WO2024106234A1 - Resin powder, three-dimensional molded article, and method for producing three-dimensional molded article - Google Patents

Resin powder, three-dimensional molded article, and method for producing three-dimensional molded article Download PDF

Info

Publication number
WO2024106234A1
WO2024106234A1 PCT/JP2023/039749 JP2023039749W WO2024106234A1 WO 2024106234 A1 WO2024106234 A1 WO 2024106234A1 JP 2023039749 W JP2023039749 W JP 2023039749W WO 2024106234 A1 WO2024106234 A1 WO 2024106234A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
resin powder
mass
powder
ethylene
Prior art date
Application number
PCT/JP2023/039749
Other languages
French (fr)
Japanese (ja)
Inventor
勇佑 依田
勝彦 岡本
和人 杉山
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2024106234A1 publication Critical patent/WO2024106234A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene

Definitions

  • This disclosure relates to resin powder, three-dimensional molded objects, and methods for manufacturing three-dimensional molded objects.
  • thermoplastic resins include the Material Extrusion method (MEX) and Powder Bed Fusion (PBF) using powder materials.
  • MEX Material Extrusion method
  • PBF Powder Bed Fusion
  • Polyamide 12 is used for the particles contained in the above powder material because it is easier to handle with a wider difference between its melting point (Tm) and crystallization temperature (Tc) and because of its laser absorption properties.
  • polypropylene resin is also attracting attention because of its wider difference between its melting point (Tm) and crystallization temperature (Tc) and its wide range of applications.
  • Patent Document 1 a resin powder for three-dimensional modeling containing ethylene-propylene copolymer particles, which has good tensile strength and excellent elongation at break, and a method for producing a three-dimensional object by the PBF method using the resin powder for three-dimensional modeling have been proposed (see Patent Document 1).
  • the resin powder for three-dimensional modeling in Patent Document 1 does not have sufficient mechanical properties such as bending elasticity, or impact strength at low temperatures, and there is room for improvement before it can be used in applications that require mechanical properties and low-temperature impact resistance, such as automobile parts.
  • the present disclosure has been made in consideration of the above, and aims to provide a resin powder having excellent mechanical properties and low-temperature impact properties, a three-dimensional molded product molded using the resin powder, and a method for manufacturing a three-dimensional molded product using the resin composition.
  • Means for solving the above problems include the following embodiments.
  • the tensile modulus is 1500 MPa to 3000 MPa.
  • the Charpy impact strength measured at -30 ° C is 2.0 kJ / m2 or more.
  • the heat distortion temperature (HDT) measured in accordance with JIS K7191 is 105°C or higher.
  • the resin powder is a mixture containing the propylene-based polymer powder, a thermoplastic elastomer, and a filler, per 100 parts by mass in total of the propylene-based polymer powder, the thermoplastic elastomer, and the filler,
  • the content of the propylene-based polymer powder is 30 parts by mass to 90 parts by mass
  • the content of the thermoplastic elastomer is 1 part by mass to 40 parts by mass
  • the melting point (Tm) of the resin powder measured by DSC is 150° C. to 170° C.
  • Tm melting point
  • the melt flow rate (MFR) of the propylene polymer measured in accordance with ASTM D1238 at 230° C. under a load of 2.16 kg is 0.05 g/10 min to 150 g/10 min.
  • the propylene-based block copolymer is composed of 5% by mass to 35% by mass of a 23° C. n-decane soluble portion (D sol ) and 65% by mass to 95% by mass of a 23° C. n-decane insoluble portion (D insol ) (wherein the total amount of D sol and D insol is 100% by mass).
  • the intrinsic viscosity [ ⁇ ] of D sol is 1.0 dl/g to 10.0 dl/g.
  • D sol is mainly composed of a copolymer of propylene and one or more olefins selected from ethylene and ⁇ -olefins having 4 to 20 carbon atoms, and the content of olefins other than propylene in D sol is 10 mol % to 60 mol %.
  • ⁇ 8> The resin powder according to any one of ⁇ 1> to ⁇ 7>, wherein the propylene-based polymer is a propylene-based block copolymer, the propylene-based block copolymer contains structural units derived from one or more olefins selected from ethylene and ⁇ -olefins having 4 to 20 carbon atoms, and a total content of the olefins other than propylene is 4.0 mol % to 30 mol %.
  • ⁇ 9> The resin powder according to any one of ⁇ 1> to ⁇ 8>, wherein the resin powder contains a thermoplastic elastomer, and the thermoplastic elastomer satisfies the following [9] to [11].
  • the melt flow rate (MFR) measured in accordance with ASTM D1238 at 190° C. under a load of 2.16 kg is 0.05 g/10 min to 100 g/10 min.
  • the glass transition temperature (Tg) measured by DSC is ⁇ 30° C. or lower.
  • the tensile modulus is less than 500 MPa.
  • the resin powder according to any one of ⁇ 1> to ⁇ 9> which is used for three-dimensional molding.
  • a method for producing a three-dimensional molded article comprising the steps of: producing a three-dimensional molded article by a powder bed fusion method using the resin powder according to any one of ⁇ 1> to ⁇ 9>.
  • the present disclosure provides a resin powder having excellent mechanical properties and low-temperature impact properties, a three-dimensional molded product molded using the resin powder, and a method for producing a three-dimensional molded product using the resin composition.
  • a numerical range indicated using “to” indicates a range that includes the numerical values before and after "to” as the minimum and maximum values, respectively.
  • the upper or lower limit value described in a certain numerical range may be replaced with the upper or lower limit value of another numerical range described in the present disclosure.
  • the upper or lower limit value described in a certain numerical range may be replaced with a value shown in the examples.
  • the amount of each component means the total amount of the plurality of substances contained in the resin powder or the like, unless otherwise specified.
  • combinations of two or more preferred aspects are more preferred aspects.
  • the physical properties described in the description of the embodiment of the invention can be measured by the methods described in the examples section.
  • the resin powder of the present disclosure contains a propylene-based polymer powder, and when the resin powder is molded into a molded article, the following [1] and [2] are satisfied.
  • the tensile modulus is 1500 MPa to 3000 MPa.
  • the Charpy impact strength measured at -30 ° C is 2.0 kJ / m2 or more.
  • the resin powder of the present disclosure and a three-dimensional molded product obtained using the same are excellent in mechanical properties and low-temperature impact resistance.
  • the resin powder of the present disclosure is excellent in mechanical properties and low-temperature impact resistance, and is suitable for use in three-dimensional molding, and is more suitable for use in three-dimensional molding by powder bed fusion bonding.
  • the resin powder of the present disclosure has a tensile modulus of elasticity of 1500 MPa to 3000 MPa when molded into a product, preferably 1600 MPa to 3000 MPa, and more preferably 1800 MPa to 2800 MPa. Since the resin powder of the present disclosure has a tensile modulus of elasticity of 1500 MPa or more when molded into a product, it can be suitably used for applications requiring mechanical properties such as automobile parts.
  • the resin powder of the present disclosure when molded, has a Charpy impact strength at ⁇ 30° C. of 2.0 kJ/m 2 or more, preferably 2.0 kJ/m 2 to 10 kJ/m 2 , and more preferably 3.0 kJ/m 2 to 8 kJ/m 2. Since the resin powder of the present disclosure has a Charpy impact strength at ⁇ 30° C. of 2.0 kJ/m 2 or more when molded, it can be suitably used for applications requiring low-temperature impact properties, such as automobile parts.
  • the resin powder of the present disclosure preferably has a melting point measured by DSC of 150°C to 170°C, more preferably 155°C to 168°C, and even more preferably 157°C to 165°C.
  • a melting point measured by DSC of 150°C to 170°C, more preferably 155°C to 168°C, and even more preferably 157°C to 165°C.
  • the resin powder disclosed herein preferably has a heat distortion temperature (HDT) measured in accordance with JIS K7191 when molded into a molded product of 105°C or higher, more preferably 110°C to 150°C, and even more preferably 115°C to 140°C.
  • HDT heat distortion temperature
  • the resin powder includes a propylene-based polymer powder.
  • the propylene-based polymer powder include a propylene homopolymer, a propylene random copolymer including a structural unit derived from propylene and a structural unit derived from an olefin monomer other than propylene, and a propylene block copolymer.
  • the resin powder may include only one type of propylene-based polymer powder, or may include two or more types of propylene-based polymer powder.
  • the propylene copolymer may be a block copolymer, a random copolymer, or a graft copolymer. From the viewpoint of the heat resistance, mechanical properties, and low-temperature impact properties of the resin powder, it is preferably a propylene homopolymer or a block copolymer. From the viewpoint of the heat resistance of the resin powder, it is preferable that the melting point (Tm) measured by DSC is 150°C to 170°C, more preferably 155°C to 170°C, and even more preferably 155°C to 169°C. Furthermore, from the viewpoint of the heat resistance, mechanical properties, and low-temperature impact properties of the resin powder, it is preferable that the propylene-based polymer powder is a propylene homopolymer or a propylene-based block copolymer.
  • the stereoregularity of the propylene-based polymer powder where propylene-derived structural units are repeatedly bonded may be either an isotactic structure or a syndiotactic structure, and from the viewpoint of the rigidity and heat resistance of the resin powder, an isotactic structure is preferable.
  • Propylene-based block copolymers are composed of a skeleton derived from propylene as the essential skeleton, and skeletons derived from ethylene and one or more olefins selected from ⁇ -olefins having 4 to 20 carbon atoms.
  • Examples of ⁇ -olefins having 4 to 20 carbon atoms include 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, and 4-methyl-1-hexene.
  • the propylene-based block copolymer contains structural units derived from one or more olefins selected from ethylene and ⁇ -olefins having 4 to 20 carbon atoms, and the total content of the olefins other than propylene is preferably 0.5 mol% to 30 mol%, more preferably 4.0 mol% to 30 mol%, even more preferably 4.5 mol% to 25 mol%, and particularly preferably 5 mol% to 20 mol%, from the viewpoint of the mechanical properties and low-temperature impact properties of the resin powder.
  • the average powder particle size (R) of the resin powder is preferably 1 ⁇ m to 200 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m, and even more preferably 10 ⁇ m to 180 ⁇ m, from the viewpoint of suitable use in three-dimensional molding by powder bed fusion bonding.
  • the average powder particle size of the resin powder can be adjusted, for example, by subjecting particles whose particle size has been controlled by polymerization or particles containing a prepared propylene-based polymer to a grinding process such as mechanical grinding or wet grinding, a particle spheronization process, classification, etc.
  • Methods for measuring particle size include the Coulter counter method, laser diffraction method, light scattering method, and ultrasonic spectroscopy.
  • the melt flow rate of the propylene-based polymer measured at 230° C. under a load of 2.16 kg in accordance with ASTM D-1238 is preferably 0.05 g/10 min to 150 g/10 min, more preferably 5 g/10 min to 150 g/10 min, and further preferably 18 g/10 min to 100 g/10 min, from the viewpoints of the mechanical properties and low-temperature impact resistance of the resin powder.
  • the melt flow rate may be adjusted by mixing two or more types of resin powders having different propylene polymer compositions, or by adjusting the weight average molecular weight of the propylene polymer.
  • the weight average molecular weight of the 23° C. n-decane insoluble portion (D insol ) of the propylene polymer contained in the resin powder is not particularly limited.
  • the weight average molecular weight can be calculated from the molecular weight distribution in terms of polystyrene (PS) by gel permeation chromatography (GPC).
  • the molecular weight distribution (weight average molecular weight: Mw/number average molecular weight: Mn) is preferably 1.0-10, more preferably 2.0-10, and even more preferably 3.0-10.
  • the melting point of the propylene polymer constituting the propylene polymer powder is preferably 150°C to 170°C, and more preferably 155°C to 168°C.
  • the propylene-based block copolymer constituting the propylene-based polymer powder may have a portion soluble in n-decane at 23°C.
  • the "23°C n-decane soluble portion” refers to a portion of the propylene-based block copolymer that is dissolved in the n-decane solution when the copolymer is heated and dissolved in n-decane at 145°C for 30 minutes and then cooled to 23°C, as described in the Examples below.
  • the propylene-based block copolymer may have a portion insoluble in n-decane at 23°C in addition to a portion soluble in n-decane at 23°C.
  • the amount of the portion soluble in n-decane at 23°C is preferably 5% by mass to 35% by mass, more preferably 6% by mass to 25% by mass, and even more preferably 8% by mass to 20% by mass, based on the total amount of the propylene-based block copolymer.
  • the total amount of the portion soluble in n-decane at 23°C and the amount of the portion insoluble in n-decane at 23°C is 100% by mass.
  • the intrinsic viscosity [ ⁇ ] of the n-decane soluble portion at 23°C is preferably 1.0 dl/g to 10 dl/g, more preferably 1.5 dl/g to 9.0 dl/g, and even more preferably 2.0 dl/g to 8.0 dl/g.
  • the 23° C. n-decane soluble portion is preferably mainly composed of a copolymer of propylene and one or more olefins selected from ethylene and ⁇ -olefins having 4 to 20 carbon atoms. Furthermore, the content of olefins other than propylene in the 23° C. n-decane soluble portion (the total content of ethylene and one or more olefins selected from ⁇ -olefins having 4 to 20 carbon atoms) is preferably 10 mol% to 60 mol%, more preferably 14 mol% to 50 mol%, and even more preferably 20 mol% to 50 mol%. The content of olefins other than propylene in the 23° C. n-decane soluble portion may be read as the ethylene content in the 23° C. n-decane soluble portion.
  • the method for producing the propylene-based polymer powder is not particularly limited.
  • the propylene-based polymer powder and the resin powder containing the same can be produced by referring to the catalysts, production methods, etc. described in paragraphs 0022 to 0082 of WO 2012/102050.
  • the resin powder containing the propylene-based polymer powder of the present disclosure can also be produced by referring to the catalysts and production methods described in, for example, International Publication No. 2009/011231, JP 2011-57789 A, JP 2019-206616 A, and International Publication No. 2012/102050.
  • the resin powder of the present disclosure may contain a thermoplastic elastomer, a filler, etc., or may be a mixture containing the aforementioned propylene-based polymer powder, a thermoplastic elastomer, and a filler.
  • the content of the propylene-based polymer powder is preferably 30 parts by mass to 90 parts by mass, more preferably 35 parts by mass to 85 parts by mass, and even more preferably 35 parts by mass to 80 parts by mass, per 100 parts by mass of the propylene-based polymer powder and other components in total (preferably 100 parts by mass of the propylene-based polymer powder, the thermoplastic elastomer, and the filler in total).
  • the resin powder is preferably a mixture containing a propylene-based polymer powder and a thermoplastic elastomer.
  • the resin powder may contain only one type of thermoplastic elastomer, or may contain two or more types of thermoplastic elastomers.
  • Thermoplastic elastomers have rubber-like elasticity.
  • Rubber-like elasticity refers to the property that when a load is applied to a resin, the shape of the resin changes, and when the load applied to the resin is removed, the shape of the resin returns to its original shape.
  • a thermoplastic elastomer refers to a thermoplastic resin with a tensile modulus of elasticity of less than 600 MPa at 25°C.
  • thermoplastic elastomers are distinguished from thermoplastic resins such as the propylene-based polymers mentioned above.
  • Thermoplastic elastomers include ethylene- ⁇ -olefin random copolymers, ethylene- ⁇ -olefin-non-conjugated polyene random copolymers, hydrogenated block copolymers, other elastic polymers, and mixtures of these.
  • the thermoplastic elastomer when the thermoplastic elastomer is a copolymer, the thermoplastic elastomer may be a block copolymer, a random copolymer, or a graft copolymer.
  • the elastic modulus of the thermoplastic elastomer may be less than 500 MPa, and the glass transition temperature of the thermoplastic elastomer measured by DSC may be ⁇ 30° C. or lower. It is preferable that the elastic modulus is less than 500 MPa and the glass transition temperature is ⁇ 40° C. or lower.
  • Olefins include ethylene, propylene, and ⁇ -olefins having 4 to 10 carbon atoms.
  • Thermoplastic elastomers may contain one type of olefin-derived structural unit alone or a combination of two or more types.
  • ⁇ -olefins having 4 to 10 carbon atoms include propylene, 1-butene, 1-hexene, and 1-octene. These ⁇ -olefins can be used alone or in combination. Among these, 1-butene and 1-octene are particularly preferred.
  • the ethylene/ ⁇ -olefin random copolymer preferably has a molar ratio of ethylene to ⁇ -olefin (ethylene/ ⁇ -olefin) of 95/5 to 70/30, and more preferably 90/10 to 75/25.
  • the ethylene- ⁇ -olefin random copolymer preferably has an MFR of 0.05 g/10 min or more at 190°C under a load of 2.16 kg, and more preferably 0.05 g/10 min to 100 g/10 min.
  • the ethylene- ⁇ -olefin random copolymer can be produced by a conventional method, but various commercially available products can also be used.
  • Preferred commercially available products include the Tafmer A series and H series manufactured by Mitsui Chemicals, the Engage series manufactured by Dow Chemical, and the Exact series manufactured by ExxonMobil.
  • the ethylene/ ⁇ -olefin/non-conjugated polyene random copolymer may be a random copolymer rubber of ethylene, an ⁇ -olefin having 3 to 20 carbon atoms, and a non-conjugated polyene.
  • Specific examples of the ⁇ -olefins having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and 1-eicosene. These ⁇ -olefins can be used alone or in combination.
  • non-conjugated polyenes include cyclic non-conjugated dienes such as 5-ethylidene-2-norbornene, 5-propylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2-norbornene, and norbornadiene; and chain non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 5-methyl-1,5-heptadiene, 6-methyl-1,5-heptadiene, 6-methyl-1,7-octadiene, and 7-methyl-1,6 octadiene.
  • cyclic non-conjugated dienes such as 5-ethylidene-2-norbornene, 5-propylidene-2-
  • the ethylene/ ⁇ -olefin/non-conjugated polyene random copolymer preferably has a molar ratio of ethylene, ⁇ -olefin, and non-conjugated polyene (ethylene/ ⁇ -olefin/non-conjugated polyene) of 90/5/5 to 30/45/25, and more preferably 80/10/10 to 40/40/20.
  • the ethylene- ⁇ -olefin-non-conjugated polyene random copolymer preferably has an MFR of 0.05 g/10 min or more at 190°C and a load of 2.16 kg, and more preferably 0.05 g/10 min to 100 g/10 min.
  • Specific examples of ethylene- ⁇ -olefin-non-conjugated polyene random copolymers include ethylene-propylene-diene terpolymers (EPDM).
  • the hydrogenated block copolymer is a hydrogenated product of a block copolymer whose block form is represented by the following formula (a) or (b), and is a hydrogenated block copolymer having a hydrogenation rate of 90 mol % or more, preferably 95 mol % or more.
  • Examples of the monovinyl-substituted aromatic hydrocarbons constituting the polymer block represented by X in formula (a) or (b) include styrene, ⁇ -methylstyrene, p-methylstyrene, chlorostyrene, lower alkyl-substituted styrene, vinylnaphthalene, and other styrenes or derivatives thereof. These can be used alone or in combination of two or more.
  • Conjugated dienes constituting the polymer block represented by Y in formula (a) or (b) include butadiene, isoprene, chloroprene, etc. These may be used alone or in combination of two or more.
  • n is an integer of 1 to 5, preferably 1 or 2.
  • hydrogenated block copolymers include styrene-based block copolymers such as styrene-ethylene-butene-styrene block copolymer (SEBS), styrene-ethylene-propylene-styrene block copolymer (SEPS), and styrene-ethylene-propylene block copolymer (SEP).
  • SEBS styrene-ethylene-butene-styrene block copolymer
  • SEPS styrene-ethylene-propylene-styrene block copolymer
  • SEP styrene-ethylene-propylene block copolymer
  • the block copolymer before hydrogenation can be produced, for example, by a method of performing block copolymerization in an inert solvent in the presence of a lithium catalyst or a Ziegler-Natta catalyst. Detailed production methods are described, for example, in JP-B-40-23798. Hydrogenation treatment can be carried out in an inert solvent in the presence of a known hydrogenation catalyst. Detailed methods are described, for example, in JP-B-42-8704, JP-B-43-6636, and JP-B-46-20814.
  • the proportion of 1,2-bonds in the polybutadiene block is preferably 20% by mass to 80% by mass, and more preferably 30% by mass to 60% by mass.
  • hydrogenated block copolymers can also be used. Specific examples include Kraton G1657 (trademark, manufactured by Kraton Polymers), Septon 2004 (trademark, manufactured by Kuraray Co., Ltd.), and Tuftec H1052 (trademark, manufactured by Asahi Kasei Co., Ltd.).
  • the melt flow rate of thermoplastic elastomers such as ethylene- ⁇ -olefin copolymers and propylene- ⁇ -olefin copolymers is preferably 0.05g/10min to 100g/10min, more preferably 0.1g/10min to 100g/10min, at 190°C and under a load of 2.16kg, in accordance with ASTM D-1238.
  • the weight average molecular weight of the hydrogenated block copolymer is not particularly limited and may be, for example, 100,000 to 500,000.
  • the weight average molecular weight can be calculated from the molecular weight distribution in terms of polystyrene (PS) by gel permeation chromatography (GPC).
  • the molecular weight distribution (weight average molecular weight: Mw/number average molecular weight: Mn) is preferably 1.0-10, more preferably 1.5-9, and even more preferably 1.5-8.
  • the content of the thermoplastic elastomer is preferably 1 to 40 parts by mass, more preferably 5 to 35 parts by mass, and even more preferably 10 to 35 parts by mass, per 100 parts by mass of the propylene-based polymer powder and other components in total (preferably 100 parts by mass of the propylene-based polymer powder, the thermoplastic elastomer, and the filler in total).
  • the thermoplastic elastomer When the resin powder of the present disclosure contains a thermoplastic elastomer, the thermoplastic elastomer preferably contains an ethylene- ⁇ -olefin random copolymer.
  • the content of the ethylene- ⁇ -olefin random copolymer in the thermoplastic elastomer is preferably 50% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, and even more preferably 60% by mass to 90% by mass, based on the total amount of the thermoplastic elastomer.
  • the content of the hydrogenated block copolymer in the thermoplastic elastomer is preferably 50% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, and even more preferably 60% by mass to 90% by mass.
  • the content of the ethylene/ ⁇ -olefin random copolymer in the thermoplastic elastomer is preferably 50% by mass to 99% by mass, more preferably 60% by mass to 95% by mass, and even more preferably 60% by mass to 90% by mass, and the content of the hydrogenated block copolymer in the thermoplastic elastomer is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 40% by mass, and even more preferably 10% by mass to 40% by mass.
  • the resin powder is preferably a mixture containing a propylene-based polymer powder and a filler.
  • a filler one type may be used alone, or two or more types may be used in combination.
  • the filler may be dry blended with the resin powder or may be contained in the resin.
  • a filler By including a filler, the heat resistance, strength, etc. of the resin powder can be improved, and the warping of the resulting three-dimensional molded body tends to be reduced.
  • Fillers are broadly classified into inorganic fillers such as talc, magnesium sulfate fiber, glass fiber, carbon fiber, mica, calcium carbonate, magnesium hydroxide, ammonium phosphates, silicates, carbonates, carbon black, glass beads, fumed silica, hollow glass beads, glass fiber, crushed glass, aluminum oxide, and inorganic oxides, nitrides, borides, and carbides of zirconium, tantalum, titanium, tungsten, boron, aluminum, and beryllium; and organic fillers such as wood flour, cellulose, polyester fiber, nylon fiber, kenaf fiber, bamboo fiber, jute fiber, rice flour, starch, and corn starch.
  • talc, magnesium sulfate, glass, silica, glass fiber, carbon fiber, wood powder, and cellulose are preferably used.
  • Talc is pulverized magnesium silicate hydrate.
  • the crystal structure of magnesium silicate hydrate is a pyrophyllite-type three-layer structure, and talc is a stack of these structures.
  • Talc is more preferably a plate-like talc in which magnesium silicate hydrate crystals are finely pulverized to the unit layer level.
  • the average particle size of the talc is preferably 3 ⁇ m or less.
  • the average particle size of talc means the 50% equivalent particle size D50 obtained from the integral distribution curve of the sieve size measurement method in which talc is suspended in a dispersion medium of water or alcohol using a centrifugal sedimentation type particle size distribution measurement device.
  • Talc may be used as is, or may be surface-treated with various silane coupling agents, titanium coupling agents, higher fatty acids, higher fatty acid esters, higher fatty acid amides, higher fatty acid salts, or other surfactants in order to improve the interfacial adhesion with the propylene-based block copolymer, dispersibility in resin powder, etc.
  • the magnesium sulfate is preferably magnesium sulfate fiber.
  • the average fiber length of the magnesium sulfate fiber is preferably 5 ⁇ m to 50 ⁇ m, and more preferably 10 ⁇ m to 30 ⁇ m.
  • the average fiber diameter of the magnesium sulfate fiber is preferably 0.3 ⁇ m to 2 ⁇ m, and more preferably 0.5 ⁇ m to 1 ⁇ m.
  • An example of a commercially available product is "MOS HIGE" by Ube Industries, Ltd.
  • the glass may be, for example, selected from the group consisting of solid glass beads, hollow glass beads, porous glass beads, glass fibers, crushed glass, and combinations thereof.
  • the glass may be selected from the group consisting of soda-lime glass ( Na2O /CaO/ SiO2 ), borosilicate glass, phosphate-based glass, quartz glass, and combinations thereof.
  • the glass may be selected from the group consisting of soda-lime glass, borosilicate glass, and combinations thereof.
  • the glass may be any type of amorphous silicate glass.
  • the surface of the glass may be modified with a functional group selected from the group consisting of acrylate-functional silanes, methacrylate-functional silanes, epoxy-functional silanes, ester-functional silanes, amino-functional silanes, and combinations thereof.
  • a functional group selected from the group consisting of acrylate-functional silanes, methacrylate-functional silanes, epoxy-functional silanes, ester-functional silanes, amino-functional silanes, and combinations thereof.
  • Specific examples of glass modified with one or more of the aforementioned functional groups include those from Potters Industries (e.g., epoxy-functional silanes or amino-functional silanes), Gelest (e.g., acrylate-functional silanes or methacrylate-functional silanes), Sigma-Aldrich (e.g., ester-functional silanes), and the like.
  • the glass is selected from the group consisting of soda lime glass, borosilicate glass, phosphate glass, quartz glass, and combinations thereof; or the surface of the glass is modified with a functional group selected from the group consisting of acrylate-functional silanes, methacrylate-functional silanes, epoxy-functional silanes, ester-functional silanes, amino-functional silanes, and combinations thereof; or combinations thereof.
  • the silica is not particularly limited, and examples thereof include dry process silica (anhydrous silicic acid) and wet process silica (hydrated silicic acid).
  • Silica may be modified with a surface treatment agent, and the method is not particularly limited, and any conventionally known method can be used. Examples include silane coupling agents such as hexamethyldisilazane (HMDS) and dimethyldichlorosilane (DMDS), silicone oil treatment agents such as dimethyl silicone oil and amino-modified silicone oil, etc.
  • silane coupling agents such as hexamethyldisilazane (HMDS) and dimethyldichlorosilane (DMDS)
  • silicone oil treatment agents such as dimethyl silicone oil and amino-modified silicone oil, etc.
  • Glass fiber examples include filament-like fibers obtained by melt spinning glass such as E glass (electrical glass), C glass (chemical glass), A glass (alkaline glass), S glass (high strength glass), and alkali-resistant glass.
  • the glass fiber is preferably contained in the resin powder in the form of short fibers of 1 mm or less.
  • the carbon fiber preferably has a fiber diameter of more than 2 ⁇ m and not more than 15 ⁇ m, more preferably 3 ⁇ m to 12 ⁇ m, and even more preferably 4 ⁇ m to 10 ⁇ m.
  • the fiber diameter is 2 ⁇ m or less, the rigidity of the fiber is significantly reduced, and when the fiber diameter exceeds 15 ⁇ m, the aspect ratio of the fiber (the ratio of length (L) to thickness (D): L/D) is reduced, and therefore sufficient reinforcement efficiency such as rigidity and heat resistance cannot be obtained, which is not preferable.
  • the fiber diameter can be obtained by cutting the fiber perpendicular to the fiber direction, measuring the diameter by observing the cross section under a microscope, and calculating the number average of the diameters of 100 or more fibers.
  • the carbon fiber preferably has a fiber length of 1 mm to 20 mm, more preferably 2 mm to 15 mm, and even more preferably 3 mm to 10 mm. If the fiber length is less than 1 mm, the aspect ratio is low and sufficient reinforcement efficiency cannot be obtained, and if the fiber length exceeds 20 mm, the workability and appearance are significantly deteriorated, which is not preferable.
  • the fiber length can be measured using a caliper or the like, and calculated by calculating the number average of the fiber lengths of 100 or more fibers.
  • the carbon fiber that can be used in the resin powder is not particularly limited, and conventionally known carbon fibers can be used.
  • Examples of carbon fibers include PAN-based carbon fibers made from polyacrylonitrile and pitch-based carbon fibers made from pitch. These carbon fibers can be used as so-called chopped carbon fibers in which the fiber yarn is cut to a desired length, and may also be those that have been subjected to a sizing treatment using various sizing agents as necessary.
  • the sizing agent used for the sizing treatment needs to melt during melt-kneading with the polypropylene resin, so it is preferable that it melts at 200°C or less.
  • chopped carbon fibers include PAN-based carbon fibers such as “TORAYCA CHOP” manufactured by Toray Industries, Inc., "PYROFIL (CHOPP)” manufactured by Mitsubishi Rayon Co., Ltd., and “BESFIGHT (CHOPP)” manufactured by Toho Tenax Co., Ltd., and pitch-based carbon fibers such as "DIALEAD” manufactured by Mitsubishi Chemical Industrial Products Co., Ltd., “DONACARBO (CHOPP)” manufactured by Osaka Gas Chemical Co., Ltd., and “KURECA CHOP” manufactured by Kureha Chemical Co., Ltd.
  • These carbon fiber components are compounded together with the other components that make up the resin powder using a melt-kneading device such as an extruder, but during this melt-kneading, it is preferable to select a compounding method that prevents excessive breakage of the carbon fiber components. For example, when melt-kneading using an extruder, the components other than the carbon fiber components are sufficiently melt-kneaded, and then the carbon fiber components are fed from a position downstream of the position where the resin components are completely melted using a side feed method or the like, thereby dispersing the bundled fibers while preventing fiber breakage.
  • the wood flour may be prepared by breaking wood with a cutter mill or the like, and pulverizing the broken wood with a ball mill, impeller mill, or the like to produce fine powder.
  • the average particle size of the wood flour is preferably 1 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 150 ⁇ m. If the average particle size is less than 1 ⁇ m, handling is difficult, and if the amount of wood-based filler mixed is large, the mechanical strength of the molded body produced may decrease if the dispersibility in the resin is low. If the average particle size is more than 200 ⁇ m, the homogeneity, flatness, mechanical strength, etc. of the molded body may decrease.
  • cellulose fiber and crystalline cellulose are preferably used.
  • the cellulose fibers are preferably those having a high purity, for example, those having an ⁇ -cellulose content of 80% by mass or more.
  • Organic fibers such as cellulose fibers include fibers having an average fiber diameter of 0.1 ⁇ m to 1000 ⁇ m and an average fiber length of 0.001 mm to 5 mm.
  • Crystalline cellulose is made by partially depolymerizing ⁇ -cellulose, obtained as pulp from fibrous plants, with mineral acids and refining it.
  • Examples of products include “Ceolas” manufactured by Asahi Kasei Corporation.
  • Fillers that have been surface-treated may be used. This can improve the adhesion between the filler and the resin powder.
  • surface treatment agents used for the surface treatment include silane coupling agents such as aminosilane, epoxysilane, and acrylicsilane. These surface treatment agents may be fixed on the surface of the filler by a coupling reaction, or may cover the surface of the filler. When recycling powders used in three-dimensional molding, those that have been fixed by a coupling reaction are preferred because they are less likely to be modified by heat, etc.
  • the content of the filler may be 1 to 50 parts by mass, preferably 5 to 45 parts by mass, and more preferably 10 to 45 parts by mass, per 100 parts by mass of the propylene-based polymer powder and other components in total (preferably 100 parts by mass of the propylene-based polymer powder, thermoplastic elastomer, and filler in total).
  • the mass ratio of the filler to the thermoplastic elastomer, filler/thermoplastic elastomer is preferably 0.25 to 5, more preferably 0.33 to 4, and even more preferably 0.5 to 3, from the viewpoint of the balance between mechanical properties and low-temperature impact resistance.
  • the volume average particle diameter of the filler (preferably the volume average particle diameter of the inorganic filler) may be 1 ⁇ m to 20 ⁇ m, 2 ⁇ m to 15 ⁇ m, or 3 ⁇ m to 10 ⁇ m.
  • the volume average particle size of the filler refers to the value of the particle size when the volume of each particle measured in a state where the filler is dispersed in water using a particle size distribution measuring device such as a laser diffraction/scattering type particle size distribution measuring device, and the volume of each particle is integrated from the small particle size side, and the integrated volume is 50% of the total volume.
  • the resin powder of the present disclosure may be a powder containing other components in addition to the propylene-based polymer and the thermoplastic elastomer, as long as the effects of the present invention are not impaired.
  • other components include resin components such as thermoplastic resins other than the propylene-based polymer, thermosetting resins, additive components, etc.
  • the resin powder may be mixed with a biomass-derived raw material.
  • Additive components include heat stabilizers, antistatic agents, weather stabilizers, light stabilizers, UV absorbers, antioxidants, antioxidants, neutralizers, fatty acid metal salts, softeners, dispersants, colorants, lubricants, pigments, dyes, brighteners, electrostatic agents, solvents, wetting agents, antimicrobial agents, chelating agents, flow aids, reinforcing materials, energy absorption promoters, energy absorption inhibitors, laser absorbers, fusion agents, and finish improvers.
  • the above-mentioned other components may be used independently, either alone or in combination of two or more. When preparing the resin powder by mixing the other components, the mixing order is arbitrary, and the components may be mixed simultaneously, or a multi-stage mixing method may be used in which some components are mixed and then the other components are mixed.
  • the resin powder of the present disclosure may contain a flow aid. It is preferable that the flow aid is dry blended with the resin powder.
  • the flow aid refers to a substance that suppresses the aggregation of resin powder due to the adhesive force between the resin powders.
  • the fluidity of the resin powder can be improved, and there is no unevenness in the filling of the resin powder when it is made into a three-dimensional molded body. As a result, the warping of the obtained three-dimensional molded body is likely to be small.
  • Examples of flow aids include silica (silicon dioxide) such as fused silica, crystalline silica, and amorphous silica; alumina (aluminum oxide), alumina colloid (alumina sol), and alumina white; calcium carbonate such as light calcium carbonate, heavy calcium carbonate, finely powdered calcium carbonate, and special calcium carbonate-based fillers; nepheline syenite fine powder, calcined clay such as montmorillonite and bentonite; clay (aluminum silicate powder) such as silane-modified clay; silicic acid-containing compounds such as talc, diatomaceous earth, and silica sand; crushed natural minerals such as pumice powder, pumice balloon, slate powder, and mica powder; sulfur;
  • suitable fillers include minerals such as barium sulfate, lithopone, calcium sulfate, molybdenum disulfide, and graphite, glass-based fillers such as glass fibers, glass
  • silica alumina, calcium carbonate, glass-based fillers, and titanium oxide are preferred, and silica is more preferred.
  • Commercially available silica products include the fumed silica "AEROSIL” (registered trademark) series manufactured by Nippon Aerosil Co., Ltd., the dry silica “Reolosil” (registered trademark) series manufactured by Tokuyama Corporation, and the sol-gel silica powder X-24 series manufactured by Shin-Etsu Chemical Co., Ltd.
  • the resin powder of the present disclosure may include an energy absorption enhancer.
  • the energy absorption enhancer is a material that absorbs electromagnetic radiation.
  • the energy absorption promoter may also serve as a filler.
  • energy absorption promoters include pigments, carbon black, carbon fibers, copper hydroxyphosphate, near infrared absorbing dyes, near infrared absorbing pigments, metal nanoparticles, polythiophenes, poly(p-phenylene sulfide), polyaniline, poly(pyrrole), polyacetylene, poly(p-phenylene vinylene), polyparaphenylene, poly(styrene sulfonate), poly(3,4-ethylenedioxythiophene)-poly(styrene phosphonate) p-diethylaminobenzaldehyde diphenylhydrazone, anti-9-isopropylcarbazole-3-, and conjugated polymers consisting of combinations thereof.
  • the resin powder of the present disclosure may contain an energy absorption inhibitor, which is a material that does not easily absorb electromagnetic radiation.
  • the energy absorption inhibitor may also function as a filler.
  • Energy absorption inhibitors include, for example, substances that reflect particulate electromagnetic radiation, such as titanium, insulating powders, such as mica powder and ceramic powder, and water.
  • Either the energy absorption promoter or the energy absorption inhibitor may be used, or the energy absorption promoter and the energy absorption inhibitor may be used in combination to adjust the degree of absorption of electromagnetic radiation.
  • the resin powder of the present disclosure may include a coalescent.
  • the coalescent may be, for example, a dispersion containing a radiation absorbing agent (e.g., an active material).
  • the active material may be any infrared light absorbing colorant.
  • the solvent for the coalescent may be water or a non-aqueous solvent (e.g., ethanol, acetone, n-methylpyrrolidone, aliphatic hydrocarbons, etc.).
  • the coalescent may be a mixture of an active material and a solvent (preferably without other components).
  • the fusing agent may include, for example, at least one co-solvent; at least one surfactant; at least one anti-kogation agent; at least one chelating agent; at least one buffer; at least one biocide; and water.
  • the resin powder of the present disclosure may include a finishing improver.
  • the finishing improver may include a surfactant, a co-solvent, and the balance of water.
  • the finishing improver may be a mixture of a surfactant, a co-solvent, and the balance of water, with no other ingredients.
  • the finishing improver may include a colorant, or may be a mixture of a colorant, a surfactant, a co-solvent, and the balance of water, with no other ingredients.
  • the finishing improver may include one or more ingredients such as an anti-kogation agent, an antimicrobial agent, a chelating agent, etc.
  • the resin powder of the present disclosure and the propylene-based polymer powder contained in the resin powder may be coated with any surface-active coating.
  • surface-active coatings include coatings containing surfactants, acidic polymers, salts of acidic polymers, inorganic particles, etc., and the coating may be one type of these, or two or more types of these.
  • Surfactants used in surface-active coatings include, for example, anionic surfactants, nonionic surfactants, cationic surfactants, etc.
  • anionic surfactants include sodium lauryl sulfate, linear or branched alkylbenzene sulfonates, etc.
  • the surface active coating may be an inorganic particulate coating using inorganic particles, for example, an inorganic particulate coating using fumed metal oxide nanoparticles.
  • Inorganic particles used in the inorganic particulate coating include, for example, silicon dioxide, such as AEROSIL® 200, aluminum oxide, such as AEROXIDE® AluC, and aqueous dispersions thereof, such as AERODISP® W1824, AERODISP® W440, etc.
  • the surface active coating is applied using any suitable method, such as spray coating, pan coating, air or gas suspension coating, liquid phase coating, liquid dispersion coating, immersion, etc. Additionally, a reaction such as polymerization may be carried out after coating.
  • the resin powder of the present disclosure is used for molding three-dimensional objects.
  • the resin powder of the present disclosure may be used alone or in combination with other components.
  • Three-dimensional molded products that can be molded using the resin powder of the present disclosure include, but are not limited to, automobile molded products (e.g., console parts, switch parts, door trim parts, instrument panel parts, clips, covers, engine peripheral parts, grip parts, bumpers, back doors, radiator parts, battery parts, etc.), electrical appliance molded products (electrical appliance parts, housings, etc.), furniture parts, building materials, construction materials, aircraft parts, toys, shoes, sporting goods, decorations, cases, etc.
  • automobile molded products e.g., console parts, switch parts, door trim parts, instrument panel parts, clips, covers, engine peripheral parts, grip parts, bumpers, back doors, radiator parts, battery parts, etc.
  • electrical appliance molded products electrical appliance parts, housings, etc.
  • furniture parts building materials, construction materials, aircraft parts, toys, shoes, sporting goods, decorations, cases, etc.
  • the three-dimensional molded product of the present disclosure is molded using a resin powder.
  • the three-dimensional molded product include the above-mentioned molded products for automobiles and other molded products.
  • the three-dimensional molded product of the present disclosure may be a sintered body or a molten body of the above-mentioned resin powder.
  • the three-dimensional molded product of this disclosure can be manufactured by three-dimensional molding using the powder bed fusion bonding method using the resin powder described above.
  • the method for producing a three-dimensional molded product of the present disclosure is a method for producing a three-dimensional molded product by powder bed fusion using the resin powder of the present disclosure.
  • a three-dimensional molded product can be produced by the same method as the conventional powder bed fusion method, except that the resin powder of the present disclosure is used.
  • the method for producing a three-dimensional molded product of the present disclosure may include step 1 of forming a thin layer of resin powder, step 2 of selectively irradiating the preheated thin layer with laser light to form a modeled layer in which the propylene-based polymer contained in the resin powder is melt-bonded, and step 3 of laminating the modeled layers by repeating steps 1 and 2 in this order.
  • the manufacturing method for three-dimensional molded products disclosed herein preferably includes step 4 of preheating a thin layer of resin powder before irradiating the laser in step 2.
  • Average powder particle size The average powder particle size of the powder particles was measured by a particle size distribution measuring device (Microtrac MT3300EXII, manufactured by Microtrac Bell Co., Ltd.) using the particle refractive index of each powder by a dry (air) method without using a solvent. The particle refractive index was set to 1.5. A sample was used in which 0.1 g of powder particles was added to 0.2 g of a surfactant (EMAL E-27C, manufactured by Kao Corporation) and 30 mL of water, and ultrasonic dispersion was performed for 10 minutes.
  • a surfactant E-27C, manufactured by Kao Corporation
  • Tensile modulus A molded body was produced using the powder particles as follows. First, the prepared powder particles were spread on the modeling stage at a predetermined recoating speed (160 mm/s) using a three-dimensional modeling device (3D SYSTEMS (SINTERSTATION 2500 plus)), forming a thin layer with a thickness of 0.2 mm. This thin layer was irradiated with laser light from a CO2 laser equipped with a galvanometer scanner for CO2 laser wavelengths in a range of 360 mm long x 310 mm wide under the following conditions to produce a modeled layer. Thereafter, the powder particles were further spread on the modeled layer, and the modeled layer was laminated by irradiating it with laser light.
  • 3D SYSTEMS SINTERSTATION 2500 plus
  • MFR melt flow rate
  • the glass transition temperature (Tg) of a thermoplastic elastomer was measured using a differential scanning calorimeter (DSC7000X type, manufactured by Hitachi High-Tech Science Corporation) as a measuring device. Approximately 5 mg of sample is sealed in a measuring aluminum pan and heated from room temperature at 10° C./min to 200° C. To completely melt the thermoplastic elastomer, it is held at 200° C. for 5 minutes and then cooled to ⁇ 200° C. at 10° C./min. After leaving the sample at -200°C for 5 minutes, the sample was heated a second time to 200°C at 10°C/min to obtain a DSC curve. In the obtained DSC curve, the temperature on the lower side of the point where a line equidistant in the vertical direction from the extended straight line of each baseline intersects with the curve of the stepwise change in the glass transition was determined as the glass transition temperature (Tg).
  • DSC7000X differential scanning calorimeter
  • the precipitate ( ⁇ ) was added again to 200 mL of n-decane and heated at 145° C. for 30 minutes, and the solution was filtered to remove the filler, etc. The filtrate was cooled to 20° C. over about 3 hours and allowed to stand for 30 minutes, after which the precipitate ( ⁇ ) (hereinafter, the n-decane insoluble portion of the propylene polymer: D insol ) was filtered off.
  • PP1 propylene homopolymer, propylene-based polymer 1 (PP1), was prepared.
  • the physical properties of PP1 are as follows: -Physical properties of PP1- MFR (230 ° C, under 2.16 kg load): 30 g / 10 min Melting point: 165°C
  • a prepolymerization catalyst was produced as follows, and a propylene polymer 2 was prepared using the prepolymerization catalyst.
  • the temperature of the resulting mixed solution was raised to 110°C over 4 hours, and when it reached 110°C, 52.2 g of diisobutyl phthalate (DIBP) was added, and the mixture was kept at the same temperature for 2 hours while stirring.
  • DIBP diisobutyl phthalate
  • a solid portion was collected by hot filtration, and this solid portion was resuspended in 2750 mL of titanium tetrachloride, and then heated again at 110°C for 2 hours. After the heating was completed, the solid portion was collected again by hot filtration, and washed with decane and hexane at 110°C until no titanium compounds were detected in the washing solution.
  • the solid titanium catalyst component prepared as above was stored as a hexane slurry, and a part of it was dried to examine the catalyst composition.
  • the solid titanium catalyst component contained titanium in an amount of 2 mass%, chlorine in an amount of 57 mass%, magnesium in an amount of 21 mass%, and DIBP in an amount of 20 mass%.
  • prepolymerization catalyst 87.5 g of solid titanium catalyst component, 99.8 mL of triethylaluminum, 28.4 mL of diethylaminotriethoxysilane, and 12.5 L of heptane were charged into a 20 L autoclave equipped with a stirrer, and 875 g of propylene was charged while maintaining the internal temperature at 15°C to 20°C, and the reaction was carried out for 100 minutes while stirring. After the polymerization was completed, the solid component was allowed to settle, and the supernatant was removed and washed with heptane twice. The obtained prepolymerization catalyst was resuspended in purified heptane, and the concentration of the solid titanium catalyst component was adjusted to 0.7 g/L with heptane.
  • the obtained slurry was sent to a vessel polymerization reactor equipped with a stirrer having an internal volume of 100 L, and further polymerization was carried out.
  • Propylene was supplied to the polymerization reactor at 15 kg/hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 3.3 mol%.
  • Polymerization was carried out at a polymerization temperature of 70° C. and a pressure of 3.1 MPa/G.
  • the obtained slurry was transferred to a 2.4 L liquid transfer tube, where it was gasified and subjected to gas-solid separation. After that, the polypropylene homopolymer powder was sent to a 480 L gas phase polymerization reactor, where ethylene-propylene copolymerization was carried out.
  • vacuum drying was performed at 80° C. to obtain a propylene-based polymer (propylene-based polymer 2, PP2) composed of a propylene-ethylene block copolymer.
  • the physical properties of the obtained PP2 are as follows: -Physical properties of PP2- MFR (230°C, under 2.16 kg load): 24g/10min Melting point: 161°C Crystallization temperature: 120°C Ethylene content of propylene-ethylene block copolymer: 7 mol% Amount of n-decane solubles at 23°C: 12% by mass Intrinsic viscosity [ ⁇ ] of n-decane soluble part at 23°C: 3.0 dl/g Ethylene content of n-decane soluble part at 23° C.: 35 mol%
  • the physical properties of the obtained PP3 are as follows: -Physical properties of PP3- MFR (230 ° C, under 2.16 kg load): 50 g / 10 min Melting point: 160°C Crystallization temperature: 115°C Ethylene content of propylene-ethylene block copolymer: 3 mol% Amount of n-decane solubles at 23°C: 9% by mass Intrinsic viscosity [ ⁇ ] of n-decane soluble part at 23°C: 6.0 dl/g Ethylene content of n-decane soluble part at 23° C.: 25 mol%
  • Propylene-based polymer particles made of a propylene-ethylene random copolymer manufactured by Prime Polymer Co., Ltd. and having the following physical properties were prepared.
  • -Physical properties of PP4- MFR 230°C, under 2.16 kg load): 7g/10min Melting point: 140°C Crystallization temperature: 105°C Ethylene content of propylene-ethylene random copolymer: 2 mol%
  • thermoplastic elastomer and filler Thermoplastic elastomers (Elastomers 1 to 3) and a filler (Filler 1) having the following components and physical properties were prepared.
  • Example 1 The components were dry-blended for 10 minutes in a tumbler (SKD-10, manufactured by Platec Co., Ltd.) in the proportions shown in Table 1, and melt-mixed in a twin-screw kneader (Tex-30 ⁇ , manufactured by Japan Steel Works) at a set temperature of 200°C, a screw rotation speed of 1100 rpm, and a discharge rate of 100 kg/hr. The mixture was then granulated in a pelletizer (H73023, manufactured by Isuzu Chemical Engineering Co., Ltd.) at a winding output of 60% to obtain pellets containing each component (resin powder that is a mixture of each component). These pellets were used to mold predetermined test pieces, and the physical properties shown in Table 1 were determined.
  • the particles were subjected to a spheroidizing treatment. Specifically, the pulverized material was subjected to a mechanical impact force by hybridization to spheroidize the particles, thereby obtaining a resin powder that was a mixture of the respective components.
  • Examples 2 to 13 Comparative Examples 1 to 6
  • Each component was treated in the same manner as in Example 1 in the blending ratio shown in Tables 1 to 3 to obtain pellets containing each component (resin powder which is a mixture of each component).
  • Example 14 to 16 The same procedures as in Examples 1, 7, and 12 were repeated except that in the mechanical crushing treatment of Examples 1, 7, and 12, the powder was crushed using a crusher (Rinrex Mill) until the average powder particle size became 50 ⁇ m, thereby obtaining pellets containing each component (resin powder which is a mixture of each component).
  • resin powders obtained in Examples 1 to 16 had superior mechanical properties and low-temperature impact resistance compared to Comparative Examples 1 to 6.
  • the resin powders of Examples 1 to 16 can be suitably used as powders for three-dimensional modeling using methods such as powder bed fusion bonding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A resin powder which contains a propylene-based polymer powder, and satisfies [1] and [2] when a molded article is formed from the resin powder. [1] The tensile elasticity is 1,500-3,000MPa. [2] The Charpy impact strength when measured at -30℃ is 2.0kJ/m2 or higher.

Description

樹脂粉末、立体成形物及び立体成形物の製造方法Resin powder, three-dimensional molded product, and method for producing three-dimensional molded product
 本開示は、樹脂粉末、立体成形物及び立体成形物の製造方法に関する。 This disclosure relates to resin powder, three-dimensional molded objects, and methods for manufacturing three-dimensional molded objects.
 熱可塑性樹脂を用いた3Dプリント方式の代表例として、材料押出法(MEX:Material Extrusion)及び粉末材料を用いる粉末床溶融結合法(PBF:Powder Bed Fusion)が挙げ
られる。PBF法は、造形精度が高く、微細な造形物を作製可能であるため、種々の方法が提案されている。
Representative examples of 3D printing methods using thermoplastic resins include the Material Extrusion method (MEX) and Powder Bed Fusion (PBF) using powder materials. The PBF method has high modeling accuracy and can produce fine objects, so various methods have been proposed.
 上記粉末材料に含まれる粒子には、融点(Tm)と結晶化温度(Tc)との差が広い方が取り扱いやすいこと及びレーザー吸収性の観点からポリアミド12が用いられている。一方でポリプロピレン樹脂も融点(Tm)と結晶化温度(Tc)との差が広いこと及び応用される用途の広さから注目されている。 Polyamide 12 is used for the particles contained in the above powder material because it is easier to handle with a wider difference between its melting point (Tm) and crystallization temperature (Tc) and because of its laser absorption properties. On the other hand, polypropylene resin is also attracting attention because of its wider difference between its melting point (Tm) and crystallization temperature (Tc) and its wide range of applications.
 例えば、引張強度が良好であるとともに破断伸びに優れた、エチレン・プロピレン共重合体粒子を含有する立体造形用樹脂粉末、及び、当該立体造形用樹脂粉末を用いて、PBF法により立体造形物を作製する方法が提案されている(特許文献1を参照)。 For example, a resin powder for three-dimensional modeling containing ethylene-propylene copolymer particles, which has good tensile strength and excellent elongation at break, and a method for producing a three-dimensional object by the PBF method using the resin powder for three-dimensional modeling have been proposed (see Patent Document 1).
国際公開第2020/213586号International Publication No. 2020/213586
 特許文献1の立体造形用樹脂粉末では、曲げ弾性等の機械特性、低温での衝撃強度等が十分とは言えず、例えば、自動車部品等の機械特性及び低温衝撃性が要求される用途へ適用するためには改善の余地がある。 The resin powder for three-dimensional modeling in Patent Document 1 does not have sufficient mechanical properties such as bending elasticity, or impact strength at low temperatures, and there is room for improvement before it can be used in applications that require mechanical properties and low-temperature impact resistance, such as automobile parts.
 本開示は、上記に鑑みてなされたものであり、機械特性及び低温衝撃性に優れた樹脂粉末、当該樹脂粉末を用いて成形された立体成形物及び当該樹脂組成物を用いて立体成形物を製造する立体成形物の製造方法を提供することを目的とする。 The present disclosure has been made in consideration of the above, and aims to provide a resin powder having excellent mechanical properties and low-temperature impact properties, a three-dimensional molded product molded using the resin powder, and a method for manufacturing a three-dimensional molded product using the resin composition.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1> プロピレン系重合体粉末を含む樹脂粉末であって、前記樹脂粉末を成形体とした際に、下記[1]及び[2]を満たす樹脂粉末。
[1]引張弾性率が1500MPa~3000MPaである。
[2]-30℃で測定したシャルピー衝撃強度が2.0kJ/m以上である。
<2> 下記[3]を満たす<1>に記載の樹脂粉末。
[3]JIS K7191に準拠して測定した熱変形温度(HDT)が105℃以上である。
<3> 前記樹脂粉末のパウダー平均粒径(R)が1μm~200μmである<1>又は<2>に記載の樹脂粉末。
<4> 前記樹脂粉末は前記プロピレン系重合体粉末と熱可塑性エラストマーとフィラーとを含む混合物であり、
 前記プロピレン系重合体粉末、前記熱可塑性エラストマー及び前記フィラーの合計100質量部に対し、
 前記プロピレン系重合体粉末の含有量は30質量部~90質量部であり、
 前記熱可塑性エラストマーの含有量は1質量部~40質量部であり、
 前記フィラーの含有量は1質量部~50質量部である<1>~<3>のいずれか1つに記載の樹脂粉末。
<5> 下記[4]を満たす<1>~<4>のいずれか1つに記載の樹脂粉末。
[4]DSCで測定した前記樹脂粉末の融点(Tm)が150℃~170℃である。
<6> 下記[5]を満たす<1>~<5>のいずれか1つに記載の樹脂粉末。
[5]ASTM D1238に準拠して230℃、2.16kg荷重で測定した前記プロピレン系重合体のメルトフローレート(MFR)が0.05g/10min~150g/10minである。
<7> 前記プロピレン系重合体はプロピレン系ブロック共重合体であり、下記[6]~[8]を満たす<1>~<6>のいずれか1つに記載の樹脂粉末。
[6]前記プロピレン系ブロック共重合体は、23℃n-デカン可溶部(Dsol)5質量%~35質量%と23℃n-デカン不溶部(Dinsol)65質量%~95質量%とから構成される(ただし、DsolとDinsolとの合計量は100質量%である)。
[7]Dsolの極限粘度[η]が1.0dl/g~10.0dl/gである。
[8]Dsolはプロピレンと、エチレン及び炭素数4~20のα-オレフィンから選ばれる一種以上のオレフィンとからなる共重合体が主成分であり、Dsolのプロピレン以外のオレフィン含量が10mol%~60mol%である。
<8> 前記プロピレン系重合体はプロピレン系ブロック共重合体であり、前記プロピレン系ブロック共重合体は、エチレン及び炭素数4~20のα-オレフィンから選ばれる一種以上のオレフィンに由来する構成単位を含み、プロピレン以外の前記オレフィンの総含量が4.0mol%~30mol%である<1>~<7>のいずれか1つに記載の樹脂粉末。
<9> 樹脂粉末は熱可塑性エラストマーを含み、前記熱可塑性エラストマーは、下記[9]~[11]を満たす<1>~<8>のいずれか1つに記載の樹脂粉末。
[9]ASTM D1238に準拠して190℃、2.16kg荷重で測定したメルトフローレート(MFR)が0.05g/10min~100g/10minである。
[10]DSCで測定したガラス転移温度(Tg)が-30℃以下である。
[11]引張弾性率が500MPa未満である。
<10> 立体成形に用いられる<1>~<9>のいずれか1つに記載の樹脂粉末。
<11> <1>~<9>のいずれか1つに記載の樹脂粉末を用いて粉末床溶融結合法により成形された立体成形体。
<12> <1>~<9>のいずれか1つに記載の樹脂粉末を用いて粉末床溶融結合法により立体成形体を製造する立体成形体の製造方法。
Means for solving the above problems include the following embodiments.
<1> A resin powder containing a propylene-based polymer powder, the resin powder satisfying the following [1] and [2] when molded into a molded article:
[1] The tensile modulus is 1500 MPa to 3000 MPa.
[2] The Charpy impact strength measured at -30 ° C is 2.0 kJ / m2 or more.
<2> The resin powder according to <1>, which satisfies the following [3]:
[3] The heat distortion temperature (HDT) measured in accordance with JIS K7191 is 105°C or higher.
<3> The resin powder according to <1> or <2>, wherein the resin powder has an average powder particle size (R) of 1 μm to 200 μm.
<4> The resin powder is a mixture containing the propylene-based polymer powder, a thermoplastic elastomer, and a filler,
per 100 parts by mass in total of the propylene-based polymer powder, the thermoplastic elastomer, and the filler,
The content of the propylene-based polymer powder is 30 parts by mass to 90 parts by mass,
The content of the thermoplastic elastomer is 1 part by mass to 40 parts by mass,
The resin powder according to any one of <1> to <3>, wherein the content of the filler is 1 part by mass to 50 parts by mass.
<5> The resin powder according to any one of <1> to <4>, which satisfies the following [4]:
[4] The melting point (Tm) of the resin powder measured by DSC is 150° C. to 170° C.
<6> The resin powder according to any one of <1> to <5>, which satisfies the following [5]:
[5] The melt flow rate (MFR) of the propylene polymer measured in accordance with ASTM D1238 at 230° C. under a load of 2.16 kg is 0.05 g/10 min to 150 g/10 min.
<7> The resin powder according to any one of <1> to <6>, wherein the propylene-based polymer is a propylene-based block copolymer, and satisfies the following [6] to [8]:
[6] The propylene-based block copolymer is composed of 5% by mass to 35% by mass of a 23° C. n-decane soluble portion (D sol ) and 65% by mass to 95% by mass of a 23° C. n-decane insoluble portion (D insol ) (wherein the total amount of D sol and D insol is 100% by mass).
[7] The intrinsic viscosity [η] of D sol is 1.0 dl/g to 10.0 dl/g.
[8] D sol is mainly composed of a copolymer of propylene and one or more olefins selected from ethylene and α-olefins having 4 to 20 carbon atoms, and the content of olefins other than propylene in D sol is 10 mol % to 60 mol %.
<8> The resin powder according to any one of <1> to <7>, wherein the propylene-based polymer is a propylene-based block copolymer, the propylene-based block copolymer contains structural units derived from one or more olefins selected from ethylene and α-olefins having 4 to 20 carbon atoms, and a total content of the olefins other than propylene is 4.0 mol % to 30 mol %.
<9> The resin powder according to any one of <1> to <8>, wherein the resin powder contains a thermoplastic elastomer, and the thermoplastic elastomer satisfies the following [9] to [11].
[9] The melt flow rate (MFR) measured in accordance with ASTM D1238 at 190° C. under a load of 2.16 kg is 0.05 g/10 min to 100 g/10 min.
[10] The glass transition temperature (Tg) measured by DSC is −30° C. or lower.
[11] The tensile modulus is less than 500 MPa.
<10> The resin powder according to any one of <1> to <9>, which is used for three-dimensional molding.
<11> A three-dimensional molded article obtained by molding the resin powder according to any one of <1> to <9> by a powder bed fusion method.
<12> A method for producing a three-dimensional molded article, comprising the steps of: producing a three-dimensional molded article by a powder bed fusion method using the resin powder according to any one of <1> to <9>.
 本開示によれば、機械特性及び低温衝撃性に優れた樹脂粉末、当該樹脂粉末を用いて成形された立体成形物及び当該樹脂組成物を用いて立体成形物を製造する立体成形物の製造方法を提供することができる。 The present disclosure provides a resin powder having excellent mechanical properties and low-temperature impact properties, a three-dimensional molded product molded using the resin powder, and a method for producing a three-dimensional molded product using the resin composition.
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、各成分の量は、樹脂粉末等に各成分に該当する物質が複数存在する場合は、特に断らない限り、樹脂粉末等に含まれる該複数の物質の合計量を意味する。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、発明を実施するための形態に記載の各物性値は、実施例の項目にて記載された各方法によって測定することができる。
In the present disclosure, a numerical range indicated using "to" indicates a range that includes the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described in the present disclosure, the upper or lower limit value described in a certain numerical range may be replaced with the upper or lower limit value of another numerical range described in the present disclosure. In addition, in the numerical ranges described in the present disclosure, the upper or lower limit value described in a certain numerical range may be replaced with a value shown in the examples.
In the present disclosure, when a resin powder or the like contains a plurality of substances corresponding to each component, the amount of each component means the total amount of the plurality of substances contained in the resin powder or the like, unless otherwise specified.
In the present disclosure, combinations of two or more preferred aspects are more preferred aspects.
In this disclosure, the physical properties described in the description of the embodiment of the invention can be measured by the methods described in the examples section.
<樹脂粉末>
 本開示の樹脂粉末は、プロピレン系重合体粉末を含み、前記樹脂粉末を成形体とした際に、下記[1]及び[2]を満たす。
[1]引張弾性率が1500MPa~3000MPaである。
[2]-30℃で測定したシャルピー衝撃強度が2.0kJ/m以上である。
 これにより、本開示の樹脂粉末、及びこれを用いて得られる立体成形物は、機械特性及び低温衝撃性に優れる。本開示の樹脂粉末は、機械特性及び低温衝撃性に優れており、立体成形に好適に用いられ、粉末床溶融結合法による立体成形により好適に用いられる。
<Resin powder>
The resin powder of the present disclosure contains a propylene-based polymer powder, and when the resin powder is molded into a molded article, the following [1] and [2] are satisfied.
[1] The tensile modulus is 1500 MPa to 3000 MPa.
[2] The Charpy impact strength measured at -30 ° C is 2.0 kJ / m2 or more.
As a result, the resin powder of the present disclosure and a three-dimensional molded product obtained using the same are excellent in mechanical properties and low-temperature impact resistance. The resin powder of the present disclosure is excellent in mechanical properties and low-temperature impact resistance, and is suitable for use in three-dimensional molding, and is more suitable for use in three-dimensional molding by powder bed fusion bonding.
 本開示の樹脂粉末は、成形物とした際の引張弾性率が1500MPa~3000MPaであり、1600MPa~3000MPaが好ましく、1800MPa~2800MPaがより好ましい。成形物とした際の引張弾性率が1500MPa以上であることにより、自動車部品等の機械特性が要求される用途に対し、本開示の樹脂粉末を好適に用いることができる。 The resin powder of the present disclosure has a tensile modulus of elasticity of 1500 MPa to 3000 MPa when molded into a product, preferably 1600 MPa to 3000 MPa, and more preferably 1800 MPa to 2800 MPa. Since the resin powder of the present disclosure has a tensile modulus of elasticity of 1500 MPa or more when molded into a product, it can be suitably used for applications requiring mechanical properties such as automobile parts.
 本開示の樹脂粉末は、成形物とした際の-30℃でのシャルピー衝撃強度が2.0kJ/m以上であり、2.0kJ/m~10kJ/mが好ましく、3.0kJ/m~8kJ/mがより好ましい。成形物とした際の-30℃でのシャルピー衝撃強度が2.0kJ/m以上であることにより、自動車部品等の低温衝撃性が要求される用途に対し、本開示の樹脂粉末を好適に用いることができる。 The resin powder of the present disclosure, when molded, has a Charpy impact strength at −30° C. of 2.0 kJ/m 2 or more, preferably 2.0 kJ/m 2 to 10 kJ/m 2 , and more preferably 3.0 kJ/m 2 to 8 kJ/m 2. Since the resin powder of the present disclosure has a Charpy impact strength at −30° C. of 2.0 kJ/m 2 or more when molded, it can be suitably used for applications requiring low-temperature impact properties, such as automobile parts.
 本開示の樹脂粉末は、DSCで測定した融点が150℃~170℃が好ましく、155℃~168℃がより好ましく、157℃~165℃がさらに好ましい。樹脂粉末の融点が150℃以上であることにより、自動車部品等の耐熱性が要求される用途に対し、本開示の樹脂粉末を好適に用いることができる。 The resin powder of the present disclosure preferably has a melting point measured by DSC of 150°C to 170°C, more preferably 155°C to 168°C, and even more preferably 157°C to 165°C. By having a melting point of 150°C or higher, the resin powder of the present disclosure can be suitably used for applications requiring heat resistance, such as automobile parts.
 本開示の樹脂粉末は、成形物とした際のJIS K7191に準拠して測定した熱変形温度(HDT)が、105℃以上であることが好ましく、110℃~150℃であることがより好ましく、115℃~140℃であることがさらに好ましい。 The resin powder disclosed herein preferably has a heat distortion temperature (HDT) measured in accordance with JIS K7191 when molded into a molded product of 105°C or higher, more preferably 110°C to 150°C, and even more preferably 115°C to 140°C.
(プロピレン系重合体粉末)
 樹脂粉末は、プロピレン系重合体粉末を含む。プロピレン系重合体粉末としては、プロピレン単独重合体、プロピレンに由来する構成単位とプロピレン以外のオレフィンモノマーに由来する構成単位とを含むプロピレンランダム共重合体、プロピレン系ブロック共重合体等が挙げられる。樹脂粉末は、1種のみのプロピレン系重合体粉末を含んでいてもよく、2種以上のプロピレン系重合体粉末を含んでいてもよい。
(Propylene-based polymer powder)
The resin powder includes a propylene-based polymer powder. Examples of the propylene-based polymer powder include a propylene homopolymer, a propylene random copolymer including a structural unit derived from propylene and a structural unit derived from an olefin monomer other than propylene, and a propylene block copolymer. The resin powder may include only one type of propylene-based polymer powder, or may include two or more types of propylene-based polymer powder.
 プロピレン共重合体は、ブロック共重合体であってもよく、ランダム共重合体であってもよく、グラフト共重合体であってもよい。樹脂粉末の耐熱性、機械特性及び低温衝撃性の観点から、プロピレン単独重合体、ブロック共重合体であることが好ましい。樹脂粉末の耐熱性の観点から、DSCで測定した融点(Tm)が150℃~170℃であることが好ましく、155℃~170℃であることがより好ましく、155℃~169℃であることがさらに好ましい。さらに樹脂粉末の耐熱性、機械特性及び低温衝撃性の観点から、プロピレン系重合体粉末は、プロピレン単独重合体又はプロピレン系ブロック共重合体であることが好ましい。 The propylene copolymer may be a block copolymer, a random copolymer, or a graft copolymer. From the viewpoint of the heat resistance, mechanical properties, and low-temperature impact properties of the resin powder, it is preferably a propylene homopolymer or a block copolymer. From the viewpoint of the heat resistance of the resin powder, it is preferable that the melting point (Tm) measured by DSC is 150°C to 170°C, more preferably 155°C to 170°C, and even more preferably 155°C to 169°C. Furthermore, from the viewpoint of the heat resistance, mechanical properties, and low-temperature impact properties of the resin powder, it is preferable that the propylene-based polymer powder is a propylene homopolymer or a propylene-based block copolymer.
 プロピレン系重合体粉末は、プロピレンに由来する構成単位が繰り返し結合した部分の立体規則性が、アイソタクティック構造でも、シンジオタクチック構造でもよく、樹脂粉末の剛性及び耐熱性の観点からアイソタクティック構造であることが好ましい。 The stereoregularity of the propylene-based polymer powder where propylene-derived structural units are repeatedly bonded may be either an isotactic structure or a syndiotactic structure, and from the viewpoint of the rigidity and heat resistance of the resin powder, an isotactic structure is preferable.
 プロピレン系ブロック共重合体はプロピレンに起因する骨格を必須骨格として、エチレン及び炭素原子数4~20のα-オレフィンから選ばれる1種以上のオレフィンに起因する骨格から構成される。炭素原子数4~20のα-オレフィンとしては、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン等が挙げられる。 Propylene-based block copolymers are composed of a skeleton derived from propylene as the essential skeleton, and skeletons derived from ethylene and one or more olefins selected from α-olefins having 4 to 20 carbon atoms. Examples of α-olefins having 4 to 20 carbon atoms include 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, and 4-methyl-1-hexene.
 プロピレン共重合体がプロピレン系ブロック共重合体である場合、プロピレン系ブロック共重合体は、エチレン及び炭素数4~20のα-オレフィンから選ばれる一種以上のオレフィンに由来する構成単位を含み、前記プロピレン以外のオレフィンの総含量は、樹脂粉末の機械特性及び低温衝撃性の観点から、0.5mol%~30mol%が好ましく、4.0mol%~30mol%であることがより好ましく、4.5mol%~25mol%であることがさらに好ましく、5mol%~20mol%であることが特に好ましい。 When the propylene copolymer is a propylene-based block copolymer, the propylene-based block copolymer contains structural units derived from one or more olefins selected from ethylene and α-olefins having 4 to 20 carbon atoms, and the total content of the olefins other than propylene is preferably 0.5 mol% to 30 mol%, more preferably 4.0 mol% to 30 mol%, even more preferably 4.5 mol% to 25 mol%, and particularly preferably 5 mol% to 20 mol%, from the viewpoint of the mechanical properties and low-temperature impact properties of the resin powder.
 樹脂粉末のパウダー平均粒径(R)は、粉末床溶融結合法による立体成形に好適に使用可能な観点から、1μm~200μmであることが好ましく、5μm~200μmであることがより好ましく、10μm~180μmであることがさらに好ましい。 The average powder particle size (R) of the resin powder is preferably 1 μm to 200 μm, more preferably 5 μm to 200 μm, and even more preferably 10 μm to 180 μm, from the viewpoint of suitable use in three-dimensional molding by powder bed fusion bonding.
 樹脂粉末のパウダー平均粒径は、例えば、重合により粒径を制御した粒子又は調製したプロピレン系重合体を含む粒子に対して、機械的粉砕法又は湿式粉砕法などの粉砕法による粉砕処理、粒子球形化処理、分級処理等を行うことにより調整することができる。 The average powder particle size of the resin powder can be adjusted, for example, by subjecting particles whose particle size has been controlled by polymerization or particles containing a prepared propylene-based polymer to a grinding process such as mechanical grinding or wet grinding, a particle spheronization process, classification, etc.
 粒径の測定方法としては、コールターカウンター法、レーザー回折法、光散乱法、超音波分光法等が挙げられる。 Methods for measuring particle size include the Coulter counter method, laser diffraction method, light scattering method, and ultrasonic spectroscopy.
 ASTM D-1238に準じ、230℃、2.16kg荷重下で測定したプロピレン系重合体のメルトフローレートは、樹脂粉末の機械特性及び低温衝撃性の観点から0.05g/10min~150g/10minであることが好ましく、5g/10min~150g/10minであることがより好ましく、18g/10min~100g/10minであることがさらに好ましい。
 例えば、プロピレン系重合体の組成が異なる2種類以上の樹脂粉末を混合すること、プロピレン系重合体の重量平均分子量を調整すること等でメルトフローレートを調整してもよい。
The melt flow rate of the propylene-based polymer measured at 230° C. under a load of 2.16 kg in accordance with ASTM D-1238 is preferably 0.05 g/10 min to 150 g/10 min, more preferably 5 g/10 min to 150 g/10 min, and further preferably 18 g/10 min to 100 g/10 min, from the viewpoints of the mechanical properties and low-temperature impact resistance of the resin powder.
For example, the melt flow rate may be adjusted by mixing two or more types of resin powders having different propylene polymer compositions, or by adjusting the weight average molecular weight of the propylene polymer.
 樹脂粉末に含まれるプロピレン系重合体の23℃n-デカン不溶部(Dinsol)の重量平均分子量は、特に限定されない。
 重量平均分子量は、ゲル浸透クロマトグラフ分析(GPC)により、ポリスチレン(PS)換算分子量分布から算出できる。
 分子量分布(重量平均分子量:Mw/数平均分子量:Mn)は、1.0~10が好ましく、2.0~10がより好ましく、3.0~10がさらに好ましい。
The weight average molecular weight of the 23° C. n-decane insoluble portion (D insol ) of the propylene polymer contained in the resin powder is not particularly limited.
The weight average molecular weight can be calculated from the molecular weight distribution in terms of polystyrene (PS) by gel permeation chromatography (GPC).
The molecular weight distribution (weight average molecular weight: Mw/number average molecular weight: Mn) is preferably 1.0-10, more preferably 2.0-10, and even more preferably 3.0-10.
 プロピレン系重合体粉末を構成するプロピレン系重合体のDSCで測定した融点は、150℃~170℃であることが好ましく、155℃~168℃であることがより好ましい。 The melting point of the propylene polymer constituting the propylene polymer powder, as measured by DSC, is preferably 150°C to 170°C, and more preferably 155°C to 168°C.
 プロピレン系重合体粉末を構成するプロピレン系ブロック共重合体は、23℃n-デカン可溶部を有していてもよい。
 「23℃n-デカン可溶部」とは、後述する実施例に記載のとおり、プロピレン系ブロック共重合体のうち、n-デカン中にて145℃で30分間加熱溶解後に23℃まで降温した際にn-デカン溶液側に溶解している部分を意味する。
The propylene-based block copolymer constituting the propylene-based polymer powder may have a portion soluble in n-decane at 23°C.
The "23°C n-decane soluble portion" refers to a portion of the propylene-based block copolymer that is dissolved in the n-decane solution when the copolymer is heated and dissolved in n-decane at 145°C for 30 minutes and then cooled to 23°C, as described in the Examples below.
 プロピレン系ブロック共重合体は、23℃n-デカン可溶部とともに23℃n-デカン不溶部を有していてもよい。23℃n-デカン可溶部量は、プロピレン系ブロック共重合体の全量に対し、5質量%~35質量%であることが好ましく、6質量%~25質量%であることがより好ましく、8質量%~20質量%であることがさらに好ましい。なお、プロピレン系ブロック共重合体において、23℃n-デカン可溶部量及び23℃n-デカン不溶部量の合計は100質量%である。 The propylene-based block copolymer may have a portion insoluble in n-decane at 23°C in addition to a portion soluble in n-decane at 23°C. The amount of the portion soluble in n-decane at 23°C is preferably 5% by mass to 35% by mass, more preferably 6% by mass to 25% by mass, and even more preferably 8% by mass to 20% by mass, based on the total amount of the propylene-based block copolymer. In the propylene-based block copolymer, the total amount of the portion soluble in n-decane at 23°C and the amount of the portion insoluble in n-decane at 23°C is 100% by mass.
 23℃n-デカン可溶部の極限粘度[η]は、1.0dl/g~10dl/gであることが好ましく、1.5dl/g~9.0dl/gであることがより好ましく、2.0dl/g~8.0dl/gであることがさらに好ましい。 The intrinsic viscosity [η] of the n-decane soluble portion at 23°C is preferably 1.0 dl/g to 10 dl/g, more preferably 1.5 dl/g to 9.0 dl/g, and even more preferably 2.0 dl/g to 8.0 dl/g.
 23℃n-デカン可溶部は、プロピレンと、エチレン及び炭素数4~20のα-オレフィンから選ばれる一種以上のオレフィンとからなる共重合体が主成分であることが好ましい。さらに、23℃n-デカン可溶部のプロピレン以外のオレフィン含量(エチレン及び炭素数4~20のα-オレフィンから選ばれる一種以上のオレフィンの総含量)は、10mol%~60mol%であることが好ましく、14mol%~50mol%であることがより好ましく、20mol%~50mol%であることがさらに好ましい。
 23℃n-デカン可溶部のプロピレン以外のオレフィン含量は、23℃n-デカン可溶部のエチレン含量と読み替えてもよい。
The 23° C. n-decane soluble portion is preferably mainly composed of a copolymer of propylene and one or more olefins selected from ethylene and α-olefins having 4 to 20 carbon atoms. Furthermore, the content of olefins other than propylene in the 23° C. n-decane soluble portion (the total content of ethylene and one or more olefins selected from α-olefins having 4 to 20 carbon atoms) is preferably 10 mol% to 60 mol%, more preferably 14 mol% to 50 mol%, and even more preferably 20 mol% to 50 mol%.
The content of olefins other than propylene in the 23° C. n-decane soluble portion may be read as the ethylene content in the 23° C. n-decane soluble portion.
 プロピレン系重合体粉末の製造方法は特に限定されない。例えば、国際公開第2012/102050の段落0022~0082に記載されている触媒、作製方法等を参照することでプロピレン系重合体粉末及びこれを含む樹脂粉末を製造することができる。 The method for producing the propylene-based polymer powder is not particularly limited. For example, the propylene-based polymer powder and the resin powder containing the same can be produced by referring to the catalysts, production methods, etc. described in paragraphs 0022 to 0082 of WO 2012/102050.
 本開示のプロピレン系重合体粉末を含む樹脂粉末は、例えば、国際公開第2009/011231、特開2011-57789号公報、特開2019-206616号、国際公開第2012/102050等に記載されている触媒、作製方法等を参考に製造することもできる。 The resin powder containing the propylene-based polymer powder of the present disclosure can also be produced by referring to the catalysts and production methods described in, for example, International Publication No. 2009/011231, JP 2011-57789 A, JP 2019-206616 A, and International Publication No. 2012/102050.
 本開示の樹脂粉末は、熱可塑性エラストマー、フィラー等を含んでいてもよく、前述のプロピレン系重合体粉末と熱可塑性エラストマーとフィラーとを含む混合物であってもよい。 The resin powder of the present disclosure may contain a thermoplastic elastomer, a filler, etc., or may be a mixture containing the aforementioned propylene-based polymer powder, a thermoplastic elastomer, and a filler.
 樹脂粉末が、その他の成分を含む場合(好ましくは、熱可塑性エラストマー及びフィラーを含む場合)、プロピレン系重合体粉末の含有量は、プロピレン系重合体粉末及びその他の成分の合計100質量部(好ましくは、プロピレン系重合体粉末、熱可塑性エラストマー及びフィラーの合計100質量部)に対し、30質量部~90質量部が好ましく、35質量部~85質量部がより好ましく、35質量部~80質量部がさらに好ましい。 When the resin powder contains other components (preferably when it contains a thermoplastic elastomer and a filler), the content of the propylene-based polymer powder is preferably 30 parts by mass to 90 parts by mass, more preferably 35 parts by mass to 85 parts by mass, and even more preferably 35 parts by mass to 80 parts by mass, per 100 parts by mass of the propylene-based polymer powder and other components in total (preferably 100 parts by mass of the propylene-based polymer powder, the thermoplastic elastomer, and the filler in total).
(熱可塑性エラストマー)
 樹脂粉末は、プロピレン系重合体粉末とともに熱可塑性エラストマーを含む混合物であることが好ましい。樹脂粉末が熱可塑性エラストマーを含むことで、樹脂粉末を立体造形物の成形に用いた際に立体造形物の変形が効果的に抑制されることに加えて、伸び、靭性等、さらにより低温での衝撃性が付与される。樹脂粉末は、1種のみの熱可塑性エラストマーを含んでいてもよく、2種以上の熱可塑性エラストマーを含んでいてもよい。
(Thermoplastic elastomer)
The resin powder is preferably a mixture containing a propylene-based polymer powder and a thermoplastic elastomer. When the resin powder contains a thermoplastic elastomer, deformation of a three-dimensional object is effectively suppressed when the resin powder is used for molding the three-dimensional object, and elongation, toughness, and impact resistance at a lower temperature are imparted. The resin powder may contain only one type of thermoplastic elastomer, or may contain two or more types of thermoplastic elastomers.
 熱可塑性エラストマーは、ゴム状弾性を有する。ゴム状弾性とは、樹脂に荷重が加えられると樹脂の形状が変形し、樹脂に加えられた荷重が除かれると樹脂の形状が元の形状に戻ろうとする性質を示す。具体的には、熱可塑性エラストマーとは、25℃での引張弾性率が600MPa未満である熱可塑性樹脂を指す。この点において、熱可塑性エラストマーは、前述のようなプロピレン系重合体等の熱可塑性樹脂と区別される。 Thermoplastic elastomers have rubber-like elasticity. Rubber-like elasticity refers to the property that when a load is applied to a resin, the shape of the resin changes, and when the load applied to the resin is removed, the shape of the resin returns to its original shape. Specifically, a thermoplastic elastomer refers to a thermoplastic resin with a tensile modulus of elasticity of less than 600 MPa at 25°C. In this respect, thermoplastic elastomers are distinguished from thermoplastic resins such as the propylene-based polymers mentioned above.
 熱可塑性エラストマーとしては、エチレン・α-オレフィンランダム共重合体、エチレン・α-オレフィン・非共役ポリエンランダム共重合体、水素添加ブロック共重合体、その他弾性重合体及びこれらの混合物が挙げられる。 Thermoplastic elastomers include ethylene-α-olefin random copolymers, ethylene-α-olefin-non-conjugated polyene random copolymers, hydrogenated block copolymers, other elastic polymers, and mixtures of these.
 熱可塑性エラストマーが共重合体である場合、熱可塑性エラストマーは、ブロック共重合体であってもよく、ランダム共重合体であってもよく、グラフト共重合体であってもよい。
 樹脂粉末の耐熱性、機械特性及び低温衝撃性の観点から、熱可塑性エラストマーの弾性率は500MPa未満であってもよく、DSCで測定した熱可塑性エラストマーのガラス転移温度は-30℃以下であってもよい。前述の弾性率は500MPa未満であり、かつ、前述のガラス転移温度は-40℃以下であることが好ましい。
When the thermoplastic elastomer is a copolymer, the thermoplastic elastomer may be a block copolymer, a random copolymer, or a graft copolymer.
From the viewpoint of the heat resistance, mechanical properties, and low-temperature impact properties of the resin powder, the elastic modulus of the thermoplastic elastomer may be less than 500 MPa, and the glass transition temperature of the thermoplastic elastomer measured by DSC may be −30° C. or lower. It is preferable that the elastic modulus is less than 500 MPa and the glass transition temperature is −40° C. or lower.
 オレフィンとしては、エチレン、プロピレン、炭素数4~10のα-オレフィンが挙げられる。熱可塑性エラストマーは、オレフィン由来の構成単位を1種単独で含んでいてもよいし、2種以上を組み合わせて含んでいてもよい。 Olefins include ethylene, propylene, and α-olefins having 4 to 10 carbon atoms. Thermoplastic elastomers may contain one type of olefin-derived structural unit alone or a combination of two or more types.
 上記炭素数4~10のα-オレフィンとしては、具体的には、プロピレン、1-ブテン、1-ヘキセン、1-オクテンなどが挙げられる。これらのα-オレフィンは、単独で又は組み合わせて用いることができる。これらの中では、特に1-ブテン、1-オクテンが好ましく用いられる。 Specific examples of the α-olefins having 4 to 10 carbon atoms include propylene, 1-butene, 1-hexene, and 1-octene. These α-olefins can be used alone or in combination. Among these, 1-butene and 1-octene are particularly preferred.
 エチレン・α-オレフィンランダム共重合体は、エチレンとα-オレフィンとのモル比(エチレン/α-オレフィン)が95/5~ 70/30であることが好ましく、90/10~75/25であることがより好ましい。 The ethylene/α-olefin random copolymer preferably has a molar ratio of ethylene to α-olefin (ethylene/α-olefin) of 95/5 to 70/30, and more preferably 90/10 to 75/25.
 エチレン・α-オレフィンランダム共重合体は、190℃、荷重2.16kgにおけるMFRが、0.05g/10min以上であることが好ましく、0.05g/10min~100g/10minであることがより好ましい。 The ethylene-α-olefin random copolymer preferably has an MFR of 0.05 g/10 min or more at 190°C under a load of 2.16 kg, and more preferably 0.05 g/10 min to 100 g/10 min.
 前記エチレン・α-オレフィンランダム共重合体は、従来公知の方法で製造することもできるが、種々の市販品を用いることもできる。市販品としては、三井化学製タフマーAシリーズ・H シリーズ、ダウケミカル社製Engageシリーズ、ExxonMobil製Exactシリーズなどを好ましく使用することができる。 The ethylene-α-olefin random copolymer can be produced by a conventional method, but various commercially available products can also be used. Preferred commercially available products include the Tafmer A series and H series manufactured by Mitsui Chemicals, the Engage series manufactured by Dow Chemical, and the Exact series manufactured by ExxonMobil.
 前記エチレン・α-オレフィン・非共役ポリエンランダム共重合体は、エチレンと炭素数3~20のα-オレフィンと非共役ポリエンとのランダム共重合体ゴムが挙げられる。
 上記炭素数3~20のα-オレフィンとしては、具体的にはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-エイコセンなどが挙げられる。これらのα-オレフィンは、単独で又は組み合せて用いることができる。これらの中では、特にプロピレン、1-ブテン、1-ヘキセン、1-オクテンが好ましく用いられる。上記非共役ポリエンとしては、5-エチリデン-2-ノルボルネン、5-プロピリデン-2-ノルボルネン、ジシクロペンタジエン、5-ビニル-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、ノルボルナジエンなどの環状非共役ジエン;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、5-メチル-1,5-ヘプタジエン、6-メチル-1, 5-ヘプタジエン、6-メチル-1,7-オクタジエン、7-メチル
-1,6オクタジエンなどの鎖状の非共役ジエンなどが挙げられる。
The ethylene/α-olefin/non-conjugated polyene random copolymer may be a random copolymer rubber of ethylene, an α-olefin having 3 to 20 carbon atoms, and a non-conjugated polyene.
Specific examples of the α-olefins having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and 1-eicosene. These α-olefins can be used alone or in combination. Among these, propylene, 1-butene, 1-hexene, and 1-octene are particularly preferred. Examples of the non-conjugated polyenes include cyclic non-conjugated dienes such as 5-ethylidene-2-norbornene, 5-propylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2-norbornene, and norbornadiene; and chain non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 5-methyl-1,5-heptadiene, 6-methyl-1,5-heptadiene, 6-methyl-1,7-octadiene, and 7-methyl-1,6 octadiene.
 エチレン・α-オレフィン・非共役ポリエンランダム共重合体は、エチレンとα-オレフィンと非共役ポリエンとのモル比(エチレン/α-オレフィン/非共役ポリエン)が90/5/5~30/45/25であることが好ましく、80/10/10~40/40/20であることがより好ましい。 The ethylene/α-olefin/non-conjugated polyene random copolymer preferably has a molar ratio of ethylene, α-olefin, and non-conjugated polyene (ethylene/α-olefin/non-conjugated polyene) of 90/5/5 to 30/45/25, and more preferably 80/10/10 to 40/40/20.
 エチレン・α-オレフィン・非共役ポリエンランダム共重合体は、190℃、荷重2.16kgにおけるMFRが0.05g/10min以上であることが好ましく、0.05g/10min~100g/10minであることがより好ましい。エチレン・α-オレフィン・非共役ポリエンランダム共重合体の具体的なものとしては、エチレン・プロピレン・ジエン三元共重合体(EPDM)などが挙げられる。 The ethylene-α-olefin-non-conjugated polyene random copolymer preferably has an MFR of 0.05 g/10 min or more at 190°C and a load of 2.16 kg, and more preferably 0.05 g/10 min to 100 g/10 min. Specific examples of ethylene-α-olefin-non-conjugated polyene random copolymers include ethylene-propylene-diene terpolymers (EPDM).
 前記水素添加ブロック共重合体は、ブロックの形態が以下式(a)又は(b)で表されるブロック共重合体の水素添加物であり、水素添加率が90mol%以上、好ましくは95mol%以上の水素添加ブロック共重合体である。
  X(YX) ・・・(a)
  (XY)  ・・・(b)
The hydrogenated block copolymer is a hydrogenated product of a block copolymer whose block form is represented by the following formula (a) or (b), and is a hydrogenated block copolymer having a hydrogenation rate of 90 mol % or more, preferably 95 mol % or more.
X(YX) n ...(a)
(XY) n ... (b)
 前記式(a)又は(b)のXで示される重合ブロックを構成するモノビニル置換芳香族炭化水素としては、スチレン、α-メチルスチレン、p-メチルスチレン、クロロスチレン、低級アルキル置換スチレン、ビニルナフタレン等のスチレン又はその誘導体などが挙げられる。これらは1種単独で使用することもできるし、2種以上を組み合せて使用することもできる。 Examples of the monovinyl-substituted aromatic hydrocarbons constituting the polymer block represented by X in formula (a) or (b) include styrene, α-methylstyrene, p-methylstyrene, chlorostyrene, lower alkyl-substituted styrene, vinylnaphthalene, and other styrenes or derivatives thereof. These can be used alone or in combination of two or more.
 前記式(a)又は(b)のYで示される重合ブロックを構成する共役ジエンとしては、ブタジエン、イソプレン、クロロプレンなどが挙げられる。これらは1種単独で使用することもできるし、2種以上を組み合せて使用することもできる。nは1~5の整数であり、好ましくは1又は2である。 Conjugated dienes constituting the polymer block represented by Y in formula (a) or (b) include butadiene, isoprene, chloroprene, etc. These may be used alone or in combination of two or more. n is an integer of 1 to 5, preferably 1 or 2.
 水素添加ブロック共重合体の具体例としては、スチレン・エチレン・ブテン・スチレンブロック共重合体(SEBS)、スチレン・エチレン・プロピレン・スチレンブロック共重合体(SEPS)及びスチレン・エチレン・プロピレンブロック共重合体(SEP)等のスチレン系ブロック共重合体などが挙げられる。 Specific examples of hydrogenated block copolymers include styrene-based block copolymers such as styrene-ethylene-butene-styrene block copolymer (SEBS), styrene-ethylene-propylene-styrene block copolymer (SEPS), and styrene-ethylene-propylene block copolymer (SEP).
 水素添加前のブロック共重合体は、例えば不活性溶媒中で、リチウム触媒又はチーグラー・ナッタ触媒の存在下に、ブロック共重合を行わせる方法により製造することができる。詳細な製造方法は、例えば特公昭40-23798号などに記載されている。水素添加処理は、不活性溶媒中で公知の水素添加触媒の存在下に行うことができる。詳細な方法は、例えば特公昭42-8704号、同43-6636号、同46-20814号などに記載されている。 The block copolymer before hydrogenation can be produced, for example, by a method of performing block copolymerization in an inert solvent in the presence of a lithium catalyst or a Ziegler-Natta catalyst. Detailed production methods are described, for example, in JP-B-40-23798. Hydrogenation treatment can be carried out in an inert solvent in the presence of a known hydrogenation catalyst. Detailed methods are described, for example, in JP-B-42-8704, JP-B-43-6636, and JP-B-46-20814.
 共役ジエンとしてブタジエンが用いられる場合、ポリブタジエンブロックにおける1,2-結合量の割合は20質量%~80質量%であることが好ましく、30質量%~60質量%であることがより好ましい。 When butadiene is used as the conjugated diene, the proportion of 1,2-bonds in the polybutadiene block is preferably 20% by mass to 80% by mass, and more preferably 30% by mass to 60% by mass.
 水素添加ブロック共重合体としては市販品を使用することもできる。具体例としては、クレイトンG1657(商標、クレイトンポリマー製)、セプトン2004(商標、クラレ(株)製)、タフテックH1052(商標、旭化成(株)製)などが挙げられる。 Commercially available hydrogenated block copolymers can also be used. Specific examples include Kraton G1657 (trademark, manufactured by Kraton Polymers), Septon 2004 (trademark, manufactured by Kuraray Co., Ltd.), and Tuftec H1052 (trademark, manufactured by Asahi Kasei Co., Ltd.).
 エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体等の熱可塑性エラストマーのメルトフローレートは、ASTM D-1238に準じ、190℃、2.16kg荷重下にて、0.05g/10min~100g/10minであることが好ましく、0.1g/10min~100g/10minであることがより好ましい The melt flow rate of thermoplastic elastomers such as ethylene-α-olefin copolymers and propylene-α-olefin copolymers is preferably 0.05g/10min to 100g/10min, more preferably 0.1g/10min to 100g/10min, at 190°C and under a load of 2.16kg, in accordance with ASTM D-1238.
 水素添加ブロック共重合体の重量平均分子量は、特に限定されず、例えば、100,000~500,000であってもよい。
 重量平均分子量は、ゲル浸透クロマトグラフ分析(GPC)により、ポリスチレン(PS)換算分子量分布から算出できる。
 分子量分布(重量平均分子量:Mw/数平均分子量:Mn)は、1.0~10が好ましく、1.5~9がより好ましく、1.5~8がさらに好ましい。
The weight average molecular weight of the hydrogenated block copolymer is not particularly limited and may be, for example, 100,000 to 500,000.
The weight average molecular weight can be calculated from the molecular weight distribution in terms of polystyrene (PS) by gel permeation chromatography (GPC).
The molecular weight distribution (weight average molecular weight: Mw/number average molecular weight: Mn) is preferably 1.0-10, more preferably 1.5-9, and even more preferably 1.5-8.
 樹脂粉末が、熱可塑性エラストマーを含む場合、熱可塑性エラストマーの含有量は、プロピレン系重合体粉末及びその他の成分の合計100質量部(好ましくは、プロピレン系重合体粉末、熱可塑性エラストマー及びフィラーの合計100質量部)に対し、1質量部~40質量部が好ましく、5質量部~35質量部がより好ましく、10質量部~35質量部がさらに好ましい。 When the resin powder contains a thermoplastic elastomer, the content of the thermoplastic elastomer is preferably 1 to 40 parts by mass, more preferably 5 to 35 parts by mass, and even more preferably 10 to 35 parts by mass, per 100 parts by mass of the propylene-based polymer powder and other components in total (preferably 100 parts by mass of the propylene-based polymer powder, the thermoplastic elastomer, and the filler in total).
 本開示の樹脂粉末が熱可塑性エラストマーを含む場合、熱可塑性エラストマーは、エチレン・α-オレフィンランダム共重合体を含むことが好ましい。熱可塑性エラストマーにおけるエチレン・α-オレフィンランダム共重合体の含有率は、熱可塑性エラストマー全量に対し、50質量%~100質量%が好ましく、60質量%~100質量%がより好ましく、60質量%~90質量%がさらに好ましい。 When the resin powder of the present disclosure contains a thermoplastic elastomer, the thermoplastic elastomer preferably contains an ethylene-α-olefin random copolymer. The content of the ethylene-α-olefin random copolymer in the thermoplastic elastomer is preferably 50% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, and even more preferably 60% by mass to 90% by mass, based on the total amount of the thermoplastic elastomer.
 熱可塑性エラストマーが水素添加ブロック共重合体を含む場合、熱可塑性エラストマーにおける水素添加ブロック共重合体の含有率は、50質量%~100質量%が好ましく、60質量%~100質量%がより好ましく、60質量%~90質量%がさらに好ましい。
 熱可塑性エラストマーがエチレン・α-オレフィンランダム共重合体と水素添加ブロック共重合体を含む場合、熱可塑性エラストマーにおけるエチレン・α-オレフィンランラム共重合体の含有率は、50質量%~99質量%が好ましく、60質量%~95質量%がより好ましく、60質量%~90質量%がさらに好ましく、熱可塑性エラストマーにおける水素添加ブロック共重合体の含有率は、1質量%~50質量%が好ましく、5質量%~40質量%がより好ましく、10質量%~40質量%がさらに好ましい。
When the thermoplastic elastomer contains a hydrogenated block copolymer, the content of the hydrogenated block copolymer in the thermoplastic elastomer is preferably 50% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, and even more preferably 60% by mass to 90% by mass.
When the thermoplastic elastomer contains an ethylene/α-olefin random copolymer and a hydrogenated block copolymer, the content of the ethylene/α-olefin random copolymer in the thermoplastic elastomer is preferably 50% by mass to 99% by mass, more preferably 60% by mass to 95% by mass, and even more preferably 60% by mass to 90% by mass, and the content of the hydrogenated block copolymer in the thermoplastic elastomer is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 40% by mass, and even more preferably 10% by mass to 40% by mass.
(フィラー)
 樹脂粉末は、プロピレン系重合体粉末とともにフィラーを含む混合物であることが好ましい。フィラーとしては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Filler)
The resin powder is preferably a mixture containing a propylene-based polymer powder and a filler. As the filler, one type may be used alone, or two or more types may be used in combination.
 フィラーは樹脂粉末に対してドライブレンドしても、樹脂中に含有されてもよい。フィラーを含むことで、樹脂粉末の耐熱性、強度等を向上でき、得られる立体成形体の反りが小さくなりやすい。 The filler may be dry blended with the resin powder or may be contained in the resin. By including a filler, the heat resistance, strength, etc. of the resin powder can be improved, and the warping of the resulting three-dimensional molded body tends to be reduced.
 フィラーは、タルク、硫酸マグネシウム繊維、ガラス繊維、炭素繊維、マイカ、炭酸カルシウム、水酸化マグネシウム、リン酸アンモニウム塩、珪酸塩類、炭酸塩類、カーボンブラック、ガラスビーズ、ヒュームドシリカ、中空ガラスビーズ、ガラス繊維、粉砕ガラス、酸化アルミニウム、並びにジルコニウム、タンタル、チタン、タングステン、ホウ素、アルミニウム及びベリリウムの無機酸化物、窒化物、ホウ化物及び炭化物等の無機フィラーと、木粉、セルロース、ポリエステル繊維、ナイロン繊維、ケナフ繊維、竹繊維、ジュード繊維、米粉、澱粉、コーンスターチ等の有機フィラーとに大別される。
 前記無機フィラーとしては、タルク、硫酸マグネシウム、ガラス、シリカ、ガラス繊維、炭素繊維、木粉、セルロースが好適に使用される。以下、詳細に説明する。
Fillers are broadly classified into inorganic fillers such as talc, magnesium sulfate fiber, glass fiber, carbon fiber, mica, calcium carbonate, magnesium hydroxide, ammonium phosphates, silicates, carbonates, carbon black, glass beads, fumed silica, hollow glass beads, glass fiber, crushed glass, aluminum oxide, and inorganic oxides, nitrides, borides, and carbides of zirconium, tantalum, titanium, tungsten, boron, aluminum, and beryllium; and organic fillers such as wood flour, cellulose, polyester fiber, nylon fiber, kenaf fiber, bamboo fiber, jute fiber, rice flour, starch, and corn starch.
As the inorganic filler, talc, magnesium sulfate, glass, silica, glass fiber, carbon fiber, wood powder, and cellulose are preferably used.
(タルク)
 タルクは、含水ケイ酸マグネシウムを粉砕したものである。含水ケイ酸マグネシウムの結晶構造は、パイロフィライト型三層構造であり、タルクはこの構造が積み重なったものである。タルクとして、より好ましくは、含水ケイ酸マグネシウムの結晶を単位層程度にまで微粉砕した平板状のものである。
(talc)
Talc is pulverized magnesium silicate hydrate. The crystal structure of magnesium silicate hydrate is a pyrophyllite-type three-layer structure, and talc is a stack of these structures. Talc is more preferably a plate-like talc in which magnesium silicate hydrate crystals are finely pulverized to the unit layer level.
 上記のタルクの平均粒子径として、3μm以下が好ましい。ここでタルクの平均粒子径とは、遠心沈降式粒度分布測定装置を用いて水又はアルコールである分散媒中にタルクを懸濁させて測定した篩下法の積分分布曲線から求めた50%相当粒子径D50を意味する。タルクは、無処理のまま使用してもよく、又は、プロピレン系ブロック共重合体との界面接着性、樹脂粉末に対する分散性等を向上させるために、各種シランカップリング剤、チタンカップリング剤、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸塩類、又は、他の界面活性剤で表面を処理して使用してもよい。 The average particle size of the talc is preferably 3 μm or less. Here, the average particle size of talc means the 50% equivalent particle size D50 obtained from the integral distribution curve of the sieve size measurement method in which talc is suspended in a dispersion medium of water or alcohol using a centrifugal sedimentation type particle size distribution measurement device. Talc may be used as is, or may be surface-treated with various silane coupling agents, titanium coupling agents, higher fatty acids, higher fatty acid esters, higher fatty acid amides, higher fatty acid salts, or other surfactants in order to improve the interfacial adhesion with the propylene-based block copolymer, dispersibility in resin powder, etc.
(硫酸マグネシウム)
 硫酸マグネシウムは、硫酸マグネシウム繊維であることが好ましい。硫酸マグネシウム繊維の平均繊維長は、5μm~50μmが好ましく、10μm~30μmがより好ましい。また、硫酸マグネシウム繊維の平均繊維径は、0.3μm~2μmが好ましく、0.5μm~1μmがより好ましい。市販品としては、宇部興産(株)「モスハイジ」などが挙げられる。
(Magnesium sulfate)
The magnesium sulfate is preferably magnesium sulfate fiber. The average fiber length of the magnesium sulfate fiber is preferably 5 μm to 50 μm, and more preferably 10 μm to 30 μm. The average fiber diameter of the magnesium sulfate fiber is preferably 0.3 μm to 2 μm, and more preferably 0.5 μm to 1 μm. An example of a commercially available product is "MOS HIGE" by Ube Industries, Ltd.
(ガラス)
 ガラスは、例えば、中実ガラスビーズ、中空ガラスビーズ、多孔性ガラスビーズ、ガラス繊維、粉砕ガラス、及びこれらの組み合わせからなる群より選択される。別の例では、ガラスは、ソーダ石灰ガラス(NaO/CaO/SiO)、ホウケイ酸ガラス、リン酸塩系ガラス、石英ガラス、及びこれらの組み合わせからなる群より選択される。さらに別の例では、ガラスは、ソーダ石灰ガラス、ホウケイ酸ガラス、及びこれらの組み合わせからなる群より選択される。さらに他の例では、ガラスは、任意の種類の非晶質ケイ酸塩ガラスであってよい。
(Glass)
The glass may be, for example, selected from the group consisting of solid glass beads, hollow glass beads, porous glass beads, glass fibers, crushed glass, and combinations thereof. In another example, the glass may be selected from the group consisting of soda-lime glass ( Na2O /CaO/ SiO2 ), borosilicate glass, phosphate-based glass, quartz glass, and combinations thereof. In yet another example, the glass may be selected from the group consisting of soda-lime glass, borosilicate glass, and combinations thereof. In yet another example, the glass may be any type of amorphous silicate glass.
 例えば、ガラスの表面は、アクリレート官能性シラン、メタクリレート官能性シラン、エポキシ官能性シラン、エステル官能性シラン、アミノ官能性シラン、及びこれらの組み合わせからなる群より選択される官能基で修飾されていてもよい。1つ又は複数の前述の官能基で修飾されたガラスの具体例としては、ポッターズインダストリーズ社(例えばエポキシ官能性シラン又はアミノ官能性シラン)、ゲレスト社(例えばアクリレート官能性シラン又はメタクリレート官能性シラン)、シグマアルドリッチ社(例えばエステル官能性シラン)等が挙げられる。 For example, the surface of the glass may be modified with a functional group selected from the group consisting of acrylate-functional silanes, methacrylate-functional silanes, epoxy-functional silanes, ester-functional silanes, amino-functional silanes, and combinations thereof. Specific examples of glass modified with one or more of the aforementioned functional groups include those from Potters Industries (e.g., epoxy-functional silanes or amino-functional silanes), Gelest (e.g., acrylate-functional silanes or methacrylate-functional silanes), Sigma-Aldrich (e.g., ester-functional silanes), and the like.
 例えば、ガラスは、ソーダ石灰ガラス、ホウケイ酸ガラス、リン酸塩ガラス、石英ガラス、及びこれらの組み合わせからなる群より選択され;又はガラスの表面はアクリレート官能性シラン、メタクリレート官能性シラン、エポキシ官能性シラン、エステル官能性シラン、アミノ官能性シラン、及びこれらの組み合わせからなる群より選択される官能基で修飾され;又はこれらが組み合わせられる。 For example, the glass is selected from the group consisting of soda lime glass, borosilicate glass, phosphate glass, quartz glass, and combinations thereof; or the surface of the glass is modified with a functional group selected from the group consisting of acrylate-functional silanes, methacrylate-functional silanes, epoxy-functional silanes, ester-functional silanes, amino-functional silanes, and combinations thereof; or combinations thereof.
(シリカ)
 シリカとしては特に限定されず、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)などが挙げられる。
(silica)
The silica is not particularly limited, and examples thereof include dry process silica (anhydrous silicic acid) and wet process silica (hydrated silicic acid).
シリカは表面処理剤により変性させたものを用いてもよく、方法としては、特に限定されず、従来公知の方法を用いることができる。例えば、ヘキサメチルジシラザン(HMDS)、ジメチルジクロロシラン(DMDS)等のシランカップリング剤、ジメチルシリコーンオイル、アミノ変性シリコーンオイル等のシリコーンオイル処理剤などが挙げられる。 Silica may be modified with a surface treatment agent, and the method is not particularly limited, and any conventionally known method can be used. Examples include silane coupling agents such as hexamethyldisilazane (HMDS) and dimethyldichlorosilane (DMDS), silicone oil treatment agents such as dimethyl silicone oil and amino-modified silicone oil, etc.
(ガラス繊維)
 ガラス繊維としては、Eガラス(Electrical glass)、Cガラス(Chemical glass)、Aガラス(Alkali glass)、Sガラス(High strength glass)及び耐アルカリガラスなどのガラスを溶融紡糸してフィラメント状の繊維にしたものが挙げられる。該ガラス繊維は1mm以下の短繊維の形態で樹脂粉末中に含まれることが好ましい。
(Glass fiber)
Examples of the glass fiber include filament-like fibers obtained by melt spinning glass such as E glass (electrical glass), C glass (chemical glass), A glass (alkaline glass), S glass (high strength glass), and alkali-resistant glass. The glass fiber is preferably contained in the resin powder in the form of short fibers of 1 mm or less.
(炭素繊維)
 炭素繊維は、繊維径が2μmより大きく15μm以下が好ましく、3μm~12μmがより好ましく、4μm~10μmがさらに好ましい。繊維径が2μm以下の場合、繊維の剛性が著しく低下し、繊維径が15μmを超えると、繊維のアスペクト比(長さ(L)と太さ(D)の比:L/D)が低下してしまうため、剛性、耐熱性などの十分な補強効率が得られず好ましくない。ここで繊維径は、繊維を繊維方向に垂直に裁断し、その断面を顕微鏡観察して直径を計測し、100本以上の繊維の直径の数平均を算出することにより求めることができる。
(Carbon fiber)
The carbon fiber preferably has a fiber diameter of more than 2 μm and not more than 15 μm, more preferably 3 μm to 12 μm, and even more preferably 4 μm to 10 μm. When the fiber diameter is 2 μm or less, the rigidity of the fiber is significantly reduced, and when the fiber diameter exceeds 15 μm, the aspect ratio of the fiber (the ratio of length (L) to thickness (D): L/D) is reduced, and therefore sufficient reinforcement efficiency such as rigidity and heat resistance cannot be obtained, which is not preferable. Here, the fiber diameter can be obtained by cutting the fiber perpendicular to the fiber direction, measuring the diameter by observing the cross section under a microscope, and calculating the number average of the diameters of 100 or more fibers.
 また、炭素繊維は、繊維長が1mm~20mmが好ましく、2mm~15mmがより好ましく、3mm~10mmがさらに好ましい。繊維長が1mm未満の場合、アスペクト比が低く十分な補強効率が得られず、繊維長が20mmを超えると、加工性、外観などが著しく悪化してしまうため好ましくない。 Furthermore, the carbon fiber preferably has a fiber length of 1 mm to 20 mm, more preferably 2 mm to 15 mm, and even more preferably 3 mm to 10 mm. If the fiber length is less than 1 mm, the aspect ratio is low and sufficient reinforcement efficiency cannot be obtained, and if the fiber length exceeds 20 mm, the workability and appearance are significantly deteriorated, which is not preferable.
 ここで、繊維長は、ノギス等を用いて計測し、100本以上の繊維の繊維長の数平均を算出することにより求めることができる。
 樹脂粉末で使用され得る炭素繊維としては、特に制限なく、従来公知の炭素繊維が使用できる。炭素繊維としては、例えば、ポリアクリロニトリルを原料としたPAN系炭素繊維、ピッチを原料としたピッチ系炭素繊維などが挙げられる。これらの炭素繊維は、繊維原糸を所望の長さに裁断した、所謂チョップドカーボンファイバーとして用いることができ、又必要に応じて、各種サイジング剤を用いて収束処理されたものであってもよい。収束処理に用いるサイジング剤は、ポリプロピレン樹脂との溶融混練において融解する必要があるため、200℃以下で溶融するものであることが好ましい。
Here, the fiber length can be measured using a caliper or the like, and calculated by calculating the number average of the fiber lengths of 100 or more fibers.
The carbon fiber that can be used in the resin powder is not particularly limited, and conventionally known carbon fibers can be used. Examples of carbon fibers include PAN-based carbon fibers made from polyacrylonitrile and pitch-based carbon fibers made from pitch. These carbon fibers can be used as so-called chopped carbon fibers in which the fiber yarn is cut to a desired length, and may also be those that have been subjected to a sizing treatment using various sizing agents as necessary. The sizing agent used for the sizing treatment needs to melt during melt-kneading with the polypropylene resin, so it is preferable that it melts at 200°C or less.
 このようなチョップドカーボンファイバーの具体例としては、PAN系炭素繊維では、東レ(株)製商品名『トレカチョップ』、三菱レーヨン(株)製商品名『パイロフィル(チョップ)』、東邦テナックス(株)製商品名『ベスファイト(チョップ)』等が挙げられ、ピッチ系炭素繊維では、三菱化学産資(株)製商品名『ダイアリード』、大阪ガスケミカル(株)製商品名『ドナカーボ(チョップ)』、呉羽化学(株)製商品名『クレカチョップ』等が挙げられる。 Specific examples of such chopped carbon fibers include PAN-based carbon fibers such as "TORAYCA CHOP" manufactured by Toray Industries, Inc., "PYROFIL (CHOPP)" manufactured by Mitsubishi Rayon Co., Ltd., and "BESFIGHT (CHOPP)" manufactured by Toho Tenax Co., Ltd., and pitch-based carbon fibers such as "DIALEAD" manufactured by Mitsubishi Chemical Industrial Products Co., Ltd., "DONACARBO (CHOPP)" manufactured by Osaka Gas Chemical Co., Ltd., and "KURECA CHOP" manufactured by Kureha Chemical Co., Ltd.
 これらの炭素繊維成分は、樹脂粉末を構成するその他の成分と共に、押出機などの溶融混練装置を用いて複合化されるが、この溶融混練の際には、炭素繊維成分の過剰な折損を防止するような複合化方法を選択することが好ましい。例えば、押出機による溶融混練では、炭素繊維成分以外の成分を十分に溶融混練した後、炭素繊維成分をサイドフィード法等により、樹脂成分の完全溶融位置よりも川下側の位置からフィードし、繊維の折損を抑えながら、収束繊維を分散させる方法等が挙げられる。 These carbon fiber components are compounded together with the other components that make up the resin powder using a melt-kneading device such as an extruder, but during this melt-kneading, it is preferable to select a compounding method that prevents excessive breakage of the carbon fiber components. For example, when melt-kneading using an extruder, the components other than the carbon fiber components are sufficiently melt-kneaded, and then the carbon fiber components are fed from a position downstream of the position where the resin components are completely melted using a side feed method or the like, thereby dispersing the bundled fibers while preventing fiber breakage.
(木粉)
 木粉としては、木材をカッターミルなどによって破断し、これをボールミル、インペラーミルなどにより粉砕して、微粉状にしたものなどが使用可能である。木粉の平均粒径は1μm~200μmが好ましく、10μm~150μmがより好ましい。平均粒径が1μm未満である場合、取り扱いが困難であるうえに、特に木質系充填剤の配合量が多い場合は、樹脂への分散性が低いと、製造される成形体に機械強度の低下が発生するおそれがある。また、平均粒径が200μmより大きい場合、成形体の均質性、平面性、機械的強度等が低下するおそれがある。
(Wood flour)
The wood flour may be prepared by breaking wood with a cutter mill or the like, and pulverizing the broken wood with a ball mill, impeller mill, or the like to produce fine powder. The average particle size of the wood flour is preferably 1 μm to 200 μm, more preferably 10 μm to 150 μm. If the average particle size is less than 1 μm, handling is difficult, and if the amount of wood-based filler mixed is large, the mechanical strength of the molded body produced may decrease if the dispersibility in the resin is low. If the average particle size is more than 200 μm, the homogeneity, flatness, mechanical strength, etc. of the molded body may decrease.
(セルロース)
 セルロースとしては、セルロース繊維と結晶セルロースが好適に使用される。
 セルロース繊維は、純度が高い繊維が好ましく、例えば、α-セルロース含量が80質量%以上の繊維が好ましい。セルロース繊維などの有機繊維としては、平均繊維径0.1μm~1000μm及び平均繊維長0.001mm~5mmを有する繊維が挙げられる。
(cellulose)
As the cellulose, cellulose fiber and crystalline cellulose are preferably used.
The cellulose fibers are preferably those having a high purity, for example, those having an α-cellulose content of 80% by mass or more. Organic fibers such as cellulose fibers include fibers having an average fiber diameter of 0.1 μm to 1000 μm and an average fiber length of 0.001 mm to 5 mm.
 結晶セルロースは、繊維性植物からパルプとして得たα-セルロースを、鉱酸で部分的に解重合し、精製したものであり、製品としては旭化成(株)製「セオラス」等が挙げられる。 Crystalline cellulose is made by partially depolymerizing α-cellulose, obtained as pulp from fibrous plants, with mineral acids and refining it. Examples of products include "Ceolas" manufactured by Asahi Kasei Corporation.
 表面処理を施されたフィラーを用いてもよい。これにより、フィラーと樹脂粉末との密着性を向上させることが可能である。表面処理に用いられる表面処理剤としては、例えば、アミノシラン、エポキシシラン、アクリルシラン等のシランカップリング剤などが挙げられる。これらの表面処理剤は、フィラーの表面でカップリング反応により固定化されている、又はフィラーの表面を被覆していてもよい。三次元成形に使用した粉末をリサイクル使用する上で、熱などによって改質されにくいという点で、カップリング反応によって固定化されているものが好ましい。  Fillers that have been surface-treated may be used. This can improve the adhesion between the filler and the resin powder. Examples of surface treatment agents used for the surface treatment include silane coupling agents such as aminosilane, epoxysilane, and acrylicsilane. These surface treatment agents may be fixed on the surface of the filler by a coupling reaction, or may cover the surface of the filler. When recycling powders used in three-dimensional molding, those that have been fixed by a coupling reaction are preferred because they are less likely to be modified by heat, etc.
 樹脂粉末が、フィラーを含む場合、フィラーの含有量は、プロピレン系重合体粉末及びその他の成分の合計100質量部(好ましくは、プロピレン系重合体粉末、熱可塑性エラストマー及びフィラーの合計100質量部)に対し、1質量部~50質量部であってもよく、5質量部~45質量部が好ましく、10質量部~45質量部がさらに好ましい。 When the resin powder contains a filler, the content of the filler may be 1 to 50 parts by mass, preferably 5 to 45 parts by mass, and more preferably 10 to 45 parts by mass, per 100 parts by mass of the propylene-based polymer powder and other components in total (preferably 100 parts by mass of the propylene-based polymer powder, thermoplastic elastomer, and filler in total).
 樹脂粉末が、フィラー及び熱可塑性エラストマーを含む場合、フィラーと熱可塑性エラストマーとの質量比率であるフィラー/熱可塑性エラストマーは、機械特性及び低温衝撃性のバランスの観点から、0.25~5であることが好ましく、0.33~4であることがより好ましく、0.5~3であることがさらに好ましい。 When the resin powder contains a filler and a thermoplastic elastomer, the mass ratio of the filler to the thermoplastic elastomer, filler/thermoplastic elastomer, is preferably 0.25 to 5, more preferably 0.33 to 4, and even more preferably 0.5 to 3, from the viewpoint of the balance between mechanical properties and low-temperature impact resistance.
 フィラーの体積平均粒径(好ましくは無機フィラーの体積平均粒径)は、1μm~20μmであってもよく、2μm~15μmであってもよく、3μm~10μmであってもよい。
 フィラーの体積平均粒径は、レーザー回折・散乱式粒度分布測定装置等の粒度分布測定装置を用い、フィラーを水中に分散した状態で測定した各粒子の粒径に基づく各粒子の体積を小粒径側から積算した場合に積算体積が全体積の50%となるときの粒径の値をいう。
The volume average particle diameter of the filler (preferably the volume average particle diameter of the inorganic filler) may be 1 μm to 20 μm, 2 μm to 15 μm, or 3 μm to 10 μm.
The volume average particle size of the filler refers to the value of the particle size when the volume of each particle measured in a state where the filler is dispersed in water using a particle size distribution measuring device such as a laser diffraction/scattering type particle size distribution measuring device, and the volume of each particle is integrated from the small particle size side, and the integrated volume is 50% of the total volume.
(その他の成分)
 本開示の樹脂粉末は、発明の効果を損なわない範囲において、プロピレン系重合体、熱可塑性エラストマー以外のその他の成分を含む粉末であってもよい。その他の成分としては、例えば、プロピレン系重合体以外の熱可塑性樹脂等の樹脂成分、熱硬化性樹脂、添加剤成分等が挙げられる。
 樹脂粉末にバイオマス由来原料を配合してもよい。
(Other ingredients)
The resin powder of the present disclosure may be a powder containing other components in addition to the propylene-based polymer and the thermoplastic elastomer, as long as the effects of the present invention are not impaired. Examples of other components include resin components such as thermoplastic resins other than the propylene-based polymer, thermosetting resins, additive components, etc.
The resin powder may be mixed with a biomass-derived raw material.
 添加剤成分としては、耐熱安定剤、帯電防止剤、耐候安定剤、耐光安定剤、紫外線吸収剤、老化防止剤、酸化防止剤、中和剤、脂肪酸金属塩、軟化剤、分散剤、着色剤、滑剤、顔料、染料、増白剤、帯電剤、溶媒、湿潤剤、抗微生物剤、キレート剤、流動助剤、強化材、エネルギー吸収促進剤、エネルギー吸収抑制剤、レーザー吸収剤、融合剤、仕上げ向上剤等が挙げられる。前述のその他の成分は、それぞれ独立に、1種以上使用してもよく、2種以上を組み合わせて使用してもよい。その他の成分を混合して樹脂粉末を作製する場合、混合順序は任意であり、同時に混合してもよいし、一部成分を混合した後に他の成分を混合するというような多段階の混合方法を採用してもよい。 Additive components include heat stabilizers, antistatic agents, weather stabilizers, light stabilizers, UV absorbers, antioxidants, antioxidants, neutralizers, fatty acid metal salts, softeners, dispersants, colorants, lubricants, pigments, dyes, brighteners, electrostatic agents, solvents, wetting agents, antimicrobial agents, chelating agents, flow aids, reinforcing materials, energy absorption promoters, energy absorption inhibitors, laser absorbers, fusion agents, and finish improvers. The above-mentioned other components may be used independently, either alone or in combination of two or more. When preparing the resin powder by mixing the other components, the mixing order is arbitrary, and the components may be mixed simultaneously, or a multi-stage mixing method may be used in which some components are mixed and then the other components are mixed.
 本開示の樹脂粉末は、流動助剤を含んでいてもよい。流動助剤は樹脂粉末に対してドライブレンドされていることが好ましい。本開示において流動助剤とは、樹脂粉末同士の付着力によって樹脂粉末が凝集することを抑制する物質を指す。流動助剤を含むことで、樹脂粉末の流動性を向上でき、立体成形体にする際に樹脂粉末の充填にむらがなくなる。その結果、得られる立体成形体の反りが小さくなりやすい。 The resin powder of the present disclosure may contain a flow aid. It is preferable that the flow aid is dry blended with the resin powder. In the present disclosure, the flow aid refers to a substance that suppresses the aggregation of resin powder due to the adhesive force between the resin powders. By including a flow aid, the fluidity of the resin powder can be improved, and there is no unevenness in the filling of the resin powder when it is made into a three-dimensional molded body. As a result, the warping of the obtained three-dimensional molded body is likely to be small.
 流動助剤としては、例えば、溶融シリカ、結晶シリカ、アモルファスシリカなどのシリカ(二酸化ケイ素)、アルミナ(酸化アルミニウム)、アルミナコロイド(アルミナゾル)、アルミナホワイトなどのアルミナ、軽質炭酸カルシウム、重質炭酸カルシウム、微粉化炭酸カルシウム、特殊炭酸カルシウム系充填剤などの炭酸カルシウム、霞石閃長石微粉末、モンモリロナイト、ベントナイト等の焼成クレー、シラン改質クレーなどのクレー(ケイ酸アルミニウム粉末)、タルク、ケイ藻土、ケイ砂などのケイ酸含有化合物、軽石粉、軽石バルーン、スレート粉、雲母粉などの天然鉱物の粉砕品、硫酸バリウム、リトポン、硫酸カルシウム、二硫化モリブデン、グラファイト(黒鉛)などの鉱物、ガラス繊維、ガラスビーズ、ガラスフレーク、発泡ガラスビーズなどのガラス系フィラー、フライアッシュ球、火山ガラス中空体、合成無機中空体、単結晶チタン酸カリ、炭素繊維、カーボンナノチューブ、炭素中空球、フラーレン、無煙炭粉末、人造氷晶石(クリオライト)、酸化チタン、酸化マグネシウム、塩基性炭酸マグネシウム、ドロマイト、チタン酸カリウム、亜硫酸カルシウム、マイカ、アスベスト、ケイ酸カルシウム、硫化モリブデン、ボロン繊維、炭化ケイ素繊維などが挙げられる。この中でも、シリカ、アルミナ、炭酸カルシウム、ガラス系フィラー及び酸化チタンが好ましく、シリカがより好ましい。
 シリカの市販品としては、日本アエロジル株式会社製フュームドシリカ“AEROSIL”(登録商標)シリーズ、株式会社トクヤマ製乾式シリカ“レオロシール”(登録商標)シリーズ、信越化学工業株式会社製ゾルゲルシリカパウダーX-24シリーズなどが挙げられる。
Examples of flow aids include silica (silicon dioxide) such as fused silica, crystalline silica, and amorphous silica; alumina (aluminum oxide), alumina colloid (alumina sol), and alumina white; calcium carbonate such as light calcium carbonate, heavy calcium carbonate, finely powdered calcium carbonate, and special calcium carbonate-based fillers; nepheline syenite fine powder, calcined clay such as montmorillonite and bentonite; clay (aluminum silicate powder) such as silane-modified clay; silicic acid-containing compounds such as talc, diatomaceous earth, and silica sand; crushed natural minerals such as pumice powder, pumice balloon, slate powder, and mica powder; sulfur; Examples of suitable fillers include minerals such as barium sulfate, lithopone, calcium sulfate, molybdenum disulfide, and graphite, glass-based fillers such as glass fibers, glass beads, glass flakes, and foamed glass beads, fly ash spheres, volcanic glass hollow bodies, synthetic inorganic hollow bodies, single crystal potassium titanate, carbon fibers, carbon nanotubes, carbon hollow spheres, fullerenes, anthracite powder, artificial cryolite, titanium oxide, magnesium oxide, basic magnesium carbonate, dolomite, potassium titanate, calcium sulfite, mica, asbestos, calcium silicate, molybdenum sulfide, boron fibers, and silicon carbide fibers. Among these, silica, alumina, calcium carbonate, glass-based fillers, and titanium oxide are preferred, and silica is more preferred.
Commercially available silica products include the fumed silica "AEROSIL" (registered trademark) series manufactured by Nippon Aerosil Co., Ltd., the dry silica "Reolosil" (registered trademark) series manufactured by Tokuyama Corporation, and the sol-gel silica powder X-24 series manufactured by Shin-Etsu Chemical Co., Ltd.
 本開示の樹脂粉末は、エネルギー吸収促進剤を含んでいてもよい。エネルギー吸収促進剤は、電磁放射線を吸収する物質である。
 エネルギー吸収促進剤は、フィラーを兼ねていてもよい。
The resin powder of the present disclosure may include an energy absorption enhancer. The energy absorption enhancer is a material that absorbs electromagnetic radiation.
The energy absorption promoter may also serve as a filler.
 エネルギー吸収促進剤としては、例えば、顔料、カーボンブラック、炭素繊維、銅ヒドロキシホスフェート、近赤外線吸収性染料、近赤外線吸収性顔料、金属ナノ粒子、ポリチオフェン、ポリ(p-フェニレンスルフィド)、ポリアニリン、ポリ(ピロール)、ポリアセチレン、ポリ(p-フェニレンビニレン)、ポリパラフェニレン、ポリ(スチレンスルホネート)、ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンホスホネート)p-ジエチルアミノベンズアルデヒドジフェニルヒドラゾン、アンチ-9-イソプロピルカルバゾール-3-、又はこれらの組み合わせからなる共役ポリマーなどが挙げられる。 Examples of energy absorption promoters include pigments, carbon black, carbon fibers, copper hydroxyphosphate, near infrared absorbing dyes, near infrared absorbing pigments, metal nanoparticles, polythiophenes, poly(p-phenylene sulfide), polyaniline, poly(pyrrole), polyacetylene, poly(p-phenylene vinylene), polyparaphenylene, poly(styrene sulfonate), poly(3,4-ethylenedioxythiophene)-poly(styrene phosphonate) p-diethylaminobenzaldehyde diphenylhydrazone, anti-9-isopropylcarbazole-3-, and conjugated polymers consisting of combinations thereof.
 本開示の樹脂粉末は、エネルギー吸収抑制剤を含んでいてもよい。エネルギー吸収抑制剤は電磁放射線を吸収しにくい物質である。
 エネルギー吸収抑制剤は、フィラーを兼ねていてもよい。
The resin powder of the present disclosure may contain an energy absorption inhibitor, which is a material that does not easily absorb electromagnetic radiation.
The energy absorption inhibitor may also function as a filler.
 エネルギー吸収抑制剤としては、例えば、チタン等の粒子電磁放射線を反射する物質、雲母粉末、セラミック粉末等の断熱性の粉末、水などが挙げられる。 Energy absorption inhibitors include, for example, substances that reflect particulate electromagnetic radiation, such as titanium, insulating powders, such as mica powder and ceramic powder, and water.
 エネルギー吸収促進剤及びエネルギー吸収抑制剤はどちらか一方を用いてもよく、電磁放射線の吸収度合いを調整する点から、エネルギー吸収促進剤及びエネルギー吸収抑制剤を併用してもよい。 Either the energy absorption promoter or the energy absorption inhibitor may be used, or the energy absorption promoter and the energy absorption inhibitor may be used in combination to adjust the degree of absorption of electromagnetic radiation.
 本開示の樹脂粉末は、融合剤を含んでいてもよい。融合剤としては、例えば、放射線吸収剤(例えば、活性材料)を含む分散物である。活性材料は、任意の赤外光吸収性着色料であってもよい。融合剤の溶媒は、水又は非水性溶媒(例えば、エタノール、アセトン、n-メチルピロリドン、脂肪族炭化水素、その他)であってもよい。例えば、融合剤は活性材料と溶媒からなる混合物(好ましくは他の成分を含まない混合物)であってもよい。
 融合剤は、例えば、少なくとも1つの共溶媒;少なくとも1つの界面活性剤;少なくとも1つの抗コゲーション剤;少なくとも1つのキレート剤;少なくとも1つの緩衝液;少なくとも1つの殺生物剤;及び水を含んでいてもよい。
The resin powder of the present disclosure may include a coalescent. The coalescent may be, for example, a dispersion containing a radiation absorbing agent (e.g., an active material). The active material may be any infrared light absorbing colorant. The solvent for the coalescent may be water or a non-aqueous solvent (e.g., ethanol, acetone, n-methylpyrrolidone, aliphatic hydrocarbons, etc.). For example, the coalescent may be a mixture of an active material and a solvent (preferably without other components).
The fusing agent may include, for example, at least one co-solvent; at least one surfactant; at least one anti-kogation agent; at least one chelating agent; at least one buffer; at least one biocide; and water.
 本開示の樹脂粉末は、仕上げ向上剤を含んでいてもよい。仕上げ向上剤は、界面活性剤、共溶媒、及びバランス量の水を含んでいてもよい。仕上げ向上剤は、界面活性剤、共溶媒、及びバランス量の水からなり、他の成分を含まない混合物であってもよい。仕上げ向上剤は、着色料を含んでいてもよく、あるいは、着色料、界面活性剤、共溶媒、及びバランス量の水からなり、かつ他の成分を含まない混合物であってもよい。仕上げ向上剤は、抗コゲーション剤、抗微生物剤、キレート剤等の1種以上の成分を含んでいてもよい。 The resin powder of the present disclosure may include a finishing improver. The finishing improver may include a surfactant, a co-solvent, and the balance of water. The finishing improver may be a mixture of a surfactant, a co-solvent, and the balance of water, with no other ingredients. The finishing improver may include a colorant, or may be a mixture of a colorant, a surfactant, a co-solvent, and the balance of water, with no other ingredients. The finishing improver may include one or more ingredients such as an anti-kogation agent, an antimicrobial agent, a chelating agent, etc.
 本開示の樹脂粉末、樹脂粉末に含まれるプロピレン系重合体粉末には、任意の表面活性コーティングが施されていてもよい。表面活性コーティングとしては、例えば、界面活性剤、酸性ポリマー、酸性ポリマーの塩、無機粒子等を含むコーティングが挙げられ、これらの1種を用いたコーティングであってもよく、2種以上を用いたコーティングであってもよい。 The resin powder of the present disclosure and the propylene-based polymer powder contained in the resin powder may be coated with any surface-active coating. Examples of surface-active coatings include coatings containing surfactants, acidic polymers, salts of acidic polymers, inorganic particles, etc., and the coating may be one type of these, or two or more types of these.
 表面活性コーティングに用いられる界面活性剤としては、例えば、アニオン界面活性剤、ノニオン界面活性剤、カチオン界面活性剤等が挙げられる。アニオン界面活性剤としては、例えば、ラウリル硫酸ナトリウム、直鎖又は分岐鎖のアルキルベンゼンスルホン酸塩等が挙げられる。 Surfactants used in surface-active coatings include, for example, anionic surfactants, nonionic surfactants, cationic surfactants, etc. Examples of anionic surfactants include sodium lauryl sulfate, linear or branched alkylbenzene sulfonates, etc.
 表面活性コーティングは、無機粒子を用いる無機粒状コーティングであってもよく、例えば、ヒュームド金属酸化物ナノ粒子を用いる無機粒状コーティングであってもよい。無機粒状コーティングに用いられる無機粒子としては、例えば、二酸化ケイ素、例えばAEROSIL(登録商標)200、酸化アルミニウム、例えばAEROXIDE(登録商標)AluC及びその水性分散物、例えばAERODISP(登録商標)W1824、AERODISP(登録商標)W440等が挙げられる。 The surface active coating may be an inorganic particulate coating using inorganic particles, for example, an inorganic particulate coating using fumed metal oxide nanoparticles. Inorganic particles used in the inorganic particulate coating include, for example, silicon dioxide, such as AEROSIL® 200, aluminum oxide, such as AEROXIDE® AluC, and aqueous dispersions thereof, such as AERODISP® W1824, AERODISP® W440, etc.
 表面活性コーティングは、適切な方法を使用して適用される。例えば、噴霧コーティング、パンコーティング、空気又はガス懸濁コーティング、液相コーティング、液体分散物コーティング、浸漬等が挙げられる。また、コーティング後に重合等の反応を行ってもよい。 The surface active coating is applied using any suitable method, such as spray coating, pan coating, air or gas suspension coating, liquid phase coating, liquid dispersion coating, immersion, etc. Additionally, a reaction such as polymerization may be carried out after coating.
 本開示の樹脂粉末は、立体成形物の成形に用いられる。立体成形物の成形に用いる場合、本開示の樹脂粉末を単独で用いてもよく、他の成分と混合して用いてもよい。 The resin powder of the present disclosure is used for molding three-dimensional objects. When used for molding three-dimensional objects, the resin powder of the present disclosure may be used alone or in combination with other components.
 本開示の樹脂粉末を用いて成形可能な立体成形物としては、特に限定されず、自動車用成形物(例えば、コンソール部品、スイッチ部品、ドアトリム部品、インスツルメンツパネル部品、クリップ類、カバー、エンジン周辺部品、グリップ部品、バンパー、バックドア、ラジエーター部品、バッテリー部品など)、電化製品用成形物(電化製品の部品、筐体など)、家具用部材、建造物用部材、建築用資材、航空部品、玩具、シューズ、スポーツ用品、装飾品、ケース類等が挙げられる。 Three-dimensional molded products that can be molded using the resin powder of the present disclosure include, but are not limited to, automobile molded products (e.g., console parts, switch parts, door trim parts, instrument panel parts, clips, covers, engine peripheral parts, grip parts, bumpers, back doors, radiator parts, battery parts, etc.), electrical appliance molded products (electrical appliance parts, housings, etc.), furniture parts, building materials, construction materials, aircraft parts, toys, shoes, sporting goods, decorations, cases, etc.
<立体成形物>
 本開示の立体成形物は、樹脂粉末を用いて成形されたものである。立体成形物としては、例えば、前述の自動車用成形物、その他の成形物等が挙げられる。本開示の立体成形物は、前述の樹脂粉末の焼結体又は溶融体であってもよい。
<Three-dimensional molded object>
The three-dimensional molded product of the present disclosure is molded using a resin powder. Examples of the three-dimensional molded product include the above-mentioned molded products for automobiles and other molded products. The three-dimensional molded product of the present disclosure may be a sintered body or a molten body of the above-mentioned resin powder.
 本開示の立体成形物は、前述の樹脂粉末を用い、粉末床溶融結合法による立体成形により製造することができる。 The three-dimensional molded product of this disclosure can be manufactured by three-dimensional molding using the powder bed fusion bonding method using the resin powder described above.
<立体成形物の製造方法>
 本開示の立体成形物の製造方法は、前述の本開示の樹脂粉末を用いて、粉末床溶融結合法により立体成形物を製造する方法である。前述の本開示の樹脂粉末を用いること以外は、従来の粉末床溶融結合法と同様の方法によって立体成形物を製造することができる。
<Method of manufacturing three-dimensional molded product>
The method for producing a three-dimensional molded product of the present disclosure is a method for producing a three-dimensional molded product by powder bed fusion using the resin powder of the present disclosure. A three-dimensional molded product can be produced by the same method as the conventional powder bed fusion method, except that the resin powder of the present disclosure is used.
 例えば、本開示の立体成形物の製造方法は、樹脂粉末の薄層を形成する工程1と、予備加熱された薄層にレーザー光を選択的に照射して、前記樹脂粉末に含まれるプロピレン系重合体が溶融結合してなる造形物層を形成する工程2と、前述の工程1及び工程2をこの順番で繰り返して造形物層を積層する工程3と、を含んでいてもよい。 For example, the method for producing a three-dimensional molded product of the present disclosure may include step 1 of forming a thin layer of resin powder, step 2 of selectively irradiating the preheated thin layer with laser light to form a modeled layer in which the propylene-based polymer contained in the resin powder is melt-bonded, and step 3 of laminating the modeled layers by repeating steps 1 and 2 in this order.
 立体成形物を構成する1層の造形物層が工程1及び工程2を経ることで形成され、工程1及び工程2を繰り返すことで造形物層が順次積層されて立体成形物が作製される。高精度での造形を行う観点から、本開示の立体成形物の製造方法は、工程2にてレーザーを照射する前に樹脂粉末の薄層を予備加熱する工程4を含むことが好ましい。 One model layer constituting the three-dimensional molded product is formed through steps 1 and 2, and the model layers are sequentially stacked by repeating steps 1 and 2 to produce the three-dimensional molded product. From the viewpoint of achieving high-precision modeling, the manufacturing method for three-dimensional molded products disclosed herein preferably includes step 4 of preheating a thin layer of resin powder before irradiating the laser in step 2.
 前述の各工程としては、例えば、国際公開第2020/213586に記載の立体成形体の作製方法、HP Multi Jet Fusion テクノロジー、特許第7071532号に記載の造形材料を用いた3次元印刷等を参考に実施してもよい。 Each of the above-mentioned steps may be carried out with reference to, for example, the method for producing a three-dimensional molded body described in International Publication No. 2020/213586, HP Multi Jet Fusion technology, and three-dimensional printing using the modeling material described in Patent No. 7071532, etc.
 以下、実施例に基づいて本発明の実施形態についてさらに具体的に説明するが、本発明は、本発明の一実施形態であるこれらの実施例に限定されるものではない。
 実施例における物性値等は、以下の方法により測定した。結果を表1~表3に示す。
 なお、表1~表3中、空欄は該当する成分を含有しないことを意味する。
Hereinafter, the embodiment of the present invention will be described in more detail based on examples. However, the present invention is not limited to these examples, which are one embodiment of the present invention.
The physical properties in the examples were measured by the following methods. The results are shown in Tables 1 to 3.
In Tables 1 to 3, blank spaces indicate that the corresponding component is not contained.
(1)パウダー平均粒径
 粉末粒子のパウダー平均粒径は、粒度分布測定装置(マイクロトラック・ベル株式会社製、microtrac MT3300EXII)を用いて、粉末ごとの粒子屈折率を使用し、溶媒は使用せず乾式(大気)法にて測定した。粒子屈折率は、1.5と設定した。粉末粒子0.1gを界面活性剤(エマールE-27C 花王社製)0.2gと水30mL加え、10分超音波分散を行ったサンプルを用いた。
(1) Average powder particle size The average powder particle size of the powder particles was measured by a particle size distribution measuring device (Microtrac MT3300EXII, manufactured by Microtrac Bell Co., Ltd.) using the particle refractive index of each powder by a dry (air) method without using a solvent. The particle refractive index was set to 1.5. A sample was used in which 0.1 g of powder particles was added to 0.2 g of a surfactant (EMAL E-27C, manufactured by Kao Corporation) and 30 mL of water, and ultrasonic dispersion was performed for 10 minutes.
(2)引張弾性率
 粉末粒子を用いて、以下のようにして成形体を作製した。まず、立体造形装置(3D SYSTEMS社製(SINTERSTATION 2500 plus))により、造形ステージ上に所定のリコート速度(160mm/s)で、作製した粉末粒子を敷き詰め、厚さ0.2mmの薄層を形成した。この薄層に、COレーザー波長用ガルバノメータスキャナを搭載したCOレーザーから縦360mm×横310mmの範囲に以下の条件でレーザー光を照射して、造形物層を作製した。その後、当該造形物層上に前記粉末粒子をさらに敷き詰め、レーザー光を照射し、造形物層を積層した。これらの工程を繰り返し、成形体(造形物層の積層体)を作製した。
・レーザー光の出射条件
 レーザー出力   :40W
 レーザー光の波長 :10.6μm
 ビーム径     :薄層表面で500μm
 ライン数     :1ライン
 前述のようにして作製した成形体を用い下記に示す試験片を作製した。JIS K7161に準拠して、下記の条件で試験片の引張弾性率を測定した。
<測定条件>
 試験片:JIS K7161-2 1BA
 引張速度:0.5mm/min
 標線間距離:25mm
(2) Tensile modulus A molded body was produced using the powder particles as follows. First, the prepared powder particles were spread on the modeling stage at a predetermined recoating speed (160 mm/s) using a three-dimensional modeling device (3D SYSTEMS (SINTERSTATION 2500 plus)), forming a thin layer with a thickness of 0.2 mm. This thin layer was irradiated with laser light from a CO2 laser equipped with a galvanometer scanner for CO2 laser wavelengths in a range of 360 mm long x 310 mm wide under the following conditions to produce a modeled layer. Thereafter, the powder particles were further spread on the modeled layer, and the modeled layer was laminated by irradiating it with laser light. These steps were repeated to produce a molded body (a laminate of modeled layers).
Laser light emission conditions Laser output: 40W
Laser light wavelength: 10.6 μm
Beam diameter: 500 μm at the surface of the thin layer
The molded article thus produced was used to produce the following test pieces, whose tensile modulus was measured under the following conditions in accordance with JIS K7161.
<Measurement conditions>
Test piece: JIS K7161-2 1BA
Tensile speed: 0.5 mm/min
Gauge distance: 25 mm
(3)-30℃でのシャルピー衝撃強度
 JIS K 7111に準拠し、前述の引張弾性率の測定と同様にして成形した成形体から作製した試験片を用い、下記の条件でノッチ付きシャルピー衝撃強度(kJ/m)を測定した。ノッチは機械加工で形成した。
<測定条件>
 温度:-30℃
 試験片:10mm(幅)×80mm(長さ)×4mm(厚さ) 
(3) Charpy impact strength at -30°C Notched Charpy impact strength (kJ/m2) was measured under the following conditions using test pieces prepared from molded bodies in the same manner as in the above-mentioned measurement of tensile modulus in accordance with JIS K 7111. The notch was formed by machining.
<Measurement conditions>
Temperature: -30°C
Test piece: 10 mm (width) x 80 mm (length) x 4 mm (thickness)
(4)熱変形温度(HDT)
 JIS K7191に準拠し、前述の引張弾性率の測定と同様にして成形した成形体から作製した試験片を用い、株式会社東洋精機製作所のHDT試験機6A-2型にて、昇温速度2℃/min、引張応力0.45MPaの条件でHDT試験を実施し、試験片の熱変形温度(℃)を測定した。
(4) Heat distortion temperature (HDT)
In accordance with JIS K7191, a test piece was prepared from a molded body molded in the same manner as in the measurement of the tensile modulus described above. An HDT test was carried out using a Toyo Seiki Seisakusho HDT tester Model 6A-2 under conditions of a heating rate of 2°C/min and a tensile stress of 0.45 MPa, and the heat distortion temperature (°C) of the test piece was measured.
(5)MFR
 ASTM D-1238に準じ、230℃、荷重2.16kgの条件でプロピレン系重合体のメルトフローレート(MFR)を測定した。
(5) MFR
The melt flow rate (MFR) of the propylene polymer was measured under conditions of 230° C. and a load of 2.16 kg in accordance with ASTM D-1238.
(6)融点
 ISO 3146(プラスチック転移温度測定方法、JIS K7121)の測定方法に準じて、示差走査熱量測定装置(パーキンエルマー社製、DiamondDSC)を使用し、プロピレン系重合体粉末又は樹脂粉末を10℃/minにて230℃まで昇温させた、高温側の吸熱ピーク温度をプロピレン系重合体の融点又は樹脂粉末の融点とした。その後、10℃/minにて冷却し、吸熱ピーク温度を結晶化温度とした。
(6) Melting point According to the measurement method of ISO 3146 (Measuring method of plastic transition temperature, JIS K7121), a differential scanning calorimeter (Diamond DSC, manufactured by PerkinElmer) was used to heat a propylene-based polymer powder or a resin powder to 230°C at 10°C/min, and the endothermic peak temperature on the high temperature side was taken as the melting point of the propylene-based polymer or the melting point of the resin powder. Then, the powder was cooled at 10°C/min, and the endothermic peak temperature was taken as the crystallization temperature.
(7)ガラス転移温度
 熱可塑性エラストマーのガラス転移温度(Tg)は、測定装置として示差走査熱量計(DSC7000X型、(株)日立ハイテクサイエンス製)を用いて測定した。
 約5mgの試料を、測定用アルミニウムパン中に密封し、室温から10℃/minで200℃まで加熱する。熱可塑性エラストマーを完全融解させるために、200℃で5分間保持し、次いで、10℃/minで-200℃まで冷却する。
 -200℃で5分間置いた後、10℃/minで200℃まで2度目の加熱を行い、DSC曲線を得た。得られたDSC曲線において、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の低温側の温度を、ガラス転移温度(Tg)とした。
(7) Glass Transition Temperature The glass transition temperature (Tg) of a thermoplastic elastomer was measured using a differential scanning calorimeter (DSC7000X type, manufactured by Hitachi High-Tech Science Corporation) as a measuring device.
Approximately 5 mg of sample is sealed in a measuring aluminum pan and heated from room temperature at 10° C./min to 200° C. To completely melt the thermoplastic elastomer, it is held at 200° C. for 5 minutes and then cooled to −200° C. at 10° C./min.
After leaving the sample at -200°C for 5 minutes, the sample was heated a second time to 200°C at 10°C/min to obtain a DSC curve. In the obtained DSC curve, the temperature on the lower side of the point where a line equidistant in the vertical direction from the extended straight line of each baseline intersects with the curve of the stepwise change in the glass transition was determined as the glass transition temperature (Tg).
(8)23℃n-デカン可溶部
 プロピレン系重合体粉末のサンプル5gにn-デカン200mLを加え、145℃、30分間加熱溶解した。約3時間かけて、20℃まで冷却させ、30分間放置した。その後、析出物(α)をろ別した。ろ液を約3倍量のアセトン中入れ、n-デカン中に溶解していた成分を析出させた。析出物(β)(以下、n-デカン可溶部:Dsol)とn-デカン、アセトンをろ別し、析出物を乾燥した。なお、ろ液側を濃縮乾固しても残渣は認められなかった。
 析出物(α)を再度n-デカン200mL中に加え、145℃、30分間加熱し、溶液をろ過し、フィラー等をろ別した。ろ液を約3時間かけて20℃まで冷却させ、30分間放置し、その後析出物(γ)(以下、プロピレン系重合体のn-デカン不溶部:Dinsol)をろ別した。
 プロピレン系重合体のn-デカン分別では、析出物(γ)がn-デカン不溶部(Dinsol)に相当するため、n-デカン可溶部量は以下のようにして算出した。
 n-デカン可溶部量(質量%)=[析出物(β)量/(析出物(γ)量+析出物(β))]×100
(8) 23°C n-decane soluble part 200 mL of n-decane was added to 5 g of a propylene-based polymer powder sample, and the mixture was heated and dissolved at 145°C for 30 minutes. The mixture was cooled to 20°C over about 3 hours and allowed to stand for 30 minutes. Thereafter, the precipitate (α) was filtered off. The filtrate was poured into about three times the amount of acetone to precipitate the components dissolved in n-decane. The precipitate (β) (hereinafter, n-decane soluble part: D sol ), n-decane, and acetone were filtered off, and the precipitate was dried. Note that no residue was observed even when the filtrate was concentrated to dryness.
The precipitate (α) was added again to 200 mL of n-decane and heated at 145° C. for 30 minutes, and the solution was filtered to remove the filler, etc. The filtrate was cooled to 20° C. over about 3 hours and allowed to stand for 30 minutes, after which the precipitate (γ) (hereinafter, the n-decane insoluble portion of the propylene polymer: D insol ) was filtered off.
In n-decane fractionation of a propylene-based polymer, the precipitate (γ) corresponds to the n-decane insoluble portion (D insol ), so the amount of the n-decane soluble portion was calculated as follows.
Amount of n-decane solubles (mass%)=[amount of precipitate (β)/(amount of precipitate (γ)+precipitate (β)]×100
(9)23℃n-デカン可溶部の極限粘度[η]
 前述のDsol及びデカリン溶媒を用いて、135℃で測定した。
 Dsolサンプル約20mgをデカリン15mLに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリン溶媒を5mL追加して希釈後、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求めた。
[η]=lim(ηsp/C) (C→0)
(9) Intrinsic viscosity [η] of n-decane soluble part at 23 ° C.
The measurements were carried out at 135° C. using the above-mentioned D sol and decalin solvents.
About 20 mg of the D sol sample was dissolved in 15 mL of decalin, and the specific viscosity η sp was measured in an oil bath at 135 ° C. The decalin solution was diluted with 5 mL of decalin solvent, and the specific viscosity η sp was measured in the same manner. This dilution operation was repeated two more times, and the value of η sp / C when the concentration (C) was extrapolated to 0 was determined as the limiting viscosity.
[η] = lim (η sp / C) (C → 0)
(10)23℃n-デカン可溶部のエチレン含量
 Dinsol、Dsol中のエチレンに由来する骨格濃度を測定するために、サンプル20mg~30mgを1,2,4-トリクロロベンゼン/重ベンゼン(2:1)溶液0.6mLに溶解後、炭素核磁気共鳴分析(13C-NMR)を行った。プロピレン、エチレン、α-オレフィンの定量はダイアッド連鎖分布より求めた。
 例えば、プロピレン-エチレン共重合体の場合、PP=Sαα、EP=Sαγ+Sαβ、EE=1/2(Sβδ+Sδδ)+1/4Sγδを用い、以下の計算式(Eq-1)及び(Eq-2)により求めた。
 プロピレン(mol%)=(PP+1/2EP)×100/[(PP+1/2EP)+(1/2EP+EE)・・・(Eq-1)
 エチレン(mol%)=(1/2EP+EE)×100/[(PP+1/2EP)+(1/2EP+EE)・・・(Eq-2)
(10) Ethylene content of 23°C n-decane soluble part D insol , in order to measure the concentration of ethylene-derived skeleton in D sol , 20 mg to 30 mg of sample was dissolved in 0.6 mL of 1,2,4-trichlorobenzene/heavy benzene (2:1) solution, and then carbon nuclear magnetic resonance analysis ( 13 C-NMR) was performed. The propylene, ethylene, and α-olefin were quantitatively determined from the dyad chain distribution.
For example, in the case of a propylene-ethylene copolymer, PP=Sαα, EP=Sαγ+Sαβ, and EE=1/2(Sβδ+Sδδ)+1/4Sγδ were used, and the values were calculated using the following calculation formulas (Eq-1) and (Eq-2).
Propylene (mol%)=(PP+1/2EP)×100/[(PP+1/2EP)+(1/2EP+EE)...(Eq-1)
Ethylene (mol%)=(1/2EP+EE)×100/[(PP+1/2EP)+(1/2EP+EE)...(Eq-2)
[プロピレン系重合体1の準備]
 プロピレン単独重合体であるプロピレン系重合体1(PP1)を準備した。PP1の物性は以下の通りである。
-PP1の物性-
 MFR(230℃、2.16kg荷重下):30g/10min
 融点:165℃
[Preparation of Propylene Polymer 1]
A propylene homopolymer, propylene-based polymer 1 (PP1), was prepared. The physical properties of PP1 are as follows:
-Physical properties of PP1-
MFR (230 ° C, under 2.16 kg load): 30 g / 10 min
Melting point: 165°C
[プロピレン系重合体2の調製]
 以下のようにして、前重合触媒を製造し、前重合触媒を用いてプロピレン系重合体2を調製した。
[Preparation of Propylene Polymer 2]
A prepolymerization catalyst was produced as follows, and a propylene polymer 2 was prepared using the prepolymerization catalyst.
(1)固体状チタン触媒成分の調製
 無水塩化マグネシウム952g、デカン4420mL及び2-エチルヘキシルアルコール3906gを、130℃で2時間加熱して均一溶液とした。この溶液中に無水フタル酸213gを添加し、130℃にてさらに1時間攪拌混合を行って無水フタル酸を溶解した。
 このようにして得られた均一溶液を23℃まで冷却した後、この均一溶液の750mLを、-20℃に保持した四塩化チタン2000mL中に1時間にわたって滴下した。滴下後、得られた混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)52.2gを添加し、これより2時間攪拌しながら同温度に保持した。次いで熱時濾過にて固体部を採取し、この固体部を2750mLの四塩化チタンに再懸濁した後、再び110℃で2時間加熱した。加熱終了後、再び熱濾過にて固体部を採取し、110℃のデカン及びヘキサンを用いて、洗浄液中にチタン化合物が検出されなくなるまで洗浄した。上記の様に調製された固体状チタン触媒成分はヘキサンスラリーとして保存したが、このうち一部を乾燥して触媒組成を調べた。固体状チタン触媒成分は、チタンを2質量%、塩素を57質量%、マグネシウムを21質量%及びDIBPを20質量%の量で含有していた。
(1) Preparation of solid titanium catalyst component 952 g of anhydrous magnesium chloride, 4420 mL of decane, and 3906 g of 2-ethylhexyl alcohol were heated at 130° C. for 2 hours to obtain a homogeneous solution. 213 g of phthalic anhydride was added to this solution, and the mixture was stirred and mixed at 130° C. for another hour to dissolve the phthalic anhydride.
The homogeneous solution thus obtained was cooled to 23°C, and then 750 mL of this homogeneous solution was dropped into 2000 mL of titanium tetrachloride kept at -20°C over 1 hour. After dropping, the temperature of the resulting mixed solution was raised to 110°C over 4 hours, and when it reached 110°C, 52.2 g of diisobutyl phthalate (DIBP) was added, and the mixture was kept at the same temperature for 2 hours while stirring. Next, a solid portion was collected by hot filtration, and this solid portion was resuspended in 2750 mL of titanium tetrachloride, and then heated again at 110°C for 2 hours. After the heating was completed, the solid portion was collected again by hot filtration, and washed with decane and hexane at 110°C until no titanium compounds were detected in the washing solution. The solid titanium catalyst component prepared as above was stored as a hexane slurry, and a part of it was dried to examine the catalyst composition. The solid titanium catalyst component contained titanium in an amount of 2 mass%, chlorine in an amount of 57 mass%, magnesium in an amount of 21 mass%, and DIBP in an amount of 20 mass%.
(2)前重合触媒の製造
 固体状チタン触媒成分87.5g、トリエチルアルミニウム99.8mL、ジエチルアミノトリエトキシシラン28.4mL、ヘプタン12.5Lを内容量20Lの攪拌機付きオートクレーブに挿入し、内温15℃~20℃に保ちプロピレンを875g挿入し、100分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去及びヘプタンによる洗浄を2回行った。得られた前重合触媒を精製ヘプタンに再懸濁して、固体状チタン触媒成分濃度で0.7g/Lとなるよう、ヘプタンにより調整を行った。
(2) Production of prepolymerization catalyst 87.5 g of solid titanium catalyst component, 99.8 mL of triethylaluminum, 28.4 mL of diethylaminotriethoxysilane, and 12.5 L of heptane were charged into a 20 L autoclave equipped with a stirrer, and 875 g of propylene was charged while maintaining the internal temperature at 15°C to 20°C, and the reaction was carried out for 100 minutes while stirring. After the polymerization was completed, the solid component was allowed to settle, and the supernatant was removed and washed with heptane twice. The obtained prepolymerization catalyst was resuspended in purified heptane, and the concentration of the solid titanium catalyst component was adjusted to 0.7 g/L with heptane.
(プロピレン系重合体の調製)
 内容量58Lのジャケット付循環式管状重合器にプロピレンを40kg/時間、水素を123NL/時間、前重合触媒として0.30g/時間、トリエチルアルミニウム2.1mL/時間、ジエチルアミノトリエトキシシラン0.88mL/時間を連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は70℃であり、圧力は3.3MPa/Gであった。
 得られたスラリーは内容量100Lの攪拌機付きベッセル重合器へ送り、さらに重合を行った。重合器へは、プロピレンを15kg/時間、水素を気相部の水素濃度が3.3mol%になるように供給した。重合温度70℃、圧力3.1MPa/Gで重合を行った。
 得られたスラリーを内容量2.4Lの移液管に移送し、当該スラリーをガス化させ、気固分離を行った後、内容量480Lの気相重合器にポリプロピレンホモポリマーパウダーを送り、エチレン・プロピレン共重合を行った。
 ここで、気相重合器内のガス組成が、エチレン/(エチレン+プロピレン)=0.18(エチレン含有モル比率)、水素/エチレン=0.15(モル比率)になるようにプロピレン、エチレン、水素を連続的に供給した。重合温度70℃、圧力1.9MPa/Gで重合を行った後、80℃で真空乾燥を行い、プロピレン・エチレンブロック共重合体から構成されるプロピレン系重合体(プロピレン系重合体2、PP2)を得た。
(Preparation of Propylene-Based Polymer)
To a jacketed circulation type tubular polymerization reactor having an internal volume of 58 L, 40 kg/h of propylene, 123 NL/h of hydrogen, 0.30 g/h of a prepolymerization catalyst, 2.1 mL/h of triethylaluminum, and 0.88 mL/h of diethylaminotriethoxysilane were continuously fed, and polymerization was carried out in a liquid-filled state in which no gas phase was present. The temperature of the tubular polymerization reactor was 70° C., and the pressure was 3.3 MPa/G.
The obtained slurry was sent to a vessel polymerization reactor equipped with a stirrer having an internal volume of 100 L, and further polymerization was carried out. Propylene was supplied to the polymerization reactor at 15 kg/hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 3.3 mol%. Polymerization was carried out at a polymerization temperature of 70° C. and a pressure of 3.1 MPa/G.
The obtained slurry was transferred to a 2.4 L liquid transfer tube, where it was gasified and subjected to gas-solid separation. After that, the polypropylene homopolymer powder was sent to a 480 L gas phase polymerization reactor, where ethylene-propylene copolymerization was carried out.
Here, propylene, ethylene, and hydrogen were continuously supplied so that the gas composition in the gas phase polymerization reactor was ethylene/(ethylene+propylene)=0.18 (molar ratio of ethylene content), and hydrogen/ethylene=0.15 (molar ratio). After polymerization was performed at a polymerization temperature of 70° C. and a pressure of 1.9 MPa/G, vacuum drying was performed at 80° C. to obtain a propylene-based polymer (propylene-based polymer 2, PP2) composed of a propylene-ethylene block copolymer.
 得られたPP2の物性は以下の通りである。
-PP2の物性-
 MFR(230℃、2.16kg荷重下):24g/10min
 融点:161℃
 結晶化温度:120℃
 プロピレン・エチレンブロック共重合体のエチレン含量:7mol%
 23℃n-デカン可溶部量:12質量%
 23℃n-デカン可溶部の極限粘度[η]:3.0dl/g
 23℃n-デカン可溶部のエチレン含量:35mol%
The physical properties of the obtained PP2 are as follows:
-Physical properties of PP2-
MFR (230°C, under 2.16 kg load): 24g/10min
Melting point: 161°C
Crystallization temperature: 120°C
Ethylene content of propylene-ethylene block copolymer: 7 mol%
Amount of n-decane solubles at 23°C: 12% by mass
Intrinsic viscosity [η] of n-decane soluble part at 23°C: 3.0 dl/g
Ethylene content of n-decane soluble part at 23° C.: 35 mol%
[プロピレン系重合体3の調製]
 ベッセル重合器中の水素濃度を5.3mol%になるように供給したこと、及び、内容量480Lの気相重合器内のガス組成が、エチレン/(エチレン+プロピレン)=0.03(エチレン含有モル比率)、水素/エチレン=0.08(モル比率)になるようにプロピレン、エチレン、水素を連続的に供給した以外はプロピレン系重合体2の調製と同様にしてプロピレン・エチレンブロック共重合体から構成されるプロピレン系重合体粒子(プロピレン系重合体3、PP3)を得た。
[Preparation of Propylene Polymer 3]
Propylene-based polymer particles (propylene-based polymer 3, PP3) composed of a propylene-ethylene block copolymer were obtained in the same manner as in the preparation of propylene-based polymer 2, except that hydrogen was supplied so that the hydrogen concentration in the vessel polymerization reactor became 5.3 mol % and that propylene, ethylene and hydrogen were continuously supplied so that the gas composition in the gas-phase polymerization reactor having an internal volume of 480 L became ethylene/(ethylene+propylene)=0.03 (ethylene-containing molar ratio) and hydrogen/ethylene=0.08 (molar ratio).
 得られたPP3の物性は以下の通りである。
-PP3の物性-
 MFR(230℃、2.16kg荷重下):50g/10min
 融点:160℃
 結晶化温度:115℃
 プロピレン・エチレンブロック共重合体のエチレン含量:3mol%
 23℃n-デカン可溶部量:9質量%
 23℃n-デカン可溶部の極限粘度[η]:6.0dl/g
 23℃n-デカン可溶部のエチレン含量:25mol%
The physical properties of the obtained PP3 are as follows:
-Physical properties of PP3-
MFR (230 ° C, under 2.16 kg load): 50 g / 10 min
Melting point: 160°C
Crystallization temperature: 115°C
Ethylene content of propylene-ethylene block copolymer: 3 mol%
Amount of n-decane solubles at 23°C: 9% by mass
Intrinsic viscosity [η] of n-decane soluble part at 23°C: 6.0 dl/g
Ethylene content of n-decane soluble part at 23° C.: 25 mol%
[プロピレン系重合体4の準備]
 以下の物性を有する株式会社プライムポリマー製のプロピレン・エチレンランダム共重合体から構成されるプロピレン系重合体粒子(PP4)を準備した。
-PP4の物性-
 MFR(230℃、2.16kg荷重下):7g/10min
 融点:140℃
 結晶化温度:105℃
 プロピレン・エチレンランダム共重合体のエチレン含量:2mol%
[Preparation of Propylene Polymer 4]
Propylene-based polymer particles (PP4) made of a propylene-ethylene random copolymer manufactured by Prime Polymer Co., Ltd. and having the following physical properties were prepared.
-Physical properties of PP4-
MFR (230°C, under 2.16 kg load): 7g/10min
Melting point: 140°C
Crystallization temperature: 105°C
Ethylene content of propylene-ethylene random copolymer: 2 mol%
[熱可塑性エラストマー、フィラーの準備]
 以下の成分及び物性を有する熱可塑性エラストマー(エラストマー1~3)及びフィラー(フィラー1)を準備した。
-エラストマー1の成分及び物性-
 エチレン-1-オクテン共重合体エラストマー(ダウ社製エチレン-1-オクテン共重合体エラストマー、銘柄名:EG8100)
 MFR(ASTM D-1238、190℃、2.16kg荷重下):1g/10min
 1-オクテン含量:15mol%
 密度:0.870g/cm
 ガラス転移温度:-58℃
-エラストマー2の成分及び物性-
 水添スチレン系熱可塑性エラストマー(SEBS)(水添スチレン-エチレン-ブタジエン-スチレンブロック共重合体)
 MFR(ISO1133;230℃、2.16kg荷重)No Flow
 スチレン含量:30質量%
 重量平均分子量:23万
 水添率:95%以上
 ガラス転移温度:-71℃
-エラストマー3の成分及び物性-
 エチレン-1-ブテン共重合体エラストマー(三井化学社製エチレン-1-ブテン共重合体エラストマー、銘柄名:A-1050S)
 MFR:1g/10分(190℃、荷重2.16kg)
 1-ブテン含有量:20mol%
 密度:0.860g/cm
 ガラス転移温度:-66℃
 -フィラー1の成分及び物性-
 タルク(浅田製粉株式会社製、銘柄名:JM-209)
 平均粒径:4.2μm
[Preparation of thermoplastic elastomer and filler]
Thermoplastic elastomers (Elastomers 1 to 3) and a filler (Filler 1) having the following components and physical properties were prepared.
-Components and properties of elastomer 1-
Ethylene-1-octene copolymer elastomer (Dow ethylene-1-octene copolymer elastomer, brand name: EG8100)
MFR (ASTM D-1238, 190°C, under 2.16 kg load): 1g/10min
1-Octene content: 15 mol%
Density: 0.870 g/ cm3
Glass transition temperature: -58°C
-Components and properties of elastomer 2-
Hydrogenated styrene-based thermoplastic elastomer (SEBS) (hydrogenated styrene-ethylene-butadiene-styrene block copolymer)
MFR (ISO1133; 230°C, 2.16 kg load) No Flow
Styrene content: 30% by mass
Weight average molecular weight: 230,000 Hydrogenation rate: 95% or more Glass transition temperature: -71°C
-Components and properties of elastomer 3-
Ethylene-1-butene copolymer elastomer (ethylene-1-butene copolymer elastomer manufactured by Mitsui Chemicals, Inc., brand name: A-1050S)
MFR: 1 g/10 min (190° C., load 2.16 kg)
1-Butene content: 20 mol%
Density: 0.860 g/ cm3
Glass transition temperature: -66°C
-Components and properties of filler 1-
Talc (Asada Flour Milling Co., Ltd., brand name: JM-209)
Average particle size: 4.2 μm
[実施例1]
 表1に示した配合割合で各成分を、タンブラー(SKD-10:株式会社プラテック製)で10分ドライブレンドし、二軸混練機(Tex-30α:日本製鋼所製)を用いて設定温度:200℃、スクリュー回転数:1100rpm、吐出量:100kg/hrで溶融混合後、ペレタイザー(H73023:いすず化工機株式会社製)で巻き取り出力60%にて造粒して各成分を含むペレット(各成分の混合物である樹脂粉末)を得た。これらのペレットを用いて、所定の試験片を成形し、表1に示す各物性を求めた。
[Example 1]
The components were dry-blended for 10 minutes in a tumbler (SKD-10, manufactured by Platec Co., Ltd.) in the proportions shown in Table 1, and melt-mixed in a twin-screw kneader (Tex-30α, manufactured by Japan Steel Works) at a set temperature of 200°C, a screw rotation speed of 1100 rpm, and a discharge rate of 100 kg/hr. The mixture was then granulated in a pelletizer (H73023, manufactured by Isuzu Chemical Engineering Co., Ltd.) at a winding output of 60% to obtain pellets containing each component (resin powder that is a mixture of each component). These pellets were used to mold predetermined test pieces, and the physical properties shown in Table 1 were determined.
(機械的粉砕処理)
 前記で得られたペレットを、液体窒素で-150℃程度に冷却し、粉砕機(リンレックスミル)によりパウダー平均粒径が150μmになるまで粉砕した。
(Mechanical crushing process)
The pellets obtained above were cooled to about −150° C. with liquid nitrogen and pulverized in a pulverizer (Rinrex Mill) until the average powder particle size became 150 μm.
(粒子球形化処理)
 前記粉砕後、粒子球形化処理を行った。具体的には、ハイブリダイゼーションにより粉砕物に機械的衝撃力を加えて、球形化し、各成分の混合物である樹脂粉末を得た。
(Particle Spheroidization Treatment)
After the pulverization, the particles were subjected to a spheroidizing treatment. Specifically, the pulverized material was subjected to a mechanical impact force by hybridization to spheroidize the particles, thereby obtaining a resin powder that was a mixture of the respective components.
[実施例2~13、比較例1~6]
 表1~表3に示した配合割合で各成分を実施例1と同様の方法で処理し、各成分を含むペレット(各成分の混合物である樹脂粉末)を得た。
[Examples 2 to 13, Comparative Examples 1 to 6]
Each component was treated in the same manner as in Example 1 in the blending ratio shown in Tables 1 to 3 to obtain pellets containing each component (resin powder which is a mixture of each component).
[実施例14~16]
 実施例1、7及び12の(機械的粉砕処理)にて粉砕機(リンレックスミル)によりパウダー平均粒径が50μmになるまで粉砕した以外は実施例1、7及び12と同様の方法で処理し、各成分を含むペレット(各成分の混合物である樹脂粉末)を得た。
[Examples 14 to 16]
The same procedures as in Examples 1, 7, and 12 were repeated except that in the mechanical crushing treatment of Examples 1, 7, and 12, the powder was crushed using a crusher (Rinrex Mill) until the average powder particle size became 50 μm, thereby obtaining pellets containing each component (resin powder which is a mixture of each component).
 実施例1~16及び比較例1~6の樹脂粉末について、各物性を表1~表3に示す。 The physical properties of the resin powders of Examples 1 to 16 and Comparative Examples 1 to 6 are shown in Tables 1 to 3.
 表1~表3に示すように、実施例1~16では、比較例1~6に対して機械特性及び低温衝撃性に優れた樹脂粉末が得られた。実施例1~16の樹脂粉末は、粉末床溶融結合法等による立体造形用粉末として好適に使用可能である。 As shown in Tables 1 to 3, resin powders obtained in Examples 1 to 16 had superior mechanical properties and low-temperature impact resistance compared to Comparative Examples 1 to 6. The resin powders of Examples 1 to 16 can be suitably used as powders for three-dimensional modeling using methods such as powder bed fusion bonding.
 2022年11月15日に出願された特願2022-182774の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2022-182774, filed on November 15, 2022, is incorporated herein by reference in its entirety.
All publications, patent applications, and standards mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent application, or standard was specifically and individually indicated to be incorporated by reference.

Claims (12)

  1.  プロピレン系重合体粉末を含む樹脂粉末であって、前記樹脂粉末を成形体とした際に、下記[1]及び[2]を満たす樹脂粉末。
    [1]引張弾性率が1500MPa~3000MPaである。
    [2]-30℃で測定したシャルピー衝撃強度が2.0kJ/m以上である。
    A resin powder containing a propylene-based polymer powder, the resin powder satisfying the following [1] and [2] when molded into a molded article:
    [1] The tensile modulus is 1500 MPa to 3000 MPa.
    [2] The Charpy impact strength measured at -30 ° C is 2.0 kJ / m2 or more.
  2.  下記[3]を満たす請求項1に記載の樹脂粉末。
    [3]JIS K7191に準拠して測定した熱変形温度(HDT)が105℃以上である。
    The resin powder according to claim 1, which satisfies the following [3]:
    [3] The heat distortion temperature (HDT) measured in accordance with JIS K7191 is 105°C or higher.
  3.  前記樹脂粉末のパウダー平均粒径(R)が1μm~200μmである請求項1に記載の樹脂粉末。 The resin powder according to claim 1, wherein the average powder particle size (R) of the resin powder is 1 μm to 200 μm.
  4.  前記樹脂粉末は前記プロピレン系重合体粉末と熱可塑性エラストマーとフィラーとを含む混合物であり、
     前記プロピレン系重合体粉末、前記熱可塑性エラストマー及び前記フィラーの合計100質量部に対し、
     前記プロピレン系重合体粉末の含有量は30質量部~90質量部であり、
     前記熱可塑性エラストマーの含有量は1質量部~40質量部であり、
     前記フィラーの含有量は1質量部~50質量部である請求項3に記載の樹脂粉末。
    the resin powder is a mixture containing the propylene-based polymer powder, a thermoplastic elastomer, and a filler,
    per 100 parts by mass in total of the propylene-based polymer powder, the thermoplastic elastomer, and the filler,
    The content of the propylene-based polymer powder is 30 parts by mass to 90 parts by mass,
    The content of the thermoplastic elastomer is 1 part by mass to 40 parts by mass,
    The resin powder according to claim 3, wherein the content of the filler is 1 part by mass to 50 parts by mass.
  5.  下記[4]を満たす請求項3に記載の樹脂粉末。
    [4]DSCで測定した前記樹脂粉末の融点(Tm)が150℃~170℃である。
    The resin powder according to claim 3, which satisfies the following [4]:
    [4] The melting point (Tm) of the resin powder measured by DSC is 150° C. to 170° C.
  6.  下記[5]を満たす請求項3に記載の樹脂粉末。
    [5]ASTM D1238に準拠して230℃、2.16kg荷重で測定した前記プロピレン系重合体のメルトフローレート(MFR)が0.05g/10min~150g/10minである。
    The resin powder according to claim 3, which satisfies the following [5].
    [5] The melt flow rate (MFR) of the propylene polymer measured in accordance with ASTM D1238 at 230° C. under a load of 2.16 kg is 0.05 g/10 min to 150 g/10 min.
  7.  前記プロピレン系重合体はプロピレン系ブロック共重合体であり、下記[6]~[8]を満たす請求項3に記載の樹脂粉末。
    [6]前記プロピレン系ブロック共重合体は、23℃n-デカン可溶部(Dsol)5質量%~35質量%と23℃n-デカン不溶部(Dinsol)65質量%~95質量%とから構成される(ただし、DsolとDinsolとの合計量は100質量%である)。
    [7]Dsolの極限粘度[η]が1.0dl/g~10.0dl/gである。
    [8]Dsolはプロピレンと、エチレン及び炭素数4~20のα-オレフィンから選ばれる一種以上のオレフィンとからなる共重合体が主成分であり、Dsolのプロピレン以外のオレフィン含量が10mol%~60mol%である。
    The resin powder according to claim 3, wherein the propylene-based polymer is a propylene-based block copolymer and satisfies the following [6] to [8]:
    [6] The propylene-based block copolymer is composed of 5% by mass to 35% by mass of a 23° C. n-decane soluble portion (D sol ) and 65% by mass to 95% by mass of a 23° C. n-decane insoluble portion (D insol ) (wherein the total amount of D sol and D insol is 100% by mass).
    [7] The intrinsic viscosity [η] of D sol is 1.0 dl/g to 10.0 dl/g.
    [8] D sol is mainly composed of a copolymer of propylene and one or more olefins selected from ethylene and α-olefins having 4 to 20 carbon atoms, and the content of olefins other than propylene in D sol is 10 mol % to 60 mol %.
  8.  前記プロピレン系ブロック共重合体は、エチレン及び炭素数4~20のα-オレフィンから選ばれる一種以上のオレフィンに由来する構成単位を含み、プロピレン以外の前記オレフィンの総含量が4.0mol%~30mol%である請求項7に記載の樹脂粉末。 The resin powder according to claim 7, wherein the propylene-based block copolymer contains structural units derived from one or more olefins selected from ethylene and α-olefins having 4 to 20 carbon atoms, and the total content of the olefins other than propylene is 4.0 mol% to 30 mol%.
  9.  前記熱可塑性エラストマーは、下記[9]~[11]を満たす請求項8に記載の樹脂粉末。
    [9]ASTM D1238に準拠して190℃、2.16kg荷重で測定したメルトフローレート(MFR)が0.05g/10min~100g/10minである。
    [10]DSCで測定したガラス転移温度(Tg)が-30℃以下である。
    [11]引張弾性率が500MPa未満である。
    The resin powder according to claim 8, wherein the thermoplastic elastomer satisfies the following [9] to [11].
    [9] The melt flow rate (MFR) measured in accordance with ASTM D1238 at 190° C. under a load of 2.16 kg is 0.05 g/10 min to 100 g/10 min.
    [10] The glass transition temperature (Tg) measured by DSC is −30° C. or lower.
    [11] The tensile modulus is less than 500 MPa.
  10.  立体成形に用いられる請求項1~請求項9のいずれか1項に記載の樹脂粉末。  The resin powder according to any one of claims 1 to 9, which is used for three-dimensional molding.
  11.  請求項1~請求項9のいずれか1項に記載の樹脂粉末を用いて粉末床溶融結合法により成形された立体成形体。 A three-dimensional molded body formed by powder bed fusion bonding using the resin powder according to any one of claims 1 to 9.
  12.  請求項1~請求項9のいずれか1項に記載の樹脂粉末を用いて粉末床溶融結合法により立体成形体を製造する立体成形体の製造方法。 A method for producing a three-dimensional molded body by powder bed fusion bonding using the resin powder according to any one of claims 1 to 9.
PCT/JP2023/039749 2022-11-15 2023-11-02 Resin powder, three-dimensional molded article, and method for producing three-dimensional molded article WO2024106234A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-182774 2022-11-15
JP2022182774 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024106234A1 true WO2024106234A1 (en) 2024-05-23

Family

ID=91084513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039749 WO2024106234A1 (en) 2022-11-15 2023-11-02 Resin powder, three-dimensional molded article, and method for producing three-dimensional molded article

Country Status (1)

Country Link
WO (1) WO2024106234A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137077A (en) * 2009-12-28 2011-07-14 Japan Polypropylene Corp Lightweight automobile interior component
JP2012007152A (en) * 2010-05-28 2012-01-12 Sumitomo Chemical Co Ltd Resin composition
JP2015063620A (en) * 2013-09-25 2015-04-09 内浜化成株式会社 Thermoplastic resin composition and vehicle interior exterior member using the same
JP2015193831A (en) * 2014-03-26 2015-11-05 日本ポリプロ株式会社 Polypropylene resin composition and molded body thereof
WO2020213586A1 (en) * 2019-04-16 2020-10-22 コニカミノルタ株式会社 Resin powder for three-dimensional molding, three-dimensional molded article, and method for producing three-dimensional molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137077A (en) * 2009-12-28 2011-07-14 Japan Polypropylene Corp Lightweight automobile interior component
JP2012007152A (en) * 2010-05-28 2012-01-12 Sumitomo Chemical Co Ltd Resin composition
JP2015063620A (en) * 2013-09-25 2015-04-09 内浜化成株式会社 Thermoplastic resin composition and vehicle interior exterior member using the same
JP2015193831A (en) * 2014-03-26 2015-11-05 日本ポリプロ株式会社 Polypropylene resin composition and molded body thereof
WO2020213586A1 (en) * 2019-04-16 2020-10-22 コニカミノルタ株式会社 Resin powder for three-dimensional molding, three-dimensional molded article, and method for producing three-dimensional molded article

Similar Documents

Publication Publication Date Title
KR102216041B1 (en) Thermoplastic resin composition and molded article using the same
KR101630891B1 (en) Composition comprising propylene-olefin-copolymer waxes and carbon black
EP2092015A1 (en) Filled polyolefin compositions
JP4528669B2 (en) Polypropylene resin composition for automotive exterior parts and automotive exterior parts using the same
JP5092216B2 (en) Propylene-based resin composition production method, propylene-based resin composition, and injection-molded body comprising the same
JP5998581B2 (en) Resin composition
CN102239212B (en) Method for preparing rubber/nanoclay masterbatches, and method for preparing high strength, high impact-resistant polypropylene/nanoclay/rubber composites using same
EP2092004A1 (en) Filled polyolefin compositions
JP4344421B2 (en) Thermoplastic resin composition and injection-molded body thereof
CN101501126A (en) Polymer compositions comprising cyclic olefin polymers, polyolefin modifiers, and fillers
EP2121829A1 (en) Polypropylene compositions containing fillers and/or pigments
CN101568589A (en) Filled polyolefin compositions
JP5039532B2 (en) Polypropylene resin composition
TW202031760A (en) Thermoplastic foaming resin composition and molded article using same
WO2024106234A1 (en) Resin powder, three-dimensional molded article, and method for producing three-dimensional molded article
JP2007092050A (en) Propylene resin composition, its manufacturing method and injection-molded item
JP2006056971A (en) Manufacturing process of propylenic resin composition, propylenic resin composition and injection-molded molding composed of it
JP2005232413A (en) Polypropylene-based resin composition and molded product therefrom
JPH10298366A (en) Polypropylene resin composition
JP2008208303A (en) Propylenic resin composition, its production method and injection molded article
WO2022270630A1 (en) Polypropylene resin composition, method for producing same, sheet molded body and container
JP4476621B2 (en) Polypropylene resin composition and molded body thereof
JP5766023B2 (en) Propylene resin composition for welding molding and welded molding obtained therefrom
JP6502648B2 (en) Filler-containing polypropylene resin composition and molded article
EP2083022A1 (en) Method for producing syndiotactic propylene polymer