WO2024106359A1 - Optical system device, and optical element - Google Patents
Optical system device, and optical element Download PDFInfo
- Publication number
- WO2024106359A1 WO2024106359A1 PCT/JP2023/040683 JP2023040683W WO2024106359A1 WO 2024106359 A1 WO2024106359 A1 WO 2024106359A1 JP 2023040683 W JP2023040683 W JP 2023040683W WO 2024106359 A1 WO2024106359 A1 WO 2024106359A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- lenses
- optical element
- light
- layer
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 88
- 239000000463 material Substances 0.000 claims description 22
- 239000011347 resin Substances 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 10
- 238000005286 illumination Methods 0.000 claims 2
- 238000000034 method Methods 0.000 description 20
- 238000004088 simulation Methods 0.000 description 8
- 239000004205 dimethyl polysiloxane Substances 0.000 description 6
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000001678 irradiating effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 5
- -1 polydimethylsiloxane Polymers 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
- G01S17/894—3D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/02—Simple or compound lenses with non-spherical faces
- G02B3/06—Simple or compound lenses with non-spherical faces with cylindrical or toric faces
Definitions
- the present invention relates to an optical system device and an optical element.
- Three-dimensional measurement sensors using the time-of-flight (TOF) method are being adopted for mobile devices, cars, robots, and more. This measures the distance to an object from the time it takes for light irradiated from a light source to be reflected and returned. If the light from the light source is irradiated evenly onto a specified area of the object, the distance at each irradiated point can be measured, and the three-dimensional structure of the object can be detected.
- TOF time-of-flight
- the above sensor system consists of a light irradiation unit that irradiates light onto the target object, a camera unit that detects the light reflected from each point on the target object, and a calculation unit that calculates the distance to the target object from the signal received by the camera.
- the camera section and calculation section can use existing CMOS imagers and CPUs, so the unique part of the above system is the light irradiation section, which consists of a laser and an optical filter.
- the diffusion filter which shapes the beam by passing the laser light through a microlens array and uniformly irradiates the target object over a controlled area, is a distinctive component of the above system.
- Non-Patent Document 1 optical devices utilizing the Lau effect have been known to convert incident light into a dot pattern.
- This is composed of a diffraction grating with a predetermined pitch P and a light source, and is arranged so that the distance L0 between the diffraction grating and the light source satisfies the following formula A, where ⁇ is the wavelength of the light from the light source and n is a natural number of 1 or more.
- a device in which the diffraction grating is replaced with a microlens is under consideration (for example, Patent Document 2).
- the aspheric lens 81 used was a square with a side length of 32 ⁇ m in the planar shape of the XY plane and a height of 21.2 ⁇ m.
- the focal length of the aspheric lens 81 was 50 ⁇ m, but the focal length f 1 of the cross-sectional shape of the aspheric lens 81 in the XZ plane was 10 ⁇ m, and the focal length f 2 of the cross-sectional shape in the YZ plane was 80 ⁇ m.
- Figure 3 shows the results of a simulation of the contrast ratio when the light from the light source is irradiated onto an optical element with ⁇ changed from 10 to 90 ⁇ m in 10 ⁇ m increments.
- the present invention aims to provide an optical system device and optical element that can emit high-contrast light even when emitting a non-circular dot pattern.
- an optical system device of the present invention includes an optical element having a first lens layer having linear first lenses that transmit light of wavelength ⁇ and are periodically arranged, and a second lens layer having linear second lenses that transmit light of wavelength ⁇ and are periodically arranged, arranged in a direction perpendicular to the first lenses, and an irradiation unit having a light source that irradiates a plurality of the first lenses and second lenses with light of wavelength ⁇ , wherein m and n are natural numbers of 1 or more, a focal length of the first lens is f 1 , a focal length of the second lens is f 2 , a magnitude of the pitch of the first lenses is P 1 , and a magnitude of the pitch of the second lenses is P 2 , and a distance L 1 between the irradiation unit and a first focal plane of the first lens and a distance L 2 between the irradiation unit and a second focal plane of the second lens are expressed by the following formulas 1 and 2:
- the present invention is
- the distance between the first focal plane and the second focal plane of the optical element is within 10 ⁇ m, and it is even more preferable that the first focal plane and the second focal plane are in the same position.
- the optical element may also include an intermediate layer between the first lens layer and the second lens layer, the intermediate layer having a lower refractive index than the materials of the first lens layer and the second lens layer.
- the optical element may also include a substrate on the side of the second resin layer opposite the first resin layer.
- the distances L 1 and L 2 are expressed by the following formulas 3 and 4. It is preferable to satisfy the following.
- the optical system device and optical element of the present invention can emit light with high contrast.
- FIG. 13 is a diagram showing the orientation distribution at the far end of the irradiation unit used in the simulation.
- FIG. 1A is a schematic cross-sectional view showing a conventional optical system device
- FIG. 1B is a perspective view showing an aspheric lens.
- 1 is a graph showing the contrast of a conventional optical system device.
- 1 is a projection diagram of a dot pattern of a conventional optical system device.
- 1 is a schematic cross-sectional view showing an optical system device of the present invention.
- FIG. 1 is a perspective view showing an optical element of the present invention.
- FIG. 2 is a perspective view showing another optical element of the present invention.
- 1A and 1B are schematic cross-sectional views showing an optical system device of the present invention, and FIG.
- FIG. 1C is a perspective view showing a first lens and FIG. 4 is a projection diagram of a dot pattern of the optical system device of the present invention.
- 3A to 3C are schematic cross-sectional views illustrating a method for producing an optical element of the present invention.
- 5A to 5C are schematic cross-sectional views illustrating a method for producing another optical element of the present invention.
- the optical system device of the present invention will be described below. As shown in FIG. 5, the optical system device of the present invention is mainly composed of an optical element 1 and an irradiation unit 2.
- the optical element 1 is mainly composed of a first lens layer 110 and a second lens layer 120.
- the first lens layer 110 transmits light of wavelength ⁇ and has periodically arranged linear first lenses 11. As shown in Fig. 5(a) , the first lenses 11 have a focal point that is spaced a focal length f1 ( f1 >0) from the side where the second lens layer 120 is not present.
- the second lens layer 120 has linear second lenses 12 that transmit light of wavelength ⁇ and are periodically arranged.
- the second lenses 12 are arranged so that the line direction is perpendicular to the line direction of the first lenses 11.
- the second lenses 12 have a focal point that is a focal length f2 ( f1 >0) away from the focal point on the first lens layer 110 side.
- the focal length means the distance between the lens surface closest to the focal point and the focal point, as shown in Fig. 5 .
- the first lens 11 and the second lens 12 may have any shape as long as they can focus light in a line shape, and for example, a lenticular lens may be used.
- the first lens 11 and the second lens 12 may be a Fresnel lens, a DOE lens, a metalens, or the like, as long as they can focus light in a line shape.
- the first lens 11 and the second lens 12 may be formed with an anti-reflection coating that prevents the light from the irradiation unit 2 from reflecting.
- the first lens layer 110 is made of a material having a higher refractive index than the material on the side where light enters the first lens 11.
- the second lens layer 120 is made of a material having a higher refractive index than the material on the side where light enters the first lens 11. Therefore, when the first lens layer 110 and the second lens layer 120 are formed adjacent to each other, the first lens layer 110 needs to have a lower refractive index than the second lens layer 120. However, if the difference in refractive index between the first lens layer 110 and the air is small, it may be difficult to expand the dot pattern to a wide angle. In such a case, as shown in FIG.
- an intermediate layer 130 having a lower refractive index than the materials of the first lens layer 110 and the second lens layer 120 may be provided between the first lens layer 110 and the second lens layer 120.
- the intermediate layer 130 may be made of a resin, but it is also possible to use a gas such as air or to create a vacuum.
- the optical element 1 may have a substrate or the like on the side of the second resin layer opposite the first resin layer for manufacturing reasons or the like.
- the substrate may be made of any material that transmits light of wavelength ⁇ , but it is preferable that the substrate be made of a material that has a lower refractive index than the first lens 11 and the second lens 12.
- the irradiation unit 2 has a light source 7 that irradiates the first lens 11 and the second lens 12 with light of wavelength ⁇ . Any light source 7 that irradiates the first lens 11 and the second lens 12 with light of wavelength ⁇ may be used.
- the irradiation unit 2 may be a single light source or multiple light sources.
- the irradiation unit 2 may be a multiple light source by passing the light of a single light source through an aperture having multiple pores. When the irradiation unit 2 is composed of multiple light sources, it is preferable that the light sources are formed on the same plane.
- a specific example of the irradiation unit 2 is a VCSEL (Vertical Cavity Surface Emitting LASER), which is expected to achieve high output with low power.
- the VCSEL has multiple light sources 7 that can irradiate light in a direction perpendicular to the light emitting surface. It is also preferable that a light absorbing film is formed on parts other than the light source 7, because noise due to reflected light is not introduced.
- the irradiation unit 2 When the irradiation unit 2 has a plurality of light sources 7, they need to be arranged so that the number of light sources 7 for each first lens 11 of the optical element 1 and the number of light sources 7 for each second lens 12 of the optical element 1 are the same in a planar view even when the irradiation unit 2 and the optical element 1 are moved in parallel relative to each other. Therefore, when j is a natural number of 1 or more, the irradiation unit 2 may arrange the light sources 7 regularly with a pitch of jP1 or P1 /j in the periodic direction of the first lenses 11 of the optical element 1. Similarly, when k is a natural number of 1 or more, the irradiation unit 2 may arrange the light sources 7 regularly with a pitch of kP2 or P2 /k in the periodic direction of the second lenses 12 of the optical element 1.
- the optical system device can convert the incident light into a dot pattern with high contrast when the distance L1 between the irradiation unit 2 and the first focal plane 111 of the lens 11 and the distance L2 between the irradiation unit 2 and the second focal plane 112 satisfy the following formulas ⁇ and ⁇ .
- m and n are natural numbers of 1 or more
- P1 is the pitch size of the first lens 11
- P2 is the pitch size of the second lens 12
- ⁇ is the wavelength of the light incident from the irradiation unit 2
- f1 is the focal length of the first lens 11
- f2 is the focal length of the second lens 12
- a, b, c, and d are coefficients indicating allowable errors.
- the first focal plane 111 means a plane perpendicular to the optical axis (z direction) of the first lens 11 and at the focal position of the first lens 11.
- the second focal plane 121 means a plane perpendicular to the optical axis (z direction) of the second lens 12 and at the focal position of the second lens 12.
- the first lens 11 and the second lens 12 are formed so that the first focal plane 111 and the second focal plane 121 are parallel to each other.
- the distances L1 and L2 refer to the distance (optical path length) that light travels in a vacuum in the same time that it travels in a medium, and are expressed as the product NL, where N is the refractive index of the medium and L is the actual distance.
- the distances L 1 and L 2 are expressed by the following formulas 3 and 4: It is better to satisfy.
- the distance between the first focal plane 111 and the second focal plane 121 of the optical element 1 is within 10 ⁇ m, since this makes it easier to simultaneously satisfy formulas 1 and 2 or formulas 3 and 4. It is also more preferable that the first focal plane 111 and the second focal plane 121 are in the same position.
- the optical element 1 transmits light with a wavelength ⁇ , and has a first lens layer 110 having a linear first lens 11 and a second lens layer 120 having linear second lenses 12 arranged in a direction (X direction) perpendicular to the line direction (Y direction) of the first lens 11, with an intermediate layer 130 sandwiched therebetween, as shown in FIG. 8(a) and (b).
- the intermediate layer 130 has a refractive index of 1.42.
- Figure 9 shows the projection diagram resulting from the simulation. As shown in Figure 8, the dots became very sharp and circular. In addition, the contrast was 123.2, which shows that the contrast can be improved significantly compared to conventional methods.
- optical element manufacturing method The following describes a method for manufacturing the optical element 1.
- the first lens 11 and the second lens 12 of the optical element 1 may be manufactured in any manner, but may be manufactured, for example, by using an imprint method.
- the second lens 12 is formed on the substrate 9 using a known technique such as an imprint method (second lens formation step).
- a known technique such as an imprint method
- the material 120a of the second lens 12 is applied to the substrate 9 with a predetermined thickness by a known method such as a spin coater (first application step).
- Any material 120a may be used as long as it can form the second lens 12 that transmits light of wavelength ⁇ , and for example, photocurable polydimethylsiloxane (PDMS) can be used.
- PDMS photocurable polydimethylsiloxane
- a second mold 52 having a second lens pattern that is an inverted shape of the second lens 12 is prepared, and the applied material of the second lens 12 is pressed to transfer the second lens pattern (first transfer step).
- the applied pattern is cured by irradiating UV light or the like (first curing step).
- the second mold 52 is released to form the second lens 12 on the substrate 9.
- the first lens 11 is formed on the second lens 12 using a known technique such as an imprint method (first lens formation process).
- a material 110a of the first lens 11 is applied to a predetermined thickness on the second lens 12 by a known method such as a spin coater (second application process). Any material 110a may be used as long as it can form the first lens 11 that transmits light of wavelength ⁇ , and photocurable polydimethylsiloxane (PDMS) can be used, for example.
- PDMS photocurable polydimethylsiloxane
- FIG. 10(f) a first mold 51 having a first lens pattern that is an inverted shape of the first lens 11 is prepared, and the applied material of the first lens 11 is pressed to transfer the first lens pattern (second transfer process). In addition, the applied pattern is cured by irradiating UV light or the like (second curing process).
- the first mold 51 is released, and the first lens 11 can be formed on the second lens 12.
- an intermediate layer 130 or the like is formed on the second lens 12, and then form the first lens 11 on top of that.
- a material 130a for the intermediate layer 130 is applied to a predetermined thickness on the second lens 12 by a well-known method such as a spin coater (intermediate layer application process).
- the material 130a is then hardened by irradiation with UV light or the like to form the intermediate layer 130 (intermediate layer hardening process).
- the first lens 11 is formed on the intermediate layer 130 using a known technique such as an imprinting method (first lens forming step).
- first lens forming step the material of the first lens 11 is applied to a predetermined thickness on the intermediate layer 130 by a known method such as a spin coater (second application step). Any material may be used as long as it can form the first lens 11 that transmits light of wavelength ⁇ , and photocurable polydimethylsiloxane (PDMS) can be used, for example.
- PDMS photocurable polydimethylsiloxane
- FIG. 11(f) a first mold 51 having a first lens pattern that is an inverted shape of the first lens 11 is prepared, and as shown in FIG.
- pressure is applied to the applied material of the first lens 11 to transfer the first lens pattern (second transfer step). Also, UV light or the like is irradiated to harden the applied pattern (second hardening step). Next, as shown in FIG. 11(h), the first mold 51 is released, and the first lens 11 can be formed on the second lens 12.
- first lens 11 and the second lens 12 are formed so that the distance between the focal plane 111 of the first lens 11 and the focal plane 121 of the second lens 12 is within 10 ⁇ m, and more preferably, they are in the same position.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
The objective of the present invention is to provide an optical system device and an optical element capable of emitting high-contrast light even when emitting a non-circular dot pattern. The optical system device is provided with an optical element 1 having a first lens layer including line-shaped first lenses 11 that transmit light with a wavelength λ and that are arranged periodically, and a second lens layer including line-shaped second lenses 12 that are arranged in a direction perpendicular to the first lenses 11, transmit light having a wavelength λ, and are arranged periodically, and an emitting portion 2 including light sources 7 that emit light having a wavelength λ onto a plurality of the first lenses 11 and the second lenses 12, wherein a distance L1 between the emitting portion 2 and a first focal point plane 111 of the first lenses 11 and a distance L2 between the emitting portion 2 and a second focal point plane 121 of the second lenses 12 satisfy formula 1 and formula 2, where m and n are natural numbers at least equal to 1, f1 is a focal distance of the first lenses 11, f2 is a focal distance of the second lenses 12, P1 is the magnitude of a pitch of the first lenses 11, and P2 is the magnitude of a pitch of the second lenses 12.
Description
本発明は、光学系装置および光学素子に関するものである。
The present invention relates to an optical system device and an optical element.
タイムオブフライト(TOF)法を用いた3次元計測センサが携帯機器、車、ロボット等に採用されようとしている。これは、光源から対象物に照射された光が反射され戻って来るまでの時間から対象物の距離を計測するものである。光源からの光が対象物の所定の領域に均一に照射されていれば、照射されている各点における距離を測定でき対象物の立体構造が検知できることになる。
Three-dimensional measurement sensors using the time-of-flight (TOF) method are being adopted for mobile devices, cars, robots, and more. This measures the distance to an object from the time it takes for light irradiated from a light source to be reflected and returned. If the light from the light source is irradiated evenly onto a specified area of the object, the distance at each irradiated point can be measured, and the three-dimensional structure of the object can be detected.
上記センサーシステムは対象物に光を照射する光照射部と対象物の各点から反射してきた光を検知するカメラ部及びカメラが受光した信号から対象物の距離を算出する演算部からなる。
The above sensor system consists of a light irradiation unit that irradiates light onto the target object, a camera unit that detects the light reflected from each point on the target object, and a calculation unit that calculates the distance to the target object from the signal received by the camera.
カメラ部と演算部は既存のCMOSイメージャとCPUを使用できるため、上記システムの独自の部分はレーザと光学フィルタからなる光照射部となる。特にマイクロレンズアレイにレーザ光を透過させることでビームを整形し、対象物に対して制御された領域での均一な照射を行う拡散フィルタは、上記システムの特徴的な部品となる。
The camera section and calculation section can use existing CMOS imagers and CPUs, so the unique part of the above system is the light irradiation section, which consists of a laser and an optical filter. In particular, the diffusion filter, which shapes the beam by passing the laser light through a microlens array and uniformly irradiates the target object over a controlled area, is a distinctive component of the above system.
ここで、従来の拡散フィルタは、マイクロレンズアレイが周期構造であるために、回折の影響で光強度のむらが生じるという問題があった。そこで、このむらを抑制するために、各レンズをランダムに配置する等の工夫が行われている(例えば、特許文献1)。
However, conventional diffusion filters have a problem in that the microlens array has a periodic structure, which causes unevenness in the light intensity due to the effects of diffraction. In order to suppress this unevenness, various measures have been taken, such as randomly arranging the lenses (for example, Patent Document 1).
一方、TOFには、遠距離測定のニーズがあり、照射光のインテンシティには、遠距離測定ができるだけの強さが必要となる。しかし、ランダムに配置したマイクロレンズアレイは照射光の均一性が高い分、インテンシティが低くなるため、遠距離測定には不向きである。
On the other hand, there is a need for long-distance measurements with TOF, and the intensity of the irradiated light must be strong enough to enable such measurements. However, randomly arranged microlens arrays have a high uniformity in the irradiated light, but the intensity is low, making them unsuitable for long-distance measurements.
そこで、電力を節減しなおかつ強い光の信号を処理できる方法としてドットパターンを照射し、この光のタイムオブフライトから3次元計測を行うことが検討されている。
As a result, research is being conducted into shining a dot pattern onto the device and performing three-dimensional measurements from the time-of-flight of this light, as a way to save power while still being able to process strong light signals.
従来、入射した光をドットパターンに変換するものとしては、Lau効果を利用した光学系装置が知られている(例えば、非特許文献1)。これは、所定ピッチPの回折格子と光源で構成されるもので、光源の光の波長をλ、nを1以上の自然数とすると、回折格子と光源の距離L0が下記式Aを満たすように配置したものである。
また、当該回折格子をマイクロレンズに置き換えたものも検討されている(例えば、特許文献2)。
Conventionally, optical devices utilizing the Lau effect have been known to convert incident light into a dot pattern (for example, Non-Patent Document 1). This is composed of a diffraction grating with a predetermined pitch P and a light source, and is arranged so that the distance L0 between the diffraction grating and the light source satisfies the following formula A, where λ is the wavelength of the light from the light source and n is a natural number of 1 or more.
Also, a device in which the diffraction grating is replaced with a microlens is under consideration (for example, Patent Document 2).
本発明者等が鋭意研究した結果、回折格子をマイクロレンズに置き換えた場合には、マイクロレンズと光源の距離L0ではなく、マイクロレンズの焦点面と光源の距離Lが下記式B
を満たすときにさらに光を強め合うことがわかった(例えば、特願2021-137560)。
As a result of intensive research by the present inventors, it has been found that when the diffraction grating is replaced with a microlens, the distance L between the focal plane of the microlens and the light source is not L 0 but is expressed by the following formula B
It has been found that when the above condition is met, the light is further strengthened (for example, Patent Application No. 2021-137560).
ここで、当該光学系装置においては、ドットパターンを円状にしたい場合には、レンズに球面レンズを使用し、非円形にしたい場合には、非球面レンズを使用している。
In this optical system device, if you want the dot pattern to be circular, you use a spherical lens, and if you want it to be non-circular, you use an aspherical lens.
しかしながら、当該光学系装置では、光学素子に非球面レンズを用いると、球面レンズを用いる場合と比較してコントラストが低下することがわかった。これは、非球面レンズの場合、当該レンズの断面形状が方向によって異なるため、それぞれの方向の断面形状による焦点距離が異なり、非球面レンズによって光が最も集中する見かけ上の焦点距離と実際の焦点距離との間にずれが生じるためである。
However, it was found that in this optical system device, when aspherical lenses are used as optical elements, contrast is reduced compared to when spherical lenses are used. This is because in the case of aspherical lenses, the cross-sectional shape of the lens differs depending on the direction, and the focal length differs depending on the cross-sectional shape in each direction, resulting in a discrepancy between the apparent focal length at which light is most concentrated by the aspherical lens and the actual focal length.
このことについて光学シミュレーションソフトBeamPROP(Synopsys社製)を用いたシミュレーションをおこなった。照射部は、波長が940nm(λ=0.94)で、図1に示すような配光の光を照射する単光源7とした。光学素子8は、図2(a)、(b)に示すように、屈折率が1.53である非球面レンズ81をピッチPが32μm(P=32)となるように周期的に正方配列したものを用いた。非球面レンズ81は、図2(c)に示すように、XY平面の平面形状の一辺の長さ32μmの正方形で、高さが21.2μmであるものを用いた。非球面レンズ81の焦点距離は50μmであるが、非球面レンズ81のXZ平面における断面形状の焦点距離f1は10μm、YZ平面における断面形状の焦点距離f2は80μmである。光学素子と光源7との距離Lδは、下記式C(n=2)とした。具体的には、光学素子8と光源7との距離を1089+δμmとした。
A simulation was performed on this matter using optical simulation software BeamPROP (manufactured by Synopsys). The irradiating part was a single light source 7 that irradiates light with a wavelength of 940 nm (λ=0.94) and a light distribution as shown in FIG. 1. As shown in FIGS. 2(a) and (b), the optical element 8 used was an aspheric lens 81 with a refractive index of 1.53 periodically arranged in a square with a pitch P of 32 μm (P=32). As shown in FIG. 2(c), the aspheric lens 81 used was a square with a side length of 32 μm in the planar shape of the XY plane and a height of 21.2 μm. The focal length of the aspheric lens 81 was 50 μm, but the focal length f 1 of the cross-sectional shape of the aspheric lens 81 in the XZ plane was 10 μm, and the focal length f 2 of the cross-sectional shape in the YZ plane was 80 μm. The distance L δ between the optical element and the light source 7 was set to the following formula C (n=2). Specifically, the distance between the optical element 8 and the light source 7 was set to 1089+δ μm.
δを10~90μmまで10μmずつ変更して光源の光を光学素子に照射したときのシミュレーションによるコントラスト比の結果を図3に示す。また、図4は、(a)δ=10μm、(b)δ=50μm、(c)δ=80μmとして、光源の光を光学素子に照射したときのシミュレーションによる投影図である。
Figure 3 shows the results of a simulation of the contrast ratio when the light from the light source is irradiated onto an optical element with δ changed from 10 to 90 μm in 10 μm increments. Figure 4 shows projection diagrams from a simulation when the light from the light source is irradiated onto an optical element with (a) δ = 10 μm, (b) δ = 50 μm, and (c) δ = 80 μm.
図4(a)に示すように、δ=10μmのときは、非球面レンズのXZ平面における断面形状の焦点面と光源の距離Lが式Bを満たすが、YZ平面における断面形状の焦点面と光源の距離Lが式Bを満たさないため、ドットがy方向に伸びた形状になる。また、図4(c)に示すように、δ=80μmのときは、非球面レンズのYZ平面における断面形状の焦点面と光源の距離Lが式Bを満たすが、XZ平面における断面形状の焦点面と光源の距離Lが式Bを満たさないため、ドットがx方向に伸びた形状になる。また、図4(b)に示すように、δ=50μmのときは、ドットが円状になるが、XZ平面における断面形状の焦点面と光源の距離LもYZ平面における断面形状の焦点面と光源の距離Lも式Bを満たさないため、図3に示すようにコントラストは、δ=10μmやδ=80μmのときと比べて低くなる。
As shown in FIG. 4(a), when δ=10 μm, the distance L between the focal plane of the cross-sectional shape of the aspheric lens in the XZ plane and the light source satisfies formula B, but the distance L between the focal plane of the cross-sectional shape of the aspheric lens in the YZ plane and the light source does not satisfy formula B, so the dots are elongated in the y direction. Also, as shown in FIG. 4(c), when δ=80 μm, the distance L between the focal plane of the cross-sectional shape of the aspheric lens in the YZ plane and the light source satisfies formula B, but the distance L between the focal plane of the cross-sectional shape of the aspheric lens in the XZ plane and the light source does not satisfy formula B, so the dots are elongated in the x direction. Also, as shown in FIG. 4(b), when δ=50 μm, the dots are circular, but neither the distance L between the focal plane of the cross-sectional shape of the aspheric lens in the XZ plane and the light source nor the distance L between the focal plane of the cross-sectional shape of the aspheric lens in the YZ plane and the light source satisfies formula B, so the contrast is lower than when δ=10 μm or δ=80 μm, as shown in FIG. 3.
このように、従来の光学系装置は、非球面レンズの方向の違いによる焦点距離の差を考慮したものではなかった。
As such, conventional optical systems do not take into account the difference in focal length caused by different orientations of aspherical lenses.
そこで本発明は、非円形のドットパターンを照射する場合であっても、コントラストの高い光を照射することができる光学系装置および光学素子を提供することを目的とする。
The present invention aims to provide an optical system device and optical element that can emit high-contrast light even when emitting a non-circular dot pattern.
上記目的を達成するために、本発明の光学系装置は、波長λの光を透過すると共に周期的に配列されたライン状の第1レンズを有する第1レンズ層と、前記第1レンズと直行する方向に配列され、波長λの光を透過すると共に周期的に配列されたライン状の第2レンズを有する第2レンズ層とを有する光学素子と、波長λの光を前記第1レンズおよび第2レンズの複数に照射する光源を有する照射部と、を具備し、m、nを1以上の自然数とし、前記第1レンズの焦点距離をf1、前記第2レンズの焦点距離をf2、前記第1レンズのピッチの大きさをP1、前記第2レンズのピッチの大きさをP2とすると、前記照射部と前記第1レンズの第1焦点面との距離L1、前記照射部と前記第2レンズの第2焦点面との距離L2が、下記式1および式2
を満たすことを特徴とする。
In order to achieve the above object, an optical system device of the present invention includes an optical element having a first lens layer having linear first lenses that transmit light of wavelength λ and are periodically arranged, and a second lens layer having linear second lenses that transmit light of wavelength λ and are periodically arranged, arranged in a direction perpendicular to the first lenses, and an irradiation unit having a light source that irradiates a plurality of the first lenses and second lenses with light of wavelength λ, wherein m and n are natural numbers of 1 or more, a focal length of the first lens is f 1 , a focal length of the second lens is f 2 , a magnitude of the pitch of the first lenses is P 1 , and a magnitude of the pitch of the second lenses is P 2 , and a distance L 1 between the irradiation unit and a first focal plane of the first lens and a distance L 2 between the irradiation unit and a second focal plane of the second lens are expressed by the following formulas 1 and 2:
The present invention is characterized in that:
この場合、前記光学素子は、前記第1焦点面と前記第2焦点面の距離が10μm以内である方がよく、更に好ましくは、前記第1焦点面と前記第2焦点面が同じ位置にある方がよい。
In this case, it is preferable that the distance between the first focal plane and the second focal plane of the optical element is within 10 μm, and it is even more preferable that the first focal plane and the second focal plane are in the same position.
また、前記光学素子は、前記第1レンズのピッチP1と前記第2レンズのピッチP2がmP1
2=nP2
2を満たす方が好ましい。
In addition, in the optical element, it is preferable that the pitch P1 of the first lens and the pitch P2 of the second lens satisfy mP12 = nP22 .
また、前記光学素子は、前記第1レンズ層と前記第2レンズ層との間に、当該第1レンズ層および当該第2レンズ層の材料より屈折率の低い中間層を具備していてもよい。
The optical element may also include an intermediate layer between the first lens layer and the second lens layer, the intermediate layer having a lower refractive index than the materials of the first lens layer and the second lens layer.
また、前記光学素子は、前記第2樹脂層の前記第1樹脂層とは反対側に基材を具備していてもよい。
The optical element may also include a substrate on the side of the second resin layer opposite the first resin layer.
また、前記照射部は、光源が正方配列であり、前記光学素子は、前記第1レンズのピッチP1と前記第2レンズのピッチP2がP1=P2を満たすようにすることができる。
The irradiation unit may have light sources arranged in a square array, and the optical element may have a pitch P1 of the first lenses and a pitch P2 of the second lenses such that P1 = P2 .
また、前記照射部は、光源が六方配列であり、前記光学素子は、前記第1レンズのピッチP1と前記第2レンズのピッチP2が2P1=√3P2又は√3P1=2P2を満たすようにすることもできる。
The irradiation unit may have light sources arranged in a hexagonal array, and the optical element may have a pitch P1 of the first lenses and a pitch P2 of the second lenses satisfying 2P1 = √3P2 or √3P1 = 2P2 .
また、距離L1およびL2が、下記式3および式4
を満たす方が好ましい。
In addition, the distances L 1 and L 2 are expressed by the following formulas 3 and 4.
It is preferable to satisfy the following.
本発明の光学系装置および光学素子は、コントラストの高い光を照射することができる。
The optical system device and optical element of the present invention can emit light with high contrast.
以下に、本発明の光学系装置について説明する。本発明の光学系装置は、図5に示すように、光学素子1と、照射部2とで主に構成される。
The optical system device of the present invention will be described below. As shown in FIG. 5, the optical system device of the present invention is mainly composed of an optical element 1 and an irradiation unit 2.
光学素子1は、図6に示すように、第1レンズ層110と、第2レンズ層120とで主に構成される。
As shown in FIG. 6, the optical element 1 is mainly composed of a first lens layer 110 and a second lens layer 120.
第1レンズ層110は、波長λの光を透過すると共に周期的に配列されたライン状の第1レンズ11を有するものである。また、第1レンズ11は、図5(a)に示すように、第2レンズ層120がない側に焦点距離f1(f1>0)離れた焦点を有するものである。
The first lens layer 110 transmits light of wavelength λ and has periodically arranged linear first lenses 11. As shown in Fig. 5(a) , the first lenses 11 have a focal point that is spaced a focal length f1 ( f1 >0) from the side where the second lens layer 120 is not present.
第2レンズ層120は、波長λの光を透過すると共に周期的に配列されたライン状の第2レンズ12を有するものである。また、第2レンズ12は、そのラインの方向が第1レンズ11のラインの方向と直行するように配列される。また、第2レンズ12は、図5(b)に示すように、第1レンズ層110側に焦点距離f2(f1>0)離れた焦点を有するものである。なお、本明細書において焦点距離とは、図5に示すように、焦点から最も近いレンズ表面と焦点の間の距離を意味する。
The second lens layer 120 has linear second lenses 12 that transmit light of wavelength λ and are periodically arranged. The second lenses 12 are arranged so that the line direction is perpendicular to the line direction of the first lenses 11. As shown in Fig. 5(b) , the second lenses 12 have a focal point that is a focal length f2 ( f1 >0) away from the focal point on the first lens layer 110 side. In this specification, the focal length means the distance between the lens surface closest to the focal point and the focal point, as shown in Fig. 5 .
第1レンズ11および第2レンズ12の形状はライン状に光を集光できればどのようなものでもよく、例えばレンチキュラー状のレンズを用いることができる。また、第1レンズ11および第2レンズ12は、ライン状に光を集光できれば、フレネルレンズやDOEレンズ、メタレンズ等を用いることも可能である。また、第1レンズ11および第2レンズ12には、照射部2からの光が反射するのを防止する反射防止膜が形成されていてもよい。
The first lens 11 and the second lens 12 may have any shape as long as they can focus light in a line shape, and for example, a lenticular lens may be used. In addition, the first lens 11 and the second lens 12 may be a Fresnel lens, a DOE lens, a metalens, or the like, as long as they can focus light in a line shape. In addition, the first lens 11 and the second lens 12 may be formed with an anti-reflection coating that prevents the light from the irradiation unit 2 from reflecting.
また、第1レンズ層110は、第1レンズ11への光の入射側の材料よりも屈折率の高い材料が用いられる。また、第2レンズ層120は、第1レンズ11への光の入射側の材料よりも屈折率の高い材料が用いられる。したがって、第1レンズ層110と第2レンズ層120を隣接して形成する場合、第1レンズ層110は、第2レンズ層120よりも屈折率の低いものを用いる必要がある。しかしながら、第1レンズ層110と空気の屈折率差が小さいと、ドットパターンを広角に広げることが難しい場合がある。このような場合には、図7に示すように、第1レンズ層110と第2レンズ層120との間に、当該第1レンズ層110および当該第2レンズ層120の材料より屈折率の低い中間層130を備えていてもよい。これにより、第1レンズ層110に、空気との屈折率差が大きい材料を用いることができるので、ドットパターンを広角に広げることができる。中間層130の材料としては樹脂を用いればよいが、空気等の気体を用いたり、真空にしたりすることも可能である。
The first lens layer 110 is made of a material having a higher refractive index than the material on the side where light enters the first lens 11. The second lens layer 120 is made of a material having a higher refractive index than the material on the side where light enters the first lens 11. Therefore, when the first lens layer 110 and the second lens layer 120 are formed adjacent to each other, the first lens layer 110 needs to have a lower refractive index than the second lens layer 120. However, if the difference in refractive index between the first lens layer 110 and the air is small, it may be difficult to expand the dot pattern to a wide angle. In such a case, as shown in FIG. 7, an intermediate layer 130 having a lower refractive index than the materials of the first lens layer 110 and the second lens layer 120 may be provided between the first lens layer 110 and the second lens layer 120. This allows the first lens layer 110 to be made of a material having a large refractive index difference from air, so that the dot pattern can be expanded to a wide angle. The intermediate layer 130 may be made of a resin, but it is also possible to use a gas such as air or to create a vacuum.
なお、光学素子1は、図6、図7に示すように、製造上の理由等により、第2樹脂層の第1樹脂層とは反対側に基材等を有していてもよい。基材は、波長λの光を透過すればどのような材質のものでもよいが、第1レンズ11および第2レンズ12の屈折率より低い材料からなる方がよい。
As shown in Figures 6 and 7, the optical element 1 may have a substrate or the like on the side of the second resin layer opposite the first resin layer for manufacturing reasons or the like. The substrate may be made of any material that transmits light of wavelength λ, but it is preferable that the substrate be made of a material that has a lower refractive index than the first lens 11 and the second lens 12.
照射部2は、図5に示すように、波長λの光を第1レンズ11および第2レンズ12の複数に照射する光源7を有するものである。波長λの光を第1レンズ11および第2レンズ12の複数に照射する光源7を有するものであればどのようなものでもよい。また、照射部2は、単光源でも複数光源でもよい。また、単光源の光を複数の細孔が形成されたアパーチャーに通すことにより複数光源としたものでもよい。照射部2を複数光源で構成する場合には、当該光源は、同一平面上に形成される方が好ましい。照射部2の具体例としては、例えば、少ない電力で高出力が見込めるVCSEL(Vertical Cavity Surface Emitting LASER)を挙げることができる。VCSELは、発光面に垂直な方向に光を照射することができる光源7を複数有するものである。また、光源7以外の部分に光吸収膜が形成されている方が反射光によるノイズが入らないため好ましい。
As shown in FIG. 5, the irradiation unit 2 has a light source 7 that irradiates the first lens 11 and the second lens 12 with light of wavelength λ. Any light source 7 that irradiates the first lens 11 and the second lens 12 with light of wavelength λ may be used. The irradiation unit 2 may be a single light source or multiple light sources. The irradiation unit 2 may be a multiple light source by passing the light of a single light source through an aperture having multiple pores. When the irradiation unit 2 is composed of multiple light sources, it is preferable that the light sources are formed on the same plane. A specific example of the irradiation unit 2 is a VCSEL (Vertical Cavity Surface Emitting LASER), which is expected to achieve high output with low power. The VCSEL has multiple light sources 7 that can irradiate light in a direction perpendicular to the light emitting surface. It is also preferable that a light absorbing film is formed on parts other than the light source 7, because noise due to reflected light is not introduced.
照射部2に複数の光源7を有する場合には、照射部2と光学素子1を相対的に平行移動しても、平面視で、光学素子1の各第1レンズ11に対する光源7および各第2レンズ12に対する光源7の数が同じになるように配置する必要がある。したがって、jを1以上の自然数とすると、照射部2は、光学素子1の第1レンズ11の周期方向に対して、光源7のピッチをjP1又はP1/jで規則的に配列すればよい。また、同様に、kを1以上の自然数とすると、照射部2は、光学素子1の第2レンズ12の周期方向に対して、光源7のピッチをkP2又はP2/kで規則的に配列すればよい。
When the irradiation unit 2 has a plurality of light sources 7, they need to be arranged so that the number of light sources 7 for each first lens 11 of the optical element 1 and the number of light sources 7 for each second lens 12 of the optical element 1 are the same in a planar view even when the irradiation unit 2 and the optical element 1 are moved in parallel relative to each other. Therefore, when j is a natural number of 1 or more, the irradiation unit 2 may arrange the light sources 7 regularly with a pitch of jP1 or P1 /j in the periodic direction of the first lenses 11 of the optical element 1. Similarly, when k is a natural number of 1 or more, the irradiation unit 2 may arrange the light sources 7 regularly with a pitch of kP2 or P2 /k in the periodic direction of the second lenses 12 of the optical element 1.
また、光学素子1は、照射部2の光源7が正方配列である場合には、第1レンズ11のピッチP1と第2レンズ12のピッチP2をP1=P2とすることができる。また、照射部2の光源7が六方配列である場合には、第1レンズ11のピッチP1と第2レンズ12のピッチP2を2P1=√3P2又は√3P1=2P2とすることができる。
Furthermore, in the optical element 1, when the light sources 7 of the irradiation unit 2 are arranged in a square array, the pitch P1 of the first lenses 11 and the pitch P2 of the second lenses 12 can be set to P1 = P2 . When the light sources 7 of the irradiation unit 2 are arranged in a hexagonal array, the pitch P1 of the first lenses 11 and the pitch P2 of the second lenses 12 can be set to 2P1 = √3P2 or √3P1 = 2P2 .
[照射部と光学素子の位置関係]
光学系装置は、図2に示すように、照射部2とレンズ11の第1焦点面111との距離L1、第2焦点面112との距離L2が、下記式αおよび式βを満たす場合に入射した光をコントラストの大きなドットパターンに変換できる。ここで、m、nを1以上の自然数、P1は第1レンズ11のピッチの大きさ、P2は第2レンズ12のピッチの大きさ、λは照射部2から入射する光の波長、f1は第1レンズ11の焦点距離、f2は第2レンズ12の焦点距離、a、b、c、dは許容される誤差を示す係数を意味する。なお、第1焦点面111とは、第1レンズ11の光軸(z方向)と垂直で、第1レンズ11の焦点位置にある平面を意味する。また、第2焦点面121とは、第2レンズ12の光軸(z方向)と垂直で、第2レンズ12の焦点位置にある平面を意味する。第1レンズ11および第2レンズ12は、第1焦点面111と第2焦点面121が平行となるように形成される。また、距離L1、L2は、光が媒質中を進むときと同時間内に真空中を進む距離(光路長)を意味し、媒質の屈折率をN、実際の距離をLとすると、それらの積NLで表される。
[Positional relationship between the irradiation unit and the optical element]
As shown in Fig. 2, the optical system device can convert the incident light into a dot pattern with high contrast when the distance L1 between the irradiation unit 2 and the first focal plane 111 of the lens 11 and the distance L2 between the irradiation unit 2 and the second focal plane 112 satisfy the following formulas α and β. Here, m and n are natural numbers of 1 or more, P1 is the pitch size of the first lens 11, P2 is the pitch size of the second lens 12, λ is the wavelength of the light incident from the irradiation unit 2, f1 is the focal length of the first lens 11, f2 is the focal length of the second lens 12, and a, b, c, and d are coefficients indicating allowable errors. The first focal plane 111 means a plane perpendicular to the optical axis (z direction) of the first lens 11 and at the focal position of the first lens 11. The second focal plane 121 means a plane perpendicular to the optical axis (z direction) of the second lens 12 and at the focal position of the second lens 12. The first lens 11 and the second lens 12 are formed so that the first focal plane 111 and the second focal plane 121 are parallel to each other. The distances L1 and L2 refer to the distance (optical path length) that light travels in a vacuum in the same time that it travels in a medium, and are expressed as the product NL, where N is the refractive index of the medium and L is the actual distance.
光学系装置は、図2に示すように、照射部2とレンズ11の第1焦点面111との距離L1、第2焦点面112との距離L2が、下記式αおよび式βを満たす場合に入射した光をコントラストの大きなドットパターンに変換できる。ここで、m、nを1以上の自然数、P1は第1レンズ11のピッチの大きさ、P2は第2レンズ12のピッチの大きさ、λは照射部2から入射する光の波長、f1は第1レンズ11の焦点距離、f2は第2レンズ12の焦点距離、a、b、c、dは許容される誤差を示す係数を意味する。なお、第1焦点面111とは、第1レンズ11の光軸(z方向)と垂直で、第1レンズ11の焦点位置にある平面を意味する。また、第2焦点面121とは、第2レンズ12の光軸(z方向)と垂直で、第2レンズ12の焦点位置にある平面を意味する。第1レンズ11および第2レンズ12は、第1焦点面111と第2焦点面121が平行となるように形成される。また、距離L1、L2は、光が媒質中を進むときと同時間内に真空中を進む距離(光路長)を意味し、媒質の屈折率をN、実際の距離をLとすると、それらの積NLで表される。
As shown in Fig. 2, the optical system device can convert the incident light into a dot pattern with high contrast when the distance L1 between the irradiation unit 2 and the first focal plane 111 of the lens 11 and the distance L2 between the irradiation unit 2 and the second focal plane 112 satisfy the following formulas α and β. Here, m and n are natural numbers of 1 or more, P1 is the pitch size of the first lens 11, P2 is the pitch size of the second lens 12, λ is the wavelength of the light incident from the irradiation unit 2, f1 is the focal length of the first lens 11, f2 is the focal length of the second lens 12, and a, b, c, and d are coefficients indicating allowable errors. The first focal plane 111 means a plane perpendicular to the optical axis (z direction) of the first lens 11 and at the focal position of the first lens 11. The second focal plane 121 means a plane perpendicular to the optical axis (z direction) of the second lens 12 and at the focal position of the second lens 12. The first lens 11 and the second lens 12 are formed so that the first focal plane 111 and the second focal plane 121 are parallel to each other. The distances L1 and L2 refer to the distance (optical path length) that light travels in a vacuum in the same time that it travels in a medium, and are expressed as the product NL, where N is the refractive index of the medium and L is the actual distance.
ここで式αの係数aはa=1、a=0.5、a=0.3、a=0.1と小さい程好ましい。また、係数bもb=1、b=0.5、b=0.3、b=0.1と小さい程好ましい。また、式βの係数cはc=1、c=0.5、c=0.3、c=0.1と小さい程好ましい。また、係数dもd=1、d=0.5、d=0.3、d=0.1と小さい程好ましい。式α、式βの係数が、a=b=c=d=1の場合、式α、式βはそれぞれ下記式1、式2となる。
を満たすように設計される。
Here, the smaller the coefficient a in formula α is, the more preferable it is, a=1, a=0.5, a=0.3, a=0.1. The smaller the coefficient b is, the more preferable it is, b=1, b=0.5, b=0.3, b=0.1. The smaller the coefficient c in formula β is, the more preferable it is, c=1, c=0.5, c=0.3, c=0.1. The smaller the coefficient d is, the more preferable it is, d=1, d=0.5, d=0.3, d=0.1. When the coefficients of formula α and formula β are a=b=c=d=1, formula α and formula β become formula 1 and formula 2 below, respectively.
It is designed to satisfy.
より好ましくは、距離L1およびL2が、下記式3および式4
を満たす方がよい。
More preferably, the distances L 1 and L 2 are expressed by the following formulas 3 and 4:
It is better to satisfy.
また、光学素子1は、第1焦点面111と第2焦点面121の距離が10μm以内である方が、式1および式2又は式3および式4を同時に満たし易くなるため好ましい。また、より好ましくは、第1焦点面111と第2焦点面121が同じ位置にある方がよい。
In addition, it is preferable that the distance between the first focal plane 111 and the second focal plane 121 of the optical element 1 is within 10 μm, since this makes it easier to simultaneously satisfy formulas 1 and 2 or formulas 3 and 4. It is also more preferable that the first focal plane 111 and the second focal plane 121 are in the same position.
また、第1焦点面111と第2焦点面121の距離が10μm以内である場合、光学素子1は、第1レンズ11のピッチP1と第2レンズ12のピッチP2がmP1
2=nP2
2を満たす方が好ましい。
Furthermore, when the distance between the first focal plane 111 and the second focal plane 121 is within 10 μm, it is preferable that in the optical element 1, the pitch P 1 of the first lenses 11 and the pitch P 2 of the second lenses 12 satisfy mP 1 2 =nP 2 2 .
[シミュレーション]
次に、第1レンズ11の第1焦点面111と第2レンズ12の第2焦点面121が同じ位置にある光学素子1を用い、照射部2と光学素子1の第1焦点面111との距離L1および第2焦点面121との距離L2が下記式3および式4を満たす場合について、遠方界における光強度分布をシミュレーションした。シミュレーションには、光学シミュレーションソフトBeamPROP(Synopsys社製)を用いた。
[simulation]
Next, using the optical element 1 in which the first focal plane 111 of the first lens 11 and the second focal plane 121 of the second lens 12 are located at the same position, a simulation was performed on the light intensity distribution in the far field in the case where the distance L1 between the irradiation unit 2 and the first focal plane 111 of the optical element 1 and the distance L2 between the irradiation unit 2 and the second focal plane 121 satisfy the following formulas 3 and 4. The simulation was performed using optical simulation software BeamPROP (manufactured by Synopsys).
次に、第1レンズ11の第1焦点面111と第2レンズ12の第2焦点面121が同じ位置にある光学素子1を用い、照射部2と光学素子1の第1焦点面111との距離L1および第2焦点面121との距離L2が下記式3および式4を満たす場合について、遠方界における光強度分布をシミュレーションした。シミュレーションには、光学シミュレーションソフトBeamPROP(Synopsys社製)を用いた。
Next, using the optical element 1 in which the first focal plane 111 of the first lens 11 and the second focal plane 121 of the second lens 12 are located at the same position, a simulation was performed on the light intensity distribution in the far field in the case where the distance L1 between the irradiation unit 2 and the first focal plane 111 of the optical element 1 and the distance L2 between the irradiation unit 2 and the second focal plane 121 satisfy the following formulas 3 and 4. The simulation was performed using optical simulation software BeamPROP (manufactured by Synopsys).
照射部2は、波長が940nm(λ=0.94)で、図1に示すような配光の光を照射する単光源とした。光学素子1は、波長λの光を透過するもので、図8(a)、(b)に示すように、中間層130を挟んで、ライン状の第1レンズ11を有する第1レンズ層110と、第1レンズ11のラインの方向(Y方向)と直行する方向(X方向)に配列されたライン状の第2レンズ12を有する第2レンズ層120とを有するものを用いた。第1レンズ11としては、図8(c)に示すように、屈折率が1.53、焦点距離f1が5μmであり、ピッチP1が32μm(P1=32)となるように周期的に配列されたものを用いた。また、第2レンズ12としては、図8(d)に示すように、屈折率が1.53、焦点距離f2が70μmであり、ピッチP2が32μm(P2=32)となるように周期的に配列されたものを用いた。また、中間層130は、屈折率が1.42とした。
The irradiating unit 2 was a single light source that irradiated light with a wavelength of 940 nm (λ=0.94) and a light distribution as shown in FIG. 1. The optical element 1 transmits light with a wavelength λ, and has a first lens layer 110 having a linear first lens 11 and a second lens layer 120 having linear second lenses 12 arranged in a direction (X direction) perpendicular to the line direction (Y direction) of the first lens 11, with an intermediate layer 130 sandwiched therebetween, as shown in FIG. 8(a) and (b). As the first lens 11, as shown in FIG. 8(c), a lens having a refractive index of 1.53, a focal length f 1 of 5 μm, and a periodic arrangement such that the pitch P 1 was 32 μm (P 1 =32) was used. As the second lens 12, as shown in FIG. 8(d), a lens having a refractive index of 1.53, a focal length f 2 of 70 μm, and a periodic arrangement such that the pitch P 2 was 32 μm (P 2 =32) was used. The intermediate layer 130 has a refractive index of 1.42.
図9にシミュレーションの結果である投影図を示す。図8に示すように、ドットは非常にシャープな円状になった。また、コントラストは123.2であったことから、従来のものよりもコントラストをかなり向上できることがわかった。
Figure 9 shows the projection diagram resulting from the simulation. As shown in Figure 8, the dots became very sharp and circular. In addition, the contrast was 123.2, which shows that the contrast can be improved significantly compared to conventional methods.
[光学素子製造方法]
光学素子1の製造方法について説明する。光学素子1の第1レンズ11および第2レンズ12は、どのように製造してもよいが、例えば、インプリント法を用いて製造することができる。 [Optical element manufacturing method]
The following describes a method for manufacturing the optical element 1. The first lens 11 and the second lens 12 of the optical element 1 may be manufactured in any manner, but may be manufactured, for example, by using an imprint method.
光学素子1の製造方法について説明する。光学素子1の第1レンズ11および第2レンズ12は、どのように製造してもよいが、例えば、インプリント法を用いて製造することができる。 [Optical element manufacturing method]
The following describes a method for manufacturing the optical element 1. The first lens 11 and the second lens 12 of the optical element 1 may be manufactured in any manner, but may be manufactured, for example, by using an imprint method.
具体的には、まず、インプリント法等の周知の技術を用いて、基板9上に第2レンズ12を形成する(第2レンズ形成工程)。例えば、図10(a)、図11(a)に示すように、スピンコータ等の周知の方法によって、基板9上に第2レンズ12の材料120aを所定の膜厚で塗布する(第1塗布工程)。材料120aとしては、波長λの光を透過する第2レンズ12を形成できればどのようなものでもよく、例えば光硬化性のポリジメチルシロキサン(PDMS)を用いることができる。次に、図10(b)、図11(b)に示すように、第2レンズ12の形状を反転させた形状の第2レンズパターンを有する第2モールド52を用意し、塗布した第2レンズ12の材料に加圧して第2レンズパターンを転写する(第1転写工程)。また、UVライト等を照射して、塗布したパターンを硬化させる(第1硬化工程)。次に、図10(c)、図11(c)に示すように、第2モールド52を離型して、基板9上に第2レンズ12を形成する。
Specifically, first, the second lens 12 is formed on the substrate 9 using a known technique such as an imprint method (second lens formation step). For example, as shown in FIG. 10(a) and FIG. 11(a), the material 120a of the second lens 12 is applied to the substrate 9 with a predetermined thickness by a known method such as a spin coater (first application step). Any material 120a may be used as long as it can form the second lens 12 that transmits light of wavelength λ, and for example, photocurable polydimethylsiloxane (PDMS) can be used. Next, as shown in FIG. 10(b) and FIG. 11(b), a second mold 52 having a second lens pattern that is an inverted shape of the second lens 12 is prepared, and the applied material of the second lens 12 is pressed to transfer the second lens pattern (first transfer step). In addition, the applied pattern is cured by irradiating UV light or the like (first curing step). Next, as shown in Figures 10(c) and 11(c), the second mold 52 is released to form the second lens 12 on the substrate 9.
次に、インプリント法等の周知の技術を用いて、第2レンズ12の上に第1レンズ11を形成する(第1レンズ形成工程)。例えば、図10(e)に示すように、スピンコータ等の周知の方法によって、第2レンズ12上に第1レンズ11の材料110aを所定の膜厚で塗布する(第2塗布工程)。材料110aとしては、波長λの光を透過する第1レンズ11を形成できればどのようなものでもよく、例えば光硬化性のポリジメチルシロキサン(PDMS)を用いることができる。次に、図10(f)に示すように、第1レンズ11の形状を反転させた形状の第1レンズパターンを有する第1モールド51を用意し、塗布した第1レンズ11の材料に加圧して第1レンズパターンを転写する(第2転写工程)。また、UVライト等を照射して、塗布したパターンを硬化させる(第2硬化工程)。次に、図10(g)に示すように、第1モールド51を離型して、第2レンズ12上に第1レンズ11を形成することができる。
Next, the first lens 11 is formed on the second lens 12 using a known technique such as an imprint method (first lens formation process). For example, as shown in FIG. 10(e), a material 110a of the first lens 11 is applied to a predetermined thickness on the second lens 12 by a known method such as a spin coater (second application process). Any material 110a may be used as long as it can form the first lens 11 that transmits light of wavelength λ, and photocurable polydimethylsiloxane (PDMS) can be used, for example. Next, as shown in FIG. 10(f), a first mold 51 having a first lens pattern that is an inverted shape of the first lens 11 is prepared, and the applied material of the first lens 11 is pressed to transfer the first lens pattern (second transfer process). In addition, the applied pattern is cured by irradiating UV light or the like (second curing process). Next, as shown in FIG. 10(g), the first mold 51 is released, and the first lens 11 can be formed on the second lens 12.
なお、第2レンズ12上に中間層130等を形成し、その上に第1レンズ11を形成することも可能である。この場合は、図11(d)に示すように、スピンコータ等の周知の方法によって、第2レンズ12上に中間層130の材料130aを所定の膜厚で塗布する(中間層塗布工程)。また、UVライト等を照射して材料130aを硬化させ、中間層130を形成する(中間層硬化工程)。
It is also possible to form an intermediate layer 130 or the like on the second lens 12, and then form the first lens 11 on top of that. In this case, as shown in FIG. 11(d), a material 130a for the intermediate layer 130 is applied to a predetermined thickness on the second lens 12 by a well-known method such as a spin coater (intermediate layer application process). The material 130a is then hardened by irradiation with UV light or the like to form the intermediate layer 130 (intermediate layer hardening process).
その後、インプリント法等の周知の技術を用いて、中間層130の上に第1レンズ11を形成する(第1レンズ形成工程)。例えば、図11(e)に示すように、スピンコータ等の周知の方法によって、中間層130上に第1レンズ11の材料を所定の膜厚で塗布する(第2塗布工程)。材料としては、波長λの光を透過する第1レンズ11を形成できればどのようなものでもよく、例えば光硬化性のポリジメチルシロキサン(PDMS)を用いることができる。次に、図11(f)に示すように、第1レンズ11の形状を反転させた形状の第1レンズパターンを有する第1モールド51を用意し、図11(g)に示すように、塗布した第1レンズ11の材料に加圧して第1レンズパターンを転写する(第2転写工程)。また、UVライト等を照射して、塗布したパターンを硬化させる(第2硬化工程)。次に、図11(h)に示すように、第1モールド51を離型して、第2レンズ12上に第1レンズ11を形成することができる。
Then, the first lens 11 is formed on the intermediate layer 130 using a known technique such as an imprinting method (first lens forming step). For example, as shown in FIG. 11(e), the material of the first lens 11 is applied to a predetermined thickness on the intermediate layer 130 by a known method such as a spin coater (second application step). Any material may be used as long as it can form the first lens 11 that transmits light of wavelength λ, and photocurable polydimethylsiloxane (PDMS) can be used, for example. Next, as shown in FIG. 11(f), a first mold 51 having a first lens pattern that is an inverted shape of the first lens 11 is prepared, and as shown in FIG. 11(g), pressure is applied to the applied material of the first lens 11 to transfer the first lens pattern (second transfer step). Also, UV light or the like is irradiated to harden the applied pattern (second hardening step). Next, as shown in FIG. 11(h), the first mold 51 is released, and the first lens 11 can be formed on the second lens 12.
なお、第1レンズ11および第2レンズ12は、第1レンズ11の焦点面111と第2レンズ12の焦点面121の距離が10μm以内、更に好ましくは同じ位置となるように形成する方がこのましい。
It is preferable that the first lens 11 and the second lens 12 are formed so that the distance between the focal plane 111 of the first lens 11 and the focal plane 121 of the second lens 12 is within 10 μm, and more preferably, they are in the same position.
1 光学素子
2 照射部
7 光源
9 基板
11 第1レンズ
12 第2レンズ
51 第1モールド
52 第2モールド
110 第1樹脂層
111 第1焦点面
120 第2樹脂層
121 第2焦点面
130 第3樹脂層 REFERENCE SIGNS LIST 1 optical element 2 irradiating unit 7 light source 9 substrate 11 first lens 12 second lens 51 first mold 52 second mold 110 first resin layer 111 first focal surface 120 second resin layer 121 second focal surface 130 third resin layer
2 照射部
7 光源
9 基板
11 第1レンズ
12 第2レンズ
51 第1モールド
52 第2モールド
110 第1樹脂層
111 第1焦点面
120 第2樹脂層
121 第2焦点面
130 第3樹脂層 REFERENCE SIGNS LIST 1 optical element 2 irradiating unit 7 light source 9 substrate 11 first lens 12 second lens 51 first mold 52 second mold 110 first resin layer 111 first focal surface 120 second resin layer 121 second focal surface 130 third resin layer
Claims (14)
- 波長λの光を透過すると共に周期的に配列されたライン状の第1レンズを有する第1レンズ層と、前記第1レンズと直行する方向に配列され、波長λの光を透過すると共に周期的に配列されたライン状の第2レンズを有する第2レンズ層とを有する光学素子と、
波長λの光を前記第1レンズおよび第2レンズの複数に照射する光源を有する照射部と、
を具備し、
m、nを1以上の自然数とし、前記第1レンズの焦点距離をf1、前記第2レンズの焦点距離をf2、前記第1レンズのピッチの大きさをP1、前記第2レンズのピッチの大きさをP2とすると、前記照射部と前記第1レンズの第1焦点面との距離L1、前記照射部と前記第2レンズの第2焦点面との距離L2が、下記式1および式2
an irradiation unit having a light source that irradiates light of a wavelength λ onto the first lens and the second lens;
Equipped with
Let m and n be natural numbers of 1 or more, the focal length of the first lens be f 1 , the focal length of the second lens be f 2 , the magnitude of the pitch of the first lens be P 1 , and the magnitude of the pitch of the second lens be P 2 , then the distance L 1 between the irradiation unit and the first focal plane of the first lens and the distance L 2 between the irradiation unit and the second focal plane of the second lens are expressed by the following formulas 1 and 2:
- 前記光学素子は、前記第1焦点面と前記第2焦点面の距離が10μm以内であることを特徴とする請求項1記載の光学系装置。 The optical system device according to claim 1, characterized in that the distance between the first focal plane and the second focal plane of the optical element is within 10 μm.
- 前記光学素子は、前記第1レンズのピッチP1と前記第2レンズのピッチP2がmP1 2=nP2 2を満たすことを特徴とする請求項1又は2記載の光学系装置。 3. The optical system apparatus according to claim 1 , wherein in the optical element, the pitch P1 of the first lens and the pitch P2 of the second lens satisfy mP12 = nP22 .
- 前記光学素子は、前記第1レンズ層と前記第2レンズ層との間に、当該第1レンズ層および当該第2レンズ層の材料より屈折率の低い中間層を具備することを特徴とする請求項1又は2記載の光学系装置。 The optical system device according to claim 1 or 2, characterized in that the optical element has an intermediate layer between the first lens layer and the second lens layer, the intermediate layer having a lower refractive index than the materials of the first lens layer and the second lens layer.
- 前記光学素子は、前記第1焦点面と前記第2焦点面が同じ位置にあることを特徴とする請求項1又は2記載の光学系装置。 The optical system device according to claim 1 or 2, characterized in that the first focal plane and the second focal plane of the optical element are located at the same position.
- 前記照射部は、光源が正方配列であり、
前記光学素子は、前記第1レンズのピッチP1と前記第2レンズのピッチP2がP1=P2を満たすことを特徴とする請求項1又は2記載の光学系装置。 The illumination unit has light sources arranged in a square array,
3. The optical system apparatus according to claim 1, wherein in the optical element, a pitch P1 of the first lens and a pitch P2 of the second lens satisfy P1 = P2 . - 前記照射部は、光源が六方配列であり、
前記光学素子は、前記第1レンズのピッチP1と前記第2レンズのピッチP2が2P1=√3P2又は√3P1=2P2を満たすことを特徴とする請求項1又は2記載の光学系装置。 The illumination unit has light sources arranged in a hexagonal array,
3. The optical system device according to claim 1, wherein in the optical element, a pitch P1 of the first lens and a pitch P2 of the second lens satisfy 2P1 = √3P2 or √3P1 = 2P2 . - 前記光学素子は、前記第2樹脂層の前記第1樹脂層とは反対側に基材を具備することを特徴とする請求項1又は2記載の光学系装置。 The optical system device according to claim 1 or 2, characterized in that the optical element has a substrate on the side of the second resin layer opposite the first resin layer.
- 波長λの光を透過すると共に周期的に配列されたライン状の第1レンズを有する第1レンズ層と、
前記第1レンズと直行する方向に配列され、波長λの光を透過すると共に周期的に配列されたライン状の第2レンズを有する第2レンズ層と、
を具備し、
前記第1レンズの第1焦点面と前記第2レンズの第2焦点面の距離が10μm以内であることを特徴とする光学素子。 a first lens layer that transmits light of wavelength λ and has linear first lenses that are periodically arranged;
a second lens layer including second lenses arranged in a direction perpendicular to the first lenses, the second lenses transmitting light of wavelength λ, and arranged periodically;
Equipped with
An optical element, characterized in that a distance between a first focal plane of the first lens and a second focal plane of the second lens is within 10 μm. - m、nを1以上の自然数とし、前記第1レンズのピッチの大きさをP1、前記第2レンズのピッチの大きさをP2とすると、mP1 2=nP2 2を満たすことを特徴とする請求項10記載の光学素子。 The optical element according to claim 10 , wherein m and n are natural numbers of 1 or more, a pitch of the first lens is P1 , and a pitch of the second lens is P2 , mP12 = nP22 is satisfied.
- 前記第1レンズ層と前記第2レンズ層との間に、当該第1レンズ層および当該第2レンズ層の材料より屈折率の低い中間層を具備することを特徴とする請求項10又は11記載の光学素子。 The optical element according to claim 10 or 11, characterized in that an intermediate layer having a lower refractive index than the materials of the first lens layer and the second lens layer is provided between the first lens layer and the second lens layer.
- 前記第1焦点面と前記第2焦点面が同じ位置にあることを特徴とする請求項10又は11記載の光学素子。 The optical element according to claim 10 or 11, characterized in that the first focal plane and the second focal plane are located at the same position.
- 前記第2樹脂層の前記第1樹脂層とは反対側に基材を具備することを特徴とする請求項10又は11記載の光学素子。 The optical element according to claim 10 or 11, characterized in that the second resin layer is provided with a substrate on the opposite side to the first resin layer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-182910 | 2022-11-15 | ||
JP2022182910 | 2022-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024106359A1 true WO2024106359A1 (en) | 2024-05-23 |
Family
ID=91084668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/040683 WO2024106359A1 (en) | 2022-11-15 | 2023-11-13 | Optical system device, and optical element |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024106359A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008014929A (en) * | 2006-06-07 | 2008-01-24 | Honda Motor Co Ltd | Optical device and moving device |
WO2015163270A1 (en) * | 2014-04-21 | 2015-10-29 | シャープ株式会社 | Transmission-type screen and headup display |
US9247215B1 (en) * | 2005-04-22 | 2016-01-26 | Custom Manufacturing & Engineering, Inc. | Laser sensor system |
WO2017131585A1 (en) * | 2016-01-26 | 2017-08-03 | Heptagon Micro Optics Pte. Ltd. | Multi-mode illumination module and related method |
WO2019031443A1 (en) * | 2017-08-09 | 2019-02-14 | 株式会社デンソー | Stereoscopic display device |
-
2023
- 2023-11-13 WO PCT/JP2023/040683 patent/WO2024106359A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9247215B1 (en) * | 2005-04-22 | 2016-01-26 | Custom Manufacturing & Engineering, Inc. | Laser sensor system |
JP2008014929A (en) * | 2006-06-07 | 2008-01-24 | Honda Motor Co Ltd | Optical device and moving device |
WO2015163270A1 (en) * | 2014-04-21 | 2015-10-29 | シャープ株式会社 | Transmission-type screen and headup display |
WO2017131585A1 (en) * | 2016-01-26 | 2017-08-03 | Heptagon Micro Optics Pte. Ltd. | Multi-mode illumination module and related method |
WO2019031443A1 (en) * | 2017-08-09 | 2019-02-14 | 株式会社デンソー | Stereoscopic display device |
Non-Patent Citations (1)
Title |
---|
MORINAGA, MIZUKI; GU, X.; SHIMURA, K.; MATSUTANI, A.; KOYAMA, F.: "12p-W611-4 Dot Projection based on VCSEL Amplifier for 3D Sensing", LECTURE PREPRINTS OF THE 66TH JSAP SPRING MEETING, 2019; 2019.03.09-12, JAPAN SOCIETY OF APPLIED PHYSICS, JP, vol. 66, 25 February 2019 (2019-02-25), JP , pages 03 - 648, XP009555424, ISBN: 978-4-86348-706-2, DOI: 10.11470/jsapmeeting.2019.1.0_1120 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6778179B2 (en) | Light diffuser | |
KR102136021B1 (en) | Diffuser and projection projector units | |
WO2021229848A1 (en) | Optical device and optical element manufacturing method | |
JP6884515B2 (en) | Position detection method, imprinting device and article manufacturing method | |
WO2016051766A1 (en) | Diffusing plate and method for producing diffusing plate | |
US20060126185A1 (en) | Microlens array sheet and method for manufacturing the same | |
KR20170125955A (en) | Diffusion plate | |
CN111699417B (en) | Optical system | |
US10754078B2 (en) | Light source, a shaping system using the light source and an article manufacturing method | |
WO2020153319A1 (en) | Diffusion plate | |
WO2024106359A1 (en) | Optical system device, and optical element | |
WO2023090435A1 (en) | Optical system device and method for manufacturing optical element | |
WO2024143433A1 (en) | Optical system device | |
CN216387438U (en) | Combined micro-lens array light uniformizing structure and lens and equipment provided with same | |
JP2020106771A (en) | Diffraction optical element and optical system device using the same | |
US11892154B2 (en) | Illumination device | |
KR101317365B1 (en) | Method of manufacturing microlens | |
WO2023026987A1 (en) | Optical system device | |
CN111730792B (en) | Integrally-formed resin light homogenizing element and manufacturing method thereof | |
WO2024143498A1 (en) | Optical system device | |
CN214704191U (en) | Optical system for optical modeling apparatus | |
WO2024029616A1 (en) | Optical element, optical system device, and optical system device manufacturing method | |
JP5359624B2 (en) | Method and apparatus for manufacturing diffractive optical element | |
WO2022138725A1 (en) | Diffusion plate, light-emitting device, and sensor module | |
TWI856236B (en) | An illumination system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23891506 Country of ref document: EP Kind code of ref document: A1 |