial) pluripotent stem cells, such as ES cells, nt ES cells, iPS cells, mGS cells, EG cells, and Muse cells.
  • the density (cells/ cm3 ) of endometrial stromal cells present in the hydrogel is not particularly limited as long as implantation of a fertilized egg (blastocyst) into the uterine epithelial organoid described below can occur, but is, for example, in the range of 1 x 106 cells/ cm3 to 1 x 107 cells/ cm3 , preferably in the range of 2 x 106 cells/ cm3 to 3 x 106 cells/ cm3 .
  • endometrial epithelial cells refer to epithelial cells contained in the uterine mucosa (endometrium) and cells contained in the endometrial epithelial layer.
  • the endometrial epithelial cells used in the present invention may be primary endometrial epithelial cells isolated from endometrial tissue, may be established endometrial epithelial cell lines, or may be endometrial epithelial cells induced from (artificial) pluripotent stem cells such as ES cells, nt ES cells, iPS cells, mGS cells, EG cells, and Muse cells.
  • pluripotent stem cell refers to a stem cell that can differentiate into tissues and cells with various different morphologies and functions in the body, and has the ability to differentiate into cells of any lineage of the three germ layers (endoderm, mesoderm, and ectoderm).
  • pluripotent stem cells used in the invention include induced pluripotent stem cells (iPS cells), embryonic stem cells (ES cells), embryonic stem cells derived from cloned embryos obtained by nuclear transfer (ntES cells), multipotent germline stem cells (mGS cells), and embryonic germline stem cells (EG cells), with iPS cells (more preferably human iPS cells) being preferred.
  • the pluripotent stem cells are ES cells or any cells derived from a human embryo, the cells may be cells produced by destroying an embryo or cells produced without destroying an embryo, but are preferably cells produced without destroying an embryo.
  • ES cells are stem cells that are pluripotent and have the ability to proliferate through self-renewal and are established from the inner cell mass of (early) embryos (e.g., blastocysts) of mammals such as humans and mice.
  • ES cells were discovered in mice in 1981 (M.J. Evans and M.H. Kaufman (1981), Nature 292:154-156), and subsequently, ES cell lines were established in humans, monkeys, and other primates (J.A. Thomson et al. (1998), Science 282:1145-1147; J.A. Thomson et al. (1999), Science 282:1145-1147). (1995), Proc. Natl. Acad. Sci. USA, 92:7844-7848; J.A.
  • ES cells can be established by extracting the inner cell mass from the blastocyst of a fertilized egg of a target animal and culturing the inner cell mass on fibroblast feeders.
  • ES cells can be established using only a single blastomere from an embryo at the cleavage stage prior to the blastocyst stage (Chung Y. et al. (2008), Cell Stem Cell 2: 113-117) or from developmentally arrested embryos (Zhang X. et al. (2006), Stem Cells 24: 2669-2676.).
  • nt ES cells are ES cells derived from cloned embryos produced by nuclear transfer technology and have almost the same properties as ES cells derived from fertilized eggs (Wakayama T. et al. (2001), Science, 292:740-743; S. Wakayama et al. (2005), Biol. Reprod., 72:932-936; Byrne J. et al. (2007), Nature, 450:497-502).
  • nt ES (nuclear transfer ES) cells are ES cells established from the inner cell mass of blastocysts derived from cloned embryos obtained by replacing the nucleus of an unfertilized egg with that of a somatic cell.
  • nt ES cells To generate nt ES cells, a combination of nuclear transfer technology (Cibelli J.B. et al. (1998), Nature Biotechnol., 16:642-646) and ES cell generation technology (mentioned above) is used (Wakayama Sayaka et al. (2008), Experimental Medicine, Vol. 26, No. 5 (special issue), pp. 47-52).
  • nuclear transfer the nucleus of a somatic cell is injected into an enucleated unfertilized mammalian egg, which can then be initialized by culturing for several hours.
  • mouse ES cell lines in the case of mouse ES cells, for example, various mouse ES cell lines established by inGenious targeting laboratory, RIKEN (Riken), etc. can be used, and in the case of human ES cell lines, for example, various human ES cell lines established by University of Wisconsin, NIH, RIKEN, Kyoto University, National Center for Child Health and Development, Cellartis, etc. can be used.
  • human ES cell lines include CHB-1 to CHB-12 strains, RUES1 strain, RUES2 strain, HUES1 to HUES28 strains, etc. distributed by ESI Bio, H1 strain, H9 strain, etc. distributed by WiCell Research, and KhES-1 strain, KhES-2 strain, KhES-3 strain, KhES-4 strain, KhES-5 strain, SSES1 strain, SSES2 strain, SSES3 strain, etc. distributed by RIKEN.
  • iPS cells are cells that can be obtained by reprogramming mammalian somatic cells or undifferentiated stem cells through the introduction of specific factors (nuclear reprogramming factors).
  • iPSCs established by Yamanaka et al. by introducing the four factors Oct3/4, Sox2, Klf4, and c-Myc into mouse fibroblasts (Takahashi K, Yamanaka S., Cell, (2006) 126: 663-676), human cell-derived iPSCs established by introducing the same four factors into human fibroblasts (Takahashi K, Yamanaka S., et al.
  • Nanog-iPSCs established by selecting using Nanog expression as an indicator after the introduction of the above four factors
  • Other examples that can be used include iPSCs produced by a method that does not include c-Myc (Ichisaka, T., and Yamanaka, S. (2007). Nature 448, 313-317.), iPSCs produced by a method that does not include c-Myc (Nakagawa M, Yamanaka S., et al. Nature Biotechnology, (2008) 26, 101-106), and iPSCs established by introducing six factors using a virus-free method (Okita K et al. Nat.
  • induced pluripotent stem cells established by introducing the four factors OCT3/4, SOX2, NANOG, and LIN28 created by Thomson et al. (Yu J., Thomson JA. et al., Science (2007) 318: 1917-1920.), induced pluripotent stem cells created by Daley et al. (Park IH, Daley GQ. et al., Nature (2007) 451: 141-146), and induced pluripotent stem cells created by Sakurada et al. (JP Patent Publication No. 2008-307007) can also be used.
  • iPSC lines As induced pluripotent stem cell lines, various iPSC lines established by NIH, RIKEN, Kyoto University, etc. can be used.
  • human iPSC lines include RIKEN's HiPS-RIKEN-1A line, HiPS-RIKEN-2A line, HiPS-RIKEN-12A line, Nips-B2 line, etc., and Kyoto University's 253G1 line, 253G4 line, 1201C1 line, 1205D1 line, 1210B2 line, 1383D2 line, 1383D6 line, 201B7 line, 409B2 line, 454E2 line, 606A1 line, 610B1 line, 648A1 line, 1231A3 line, FfI-01s04 line, etc., with the 1231A3 line being preferred.
  • mGS cells are pluripotent stem cells derived from the testis and are the source of spermatogenesis. Like ES cells, these cells can be induced to differentiate into cells of various lineages, and have the property that, for example, when transplanted into mouse blastocysts, chimeric mice can be produced (Kanatsu-Shinohara M. et al. (2003) Biol. Reprod., 69:612-616; Shinohara K. et al. (2004), Cell, 119:1001-1012).
  • GDNF glial cell line-derived neurotrophic factor
  • EG cells are established from primordial germ cells during the fetal period and have pluripotency similar to that of ES cells. They can be established by culturing primordial germ cells in the presence of substances such as LIF, bFGF, and stem cell factor (Matsui Y. et al. (1992), Cell, 70:841-847; J.L. Resnick et al. (1992), Nature, 359:550-551).
  • Pluripotent stem cells in which genes on chromosomes have been modified using known genetic engineering techniques can also be used in the present invention.
  • Pluripotent stem cells may be cells in which a marker gene (e.g., fluorescent proteins such as EGFP and GFP) has been knocked in-frame into a gene encoding a differentiation marker using known methods, making it possible to identify whether the corresponding differentiation stage has been reached using the expression of the marker gene as an indicator.
  • a marker gene e.g., fluorescent proteins such as EGFP and GFP
  • the species of origin of the cells used in the present invention is not particularly limited, and may be, for example, cells from rodents such as rats, mice, hamsters, and guinea pigs; lagomorphs such as rabbits; ungulates such as pigs, cows, goats, and sheep; felines such as dogs and cats; and primates such as humans, monkeys, rhesus monkeys, marmosets, orangutans, and chimpanzees.
  • rodents such as rats, mice, hamsters, and guinea pigs
  • lagomorphs such as rabbits
  • ungulates such as pigs, cows, goats, and sheep
  • felines such as dogs and cats
  • primates such as humans, monkeys, rhesus monkeys, marmosets, orangutans, and chimpanzees.
  • a preferred species of origin is primates.
  • the species of origin may be cells from the same individual from which the fertilized egg (blastocyst, etc.) applied to the artificial uterus of the present invention was collected, or may be cells from an individual different from the individual from which the fertilized egg (blastocyst, etc.) was collected. Furthermore, the species of origin of the endometrial cells does not necessarily have to match the species of origin of the fertilized egg (blastocyst, etc.). Furthermore, the species of origin of the cells constituting the endometrial-like tissue does not necessarily have to match the species of origin of the fertilized egg (blastocyst, etc.).
  • Endometrial stromal cells can be prepared by a method known per se. Specifically, for example, they may be obtained by inducing differentiation of prepared mesenchymal stem cells based on the description in the Journal of Japan Society for Reproductive Medicine, Vol. 57, No. 4, p. 401, October 1, 2012.
  • Mesenchymal stem cells may be primary cells directly isolated from biological tissues containing mesenchymal stem cells, or may be mesenchymal stem cells differentiated or induced from established mesenchymal stem cell lines, ES cells, or induced pluripotent stem cells, or may be cryopreserved ones.
  • directly means that there is no process of culturing/growing outside the body.
  • Mesenchymal stem cells directly isolated from biological tissues containing mesenchymal stem cells may be obtained by a method known per se, for example, a method such as that described in WO 2017/094879.
  • biological tissues containing mesenchymal stem cells include bone marrow, adipose tissue, blood, placenta, umbilical cord, dental pulp, etc.
  • adipose tissue is preferred as a source of the cells, since it can be collected by liposuction or adipose tissue resection and there is little risk of functional impairment in the living body.
  • Adipose tissue is a type of biological tissue composed of fat cells.
  • the location of the adipose tissue is not particularly limited, but examples include subcutaneous fat, visceral fat, intramuscular fat, and intermuscular fat. Of these, subcutaneous fat is preferable because it can be easily collected under local anesthesia and places less of a burden on the donor during collection.
  • Endometrial epithelial cells can also be produced by known methods (Ye L. et al. (2011), PLoS one, 6:e21136; Jiang X et al. (2021), Bioactive Materials, 6:3935-3946). Specifically, for example, pluripotent stem cells from humans, mice, etc. can be obtained by inducing differentiation of prepared definitive endoderm cells based on the description of known methods (D'Amour KA. et al. (2005), Nature Biotechnology, 23:1534-1541).
  • organoid refers to a structure that is a cell aggregate and has a new function that is not possessed by the individual cells that form the cell aggregate.
  • it is a structure that can differentiate into an organ upon maturation, and such differentiation ability can be confirmed, for example, by transplanting the structure into a living body and examining whether it can differentiate into the desired organ (if it has differentiated into the desired organ, it can be determined that it is an organoid).
  • the "uterine epithelial organoid” used in the present invention refers to a cell aggregate expressing at least Epcam, E-cadherin, Cytokeratin, MUC1, estrogen receptor, and progesterone receptor, which functionally responds to estrogen (E2) and progesterone (P4), and when further stimulated with placental gonadotropin (hCG), placental lactogen (hPL), and stromal cell (PRL) signals, exhibits characteristics of pregnant endometrium, and is capable of synthesizing PAEP (glycodelin) and SPP1 (osteopontin).
  • the uterine epithelial organoid is present in a culture medium.
  • the culture medium is not particularly limited as long as the survival of the uterine epithelial organoid is maintained, and can be appropriately selected from the culture media described below.
  • the culture medium may be WNT medium (partially modified from Bedzhov, 2014, Nature Protocols) containing 30% KSR (Thermo Fisher), N-acetylcysteine, estrogen, and progesterone.
  • the uterine epithelial organoids may be prepared by a method known per se (e.g., Turco et al., NATURE CELL BIOLOGY 19, 568-577 (2017)). Specifically, for example, first, the uterus is taken from a euthanized mouse, cut open to expose the epithelium, and then shredded. Alternatively, a portion of human uterine tissue is used. These are subjected to an enzymatic treatment with dispase to obtain epithelial cells.
  • the epithelial cells are suspended in a basement membrane preparation (e.g., Matrigel) described below, and cultured in Advanced DMEM/F12 medium (WNT medium) supplemented with WNT3A, R-spondin1, Noggin, EGF, and Hepes pH 7.4 to prepare uterine organoids.
  • a basement membrane preparation e.g., Matrigel
  • WNT medium Advanced DMEM/F12 medium supplemented with WNT3A, R-spondin1, Noggin, EGF, and Hepes pH 7.4 to prepare uterine organoids.
  • the (endometrial) epithelial cells used to create uterine epithelial organoids are highly polarized and compartmentalized into an apical side facing the outside of the body and a basal side facing the basement membrane.
  • an organ e.g., uterus
  • the apical side faces the external environment in the body, while the basal side is connected to the extracellular matrix side of the basement membrane via integrins and their receptors.
  • the uterine epithelial organoids of the present invention may have the same polarity as the uterus in vivo (i.e., the apical side is located on the outside facing the external environment, and the basal side is located on the inside), or the polarity may be reversed (i.e., the basal side is located on the outside facing the external environment, and the apical side is located on the inside).
  • the uterine epithelial organoids of the present invention preferably have the same polarity as the uterus in vivo (i.e., the apical side is located on the outside facing the external environment, and the basal side is located on the inside). Therefore, when the polarity of the prepared uterine epithelial organoids is reversed to that in vivo (i.e., the basal side is located on the outside facing the external environment, and the apical side is located on the inside), the polarity may be controlled so that the organoids have the same polarity as the uterus in vivo.
  • the polarity of uterine epithelial organoids can be confirmed by a method known per se (Forteza R. et al., (2016), Molecular Biology of the Cell, 27:2186-2197). Specifically, for example, when uterine epithelial organoids are stained with Hoechst/Phalloidin, if the polarity is the same as in vivo, the apical actin is detected on the outside by Phalloidin, facing the external environment, and the basal DNA is detected on the inside by Hoechst dye. On the other hand, if the polarity is reversed from that in vivo, the basal DNA is detected on the outside by Hoechst dye, facing the external environment, and the apical actin is detected on the inside by Phalloidin.
  • the method for controlling polarity is not particularly limited as long as the polarity of the uterine epithelial organoid can be changed to the desired one, but the following method may be used as an example (Co JY. et al., (2019), Cell Reports, 26:2509-2520). Specifically, when it is intended that the outer side of the prepared uterine epithelial organoid is the apical side, the polarity may be controlled by culturing it in a low-attachment or ultra-low-attachment culture vessel as described below.
  • an Ultra-Low Attachment dish for example, an Ultra-Low Attachment dish (Corning), an Ultra-Low Attachment flask (Corning), an Ultra-Low Attachment plate (Corning), a PrimeSurface dish (Sumitomo Bakelite), etc.
  • the medium, culture conditions, and period used for controlling polarity can be appropriately set.
  • the medium may be a WNT medium (Advanced DMEM/F12 medium supplemented with WNT3A, R-spondin1, Noggin, EGF, Hepes pH7.4, and estrogen), which is described below.
  • the culture temperature and culture period are, for example, 30 to 40°C, preferably about 37°C, culture is performed in an atmosphere of CO2- containing air, the CO2 concentration is preferably about 2 to 5%, and the culture period is 1 day to several months (e.g., 1, 2, 3, 4, 5, or 6 months), preferably 2 weeks to 3 months.
  • Uterine tissue from which epithelial cells generated during the preparation of the uterine epithelial organoids of the present invention have been removed may be subjected to enzymatic treatment with collagenase or the like to collect the endometrial stromal cells described above.
  • the collected stromal cells may be further cultured (adherent culture) under adhesive conditions in a culture vessel or medium as described below. Specifically, for example, they may be cultured in DMEM medium containing 10% serum on a dish that has been treated for cell adhesion.
  • uterine organoid and “uterine epithelial organoid” are synonymous and can be used interchangeably.
  • the prepared uterine epithelial organoid is arranged so as to be surrounded by a hydrogel whose main component is an extracellular matrix.
  • "arranged so as to be surrounded by a hydrogel” is not particularly limited as long as implantation of a fertilized egg (blastocyst) into the uterine epithelial organoid, as described below, can occur.
  • a preferred embodiment includes, for example, a configuration in which an opening is provided in the upward direction (upward direction) of the hydrogel arranged so as to surround the uterine epithelial organoid, and a more preferred embodiment has one opening.
  • an even more preferred embodiment is such that the uterine epithelial organoid is arranged so that all parts (surfaces) are surrounded by the hydrogel, except for one opening.
  • Extracellular matrices that can be used in the present invention include laminin (Nat Biotechnol 28, 611-615 (2010)), laminin fragments (Nat Commun 3, 1236 (2012)), basement membrane preparations (Nat Biotechnol 19, 971-974 (2001)), fibronectin, gelatin, collagen, heparan sulfate proteoglycan, entactin, vitronectin, etc.
  • Laminin is a heterotrimeric molecule consisting of ⁇ , ⁇ , and ⁇ chains, and is an extracellular matrix protein with isoforms that differ in the composition of the subunit chains. Specifically, laminin has about 15 isoforms, which are heterotrimeric combinations of five ⁇ chains, four ⁇ chains, and three ⁇ chains.
  • the names of laminins are determined by combining the numbers of the ⁇ chains ( ⁇ 1- ⁇ 5), ⁇ chains ( ⁇ 1- ⁇ 4), and ⁇ chains ( ⁇ 1- ⁇ 3). For example, laminin composed of a combination of ⁇ 5, ⁇ 1, and ⁇ 1 chains is called laminin 511. (Nat Biotechnol 28, 611-615 (2010)).
  • the laminin used in the present invention is usually mammalian laminin.
  • Laminin from the same mammalian species as the cells constituting the uterine epithelial organoids or the cells to be cultured may be used.
  • human laminin preferably human laminin 511 is used for culturing human pluripotent stem cells.
  • the laminin fragments used in the present invention are not particularly limited as long as implantation of the fertilized egg (blastocyst) into the uterine epithelial organoid described below can occur, but may include laminin-111 and a fragment containing its E8 region, laminin-211 and a fragment containing its E8 region (e.g., iMatrix-211), laminin-121 or a fragment containing its E8 region, laminin-221 or a fragment containing its E8 region, laminin-332 or a fragment containing its E8 region, laminin-3A11 or a fragment containing its E8 region, laminin-411 or a fragment containing its E8 region (e.g., Examples of such laminin fragments include iMatrix-411), laminin-421 or a fragment containing its E8 region, laminin-511 or a fragment containing its E8 region (e.g., iMatrix-511, iMa
  • laminin-511 or a fragment containing its E8 region is preferred.
  • the E8 fragment of laminin-511 is commercially available and can be purchased, for example, from Nippi Corporation.
  • the laminin or laminin fragment used in the present invention is preferably isolated.
  • the term “basement membrane preparation” refers to a preparation containing basement membrane components that have the function of controlling epithelial cell-like cell morphology, differentiation, proliferation, movement, and functional expression when desired cells having basement membrane formation ability are seeded and cultured thereon.
  • the term “basement membrane components” refers to thin membrane-like extracellular matrix molecules that exist between the epithelial cell layer and the interstitial cell layer in animal tissues.
  • the basement membrane preparation can be prepared, for example, by removing cells having basement membrane formation ability that are attached to a support via a basement membrane from the support using a solution having lipid dissolving ability of the cells or an alkaline solution.
  • basement membrane preparations examples include products commercially available as basement membrane preparations (e.g., Matrigel TM (manufactured by Corning; hereinafter, sometimes referred to as Matrigel)) and Geltrex TM (manufactured by Life Technologies), and those containing extracellular matrix molecules known as basement membrane components (e.g., laminin, type IV collagen, heparan sulfate proteoglycan, entactin, etc.).
  • Matrigel TM manufactured by Corning
  • Geltrex TM manufactured by Life Technologies
  • basement membrane components e.g., laminin, type IV collagen, heparan sulfate proteoglycan, entactin, etc.
  • Matrigel TM is a basement membrane preparation extracted from the Engelbreth Holm Swarn (EHS) mouse sarcoma.
  • the main components of Matrigel TM are type IV collagen, laminin, heparan sulfate proteoglycan, and entactin, in addition to TGF ⁇ , FGF, tissue plasminogen activator, and growth factors naturally produced by EHS tumors.
  • the "growth factor reduced" Matrigel TM product contains lower concentrations of growth factors than regular Matrigel TM , with typical concentrations of EGF less than 0.5 ng/ml, NGF less than 0.2 ng/ml, PDGF less than 5 pg/ml, IGF1 5 ng/ml, and TGF ⁇ 1.7 ng/ml.
  • the cells e.g., endometrial stromal cells, (endometrial) epithelial cells, etc.
  • organoids uterine epithelial organoids
  • the medium may be prepared by adding medium additives to a basal medium, if necessary.
  • basal media examples include RPMI-1640 medium, Eagle's MEM (EMEM), Dulbecco's modified MEM (DMEM), Glasgow's MEM (GMEM), ⁇ -MEM, 199 medium, IMDM, Hybridoma Serum Free medium, KnockOut TM DMEM (KO DMEM), Advanced TM medium (e.g., Advanced MEM, Advanced RPMI, Advanced DMEM/F-12), Chemically Defined Hybridoma Serum Free medium, Ham's Medium F-12, Ham's Medium F-10, Ham's Medium F12K, DMEM/F-12, ATCC-CRCM30, DM-160, DM-201, BME, Fischer, McCoy's 5A, Leibovitz's L-15, RITC80-7, MCDB105, MCDB107, MCDB131, MCDB153, MCDB201, NCTC109, NCTC135, Waymouth's Medium (e.g., Waymouth's MB752/1), CM
  • physiologically active substances and nutritional factors necessary for the survival or proliferation of organoids, cells, etc. can be added to the medium as necessary.
  • These medium additives may be added to the medium in advance, or may be added during the culture of the organoids or cells.
  • the method of adding them during culture may be in any form, such as one solution or a mixed solution of two or more types, and may be added continuously or intermittently.
  • Physiologically active substances include insulin, IGF-1, Wnt (Wnt1, Wnt2, Wnt3, Wnt3a, Wnt7a, etc.), Noggin, transferrin, albumin, coenzyme Q10, various cytokines (interleukins (IL-2, IL-7, IL-15, etc.), stem cell factor (SCF), activin, etc.), various hormones, various growth factors (leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), TGF- ⁇ , epidermal growth factor (EGF)), Wnt/beta-Catenin signaling pathway regulators (R-spondin1, R-spondin2, R-spondin3, etc.), bone morphogenetic protein (BMP) antagonists (Noggin, etc.), etc.
  • IGF-1 insulin
  • Wnt Wnt1, Wnt2, Wnt3, Wnt3a, Wnt7a, etc.
  • Noggin transferrin
  • albumin co
  • Nutritional factors include sugars, amino acids, vitamins, hydrolysates, lipids, etc.
  • Sugars include glucose, mannose, fructose, etc., and one or more types are used in combination.
  • amino acids include L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-cysteine, L-glutamic acid, L-glutamine, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, and L-valine, and are used alone or in combination of two or more.
  • the amino acids may also be acetylated (N-acetyl-L-cysteine, etc.).
  • vitamins include d-biotin, D-pantothenic acid, choline, folic acid, myo-inositol, niacinamide, pyrodoxal, riboflavin, thiamine, cyanocobalamin, and DL- ⁇ -tocopherol, and are used alone or in combination of two or more.
  • Examples of hydrolysates include those obtained by hydrolysis of soybeans, wheat, rice, peas, corn, cottonseed, yeast extract, etc.
  • lipids include cholesterol, linoleic acid, and linolenic acid.
  • polysaccharides examples include gellan gum, deacylated gellan gum, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylamylose, xanthan gum, alginic acid, carrageenan, diutan gum, and locust bean gum.
  • antibiotics such as kanamycin, streptomycin, penicillin, or hygromycin may be added to the medium as necessary.
  • an acidic substance such as sialic acid is added to the medium, it is desirable to adjust the pH of the medium to a neutral range suitable for cell growth, between pH 5 and 9, preferably between pH 6 and 8.
  • the above medium may be a serum-containing medium (e.g., fetal bovine serum (FBS), human serum, horse serum) or a serum-free medium.
  • FBS fetal bovine serum
  • the medium does not contain serum, or that serum derived from the same animal species as the cells to be cultured is used.
  • serum-free medium means a medium that does not contain unconditioned or unpurified serum.
  • the serum-free medium may contain purified blood-derived components or animal tissue-derived components (e.g., growth factors).
  • the medium used for suspension culture may or may not contain serum substitutes, as well as serum.
  • serum substitutes include albumin substitutes such as albumin, lipid-rich albumin, and recombinant albumin, vegetable starch, dextran, protein hydrolysates, transferrin or other iron transporters, fatty acids, insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3'-thioglycerol, or equivalents thereof.
  • serum substitutes include those prepared by the method described in WO98/30679, commercially available Knockout Serum Replacement [KSR] (Life Technologies, Thermo Fisher Scientific), Chemically-defined Lipid concentrated (Life Technologies), and L-alanine-L-glutamine dipeptide (e.g., Glutamax (Life Technologies)).
  • KSR Knockout Serum Replacement
  • Chemically-defined Lipid concentrated Life Technologies
  • L-alanine-L-glutamine dipeptide e.g., Glutamax (Life Technologies)
  • Other examples of biologically derived factors include platelet-rich plasma (PRP) and culture supernatant components of human mesenchymal stem cells.
  • the medium may contain one or more hormones.
  • hormones include estrogen, progesterone, cortisol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate.
  • the hormones may also be replaced with artificial or natural compounds having an equivalent steroid structure.
  • the culture vessel for culturing the cells e.g., endometrial stromal cells, (endometrial) epithelial cells, etc.
  • organoids uterine epithelial organoids
  • the culture vessel for culturing the cells e.g., endometrial stromal cells, (endometrial) epithelial cells, etc.
  • organoids uterine epithelial organoids
  • used in the present invention is not particularly limited, but examples include flasks, tissue culture flasks, dishes, Petri dishes, tissue culture dishes, multi-dishes, microplates, microwell plates, micropores, multi-plates, multi-well plates, chamber slides, petri dishes, tubes, trays, culture bags, and roller bottles.
  • the culture vessel is preferably low, ultra-low or non-adhesive to cells.
  • a culture vessel whose surface has been artificially treated to be low, ultra-low or non-adhesive to cells, or a culture vessel that has not been artificially treated (e.g., coated with an extracellular matrix or the like) for the purpose of improving adhesion to cells can be used.
  • Examples of such culture vessels that can be used include Ultra-Low Attachment dishes (Corning), Ultra-Low Attachment flasks (Corning), Ultra-Low Attachment plates (Corning), and PrimeSurface dishes (Sumitomo Bakelite).
  • an extracellular matrix or the like e.g., laminin, collagen, etc.
  • the present invention relates to a method for producing an artificial uterus, comprising the steps of: (1) filling a culture vessel with a solution containing endometrial stromal cells and mainly composed of extracellular matrix; (2) pressing a device having a support with an objective surface and at least one protrusion protruding from the objective surface into the filled solution; and (3) removing the pressed device after the filled solution has gelled.
  • steps (2) and (3) are as follows: (2') inserting into the filled solution a device having a support with an objective surface and at least one protrusion protruding from the objective surface; and (3') removing the pressed device after the filled solution has gelled.
  • the total amount of extracellular matrix contained in the solution is not particularly limited as long as the solution can form hydrogel (can be (hydro)gelled).
  • the density (cells/ml) of endometrial stromal cells contained in the solution is not particularly limited as long as the implantation of fertilized eggs (blastocysts) into uterine epithelial organoids described below can occur, but is, for example, in the range of 1 ⁇ 10 6 cells/cm 3 to 1 ⁇ 10 7 cells/cm 3 , preferably in the range of 2 ⁇ 10 6 cells/cm 3 to 3 ⁇ 10 6 cells/cm 3 .
  • the device used in the present invention is a device having a support with an objective surface and at least one protrusion protruding from the objective surface.
  • the support has an objective surface.
  • the "object surface” refers to a surface that faces and adheres to the object when a hole is formed in the object.
  • the "object” refers to a solution that contains endometrial stromal cells and is mainly composed of an extracellular matrix.
  • a gap may be present between the objective surface and the object.
  • the shape of the entire support is not particularly limited, but examples thereof include a plate shape (which may be called a film shape or a sheet shape depending on the thickness) having a thickness of about 0.5 mm to 1 mm, a columnar shape (cylindrical, rectangular, polygonal, etc.) that is easy to grasp or hold by hand or a tool, etc.
  • the outer peripheral shape of the objective surface is not particularly limited as long as it does not interfere with the formation of a hole by the protrusion, but examples thereof include a circle, an ellipse, a rectangle, etc.
  • the area of the objective surface is about 25 to 30 mm2.
  • a "protrusion” has a shape that can function as a mold for forming a hole.
  • the length, outer diameter, overall shape, tip shape, etc. of the protrusion are not particularly limited as long as the implantation of a fertilized egg (blastocyst) into a uterine epithelial organoid, which will be described later, can occur in the hole formed by the protrusion.
  • the length, outer diameter, overall shape, tip shape, etc. of the protrusion may be appropriately changed in relation to the dimensions of the hole to be formed, taking into account the shrinkage of the hole after formation.
  • the arrangement pattern of the protrusions, the center distance, and the gap between adjacent protrusions are also not particularly limited as long as the implantation of a fertilized egg (blastocyst) into a uterine epithelial organoid, which will be described later, can occur in the hole formed by the protrusion.
  • the device used in the present invention has at least one protrusion.
  • Specific structures of the protrusions include, for example, a cylindrical shape with a length of 1 to 3 mm and an outer dimension of 100 to 200 ⁇ m, and a cylindrical shape with a rounded tip.
  • a holding structure that functions as a handle or engagement portion when holding the support with a hand or an external device.
  • the holding structure may be provided integrally with the support, or may be provided as an independent part that can be connected to the support.
  • a support having such a shape can also be considered as an aspect in which the support and the holding structure are integrated.
  • the support, protrusions, and optionally the retaining structure may each be produced separately and then glued together, or some or all of them may be produced as a single unit.
  • the device may be produced, for example, by a 3D printer (inkjet method, powder modeling method, powder sintering method, etc.).
  • the materials of the support, protrusions, and holding structure which are the components of the device used in the present invention, are not particularly limited as long as they form holes that allow implantation of the fertilized egg (blastocyst) into the uterine epithelial organoid described below after steps (ii) and (iii) are performed.
  • ABS resin Acrylonitrile-Butadiene-Styrene resin
  • ASA resin Acrylonitrile-Styrene-Acrylate resin
  • PETG resin Polyethylene terephthalate glycol resin
  • PLA resin Polylactic acid resin
  • nylon-based resins or resin materials that use both of these resins and fiber materials such as carbon, PP (Polypropylene)-based powdered resin, PS (Polystyrene)-based powdered resin, and metal materials.
  • step (ii) of the present invention the timing of pressing the device is not particularly limited as long as at least a portion of the filled solution maintains the state of a solution.
  • the timing of removing the device pressed in step (ii) is not particularly limited as long as the hole formed after the removal allows implantation of a fertilized egg (blastocyst) into the uterine epithelial organoid, as described below.
  • the manufacturing method of the artificial uterus of the present invention fully incorporates the contents described in "1. Artificial uterus" above.
  • Kit for Producing an Artificial Uterus provides a kit for producing an artificial uterus, comprising a device having a support with an objective surface and at least one protrusion protruding from the objective surface, and a solution mainly composed of an extracellular matrix.
  • the kit may optionally contain endometrial stromal cells, uterine epithelial organoids, etc.
  • the present invention includes: (1) contacting a fertilized egg with the artificial uterus of the present invention in the presence or absence of a test substance; (2) measuring the implantation rate between uterine epithelial organoids and fertilized eggs; and (3) selecting the test substance as a candidate substance for treating or preventing infertility when the implantation rate is higher in the presence of a candidate substance in step (2) compared to the absence of the test substance.
  • a "fertilized egg” is a diploid cell formed by the fusion of a sperm and an egg, and is derived from a mammal.
  • the fertilized egg is a non-human fertilized egg.
  • the fertilized egg also includes early embryos and blastocysts, and it is preferable to use a blastocyst when implantation is intended. When using a blastocyst as the fertilized egg, it is preferable to peel off the zona pellucida of the blastocyst.
  • the fertilized egg may also be referred to as an "embryo".
  • this also includes fertilized eggs generated from pluripotent stem cells (Warmflash A., et al., Nature Methods, 11:847-854; Sinunovic M., et al., bioRxiv, 330704; Shao Y., et al., Nature Communications, 8:208; ten Berge D., et al., Cell Stem Cell, 3:508-518; Beccari L., et al., Nature, 562:2 72-276; van den Brink SC., et al., Development, 144:3894-3906; Harrison SE., et al., Science, 356:eaal1810, Sozen B., et al., Nature Cell Biology, 20:978-989; Rivron NC., et al., Nature, 557:106-111; Kagawa H., et al., Nature, 601:600-605).
  • Step (1) of the present invention is a step of contacting the uterine epithelial organoid contained in the artificial uterus of the present invention with a fertilized egg.
  • the contact can be performed by adding a fertilized egg to a medium containing the uterine epithelial organoid.
  • the contact is not particularly limited, but examples include 1 day or more, 2 days or more, 3 days or more, 4 days or more, 5 days or more, 6 days or more, and 7 days or more, and is preferably 1 to 3 days.
  • the temperature when the uterine epithelial organoid is contacted with the fertilized egg is not particularly limited, but is about 30 to 40 ° C, preferably about 37 ° C, and the culture is performed under an atmosphere of CO 2 -containing air, and the CO 2 concentration is preferably about 2 to 5%.
  • the concentration of the test substance can be adjusted appropriately depending on the type of compound (solubility, toxicity, etc.).
  • the measurement of the implantation rate between the uterine epithelial organoid and the fertilized egg in step (2) of the present invention can be performed by observing whether the fertilized egg penetrates into the inner membrane of the uterine epithelial organoid (sometimes referred to as "implantation-like reaction" in this specification).
  • the presence or absence of an implantation-like reaction may be observed, for example, by: 1. observing under a fluorescent microscope that the fluorescence of the fertilized egg disappears due to the penetration; 2. observing under a confocal microscope that the fluorescence of the fertilized egg has penetrated; and 3. observing the phenomenon of the embryo and the uterine epithelial organoid fusing after removal from the artificial uterus.
  • the artificial uterus side cells and the fertilized egg are stained with different fluorescent dyes.
  • animals expressing fluorescent proteins or light-emitting proteins by genetic engineering can be used.
  • fertilized eggs artificially inseminated with sperm collected from Rosa26 H2B-EGFP/H2B-EGFP mice express green fluorescent protein (EGFP), and uterine epithelial organoids and stromal cells cultured from Rosa26 mCherry/mCherry mice express red fluorescent protein (mCherry).
  • EGFP green fluorescent protein
  • mCherry red fluorescent protein
  • These can also be fluorescently labeled with fluorescent substances such as Cell tracker (Thermo Fisher) and Cell Explorer (AAT Bioquest).
  • uterine epithelial organoids and stromal cells can be stained with Cell ExplorerTM Fixable Live Cell Tracking Kit Green Fluorescence
  • fertilized eggs can be stained with Cell ExplorerTM Live Cell Tracking Kit Red Fluorescence for observation.
  • the implantation rate in the absence of the test substance to be compared in step (3) of the present invention may be measured as a control for each experiment, or a value measured in advance may be used.
  • the substances obtained by the screening of the present invention are believed to promote implantation-like reactions in vivo, and are therefore suitable as therapeutic or preventive drugs for infertility, or as candidate substances for such drugs.
  • the therapeutic or preventive drugs may be made by combining the substance with a drug (e.g., a hormone drug) that is used in the treatment of infertility, to form a combination drug (medicine) or a combination drug (medicine).
  • Integrin activator The present invention provides (1) a peptide consisting of KFEEERMRCKWMT, (2) a peptide consisting of KFEEERSRCKWMT, (3) A peptide consisting of an amino acid sequence in which one to three (i.e., one, two or three) amino acids have been deleted, substituted and/or added in (1) or (2), or (4) an integrin activator comprising a peptide in any one of (1) to (3) to which a membrane-permeable molecule is bound.
  • integrin activation refers to increasing cell adhesion mediated by integrins.
  • the integrin activator of the present invention increases cell adhesion mediated by integrins, and as a result, promotes the implantation (rate) of fertilized eggs (embryos or blastocysts) into the endometrium. Therefore, in one aspect, the integrin activator of the present invention is an agent for promoting the implantation (rate) of fertilized eggs (embryos or blastocysts) into the endometrium (in the present invention, it may be simply referred to as an "embryo implantation promoter").
  • the agent of the present invention or a peptide contained therein can be administered to a subject to promote embryo implantation, thereby performing infertility treatment, etc.
  • the agent of the present invention is an agent for treating infertility.
  • the agent of the present invention may be used in combination with hormone agents, etc., as described below, used in infertility treatment, and may be formulated as a combination drug or a combined drug.
  • amino acid sequence of (3) above for example, (i) an amino acid sequence in which one to several (2, 3, 4 or 5), preferably one to four, more preferably one to three, and even more preferably one or two amino acids in the amino acid sequence of a peptide consisting of KFEEERMRCKWMT (SEQ ID NO: 1) or a peptide consisting of KFEEERSRCKWMT (SEQ ID NO: 2) are substituted with other amino acids, and even more preferably an amino acid sequence in which one amino acid is substituted with other amino acids; (ii) an amino acid sequence in which one to several (2, 3, 4 or 5), preferably one to four, more preferably one to three, and even more preferably one or two amino acids in the amino acid sequence represented by SEQ ID NO: 1 or 2 are substituted with other amino acids; (iii) an amino acid sequence in which one to several (2, 3, 4, or 5) amino acids, preferably one to four, more preferably one to three, even more preferably one or two, and even more preferably one amino acid has
  • amino acids classified in the same group such as aromatic amino acids (Phe, Trp, Tyr), aliphatic amino acids (Ala, Leu, Ile, Val), polar amino acids (Gln, Asn), basic amino acids (Lys, Arg, His), acidic amino acids (Glu, Asp), amino acids with hydroxyl groups (Ser, Thr), and amino acids with small side chains (Gly, Ala, Ser, Thr, Met). It is predicted that such substitution with similar amino acids will not cause a change in the phenotype of the protein (i.e., it is a conservative amino acid substitution).
  • the amino acid sequence of (3) above includes an amino acid sequence in which one or two amino acids have been inserted at the N-terminus and/or C-terminus of SEQ ID NO: 1 or 2.
  • the substituted amino acid may be replaced with a non-natural artificial amino acid.
  • amino acids modified with fluoride (F), chloride (Cl), bromide (Br), or iodide (I) are preferred for substitution because they have a significant effect on cell permeability and blood stability.
  • the membrane-permeable molecule is not particularly limited as long as it is a molecule that, when bound to a peptide, increases hydrophobicity and improves affinity for cell membranes.
  • Specific examples include saturated fatty acids, more specifically, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, and stearic acid.
  • Polyethylene glycol may also be reversibly bound by a method known per se (Utatsu et al., Materials Today Bio, Volume 12, September 2021, 100160).
  • myristoylation (N-terminus) to attach myristic acid and palmitoylation to attach palmitic acid are preferred because they increase the hydrophobicity of the peptide and improve its affinity for cell membranes.
  • the integrin activator of the present invention may contain, in addition to the peptide of the present invention, a pharma- ceutically acceptable carrier, etc., as described below, and may be administered orally or parenterally to a mammal, etc.
  • the dosage form of the integrin activator of the present invention may be, for example, oral preparations such as tablets (e.g., sugar-coated tablets, film-coated tablets, sublingual tablets, buccal tablets, or oral rapid disintegrating tablets), pills, granules, powders, capsules (e.g., soft capsules, microcapsules), syrups, emulsions, suspensions, or films (e.g., orally disintegrating films, or oral mucosa patch films).
  • oral preparations such as tablets (e.g., sugar-coated tablets, film-coated tablets, sublingual tablets, buccal tablets, or oral rapid disintegrating tablets), pills, granules, powders, capsules (e.g., soft capsules, microcapsules), syrups, emulsions, suspensions, or films (e.g., orally disintegrating films, or oral mucosa patch films).
  • the dosage form of the integrin activator of the present invention may be, for example, parenteral preparations such as injections, drops, transdermal preparations (e.g., iontophoretic transdermal preparations), suppositories, ointments, nasal preparations, pulmonary preparations, eye drops, vaginal preparations, or vaginal capsules.
  • parenteral preparations such as injections, drops, transdermal preparations (e.g., iontophoretic transdermal preparations), suppositories, ointments, nasal preparations, pulmonary preparations, eye drops, vaginal preparations, or vaginal capsules.
  • the integrin activator of the present invention may be a controlled-release preparation such as an immediate-release preparation or a sustained-release preparation (e.g., sustained-release microcapsules).
  • the integrin activator of the present invention can be manufactured by a known manufacturing method commonly used in the field of pharmaceutical technology (e.g., a method described in the Japanese Pharmacopoeia). Furthermore, the integrin activator of the present invention can contain, as necessary, appropriate amounts of additives commonly used in the field of pharmaceutical technology, such as excipients, binders, disintegrants, lubricants, sweeteners, surfactants, suspending agents, emulsifiers, colorants, preservatives, fragrances, flavorings, stabilizers, and thickeners. These additives are examples of pharmacologically acceptable carriers.
  • tablets can be produced using excipients, binders, disintegrants, lubricants, etc.
  • pills and granules can be produced using excipients, binders, and disintegrants.
  • Powders and capsules can be produced using excipients, etc.
  • syrups can be produced using sweeteners, etc.
  • emulsions or suspensions can be produced using suspending agents, surfactants, emulsifiers, etc.
  • excipients include lactose, sucrose, glucose, starch, sucrose, microcrystalline cellulose, licorice powder, mannitol, sodium bicarbonate, calcium phosphate, and calcium sulfate.
  • binders include 5 to 10% by weight starch paste solution, 10 to 20% by weight gum arabic solution or gelatin solution, 1 to 5% by weight tragacanth solution, carboxymethylcellulose solution, sodium alginate solution, and glycerin.
  • disintegrants include starch and calcium carbonate.
  • lubricants include magnesium stearate, stearic acid, calcium stearate, and purified talc.
  • sweeteners include glucose, fructose, invert sugar, sorbitol, xylitol, glycerin, and simple syrup.
  • surfactant include sodium lauryl sulfate, polysorbate 80, sorbitan mono fatty acid ester, and polyoxyl 40 stearate.
  • suspending agents include gum arabic, sodium alginate, sodium carboxymethylcellulose, methylcellulose, and bentonite.
  • emulsifying agents include gum arabic, tragacanth, gelatin, and polysorbate 80.
  • the tablet when the agent of the present invention is a tablet, the tablet can be produced by adding, for example, an excipient (e.g., lactose, sucrose, starch), a disintegrant (e.g., starch, calcium carbonate), a binder (e.g., starch, gum arabic, carboxymethylcellulose, polyvinylpyrrolidone, hydroxypropylcellulose) or a lubricant (e.g., talc, magnesium stearate, polyethylene glycol 6000) to the peptide of the present invention, compressing and molding the tablet, and then coating the tablet by a method known per se for the purpose of taste masking, enteric coating or sustained release, if necessary.
  • an excipient e.g., lactose, sucrose, starch
  • a disintegrant e.g., starch, calcium carbonate
  • a binder e.g., starch, gum arabic, carboxymethylcellulose, polyvinylpyrrolidon
  • coating agents examples include hydroxypropylmethylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxypropylcellulose, polyoxyethylene glycol, Tween 80, Pluronic F68, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, hydroxymethylcellulose acetate succinate, Eudragit (manufactured by Rohm, Germany, methacrylic acid-acrylic acid copolymer) and dyes (e.g., red iron oxide, titanium dioxide).
  • coating agents examples include hydroxypropylmethylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxypropylcellulose, polyoxyethylene glycol, Tween 80, Pluronic F68, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, hydroxymethylcellulose acetate succinate, Eudragit (manufactured by Rohm, Germany, methacrylic acid-acrylic acid copolymer) and dyes (e.g., red iron oxide, titanium dioxide).
  • the injections include intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, intraperitoneal injections, drip injections, etc.
  • Such injections are prepared by a method known per se, that is, by dissolving, suspending or emulsifying the peptide of the present invention in a sterile aqueous or oily liquid.
  • aqueous liquids include physiological saline, isotonic liquids containing glucose and other auxiliary drugs (e.g., D-sorbitol, D-mannitol, sodium chloride), etc.
  • the aqueous liquid may contain a suitable solubilizing agent, for example, alcohol (e.g., ethanol), polyalcohol (e.g., propylene glycol, polyethylene glycol), nonionic surfactant (e.g., polysorbate 80, HCO-50).
  • oily liquids examples include sesame oil, soybean oil, etc.
  • the oily liquid may contain a suitable solubilizing agent.
  • the solubilizing agent include benzyl benzoate, benzyl alcohol, etc.
  • the injection may also contain a buffer (e.g., phosphate buffer, sodium acetate buffer), a soothing agent (e.g., benzalkonium chloride, procaine hydrochloride), a stabilizer (e.g., human serum albumin, polyethylene glycol), a preservative (e.g., benzyl alcohol, phenol), etc.
  • the prepared injection solution is usually filled into ampoules.
  • the content of the peptide of the present invention in the agent of the present invention varies depending on the form of the formulation, but is usually about 0.01 to about 100% by weight, preferably about 2 to about 85% by weight, and more preferably about 5 to about 70% by weight, based on the total weight of the formulation.
  • the content of additives in the agent of the present invention varies depending on the form of the formulation, but is usually about 1 to about 99.9% by weight, preferably about 10 to about 90% by weight, based on the total weight of the formulation.
  • the peptides of the present invention are stable, have low toxicity, and can be used safely.
  • the daily dosage of the peptides of the present invention varies depending on the patient's condition and body weight, the type of compound (amino acid), the route of administration, etc., but for example, when orally administered to a patient for the purpose of infertility treatment, the daily dosage for an adult (body weight approximately 60 kg) is approximately 5 to 500 mg of the peptides of the present invention. This may be administered once or in multiple divided doses.
  • the peptides of the present invention are administered parenterally, they are usually administered in the form of a liquid (e.g., an injection) or vaginal capsule.
  • a liquid e.g., an injection
  • vaginal capsule e.g., a liquid or vaginal capsule.
  • the single dose of the peptides of the present invention varies depending on the recipient, target organ, symptoms, administration method, etc., but is usually administered vaginally, by transdermal injection, or intravenous injection at a dose of about 0.08 to about 8 mg per kg of body weight.
  • the peptides of the present invention may be used in combination with other drugs. Specifically, for example, the peptides of the present invention may be used in combination with hormones and the like. In this specification, other drugs that may be used in combination with the peptides of the present invention may be referred to as "concomitant drugs.”
  • Hormonal drugs include, for example, ovulation inducers, hCG preparations, estrogen preparations, progesterone preparations, and GnRH preparations (GnRH agonists/antagonists).
  • Other examples include drugs for treating hyperprolactinemia (e.g., Cabasal, etc.) and drugs for treating endometriosis and mammary gland disease (e.g., Danazol, etc.).
  • examples of follicular hormone (estrogen) agents include estradiol, estriol, ethinyl estradiol, estradiol cypionate, estradiol valerate, etc.
  • examples of luteal hormone (progesterone) agents include progesterone, medroxyprogesterone acetate, dydrogesterone, norethisterone, dienogest, etc.
  • the dosage can be reduced compared to when the peptide of the present invention or the concomitant drug is administered alone;
  • the drug to be used in combination with the peptide of the present invention can be selected depending on the patient's symptoms (mild, severe, etc.); (3) the treatment period can be set longer; (4) the therapeutic effect can be sustained; and (5) a synergistic effect can be obtained by using the peptide of the present invention in combination with the concomitant drug.
  • the case where the peptide of the present invention is used in combination with a concomitant drug is referred to as the "concomitant drug of the present invention".
  • the administration time of the peptide of the present invention and the concomitant drug is not limited, and the peptide of the present invention and the concomitant drug may be administered to the subject at the same time or at a time lag.
  • the time lag varies depending on the active ingredient, dosage form, and administration method to be administered.
  • the peptide of the present invention when a concomitant drug that improves the condition of the endometrium is administered first, the peptide of the present invention may be administered 1 week to 10 days after intercourse in the case of natural pregnancy, or at the time of transfer in the case of artificial insemination embryo transfer.
  • the concomitant drug such as a progesterone preparation for maintaining the pregnancy state may be administered after the administration of the peptide of the present invention.
  • the dose of the concomitant drug may be similar to the dose used in clinical practice, and may be appropriately selected depending on the subject, administration route, disease, combination, etc.
  • the peptides of the present invention are not limited to use in humans, but can also be used to improve implantation efficiency in livestock animals such as race horses and beef cattle.
  • examples of the administration form include (1) administration of a single preparation obtained by simultaneously formulating the peptide of the present invention and the concomitant drug, (2) administration of two preparations obtained by separately formulating the peptide of the present invention and the concomitant drug, via the same administration route, at different times, (3) administration of two preparations obtained by separately formulating the peptide of the present invention and the concomitant drug, via the same administration route, at different times, (4) administration of two preparations obtained by separately formulating the peptide of the present invention and the concomitant drug, via different administration routes, at different times, (5) administration of two preparations obtained by separately formulating the peptide of the present invention and the concomitant drug, via different administration routes, at different times (for example, administration in the order of the peptide of the present invention ⁇ the concomitant drug, or administration in the reverse order).
  • the dosage of the concomitant drug may be appropriately selected based on the dosage used in clinical practice.
  • the mixing ratio of the peptide of the present invention to the concomitant drug may be appropriately selected depending on the subject, administration route, target disease (particularly infertility), symptoms, combination, etc.
  • Cell culture Uteri were collected from euthanized C56BL/6 mice or Rosa26 mCherry/mCherry mice, cut open to expose the epithelium, and then cut into pieces. Epithelial cells were then extracted by enzymatic treatment with dispase. The epithelial cells were suspended in Matrigel and cultured in Advanced DMEM/F12 medium (WNT medium) supplemented with WNT3A, R-spondin1, Noggin, EGF, and Hepes pH 7.4 to produce uterine organoids (Turco, 2017, Nature Cell Biology). The uterine tissue from which the epithelial cells had been removed was enzymatically treated with collagenase to extract interstitial cells.
  • WNT medium Advanced DMEM/F12 medium
  • the interstitial cells were cultured in DMEM medium containing 10% serum on cell adhesion-treated dishes.
  • Uterine organoids and interstitial cells derived from C56BL/6 mice were fluorescently labeled with Cell ExplorerTM Live Cell Tracking Kit Green Fluorescence (AAT Bioquest) immediately before the artificial implantation experiment.
  • Embryo culture B6D2F1 female mice were administered CARD HyperOva (Kyudo), and 48 hours later, human chorionic gonadotropin (Aska Pharmaceutical) was administered and mated with B6D2F1 male mice. Two days later, the female mice were euthanized, and 2-cell stage embryos were collected from the oviducts and cultured in KSOM medium (Ark Resources) for 3 days to develop into blastocysts. Immediately before the artificial implantation experiment, the embryos were fluorescently labeled with Cell ExplorerTM Live Cell Tracking Kit Red Fluorescence (AAT Bioquest).
  • Rosa26 H2B-EGFP/H2B-EGFP male mice aged 8 weeks or older were euthanized, and sperm was collected from the cauda epididymis and frozen and preserved using CARD FERTIUP Mouse Sperm Cryopreservation Solution (Kyudo).
  • CARD FERTIUP Mouse Sperm Cryopreservation Solution Kyudo
  • female B6D2F1 mice were administered CARD HyperOva (Kudo), and 48 hours later, human chorionic gonadotropin (Aska Pharmaceutical) was administered.
  • the female mice were euthanized the next day, and unfertilized eggs were collected from the oviducts. After thawing, the unfertilized eggs were fertilized with sperm recovered in CARD FERTIUP mouse sperm preculture medium to obtain fertilized eggs fluorescently labeled with EGFP, which were then developed into blastocysts.
  • Example 1 Mini-Uterus and In Vitro Implantation
  • Uterine organoids are spherical cell masses consisting of a single layer of columnar epithelial cells in Matrigel (Figure 1A).
  • Uterine organoids were suspended in PBS containing 5 mM EDTA together with Matrigel, and rotated at 4 °C for 60 minutes to dissolve the Matrigel.
  • Uterine organoids were individually sorted into 96-well Ultra Low Attachment dishes (Costar) and cultured in estrogen-containing WNT medium for 4 days to reverse the polarity.
  • the polarity of epithelial cells can be determined from the positional relationship between nuclei stained with Hoechst and actin fibers stained with Phalloidin.
  • the nuclei and actin fibers are oriented from the outside to the inside of the sphere ( Figure 1F, right), whereas in uterine organoids cultured in Ultra Low Attachment dishes, the nuclei and actin fibers are oriented from the inside to the outside of the sphere ( Figure 1F, left).
  • the actin fiber side is the luminal side, which is the side that comes into contact with the embryo.
  • the cells were then cultured for another day in WNT medium containing estrogen and progesterone.
  • the interstitial cells were suspended in Matrigel and placed on a glass-bottom dish, and a mold made with a 3D printer was placed on top to solidify (Fig.
  • the implantation-like reaction was observed in a confocal fluorescence microscope FV3000 equipped with a simple CO2 incubator (Tokai Hit) under an environment similar to that in the body at 37°C and 5% CO2 .
  • Three-dimensional fluorescence observation was performed for three days using a 488 nm laser for observing EGFP and Cell Explorer TM Live Cell Tracking Kit Green Fluorescence, and a 561 nm laser for observing mCherry and Cell Explorer TM Live Cell Tracking Kit Red Fluorescence.
  • the blastocysts were initially in contact with the uterine organoids, but gradually invaded the uterine organoids (Fig. 4A). Interactions with the surrounding stromal cells were also observed (Fig. 4A).
  • Example 2 Verification of in vitro implantation experiments
  • the embryo left in FIG. 6A
  • uterine organoid right in FIG. 6A
  • the removed embryo is fused and does not separate (FIG. 6B).
  • 72 hours after placing the blastocyst in the in vitro implantation experimental system all cells were removed, trypsinized, and single-celled, and single-cell RNA expression analysis was performed.
  • dead cells were fluorescently stained with 7-AAD, and live cells were separated and collected using a cell sorter (SH800S, Sony).
  • the collected cells were RNA-tagged for each cell using Chromium (10x Genomics) at the Genetic Information Experimental Center attached to the Institute of Microbiology, Osaka University, and next-generation sequencing was performed.
  • Gene expression data was analyzed using SEURAT (https://satijalab.org/seurat/). From the gene expression patterns, the analyzed cell groups could be classified into three types: placenta-like cells, endometrial stromal cells, and endometrial epithelial cells (Fig. 6C). These are thought to be cells derived from the blastocyst, interstitial cells, and uterine organoids placed in the in vitro implantation experiment system, respectively.
  • Example 3 Expression of implantation-related genes The expression of genes known to play a role in implantation was confirmed by the single-cell RNA expression analysis of Example 2. Expression of WNT signaling (Fig. 7A), Notch signaling (Fig. 7B), metalloproteases (Fig. 7C), TGF ⁇ (Fig. 7D), LIF (Fig. 7E), integrins (Fig. 7F), etc. was observed in both embryo-derived and endometrial-derived cells, suggesting that the phenomena observed in Examples 1 and 2 are responses equivalent to implantation occurring in vivo.
  • WNT signaling Fig. 7A
  • Notch signaling Fig. 7B
  • metalloproteases Fig. 7C
  • TGF ⁇ Fig. 7D
  • LIF Fig. 7E
  • integrins Fig. 7F
  • Example 4 Peptide activity measurement (overview) The activity of the peptides was detected by measuring their ability to form integrin activation complexes using AlphaScreen. Among more than 60,000 peptides, Iznm-1 (Myr-KFEEERMRCKWMT (MW: 1984.45)) and Iznm-2 (Myr-KFEEERSRCKWMT (MW: 1940.33)) were found to have the highest integrin activation ability. At a concentration of 8 ⁇ M, approximately 5-fold activation effect was observed for Iznm-1 and approximately 14-fold activation effect was observed for Iznm-2 ( Figure 8).
  • Example 5 Increase in activated integrin ⁇ 1 by peptide drug
  • Iznm-2 actually causes integrin activation in embryos
  • blastocysts from which the zona pellucida had been removed were placed in glass-bottom dishes (Matsunami) and cultured in implantation medium for 3 days.
  • the culture medium contained an antibody (MAB2259Z, Merck) that recognizes activated integrin ⁇ 1 and an Alexa594-conjugated anti-mouse secondary antibody, and the experiment was performed by dividing the animals into an experimental group in which Iznm-2 was added and a control group in which Iznm-2 was not added.
  • Example 5 (2) Peptide drug promotes embryo adhesion to glass surface
  • embryos in the control group did not adhere, but in the experimental group to which Iznm-2 was added, embryos adhered to the glass surface (Fig. 10A, B).
  • the ratio was 0/13 in the control group and 13/14 in the Iznm-2-added group, and a significant difference was detected between the two groups (p ⁇ 0.01, chi-square test, Fig. 10C).
  • Example 6 Effect of peptide drugs in in vitro implantation system
  • the success or failure of implantation-like reaction was judged based on the success or failure of fusion between the embryo and uterine organoid shown in Figures 6A and 6B ( Figure 11).
  • implantation-like reaction was observed at a rate of 5/22 (22.7%).
  • implantation-like reaction was observed at a rate of 1/22 (4.5%) (p ⁇ 0.01, chi-square test and residual analysis).
  • Example 7 Effect of peptide drugs on embryo development The following experiment was carried out to confirm the effect of peptide drugs on embryo development. Vasectomized male ICR mice aged 8 weeks were vasoligated. ICR female mice in proestrus were mated with vasoligated male mice, and mice with vaginal plugs the next day were used as pseudopregnant female mice. Two days after the vaginal plug was confirmed, B6D2F1 mouse embryos that had developed to blastocysts were transplanted. The blastocysts were transferred to KSOM medium containing 32 ⁇ M Iznm-2 just before transplantation, and the embryos were transplanted together with the medium.
  • Embryo transplantation was carried out as follows. The skin and abdominal wall on one side of the dorsal side of anesthetized pseudopregnant female mice were incised to expose the uterus to the outside of the body, a hole was pierced with a 26G needle, and the embryos together with the medium were injected into the hole using a glass tube. After transplantation, the uterus was returned to the body and sutured. The transplanted embryos were allowed to develop in the recipient mice until E14, after which the surrogate mice were euthanized, and the embryos were extracted and their development was examined. The extracted embryos developed normally, suggesting that Iznm-2 does not have a significant effect on embryonic development (Fig. 14).
  • Example 8 Effect of peptide drugs on embryo transfer The following experiment was carried out to confirm the effect of peptide drugs on embryo transfer. Eight-week-old ICR male mice were vasoligated. ICR female mice in proestrus were mated with vasoligated male mice, and mice with vaginal plugs the next day were used as pseudopregnant female mice. Two days after the vaginal plug was confirmed, B6D2F1 mouse embryos that had developed to blastocysts were transferred. The blastocysts were transferred to KSOM medium containing 8 ⁇ M Iznm-2 or not (control) immediately before transfer, and the embryos were transferred together with the medium.
  • the amount of medium injected into the uterus at the time of transfer was 5 ⁇ l or less.
  • the blastocysts to be transferred were transferred 4.5 days after mating, while the pseudopregnant mice were transferred 2.5 days after mating.
  • the skin and abdominal wall on one side of the dorsal side of anesthetized pseudopregnant female mice were incised to expose the uterus to the outside of the body, a hole was made with a 26G needle, and the embryo and medium were injected into the hole using a glass tube. After transfer, the uterus was returned to the body and sutured. The transferred embryos were developed in the mice until E15.5, and then the surrogate mother mice were euthanized, removed, and the implantation rate and development were examined (Fig. 13A, B).
  • Example 9 Effect of peptide drugs on embryonic development The development of the E15.5 embryo obtained in Example 8 was confirmed. The shape of the embryo was normal ( Figure 14A). In addition, a paraffin block of the embryo was prepared, and the section was stained with hematoxylin and eosin to confirm the normal development of organs such as the brain, heart, and digestive organs ( Figure 14B).
  • Example 10 Effects of peptide drugs on the mother The side effects of peptide drugs were examined by administering an excess amount of Iznm-2 into the abdominal cavity of female mice.
  • 8 ⁇ M Iznm-2 was administered into the uterus in an amount of 5 ⁇ l or less together with the embryo, but in this experiment, Iznm-2 was administered at a concentration of 8 ⁇ M relative to the total body weight of the mouse.
  • Iznm-2 was dissolved in corn oil, and corn oil without peptide drugs was administered as a control. 24 hours after administration, blood samples were taken and blood components that serve as indicators of liver and kidney conditions were analyzed.
  • Table 1 shows the results of blood tests on mice (mothers) that received intraperitoneal administration of the peptide drug of the present invention (Iznm-2) compared to the control (mice administered corn oil).
  • the peptides of the present invention are extremely safe for the mother and embryo development. It can also be seen that the peptides of the present invention can directly increase the implantation rate by improving the adhesion between the embryo and the uterus, even if the condition of the uterus is not in good condition.
  • the present invention is useful because it makes it possible to improve the implantation rate of embryos after natural conception or artificial insemination by activating integrins. Furthermore, since the agent of the present invention can be used in combination with drugs used in conventional infertility treatments, it can be one solution to the declining birthrate and also leads to a reduction in the cost of infertility treatment and the increasing subsidies related to said treatment. Furthermore, since the present invention makes it possible to quickly and reliably evaluate substances that can improve the implantation rate of embryos, the present invention is also very useful in obtaining such substances.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Dermatology (AREA)
  • Immunology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Reproductive Health (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)

Abstract

本発明は、胚の着床率を向上させることができ、そして既存の不妊治療において使用するような薬剤とも併用することができるような薬剤、及びこのような薬剤の評価を確実に行うことができるようなスクリーニング方法等を提供する。具体的には、(1)KFEEERMRCKWMTからなるペプチド、(2)KFEEERSRCKWMTからなるペプチド、(3)(1)若しくは(2)において、1乃至3個のアミノ酸が欠失、置換及び/若しくは付加されたアミノ酸配列からなるペプチド、又は(4)(1)~(3)のいずれかにおいて、膜透過性分子が結合されたペプチドを含む、インテグリン活性化剤。子宮内膜間質細胞を含み、細胞外マトリックスを主成分とするハイドロゲルと、該ハイドロゲルに囲まれるように配置された子宮上皮オルガノイドとを含む人工子宮、及び受精卵(例:着床を行う胚盤胞まで発生が進んだ胚)を用いた着床再現実験系によるスクリーニング方法を提供する。

Description

着床促進薬とそのスクリーニング系
 本発明は、特定のペプチドを含むインテグリン活性化剤、子宮内膜間質細胞を含み、細胞外マトリックスを主成分とするハイドロゲルと、該ハイドロゲルに囲まれるように配置された子宮上皮オルガノイドとを含む人工子宮、及び該人工子宮を用いた不妊症の治療剤のスクリーニング方法等に関する。
 先進国では社会的状況で晩婚化が進んだことにより、不妊治療を受ける患者数が増大している。少子化の対策が急務となる我が国でも、この晩婚化を背景に、不妊症治療件数は30万件を超えている。不妊治療では子宮の状態を改善させるホルモン治療、精子と卵を人工的に子宮に流し込む人工授精、体外受精や顕微授精などの高度生殖補助医療の3段階の治療が行われている。特に、人工授精、顕微授精など配偶子に着目した不妊治療に主眼が置かれている。既存の不妊治療では、精子と卵が出会う確率を飛躍的に向上させることができるが、その後に起こる着床は自然に任せている。
 このように着床については自然に任せているものの、高齢になると配偶子の質が低下するだけでなく、受精卵が子宮に着床する効率も著しく減少する。そのため、例えば、人工授精した胚の着床率は、30代前半で35%、30代後半では25%、40代以上では10%以下のように、年齢とともに減少する状況となっている。
 しかしながら、着床に直接作用する治療法については、検討されてはいるものの、効果的な改善を示すような方法は知られていない。そのため、胚の着床率を向上させることができ、そして従来の不妊治療で使用するような薬剤とも併用できるような薬剤の開発が求められている(特許文献1)。また、同時に、このような薬剤の評価を確実に行うことができるようなスクリーニング系の確立も望まれている。
国際公開第2019/101368号
 従って、本発明の課題は、胚の着床率を向上させることができ、そして既存の不妊治療において使用するような薬剤とも併用することができるような薬剤、及びこのような薬剤の評価を確実に行うことができるようなスクリーニング方法等を提供することである。
 本発明者らは、既存の不妊治療について検討し、該治療では精子と卵が出会う確率を飛躍的に向上させることができるが、その後に起こる着床は自然に任せている点に着目した。着床率に変化を与える物質をスクリーニングすることを企図した場合、まず、本発明者らは、生体において実際に起こっている着床という事象である、子宮内膜と胚の双方から多様な機構が作用して胚接着し、そして子宮内膜間質層に胚浸潤するという複雑なメカニズムを、単純化してスクリーニング系として確立することを着想した。このようなスクリーニング系を確立することで、多数のサンプルを迅速かつ確実に評価することができ、結果として、着床率を向上し得るような物質の取得に繋がると考えた。そこで、本発明者らは、子宮上皮オルガノイドの存する環境と、子宮上皮オルガノイドの極性とをコントロールして、胚(胚盤胞)と該子宮上皮オルガノイドを接触させるだけで自然に着床させることを着想し、鋭意研究を進めたところ、本発明のスクリーニング方法等を確立することに成功した。
 また、胚の着床率の向上を企図した場合、どのような物質をターゲットとすればよいかについてさらに検討を進め、子宮内膜上皮細胞と胚の栄養膜細胞との接着に注目し、該接着に関係するインテグリンに着目した。本発明者らは、着目したインテグリンを活性化するような物質を用いることで、結果として胚の着床率を向上し得るのではないかとの着想を得た。
 上記の着想を具体的なものとするために、完成した本発明のスクリーニング方法を用いて、インテグリンを活性化するような物質が、実際に胚の着床率を向上し得ることを確認した。そこで、インテグリンの立体構造等から、その活性を変化させ得る物質の構造を予測した上で、60000以上の物質の評価を行った。これらの知見に基づいて、本発明者らは、さらに研究を重ねた結果、本発明を完成するに至った。
 すなわち、本発明は以下の通りのものである。
[1]
 (1)KFEEERMRCKWMTからなるペプチド、
 (2)KFEEERSRCKWMTからなるペプチド、
 (3)(1)若しくは(2)において、1乃至3個のアミノ酸が欠失、置換及び/若しくは付加されたアミノ酸配列からなるペプチド、又は
 (4)(1)~(3)のいずれかにおいて、膜透過性分子が結合されたペプチド
を含む、インテグリン活性化剤。
[2]
 膜透過性分子がミリスチン酸である、[1]に記載の剤。
[3]
 胚の着床促進のための、[1]又は[2]に記載の剤。
[4]
 [1]~[3]のいずれか1つに記載の剤と、ホルモン剤を含む、不妊症の治療剤。
[5]
 子宮内膜間質細胞を含み、細胞外マトリックスを主成分とするハイドロゲルと、該ハイドロゲルに囲まれるように配置された子宮上皮オルガノイドとを含む、人工子宮。
[6]
 子宮上皮オルガノイドを囲むように配置されたハイドロゲルの天方向に開口部を備えた、[5]に記載の人工子宮。
[7]
 前記細胞外マトリックスがラミニン及び/又はその断片を含む、[5]又は[6]に記載の人工子宮。
[8]
 子宮上皮オルガノイドが、オルガノイドの外側が頂端側である、[5]~[7]のいずれか1つに記載の人工子宮。
[9]
 対物面を持った支持体と前記対物面から突起する少なくとも1つの突起体とを有するデバイス、及び細胞外マトリックスを主成分とする溶液を含む、人工子宮作製用キット。
[10]
 人工子宮の製造方法であって、以下:
(1)培養器に、子宮内膜間質細胞を含み、細胞外マトリックスを主成分とする溶液を充填する工程、
(2)前記充填した溶液中に、対物面を持った支持体と前記対物面から突起する少なくとも1つの突起体とを有するデバイスを押圧する工程、及び
(3)前記充填した溶液がゲル化した後、前記押圧したデバイスを除去する工程
を含む、方法。
[11]
 (1)被験物質の存在下又は非存在下で、[5]~[8]のいずれか1つに記載の人工子宮と、受精卵とを接触させる工程、
 (2)子宮上皮オルガノイドと受精卵との着床率を測定する工程、及び
 (3)工程(2)において、被験物質の非存在下と比較して、候補物質の存在下において着床率が高い場合に、該被験物質を不妊症の治療又は予防薬の候補物質として選別する工程
を含む、不妊症の治療剤のスクリーニング方法。
[12]
 対象において胚の着床を促進するための方法であって、[1]又は[2]に記載の剤を投与することを含む、方法。
[13]
 対象において不妊症を治療するための方法であって、治療有効量の[1]又は[2]に記載の剤を投与することを含む、方法。
[14]
 前記剤が、さらにホルモン剤を含む、[13]に記載の方法。
[I]
 (1)KFEEERMRCKWMTからなるペプチド、
 (2)KFEEERSRCKWMTからなるペプチド、
 (3)(1)若しくは(2)において、1乃至3個のアミノ酸が欠失、置換及び/若しくは付加されたアミノ酸配列からなるペプチド、又は
 (4)(1)~(3)のいずれかにおいて、膜透過性分子が結合されたペプチド
を含む、胚の着床促進剤又は不妊症治療剤。
[II]
 膜透過性分子が結合されたペプチドが、ミリストイル化されたペプチドである、[I]に記載の剤。
[III]
 ホルモン剤を含む、[I]又は[II]に記載の剤。
[IV]
 (1)KFEEERMRCKWMTからなるペプチド、
 (2)KFEEERSRCKWMTからなるペプチド、
 (3)(1)若しくは(2)において、1乃至3個のアミノ酸が欠失、置換及び/若しくは付加されたアミノ酸配列からなるペプチド、又は
 (4)(1)~(3)のいずれかにおいて、膜透過性分子が結合されたペプチド
を含む、インテグリン活性化剤。
[V]
 子宮内膜間質細胞を含み、細胞外マトリックスを主成分とするハイドロゲルと、該ハイドロゲルに囲まれるように配置された子宮上皮オルガノイドとを含み、子宮上皮オルガノイドを囲むように配置されたハイドロゲルの天方向に開口部を備えた、人工子宮。
[VI]
 前記細胞外マトリックスがラミニン及び/又はその断片を含む、[V]に記載の人工子宮。
[VII]
 子宮上皮オルガノイドが、オルガノイドの外側が頂端側である、[V]に記載の人工子宮。
[VIII]
 対物面を持った支持体と前記対物面から突起する少なくとも1つの突起体とを有するデバイス、及び細胞外マトリックスを主成分とする溶液を含む、人工子宮作製用キット。
[IX]
 人工子宮の製造方法であって、以下:
(1)培養器に、子宮内膜間質細胞を含み、細胞外マトリックスを主成分とする溶液を充填する工程、
(2)前記充填した溶液中に、対物面を持った支持体と前記対物面から突起する少なくとも1つの突起体とを有するデバイスを押圧する工程、及び
(3)前記充填した溶液がゲル化した後、前記押圧したデバイスを除去する工程
を含む、方法。
[X]
 (1)被験物質の存在下又は非存在下で、[V]に記載の人工子宮と、受精卵とを接触させる工程、
 (2)子宮上皮オルガノイドと受精卵との着床率を測定する工程、及び
 (3)工程(2)において、被験物質の非存在下と比較して、候補物質の存在下において着床率が高い場合に、該被験物質を不妊症の治療又は予防薬の候補物質として選別する工程
を含む、不妊症の治療剤のスクリーニング方法。
[XI]
 胚の着床促進又は不妊症治療における使用のための、以下:
 (1)KFEEERMRCKWMTからなるペプチド、
 (2)KFEEERSRCKWMTからなるペプチド、
 (3)(1)若しくは(2)において、1乃至3個のアミノ酸が欠失、置換及び/若しくは付加されたアミノ酸配列からなるペプチド、又は
 (4)(1)~(3)のいずれかにおいて、膜透過性分子が結合されたペプチド。
[XII]
 インテグリン活性化における使用のための、以下:
 (1)KFEEERMRCKWMTからなるペプチド、
 (2)KFEEERSRCKWMTからなるペプチド、
 (3)(1)若しくは(2)において、1乃至3個のアミノ酸が欠失、置換及び/若しくは付加されたアミノ酸配列からなるペプチド、又は
 (4)(1)~(3)のいずれかにおいて、膜透過性分子が結合されたペプチド。
[XIII]
 膜透過性分子が結合されたペプチドが、ミリストイル化されたペプチドである、[XI]又は[XII]に記載のペプチド。
[XIV]
 胚の着床促進剤又は不妊症治療剤の製造のための、以下:
 (1)KFEEERMRCKWMTからなるペプチド、
 (2)KFEEERSRCKWMTからなるペプチド、
 (3)(1)若しくは(2)において、1乃至3個のアミノ酸が欠失、置換及び/若しくは付加されたアミノ酸配列からなるペプチド、又は
 (4)(1)~(3)のいずれかにおいて、膜透過性分子が結合されたペプチド
の使用。
[XV]
 インテグリン活性化剤の製造のための、以下:
 (1)KFEEERMRCKWMTからなるペプチド、
 (2)KFEEERSRCKWMTからなるペプチド、
 (3)(1)若しくは(2)において、1乃至3個のアミノ酸が欠失、置換及び/若しくは付加されたアミノ酸配列からなるペプチド、又は
 (4)(1)~(3)のいずれかにおいて、膜透過性分子が結合されたペプチド
の使用。
[XVI]
 膜透過性分子が結合されたペプチドが、ミリストイル化されたペプチドである、[XIV]又は[XV]に記載の使用。
 本発明によれば、インテグリンを活性化することで、自然妊娠後や人工授精後等の胚の着床率を向上させることが可能となる。また、本発明の剤は、従来の不妊治療で使用するような薬剤とも併用することができるため、少子化解決策の1つと成り得、また不妊治療費や増大する該治療に関する助成金等の低減にも繋がる。さらに、本発明によれば、胚の着床率を向上させることが可能となるような物質の評価を迅速且つ確実に行うことができるため、本発明は、そのような物質の取得にも非常に有用である。
図1(図1A~図1F)は、本発明の人工子宮(in vitro着床系)の概要を示す。図1Aは、子宮オルガノイドが、マトリゲル中で一層の円柱上皮細胞層からなる球状の細胞塊であることを示す。図1Bは、子宮内膜間質細胞(endometrial stromal cell)を含み、細胞外マトリックス(MatrigelTM)を主成分とするハイドロゲルの穴の中に子宮オルガノイド(endometrium epithelial organoid)と透明体を剥がした胚盤胞(blastocyst)が配置された本発明の人工子宮を示す。図1C~Eは、間質細胞を、マトリゲルに懸濁し、グラスボトムディッシュ上に載せ、3Dプリンターで作製した型(図1C)を載せて固め、直径200 μmの穴の開いた構造(図1D、E)を作製したことを示す。図1F右は、マトリゲル中で培養した子宮オルガノイドでは、球の外側から内側に向かって核とアクチン繊維が配向することを示す。図1F左は、超低接着性の培養器(Ultra low attachmentディッシュ)で培養した子宮オルガノイドでは、球の内側から外側に向かって核とアクチン繊維が配向することを示す。 図2は、本発明の人工子宮と人工子宮作製用キットの一態様を示す。 図3は、本発明の人工子宮(in vitro着床系)とその調製の概要を示す。 図4(図4A及びB)は、共焦点顕微鏡で観察した試験管内着床実験系(in vitro implantation(IVIM)system)に関する結果を示す。図4Aは、胚盤胞が、最初は子宮オルガノイドに接触しているが、徐々に子宮オルガノイド中に侵入していくことを示し、そして周囲に存在する間質細胞との相互作用も観察されることも示す。図4Bは、胚盤胞中にmCherryの蛍光が観察されることから、食作用により上皮細胞を排除し、侵入を行うことが示唆されることを示す。 図5は、試験管内着床実験系(in vitro implantation(IVIM)system)に関する結果を示す。図5は、図4A及びBで観察された結果が、Cell ExplorerTM Live Cell Tracking Kit Green FluorescenceとRed Fluorescenceで染色した胚盤胞と子宮オルガノイド・間質細胞においても観察されたことを示す。 図6(図6A~D)は、IVIM後の子宮上皮と胚との融合(fusing endometrial epithelium and embryo after IVIM)に関する結果を示す。図6Aは、試験管内着床実験にて、着床様反応が起こらない場合には、実験系から取り出した胚(図6A左)と子宮オルガノイド(図6A右)は分離した状態であることを示す。図6Bは、着床様反応が起こると取り出した胚は、融合しており離れないことを示す。図6Cは、試験管内着床実験系に胚盤胞を入れて72時間後に全ての細胞を取り出して、トリプシン処理をして、シングルセル化し、一細胞RNA発現解析を行った結果を示す。遺伝子発現パターンから胎盤様細胞、子宮内膜上皮細胞、子宮内膜間質細胞の3群に大きく分類される。更に、幹細胞維持に働くPrdm16、Klf4、Rexo1や、内胚葉形成に働くGata6、原腸陥入に働くNodal、胎盤形成に働くPlac8、Klf4、Sdc1などの各種マーカー遺伝子を発現する細胞が点在し、このことから胚盤胞以降まで胚発生が進んでいることが示唆される(図6D)。 図7(図7A~F)は、一細胞RNA発現解析によって着床に働くことが知られている遺伝子の発現を確認した結果を示す。WNTシグナル(図7A)、ノッチシグナル(図7B)、メタロプロテアーゼ(図7C)、TGFβ(図7D)、LIF(図7E)、インテグリン(図7F)などの着床関連遺伝子の発現する細胞が示されている。 図8は、60000種類以上のペプチドの中から取得した2つのペプチド(Iznm-1及びIznm-2)のインテグリン活性化能の測定結果を示す。8μM の濃度で、Iznm-1ではおよそ5倍、Iznm-2ではおよそ14倍の活性化効果を確認した。 図9(図9A~D)は、ペプチド薬Iznm-2が胚においてインテグリン活性化(Active-Integrin β1)を引き起こすことを確認した結果を示す。結果として、コントロール群に比べて(図9A、C)、実験群では強く蛍光染色される細胞が検出された(特に矢印で示す部分)(図9B、D)。 図10(図10A~C)は、Iznm-2による胚(マウス胚盤胞)のガラス面への接着促進についての結果を示す。コントロール群の胚は接着しなかったが、Iznm-2を添加した実験群において、ガラス面への胚の接着が観察された(図10A、B)。また、その割合はコントロールでは0/13に対して、Iznm-2添加では13/14であり、両群に有意差が検出された(p < 0.01、x^2検定、図10C)。 図11は、試験管内着床系でのペプチド薬(Iznm-1及び2)の効果(in vitro着床系での着床反応が観察される割合)についての結果を示す。 図12は、Iznm-2が移植胚の着床と発生に及ぼす効果に関する試験の概要を示す。移植用の胚と移植されるレシピエントマウスの交接後日数をずらすことによって、着床の窓がずれた状態を再現した。 図13(図13A~D)は、Iznm-2が移植胚の着床と発生に及ぼす効果についての結果を示す。図13Aのコントロールと比較して図13Bの胚移植時に8μMのIznm-2を加えた実験群ではE15.5時点での着床・発生胚が多く確認できる(図13A~C)。またIznm-2群では着床胚の内半分ほどが発生し、その他は全く発生していない(図13C、D)。 図14(図14A、B)は、Iznm-2が移植胚の着床と発生に及ぼす効果についての結果を示す。図14AはE15.5時点での胚の形態、図14Bは同様にE15.5時点での胚のFFPE切片のHE染色像である。
1.人工子宮
 本発明は、子宮内膜間質細胞を含み、細胞外マトリックスを主成分とするハイドロゲルと、該ハイドロゲルに囲まれるように配置された子宮上皮オルガノイドとを含む、人工子宮を提供する。
 本明細書において「子宮内膜間質細胞(endometrial stromal cell)」とは、子宮内膜上皮細胞の支持組織を構成する細胞をいい、子宮内膜間質層に含まれる細胞をいう。本発明に用いられる子宮内膜間質細胞は、子宮内膜組織より単離された初代子宮内膜間質細胞であってもよく、株化された子宮内膜間質細胞でもよく、ES細胞、nt ES細胞、iPS細胞、mGS細胞、EG細胞、Muse細胞等の(人工)多能性幹細胞から誘導された子宮内膜間質細胞であってもよい。
 本発明では、ハイドロゲル中に存在する子宮内膜間質細胞の密度(個/cm3)は、後述する受精卵(胚盤胞(blastocyst))の子宮上皮オルガノイドへの着床が起こり得る限り特に限定されないが、例えば、1×106個/cm3~1×107個/cm3の範囲であり、好ましくは、2×106個/cm3~3×106個/cm3の範囲である。
 本明細書において、「子宮内膜上皮細胞(endometrial epithelial cell)」は、子宮粘膜(子宮内膜)に含まれる上皮細胞であり、子宮内膜上皮層に含まれる細胞をいう。本発明に用いられる子宮内膜上皮細胞は、子宮内膜組織より単離された初代子宮内膜上皮細胞であってもよく、株化された子宮内膜上皮細胞でもよく、ES細胞、nt ES細胞、iPS細胞、mGS細胞、EG細胞、Muse細胞等の(人工)多能性幹細胞から誘導された子宮内膜上皮細胞であってもよい。
 本明細書において、「多能性幹細胞(pluripotent stem cell)」とは、生体の種々の異なった形態や機能を持つ組織や細胞に分化でき、三胚葉(内胚葉、中胚葉、外胚葉)のどの系統の細胞にも分化し得る能力を有する幹細胞を指す。発明に用いる多能性幹細胞としては、例えば、人工多能性幹細胞(induced pluripotent stem cell:iPS細胞)、胚性幹細胞(embryonic stem cell:ES細胞)、核移植により得られるクローン胚由来の胚性幹細胞(nuclear transfer Embryonic stem cell:ntES細胞)、多能性生殖幹細胞(multipotent germline stem cell)(「mGS細胞」)、胚性生殖幹細胞(EG細胞)が挙げられるが、好ましくはiPS細胞(より好ましくはヒトiPS細胞)である。上記多能性幹細胞がES細胞又はヒト胚に由来する任意の細胞である場合、その細胞は胚を破壊して作製された細胞であっても、胚を破壊することなく作製された細胞であってもよいが、好ましくは、胚を破壊することなく作製された細胞である。
 ES細胞は、ヒトやマウスなどの哺乳動物の(初期)胚(例えば、胚盤胞)の内部細胞塊から樹立された、多能性と自己複製による増殖能を有する幹細胞である。ES細胞は、マウスで1981年に発見され(M.J. Evans and M.H. Kaufman(1981), Nature 292:154-156)、その後、ヒト、サルなどの霊長類でもES細胞株が樹立された(J.A. Thomson et al.(1998), Science 282:1145-1147; J.A. Thomson et al.(1995), Proc. Natl. Acad. Sci. USA, 92:7844-7848; J.A. Thomson et al.(1996), Biol. Reprod., 55:254-259; J.A. Thomson and V.S. Marshall(1998), Curr. Top. Dev. Biol., 38:133-165)。ES細胞は、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、内部細胞塊を線維芽細胞のフィーダー上で培養することによって樹立することができる。あるいは、ES細胞は、胚盤胞期以前の卵割期の胚の単一割球のみを用いて樹立することもできるし(Chung Y. et al. (2008), Cell Stem Cell 2: 113-117)、発生停止した胚を用いて樹立することもできる(Zhang X. et al. (2006), Stem Cells 24: 2669-2676.)。
 nt ES細胞は、核移植技術によって作製されたクローン胚由来のES細胞であり、受精卵由来のES細胞とほぼ同じ特性を有している(Wakayama T. et al.(2001), Science, 292:740-743; S. Wakayama et al.(2005), Biol. Reprod., 72:932-936; Byrne J. et al.(2007), Nature, 450:497-502)。即ち、未受精卵の核を体細胞の核と置換することによって得られたクローン胚由来の胚盤胞の内部細胞塊から樹立されたES細胞がnt ES(nuclear transfer ES)細胞である。nt ES細胞の作製のためには、核移植技術(Cibelli J.B. et al.(1998), Nature Biotechnol., 16:642-646)とES細胞作製技術(上記)との組み合わせが利用される(若山清香ら(2008), 実験医学, 26巻, 5号(増刊), 47~52頁)。核移植においては、哺乳動物の除核した未受精卵に、体細胞の核を注入し、数時間培養することで初期化することができる。
 本発明で用いるES細胞株としては、マウスES細胞であれば、例えば、inGenious targeting laboratory社、理研(理化学研究所)等が樹立した各種マウスES細胞株が利用可能であり、ヒトES細胞株であれば、例えば、ウィスコンシン大学、NIH、理研、京都大学、国立成育医療研究センター及びCellartis社などが樹立した各種ヒトES細胞株が利用可能である。具体的には、例えば、ヒトES細胞株としては、ESI Bio社が分譲するCHB-1~CHB-12株、RUES1株、RUES2株、HUES1~HUES28株等、WiCell Researchが分譲するH1株、H9株等、理研が分譲するKhES-1株、KhES-2株、KhES-3株、KhES-4株、KhES-5株、SSES1株、SSES2株、SSES3株などが挙げられる。
 iPS細胞は、哺乳動物体細胞又は未分化幹細胞に、特定の因子(核初期化因子)を導入して再プログラミングすることにより得られる細胞である。現在、iPS細胞にはさまざまなものがあり、山中らにより、マウス線維芽細胞にOct3/4・Sox2・Klf4・c-Mycの4因子を導入することにより、樹立されたiPSC(Takahashi K, Yamanaka S., Cell, (2006) 126: 663-676)のほか、同様の4因子をヒト線維芽細胞に導入して樹立されたヒト細胞由来のiPSC(Takahashi K, Yamanaka S., et al. Cell, (2007) 131: 861-872.)、上記4因子導入後、Nanogの発現を指標として選別し、樹立したNanog-iPSC(Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Nature 448, 313-317.)、c-Mycを含まない方法で作製されたiPSC(Nakagawa M, Yamanaka S., et al. Nature Biotechnology, (2008) 26, 101 - 106)、ウイルスフリー法で6因子を導入して樹立されたiPSC(Okita K et al. Nat. Methods 2011 May;8(5):409-12, Okita K et al. Stem Cells. 31(3):458-66.)等も用いることができる。また、Thomsonらにより作製されたOCT3/4・SOX2・NANOG・LIN28の4因子を導入して樹立された人工多能性幹細胞(Yu J., Thomson JA. et al., Science (2007) 318: 1917-1920.)、Daleyらにより作製された人工多能性幹細胞(Park IH, Daley GQ. et al., Nature (2007) 451: 141-146)、桜田らにより作製された人工多能性幹細胞(特開2008-307007号)等も用いることができる。
 このほか、公開されているすべての論文(例えば、Shi Y., Ding S., et al., Cell Stem Cell, (2008) Vol3, Issue 5,568-574;、Kim JB., Scholer HR., et al., Nature, (2008) 454, 646-650;Huangfu D., Melton, DA., et al., Nature Biotechnology, (2008) 26, No 7, 795-797)、あるいは特許(例えば、特開2008-307007号、特開2008-283972号、US2008-2336610、US2009-047263、WO2007-069666、WO2008-118220、WO2008-124133、WO2008-151058、WO2009-006930、WO2009-006997、WO2009-007852)に記載されている当該分野で公知の人工多能性幹細胞のいずれも用いることができる。
 人工多能性幹細胞株としては、NIH、理研、京都大学等が樹立した各種iPSC株が利用可能である。例えば、ヒトiPSC株であれば、理研のHiPS-RIKEN-1A株、HiPS-RIKEN-2A株、HiPS-RIKEN-12A株、Nips-B2株等、京都大学の253G1株、253G4株、1201C1株、1205D1株、1210B2株、1383D2株、1383D6株、201B7株、409B2株、454E2株、606A1株、610B1株、648A1株、1231A3株、FfI-01s04株等が挙げられ、1231A3株が好ましい。
 mGS細胞は、精巣由来の多能性幹細胞であり、精子形成のための起源となる細胞である。この細胞は、ES細胞と同様に、種々の系列の細胞に分化誘導可能であり、例えばマウス胚盤胞に移植するとキメラマウスを作出できるなどの性質をもつ(Kanatsu-Shinohara M. et al.(2003)Biol. Reprod., 69:612-616; Shinohara K. et al.(2004), Cell, 119:1001-1012)。神経膠細胞系由来神経栄養因子(glial cell line-derived neurotrophic factor(GDNF))を含む培養液で自己複製可能であるし、またES細胞と同様の培養条件下で継代を繰り返すことによって、生殖幹細胞を得ることができる(竹林正則ら(2008), 実験医学, 26巻, 5号(増刊), 41~46頁, 羊土社(東京、日本))。
 EG細胞は、胎生期の始原生殖細胞から樹立される、ES細胞と同様な多能性をもつ細胞である。LIF、bFGF、幹細胞因子(stem cell factor)などの物質の存在下で始原生殖細胞を培養することによって樹立し得る(Matsui Y. et al.(1992), Cell, 70:841-847; J.L. Resnick et al.(1992), Nature, 359:550-551)。
 染色体上の遺伝子を公知の遺伝子工学の手法を用いて改変した多能性幹細胞も、本発明において使用できる。多能性幹細胞は、公知の方法を用いて、分化マーカーをコードする遺伝子に標識遺伝子(例えば、EGFP、GFP等の蛍光タンパク質)をインフレームにノックインすることにより、標識遺伝子の発現を指標として対応する分化段階に達したことを識別可能とした細胞であってもよい。
 本発明で用いる細胞(例:多能性幹細胞、子宮内膜間質細胞、子宮内膜上皮細胞)の由来種も特に限定されず、例えば、ラット、マウス、ハムスター、モルモット等のげっ歯類、ウサギ等のウサギ目、ブタ、ウシ、ヤギ、ヒツジ等の有蹄目、イヌ、ネコ等のネコ目、ヒト、サル、アカゲザル、マーモセット、オランウータン、チンパンジーなどの霊長類などの細胞であってよい。好ましい由来種は、霊長類である。また、該由来種は、本発明の人工子宮に適用する受精卵(胚盤胞等)を採取した同一の個体由来の細胞であってもよく、受精卵(胚盤胞等)を採取した個体とは別の個体由来の細胞であってもよい。さらに、子宮内膜細胞の由来種と受精卵(胚盤胞等)の由来種が必ずしも一致する必要もない。その上、子宮内膜様組織を構成する細胞の由来種と、受精卵(胚盤胞等)の由来種も、必ずしも一致しなくてもよい。
 子宮内膜間質細胞は、自体公知の方法により作製し得る。具体的には、例えば、日本生殖医学会雑誌(Journal of Japan Society for Reproductive Medicine)、57巻4号401ページ、2012年10月01日の記載に基づいて、準備した間葉系幹細胞(mesenchymal stem cell)を分化誘導させて取得してもよい。
 間葉系幹細胞は、間葉系幹細胞を含有する生体組織から直接分離した初代細胞であってもよいし、また、樹立された間葉系幹細胞株、ES細胞や人工多能性幹細胞から分化・誘導された間葉系幹細胞であってもよく、これらを凍結保存したものでもよい。ここで、「直接」とは、生体外での培養/増殖を行う工程を介さないことをいう。
 間葉系幹細胞を含有する生体組織からの直接分離した間葉系幹細胞を得る方法としては、自体公知の方法、例えば、国際公開第2017/094879号に記載されたような方法にて所望する細胞を取得してもよい。上記間葉系幹細胞を含有する生体組織としては、例えば、骨髄、脂肪組織、血液、胎盤、臍帯、歯髄等が挙げられる。上記の中でも、脂肪組織は、脂肪吸引や脂肪組織切除で採取でき生体に与える機能障害のおそれが小さいことから、上記細胞の採取源として好ましい。
 脂肪組織とは、脂肪細胞により構成される生体組織の一種である。上記細胞の採取源として使用する場合、脂肪組織の部位は特に限定されないが、例えば、皮下脂肪、内臓脂肪、筋肉内脂肪、筋肉間脂肪が挙げられる。この中でも、皮下脂肪は局所麻酔下で簡単に採取できるため、採取の際のドナーへの負担が少なく、好ましいといえる。
 子宮内膜上皮細胞も、自体公知の方法により作製し得る(Ye L. et al.(2011), PLoS one, 6:e21136; Jiang X et al.(2021), Bioactive Materials, 6:3935-3946)。具体的には、例えば、ヒト・マウス等の多能性幹細胞を公知の方法(D'Amour KA. et al. (2005), Nature Biotechnology, 23:1534-1541)の記載に基づいて、準備した胚体内胚葉細胞を分化誘導させて取得してもよい。
 本明細書において、「オルガノイド」とは、細胞凝集塊であって、該細胞凝集塊を形成する細胞単体では有さない新たな機能を有する構造体を意味する。好ましくは、成熟することで器官に分化することができる構造体であり、かかる分化能は、例えば、その構造体を生体へ移植し、目的の器官に分化できるかどうかを調べること(目的の器官へ分化していればオルガノイドであると判断できる。)により確認できる。
 本発明で用いる「子宮上皮オルガノイド(endometrium epithelial organoid)」とは、少なくともEpcam、E-cadherin、Cytokeratin、MUC1、エストロゲン受容体、プロゲステロン受容体を発現する細胞凝集塊であり、エストロゲン(E2)及びプロゲステロン(P4)に対して機能的に応答し、胎盤性腺刺激ホルモン(hCG)と胎盤ラクトゲン(hPL)、及び間質細胞(PRL)シグナルでさらに刺激した場合、妊娠子宮内膜(gestational endometrium)の特徴を示し、PAEP(グリコデリン)やSPP1(オステオポンチン)を合成することのできるものをいう。本発明の人工子宮において、子宮上皮オルガノイドは、培地中に存在している。該培地は、子宮上皮オルガノイドの生存が維持される限り特に限定されず、後述するような培地から適宜選択して使用することができる。一態様では、培地は、30% KSR(Thermo Fisher)、N-acetylcysteine、エストロゲン、プロゲステロン入りのWNT培地(Bedzhov, 2014, Nature Protocolsの一部改変)を用い得る。
 上記子宮上皮オルガノイドは、自体公知の方法(例えば、Turco et al., NATURE CELL BIOLOGY 19, 568-577 (2017))により作製してもよい。具体的には、例えば、まず、安楽死させたマウスから子宮を採取し、切り開き上皮を露出させた状態で細断する。またはヒト由来の子宮組織の一部を用いる。これらに対してディスパーゼによる酵素処理を行い、上皮細胞を採取する。次に、上皮細胞を後述する基底膜標品(例えば、マトリゲル)中に懸濁し、WNT3A、R-spondin1、Noggin、EGF、Hepes pH7.4を添加したAdvanced DMEM/F12培地(WNT培地)にて培養を行い、子宮オルガノイドを作製する。
 子宮上皮オルガノイドの作製に用いる(子宮内膜)上皮細胞について、該細胞は、高度に極性化しており、生体の外側に向く頂端(部)側と基底膜に面する側基底(部)側に区画化されている。上皮細胞等により構成される臓器(例えば、子宮)は、生体内において、頂端(部)側は、外部環境に面し、一方、側基底(部)側は、インテグリンとその受容体を介して基底膜の細胞外マトリックス側に連結されている。
 本発明の子宮上皮オルガノイドは、生体内の子宮と同じ極性(即ち、頂端(部)側が外部環境に面するように外側に位置し、側基底(部)側がその内側に位置する)を有していてもよく、極性が逆転(即ち、側基底(部)側が外部環境に面するように外側に位置し、頂端(部)側がその内側に位置する)していてもよい。
 本発明の子宮上皮オルガノイドは、後述する受精卵(胚盤胞等)を用いたスクリーニングを企図した場合、生体内の子宮と同じ極性(即ち、頂端(部)側が外部環境に面するように外側に位置し、側基底(部)側がその内側に位置する)を有することが好ましい。そのため、作製した子宮上皮オルガノイドの極性が、生体内のものと逆転(即ち、側基底(部)側が外部環境に面するように外側に位置し、頂端(部)側がその内側に位置する)している場合、生体内の子宮と同様の極性を有するように、該極性をコントロールしてもよい。
 子宮上皮オルガノイドの極性は、自体公知の方法で確認し得る(Forteza R. et al., (2016), Molecular Biology of the Cell, 27:2186-2197)。具体的には、例えば、子宮上皮オルガノイドをHoechst/Phalloidinを用いた染色を行うと、極性が生体内と同様の場合、頂端(部)側(apical)のアクチンがPhalloidinにより外部環境に面するように外側に検出され、側基底(部)(basal)に存するDNAがHoechst色素によりその内側に検出される。一方、極性が生体内と逆転している場合、側基底(部)(basal)に存するDNAがHoechst色素により外部環境に面するように外側に検出され、頂端(部)側(apical)のアクチンがPhalloidinによりその内側に検出される。
 極性をコントロールする方法は、子宮上皮オルガノイドの極性を所望するものに変更し得る限り特に限定されないが、一例として以下のような方法を用いてもよい(Co JY. et al., (2019), Cell Reports, 26:2509-2520)。具体的には、作製した子宮上皮オルガノイドについて、該オルガノイドの外側が頂端側であるようにすることを企図した際、後述するような低接着性あるいは超低接着性の培養器で培養することで極性をコントロールしてもよい。このような培養器としては、例えば、Ultra-Low Attachmentディッシュ(コーニング)、Ultra-Low Attachmentフラスコ(コーニング)、Ultra-Low Attachmentプレート(コーニング)、PrimeSurfaceディッシュ(住友ベークライト)などを使用し得る。極性のコントロールに用いる培地や培養条件や期間は適宜設定することができる。例えば、培地としては、後述する培地であるWNT培地(Advanced DMEM/F12培地にWNT3A、R-spondin1、Noggin、EGF、Hepes pH7.4及びエストロゲンを添加)を用いてもよい。培養温度や培養期間については、例えば、30~40℃、好ましくは約37℃であり、CO2含有空気の雰囲気下で培養が行われ、CO2濃度は、好ましくは約2~5%であり、培養期間は、1日~数ヶ月(例:1、2、3、4、5、6ヶ月)、好ましくは、2週間~3ヶ月である。
 本発明の子宮上皮オルガノイドの作製の際に生じる上皮細胞を取り除いた子宮組織に関しては、コラゲナーゼ等による酵素処理を行い、上述の子宮内膜間質細胞(endometrial stromal cell)を採取してもよい。また、採取した間質細胞は、後述するような培養器や培地等にて、接着性の条件下で培養(接着培養)をさらに行ってもよい。具体的には、例えば、細胞接着処理済みディッシュ上で10%血清入りDMEM培地にて培養してもよい。
 本明細書において、「子宮オルガノイド」と「子宮上皮オルガノイド」同義のものを意味し、互換的に用いることができる。
 本発明の人工子宮では、作製した子宮上皮オルガノイドは、細胞外マトリックスを主成分とするハイドロゲルに囲まれるように配置されている。本発明において、「ハイドロゲルに囲まれるように配置されている」とは、後述する受精卵(胚盤胞)の子宮上皮オルガノイドへの着床が起こり得る限り特に限定されない。好ましい態様としては、例えば、子宮上皮オルガノイドを囲むように配置されたハイドロゲルの天方向(上方向)に開口部を備えるような構成などが挙げられ、より好ましい態様としては、開口部は1つである。また、さらに好ましい態様としては、1つの開口部を除きは、宮上皮オルガノイドは、該ハイドロゲルに全ての部分(面)が囲まれるように配置されている。
 本発明で用いることのできる細胞外マトリックスとしては、ラミニン(Nat Biotechnol 28, 611-615 (2010))、ラミニン断片(Nat Commun 3, 1236 (2012))、基底膜標品(Nat Biotechnol 19, 971-974 (2001))、フィブロネクチン、ゼラチン、コラーゲン、ヘパラン硫酸プロテオグリカン、エンタクチン、ビトロネクチン(vitronectin)等が挙げられる。
 「ラミニン」とは、α、β、γ鎖からなるヘテロ三量体分子であり、サブユニット鎖の組成が異なるアイソフォームが存在する細胞外マトリックスタンパク質である。具体的には、ラミニンは、5種のα鎖、4種のβ鎖及び3種のγ鎖のヘテロ三量体の組合せで約15種類のアイソフォームを有する。α鎖(α1~α5)、β鎖(β1~β4)及びγ鎖(γ1~γ3)のそれぞれの数字を組み合わせて、ラミニンの名称が定められている。例えばα5鎖、β1鎖、γ1鎖の組合せによるラミニンをラミニン511という。(Nat Biotechnol 28, 611-615 (2010))。
 本発明で用いるラミニンは、通常、哺乳動物のラミニンである。子宮上皮オルガノイドを構成する細胞や、培養する細胞と同一種の哺乳動物のラミニンを用いてもよい。例えば、ヒト多能性幹細胞の培養には、ヒトラミニン(好ましくは、ヒトラミニン511)が用いられる。
 本発明で用いるラミニン断片は、後述する受精卵(胚盤胞)の子宮上皮オルガノイドへの着床が起こり得る限り特に限定されないが、ラミニン-111及びそのE8領域を含む断片、ラミニン-211及びそのE8領域を含む断片(例:iMatrix-211)、ラミニン-121又はそのE8領域を含む断片、ラミニン-221又はそのE8領域を含む断片、ラミニン-332又はそのE8領域を含む断片、ラミニン-3A11又はそのE8領域を含む断片、ラミニン-411又はそのE8領域を含む断片(例:iMatrix-411)、ラミニン-421又はそのE8領域を含む断片、ラミニン-511又はそのE8領域を含む断片(例:iMatrix-511、iMatrix-511 silk)、ラミニン-521又はそのE8領域を含む断片、ラミニン-213又はそのE8領域を含む断片、ラミニン-423又はそのE8領域を含む断片、ラミニン-523又はそのE8領域を含む断片、ラミニン-212/222又はそのE8領域を含む断片、ラミニン-522又はそのE8領域を含む断片などが挙げられる。なかでも、ラミニン-511又はそのE8領域を含む断片が好ましい。ラミニン511のE8フラグメントは市販されており、例えば、株式会社ニッピ等から購入可能である。本発明において用いられるラミニン又はラミニン断片は、好ましくは単離されている。
 本発明における「基底膜標品」とは、その上に基底膜形成能を有する所望の細胞を播腫して培養した場合に、上皮細胞様の細胞形態、分化、増殖、運動、機能発現などを制御する機能を有する基底膜構成成分を含むものをいう。ここで、「基底膜構成成分」とは、動物の組織において、上皮細胞層と間質細胞層などとの間に存在する薄い膜状をした細胞外マトリックス分子をいう。基底膜標品は、例えば、基底膜を介して支持体上に接着している基底膜形成能を有する細胞を、該細胞の脂質溶解能を有する溶液やアルカリ溶液などを用いて支持体から除去することで作製することができる。基底膜標品としては、基底膜調製物として市販されている商品(例えば、MatrigelTM(コーニング社製:以下、マトリゲルと記すこともある))やGeltrexTM(Life Technologies社製)、基底膜成分として公知の細胞外マトリックス分子(例えば、ラミニン、IV型コラーゲン、ヘパラン硫酸プロテオグリカン、エンタクチンなど)を含むものが挙げられる。
 MatrigelTMは、Engelbreth Holm Swarn(EHS)マウス肉腫から抽出された基底膜調製物である。MatrigelTMの主成分はIV型コラーゲン、ラミニン、ヘパラン硫酸プロテオグリカン及びエンタクチンであり、これらに加えてTGFβ、FGF、組織プラスミノゲン活性化因子及びEHS腫瘍が天然に産生する増殖因子が含まれる。MatrigelTMの「growth factor reduced製品」は、通常のMatrigelTMよりも増殖因子の濃度が低く、その標準的な濃度はEGFが0.5 ng/ml未満、NGFが0.2 ng/ml未満、PDGFが5 pg/ml未満、IGF1が5 ng/ml、TGFβが1.7 ng/mlである。
 本発明で用いる細胞(例えば、子宮内膜間質細胞、(子宮内膜)上皮細胞等)やオルガノイド(子宮上皮オルガノイド)は、必要に応じて、後述するような培地中で培養してもよい。培地は、基礎培地に、必要に応じて培地添加物を添加することにより調製してもよい。
 基礎培地としては、例えば、RPMI-1640培地、EagleのMEM(EMEM)、ダルベッコ改変MEM(DMEM)、Glasgow's MEM(GMEM)、α-MEM、199培地、IMDM、Hybridoma Serum free培地、KnockOutTM DMEM(KO DMEM)、AdvancedTM培地(例:Advanced MEM、Advanced RPMI、Advanced DMEM/F-12)、Chemically Defined Hybridoma Serum Free培地、Ham's Medium F-12、Ham's Medium F-10、Ham's Medium F12K、DMEM/F-12、ATCC-CRCM30、DM-160、DM-201、BME、Fischer、McCoy's 5A、Leibovitz's L-15、RITC80-7、MCDB105、MCDB107、MCDB131、MCDB153、MCDB201、NCTC109、NCTC135、Waymouth’s Medium(例:Waymouth’s MB752/1)、CMRL培地(例:CMRL-1066)、Williams' medium E、Brinster's BMOC-3 Medium、E8 Medium、StemPro 34、MesenPRO RS(以上サーモフィッシャーサイエンティフィック社)、ReproFF2、Primate ES Cell Medium、ReproStem(以上リプロセル株式会社)、ProculAD(ロート製薬株式会社)、MSCBM-CD、MSCGM-CD(以上Lonza社)、EX-CELL302培地(SAFC社)又はEX-CELL-CD-CHO(SAFC社)、ReproMedTM iPSC Medium(リプロセル株式会社)、Cellartis MSC Xeno-Free Culture Medium(タカラバイオ株式会社)、TESR-E8(株式会社ベリタス)、StemFit(登録商標)AK02N、AK03N(味の素株式会社)及びこれらの混合物などが挙げられるが、これらに限定されない。
 また、培地には、必要に応じてオルガノイドや細胞等の生存又は増殖に必要な生理活性物質及び栄養因子などを添加できる。これらの培地添加物は、培地に予め添加されていてもよく、オルガノイドや細胞培養中に添加されてもよい。培養中に添加する方法は、1溶液又は2種以上の混合溶液などいかなる形態によってでもよく、連続的又は断続的な添加であってもよい。
 生理活性物質としては、インシュリン、IGF-1、Wnt(Wnt1,Wnt2,Wnt3,Wnt3a,Wnt7a等)、Noggin、トランスフェリン、アルブミン、補酵素Q10、各種サイトカイン(インターロイキン類(IL-2、IL-7、IL-15等)、幹細胞因子(SCF)、アクチビン等)、各種ホルモン、各種増殖因子(白血病抑制因子(LIF)、塩基性線維芽細胞増殖因子(bFGF)、TGF-β、上皮成長因子(EGF)等)、Wnt/beta-Cateninシグナル伝達経路制御因子(R-spondin1, R-spondin2, R-spondin3等)、骨形成タンパク質(BMP:Bone morphogenetic protein)アンタゴニスト(Noggin等)などが挙げられる。栄養因子としては、糖、アミノ酸、ビタミン、加水分解物又は脂質などが挙げられる。糖としては、グルコース、マンノース又はフルクトースなどが挙げられ、1種又は2種以上を組み合わせて用いられる。アミノ酸としては、L-アラニン、L-アルギニン、L-アスパラギン、L-アスパラギン酸、L-システイン、L-グルタミン酸、L-グルタミン、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシン又はL-バリンなどが挙げられ、1種又は2種以上を組み合わせて用いられる。また、アミノ酸はアセチル化されていてもよい(N-アセチル-L-システイン等)。ビタミンとしては、d-ビオチン、D-パントテン酸、コリン、葉酸、myo-イノシトール、ナイアシンアミド、ピロドキサール、リボフラビン、チアミン、シアノコバラミン又はDL-α-トコフェロールなどが挙げられ、1種又は2種以上を組み合わせて用いられる。加水分解物としては、大豆、小麦、米、えんどう豆、とうもろこし、綿実、酵母抽出物などを加水分解したものが挙げられる。脂質としては、コレステロール、リノール酸又はリノレン酸などが挙げられる。また、多糖類としては、ジェランガム、脱アシル化ジェランガム、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルアミロース、キサンタンガム、アルギン酸、カラギーナン、ダイユータンガム、ローカストビーンガムなどが挙げられる。
 さらに、培地には、カナマイシン、ストレプトマイシン、ペニシリン又はハイグロマイシンなどの抗生物質を必要に応じて添加してもよい。シアル酸等の酸性物質を培地に添加する場合には、培地のpHを細胞の成育に適した中性域であるpH 5~9、好ましくはpH 6~8に調整することが望ましい。
 上記培地は、血清(例えば、ウシ胎児血清(FBS)、ヒト血清、ウマ血清)含有培地であっても無血清培地であってもよい。血清としては、FBSが好ましい。異種動物由来成分の混入防止の観点からは血清を含有しないか、培養される細胞と同種動物由来の血清が用いられることが好ましい。ここで、無血清培地とは、無調整又は未精製の血清を含まない培地を意味する。無血清培地は、精製された血液由来成分や動物組織由来成分(例えば、増殖因子)を含有していてもよい。
 浮遊培養に用いる培地は、血清と同様に、血清代替物についてもこれを含んでいても含んでいなくともよい。血清代替物としては、例えば、アルブミン、脂質リッチアルブミン及び組換えアルブミン等のアルブミン代替物、植物デンプン、デキストラン、タンパク質加水分解物、トランスフェリン又は他の鉄輸送体、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3'-チオグリセロールあるいはこれらの均等物などが挙げられる。血清代替物の具体例として、例えば、WO98/30679号記載の方法により調製されるものや、市販のKnockout Serum Replacement[KSR](Life Technologies社、Thermo Fisher Scientific社)、Chemically-defined Lipid concentrated(Life Technologies社)及びL-アラニン-L-グルタミンジペプチド(例:Glutamax(Life Technologies社))などが挙げられる。また、生体由来因子としては、多血小板血漿(PRP)、ヒト間葉系幹細胞の培養上清成分などが挙げられる。
 培地には、1種以上のホルモンが含まれてもよい。ホルモンとしては、エストロゲン、プロゲステロン、コルチゾール、デヒドロエピアンドロステロン、デヒドロエピアンドロステロンサルフェートなどが挙げられる。また、ホルモン類は、同等のステロイド構造を有する人工又は天然化合物と代替可能である。
 本発明で用いる細胞(例えば、子宮内膜間質細胞、(子宮内膜)上皮細胞等)やオルガノイド(子宮上皮オルガノイド)を培養等する培養器は、特に限定されないが、例えば、フラスコ、組織培養用フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウェルプレート、マイクロポア、マルチプレート、マルチウェルプレート、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、ローラーボトルが挙げられる。
 細胞を非接着性の条件下で培養を行う場合、培養器は、細胞低接着性、超低接着性あるいは非接着性であることが好ましい。細胞低接着性、超低接着性、あるいは非接着性の培養器としては、培養器の表面が、細胞低接着性、超低接着性、あるいは非接着性となるように人工的に処理されているものや、細胞との接着性を向上させる目的で人工的に処理(例えば、細胞外マトリクス等によるコーティング処理)されていないもの等を使用することができる。このような培養器としては、例えば、Ultra-Low Attachmentディッシュ(コーニング)、Ultra-Low Attachmentフラスコ(コーニング)、Ultra-Low Attachmentプレート(コーニング)、PrimeSurfaceディッシュ(住友ベークライト)などを使用することができる。また、細胞を接着性の条件下で培養を行う場合、培養器を細胞外マトリックス等(例:ラミニン、コラーゲン等)でコーティングすることが好ましい。
2.人工子宮の製造方法
 本発明は、人工子宮の製造方法であって、以下:
(1)培養器に、子宮内膜間質細胞を含み、細胞外マトリックスを主成分とする溶液を充填する工程、
(2)前記充填した溶液中に、対物面を持った支持体と前記対物面から突起する少なくとも1つの突起体とを有するデバイスを押圧する工程、及び
(3)前記充填した溶液がゲル化した後、前記押圧したデバイスを除去する工程
を含む、方法を提供する。
 また、本発明の人工子宮の製造方法の一態様では、工程(2)及び(3)は以下:
(2’)前記充填した溶液中に、対物面を持った支持体と前記対物面から突起する少なくとも1つの突起体とを有するデバイスを挿入する工程、及び
(3’)前記充填した溶液がゲル化した後、前記押圧したデバイスを抜去する工程
である。
 本発明で用いる「子宮内膜間質細胞を含み、細胞外マトリックスを主成分とする溶液」について、溶液中に含まれる細胞外マトリックスの総量は、該溶液がヒドロゲルを形成し得る((ヒドロ)ゲル化し得る)限り特に限定されない。また、該溶液中に含まれる子宮内膜間質細胞の密度(個/ml)は、後述する受精卵(胚盤胞)の子宮上皮オルガノイドへの着床が起こり得る限り特に限定されないが、例えば、1×106個/cm3~1×107個/cm3の範囲であり、好ましくは、2×106個/cm3~3×106個/cm3の範囲である。
 本発明で用いるデバイスは、対物面を持った支持体と前記対物面から突起する少なくとも1つの突起体とを有するようなデバイスである。
 上記支持体は、対物面を有する。本発明において、「対物面」とは、対象物に穴を形成する際に、該対象物に対面し密着する面である。また、本発明において、「対象物」とは、子宮内膜間質細胞を含み、細胞外マトリックスを主成分とする溶液である。対象物に穴を形成する際に、対物面と対象物との間に隙間があってもよい。支持体全体の形状は、特に限定はされないが、例えば、厚さ0.5 mm~1 mm程度の板状(厚さによっては、フィルム状やシート状などと呼ばれる場合もある)、手や器具などによって把持又は保持し易い柱状(円柱状、角柱状、多角柱状など)等が挙げられる。対物面の外周形状は、突起体による穴の形成を干渉しない限り特に限定されないが、例えば、円形、楕円形、四角形などが挙げられる。一例としては、対物面の面積は、25~30 mm2程度である。
 本発明において、「突起体」は、穴を形成するための型として機能し得る形状を有するものである。突起体の長さや外径寸法、全体の形状、先端の形状などは、該突起体により形成される穴において、後述する受精卵(胚盤胞)の子宮上皮オルガノイドへの着床が起こり得る限り特に限定されない。また、突起体の長さや外径寸法、全体の形状、先端の形状などは、形成後の穴の収縮などを考慮して、形成目的の穴の寸法に対して適宜に変更を加えてもよい。突起体の配置パターン、中心間距離、隣り合った突起体同士の間の隙間も、該突起体により形成される穴において、後述する受精卵(胚盤胞)の子宮上皮オルガノイドへの着床が起こり得る限り特に限定されない。本発明で用いるデバイスは、少なくとも1つの突起体を有する。突起体の具体的な構造としては、例えば、長さ1~3 mm、外形寸法100~200μmの円柱状や、該円柱の先端が丸められたものが挙げられる。
 本発明の一態様では、手や外部機器によって支持体を保持する際の取っ手や係合部として機能する保持用構造部が設けられる。保持用構造部は、前記支持体と一体的に設けられたものであってもよいし、前記支持体に接続可能な独立部品として設けられたものであってもよい。支持体全体の形状が保持し易い形状である場合、そのような形状を持った支持体は、支持体と保持用構造部とが一体となった態様と解することもできる。
 本発明で用いるデバイスの作製においては、例えば、支持体、突起物、任意により保持用構造部をそれぞれ別々に製造した上で、それぞれを接着等してもよく、また一部あるいは全部を一体として製造してもよい。一体として製造を企図する場合、例えば、3Dプリンター(インクジェット方式、粉末造形方式、粉末焼結方式等)などにより該デバイスを製造し得る。
 本発明で用いるデバイスの構成要素である支持体、突起物、保持用構造部の材料は、工程(ii)及び(iii)を行った後に、後述する受精卵(胚盤胞)の子宮上皮オルガノイドへの着床が起こり得るような穴が形成されていれば特に限定されない。具体的には、例えば、ABS樹脂(Acrylonitrile-Butadiene-Styrene resin)、ASA樹脂(Acrylonitrile-Styrene-Acrylate resin)、PETG樹脂(polyethylene terephthalate glycol resin)、PLA樹脂(polylactic acid resin)、ナイロン系樹脂又はこれらの樹脂にカーボン等の繊維材料の双方を用いた樹脂材料、PP(polypropylene)系粉末樹脂、PS(polystyrene)系粉末樹脂、金属材料などが挙げられる。
 本発明の工程(ii)おいて、上記デバイスを押圧するタイミングは、充填した溶液の少なくとも一部が溶液の状態を維持している限り特に限定されない。また、工程(iii)において、工程(ii)において押圧したデバイスを除去するタイミングは、該除去後に形成される穴で、後述する受精卵(胚盤胞)の子宮上皮オルガノイドへの着床が起こり得る限り特に限定されない。
 本発明の人工子宮の製造方法においては、上述の「1.人工子宮」に記載の内容が全て援用される。
3.人工子宮作製用キット
 本発明は、対物面を持った支持体と前記対物面から突起する少なくとも1つの突起体とを有するデバイス、及び細胞外マトリックスを主成分とする溶液を含む、人工子宮作製用キットを提供する。該キットには、任意により、子宮内膜間質細胞や子宮上皮オルガノイドなどが含まれてもよい。
 本発明の人工子宮作製用キットにおいては、上述の「1.人工子宮」及び「2.人工子宮の製造方法」に記載の内容が全て援用される。
4.スクリーニング方法
 本発明は、
 (1)被験物質の存在下又は非存在下で、本発明の人工子宮と、受精卵とを接触させる工程、
 (2)子宮上皮オルガノイドと受精卵との着床率を測定する工程、及び
 (3)工程(2)において、被験物質の非存在下と比較して、候補物質の存在下において着床率が高い場合に、該被験物質を不妊症の治療又は予防薬の候補物質として選別する工程
を含む、不妊症の治療剤のスクリーニング方法、を提供する。
 本発明において、「受精卵」とは、精子と卵の融合によって形成される二倍体細胞であり、哺乳動物由来のものである。一態様では、受精卵はヒト以外の受精卵である。また、本発明において、受精卵には、初期胚や胚盤胞が含まれ、着床を企図した場合、胚盤胞を用いることが好ましい。受精卵として胚盤胞を用いる場合、胚盤胞の透明体を剥離するほうが好ましい。また、本明細書において、受精卵を「胚」と称する場合がある。加えて多能性幹細胞から作製する受精卵も含む(Warmflash A., et al., Nature Methods, 11:847-854; Sinunovic M., et al., bioRxiv, 330704; Shao Y., et al., Nature Communications, 8:208; ten Berge D., et al., Cell Stem Cell, 3:508-518; Beccari L., et al., Nature, 562:272-276; van den Brink SC., et al., Development, 144:3894-3906; Harrison SE., et al., Science, 356:eaal1810, Sozen B., et al., Nature Cell Biology, 20:978-989; Rivron NC., et al., Nature, 557:106-111; Kagawa H., et al., Nature, 601:600-605)。
 本発明の工程(1)は、本発明の人工子宮に含まれる子宮上皮オルガノイドと受精卵とを接触させる工程である。該接触は、子宮上皮オルガノイドを含む培地等に、受精卵を添加することにより行うことができる。該接触は、特に限定されないが、例えば、1日以上、2日以上、3日以上、4日以上、5日以上、6日以上、7日以上が例示されるが、好ましくは1~3日である。子宮上皮オルガノイドと受精卵とを接触させる際の温度は、特に制限されないが、約30~40℃、好ましくは約37℃であり、CO2含有空気の雰囲気下で培養が行われ、CO2濃度は、好ましくは約2~5%である。
 本発明のスクリーニング方法において、被験物質の濃度は、化合物の種類(溶解性、毒性等)によって適宜調節可能である。
 本発明の工程(2)の子宮上皮オルガノイドと受精卵との着床率の測定は、受精卵が子宮上皮オルガノイドの内膜に侵入する(本明細書において、「着床様反応」と称する場合がある。)か否かを観察することで行うことができる。着床様反応の有無については、例えば、1.蛍光顕微鏡により、受精卵の蛍光発光が、該侵入により、消滅する、2.共焦点顕微鏡において、受精卵の蛍光発光が、該侵入していることを確認する、3.人工子宮より取り出した後、胚と子宮上皮オルガノイドが融合している等の現象を確認することで観察してもよい。また、蛍光にて観察する場合には人工子宮側細胞と受精卵が別々の蛍光発光色素で染色されていることが望ましい。例えば、遺伝子工学により蛍光タンパク質や発行タンパク質を発現した動物を用いることができる。例えば、Rosa26H2B-EGFP/H2B-EGFPマウスより採取した精子を用いて人工授精した受精卵は緑色蛍光タンパク質(EGFP)を発現し、またRosa26mCherry/mCherryマウスより培養した子宮上皮オルガノイド・間質細胞には赤色蛍光タンパク質(mCherry)が発現している。またCell tracker(Thermo Fisher社)やCell Explorer(AAT Bioquest社)等の蛍光物質によって、これらを蛍光ラベルすることもできる。例えば、Cell ExplorerTM Fixable Live Cell Tracking Kit Green Fluorescenceを用いて子宮上皮オルガノイド・間質細胞を染色し、Cell ExplorerTM Live Cell Tracking Kit Red Fluorescenceを用いて受精卵を染色する等により観察してもよい。
 本発明の工程(3)で比較対象となる被験物質の非存在での着床率は、実験毎にコントロールとして測定してもよく、事前に測定したものを用いてもよい。
 本発明のスクリーニングにより取得された物質は、生体内においても着床様反応を促進すると考えられるため、不妊症の治療又は予防薬あるいはその候補物質として適している。また、該治療又は予防薬では、該物質と、不妊症の治療で用いるような薬剤(例えば、ホルモン剤等)を組み合わせて、併用剤(医薬)や組み合わせ剤(医薬)のようにしてもよい。
 本発明のスクリーニング方法においては、上述の「1.人工子宮」、「2.人工子宮の製造方法」及び「3.人工子宮作製用キット」に記載の内容が全て援用される。
4.インテグリン活性化剤
 本発明は、
 (1)KFEEERMRCKWMTからなるペプチド、
 (2)KFEEERSRCKWMTからなるペプチド、
 (3)(1)若しくは(2)において、1乃至3個(即ち、1、2又は3個)のアミノ酸が欠失、置換及び/若しくは付加されたアミノ酸配列からなるペプチド、又は
 (4)(1)~(3)のいずれかにおいて、膜透過性分子が結合されたペプチド
を含む、インテグリン活性化剤、を提供する。
 本発明において、「インテグリン活性化」とは、インテグリンを介した細胞接着を増加させることをいう。また、本発明のインテグリン活性化剤は、インテグリンを介した細胞接着を増加させ、その結果、受精卵(胚あるいは胚盤胞)の子宮内膜への着床(率)を促進する。従って、本発明のインテグリン活性化剤は、一態様では、受精卵(胚あるいは胚盤胞)の子宮内膜への着床(率)の促進剤である(本発明では、単に「胚の着床促進剤」と称する場合がある。)。また、本発明の剤又は該剤に含まれるペプチドは、結果として、胚の着床を促進するため、対象に投与することで不妊治療等を行い得る。従って、本発明の剤は、一態様では、不妊症の治療剤である。さらに、本発明の剤は、不妊治療に用いられる後述するようなホルモン剤等と組み合わせて用いてもよく、併用剤や組み合わせ剤として製剤化し得る。
 上記(3)のアミノ酸配列として、例えば、(i)KFEEERMRCKWMTからなるペプチド(配列番号1)又はKFEEERSRCKWMTからなるペプチド(配列番号2)のアミノ酸配列中の1~数(2、3、4若しくは5)個、好ましくは1~4個、より好ましくは1~3個、さらに好ましくは1若しくは2個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、さらにより好ましくは1個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、(ii)配列番号1又は2で表されるアミノ酸配列中の1~数(2、3、4若しくは5)個、好ましくは1~4個、より好ましくは1~3個、さらに好ましくは1若しくは2個、さらにより好ましくは1個のアミノ酸が欠失したアミノ酸配列、(iii)配列番号1又は2で表されるアミノ酸配列に1~数(2、3、4若しくは5)個、好ましくは1~4個、より好ましくは1~3個、さらに好ましくは1若しくは2個、さらにより好ましくは1個のアミノ酸が挿入されたアミノ酸配列、(iv)配列番号1又は2で表されるアミノ酸配列に1~数(2、3、4若しくは5)個、好ましくは1~4個、より好ましくは1~3個、さらに好ましくは1若しくは2個、さらにより好ましくは1個のアミノ酸が付加したアミノ酸配列、又は(v)それらを組み合わせたアミノ酸配列が挙げられる。
 他のアミノ酸で置換される場合、物理化学的性質が類似したアミノ酸(「類似アミノ酸」)、例えば、芳香族アミノ酸(Phe、Trp、Tyr)、脂肪族アミノ酸(Ala、Leu、Ile、Val)、極性アミノ酸(Gln、Asn)、塩基性アミノ酸(Lys、Arg、His)、酸性アミノ酸(Glu、Asp)、水酸基を有するアミノ酸(Ser、Thr)、側鎖の小さいアミノ酸(Gly、Ala、Ser、Thr、Met)などの同じグループに分類されるアミノ酸に置換されることが好ましい。このような類似アミノ酸による置換はタンパク質の表現型に変化をもたらさない(即ち、保存的アミノ酸置換である)ことが予測される。保存的アミノ酸置換の具体例は当該技術分野で周知であり、種々の文献に記載されている(例えば、Bowieら,Science, 247:1306-1310 (1990)を参照)。また、上記のようにアミノ酸配列が置換、欠失又は挿入されている場合、その置換、欠失又は挿入の位置は、インテグリンを介した細胞接着が増加し得る限り、特に限定されない。挿入に関する一態様では、上記(3)のアミノ酸配列として、配列番号1又は2のN末端及び/又はC末端に1若しくは2個のアミノ酸が挿入されたアミノ酸配列が挙げられる。また、置換されるアミノ酸は非天然人工アミノ酸に置換してもよい。特にフッ化物(F)、塩化物(Cl)、臭化物(Br)、ヨウ化物(I)修飾が付加されたアミノ酸は細胞浸透性や血中安定性に大きく影響を与えるため、置換として好ましい。
 膜透過性分子としては、ペプチドと結合することで、疎水性が上昇し、細胞膜への親和性が向上するような分子であれば特に限定されない。具体的には、例えば、飽和脂肪酸、より具体的には、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸が挙げられる。また、ポリエチレングリコールを、自体公知の方法により可逆的に結合させてもよい(Utatsu et al., Materials Today Bio, Volume 12, September 2021, 100160)。
 例えば、ミリスチン酸を結合させる(N末端)ミリストイル化や、パルミチン酸を結合させるパルミトイル化は、これらによりペプチドの疎水性が上昇し、細胞膜への親和性が向上するため、好ましい。
 本発明のインテグリン活性化剤は、本発明のペプチド以外に、後述するような医薬的に許容される担体等を含んでもよく、哺乳動物等に経口的又は非経口的に投与され得る。
 本発明のインテグリン活性化剤の剤形としては、例えば、錠剤(例、糖衣錠、フィルムコーティング錠、舌下錠、バッカル錠、口腔内速崩錠)、丸剤、顆粒剤、散剤、カプセル剤(例、ソフトカプセル剤、マイクロカプセル剤)、シロップ剤、乳剤、懸濁剤、フィルム剤(例、口腔内崩壊フィルム、口腔粘膜貼付フィルム)等の経口剤が挙げられる。また、本発明のインテグリン活性化剤の剤形としては、例えば、注射剤、点滴剤、経皮剤(例、イオントフォレシス経皮剤)、坐剤、軟膏剤、経鼻剤、経肺剤、点眼剤、経膣剤、膣用カプセル剤等の非経口剤も挙げられる。また、本発明のインテグリン活性化剤は、速放性製剤、徐放性製剤(例、徐放性マイクロカプセル)などの放出制御製剤であってもよい。
 本発明のインテグリン活性化剤は、製剤技術分野で一般的に用いられている公知の製造方法(例、日本薬局方に記載の方法)により製造され得る。また、本発明のインテグリン活性化剤には、必要に応じて、製剤分野において通常用いられる賦形剤、結合剤、崩壊剤、滑沢剤、甘味剤、界面活性剤、懸濁化剤、乳化剤、着色剤、保存剤、芳香剤、矯味剤、安定剤、粘稠剤等の添加剤を適宜、適量含有させることができる。薬理学的に許容される担体としては、これらの添加剤が挙げられる。
 例えば、錠剤は、賦形剤、結合剤、崩壊剤、滑沢剤等を用いて製造され得、丸剤及び顆粒剤は、賦形剤、結合剤、崩壊剤を用いて製造され得る。また、散剤及びカプセル剤は賦形剤等を、シロップ剤は甘味剤等を、乳剤又は懸濁剤は懸濁化剤、界面活性剤、乳化剤等を用いて製造され得る。
 賦形剤の例としては、乳糖、白糖、ブドウ糖、デンプン、蔗糖、微結晶セルロース、カンゾウ末、マンニトール、炭酸水素ナトリウム、リン酸カルシウム、硫酸カルシウムが挙げられる。
 結合剤の例としては、5乃至10重量%デンプンのり液、10乃至20重量%アラビアゴム液又はゼラチン液、1乃至5重量%トラガント液、カルボキシメチルセルロース液、アルギン酸ナトリウム液、グリセリンが挙げられる。
 崩壊剤の例としては、デンプン、炭酸カルシウムが挙げられる。
 滑沢剤の例としては、ステアリン酸マグネシウム、ステアリン酸、ステアリン酸カルシウム、精製タルクが挙げられる。
 甘味剤の例としては、ブドウ糖、果糖、転化糖、ソルビトール、キシリトール、グリセリン、単シロップが挙げられる。
 界面活性剤の例としては、ラウリル硫酸ナトリウム、ポリソルベート80、ソルビタンモノ脂肪酸エステル、ステアリン酸ポリオキシル40が挙げられる。
 懸濁化剤の例としては、アラビアゴム、アルギン酸ナトリウム、カルボキシメチルセルロースナトリウム、メチルセルロース、ベントナイトが挙げられる。
 乳化剤の例としては、アラビアゴム、トラガント、ゼラチン、ポリソルベート80が挙げられる。
 例えば、本発明の剤が錠剤である場合、該錠剤は、自体公知の方法に従い、本発明のペプチドに、例えば、賦形剤(例、乳糖、白糖、デンプン)、崩壊剤(例、デンプン、炭酸カルシウム)、結合剤(例、デンプン、アラビアゴム、カルボキシメチルセルロース、ポリビニルピロリドン、ヒドロキシプロピルセルロース)又は滑沢剤(例、タルク、ステアリン酸マグネシウム、ポリエチレングリコール6000)を添加して圧縮成形し、次いで必要により、味のマスキング、腸溶性あるいは持続性の目的のため自体公知の方法でコーティングすることにより製造され得る。コーティングに用いられるコーティング剤としては、例えば、ヒドロキシプロピルメチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、ポリオキシエチレングリコール、ツイーン80、プルロニックF68、セルロースアセテートフタレート、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシメチルセルロースアセテートサクシネート、オイドラギット(ローム社製、ドイツ、メタアクリル酸・アクリル酸共重合体)及び色素(例、ベンガラ、二酸化チタン)が用いられ得る。
 前記注射剤としては、静脈注射剤のほか、皮下注射剤、皮内注射剤、筋肉注射剤、腹腔内注射剤、点滴注射剤等が含まれる。
 かかる注射剤は、自体公知の方法、すなわち、本発明のペプチドを無菌の水性液若しくは油性液に溶解、懸濁又は乳化することによって調製される。水性液としては、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例、D-ソルビトール、D-マンニトール、塩化ナトリウム)等が挙げられる。該水性液は適当な溶解補助剤、例えば、アルコール(例、エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリコール)、非イオン性界面活性剤(例、ポリソルベート80、HCO-50)を含んでいてもよい。油性液としては、ゴマ油、大豆油等が挙げられる。該油性液は適当な溶解補助剤を含んでいてもよい。該溶解補助剤としては、安息香酸ベンジル、ベンジルアルコール等が挙げられる。また、該注射剤には緩衝剤(例、リン酸緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例、塩化ベンザルコニウム、塩酸プロカイン)、安定剤(例、ヒト血清アルブミン、ポリエチレングリコール)、保存剤(例、ベンジルアルコール、フェノール)等を配合してもよい。調製された注射液は、通常、アンプルに充填され得る。
 本発明の剤の本発明のペプチドの含有量は、製剤の形態に応じて相違するが、通常、製剤全体に対して約0.01~約100重量%、好ましくは約2~約85重量%、さらに好ましくは約5~約70重量%である。
 本発明の剤中の添加剤の含有量は、製剤の形態に応じて相違するが、通常、製剤全体に対して約1~約99.9重量%、好ましくは約10~約90重量%である。
 本発明のペプチドは、安定かつ低毒性で安全に使用し得る。本発明のペプチドの1日の投与量は患者の状態や体重、化合物(アミノ酸)の種類、投与経路等によって異なるが、例えば、不妊治療目的で患者に経口投与する場合には、成人(体重約60 kg)1日当りの投与量は、本発明のペプチドとして約5~500 mgである。これらを1回又は複数回に分けて投与してもよい。
 本発明のペプチドを非経口的に投与する場合は、通常、液剤(例、注射剤)や膣用カプセル剤の形で投与する。本発明のペプチドの1回投与量は、投与対象、対象臓器、症状、投与方法等によっても異なるが、例えば、通常体重1 kgあたり約0.08~約8 mgを、経膣投与、経皮注射、あるいは静脈注射する。
 本発明のペプチドは、他の薬物と併用して用いられ得る。具体的には、例えば、本発明のペプチドは、ホルモン剤等と併用して用いられ得る。本明細書において、本発明のペプチドと併用して用いられ得る他の薬物を、「併用薬物」と称する場合がある。
 ホルモン剤としては、例えば、排卵誘発剤、hCG製剤、卵胞ホルモン(エストロゲン)剤、黄体ホルモン(プロゲステロン)剤、GnRH製剤(GnRHアゴニスト/アンタゴニスト)が挙げられる。また、その他として、高プロラクチン血症治療薬(例えば、カバサール等)、子宮内膜症・乳腺症治療薬(例えば、ダナゾール等)が挙げられる。
 特に、卵胞ホルモン(エストロゲン)剤としては、例えば、エストラジオール、エストリオール、エチニルエストラジオール、エストラジオールシピオナート、エストラジオール吉草酸エステル等が挙げられる。また、黄体ホルモン(プロゲステロン)剤としては、プロゲステロン、メドロキシプロゲステロン酢酸エステル、ジドロゲステロン、ノルエチステロン、ジエノゲスト等が挙げられる。
 本発明のペプチドと併用薬物とを組み合わせることにより、(1)本発明のペプチド又は併用薬物を単独で投与する場合に比べて、その投与量を軽減し得る、(2)患者の症状(軽症、重症等)に応じて、本発のペプチドと併用する薬物を選択し得る、(3)治療期間を長く設定し得る、(4)治療効果の持続を図り得る、(5)本発明のペプチドと併用薬物とを併用することにより、相乗効果が得られ得る、等の優れた効果を得られ得る。
 以下、本発明のペプチドと併用薬物を併用する場合を「本発明の併用剤」と称する。本発明の併用剤の使用に際しては、本発明のペプチドと併用薬物の投与時期は限定されず、本発明のペプチドと併用薬物とを、投与対象に対し、同時に投与してもよいし、時間差をおいて投与してもよい。時間差をおいて投与する場合、時間差は投与する有効成分、剤形、投与方法により異なるが、例えば、子宮内膜の状態を改善する併用薬物を先に投与する場合、併用薬物を投与した後、自然妊娠の場合には性交後1週間~10日の間、人工授精胚移植の場合には移植時に本発明のペプチドを投与すればよい。本発明のペプチドを先に投与する場合、本発明のペプチドを投与した後、妊娠状態を保つためのプロゲステロン製剤などの併用薬物を投与すればよい。併用薬物の投与量は、臨床上用いられている投与量に準ずればよく、投与対象、投与ルート、疾患、組み合わせ等により適宜選択し得る。
 また、本発明のペプチドはヒトへの使用に限らず、例えば、競走馬や肉牛などの畜産動物での着床効率向上のためにも使用され得る。
 本発明のペプチドと併用薬物を併用する場合の投与形態としては、例えば、(1)本発明のペプチドと併用薬物とを同時に製剤化して得られる単一の製剤の投与、(2)本発明のペプチドと併用薬物とを別々に製剤化して得られる2種の製剤の同一投与経路での同時投与、(3)本発明のペプチドと併用薬物とを別々に製剤化して得られる2種の製剤の同一投与経路での時間差をおいての投与、(4)本発明のペプチドと併用薬物とを別々に製剤化して得られる2種の製剤の異なる投与経路での同時投与、(5)本発明のペプチドと併用薬物とを別々に製剤化して得られる2種の製剤の異なる投与経路での時間差をおいての投与(例えば、本発明のペプチド→併用薬物の順序での投与、あるいは逆の順序での投与)が挙げられる。
 併用薬物の投与量は、臨床上用いられている用量を基準として適宜選択し得る。また、本発明のペプチドと併用薬物との配合比は、投与対象、投与ルート、対象疾患(特に、不妊症)、症状、組み合わせ等により適宜選択し得る。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに何ら限定されるものではない。
実験動物
 全ての動物実験は、関西医科大学動物実験施設で動物実験委員会において許可を受けて行われた。使用したマウスの系統はC56BL/6、B6D2F1、Rosa26mCherry/mCherry、Rosa26H2B-EGFP/H2B-EGFP、及びICRである。動物は、8~20週齢を使用した。
細胞培養
 安楽死させたC56BL/6マウス又はRosa26mCherry/mCherryマウスから子宮を採取、切り開き上皮を露出させた状態で細断し、ディスパーゼによる酵素処理を行い、上皮細胞を採取した。上皮細胞はマトリゲル中に懸濁し、WNT3A、R-spondin1、Noggin、EGF、Hepes pH7.4を添加したAdvanced DMEM/F12培地(WNT培地)にて培養を行い、子宮オルガノイドを作製した(Turco, 2017, Nature Cell Biology)。上皮細胞を取り除いた子宮組織はコラゲナーゼによる酵素処理を行い、間質細胞を採取した。間質細胞は細胞接着処理済みディッシュ上で10%血清入りDMEM培地にて培養した。C56BL/6マウス由来の子宮オルガノイドと間質細胞は、人工着床実験の直前にCell ExplorerTM Live Cell Tracking Kit Green Fluorescence(AAT Bioquest)にて蛍光ラベルを行った。
胚培養
 B6D2F1の雌マウスにCARD HyperOva(九道)を投与し、48時間後にヒト絨毛性ゴナドトロピン(あすか製薬)を投与し、B6D2F1の雄マウスと交配させた。翌々日に雌マウスを安楽死させ、輸卵管より2細胞期の胚を採取し、KSOM培地(アークリソース)にて3日間培養し、胚盤胞まで発生させ、人工着床実験の直前にCell ExplorerTM Live Cell Tracking Kit Red Fluorescence(AAT Bioquest)にて蛍光ラベルを行った。また人工授精の場合、8週齢以上のRosa26H2B-EGFP/H2B-EGFP雄マウスを安楽死させ、精巣上体尾部より採精し、CARD FERTIUPマウス精子凍結保存液(九道)を用いて凍結保存した。次にB6D2F1の雌マウスにCARD HyperOva(九道)を投与し、48時間後にヒト絨毛性ゴナドトロピン(あすか製薬)を投与し、翌日に雌マウスを安楽死させ、輸卵管より未受精卵を採取した。未受精卵は、融解後にCARD FERTIUPマウス精子前培養培地にて回復させた精子により受精させることで、EGFPにより蛍光ラベルされた受精卵を得、胚盤胞まで発生させた。
実施例1:ミニ子宮と試験管内着床実験
 子宮オルガノイドは、マトリゲル中で一層の円柱上皮細胞層からなる球状の細胞塊である(図1A)。子宮オルガノイドは、マトリゲルごと5 mM EDTA入りのPBSに懸濁し、4 ℃で60分間ローテーションさせ、マトリゲルを溶解した。子宮オルガノイドを1つずつ96ウェルのUltra low attachmentディッシュ(costar)に1つずつ分取し、エストロゲン入りのWNT培地にて4日間培養し、極性を逆転させた。上皮細胞の極性は、Hoechstで染色した核とPhalloidinで染色したアクチン繊維の位置関係から判断できる。マトリゲル中で培養した子宮オルガノイドでは、球の外側から内側に向かって核とアクチン繊維が配向するが(図1F右)、Ultra low attachmentディッシュで培養した子宮オルガノイドでは、球の内側から外側に向かって核とアクチン繊維が配向する(図1F左)。アクチン繊維側が管腔側で、胚が接触する側である。その後、エストロゲンとプロゲステロン入りのWNT培地にて更に1日培養を行った。間質細胞を、マトリゲルに懸濁し、グラスボトムディッシュ上に載せ、更に3Dプリンターで作製した型を載せて固め(図1C~E)、直径200 μmの穴の開いた構造を作製した。穴の中に子宮オルガノイドと透明体を剥がした胚盤胞を入れて(図1B、図2、図3、30% KSR(Thermo Fisher)、N-Acetylcysteine、エストロゲン、プロゲステロン入りのWNT培地(Bedzhov, 2014, Nature Protocols, 一部改変、着床培地)を用いて培養し、着床様反応を共焦点蛍光顕微鏡FV3000(オリンパス)にて観察した。
 着床様反応は、共焦点蛍光顕微鏡FV3000に簡易CO2インキュベーター(東海ヒット)を設置することで、37℃、5%CO2の体内同様の環境下において観察を行った。EGFPやCell ExplorerTM Live Cell Tracking Kit Green Fluorescenceの観察のためには488 nmレーザー、mCherryやCell ExplorerTM Live Cell Tracking Kit Red Fluorescenceの観察のためには561 nmレーザーを用いて、3次元蛍光観察を3日間行った。胚盤胞は、最初は子宮オルガノイドに接触しているが、徐々に子宮オルガノイド中に侵入していく(図4A)。また周囲に存在する間質細胞との相互作用も観察された(図4A)。加えて、胚盤胞中にmCherryの蛍光が観察されることから、食作用により上皮細胞を排除し、侵入を行うことが示唆される(図4B)。また、このような観察はCell ExplorerTM Live Cell Tracking Kit Green FluorescenceとRed Fluorescenceで染色した胚盤胞と子宮オルガノイド・間質細胞においても観察された(図5)。
実施例2:試験管内着床実験の検証
 試験管内着床実験にて、着床様反応が起こらない場合には、実験系から取り出した胚(図6A左)と子宮オルガノイド(図6A右)は分離した状態である。それに対して着床様反応が起こると取り出した胚は、融合しており離れない(図6B)。試験管内着床実験系に胚盤胞を入れて72時間後に全ての細胞を取り出して、トリプシン処理をして、シングルセル化し、一細胞RNA発現解析を行った。シングルセル化した細胞は、7-AADで死細胞を蛍光染色し、セルソーター(SH800S, ソニー)を用いて、生細胞を分離採取した。採取した細胞は大阪大学微生物学研究所付属遺伝情報実験センターにおいて、Chromium(10x Genomics)により、一細胞ごとにRNAをタグ付けし、次世代シーケンシングを行った。遺伝子発現データはSEURAT(https://satijalab.org/seurat/)による解析を行った。遺伝子発現パターンから、解析した細胞群は、胎盤様細胞、子宮内膜間質細胞、子宮内膜上皮細胞の3種類に分類できる(図6C)。これらは、それぞれ試験管内着床実験系に入れた胚盤胞、間質細胞、子宮オルガノイド由来の細胞と考えられる。更に、幹細胞維持に働くPrdm16、Klf4、Rexo1や、内胚葉形成に働くGata6、原腸陥入に働くNodal、胎盤形成に働くPlac8、Klf4、Sdc1などの遺伝子を発現する細胞が点在し、このことから胚盤胞以降まで胚発生が進んでいることが示唆される(図4D)。
実施例3:着床関連遺伝子の発現
 実施例2の一細胞RNA発現解析によって着床に働くことが知られている遺伝子の発現を確認した。WNTシグナル(図7A)、ノッチシグナル(図7B)、メタロプロテアーゼ(図7C)、TGFβ(図7D)、LIF(図7E)、インテグリン(図7F)などの発現が、胚由来と子宮内膜由来の細胞双方に観察されたことは、実施例1、及び2で観察された現象が、体内で起こる着床に準ずる反応であることを示唆する。
実施例4:ペプチド活性測定(概要)
 ペプチドの活性はAlphaScreenを用いてインテグリン活性化複合体形成能を測定することによって検出を行った。60000種類以上のペプチドの中から、インテグリン活性化能の最も高いIznm-1(Myr-KFEEERMRCKWMT(MW: 1984.45))とIznm-2(Myr-KFEEERSRCKWMT(MW: 1940.33))を見出した。8μM の濃度で、Iznm-1ではおよそ5倍、Iznm-2ではおよそ14倍の活性化効果を確認することができた(図8)。
実施例5(1):ペプチド薬による活性化インテグリンβ1の増加
 実際にペプチド薬Iznm-2が胚においてインテグリン活性化を引き起こすことを確認するために、ガラスボトムディッシュ(Matsunami)に透明体を除去した胚盤胞を入れ、着床培地にて3日間培養を行った。培養液には活性化型インテグリンβ1を認識する抗体(MAB2259Z、Merck)とAlexa594結合抗マウス二次抗体を入れ、Iznm-2を加えた実験群と、入れていないコントロール群に分けて実験を行った。培養後、胚は4% ホルムアルデヒドで固定し、Hoechstで核を染色し、FV3000若しくは、蛍光顕微鏡CKX-53(オリンパス)を用いて観察を行った。その結果コントロール群に比べて(図8A、C)、実験群では強く蛍光染色される細胞が検出された(図8B、D)。
実施例5(2):ペプチド薬による胚のガラス面への接着促進
 実施例5(1)の実験においては、コントロール群の胚は接着しなかったが、Iznm-2を添加した実験群において、ガラス面への胚の接着が観察された(図10A、B)。その割合はコントロールでは0/13に対して、Iznm-2添加では13/14であり、両群に有意差が検出された(p < 0.01、x^2検定、図10C)。
実施例6:試験管内着床系でのペプチド薬の効果
 本発明の試験管内着床系では、着床様反応の成否を、図6A及びBに示した胚と子宮オルガノイドとの融合の成否によって判定を行った(図11)。コントロール群では着床様反応が5/22(22.7%)の割合で観察された。それに比べて、試験管内着床系より間質細胞を抜いた実験系では1/22(4.5%)の割合で観察された(p < 0.01、x^2検定と残差分析)。またIznm-1添加実験では6/14(42.9%)、Iznm-2添加実験では12/19(63.2%)であり、後者では有意差が検出された(p < 0.01、x^2検定と残差分析)。
実施例7:ペプチド薬が胚発生に及ぼす効果
 ペプチド薬が胚発生に及ぼす効果を確認するため以下の実験を行った。8週齢のICR雄マウスに対して精管結紮処理をした。発情前期にあるICR雌マウスと精管結紮雄マウスを交配させ、翌日膣栓のできたものを偽妊娠雌マウスとして使用した。膣栓確認2日後に、胚盤胞まで発生させたB6D2F1マウス胚を移植した。胚盤胞は移植直前に32 μMのIznm-2を添加したKSOM培地に移し、培地ごと胚を移植した。移植時に子宮に注入される培地の量は5μl以下であった。胚移植を以下の手順で行った。麻酔の効いた偽妊娠雌マウスの背側の片側の皮膚及び腹壁を切開し、子宮を体外に露出させ、26G針で穴を貫通させ、そこにガラス管を用いて培地ごと胚を注入した。移植後子宮を体内に戻し、縫合した。移植を行った胚はE14まで、移植したマウス内で発生させたのち、代理母マウスを安楽死させ、取り出し、発生を調べた。取り出した胚は正常に発生しており、Iznm-2が胚発生に大きな影響を与えないことが示唆された(図14)。
実施例8:ペプチド薬が胚移植に及ぼす効果
 ペプチド薬が胚移植に及ぼす効果を確認するため以下の実験を行った。8週齢のICR雄マウスに対して精管結紮処理をした。発情前期にあるICR雌マウスと精管結紮雄マウスを交配させ、翌日膣栓のできたものを偽妊娠雌マウスとして使用した。膣栓確認2日後に、胚盤胞まで発生させたB6D2F1マウス胚を移植した。胚盤胞は移植直前に8μMのIznm-2を添加したもしくは不添加(コントロール)のKSOM培地に移し、培地ごと胚を移植した。移植時に子宮に注入される培地の量は5μl以下であった。移植する胚盤胞は交接後4.5日、偽妊娠マウスは交接後2.5日と交接後の日にちをずらし、子宮の準備が整う前に移植実験を行うことで、不妊の原因の一つである子宮宮内膜が受精卵を受け入れる時期と、受精卵の子宮内膜への到達の時期のずれ(所謂、「着床の窓(implantation window)のずれ」)を再現した(図12)。胚移植を以下の手順で行った。麻酔の効いた偽妊娠雌マウスの背側の片側の皮膚及び腹壁を切開し、子宮を体外に露出させ、26G針で穴を貫通させ、そこにガラス管を用いて培地ごと胚を注入した。移植後子宮を体内に戻し、縫合した。移植を行った胚はE15.5まで、移植したマウス内で発生させたのち、代理母マウスを安楽死させ、取り出し、着床率と発生を調べた(図13A、B)。コントロール群では24個の移植胚の内着床が確認されたものはなかったが、Iznm-2添加群では41個の移植胚の内22個の着床を確認し、またその内12個が正常発生していることを確認した(図13C)。着床した胚は全く発生しないか、正しく発生しているかの2群に分かれている(図13D)。ヒトの妊娠初期での薬剤の影響は、発生するかしないか、2つに分かれるAll or Noneの法則と同様の結果が得られていると推測される。
実施例9:ペプチド薬が胚発生に及ぼす効果
 実施例8で得られたE15.5胚の発生を確認した。胚の形状は正常である(図14A)。また胚のパラフィンブロックを作製し、その切片をヘマトキシリン・エオシン染色を行い、脳・心臓・消化器官などの臓器の正常な発生を確認した(図14B)。
実施例10:ペプチド薬が母体に及ぼす影響
 過剰量のIznm-2を雌マウスの腹腔内に投与することで、ペプチド薬の副作用を検討した。実施例8では子宮内に8 μMのIznm-2を5 μl以下量を胚と共に投与したが、本実験では、マウスの全体重に対して8 μMの濃度となるように投与を行った。Iznm-2はコーン油に溶解し、コントロールはペプチド薬なしのコーン油投与を行った。投与後24時間で、血液の採取を行い、肝臓、腎臓の状態の指標となる血液成分の分析を行った。
 コントロール(コーン油投与マウス)と比較した本発明のペプチド薬(Iznm-2)を腹腔内投与したマウス(母体)の血液検査の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示される通り、本発明のペプチド薬が、母体への大きな悪影響を有しないことを確認した。
 上記の実施例の結果から、本発明のペプチドは、母体や胚の発生に対して、極めて安全性が高いことが理解できる。また、本発明のペプチドは、子宮の状態が整わなくとも、胚と子宮との接着を向上させることによって、直接的に着床率を高めることが可能であることが理解できる。
 本発明によれば、インテグリンを活性化することで、自然妊娠後や人工授精後等の胚の着床率を向上させることが可能となるため有用である。また、本発明の剤は、従来の不妊治療で使用するような薬剤とも併用することができるため、少子化解決策の1つと成り得、また不妊治療費や増大する該治療に関する助成金等の低減にも繋がる。さらに、本発明によれば、胚の着床率を向上させることが可能となるような物質の評価を迅速且つ確実に行うことができるため、本発明は、そのような物質の取得にも非常に有用である。
 本出願は、日本で出願された特願2022-183639(出願日:2022年11月16日)を基礎としており、その内容は本明細書に全て包含されるものである。

Claims (10)

  1.  (1)KFEEERMRCKWMTからなるペプチド、
     (2)KFEEERSRCKWMTからなるペプチド、
     (3)(1)若しくは(2)において、1乃至3個のアミノ酸が欠失、置換及び/若しくは付加されたアミノ酸配列からなるペプチド、又は
     (4)(1)~(3)のいずれかにおいて、膜透過性分子が結合されたペプチド
    を含む、胚の着床促進剤又は不妊症治療剤。
  2.  膜透過性分子が結合されたペプチドが、ミリストイル化されたペプチドである、請求項1に記載の剤。
  3.  ホルモン剤を含む、請求項1又は2に記載の剤。
  4.  (1)KFEEERMRCKWMTからなるペプチド、
     (2)KFEEERSRCKWMTからなるペプチド、
     (3)(1)若しくは(2)において、1乃至3個のアミノ酸が欠失、置換及び/若しくは付加されたアミノ酸配列からなるペプチド、又は
     (4)(1)~(3)のいずれかにおいて、膜透過性分子が結合されたペプチド
    を含む、インテグリン活性化剤。
  5.  子宮内膜間質細胞を含み、細胞外マトリックスを主成分とするハイドロゲルと、該ハイドロゲルに囲まれるように配置された子宮上皮オルガノイドとを含み、子宮上皮オルガノイドを囲むように配置されたハイドロゲルの天方向に開口部を備えた、人工子宮。
  6.  前記細胞外マトリックスがラミニン及び/又はその断片を含む、請求項5に記載の人工子宮。
  7.  子宮上皮オルガノイドが、オルガノイドの外側が頂端側である、請求項5に記載の人工子宮。
  8.  対物面を持った支持体と前記対物面から突起する少なくとも1つの突起体とを有するデバイス、及び細胞外マトリックスを主成分とする溶液を含む、人工子宮作製用キット。
  9.  人工子宮の製造方法であって、以下:
    (1)培養器に、子宮内膜間質細胞を含み、細胞外マトリックスを主成分とする溶液を充填する工程、
    (2)前記充填した溶液中に、対物面を持った支持体と前記対物面から突起する少なくとも1つの突起体とを有するデバイスを押圧する工程、及び
    (3)前記充填した溶液がゲル化した後、前記押圧したデバイスを除去する工程
    を含む、方法。
  10.  (1)被験物質の存在下又は非存在下で、請求項5に記載の人工子宮と、受精卵とを接触させる工程、
     (2)子宮上皮オルガノイドと受精卵との着床率を測定する工程、及び
     (3)工程(2)において、被験物質の非存在下と比較して、候補物質の存在下において着床率が高い場合に、該被験物質を不妊症の治療又は予防薬の候補物質として選別する工程
    を含む、不妊症の治療剤のスクリーニング方法。
PCT/JP2023/041000 2022-11-16 2023-11-14 着床促進薬とそのスクリーニング系 WO2024106444A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022183639 2022-11-16
JP2022-183639 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024106444A1 true WO2024106444A1 (ja) 2024-05-23

Family

ID=91084508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041000 WO2024106444A1 (ja) 2022-11-16 2023-11-14 着床促進薬とそのスクリーニング系

Country Status (1)

Country Link
WO (1) WO2024106444A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101711891A (zh) * 2009-01-15 2010-05-26 中国人民解放军军事医学科学院基础医学研究所 一种用于研究胚胎干细胞发育分化的人造子宫三维凝胶模型
WO2011024850A1 (ja) * 2009-08-26 2011-03-03 日本ケミカルリサーチ株式会社 妊娠促進のためのlpaの使用及び妊娠促進剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101711891A (zh) * 2009-01-15 2010-05-26 中国人民解放军军事医学科学院基础医学研究所 一种用于研究胚胎干细胞发育分化的人造子宫三维凝胶模型
WO2011024850A1 (ja) * 2009-08-26 2011-03-03 日本ケミカルリサーチ株式会社 妊娠促進のためのlpaの使用及び妊娠促進剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK, D. W. ET AL.: "Establishment of artificial endometrium for human implantation stud", PROCEEDINGS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, JAPAN, vol. 2002, 1154, 2002, pages 212 *

Similar Documents

Publication Publication Date Title
US20220025321A1 (en) Methods for reprograming non-pluripotent cells into pluripotent stem cells
EP3019596B1 (en) Compositions and methods for reprograming non- pluripotent cells into pluripotent stem cells
JP6581655B2 (ja) 多能性幹細胞由来ケラチノサイトの生成およびケラチノサイト培養の維持
US20060211110A1 (en) Human trophoblast stem cells and use thereof
WO1999053021A1 (en) Cell differentiation/proliferation and maintenance factor and uses thereof
KR20210008926A (ko) SC-β 세포 및 조성물 그리고 그 생성 방법
US11959097B2 (en) Methods of generating a synthetic embryo
H Parsons et al. Patents on technologies of human tissue and organ regeneration from pluripotent human embryonic stem cells
US20220389376A1 (en) Methods for Reprogramming Cells
US9085754B2 (en) Isolated population of cells and methods of generating and using same
TWI627280B (zh) 用於在活體外培養口腔黏膜上皮祖細胞以及口腔黏膜上皮細胞的方法
WO2024106444A1 (ja) 着床促進薬とそのスクリーニング系
JP2023054306A (ja) 無担体3d球体浮遊培養における網膜ニューロン生成のための方法および組成物
Yao et al. Ex utero embryogenesis of non-human primate embryos and beyond
US20170283777A1 (en) Mammalian chimeric complementation
KR20230017876A (ko) 망막 색소 상피 및 광수용체의 이중층 및 이의 용도
WO2023157852A1 (ja) 多能性幹細胞から表皮角化細胞への分化誘導方法
US12018278B2 (en) Methods for chemically induced lineage reprogramming
Teng et al. A 3D" Sandwich" Co-culture System with hPPSCs and hUVECs Supports Mouse Embryo Development from E3. 5 to E7. 5 In Vitro
US20200277567A1 (en) Methods for chemically induced lineage reprogramming
AU2022367279A1 (en) Methods for modulating the regenerative phenotype in mammalian cells
AU755176B2 (en) Cell differentiation/proliferation and maintenance factor and uses thereof
Gurer et al. Therapeutic use of cloning: Osmangazi turk identical embryonic stem cells and embryonic stem cell transfer to diabetic mice