WO2024106107A1 - 位置検出装置 - Google Patents

位置検出装置 Download PDF

Info

Publication number
WO2024106107A1
WO2024106107A1 PCT/JP2023/037549 JP2023037549W WO2024106107A1 WO 2024106107 A1 WO2024106107 A1 WO 2024106107A1 JP 2023037549 W JP2023037549 W JP 2023037549W WO 2024106107 A1 WO2024106107 A1 WO 2024106107A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
gap
correction
detection
offset
Prior art date
Application number
PCT/JP2023/037549
Other languages
English (en)
French (fr)
Inventor
光一郎 松本
鮎奈 木村
成時 ▲高▼坂
渚 小野田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023166407A external-priority patent/JP2024072782A/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024106107A1 publication Critical patent/WO2024106107A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train

Definitions

  • This disclosure relates to a position detection device.
  • a linear position sensor that detects the position of a detection object based on changes in the magnetic field received from multiple magnets arranged on the detection object (see, for example, Patent Document 1).
  • This linear position sensor includes a detection unit that acquires sine and cosine signals of phases corresponding to the positions of the multiple magnets on the moving detection object, and detects the position of the detection object based on the sine and cosine signals acquired by the detection unit.
  • the linear position sensor described in Patent Document 1 improves the detection accuracy of a specific position by arranging the multiple magnets in the detection body at uneven intervals or unevenly arranging the magnets at different heights to unbalance the magnetic field received by the detection unit.
  • the purpose of this disclosure is to provide a position detection device that can improve detection accuracy.
  • a position detection device for detecting a position of a detection object, a signal output unit that outputs a first signal having a sine wave shape corresponding to the position of the detection object and a second signal having a cosine wave shape and a phase different from that of the first signal corresponding to the position of the detection object; a placement section in which the signal output section is provided and which is disposed facing the detection body while being spaced apart from the detection body; a signal processing unit that calculates a detection object position, which is a position of the detection object when the detection object is displaced within a predetermined detection range, based on the first signal and the second signal,
  • the signal processing unit includes: a correction function based on an error in the calculated pre-correction detected object position is calculated based on the first signal and the second signal, and the detection range is divided into a plurality of sections, and the pre-correction detected object position calculated for each of the plurality of sections is corrected by correcting the first signal and the second signal, When the distance between the distance between the distance between
  • a position detection device for detecting a position of a detection object, a signal output unit that outputs a first signal having a sine wave shape corresponding to the position of the detection object and a second signal having a cosine wave shape and a different phase from the first signal corresponding to the position of the detection object; a positioning section provided with a signal output section and arranged to face the detection body while being spaced apart from the detection body; a signal processing unit that calculates a detection object position, which is a position of the detection object when the detection object is displaced within a predetermined detection range, based on the first signal and the second signal;
  • the signal processing unit includes: a signal correction unit that corrects the first signal and the second signal; a position calculation unit that calculates a pre-correction detected object position, which is the detected object position before correction, based on the first signal and the second signal corrected by the signal correction unit; a section correction section which calculates a correction function based on an error in the pre-correction detected object position calculated by the position
  • the detection error can be suppressed by deriving a correction term so that the error in the position of the detected object approaches zero. Therefore, the detection accuracy of the position detection device can be improved.
  • FIG. 1 is a schematic configuration diagram of a position detection device according to a first embodiment. This is a cross-sectional view of FIG.
  • FIG. 2 is a cross-sectional view taken along line III-III of FIG.
  • FIG. 2 is a diagram showing a substrate according to the first embodiment.
  • 1 is a block diagram of a position detection device according to a first embodiment.
  • 4A to 4C are diagrams showing an example of a waveform of a first voltage value generated in a first receiving coil and a waveform of a second voltage value generated in a second receiving coil according to the first embodiment;
  • FIG. 2 is a block diagram showing details of an angle calculation unit in the position detection device according to the first embodiment.
  • FIG. 4 is a diagram showing an example of an ideal waveform of a first voltage value generated in a first receiving coil and an ideal waveform of a second voltage value generated in a second receiving coil;
  • FIG. 4 is a diagram showing the relative relationship between a mechanical angle and an electrical angle.
  • FIG. 13 is a diagram illustrating an example of an error in a rotation angle.
  • 6A to 6C are diagrams illustrating an example of an error in a rotation angle before correction calculated by a position calculation unit according to the first embodiment.
  • 11 is a diagram for explaining that the offsets of the first conversion signal and the second conversion signal change depending on the gap.
  • FIG. 6A to 6C are diagrams illustrating an example of an error in a corrected rotation angle corrected by a section correction unit according to the first embodiment.
  • FIG. 1 is a block diagram of a position detection device according to a first embodiment.
  • FIG. 13 is a diagram showing a substrate according to a second embodiment.
  • 13A and 13B are diagrams illustrating a rotating member according to a second embodiment.
  • 13A and 13B are diagrams illustrating a position detection device and a detection object according to a third embodiment.
  • FIG. 11 is a block diagram of a position detection device according to a third embodiment.
  • 13A and 13B are diagrams illustrating an example of an error in a rotation angle calculated by a position calculation unit according to the fourth embodiment.
  • 13A and 13B are diagrams illustrating an example of an error in a corrected rotation angle corrected by a section corrector according to the fourth embodiment.
  • FIG. 13 is a diagram showing a substrate according to a fifth embodiment.
  • the position detection device 1 of this embodiment includes a rotating member 20 and a substrate 30.
  • the rotation axis CL shown in Figures 1 to 3 is the center of rotation of the pedal rotation shaft 70 and the rotating member 20.
  • the direction in which the rotation axis CL extends is referred to as the axial direction Da
  • the direction that spreads radially around the axis of the rotation axis CL is referred to as the radial direction Dr
  • the rotation direction of the rotation axis CL is referred to as the circumferential direction Dc.
  • the axial direction Da, radial direction Dr, and circumferential direction Dc are directions that intersect with each other, or more precisely, are perpendicular to each other.
  • the rotating member 20 is made of metal and is formed into a flat plate having a thickness in the axial direction Da.
  • the rotating member 20 is connected to the pedal rotation shaft 70 so as to be non-rotatable relative to the pedal rotation shaft 70.
  • the rotating member 20 may be made non-rotatable relative to the rotation shaft 70 by using an anti-rotation key member, or may be made non-rotatable relative to the rotation shaft 70 by being welded to the rotation shaft 70.
  • the rotating member 20 is a rotating body supported by a non-rotating member via a rotating shaft 70 so that it can rotate around a predetermined rotation axis CL, and rotates integrally with the pedal and the rotating shaft 70. Therefore, the position detection device 1 can detect the rotational position of the pedal by detecting the rotational position of the rotating member 20.
  • the rotational position of the rotating shaft 70 is the rotational position of the pedal and also the rotational position of the rotating member 20 as a detection body.
  • the position detection device 1 of this embodiment detects the rotational position of the pedal by detecting the rotational position of the rotating member 20.
  • the rotating member 20 since the rotating member 20 is connected to the rotating shaft 70 of the pedal, it does not rotate once around the rotation axis CL, but reciprocates within a predetermined angular range around the rotation axis CL in response to the pedal depression.
  • the rotating member 20 reciprocates around the rotation axis CL within an angular range of 0° to 24°, which is a range smaller than 0° to 360°, when the pedal is depressed.
  • part of the outline of the four targets 22, 23, 24, and 25 of the rotating member 20 at the end positions of the reciprocating motion is shown by two-dot chain lines.
  • the rotating member 20 has a connecting portion 21 and four targets 22, 23, 24, and 25. That is, the four targets 22, 23, 24, and 25 included in the rotating member 20 rotate together around the rotation axis CL. Then, as the pedal is depressed, the four targets 22, 23, 24, and 25 all move back and forth in the circumferential direction Dc.
  • the rotating member 20 is configured as a single part including the connecting portion 21 and the four targets 22, 23, 24, and 25.
  • the rotating member 20 is formed in a flat plate shape with a uniform thickness in the axial direction Da. Therefore, the thicknesses of the four targets 22 to 25 in the axial direction Da are the same.
  • the four targets 22, 23, 24, and 25 may be collectively referred to as the four targets 22 to 25.
  • the four targets 22 to 25 may be referred to as the first target 22, the second target 23, the third target 24, and the fourth target 25, respectively.
  • the connecting part 21 is located in the center of the rotating member 20 and has a circular ring shape centered on the rotation axis CL.
  • An insertion hole 21a is formed on the inside of the connecting part 21, penetrating the connecting part 21 in the axial direction Da.
  • the rotating shaft 70 is inserted into the insertion hole 21a so that it cannot rotate relative to the connecting part 21.
  • the rotating member 20 is connected to the rotating shaft 70 at this connecting part 21.
  • the four targets 22 to 25 are each formed to protrude outward from the connecting portion 21 in the radial direction Dr.
  • the four targets 22 to 25 are arranged so as to be lined up at equal intervals in the circumferential direction Dc.
  • the first target 22, the second target 23, the third target 24, and the fourth target 25 are arranged so as to be lined up in this order in the circumferential direction Dc at 90 degree intervals.
  • the intervals in the circumferential direction Dc of each of the four targets 22 to 25 are set so as to be able to cover either the first forward spiral portion 32a or the first counter spiral portion 32b of the first receiving coil 32, which will be described later.
  • the first target 22 is disposed on the opposite side of the rotation axis CL from the third target 24.
  • the second target 23 is disposed on the opposite side of the rotation axis CL from the fourth target 25.
  • the four targets 22 to 25 are disposed as a whole so as to be point symmetrical with respect to the rotation axis CL.
  • the first target 22 is formed on one side in the axial direction Da and has a first opposing surface 22a facing the substrate 30.
  • the second target 23 is formed on one side in the axial direction Da and has a second opposing surface 23a facing the substrate 30.
  • the third target 24 is formed on one side in the axial direction Da and has a third opposing surface 24a facing the substrate 30.
  • the fourth target 25 is formed on one side in the axial direction Da and has a fourth opposing surface 25a facing the substrate 30.
  • the size of the first target 22 in the circumferential direction Dc decreases from the innermost part in the radial direction Dr to the approximate center part in the radial direction Dr, as it moves outward in the radial direction Dr.
  • the size of the first target 22 in the circumferential direction Dc increases from the approximate center part in the radial direction Dr to the outermost part in the radial direction Dr. Therefore, one end and the other end of the first target 22 in the circumferential direction Dc each extend in a curved shape when viewed in the direction along the axial direction Da.
  • the second target 23, the third target 24, and the fourth target 25 have the same shape as the first target 22.
  • all four targets 22 to 25 have the same shape.
  • one end and the other end of the second target 23 in the circumferential direction Dc each extend in a curved shape when viewed in the axial direction Da.
  • one end and the other end of the third target 24 in the circumferential direction Dc each extend in a curved shape when viewed in the axial direction Da.
  • one end and the other end of the fourth target 25 in the circumferential direction Dc each extend in a curved shape when viewed in the axial direction Da.
  • the motion ranges of the four targets 22 to 25 have the same length in the circumferential direction Dc.
  • the motion range of the first target 22 is the first motion range W1
  • the motion range of the second target 23 is the second motion range W2
  • the motion range of the third target 24 is the third motion range W3
  • the motion range of the fourth target 25 is the fourth motion range W4.
  • the first operating range W1 is the maximum range in the circumferential direction Dc that the first target 22 covers as it moves back and forth. Therefore, the first target 22 moves back and forth in the circumferential direction Dc within the first operating range W1.
  • the second operating range W2 is the maximum range in the circumferential direction Dc that the second target 23 covers as it moves back and forth. Therefore, the second target 23 moves back and forth in the circumferential direction Dc within the second operating range W2.
  • the third operating range W3 is the maximum range in the circumferential direction Dc that the third target 24 covers as it moves back and forth. Therefore, the third target 24 moves back and forth in the circumferential direction Dc within the third operating range W3.
  • the fourth operating range W4 is the maximum range in the circumferential direction Dc that the fourth target 25 covers as it moves back and forth. Therefore, the fourth target 25 moves back and forth in the circumferential direction Dc within the fourth operating range W4.
  • the substrate 30 is a multi-layer printed circuit board on which a wiring pattern is formed and on which electrical components (not shown) are mounted.
  • the substrate 30 is a multi-layer substrate in which insulating films and wiring layers are alternately stacked.
  • various electronic components such as resistors are also appropriately arranged on the substrate 30.
  • the substrate 30 also has one planar surface 30a and the other surface 30b that are perpendicular to the axial direction Da. In other words, the normal direction of the substrate 30 coincides with the axial direction Da.
  • the one surface 30a of the substrate 30 is provided on one side of the substrate 30 in the axial direction Da.
  • the other surface 30b of the substrate 30 is provided on the other side of the substrate 30 opposite to the one side in the axial direction Da.
  • the base plate 30 is a non-rotating member that does not rotate with respect to the pedal. Therefore, the rotating member 20 rotates relative to the base plate 30.
  • the substrate 30 is disposed on one side of the four targets 22 to 25 in the axial direction Da.
  • the other surface 30b of the substrate 30 faces the first opposing surface 22a, the second opposing surface 23a, the third opposing surface 24a, and the fourth opposing surface 25a of the four targets 22 to 25 at a predetermined interval in the axial direction Da.
  • the substrate 30 is disposed facing the rotating member 20 while being spaced apart from the rotating member 20 in the opposing direction, which is the direction in which the substrate 30 faces the rotating member 20.
  • the predetermined interval in the axial direction Da between the substrate 30 and the rotating member 20 is the same size between the substrate 30 and each of the four targets 22 to 25.
  • the predetermined interval in the axial direction Da between the substrate 30 and the rotating member 20 is also referred to as gap G.
  • the substrate 30 is formed in a disk shape centered on the rotation axis CL.
  • a through hole 30c is formed in the center of the substrate 30, penetrating the substrate 30 in the axial direction Da.
  • a rotation shaft 70 is inserted into this through hole 30c.
  • the substrate 30 has one transmitting coil 31, eight first receiving coils 32 and eight second receiving coils 33 formed as a wiring pattern, and a signal processing circuit 40 described below.
  • the one transmitting coil 31, eight first receiving coils 32, eight second receiving coils 33 and the signal processing circuit 40 provided in the position detection device 1 are formed on a single substrate 30.
  • the one transmitting coil 31, eight first receiving coils 32 and eight second receiving coils 33 are formed on wiring layers formed on each layer of the multi-layer substrate.
  • the one transmitting coil 31, eight first receiving coils 32 and eight second receiving coils 33 formed on each layer are appropriately connected through vias 34.
  • the one transmitting coil 31, the eight first receiving coils 32, and the eight second receiving coils 33 are each connected to a signal processing circuit 40 (described below) composed of an IC or the like mounted on the substrate 30 via a connection wiring pattern (not shown).
  • the substrate 30 corresponds to the arrangement section in which the one transmitting coil 31, the eight first receiving coils 32, the eight second receiving coils 33, and the signal processing circuit 40 are arranged.
  • the transmitting coil 31 is wound multiple times and formed into a circular ring shape.
  • the transmitting coil 31 is formed so as to surround the eight first receiving coils 32 and eight second receiving coils 33 of the substrate 30.
  • the transmitting coil 31 is disposed outside the eight first receiving coils 32 and eight second receiving coils 33.
  • the eight first receiving coils 32 and eight second receiving coils 33 are disposed alternately in the circumferential direction Dc.
  • each of the eight first receiving coils 32 and the eight second receiving coils 33 in this embodiment is mainly spiral-shaped.
  • Each of the eight first receiving coils 32 has a first positive spiral portion 32a and a first anti-spiral portion 32b.
  • the first positive spiral portion 32a and the first anti-spiral portion 32b are portions that form the spiral shape in each of the eight first receiving coils 32.
  • the first positive spiral portion 32a and the first anti-spiral portion 32b of each of the eight first receiving coils 32 face one of the four targets 22 to 25 in the axial direction Da.
  • the eight first receiving coils 32 are electrically connected in a single stroke via their respective first positive spiral portions 32a and first anti-spiral portions 32b.
  • each of the eight second receiving coils 33 in this embodiment has a second positive spiral portion 33a and a second anti-spiral portion 33b.
  • the second positive spiral portion 33a and the second anti-spiral portion 33b are portions that form a spiral shape in each of the eight second receiving coils 33.
  • the second positive spiral portion 33a and the second anti-spiral portion 33b of each of the eight second receiving coils 33 face one of the four targets 22 to 25 in the axial direction Da.
  • the eight second receiving coils 33 are electrically connected in a single stroke via their respective second positive spiral portions 33a and second anti-spiral portions 33b.
  • the first forward spiral portion 32a and the first reverse spiral portion 32b of each of the eight first receiving coils 32 have the same shape. For this reason, only the first receiving coil 32 facing the target 22 will be described in detail below, and a detailed description of the first receiving coils 32 facing the remaining three targets 23 to 25 will be omitted.
  • the second forward spiral portion 33a and the second reverse spiral portion 33b of each of the eight second receiving coils 33 have the same shape. For this reason, only the second receiving coil 33 facing the target 22 will be described in detail below, and a detailed description of the second receiving coils 33 facing the remaining three targets 23 to 25 will be omitted.
  • the first positive spiral portion 32a and the first counter spiral portion 32b of the first receiving coil 32 and the second positive spiral portion 33a and the second counter spiral portion 33b of the second receiving coil 33 are formed side by side at a predetermined interval along the circumferential direction Dc.
  • the first positive spiral portion 32a, the second positive spiral portion 33a, the first counter spiral portion 32b, and the second counter spiral portion 33b are formed side by side in this order from one side to the other side of the circumferential direction Dc of the substrate 30.
  • the first forward spiral portion 32a and the first anti-spiral portion 32b are formed in a spiral pattern shape that is formed to draw a rectangle with changing diameter.
  • the first forward spiral portion 32a and the first anti-spiral portion 32b are formed by winding the coil multiple times in the same direction in each of the multiple wiring layers of the substrate 30.
  • the first forward spiral portion 32a and the first anti-spiral portion 32b formed in each of the multiple wiring layers of the substrate 30 are formed to overlap in the normal direction.
  • the first forward spiral portion 32a and the first anti-spiral portion 32b have coil winding directions (i.e., spiral directions) that are opposite to each other.
  • the first forward spiral portion 32a has a coil winding direction that is clockwise when viewed in the normal direction.
  • the first anti-spiral portion 32b has a coil winding direction that is counterclockwise when viewed in the normal direction.
  • the second forward spiral portion 33a and the second anti-spiral portion 33b have a spiral pattern shape formed to draw a rectangle with changing diameter, similar to the first forward spiral portion 32a and the first anti-spiral portion 32b.
  • the second forward spiral portion 33a and the second anti-spiral portion 33b have a coil wound in the same direction multiple times in each of the multiple wiring layers of the substrate 30, similar to the first forward spiral portion 32a and the first anti-spiral portion 32b.
  • the second forward spiral portion 33a and the second anti-spiral portion 33b formed in each of the multiple wiring layers of the substrate 30 are formed to overlap in the normal direction.
  • the second forward spiral portion 33a and the second anti-spiral portion 33b have opposite spiral directions.
  • the second forward spiral portion 33a has a coil wound clockwise.
  • the second anti-spiral portion 33b has a coil wound counterclockwise.
  • the first receiving coils 32 and the second receiving coils 33 facing the first target 22 are coils for detecting the position of the first target 22 in the circumferential direction Dc.
  • the first forward spiral portion 32a and the first counter spiral portion 32b of the first receiving coil 32 are arranged at a position within the first operating range W1 of the first target 22 so that at least a portion of them overlaps with one side of the axial direction Da relative to the first target 22.
  • the second forward spiral portion 33a and the second counter spiral portion 33b of the second receiving coil 33 are arranged at a position within the first operating range W1 of the first target 22 so that at least a portion of them overlaps with one side of the axial direction Da relative to the first target 22.
  • the first receiving coils 32 and the eight second receiving coils 33 output a detection signal according to the position of the first target 22.
  • the first receiving coils 32 and the second receiving coils 33 facing the first target 22 function as a signal output section that outputs a signal according to the rotational position of the rotating member 20.
  • the detection signals output by the first receiving coil 32 and the second receiving coil 33 are, for example, voltage values.
  • the detection signal output by the first receiving coil 32 is a first signal output by the first receiving coil 32 as a signal output unit, and corresponds, for example, to the first voltage value V1 shown in FIG. 5 described below.
  • the detection signal output by the second receiving coil 33 is a second signal output by the second receiving coil 33 functioning as a signal output unit, and corresponds, for example, to the second voltage value V2 shown in FIG. 5 described below.
  • the first receiving coil 32 and the second receiving coil 33 facing the second target 23 are coils for detecting the position of the second target 23 in the circumferential direction Dc. Therefore, the first receiving coil 32 and the second receiving coil 33 facing the second target 23 output a detection signal according to the position of the second target 23.
  • the first receiving coil 32 and the second receiving coil 33 facing the third target 24 are coils for detecting the position of the third target 24 in the circumferential direction Dc. Therefore, the first receiving coil 32 and the second receiving coil 33 facing the third target 24 output a detection signal according to the position of the third target 24.
  • the first receiving coil 32 and the second receiving coil 33 facing the fourth target 25 are coils for detecting the position of the fourth target 25 in the circumferential direction Dc. Therefore, the first receiving coil 32 and the second receiving coil 33 facing the fourth target 25 output a detection signal corresponding to the position of the fourth target 25. Therefore, the first receiving coil 32 and the second receiving coil 33 facing the second target 23, the third target 24, and the fourth target 25, respectively, function as signal output units that output signals corresponding to the rotational position of the rotating member 20.
  • the first positive spiral portion 32a and the first anti-spiral portion 32b of the eight first receiving coils 32 and the second positive spiral portion 33a and the second anti-spiral portion 33b of the eight second receiving coils 33 are arranged in the circumferential direction Dc to form a ring shape centered on the rotation axis CL.
  • the first positive spiral portion 32a and the first anti-spiral portion 32b of the eight first receiving coils 32 and the second positive spiral portion 33a and the second anti-spiral portion 33b of the eight second receiving coils 33 are arranged in the circumferential direction Dc at 20 degree intervals centered on the rotation axis CL.
  • the first target 22 moves back and forth in the circumferential direction Dc within the first operating range W1.
  • the first target 22 is configured not to overlap in the axial direction Da with the first receiving coil 32 and the second receiving coil 33 that face the second target 23, the third target 24, and the fourth target 25.
  • the second target 23 also moves back and forth in the circumferential direction Dc within the second operating range W2.
  • the second target 23 is configured not to overlap in the axial direction Da with the first receiving coil 32 and the second receiving coil 33 that face the first target 22, the third target 24, and the fourth target 25.
  • the third target 24 moves back and forth in the circumferential direction Dc within the third operating range W3.
  • the third target 24 is configured not to overlap in the axial direction Da with the first receiving coil 32 and the second receiving coil 33 that face the first target 22, the second target 23, and the fourth target 25.
  • the fourth target 25 also moves back and forth in the circumferential direction Dc within the fourth operating range W4.
  • the fourth target 25 is configured not to overlap in the axial direction Da with the first receiving coil 32 and the second receiving coil 33 that face the first target 22, the second target 23, and the third target 24.
  • the substrate 30 is formed with connection wiring 35 that connects the one transmitting coil 31, the eight first receiving coils 32, and the eight second receiving coils 33 to the signal processing circuit 40.
  • the signal processing circuit 40 is connected to the one transmitting coil 31, the eight first receiving coils 32, and the eight second receiving coils 33 via the connection wiring 35.
  • the signal processing circuit 40 includes a microcomputer equipped with a CPU and storage units such as ROM, RAM, and non-volatile RAM, and is connected to the transmitting coil 31, the first receiving coil 32, and the second receiving coil 33.
  • the signal processing circuit 40 realizes various control operations by the CPU reading and executing a program from the ROM or non-volatile RAM.
  • the ROM or non-volatile RAM stores in advance various data (e.g., initial values, lookup tables, maps, etc.) used when executing a program.
  • Storage media such as ROM are non-transient physical storage media.
  • CPU stands for Central Processing Unit
  • ROM Read Only Memory
  • RAM stands for Random Access Memory.
  • the signal processing circuit 40 includes a signal processing unit 50 that is connected to one transmitting coil 31, eight first receiving coils 32, and eight second receiving coils 33 to perform predetermined processing.
  • the signal processing unit 50 includes an oscillator 51, a demodulator 52, an AD converter 53, an angle calculator 80, an output unit 57, and a power supply unit 58. Note that, although the following describes a representative example of a case where the signal is converted into a digital signal and then processed, when processing an analog signal, the signal processing unit 50 does not need to include an AD converter 53, etc.
  • the eight first receiving coils 32 and the eight second receiving coils 33 each output a voltage value corresponding to the position of the four targets 22 to 25.
  • the control process executed by the signal processing unit 50 when a voltage value is output from each of the eight first receiving coils 32 and the eight second receiving coils 33 to the signal processing unit 50 is similar.
  • first receiving coils 32 and the eight second receiving coils 33 only the first receiving coils 32 and second receiving coils 33 that face the first target 22 are shown.
  • first voltage value V1 and the second voltage value V2 when the first receiving coils 32 and second receiving coils 33 that face the first target 22 output a voltage value according to the position of the first target 22 will be described.
  • the first voltage value V1 is the voltage value output by the first receiving coil 32 according to the position of the first target 22.
  • the second voltage value V2 is the voltage value output by the second receiving coil 33 according to the position of the first target 22.
  • an alternating current of a predetermined frequency is applied from the oscillator 51 to the transmitting coil 31. This generates electromagnetic induction in the transmitting coil 31. Then, the transmitting coil 31 and the first receiving coil 32 are inductively coupled by the generated electromagnetic induction. The transmitting coil 31 and the second receiving coil 33 are also inductively coupled by the generated electromagnetic induction. Then, a magnetic field passing through the first receiving coil 32 and the second receiving coil 33 in the axial direction Da is generated around the first forward spiral portion 32a and the first counter spiral portion 32b of the first receiving coil 32 and around the second forward spiral portion 33a and the second counter spiral portion 33b of the second receiving coil 33.
  • the first voltage value V1 which is the induced electromotive force generated in the first receiving coil 32
  • the second voltage value V2 which is the induced electromotive force generated in the second receiving coil 33
  • the rotating member 20 rotates, the area of the first receiving coil 32 and the second receiving coil 33 that faces the first target 22 changes. As a result, the size of the portion of the magnetic field in the axial direction Da that passes through the first receiving coil 32 and the second receiving coil 33 that faces the first target 22 changes periodically. In this way, the rotating member 20 of this embodiment changes the first voltage value V1 generated in the first receiving coil 32 and the second voltage value V2 generated in the second receiving coil 33 according to its own rotational position.
  • the first voltage value V1 generated in the first receiving coil 32 and the second voltage value V2 generated in the second receiving coil 33 change periodically as the rotational position of the rotating member 20 changes.
  • the first voltage value V1 will be a voltage value on the positive side of the center of the amplitude of the sine wave-shaped first voltage value V1. Also, for example, if the portion of the first target 22 facing the first counter spiral portion 32a is larger than the first counter spiral portion 32b in the first receiving coil 32, a voltage value on the negative side of the center of the amplitude of the sine wave-shaped first voltage value V1 will be output.
  • the second voltage value V2 will be a voltage value on the positive side of the center of the amplitude of the cosine wave-shaped second voltage value V2.
  • a voltage value on the negative side of the center of the amplitude of the cosine wave-shaped second voltage value V2 will be output.
  • the first receiving coil 32 and the second receiving coil 33 are formed so that the waveform of the first voltage value V1 and the waveform of the second voltage value V2 differ by 90° in electrical angle. Therefore, in this embodiment, the first voltage value V1 generated in the first receiving coil 32 is a sine wave that corresponds to the rotational position of the first target 22.
  • the second voltage value V2 generated in the second receiving coil 33 is a wave that is out of phase with the first voltage value V1 and is a cosine wave that corresponds to the rotational position of the first target 22.
  • the substrate 30 has eight first receiving coils 32 and eight second receiving coils 33 arranged in the circumferential direction Dc to form a ring shape centered on the rotation axis CL. If the rotating member 20 were capable of rotating 360°, four targets 22 to 25 would pass in front of each of the eight first receiving coils 32 and eight second receiving coils 33 while the rotating member 20 makes one revolution.
  • the first receiving coil 32 and the second receiving coil 33 on the substrate 30 have a four-pole configuration.
  • the voltage values output by the eight first receiving coils 32 and the eight second receiving coils 33 of the four-pole configuration change between positive and negative four times while the rotating member 20 makes one revolution.
  • the mechanical angle which is the rotation angle of the rotating member 20
  • the electrical angle of the first receiving coil 32 and the second receiving coil 33 makes four revolutions in the range of 0° to 360°.
  • one revolution of the electrical angle i.e., the rotation range of 0° to 360°, corresponds to the rotation range of the mechanical angle of 0° to 90°.
  • the signal processing unit 50 is a calculation unit that calculates the rotational position of the rotating member 20 based on the first voltage value V1 output by the first receiving coil 32 and the second voltage value V2 output by the second receiving coil 33.
  • the signal processing unit 50 is a calculation unit that calculates the detected body position as the position of the rotating member 20, which is the detected body.
  • the oscillator 51 is connected to both ends of the transmitting coil 31 and applies an alternating current of a predetermined frequency.
  • Two capacitors 36, 37 are connected in series between both ends of the transmitting coil 31 and the oscillator 51, and the part connecting the two capacitors 36, 37 is connected to ground.
  • the transmitting coil 31 generates a magnetic field in the axial direction Da that passes through the first receiving coil 32 and the second receiving coil 33.
  • the way in which the transmitting coil 31 and the oscillator 51 are connected can be changed as appropriate; for example, one capacitor may be placed between both ends of the transmitting coil 31 and the oscillator 51.
  • the demodulation unit 52 is connected to both ends of the first receiving coil 32 and both ends of the second receiving coil 33.
  • the demodulation unit 52 generates a first demodulated signal VD1 by demodulating the first voltage value V1 of the first receiving coil 32, and generates a second demodulated signal VD2 by demodulating the second voltage value V2 of the second receiving coil 33.
  • the AD conversion unit 53 is connected to the demodulation unit 52 and the angle calculation unit 80.
  • the AD conversion unit 53 outputs to the angle calculation unit 80 a first conversion signal Si obtained by AD converting the first demodulation signal VD1 and a second conversion signal Co obtained by AD converting the second demodulation signal VD2.
  • the magnetic flux of the magnetic field in the axial direction Da passing through the first receiving coil 32 and the second receiving coil 33 changes based on the size of the gap G between the rotating member 20 and the substrate 30. Therefore, the first voltage value V1 generated in the first receiving coil 32 due to the magnetic field passing through the first receiving coil 32 in the axial direction Da changes based on the gap G between the rotating member 20 and the substrate 30. In addition, the second voltage value V2 generated in the second receiving coil 33 due to the magnetic field passing through the second receiving coil 33 in the axial direction Da changes based on the gap G between the rotating member 20 and the substrate 30.
  • the amplitudes of the first conversion signal Si based on the first voltage value V1 of the first receiving coil 32 and the second conversion signal Co based on the second voltage value V2 of the second receiving coil 33 change according to the gap G. Specifically, the amplitudes of the first conversion signal Si based on the first voltage value V1 and the second conversion signal Co based on the second voltage value V2 become smaller as the gap G becomes longer, and become larger as the gap G becomes shorter.
  • FIG. 6 shows an example of the change in amplitude of the first conversion signal Si and the second conversion signal Co according to the gap G when the rotation range of the rotating member 20 is a mechanical angle of 0° to 90° and the electrical angle range of the first receiving coil 32 and the second receiving coil 33 is 0° to 360°.
  • the solid line a shows the first conversion signal Si when the gap G is set to 2 mm.
  • the solid line b shows the first conversion signal Si when the gap G is set to 2.5 mm.
  • the solid line c shows the first conversion signal Si when the gap G is set to 3 mm.
  • the solid line d shows the first conversion signal Si when the gap G is set to 3.5 mm.
  • the solid line e shows the first conversion signal Si when the gap G is set to 4 mm.
  • the solid line f in FIG. 6 shows the second conversion signal Co when the gap G is set to 2 mm.
  • the solid line g shows the second conversion signal Co when the gap G is set to 2.5 mm.
  • the solid line h shows the second conversion signal Co when the gap G is set to 3 mm.
  • the solid line i shows the second conversion signal Co when the gap G is set to 3.5 mm.
  • the solid line j shows the second conversion signal Co when the gap G is set to 4 mm.
  • the position calculation unit 55 calculates the rotation angle ⁇
  • the position calculation unit 55 calculates the rotation angle ⁇ based on the first conversion signal Si based on the first voltage value V1 and the second conversion signal Co based on the second voltage value V2. For this reason, when the rotating member 20 and the substrate 30 are assembled to the rotating shaft 70, it is desirable to set the gap G to a preset design value. This allows the rotation angle ⁇ to be calculated taking into account the magnitude of the amplitude corresponding to the gap G when the position calculation unit 55 calculates the angle.
  • the gap G between the rotating member 20 and the substrate 30 may deviate from the design value due to assembly errors and manufacturing errors when assembling the rotating member 20 and the substrate 30 to the rotating shaft 70.
  • the design value of the gap G is 3 mm
  • the actual gap G may deviate from 3 mm to 2 mm or 4 mm due to assembly errors and manufacturing errors when assembling the rotating member 20 and the substrate 30 to the rotating shaft 70.
  • the amplitude of the first conversion signal Si and the second conversion signal Co changes, which causes an error in the calculation result when the position calculation unit 55 calculates the rotation angle ⁇ based on the first conversion signal Si and the second conversion signal Co.
  • the first conversion signal Si based on the first voltage value V1 has a sine wave shape, but the gain, offset, and phase of the sine wave shape of the first conversion signal Si change depending on the gap G.
  • the first conversion signal Si based on the first voltage value V1 may be distorted from an ideal sine wave shape depending on the gap G.
  • the shape exhibited by the first conversion signal Si based on the first voltage value V1 becomes a sine wave shape that is distorted with respect to the ideal sine wave shape.
  • the first voltage value V1 becomes a sine wave shape that includes distortion.
  • the second conversion signal Co based on the second voltage value V2 has a cosine wave shape, but the gain, offset, and phase of the cosine wave-shaped second conversion signal Co change depending on the gap G.
  • the second conversion signal Co based on the second voltage value V2 may be distorted from an ideal sine wave shape depending on the gap G.
  • the shape exhibited by the second conversion signal Co based on the second voltage value V2 becomes a distorted cosine wave shape with respect to the ideal cosine wave shape.
  • the second voltage value V2 becomes a distorted cosine wave shape.
  • Such distortion of the first conversion signal Si from an ideal sine wave and distortion of the second conversion signal Co from an ideal cosine wave can also cause errors in the calculation results when the position calculation unit 55 calculates the rotation angle ⁇ .
  • the angle calculation unit 80 corrects the first conversion signal Si and the second conversion signal Co by correcting the gain (G), offset (O), and phase (P) used when calculating the rotation angle ⁇ using the first conversion signal Si and the second conversion signal Co. Then, the angle calculation unit 80 derives tan ⁇ , which will be described later, for calculating the angle by calculating the inverse tangent (i.e., arc tangent) function using the corrected first conversion signal Si and the second conversion signal Co, and calculates the position of the rotating member 20 based on the derived tan ⁇ . For example, as shown in FIG.
  • the angle calculation unit 80 of this embodiment includes a GOP correction unit 54 that corrects the first conversion signal Si and the second conversion signal Co, a position calculation unit 55 that calculates the rotation angle ⁇ , and a section correction unit 56 that corrects the rotation angle ⁇ calculated by the position calculation unit 55.
  • the signal processing unit 50 of this embodiment is configured to function as a GOP correction unit 54, a position calculation unit 55, and a section correction unit 56.
  • the signal processing unit 50 may be configured to have one circuit module capable of performing the functions of the GOP correction unit 54, the position calculation unit 55, and the section correction unit 56.
  • the signal processing unit 50 may be configured to have multiple circuit modules that correspond one-to-one to the GOP correction unit 54, the position calculation unit 55, and the section correction unit 56.
  • the GOP correction unit 54 corrects the first conversion signal Si and the second conversion signal Co using at least one of the gain correction term, offset correction term, and phase correction term for each of the first conversion signal Si and the second conversion signal Co. Then, tan ⁇ is derived using the corrected first conversion signal Si and the second conversion signal Co and the following formula 1. In this way, the GOP correction unit 54 corrects the first voltage value V1 converted into the first conversion signal Si and the second voltage value V2 converted into the second conversion signal Co using the first correction term and the second correction term described below, and functions as a signal correction unit. In other words, the GOP correction unit 54 corrects the first conversion signal Si based on the first voltage value V1 and the second conversion signal Co based on the second voltage value V2.
  • Equation 1 In the above formula 1, A1 is a gain correction term for correcting the gain of the first conversion signal Si, and A2 is a gain correction term for correcting the gain of the second conversion signal Co.
  • B1 is an offset correction term for correcting the offset of the first conversion signal Si
  • B2 is an offset correction term for correcting the offset of the second conversion signal Co.
  • C is a phase correction term for correcting the phases of the first conversion signal Si and the second conversion signal Co. As shown in formula 1, formula 1 is based on the first conversion signal Si based on a sine wave first voltage value V1 and the second conversion signal Co based on a cosine wave second voltage value V2.
  • the gain correction term that corrects the gain of the first conversion signal Si is also referred to as the first gain correction term
  • the offset correction term that corrects the offset of the first conversion signal Si is also referred to as the first offset correction term.
  • the gain correction term that corrects the gain of the second conversion signal Co is also referred to as the second gain correction term
  • the offset correction term that corrects the offset of the second conversion signal Co is also referred to as the second offset correction term.
  • the phase correction term that corrects the phase of each of the first conversion signal Si and the second conversion signal Co is also simply referred to as the phase correction term.
  • the first gain correction term and the first offset correction term correspond to the first correction term
  • the second gain correction term and the second offset correction term correspond to the second correction term.
  • the first gain correction term and the first offset correction term may be simply referred to as the first correction term
  • the second gain correction term and the second offset correction term may be simply referred to as the first correction term
  • the first correction term, second correction term and phase correction term can be obtained, for example, by inputting the first conversion signal Si and the second conversion signal Co, which are obtained when the rotating member 20 and the substrate 30 are previously assembled to the rotating shaft 70, into an external device other than the position detection device 1.
  • the external device may be composed of a CPU, a storage unit such as a ROM, RAM, or non-volatile RAM, or a microcomputer equipped with an input/output interface.
  • the external device can derive the first correction term, the second correction term and the phase correction term based on a control program stored in a ROM or the like and the input first conversion signal Si and second conversion signal Co.
  • the external device transmits information on the derived first correction term, second correction term, and phase correction term to the GOP correction unit 54, causing the GOP correction unit 54 to store the information.
  • the GOP correction unit 54 receives the first converted signal Si and the second converted signal Co output by the AD conversion unit 53, it corrects the first converted signal Si and the second converted signal Co using the stored first correction term, second correction term, and phase correction term. Then, the GOP correction unit 54 derives tan ⁇ using Equation 1, which is used by the position calculation unit 55 to calculate the angle.
  • the GOP correction unit 54 of this embodiment corrects the first converted signal Si and the second converted signal Co using the first gain correction term, the first offset correction term, the second gain correction term, and the second offset correction term out of the first gain correction term, the first offset correction term, the second gain correction term, the second offset correction term, and the phase correction term. Therefore, the GOP correction unit 54 of this embodiment does not correct the phase of each of the first converted signal Si and the second converted signal Co. Therefore, the GOP correction unit 54 of this embodiment derives tan ⁇ using Equation 1 in which 1 is substituted for C, which is the phase correction term.
  • the first gain correction term and the first offset correction term are derived so that the first conversion signal Si approaches an ideal sine wave as shown in FIG. 8.
  • the second gain correction term and the second offset correction term are derived so that the second conversion signal Co approaches an ideal cosine wave as shown in FIG. 8.
  • the first gain correction term, the first offset correction term, the second gain correction term, and the second offset correction term are derived so that the difference between the error when the gap G is the design value and the error when the gap G deviates from the design value is small.
  • the first converted signal Si is a sine wave as shown in FIG. 6, and the second converted signal Co is a cosine wave as shown in FIG. 6.
  • the first converted signal Si shown in FIG. 6 is a sine wave that includes distortion with respect to an ideal sine wave shape and has frequency components (not shown) superimposed thereon.
  • the second converted signal Co shown in FIG. 6 is a cosine wave that includes distortion with respect to an ideal cosine wave shape and has frequency components (not shown) superimposed thereon.
  • the first gain correction term and the first offset correction term are derived so that the first conversion signal Si approaches an ideal sine wave.
  • the second gain correction term and the second offset correction term are derived so that the second conversion signal Co approaches an ideal cosine wave.
  • the position detection device 1 of this embodiment is used to detect the rotational position of a pedal that reciprocates within a predetermined angular range around the rotation axis CL. Specifically, the position detection device 1 of this embodiment detects the rotational position of the rotating member 20 that reciprocates within an angular range of 0° to 24° around the rotation axis CL when the pedal is depressed. In this case, the detection range of the rotating member 20 detected by the position detection device 1 is from 0° to 24°.
  • the first gain correction term and the first offset correction term are derived so that the first conversion signal Si approaches an ideal sine wave shape within the detection range of angles from 0° to 24°.
  • the second gain correction term and the second offset correction term are derived so that the second conversion signal Co approaches an ideal cosine wave shape within the detection range of angles from 0° to 24°.
  • the first and second correction terms are derived by limiting the angle range detected by the position detection device 1. Then, it is assumed that the derived first and second correction terms are used to determine the mechanical angle, which is the rotation angle of the rotating member 20. Then, the relationship between the rotation angle of the rotating member 20 and the electrical angle of the first receiving coil 32 is as shown in FIG. 9. Specifically, the rotation angle of the rotating member 20 (i.e., the mechanical angle) is proportional to the electrical angle of the first receiving coil 32. And regardless of the gap G, the relative relationship between the mechanical angle of the rotating member 20 and the electrical angle of the first receiving coil 32 is approximately the same.
  • the rotation angle error can be made relatively smaller within the angle range of 0° to 24° than within the angle range greater than 24°, as shown in FIG. 10.
  • the solid line A shown in FIG. 10 indicates the error in the rotation angle when the gap G design value when assembling the rotating member 20 and the substrate 30 to the rotating shaft 70 is set to 3 mm and the actual gap G is set to 2 mm.
  • the solid line B indicates the error in the rotation angle when the gap G design value is set to 3 mm and the actual gap G is set to 2.5 mm.
  • the solid line C indicates the error in the rotation angle when the gap G design value is set to 3 mm and the actual gap G is set to the design value of 3 mm.
  • the solid line D indicates the error in the rotation angle when the gap G design value is set to 3 mm and the actual gap G is set to 3.5 mm.
  • the solid line E indicates the error in the rotation angle when the gap G design value is set to 3 mm and the actual gap G is set to 4 mm. The longer the gap G, the smaller the amplitude of the rotation angle error, and the shorter the gap G, the larger the amplitude.
  • the error when gap G deviates from the design value is larger than the error when gap G is the design value.
  • the design value is the size of gap G that serves as the reference when assembling rotating member 20 and substrate 30 to rotating shaft 70.
  • the error when gap G is 2 mm, 2.5 mm, 3.5 mm, or 4 mm, which are sizes that deviate from the reference gap, is larger than the error when gap G is 3 mm, which is the reference gap. Therefore, the first correction term and the second correction term are derived so that the difference between the error when gap G is the design value and the error when gap G deviates from the design value is small.
  • the gaps G of 2 mm and 2.5 mm, which are smaller than the reference gap between the rotating member 20 and the substrate 30, are referred to as near gaps.
  • the gaps G of 3.5 mm and 4 mm, which are larger than the reference gap between the rotating member 20 and the substrate 30, are referred to as far gaps.
  • the reference gap is set to 3 mm, which is the midpoint between the size of the gap G that is the farthest from the reference gap of the near gaps of 2 mm and 2.5 mm, and the size of the gap G that is the farthest from the reference gap of the far gaps of 3.5 mm and 4 mm.
  • the error when the gap G shown in Figure 10 is 3 mm is the standard error, and the errors when the gap G is 2 mm, 2.5 mm, 3.5 mm, and 4 mm are each considered to be nonstandard errors.
  • the first and second correction terms are derived so that the reference error and the non-standard error for each mechanical angle within the angle range of 0° to 24° approach 0.
  • the first and second correction terms are derived so that the difference between the reference error and each of the four non-standard errors is small, with the reference error as the reference.
  • the first gain correction term and the first offset correction term are derived so that the absolute value of the value obtained by subtracting each of the four non-standard errors from the reference error for each mechanical angle within the angle range of 0° to 24° is small.
  • the second gain correction term and the second offset correction term are derived so that the absolute value of the value obtained by subtracting each of the four non-standard errors from the reference error for each mechanical angle within the angle range of 0° to 24° is small.
  • the first and second correction terms are derived so as to reduce the difference between the error when gap G is the design value and the error when gap G deviates from the design value, and the mechanical angle, which is the rotation angle of rotating member 20, is calculated. Then, as shown in FIG. 11, the error for each mechanical angle of rotation angle ⁇ calculated by position calculation unit 55 can be reduced both when gap G is the design value and when gap G deviates from the design value.
  • the magnetic flux changes based on the size of the gap G between the rotating member 20 and the substrate 30. Therefore, the first voltage value V1 generated in the first receiving coil 32 and the second voltage value V2 generated in the second receiving coil 33 change based on the gap G between the rotating member 20 and the substrate 30. Therefore, the amplitude and offset of each of the first conversion signal Si based on the first voltage value V1 and the second conversion signal Co based on the second voltage value V2 change according to the gap G. And the change in the amplitude and the change in the offset of each of the first conversion signal Si and the second conversion signal Co become factors that cause errors in the rotation angle ⁇ calculated by the position calculation unit 55.
  • the offsets of the first conversion signal Si and the second conversion signal Co, which change according to the gap G include an offset component that is not caused by a change in amplitude and an offset component that changes according to a change in amplitude.
  • the offset component that is not caused by a change in amplitude changes less with a change in the gap G than the offset component that changes according to a change in amplitude.
  • the offset component that is not caused by a change in amplitude hardly changes in magnitude and is substantially constant regardless of the size of the gap G.
  • Such an offset component that is not caused by a change in amplitude is due to, for example, a wiring pattern on the substrate 30 that is different from the transmitting coil 31, the first receiving coil 32, and the second receiving coil 33 having a coil component.
  • the offset component that changes in response to changes in amplitude becomes larger as the gap G becomes smaller, and becomes smaller as the gap G becomes larger.
  • the offset component that changes in response to changes in amplitude becomes larger when the gap G is a near gap compared to when the gap G is a far gap.
  • the offset component that changes in response to changes in amplitude becomes proportionally smaller as the gap G becomes smaller.
  • offset components that are not dependent on changes in amplitude are shown in white, and offset components that change in response to changes in amplitude are shown in hatching.
  • the offset component that is not dependent on changes in the amplitude of the first conversion signal Si is also referred to as the first quantitative offset
  • the offset component whose signal magnitude changes in response to changes in the amplitude of the first conversion signal Si is also referred to as the first variable offset.
  • the offset component that is not dependent on changes in the amplitude of the second conversion signal Co is also referred to as the second quantitative offset
  • the offset component whose signal magnitude changes in response to changes in the amplitude of the second conversion signal Co is also referred to as the second variable offset.
  • the magnitude of the first quantitative offset hardly changes with changes in the amplitude of the first conversion signal Si, this does not necessarily mean that it is constant.
  • the magnitude of the second quantitative offset hardly changes with changes in the amplitude of the second conversion signal Co, this does not necessarily mean that it is constant.
  • the amplitude of each of the first conversion signal Si and the second conversion signal Co increases as the gap G decreases, and decreases as the gap G increases. Therefore, the larger the gap G, the greater the effect of changes in the offset of the first conversion signal Si and the second conversion signal Co.
  • the first conversion signal Si is a sine wave with superimposed frequency components.
  • the second conversion signal Co is a cosine wave with superimposed frequency components.
  • the frequency components superimposed on the first conversion signal Si and the second conversion signal Co include higher order components in addition to the zeroth order component and the first order component, and it was found that these components included in the frequency components differ depending on the gap G. Specifically, it was found that the higher order components superimposed on the first conversion signal Si and the second conversion signal Co tend to have more high order frequency components as the gap G becomes smaller, and tend to have less high order frequency components as the gap G becomes larger.
  • the gap G when the gap G is a near gap, the high-order components superimposed on the first conversion signal Si and the second conversion signal Co will have more second-order or higher-order components than when the gap G is a far gap. Also, when the gap G is a near gap, the high-order components superimposed on the first conversion signal Si and the second conversion signal Co will have fewer first-order or lower components than when the gap G is a far gap, and the smaller the size of the gap G, the fewer zero-order components there will be.
  • the high-order components superimposed on the first conversion signal Si and the second conversion signal Co contain more zero-order components when the gap G is a far gap compared to when the gap G is a near gap. Also, the high-order components superimposed on the first conversion signal Si and the second conversion signal Co contain more zero-order components when the gap G is a far gap compared to other components.
  • the zero-order component superimposed on the first conversion signal Si is due to the first quantitative offset and the first variable offset. Also, the zero-order component superimposed on the second conversion signal Co is due to the second quantitative offset and the second variable offset.
  • the inventors discovered this by varying the setting value of the gap G between the rotating member 20 and the substrate 30 and performing FFT analysis on the first conversion signal Si and the second conversion signal Co at each setting value of the gap G.
  • the position calculation unit 55 calculates the rotation angle ⁇ by performing an arctangent transformation by computing an inverse tangent function using the first conversion signal Si and the second conversion signal Co. Therefore, the frequency components superimposed on the first conversion signal Si and the second conversion signal Co become a cause of an error in the calculation result of the rotation angle ⁇ calculated by the position calculation unit 55. Furthermore, by performing an arctangent transformation on the frequency components superimposed on the first conversion signal Si and the second conversion signal Co, the degree of each component becomes one higher than before the arctangent transformation.
  • the second-order components superimposed on the first conversion signal Si and the second conversion signal Co become third-order components by arctangent transforming.
  • the zeroth-order components superimposed on the first conversion signal Si and the second conversion signal Co become first-order components by arctangent transforming.
  • the rotation angle ⁇ calculated by arctangent transforming the first conversion signal Si and the second conversion signal Co contains errors of third-order or higher-order components.
  • the first conversion signal Si and the second conversion signal Co contain fewer first-order or lower-order components when the gap G is a near gap compared to when the gap G is a far gap.
  • the error in the rotation angle ⁇ when the gap G is a near gap does not contain many second-order or lower-order components compared to when the gap G is a far gap.
  • the rotation angle ⁇ calculated by the position calculation unit 55 within the angle range of 0° to 24° is superimposed with errors of third-order or higher-order components throughout the entire angle range.
  • the rotation angle ⁇ calculated by arctangent transforming the first conversion signal Si and the second conversion signal Co contains a large error in the first-order component.
  • the rotation angle ⁇ calculated by the position calculation unit 55 within the angle range of 0° to 24° is superimposed with an error that increases proportionally as the calculated rotation angle ⁇ increases.
  • the zeroth order component when frequency components are superimposed on the first conversion signal Si and the second conversion signal Co, the zeroth order component has a greater influence on the calculation result of the rotation angle ⁇ than the higher order frequency components.
  • the zeroth order component superimposed on the first conversion signal Si is due to the first quantitative offset and the first variable offset.
  • the zeroth order component superimposed on the second conversion signal Co is due to the second quantitative offset and the second variable offset. For this reason, the larger the gap G, the greater the influence of the offset components of the first conversion signal Si and the second conversion signal Co.
  • the GOP correction unit 54 derives the first correction term and the second correction term so that the difference between the error when the gap G is a design value and the error when the gap G is a far gap is small. Specifically, the GOP correction unit 54 derives the first offset correction term and the second offset correction term so that the first-order component obtained by the position calculation unit 55 performing an arctangent transform on the first converted signal Si and the second converted signal Co when the gap G is a far gap approaches the first-order component obtained by the position calculation unit 55 performing an arctangent transform on the first converted signal Si and the second converted signal Co when the gap G is a near gap.
  • the GOP correction unit 54 derives a first offset correction term by adjusting the first quantitative offset so that the relationship between the amount of change in the amplitude of the first converted signal Si and the amount of change in the offset of the first converted signal Si based on the amount of change in the amplitude of the first converted signal Si is proportional.
  • the GOP correction unit derives a first offset correction term so that the offset of the first converted signal Si after adjusting the first quantitative offset decreases linearly in proportion to the decrease in the amplitude of the first converted signal Si.
  • the GOP correction unit 54 may derive a first offset correction term that enables the removal of the first quantitative offset portion of the offset.
  • a first offset correction term that enables the removal of the first quantitative offset portion of the offset.
  • the GOP correction unit 54 also derives a second offset correction term by adjusting the second quantitative offset so that the relationship between the amount of change in the amplitude of the second converted signal Co and the amount of change in the offset of the second converted signal Co based on the amount of change in the amplitude of the second converted signal Co is proportional.
  • the GOP correction unit derives a second offset correction term so that the offset of the second converted signal Co after adjusting the second quantitative offset decreases linearly in proportion to the decrease in the amplitude of the second converted signal Co.
  • the GOP correction unit 54 may derive a second offset correction term that enables the removal of the second quantitative offset portion of the offset.
  • This allows the relationship between the amount of change in the amplitude of the second converted signal Co and the amount of change in the offset of the second converted signal Co based on the amount of change in the amplitude of the second converted signal Co to be a proportional relationship in which the proportionality constant is a negative value.
  • an offset that changes proportionally according to the amount of change in the amplitude of the second converted signal Co remains in the second converted signal Co that has been offset-adjusted by the GOP correction unit 54.
  • the offset that varies proportionally with the amount of change in the amplitude of the first conversion signal Si remaining in the first conversion signal Si is a factor in the generation of the zeroth-order component among the frequency components superimposed on the first conversion signal Si.
  • the offset that varies proportionally with the amount of change in the amplitude of the second conversion signal Co remaining in the second conversion signal Co is a factor in the generation of the zeroth-order component among the frequency components superimposed on the second conversion signal Co.
  • the primary component remaining in the rotation angle ⁇ obtained by performing an arctangent transform using the first conversion signal Si and the second conversion signal Co after the offset adjustment can be removed by the process executed by the section correction unit 56 described below.
  • the first and second correction terms may be derived so that the sum of the absolute value of the reference error and the absolute value of the non-reference error for each mechanical angle is a minimum value.
  • the first and second correction terms may also be derived using the least squares method. According to the least squares method, even if noise is superimposed on the first voltage value V1 and the second voltage value V2, it is possible to derive the first and second correction terms that can reduce the influence of noise.
  • the GOP correction unit 54 corrects the first converted signal Si and the second converted signal Co so that the error when the gap G is the design value and the error when the gap G deviates from the design value approach zero.
  • the GOP correction unit 54 then derives tan ⁇ using Equation 1.
  • the GOP correction unit 54 transmits information about the derived tan ⁇ to the position calculation unit 55.
  • the reference error is 0 when the mechanical angle is 0°, 12°, and 21° in the angle range of 0° to 24°.
  • the reference error is on the positive side and greater than 0 in the mechanical angle range of 0° to 12° and 21° to 24°, and is on the negative side and less than 0 in the mechanical angle range of 12° to 21°.
  • the reference error has a wave shape that alternates between the positive and negative sides in the mechanical angle range of 0° to 24°.
  • the error value is larger than the standard error when compared at the same mechanical angle in the mechanical angle range of approximately 2° to approximately 10°.
  • the error value is smaller than the standard error when compared at the same mechanical angle in the mechanical angle range of 0° to approximately 2° and in the mechanical angle range of 10° to approximately 24°.
  • the off-reference error when gap G is a near gap changes in a waveform in the mechanical angle range from 0° to 24°, like the reference error, and its value changes as it intersects with the reference error.
  • the off-reference error that changes in a waveform when gap G is a near gap changes in value in line with the change in the value of the reference error.
  • the off-reference error when gap G is a near gap has a positive value in approximately the same range of mechanical angles as the range in which the reference error is positive.
  • the off-reference error when gap G is a near gap has a negative value in approximately the same range of mechanical angles as the range in which the reference error is negative.
  • the error value is smaller than the standard error when compared at the same mechanical angle in the mechanical angle range of about 0° to about 13° and 22° to about 24°.
  • the error value is larger than the standard error when compared at the same mechanical angle in the mechanical angle range of 13° to about 22°.
  • the off-reference error when gap G is a far gap changes in a waveform in the mechanical angle range from 0° to 24° and crosses the reference error to change its value.
  • the off-reference error that changes in a waveform when gap G is a far gap changes in value in line with the change in the value of the reference error.
  • the off-reference error when gap G is a far gap has a positive value in approximately the same range of mechanical angles as the range in which the reference error is positive.
  • the off-reference error when gap G is a far gap has a negative value in approximately the same range of mechanical angles as the range in which the reference error is negative.
  • the position calculation unit 55 calculates the rotation angle ⁇ , which is the detection object position before correction of the rotating member 20 (i.e., the detection object position before correction), using the information on tan ⁇ derived by the GOP correction unit 54. In this embodiment, the position calculation unit 55 calculates the rotation angle ⁇ of the rotating member 20 using tan ⁇ derived by Equation 1.
  • the interval correction unit 56 is connected to the position calculation unit 55 and the output unit 57, and outputs to the output unit 57 a corrected rotation angle ⁇ a obtained by correcting the rotation angle ⁇ , which is the uncorrected detected object position calculated by the position calculation unit 55.
  • the interval correction unit 56 performs interval correction to calculate the corrected rotation angle ⁇ a using the error in the calculated rotation angle ⁇ and the correction function shown in the following formula 2.
  • y the corrected rotation angle ⁇ a which is an output value
  • x the rotation angle ⁇ calculated by the position calculation unit 55.
  • the tilt correction value
  • the offset correction value.
  • the interval correction unit 56 derives the tilt correction value ⁇ and the offset correction value ⁇ for each of a plurality of intervals (i.e., rotation angle ranges) so that the reference error approaches 0 for each preset interval.
  • the detection range which is the angle range from 0° to 24°, is divided into seven intervals.
  • the correction function shown in Equation 2 indicates the relationship between the mechanical angle and the error in the rotation angle ⁇ in each of the seven intervals, and is based on the rotation angle ⁇ calculated by the position calculation unit 55.
  • the interval correction unit 56 derives the tilt correction value ⁇ and the offset correction value ⁇ for each of the seven intervals. Then, the interval correction unit 56 corrects the rotation angle ⁇ for each of the seven intervals using the rotation angle ⁇ calculated by the position calculation unit 55, the derived tilt correction value ⁇ , and the offset correction value ⁇ , to calculate the corrected rotation angle ⁇ a.
  • the section correction unit 56 calculates the corrected rotation angle ⁇ a based on the rotation angle ⁇ that the position calculation unit 55 has performed arctangent transformation on using the first conversion signal Si and the second conversion signal Co.
  • the first conversion signal Si and the second conversion signal Co used to calculate the rotation angle ⁇ have a zero-order frequency component superimposed thereon.
  • the zero-order component superimposed on the first conversion signal Si and the second conversion signal Co causes a larger error in the rotation angle ⁇ compared to the frequency components of higher-order components. This is because the zero-order component superimposed on the first conversion signal Si and the second conversion signal Co becomes a first-order component when the first conversion signal Si and the second conversion signal Co are arctangent transformed to calculate the rotation angle ⁇ .
  • the first converted signal Si corrected by the GOP correction unit 54 includes an offset that changes according to the amount of change in the amplitude of the first converted signal Si, which is the cause of the zeroth-order component.
  • the second converted signal Co corrected by the GOP correction unit 54 includes an offset that changes according to the amount of change in the amplitude of the second converted signal Co, which is the cause of the zeroth-order component.
  • the section correction unit 56 of this embodiment therefore performs section correction using the correction function shown in Equation 2 so as to remove the first-order components contained in the rotation angle ⁇ obtained by arctangent transform using the first transform signal Si and the second transform signal Co.
  • the section correction unit 56 performs section correction to remove the first-order components remaining in the rotation angle ⁇ obtained by arctangent transform using the first transform signal Si and the second transform signal Co after the offset adjustment by the GOP correction unit 54.
  • section correction unit 56 may derive the slope correction value ⁇ and the offset correction value ⁇ for each of fewer than seven sections or for each of more than seven sections.
  • the difference between the largest error and the smallest error among all the out-of-standard errors can be reduced.
  • the largest out-of-standard error among all the out-of-standard errors was when the gap G was 2 mm, which is a close gap, and the mechanical angle was 8°.
  • the smallest out-of-standard error among all the out-of-standard errors was when the gap G was 2 mm, which is a close gap, and the mechanical angle was 16°.
  • the difference between the largest error and the smallest error could be made 0.18 deg.
  • the off-standard errors for gaps G of 2 mm, 2.5 mm, 3.5 mm, and 4 mm change in value in a waveform pattern in the mechanical angle range of 0° to 24°, just like the standard error.
  • These off-standard errors have positive values in approximately the same range of mechanical angles as the standard error is on the positive side, and negative values in approximately the same range of mechanical angles as the standard error is on the negative side.
  • the non-standard error can be brought closer to zero by using the tilt correction value ⁇ and offset correction value ⁇ derived so that the standard error approaches zero.
  • the reference error is on the positive side, greater than 0, in the mechanical angle ranges of 0° to 12° and 21° to 24°. Therefore, by using the tilt correction value ⁇ and offset correction value ⁇ derived so that the reference error approaches 0, the reference error in the mechanical angle ranges of 0° to 12° and 21° to 24° is reduced and approaches 0. In other words, the reference error is corrected to the negative side in the mechanical angle ranges of 0° to 12° and 21° to 24°.
  • the nonstandard error is corrected to the negative side in the range of mechanical angles in which the standard error is on the positive side. Therefore, the nonstandard error, which is on the positive side in approximately the same range of mechanical angles as the standard error, can be brought closer to zero by correcting it using the tilt correction value ⁇ and offset correction value ⁇ .
  • the reference error is on the negative side and smaller than 0 when the mechanical angle is in the range of 12° to 21°. Therefore, by using the tilt correction value ⁇ and offset correction value ⁇ that are derived so that the reference error approaches 0, the reference error in the mechanical angle range of 12° to 21° is increased and approaches 0. In other words, the reference error is corrected to the positive side when the mechanical angle is in the range of 12° to 21°.
  • the nonstandard error is corrected to the positive side in the range of mechanical angles where the standard error is on the negative side. Therefore, the nonstandard error that is on the negative side in approximately the same range of mechanical angles as the standard error can be brought closer to zero by correcting it using the tilt correction value ⁇ and offset correction value ⁇ .
  • the signal processing unit 50 of this embodiment has a GOP correction unit 54 that corrects the first converted signal Si and the second converted signal Co, and a position calculation unit 55 that calculates the rotation angle ⁇ before correction based on the first converted signal Si and the second converted signal Co corrected by the GOP correction unit 54. Furthermore, the signal processing unit 50 has a section correction unit 56 that corrects the rotation angle ⁇ for each of the seven sections to calculate the corrected rotation angle ⁇ a.
  • the GOP correction unit 54 corrects the first converted signal Si and the second converted signal Co so that the error in the rotation angle ⁇ approaches 0 when the rotating member 20 and the substrate 30 are arranged so that the gap G is 2 mm, 2.5 mm, 3 mm, 3.5 mm, and 4 mm.
  • the section correction unit 56 derives the tilt correction value ⁇ and the offset correction value ⁇ in the correction function for each of the seven sections.
  • the detection error can be reduced by correcting using the tilt correction value ⁇ and offset correction value ⁇ when the rotating member 20 and the substrate 30 are arranged to have the gap G of the design value.
  • the rotating member 20 is a rotating body and is configured to be rotatable within a rotation range of 0° to 24°, which is smaller than 0° to 360°.
  • the first receiving coil 32 outputs a first voltage value V1 corresponding to the rotation angle ⁇ of the rotating member 20 when the rotating member 20 rotates within the rotation range of 0° to 24°.
  • the second receiving coil 33 outputs a second voltage value V2 corresponding to the rotation angle ⁇ of the rotating member 20 when the rotating member 20 rotates within the rotation range of 0° to 24°.
  • the position calculation unit 55 calculates the rotation angle ⁇ of the rotating member 20 rotating within the rotation range of 0° to 24° based on the first voltage value V1 and the second voltage value V2 corresponding to the rotation angle ⁇ of the rotating member 20.
  • the GOP correction unit 54 corrects the first conversion signal Si and the second conversion signal Co so that the error of the rotation angle ⁇ within the rotation range of 0° to 24° calculated by the position calculation unit 55 approaches 0.
  • the angle range in which the error in the rotation angle ⁇ approaches zero is limited, making it easier to reduce the absolute value of the error for each angle within the rotation range compared to when the angle range in which the error approaches zero is not limited.
  • the reference gap is set at the center between the two near gaps, 2 mm and 2.5 mm, which is the farthest from the reference gap, and the two far gaps, 3.5 mm and 4 mm, which is the farthest from the reference gap, which is 4 mm.
  • the position detection device 1 calculates the rotational position of the rotating member 20 that rotates within an angle range of 0° to 24°, which is smaller than 0° to 360°, but the rotational position calculated by the position detection device 1 is not limited to this.
  • the position detection device 1 may calculate the rotational position of the rotating member 20 that rotates within an angle range smaller than 0° to 360° and different from 0° to 24°.
  • the position detection device 1 may calculate the rotational position of the rotating member 20 that rotates within an angle range of 0° to 360°.
  • the detection object calculated by the position detection device 1 is not limited to a pedal when it is a rotating object.
  • the median value of the five errors, the standard error and the four nonstandard errors may be set as the standard value.
  • the first and second correction terms may then be derived so that the difference between the standard value and each of the standard error and the four nonstandard errors becomes small.
  • the position detection device 1 may derive the first correction term and the second correction term by the above-described derivation method.
  • a component device e.g., the GOP correction unit 54
  • the position detection device 1 may be configured to have a correction term derivation unit for deriving the first correction term and the second correction term.
  • the GOP correction unit 54 corrects each of the first converted signal Si and the second converted signal Co, and derives tan ⁇ using the corrected first converted signal Si and the second converted signal Co and Equation 1.
  • the present invention is not limited to this.
  • the position calculation unit 55 may derive tan ⁇ using the first converted signal Si and the second converted signal Co corrected by the GOP correction unit 54 and Equation 1.
  • the GOP correction unit 54 corrects the first conversion signal Si and the second conversion signal Co using at least one correction term among the gain correction term, the offset correction term, and the phase correction term. Then, information on the corrected first conversion signal Si and second conversion signal Co is output to the position calculation unit 55.
  • the position calculation unit 55 When the position calculation unit 55 receives information on the corrected first conversion signal Si and second conversion signal Co from the GOP correction unit 54, it may calculate tan ⁇ according to Equation 1, and use the calculated tan ⁇ to calculate the rotation angle ⁇ of the rotating member 20.
  • the second embodiment will be described with reference to Fig. 15 and Fig. 16.
  • the pattern shapes of the first receiving coil 32 and the second receiving coil 33 are different from those of the first embodiment.
  • the rest is the same as the first embodiment. Therefore, in this embodiment, the parts different from the first embodiment will be mainly described, and the description of the parts similar to the first embodiment may be omitted.
  • the first receiving coil 32 and the second receiving coil 33 are formed in an annular shape extending along the circumferential direction Dc of the substrate 30, as shown in FIG. 15.
  • the first receiving coil 32 and the second receiving coil 33 are disposed inside the transmitting coil 31 when viewed in the normal direction.
  • the first receiving coil 32 and the second receiving coil 33 are also configured by being appropriately connected to different wiring layers through vias 34 so as not to interfere with each other (i.e., not to overlap in the same layer).
  • the first receiving coil 32 is formed in a pattern shape that draws a sine curve so as to form a closed-loop sine wave.
  • the first receiving coil 32 is constructed by connecting two adjacent wiring layers, which are stacked in order, with vias 34.
  • the second receiving coil 33 is formed in a pattern shape that draws a cosine curve with a different phase from the sine curve so as to form a closed-loop cosine wave.
  • the second receiving coil 33 is constructed by connecting two adjacent wiring layers of the sequentially stacked wiring layers with vias 34.
  • the first receiving coil 32 and the second receiving coil 33 are shown in solid lines to make it easier to understand, as they are formed across multiple stacked wiring layers.
  • the first receiving coil 32 may be formed in a pattern shape that draws a cosine curve so as to form a closed-loop cosine wave.
  • the second receiving coil 33 is formed in a pattern shape that draws a sine curve with a different phase from the cosine curve so as to form a closed-loop sine wave.
  • the four targets 22 to 25 of the rotating member 20 in this embodiment are fan-shaped and expand in the circumferential direction Dc toward the outside in the radial direction Dr. Therefore, one end and the other end in the circumferential direction Dc of each of the four targets 22 to 25 extend linearly along the radial direction Dr when viewed in the axial direction Da.
  • the first receiving coil 32 and the second receiving coil 33 form a pattern shape that describes a sine curve or a cosine curve when viewed in the normal direction. Therefore, the first receiving coil 32 outputs a first voltage value V1 that has a sine wave shape according to the rotational position of the rotating member 20. Furthermore, the second receiving coil 33 outputs a second voltage value V2 that has a cosine wave shape according to the rotational position of the rotating member 20.
  • this embodiment is similar to the first embodiment. Furthermore, in this embodiment, the same effects as those of the first embodiment can be obtained from the configuration common to the first embodiment described above.
  • a third embodiment will be described with reference to Fig. 17 and Fig. 18.
  • the shape and configuration of the position detection device 1 are different from those of the first embodiment.
  • the rest is the same as in the first embodiment. Therefore, in this embodiment, the parts different from the first embodiment will be mainly described, and the description of the parts similar to the first embodiment may be omitted.
  • the position detection device 1 of this embodiment is configured to be able to detect the position of a detection object in the stroke direction.
  • the detection object is, for example, a movable part 100 mounted on a vehicle.
  • the position detection device 1 detects the position of the movable part 100, which is a detection object that moves along the stroke direction.
  • the movable part 100 of this embodiment moves straight and reciprocates within a predetermined range along the stroke direction.
  • the movable part 100 has a plurality of magnets 110, 120, 130.
  • the plurality of magnets 110, 120, 130 are arranged at a distance along the stroke direction.
  • Each of the plurality of magnets 110, 120, 130 has a magnetic pole face 111, 121, 131 having a north pole or a south pole.
  • the plurality of magnets 110, 120, 130 are arranged such that adjacent magnetic pole faces 111, 121, 131 have opposite north and south poles, respectively.
  • the position detection device 1 has a case part 10 in which a detection part 60 (described later) is provided at the tip part on the movable part 100 side.
  • a predetermined distance is provided between the case part 10 and the magnetic pole faces 111, 121, 131 of the magnets 110, 120, 130.
  • the case part 10 is disposed facing the movable part 100 while being spaced apart from the magnets 110, 120, 130.
  • the case part 10 is disposed so that the predetermined distance between the magnetic pole faces 111, 121, 131 and the case part 10 is constant.
  • the gap G in this embodiment corresponds to the distance between the magnetic pole faces 111, 121, 131 and the case part 10.
  • the position detection device 1 of this embodiment employs a magnetic detection method using magnetoresistance elements 61, 62 shown in FIG. 18, whose resistance value changes when affected by an external magnetic field, and the magnetoresistance elements 61, 62 are provided inside the case portion 10.
  • the magnetoresistance elements 61, 62 may be, for example, an anisotropic magnetoresistance element, i.e., an AMR (Anisotropic Magneto Resistive) element, a giant magnetoresistance element, i.e., a GMR (Giant Magneto Resistive) element, or a tunnel magnetoresistance element, i.e., a TMR (Tunnel Magneto Resistive) element.
  • Hall elements instead of the magnetic resistance elements 61 and 62, and use the position detection device 1 as a magnetic detection method using Hall elements.
  • the detection unit 60 has two magnetic resistance elements 61, 62 that function as magnetic detection units.
  • the two magnetic resistance elements 61, 62 acquire the change in resistance value as a voltage value when affected by a magnetic field.
  • one of the two magnetic resistance elements 61, 62 will be referred to as the first magnetic detection unit 61, and the other as the second magnetic detection unit 62.
  • the first magnetic detection unit 61 outputs a first voltage value V1 having a sine wave shape according to the position of the movable part 100.
  • the second magnetic detection unit 62 outputs a second voltage value V2 having a cosine wave shape according to the position of the movable part 100. Therefore, in this embodiment, the detection unit 60 functions as a signal output unit that outputs a first signal having a sine wave shape and a second signal having a cosine wave shape according to the position of the movable part 100, which is the detection object.
  • the case part 10 functions as a placement part.
  • this embodiment is similar to the first embodiment. Furthermore, in this embodiment, the same effects as those of the first embodiment can be obtained from the configuration common to the first embodiment described above.
  • a fourth embodiment will be described with reference to Fig. 19 and Fig. 20.
  • the method of deriving the first correction term and the second correction term is different from that of the first embodiment.
  • the rest is the same as the first embodiment. Therefore, in this embodiment, the parts different from the first embodiment will be mainly described, and the description of the parts similar to the first embodiment may be omitted.
  • the first and second correction terms are derived so as to minimize the error when the gap G is the design value within the angle range from 0° to 24°.
  • the first gain correction term, the first offset correction term, the second gain correction term, and the second offset correction term are derived so that the standard error for each mechanical angle within the angle range of 0° to 24° approaches 0.
  • the first gain correction term, the first offset correction term, the second gain correction term, and the second offset correction term are derived without taking into account the non-standard error for each mechanical angle within the angle range of 0° to 24°.
  • the reference error has a wave shape that alternates between positive and negative in the mechanical angle range of 0° to 24°.
  • the out-of-standard error when gap G is the near gap of 2 mm and 2.5 mm changes in a waveform like the standard error, and its value changes along with the change in the value of the standard error. Also, over the entire detection range from 0° to 24° mechanical angle, the error value is smaller than the standard error when compared at the same mechanical angle. For this reason, the out-of-standard error when the gap is near changes in value without intersecting with the standard error.
  • the off-standard error changes in a waveform like the standard error, and its value changes along with the change in the value of the standard error. Also, in the entire detection range from 0° to 24° mechanical angle, the error value is larger than the standard error when compared at the same mechanical angle. Therefore, when the gap is a far gap, the off-standard error changes in value without intersecting with the standard error.
  • the GOP correction unit 54 then corrects the first converted signal Si and the second converted signal Co using the first gain correction term, the first offset correction term, the second gain correction term, and the second offset correction term derived in this manner.
  • the GOP correction unit 54 then derives tan ⁇ using Equation 1.
  • the GOP correction unit 54 transmits information about the derived tan ⁇ to the position calculation unit 55.
  • the position calculation unit 55 calculates the pre-correction rotation angle ⁇ of the rotating member 20 using the information on tan ⁇ derived by the GOP correction unit 54. Then, the section correction unit 56 performs section correction using the pre-correction rotation angle ⁇ calculated by the position calculation unit 55 and Equation 2 described in the first embodiment to calculate the corrected rotation angle ⁇ a.
  • the section correction unit 56 derives the tilt correction value ⁇ and the offset correction value ⁇ for each of the seven sections in the angle range of 0° to 24°, which is the detection range, so that the reference error approaches 0.
  • the section correction unit 56 then calculates the corrected rotation angle ⁇ a using the rotation angle ⁇ calculated by the position calculation unit 55 and the derived tilt correction value ⁇ and offset correction value ⁇ .
  • the difference between the largest and smallest out-of-standard errors can be reduced.
  • the largest out-of-standard error among all out-of-standard errors was when the gap G was 4 mm and the mechanical angle was 18°.
  • the smallest out-of-standard error among all out-of-standard errors was when the gap G was 2 mm and the mechanical angle was 16°. The difference between the largest and smallest errors could be reduced to 0.50 deg.
  • the fourth embodiment is configured as described above. Therefore, in summary, it can be said that the fourth embodiment has the following advantages.
  • the signal processing unit includes: a signal correction unit (54) that corrects the first signal and the second signal; a position calculation unit (55) that calculates a pre-correction detected object position, which is the position of the detected object before correction, based on the first signal and the second signal
  • a fifth embodiment will be described with reference to Fig. 21.
  • This embodiment differs from the first embodiment in that the transmission coil 31 is not formed on the substrate 30. The rest is the same as the first embodiment. Therefore, in this embodiment, the differences from the first embodiment will be mainly described, and the description of the same parts as the first embodiment may be omitted.
  • the substrate 30 of this embodiment does not have a wiring pattern for the transmitting coil 31.
  • the first receiving coil 32 and the second receiving coil 33 are mainly spiral shaped, as described in the first embodiment.
  • the first receiving coil 32 and the second receiving coil 33 formed on the substrate 30 function as inductance elements having a predetermined inductance when an alternating current is applied from the oscillator 51. Note that the connection wiring 35 is not shown in FIG. 21.
  • the eddy currents generated in the rotating member 20 change according to the rotational position of the rotating member 20. For example, when the rotating member 20 rotates and the rotational position of the first target 22 facing the first receiving coil 32 and the second receiving coil 33 changes, the eddy currents generated in the first target 22 change.
  • the inductance of the first receiving coil 32 and the second receiving coil 33 facing the first target 22 changes.
  • a change in inductance can be detected by a detection circuit (not shown).
  • the detection circuit is configured, for example, by a resonant circuit including a coil and a capacitor.
  • the first receiving coil 32 outputs a change in its own inductance that changes according to the rotational position of the rotating member 20.
  • the second receiving coil 33 outputs a change in its own inductance that changes according to the rotational position of the rotating member 20.
  • the change in inductance of each of the first receiving coil 32 and the second receiving coil 33 detected by the detection circuit changes periodically according to the rotational position of the rotating member 20.
  • the detection circuit outputs information on the change in inductance of each of the first receiving coil 32 and the second receiving coil 33 detected by the detection circuit to the AD conversion unit 53.
  • the information on the change in inductance of the first receiving coil 32 output by the detection circuit corresponds to the first voltage value V1 in the first embodiment.
  • the information on the change in inductance of the second receiving coil 33 output by the detection circuit corresponds to the second voltage value V2 in the first embodiment.
  • this embodiment is similar to the first embodiment. Furthermore, in this embodiment, the same effects as those of the first embodiment can be obtained from the configuration common to the first embodiment described above.
  • the reference gap is 3 mm, which is the design value
  • the gaps G that deviate from the design value are 2 mm, 2.5 mm, 3.5 mm, and 4 mm.
  • the reference gap is 3 mm, which is the center between 2 mm and 4 mm, which are the furthest from the reference gap, but this is not limiting.
  • the reference gap is not limited to 3 mm and can be changed as appropriate.
  • the gaps G that deviate from the design value may include gaps smaller than 2 mm or larger than 4 mm.
  • the reference gap may be set to a size that is off-center between the size of the multiple near gaps that is farthest from the reference gap and the size of the multiple far gaps that is farthest from the reference gap.
  • the GOP correction unit 54 derives the gain correction term and the offset correction term from among the gain correction term, the offset correction term, and the phase correction term for each of the first conversion signal Si and the second conversion signal Co, but this is not limiting.
  • the GOP correction unit 54 may derive at least one of the gain correction term, offset correction term, and phase correction term for each of the first converted signal Si and the second converted signal Co. Specifically, the GOP correction unit 54 may derive, for example, only one of the gain correction term, offset correction term, and phase correction term for each of the first converted signal Si and the second converted signal Co. Also, the GOP correction unit 54 may derive any two of the gain correction term, offset correction term, and phase correction term for each of the first converted signal Si and the second converted signal Co. Furthermore, the GOP correction unit 54 may derive all of the gain correction term, offset correction term, and phase correction term for each of the first converted signal Si and the second converted signal Co.
  • the signal processing circuit 40 and the method of the present disclosure may be realized in a special-purpose computer provided by configuring a processor and memory programmed to execute one or more functions embodied in a computer program.
  • the signal processing circuit 40 and the method of the present disclosure may be realized in a special-purpose computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • the signal processing circuit 40 and the method of the present disclosure may be realized in one or more special-purpose computers configured by a combination of a processor and memory programmed to execute one or more functions and a processor configured with one or more hardware logic circuits.
  • the computer program may also be stored in a computer-readable non-transient tangible recording medium as instructions executed by the computer.
  • a position detection device for detecting the position of a detection body (20, 100), a signal output unit (32, 33, 61, 62) that outputs a first signal (V1) having a sine wave shape corresponding to the position of the detection object and a second signal (V2) having a cosine wave shape corresponding to the position of the detection object and having a different phase from the first signal; an arrangement section (30, 10) in which the signal output section is provided and which is arranged facing the detection body while being spaced apart from the detection body; a signal processing unit (50) that calculates a detection object position, which is the position of the detection object when the detection object is displaced within a predetermined detection range, based on the first signal and the second signal;
  • the signal processing unit includes: a correction function based on an error in the calculated pre-correction detected object position is calculated based on the first signal and the second signal, and the detection range is divided into a plurality of sections, and the pre-correction detected
  • a position detection device for detecting a position of a detection body (20, 100), a signal output unit (32, 33, 61, 62) that outputs a first signal (V1) having a sine wave shape corresponding to the position of the detection object and a second signal (V2) having a cosine wave shape corresponding to the position of the detection object and having a different phase from the first signal; an arrangement section (30, 10) in which the signal output section is provided and which is arranged facing the detection body while being spaced apart from the detection body; a signal processing unit (50) that calculates a detection object position, which is the position of the detection object when the detection object is displaced within a predetermined detection range, based on the first signal and the second signal;
  • the signal processing unit includes: a signal correction unit (54) that corrects the first signal and the second signal; a position calculation unit (55) that calculates a pre-correction detected object position, which is the detected object position before correction, based on the first signal and the second signal corrected by the signal
  • the detection body is a rotating body and is rotatable within a predetermined rotation range from 0° to less than 360°, the signal output unit outputs the first signal and the second signal in accordance with a rotation angle of the detection body when the detection body rotates within the predetermined rotation range; the signal correction unit corrects the first signal and the second signal so that an error in the pre-correction detection object position within the predetermined rotation range calculated by the position calculation unit approaches zero; 3.
  • the position calculation section calculates the pre-correction detected object position within the predetermined rotation range based on the first signal and the second signal corrected by the signal correction section.
  • [Claim 4] A position detection device as described in claim 2 or 3, wherein the reference gap is set to a size midway between the size of the near gap among one or more of the near gaps that is farthest from the reference gap and the size of the far gap among one or more of the far gaps that is farthest from the reference gap.
  • [Claim 5] 5. The position detection device according to claim 2, wherein the signal correction unit corrects at least one of a phase, a gain, and an offset of the first signal and corrects at least one of a phase, a gain, and an offset of the second signal.
  • the signal correction unit corrects at least one of a phase, a gain, and an offset of the first signal and corrects at least one of a phase, a gain, and an offset of the second signal.
  • the signal correction unit corrects the offset of the first signal so that a difference between an error in the pre-correction detection body position when the placement unit is positioned to be the reference gap and an error in the pre-correction detection body position when the placement unit is positioned to be the far gap approaches zero, and also corrects the offset of the second signal.
  • the signal processing unit calculates a position of the detection object by performing an arctangent transformation by calculating an inverse tangent function based on the first signal and the second signal; 6.
  • the offset of the first signal includes a first quantitative offset that is an offset component that is not dependent on a change in the amplitude of the first signal, and a first variable offset that is an offset component whose signal magnitude changes in response to a change in the amplitude of the first signal
  • the offset of the second signal includes a second quantitative offset that is an offset component that is not dependent on a change in the amplitude of the second signal, and a second variable offset that is an offset component whose signal magnitude changes in response to a change in the amplitude of the second signal
  • the signal correction unit adjusts the first quantitative offset so that a relationship between an amount of change in amplitude of the first signal and an amount of change in offset of the first signal based on the amount of change in amplitude of the first signal is proportional
  • adjusts the second quantitative offset so that a relationship between an amount of change in amplitude of the second signal and an amount of change in offset of the second signal based on the amount of change in amplitude of the second signal is proportional
  • the placement unit is a substrate, the signal output unit is formed on the substrate and includes a transmitting coil (31), and a first receiving coil (32) and a second receiving coil (33) that are inductively coupled by electromagnetic induction caused by energization of the transmitting coil;
  • the first receiving coil outputs, as a first voltage value, the first signal corresponding to the position of the detection object, the first signal varying under the influence of an eddy current flowing in the detection object due to electromagnetic induction from the transmitting coil being energized;
  • the second receiving coil outputs the second signal as a second voltage value according to the position of the detection object, the second signal varying under the influence of an eddy current flowing in the detection object due to electromagnetic induction from the transmitting coil being energized;
  • the position detection device wherein the signal processing unit calculates the position of the detection object based on the first voltage value and the second voltage value.
  • the placement unit is a substrate, the signal output unit is provided on the substrate and includes a first receiving coil (32) and a second receiving coil (33) whose inductance changes depending on the position of the detection object; the first receiving coil outputs a change in its own inductance that changes according to the position of the detection object as the first signal; the second receiving coil outputs a change in its own inductance that changes according to the position of the detection object as the second signal; 9.
  • the position detection device calculates the position of the detection object based on a change in inductance of the first receiving coil and a change in inductance of the second receiving coil.
  • the first receiving coil and the second receiving coil include a portion that is shaped in a spiral pattern.
  • the position detection device of claim 9 or 10 wherein one of the first receiving coil and the second receiving coil includes a pattern shape that describes a sine curve, and the other of the first receiving coil and the second receiving coil includes a pattern shape that describes a cosine curve that has a different phase from the sine curve.
  • a magnet (110, 120, 130) is disposed on the detection body, 9.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

検出体(20、100)の位置を検出する位置検出装置は、第1信号(V1)と、第2信号(V2)とを出力する信号出力部(32、33、61、62)と、検出体と対向して配置される配置部(30、10)と、検出体位置を算出する信号処理部(50)と、を備える。信号処理部は、第1信号および第2信号を補正し補正前検出体位置を算出し、補正前検出体位置の誤差に基づいた補正関数を演算して補正前検出体位置を補正可能であって、配置部が、基準ギャップ、1つ以上の近ギャップ、1つ以上の遠ギャップそれぞれとなるように配置された際の第1信号および第2信号を補正するとともに、複数の区間毎に補正関数における補正値を導出する。または、信号処理部は、第1信号および第2信号を補正する信号補正部(54)と、補正前検出体位置を算出する位置算出部(55)と、複数の区間毎の補正前検出体位置を補正する区間補正部(56)と、を有する。

Description

位置検出装置 関連出願への相互参照
 本出願は、2022年11月16日に出願された日本特許出願番号2022-183453号および2023年9月27日に出願された日本特許出願番号2023-166407号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、位置検出装置に関する。
 従来、検出体に配置された複数の磁石から受ける磁界の変化に基づいて、検出体の位置を検出するリニアポジションセンサが知られている(例えば、特許文献1参照)。このリニアポジションセンサは、移動する検出体における複数の磁石の位置に対応した位相の正弦信号及び余弦信号を取得する検出部を備え、検出部が取得する正弦信号及び余弦信号に基づいて検出体の位置を検出する。
 また、特許文献1に記載のリニアポジションセンサは、検出体における複数の磁石の間隔を不等間隔に配置し、または、磁石の高さを不均等に配置して検出部が受ける磁界をアンバランスに調整することで、特定の位置の検出精度を向上させる。
特開2022-16309号公報
 発明者らの鋭意検討によれば、特許文献1に記載のリニアポジションセンサのような正弦信号及び余弦信号に基づいて検出体の位置を検出する位置検出装置において、特定の位置に限定されず、検出精度を向上させる余地があることが分かった。
 本開示は、検出精度を向上可能な位置検出装置を提供することを目的とする。
 本開示の1つの観点によれば、
 検出体の位置を検出する位置検出装置であって、
 前記検出体の位置に応じた正弦波状の第1信号と、前記第1信号と位相が異なる余弦波状の前記検出体の位置に応じた第2信号とを出力する信号出力部と、
 前記信号出力部が設けられ、前記検出体と離隔した状態で前記検出体と対向して配置される配置部と、
 前記第1信号および前記第2信号に基づいて、前記検出体が所定の検出範囲において変位する際の前記検出体の位置である検出体位置を算出する信号処理部と、を備え、
 前記信号処理部は、
 前記第1信号および前記第2信号を補正し、補正した前記第1信号および前記第2信号に基づいて補正前の前記検出体位置である補正前検出体位置を算出し、算出する前記補正前検出体位置の誤差に基づいた補正関数を演算して、前記検出範囲を複数の区間に区分けした際の前記複数の区間毎に算出する前記補正前検出体位置を補正可能であって、
 前記検出体と前記配置部とが対向する方向である対向方向における前記検出体と前記配置部との間隔をギャップとし、基準となる前記ギャップを基準ギャップとし、前記基準ギャップより前記検出体と前記配置部との間隔が小さい前記ギャップを近ギャップとし、前記基準ギャップより前記検出体と前記配置部との間隔が大きい前記ギャップを遠ギャップとしたとき、
 前記配置部が、前記基準ギャップ、1つ以上の前記近ギャップ、1つ以上の前記遠ギャップそれぞれとなるように配置された際の前記補正前検出体位置の誤差がそれぞれ0に近づくように前記第1信号および前記第2信号を補正するとともに、前記複数の区間毎に前記補正関数における補正値を導出する。
 また、別の観点によれば、
 検出体の位置を検出する位置検出装置であって、
 検出体の位置に応じた正弦波状の第1信号と、第1信号と位相が異なる余弦波状の検出体の位置に応じた第2信号とを出力する信号出力部と、
 信号出力部が設けられ、検出体と離隔した状態で検出体と対向して配置される配置部と、
 第1信号および第2信号に基づいて、検出体が所定の検出範囲において変位する際の検出体の位置である検出体位置を算出する信号処理部と、を備え、
 信号処理部は、
 第1信号および第2信号を補正する信号補正部と、
 信号補正部が補正した第1信号および第2信号に基づいて補正前の検出体位置である補正前検出体位置を算出する位置算出部と、
 位置算出部が算出する補正前検出体位置の誤差に基づいた補正関数を演算して、検出範囲を複数の区間に区分けした際の複数の区間毎の位置算出部が算出する補正前検出体位置を補正する区間補正部と、を有し、
 検出体と配置部とが対向する方向である対向方向における検出体と配置部との間隔をギャップとし、基準となるギャップを基準ギャップとし、基準ギャップより検出体と配置部との間隔が小さいギャップを近ギャップとし、基準ギャップより検出体と配置部との間隔が大きいギャップを遠ギャップとしたとき、
 信号補正部は、配置部が、基準ギャップ、1つ以上の近ギャップ、1つ以上の遠ギャップそれぞれとなるように配置された際の補正前検出体位置の誤差がそれぞれ0に近づくように第1信号および第2信号を補正し、
 区間補正部は、複数の区間毎に補正関数における補正値を導出する。
 これによれば、配置部との間隔が基準ギャップ、近ギャップおよび遠ギャップのいずれかとなるように配置された場合において、検出体位置の誤差が0に近づくように補正項を導出することで、検出誤差を抑制することができる。したがって、位置検出装置における検出精度を向上させることができる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態に係る位置検出装置の概略構成図である。 図1のII-II断面図である。 図1のIII-III断面図である。 第1実施形態に係る基板を示す図である。 第1実施形態に係る位置検出装置のブロック図である。 第1実施形態に係る第1受信コイルに発生する第1電圧値の波形および第2受信コイルに発生する第2電圧値の波形の一例を示す図である。 第1実施形態に係る位置検出装置のブロック図において、角度算出部の詳細を示した図である。 理想的な第1受信コイルに発生する第1電圧値の波形および第2受信コイルに発生する第2電圧値の波形の一例を示す図である。 機械角と電気角との相対関係を示す図である。 回転角度の誤差の一例を示す図である。 第1実施形態に係る位置算出部が算出する補正前の回転角度の誤差の一例を示す図である。 第1変換信号および第2変換信号それぞれのオフセットがギャップに応じて変化することを説明するための図である。 第1実施形態に係る区間補正部によって補正された補正回転角度の誤差の一例を示す図である。 第1実施形態に係る位置検出装置のブロック図である。 第2実施形態に係る基板を示す図である。 第2実施形態に係る回転部材を示す図である。 第3実施形態に係る位置検出装置および検出体を示す図である。 第3実施形態に係る位置検出装置のブロック図である。 第4実施形態に係る位置算出部が算出する回転角度の誤差の一例を示す図である。 第4実施形態に係る区間補正部によって補正された補正回転角度の誤差の一例を示す図である。 第5実施形態に係る基板を示す図である。
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。
 (第1実施形態)
 本実施形態について、図1~図12を参照して説明する。本実施形態では、位置検出装置1が車両用ペダル装置のブレーキペダルまたはアクセルペダルの回転位置を検出するために用いられた例について説明する。なお、以下の説明では、ブレーキペダルまたはアクセルペダルを単にペダルと称する場合がある。
 図1~図3に示すように、本実施形態の位置検出装置1は、回転部材20と基板30とを備えている。なお、図1~図3に表示された回転軸心CLは、ペダルの回転軸70および回転部材20の回転中心である。本実施形態では、回転軸心CLが延びる方向を軸方向Daとし、回転軸心CLの軸を中心に放射状に拡がる方向を径方向Drとし、回転軸心CLの回転方向を周方向Dcとして説明する。これら軸方向Da、径方向Drおよび周方向Dcは、互いに交差する方向、厳密にいえば互いに垂直な方向である。
 回転部材20は、金属で構成され、軸方向Daに厚みを有する平板状に形成されている。回転部材20は、ペダルの回転軸70に対し相対回転不能に連結されている。例えば、回転部材20は、回止めキー部材を介することで回転軸70に対し相対回転不能とされていてもよいし、回転軸70に対し溶接されることで相対回転不能とされていてもよい。
 回転部材20は、所定の回転軸心CLを中心に回転可能なように回転軸70を介して非回転部材に支持された回転体であり、ペダルおよび回転軸70と共に一体回転する。したがって、位置検出装置1は、回転部材20の回転位置を検出することでペダルの回転位置を検出することができる。すなわち、回転軸70の回転位置は、ペダルの回転位置でもあり、検出体としての回転部材20の回転位置でもある。本実施形態の位置検出装置1は、回転部材20の回転位置を検出することで、ペダルの回転位置を検出する。
 また、回転部材20は、ペダルの回転軸70に連結されているので、回転軸心CLまわりに一回転するのではなく、回転軸心CLまわりの所定の角度範囲内で、ペダルの踏込み操作に伴って往復運動する。例えば、本実施形態の回転部材20は、ペダルの踏込み操作が行われることによって、回転軸心CLまわりに0°から360°より小さい範囲である0°から24°までの角度範囲内で往復運動する。図1では、その往復運動での端位置における回転部材20の4つのターゲット22、23、24、25の外形の一部が二点鎖線で図示されている。
 図1に示すように、回転部材20は、連結部21と、4つのターゲット22、23、24、25とを有している。すなわち、回転部材20に含まれる4つのターゲット22、23、24、25は、回転軸心CLを中心に一体回転する。そして、ペダルの踏込み操作に伴って、4つのターゲット22、23、24、25は、共に、周方向Dcに往復移動する。
 例えば、回転部材20は、連結部21と4つのターゲット22、23、24、25とを含んだ単一の部品として構成されている。また、回転部材20は、軸方向Daの厚みが均一な平板状に形成されている。このため、4つのターゲット22~25の軸方向Daの厚みは、互いに同じ大きさになっている。なお、本実施形態の説明では、4つのターゲット22、23、24、25をまとめて、4つのターゲット22~25と称する場合がある。また、4つのターゲット22~25をそれぞれ第1ターゲット22、第2ターゲット23、第3ターゲット24、第4ターゲット25と称する場合がある。
 連結部21は、回転部材20の中で中央部分に配置され、回転軸心CLを中心とした円環形状を成している。連結部21の内側には、連結部21を軸方向Daに貫通した嵌入孔21aが形成されている。そして、嵌入孔21aには、回転軸70が、連結部21に対し相対回転不能となるように嵌入されている。すなわち、回転部材20は、この連結部21にて回転軸70に連結している。
 4つのターゲット22~25は、それぞれ、連結部21から径方向Drの外側に突き出るように形成されている。4つのターゲット22~25は、周方向Dcに等ピッチで並ぶように配置されている。具体的に、第1ターゲット22、第2ターゲット23、第3ターゲット24、第4ターゲット25は、周方向Dcにこの順に90度ピッチ間隔で並ぶように配置されている。そして、4つのターゲット22~25それぞれの周方向Dcの間隔は、第1受信コイル32の後述する第1正渦巻部32aおよび第1反渦巻部32bのどちらか一方を覆うことが可能に設定されている。また、4つのターゲット22~25それぞれの周方向Dcの間隔は、第2受信コイル33の後述する第2正渦巻部33aおよび第2反渦巻部33bのどちらか一方を、第1正渦巻部32aおよび第1反渦巻部32bの一方と同時に覆うことが可能に設定されている。
 第1ターゲット22は、第3ターゲット24に対し回転軸心CLを挟んだ反対側に配置されている。また、第2ターゲット23は、第4ターゲット25に対し回転軸心CLを挟んだ反対側に配置されている。そして、軸方向Daに沿う方向視で、4つのターゲット22~25は全体として、回転軸心CLを中心に点対称となるように配置されている。
 図3に示すように、第1ターゲット22は、軸方向Daの一方側に形成され、基板30に対向する第1対向面22aを有する。図2に示すように、第2ターゲット23は、軸方向Daの一方側に形成され、基板30に対向する第2対向面23aを有している。第3ターゲット24は、軸方向Daの一方側に形成され、基板30に対向する第3対向面24aを有する。第4ターゲット25は、軸方向Daの一方側に形成され、基板30に対向する第4対向面25aを有している。これらの第1対向面22a、第2対向面23a、第3対向面24aおよび第4対向面25aは、基板30の後述する他面30bに対し平行に形成されている。
 そして、図1に示すように、第1ターゲット22は、径方向Drの最も内側の部分から径方向Drにおける略中央の部分まで、径方向Drの外側に向かうほど周方向Dcの大きさが小さくなっている。そして、第1ターゲット22は、径方向Drの略中央の部分から径方向Drにおける最も外側の部分まで、径方向Drの外側に向かうほど周方向Dcの大きさが大きくなっている。したがって、第1ターゲット22の周方向Dcにおける一方側の端部および他方側の端部は、それぞれ軸方向Daに沿う方向視で曲線状に延伸している。
 また、第2ターゲット23、第3ターゲット24、および第4ターゲット25は、第1ターゲット22と同様の形状を成している。本実施形態では、4つのターゲット22~25は全て同一の形状を成している。
 したがって、第2ターゲット23の周方向Dcにおける一方側の端部および他方側の端部は、それぞれ軸方向Daに沿う方向視で曲線状に延伸している。また、第3ターゲット24の周方向Dcにおける一方側の端部および他方側の端部は、それぞれ軸方向Daに沿う方向視で曲線状に延伸している。そして、第4ターゲット25の周方向Dcにおける一方側の端部および他方側の端部は、それぞれ軸方向Daに沿う方向視で曲線状に延伸している。
 本実施形態では、上記したように4つのターゲット22~25は、全て同一の形状であり一体回転する。このため、4つのターゲット22~25の動作範囲は、周方向Dcに同じ長さとなる。ここで、第1ターゲット22の動作範囲を第1動作範囲W1、第2ターゲット23の動作範囲を第2動作範囲W2、第3ターゲット24の動作範囲を第3動作範囲W3、第4ターゲット25の動作範囲を第4動作範囲W4とする。
 第1動作範囲W1は、第1ターゲット22の往復移動に伴って第1ターゲット22が及ぶ周方向Dcの最大範囲である。このため、第1ターゲット22は、その第1動作範囲W1内で周方向Dcに往復移動する。また、第2動作範囲W2は、第2ターゲット23の往復移動に伴って第2ターゲット23が及ぶ周方向Dcの最大範囲である。このため、第2ターゲット23は、その第2動作範囲W2内で周方向Dcに往復移動する。第3動作範囲W3は、第3ターゲット24の往復移動に伴って第3ターゲット24が及ぶ周方向Dcの最大範囲である。このため、第3ターゲット24は、その第3動作範囲W3内で周方向Dcに往復移動する。第4動作範囲W4は、第4ターゲット25の往復移動に伴って第4ターゲット25が及ぶ周方向Dcの最大範囲である。このため、第4ターゲット25は、その第4動作範囲W4内で周方向Dcに往復移動する。
 基板30は、配線パターンが形成され不図示の電気部品が実装された多層のプリント基板である。具体的には、基板30は、絶縁膜と配線層とが交互に積層された多層基板とされている。そして、基板30には、特に図示していないが、例えば、抵抗体等の各種の電子部品も適宜配置されている。
 また、基板30は、軸方向Daに直交する平面状の一面30aと他面30bとを有している。すなわち、基板30の法線方向は軸方向Daに一致する。基板30の一面30aは、基板30のうち軸方向Daの一方側に設けられている。基板30の他面30bは、基板30のうち軸方向Daの一方側とは反対側の他方側に設けられている。
 基板30は、ペダルに対し回転しない非回転部材である。したがって、回転部材20は、基板30に対し相対回転する。
 基板30は、4つのターゲット22~25に対し軸方向Daの一方側に配置されている。そして、基板30の他面30bは、4つのターゲット22~25の第1対向面22a、第2対向面23a、第3対向面24aおよび第4対向面25aそれぞれに対し、軸方向Daに所定の間隔をあけて対向している。換言すれば、基板30は、回転部材20に対向する方向である対向方向において回転部材20に対して離隔した状態で回転部材20に対向して配置される。基板30と回転部材20との軸方向Daの所定の間隔は、基板30と4つのターゲット22~25のそれぞれとの間のいずれにおいても同じ大きさになっている。以下、基板30と回転部材20との軸方向Daの所定の間隔をギャップGとも呼ぶ。
 また、基板30は、回転軸心CLを中心とした円盤形状で形成されている。そして、基板30の中央には、基板30を軸方向Daに貫通した貫通孔30cが形成されている。この貫通孔30cには、回転軸70が挿通されている。
 図1、図4、図5に示すように、基板30は、配線パターンとして形成された1つの送信コイル31と、8つの第1受信コイル32と、8つの第2受信コイル33と、後述の信号処理回路40とを有している。位置検出装置1に設けられる1つの送信コイル31と、8つの第1受信コイル32と、8つの第2受信コイル33と、後述の信号処理回路40とは、単一の基板30に形成されている。また、1つの送信コイル31、8つの第1受信コイル32および8つの第2受信コイル33は、多層基板の各層に形成された配線層に形成されている。そして、各層に形成された1つの送信コイル31、8つの第1受信コイル32および8つの第2受信コイル33それぞれがビア34を介して適宜接続されている。
 これら1つの送信コイル31、8つの第1受信コイル32および8つの第2受信コイル33はそれぞれ、不図示の接続配線パターンを介して、基板30に実装されたICなどで構成される後述の信号処理回路40へ接続されている。基板30は、これら1つの送信コイル31、8つの第1受信コイル32、8つの第2受信コイル33および信号処理回路40が配置される配置部に対応する。
 送信コイル31は、複数回巻き回され円環状に形成されている。そして、送信コイル31は、軸方向Daに沿う方向視において、基板30が有する8つの第1受信コイル32および8つの第2受信コイル33を囲むように形成されている。別言すれば、軸方向Daに沿う方向視において、送信コイル31は、8つの第1受信コイル32および8つの第2受信コイル33の外側に配置されている。そして、送信コイル31の内側において、8つの第1受信コイル32および8つの第2受信コイル33は、周方向Dcに交互に並んで配置されている。
 本実施形態の8つの第1受信コイル32および8つの第2受信コイル33それぞれは、図4に示すように、主に渦巻形状となっている。そして、8つの第1受信コイル32それぞれは、第1正渦巻部32aおよび第1反渦巻部32bを有する。第1正渦巻部32aおよび第1反渦巻部32bは、8つの第1受信コイル32それぞれにおいて渦巻形状を形成する部分である。そして、8つの第1受信コイル32それぞれの第1正渦巻部32aおよび第1反渦巻部32bは、軸方向Daにおいて4つのターゲット22~25のいずれかに対向する。また、8つの第1受信コイル32は、それぞれの第1正渦巻部32aおよび第1反渦巻部32bを介して、それらが一筆書きにて電気的に接続されている。
 また、本実施形態の8つの第2受信コイル33それぞれは、第2正渦巻部33aおよび第2反渦巻部33bを有する。第2正渦巻部33aおよび第2反渦巻部33bは、8つの第2受信コイル33それぞれにおいて渦巻形状を形成する部分である。そして、8つの第2受信コイル33それぞれの第2正渦巻部33aおよび第2反渦巻部33bは、軸方向Daにおいて4つのターゲット22~25のいずれかに対向する。また、8つの第2受信コイル33は、それぞれの第2正渦巻部33aおよび第2反渦巻部33bを介して、それらが一筆書きにて電気的に接続されている。
 8つの第1受信コイル32それぞれの第1正渦巻部32aおよび第1反渦巻部32bは、それぞれの形状が同様である。このため、以下では、ターゲット22に対向する第1受信コイル32についてのみ、その詳細を説明し、残り3つのターゲット23~25に対向する第1受信コイル32の詳細な説明は省略する。
 また、8つの第2受信コイル33それぞれの第2正渦巻部33aおよび第2反渦巻部33bは、それぞれの形状が同様である。このため、以下では、ターゲット22に対向する第2受信コイル33についてのみ、その詳細を説明し、残り3つのターゲット23~25に対向する第2受信コイル33の詳細な説明は省略する。
 第1受信コイル32の第1正渦巻部32aおよび第1反渦巻部32bと、第2受信コイル33の第2正渦巻部33aおよび第2反渦巻部33bは、周方向Dcに沿って所定の間隔を空けて並んで形成されている。具体的には、第1正渦巻部32a、第2正渦巻部33a、第1反渦巻部32bおよび第2反渦巻部33bは、基板30の周方向Dcの一方側から他方側に向かってこの順に並んで形成されている。
 第1正渦巻部32aおよび第1反渦巻部32bは、径を変えながら四角形を描くように形成された渦巻状のパターン形状となっている。そして、第1正渦巻部32aおよび第1反渦巻部32bは、基板30の複数の配線層それぞれにおいてコイルが複数回ずつ同じ方向に巻かれている。基板30の複数の配線層それぞれに形成された第1正渦巻部32aおよび第1反渦巻部32bは、法線方向において重なるように形成されている。ただし、第1正渦巻部32aおよび第1反渦巻部32bは、コイルの巻き方向(すなわち、渦巻きの方向)が互いに逆方向となっている。例えば、第1正渦巻部32aは、法線方向に沿う方向視でコイルの巻き方向が時計回りになっている。これに対し、第1反渦巻部32bは、法線方向に沿う方向視でコイルの巻き方向が反時計回りになっている。
 第2正渦巻部33aおよび第2反渦巻部33bは、第1正渦巻部32aおよび第1反渦巻部32bと同様、径を変えながら四角形を描くように形成された渦巻状のパターン形状となっている。そして、第2正渦巻部33aおよび第2反渦巻部33bは、第1正渦巻部32aおよび第1反渦巻部32bと同様、基板30の複数の配線層それぞれにおいてコイルが複数回ずつ同じ方向に巻かれている。基板30の複数の配線層それぞれに形成された第2正渦巻部33aおよび第2反渦巻部33bは、法線方向において重なるように形成されている。ただし、第2正渦巻部33aおよび第2反渦巻部33bは、渦巻きの方向が互いに逆方向となっている。例えば、第2正渦巻部33aは、時計回りにコイルが巻かれている。これに対し、第2反渦巻部33bは、反時計回りにコイルが巻かれている。
 8つの第1受信コイル32および8つの第2受信コイル33のうち、第1ターゲット22に対向する第1受信コイル32および第2受信コイル33は、周方向Dcにおける第1ターゲット22の位置を検出するためのコイルである。
 そして、第1受信コイル32の第1正渦巻部32aおよび第1反渦巻部32bは、第1ターゲット22の第1動作範囲W1内のいずれかの位置で、第1ターゲット22に対し少なくとも一部が軸方向Daの一方側に重なるように配置されている。また、第2受信コイル33の第2正渦巻部33aおよび第2反渦巻部33bは、第1ターゲット22の第1動作範囲W1内のいずれかの位置で、第1ターゲット22に対し少なくとも一部が軸方向Daの一方側に重なるように配置されている。
 このため、8つの第1受信コイル32および8つの第2受信コイル33のうち、第1ターゲット22に対向する第1受信コイル32および第2受信コイル33は、第1ターゲット22の位置に応じた検出信号を出力する。第1ターゲット22に対向する第1受信コイル32および第2受信コイル33は、回転部材20の回転位置に応じた信号を出力する信号出力部として機能する。
 第1受信コイル32および第2受信コイル33が出力する検出信号は、例えば電圧値である。また、第1受信コイル32が出力する検出信号は、信号出力部として第1受信コイル32が出力する第1信号であって、例えば後述の図5に示された第1電圧値V1に該当する。また、第2受信コイル33が出力する検出信号は、信号出力部として機能する第2受信コイル33が出力する第2信号であって、例えば後述の図5に示された第2電圧値V2に該当する。
 また、第2ターゲット23に対向する第1受信コイル32および第2受信コイル33は、周方向Dcにおける第2ターゲット23の位置を検出するためのコイルである。このため、第2ターゲット23に対向する第1受信コイル32および第2受信コイル33は、第2ターゲット23の位置に応じた検出信号を出力する。
 そして、第3ターゲット24に対向する第1受信コイル32および第2受信コイル33は、周方向Dcにおける第3ターゲット24の位置を検出するためのコイルである。このため、第3ターゲット24に対向する第1受信コイル32および第2受信コイル33は、第3ターゲット24の位置に応じた検出信号を出力する。
 また、第4ターゲット25に対向する第1受信コイル32および第2受信コイル33は、周方向Dcにおける第4ターゲット25の位置を検出するためのコイルである。このため、第4ターゲット25に対向する第1受信コイル32および第2受信コイル33は、第4ターゲット25の位置に応じた検出信号を出力する。このため、第2ターゲット23、第3ターゲット24および第4ターゲット25それぞれに対向する第1受信コイル32および第2受信コイル33は、それぞれが回転部材20の回転位置に応じた信号を出力する信号出力部として機能する。
 そして、図4に示すように、8つの第1受信コイル32の第1正渦巻部32aおよび第1反渦巻部32bと、8つの第2受信コイル33の第2正渦巻部33aおよび第2反渦巻部33bとは、回転軸心CLを中心とした円環形状を成すように周方向Dcに並んでいる。具体的には、8つの第1受信コイル32の第1正渦巻部32aおよび第1反渦巻部32bと、8つの第2受信コイル33の第2正渦巻部33aおよび第2反渦巻部33bとは、それぞれが回転軸心CLを中心として周方向Dcに20度ピッチで並んで配置されている。
 第1ターゲット22は、上述したとおり、第1動作範囲W1内で周方向Dcに往復移動する。そして、第1ターゲット22は、第2ターゲット23、第3ターゲット24および第4ターゲット25に対向する第1受信コイル32および第2受信コイル33とは軸方向Daに重ならないように構成されている。
 また、第2ターゲット23は、第2動作範囲W2内で周方向Dcに往復移動する。そして、第2ターゲット23は、第1ターゲット22、第3ターゲット24および第4ターゲット25に対向する第1受信コイル32および第2受信コイル33とは軸方向Daに重ならないように構成されている。
 そして、第3ターゲット24は、第3動作範囲W3内で周方向Dcに往復移動する。そして、第3ターゲット24は、第1ターゲット22、第2ターゲット23および第4ターゲット25に対向する第1受信コイル32および第2受信コイル33とは軸方向Daに重ならないように構成されている。
 また、第4ターゲット25は、第4動作範囲W4内で周方向Dcに往復移動する。そして、第4ターゲット25は、第1ターゲット22、第2ターゲット23および第3ターゲット24に対向する第1受信コイル32および第2受信コイル33とは軸方向Daに重ならないように構成されている。
 また、基板30には、図5に示すように、1つの送信コイル31、8つの第1受信コイル32、8つの第2受信コイル33および信号処理回路40のほかにも種々の電気部品が実装されている。例えば、基板30には、1つの送信コイル31、8つの第1受信コイル32および8つの第2受信コイル33を信号処理回路40に接続する接続配線35が形成されている。そして、信号処理回路40は、接続配線35を介してこれら1つの送信コイル31、8つの第1受信コイル32および8つの第2受信コイル33と接続されている。
 信号処理回路40は、CPUや、ROM、RAM、不揮発性RAM等の記憶部を備えたマイクロコンピュータ等を含んで構成されており、送信コイル31、第1受信コイル32および第2受信コイル33と接続されている。そして、信号処理回路40は、CPUがROM、または不揮発性RAMからプログラムを読み出して実行することで各種の制御作動を実現する。なお、ROM、または不揮発性RAMには、プログラムの実行の際に用いられる各種のデータ(例えば、初期値、ルックアップテーブル、マップ等)が予め格納されている。また、ROM等の記憶媒体は、非遷移的実体的記憶媒体である。CPUは、Central Processing Unitの略であり、ROMは、Read Only Memoryの略であり、RAMは、Random Access Memoryの略である。
 具体的には、信号処理回路40は、図5に示すように、1つの送信コイル31、8つの第1受信コイル32および8つの第2受信コイル33と接続されて所定の処理を行う信号処理部50を備えている。信号処理部50は、発振部51、復調部52、AD変換部53、角度算出部80、出力部57および電源部58を有している。なお、以下では、デジタル信号に変換して処理する例を代表例として説明するが、アナログ信号で処理する場合には、信号処理部50は、AD変換部53等を備えていなくてもよい。
 なお、本実施形態では、8つの第1受信コイル32および8つの第2受信コイル33それぞれが4つのターゲット22~25の位置に応じた電圧値を出力する。そして、8つの第1受信コイル32および8つの第2受信コイル33それぞれから信号処理部50に電圧値が出力された際に信号処理部50が実行する制御処理は同様である。
 このため、図5では、8つの第1受信コイル32および8つの第2受信コイル33のうち、第1ターゲット22に対向する第1受信コイル32および第2受信コイル33のみを記載している。そして、以下では、第1ターゲット22に対向する第1受信コイル32および第2受信コイル33が第1ターゲット22の位置に応じた電圧値を出力する際の第1電圧値V1および第2電圧値V2について説明する。第1電圧値V1は、第1ターゲット22の位置に応じて第1受信コイル32が出力する電圧値である。第2電圧値V2は、第1ターゲット22の位置に応じて第2受信コイル33が出力する電圧値である。
 まず、送信コイル31は、発振部51から所定の周波数の交流電流が印加される。これにより、送信コイル31には電磁誘導が生じる。すると、生じる電磁誘導によって、送信コイル31と第1受信コイル32とが誘導結合する。また、生じる電磁誘導によって、送信コイル31と第2受信コイル33とが誘導結合する。そして、第1受信コイル32の第1正渦巻部32aおよび第1反渦巻部32bの周囲と、第2受信コイル33の第2正渦巻部33aおよび第2反渦巻部33bの周囲とに、第1受信コイル32および第2受信コイル33を軸方向Daに通過する磁界が発生する。また、交流電流によって発生した磁界が変化するため、電磁誘導により、第1受信コイル32に発生する誘導起電力である第1電圧値V1および第2受信コイル33に発生する誘導起電力である第2電圧値V2が変化する。
 そして、第1ターゲット22が第1受信コイル32および第2受信コイル33と対向すると、電磁誘導によって第1ターゲット22に誘導電流である渦電流が発生すると共に渦電流に起因する磁界が発生する。このため、第1受信コイル32および第2受信コイル33を通過する軸方向Daの磁界のうち、第1ターゲット22と対向する部分を通過する磁界は、渦電流を起因とする磁界によって相殺される。これにより、第1受信コイル32に発生する第1電圧値V1および第2受信コイル33に発生する第2電圧値V2が変化する。
 そして、回転部材20の回転に伴って第1受信コイル32および第2受信コイル33における第1ターゲット22と対向する面積が変化する。すると、第1受信コイル32および第2受信コイル33を通過する軸方向Daの磁界のうちの第1ターゲット22に対向する部分の大きさが周期的に変化する。このように、本実施形態の回転部材20は、自身の回転位置に応じて第1受信コイル32に発生する第1電圧値V1および第2受信コイル33に発生する第2電圧値V2を変化させる。
 このため、図6に示すように、回転部材20の回転位置が変更する伴い、第1受信コイル32に発生する第1電圧値V1および第2受信コイル33に発生する第2電圧値V2は、周期的に変化する。
 そして、例えば、第1ターゲット22が第1受信コイル32における第1正渦巻部32aに比較して第1反渦巻部32bに対向する部分が大きい場合、第1電圧値V1は、正弦波状の第1電圧値V1のうち振幅の中央よりもプラス側の電圧値となる。また、例えば、第1ターゲット22が第1受信コイル32における第1反渦巻部32bに比較して第1正渦巻部32aに対向する部分が大きい場合、正弦波状の第1電圧値V1のうち振幅の中央よりもマイナス側の電圧値を出力する。
 そして、例えば、第1ターゲット22が第2受信コイル33における第2正渦巻部33aに比較して第2反渦巻部33bに対向する部分が大きい場合、第2電圧値V2は、余弦波状の第2電圧値V2のうち振幅の中央よりもプラス側の電圧値となる。また、例えば、第1ターゲット22が第2受信コイル33における第2反渦巻部33bに比較して第2正渦巻部33aに対向する部分が大きい場合、余弦波状の第2電圧値V2のうち振幅の中央よりもマイナス側の電圧値を出力する。
 そして、第1受信コイル32および第2受信コイル33は、第1電圧値V1の波形と第2電圧値V2の波形とが電気角で90°異なるように形成されている。このため、本実施形態では、第1受信コイル32に発生する第1電圧値V1は、第1ターゲット22の回転位置に応じた正弦波状となる。また、第2受信コイル33に発生する第2電圧値V2は、第1電圧値V1と位相が異なる波状であって、第1ターゲット22の回転位置に応じた余弦波状となる。
 なお、本実施形態の基板30は、8つの第1受信コイル32および8つの第2受信コイル33が回転軸心CLを中心とした円環形状を成すように周方向Dcに並んでいる。そして、仮に回転部材20が360°回転可能であった場合、回転部材20が1周する間に、8つの第1受信コイル32および8つの第2受信コイル33それぞれの前を4つのターゲット22~25が通過することとなる。
 このような構成となっている位置検出装置1は、基板30の第1受信コイル32および第2受信コイル33が4極構成となっている。そして、4極構成となっている第1受信コイル32および第2受信コイル33は、回転部材20が1周する間に8つの第1受信コイル32および8つの第2受信コイル33それぞれが出力する電圧値は、正負に4回変化する。すなわち、回転部材20の回転角である機械角が0°~360°の範囲で1周する間に、第1受信コイル32および第2受信コイル33の電気角は0°~360°の範囲で4周する。換言すれば、電気角の1周、すなわち、0°~360°の回転範囲は、機械角の0°~90°の回転範囲に相当する。
 続いて、信号処理部50の作動について説明する。信号処理部50は、第1受信コイル32が出力する第1電圧値V1および第2受信コイル33が出力する第2電圧値V2に基づいて、回転部材20の回転位置を算出する算出部である。すなわち、信号処理部50は、検出体である回転部材20の位置としての検出体位置を算出する算出部である。
 発振部51は、図5に示されるように、送信コイル31の両端と接続されており、所定の周波数の交流電流を印加する。なお、送信コイル31の両端と発振部51との間には、2つのコンデンサ36、37が直列に接続されていると共に、2つのコンデンサ36、37同士を接続する部分がグランドに接続されている。そして、送信コイル31は、第1受信コイル32および第2受信コイル33を通過する軸方向Daの磁界を発生させる。但し、送信コイル31と発振部51との接続の仕方は適宜変更可能であり、例えば、送信コイル31の両端と発振部51との間に1つのコンデンサを配置するようにしてもよい。
 復調部52は、第1受信コイル32の両端および第2受信コイル33の両端と接続されている。そして、復調部52は、第1受信コイル32の第1電圧値V1を復調した第1復調信号VD1を生成すると共に、第2受信コイル33の第2電圧値V2を復調した第2復調信号VD2を生成する。
 AD変換部53は、復調部52および角度算出部80と接続されている。そして、AD変換部53は、第1復調信号VD1をAD変換した第1変換信号Siおよび第2復調信号VD2をAD変換した第2変換信号Coを角度算出部80に出力する。
 ところで、第1受信コイル32および第2受信コイル33を通過する軸方向Daの磁界は、回転部材20と基板30とのギャップGの大きさに基づいて磁束が変化する。このため、第1受信コイル32を軸方向Daに通過する磁界に起因する第1受信コイル32に発生する第1電圧値V1は、回転部材20と基板30とのギャップGに基づいて変化する。また、第2受信コイル33を軸方向Daに通過する磁界に起因する第2受信コイル33に発生する第2電圧値V2は、回転部材20と基板30とのギャップGに基づいて変化する。
 したがって、第1受信コイル32の第1電圧値V1に基づく第1変換信号Siおよび第2受信コイル33の第2電圧値V2に基づく第2変換信号Coは、図6に示されるように、ギャップGに応じて、その振幅が変化する。具体的には、第1電圧値V1に基づく第1変換信号Siおよび第2電圧値V2に基づく第2変換信号Coは、ギャップGが長くなるほど振幅が小さくなり、ギャップGが短くなるほど振幅が大きくなる。
 ここで、図6において、回転部材20の回転範囲が機械角0°~90°であって、第1受信コイル32および第2受信コイル33の電気角の範囲が0°~360°である場合のギャップGに応じた第1変換信号Siおよび第2変換信号Coの振幅の変化の一例を示す。具体的には、実線aは、ギャップGを2mmに設定した場合の第1変換信号Siを示す。実線bは、ギャップGを2.5mmに設定した場合の第1変換信号Siを示す。実線cは、ギャップGを3mmに設定した場合の第1変換信号Siを示す。実線dは、ギャップGを3.5mmに設定した場合の第1変換信号Siを示す。実線eは、ギャップGを4mmに設定した場合の第1変換信号Siを示す。
 また、図6の実線fは、ギャップGを2mmに設定した場合の第2変換信号Coを示す。実線gは、ギャップGを2.5mmに設定した場合の第2変換信号Coを示す。実線hは、ギャップGを3mmに設定した場合の第2変換信号Coを示す。実線iは、ギャップGを3.5mmに設定した場合の第2変換信号Coを示す。実線jは、ギャップGを4mmに設定した場合の第2変換信号Coを示す。
 なお、上記実線a、実線b、実線c、実線d、実線e、実線f、実線g、実線h、実線i、実線jの説明は後述の図8においても同様である。
 このように、第1電圧値V1に基づく第1変換信号Siおよび第2電圧値V2に基づく第2変換信号Coは、ギャップGに応じて振幅が変化する。また、具体的には後述するが、位置算出部55が回転角度θを算出する場合、位置算出部55は、第1電圧値V1に基づく第1変換信号Siおよび第2電圧値V2に基づく第2変換信号Coに基づいて回転角度θを算出する。このため、回転軸70に回転部材20および基板30を組付ける際に、ギャップGを予め設定した設計値とすることが望ましい。これにより、位置算出部55によって角度算出を行う際に、ギャップGに応じた振幅の大きさを考慮して回転角度θを算出させることができる。
 しかし、回転部材20と基板30とのギャップGは、回転軸70に回転部材20および基板30を組付ける際の組付け誤差や製造誤差によって、設計値からずれる場合がある。例えば、ギャップGの設計値が3mmであった場合であっても、回転軸70に回転部材20および基板30を組付ける際の組付け誤差や製造誤差によって、実際のギャップGが3mmから2mmや4mmへずれることがある。そして、ギャップGが設計値からずれることで第1変換信号Siおよび第2変換信号Coの振幅が変化すると、位置算出部55が第1変換信号Siおよび第2変換信号Coに基づいて回転角度θを算出する際の算出結果に対する誤差が生じる要因となる。
 また、第1電圧値V1に基づく第1変換信号Siは、正弦波状となるところ、ギャップGに応じて、正弦波状である第1変換信号Siのゲイン、オフセット、位相が変化する。これにより、第1電圧値V1に基づく第1変換信号Siは、ギャップGに応じて理想的な正弦波状から歪む場合がある。この場合、第1電圧値V1に基づく第1変換信号Siが示す形状は、理想的な正弦波の形状に対して歪んだ正弦波状となる。換言すれば、第1電圧値V1は、歪みを含む正弦波状となる。
 また、第2電圧値V2に基づく第2変換信号Coは、余弦波状となるところ、ギャップGに応じて、余弦波状である第2変換信号Coのゲイン、オフセット、位相が変化する。これにより、第2電圧値V2に基づく第2変換信号Coは、ギャップGに応じて理想的な正弦波状から歪む場合がある。この場合、第2電圧値V2に基づく第2変換信号Coが示す形状は、理想的な余弦波の形状に対して歪んだ余弦波状となる。換言すれば、第2電圧値V2は、歪みを含む余弦波状となる。
 このような理想的な正弦波状からの第1変換信号Siの歪みや理想的な余弦波状からの第2変換信号Coの歪みも、位置算出部55が回転角度θを算出する際の算出結果に対する誤差が生じる要因となる。
 このため、角度算出部80は、第1変換信号Siおよび第2変換信号Coを用いて回転角度θを算出する際に用いられるゲイン(G)、オフセット(O)、位相(P)それぞれを補正して第1変換信号Siおよび第2変換信号Coを補正する。そして、角度算出部80は、補正した第1変換信号Siおよび第2変換信号Coを用いて逆正接(すなわち、アークタンジェント)関数を演算して角度算出を行うための後述するtanθを導出し、導出したtanθに基づいて回転部材20の位置を算出する。本実施形態の角度算出部80は、例えば、図7に示すように、第1変換信号Siおよび第2変換信号Coを補正するGOP補正部54と、回転角度θを算出する位置算出部55と、位置算出部55が算出した回転角度θを補正する区間補正部56を含む。
 本実施形態の信号処理部50は、GOP補正部54、位置算出部55、区間補正部56として機能可能に構成されている。なお、信号処理部50は、GOP補正部54、位置算出部55および区間補正部56の機能を発揮可能な1つの回路モジュールを有する構成であってもよい。または、信号処理部50は、GOP補正部54、位置算出部55、区間補正部56に1対1に対応する複数の回路モジュールを備えて構成されていてもよい。
 GOP補正部54は、第1変換信号Siおよび第2変換信号Coそれぞれに対するゲイン用補正項、オフセット用補正項、位相用補正項のうち、少なくとも1つの補正項を用いて第1変換信号Siおよび第2変換信号Coを補正する。そして、補正した第1変換信号Siおよび第2変換信号Coと、下記数式1とを用いてtanθを導出する。このように後述の第1補正項および後述の第2補正項を用いて第1変換信号Siに変換した第1電圧値V1および第2変換信号Coに変換した第2電圧値V2を補正するGOP補正部54は、信号補正部として機能する。換言すれば、GOP補正部54は、第1電圧値V1に基づく第1変換信号Siおよび第2電圧値V2に基づく第2変換信号Coを補正する。
(数1)
Figure JPOXMLDOC01-appb-I000001

 なお、上記数式1において、A1が第1変換信号Siのゲインを補正するゲイン用補正項であり、A2が第2変換信号Coのゲインを補正するゲイン用補正項である。また、上記数式1において、B1が第1変換信号Siのオフセットを補正するオフセット用補正項であり、B2が第2変換信号Coのオフセットを補正するオフセット用補正項である。そして、上記数式1において、Cが第1変換信号Siおよび第2変換信号Coそれぞれの位相を補正する位相用補正項である。数式1に示すように、数式1は、正弦波状の第1電圧値V1に基づく第1変換信号Siと、余弦形状の第2電圧値V2に基づく第2変換信号Coに基づくものである。
 以下、第1変換信号Siのゲインを補正するゲイン用補正項を第1ゲイン用補正項、第1変換信号Siのオフセットを補正するオフセット用補正項を第1オフセット用補正項とも呼ぶ。また、第2変換信号Coのゲインを補正するゲイン用補正項を第2ゲイン用補正項、第2変換信号Coのオフセットを補正するオフセット用補正項を第2オフセット用補正項とも呼ぶ。そして、第1変換信号Siおよび第2変換信号Coそれぞれの位相を補正する位相用補正項を単に位相用補正項とも呼ぶ。
 また、本実施形態では、第1ゲイン用補正項および第1オフセット用補正項が第1補正項に対応し、第2ゲイン用補正項および第2オフセット用補正項が第2補正項に対応する。そして、以下において、第1ゲイン用補正項および第1オフセット用補正項を単に第1補正項と呼び、第2ゲイン用補正項および第2オフセット用補正項を呼ぶ場合がある。
 これら第1補正項、第2補正項および位相用補正項は、例えば、予め回転軸70に回転部材20および基板30を組付けた状態で得られる第1変換信号Siおよび第2変換信号Coを、例えば、位置検出装置1とは別の外部装置に取り込むことで求めることができる。外部装置は、CPUや、ROM、RAM、不揮発性RAM等の記憶部や、入出力インタフェースを備えたマイクロコンピュータ等で構成されてもよい。この場合、外部装置は、ROM等に記憶された制御プログラムと、入力される第1変換信号Siおよび第2変換信号Coとに基づいて、第1補正項、第2補正項および位相用補正項を導出することができる。
 外部装置は、導出した第1補正項、第2補正項および位相用補正項の情報をGOP補正部54に送信することでGOP補正部54に記憶させる。これにより、GOP補正部54は、AD変換部53が出力する第1変換信号Siおよび第2変換信号Coを受信すると、記憶された第1補正項、第2補正項および位相用補正項を用いて、第1変換信号Siおよび第2変換信号Coを補正する。そして、GOP補正部54は、数式1によって、位置算出部55が角度算出を行うためのtanθを導出する。
 ここで、本実施形態のGOP補正部54は、第1ゲイン用補正項、第1オフセット用補正項、第2ゲイン用補正項、第2オフセット用補正項および位相用補正項のうち、第1ゲイン用補正項、第1オフセット用補正項、第2ゲイン用補正項および第2オフセット用補正項を用いて第1変換信号Siおよび第2変換信号Coを補正する。このため、本実施形態のGOP補正部54は、第1変換信号Siおよび第2変換信号Coそれぞれの位相を補正しない。したがって、本実施形態のGOP補正部54は、位相用補正項であるCに1が代入された数式1を用いてtanθを導出する。
 ここで、第1ゲイン用補正項、第1オフセット用補正項、第2ゲイン用補正項および第2オフセット用補正項の導出方法について説明する。第1ゲイン用補正項および第1オフセット用補正項は、第1変換信号Siが図8に示すような理想的な正弦波状に近付くように導出される。また、第2ゲイン用補正項および第2オフセット用補正項は、第2変換信号Coが図8に示すような理想的な余弦波状に近付くように導出される。さらに、第1ゲイン用補正項、第1オフセット用補正項、第2ゲイン用補正項および第2オフセット用補正項は、ギャップGが設計値である場合の誤差と、ギャップGが設計値から外れた場合の誤差との差がそれぞれ小さくなるように導出される。
 ここで、第1変換信号Siが図6に示すような正弦波状であって、第2変換信号Coが図6に示すような余弦波状であったとする。図6に示す第1変換信号Siは、理想的な正弦波の形状に対して歪みを含むとともに、不図示の周波数成分が重畳した正弦波状である。また、図6に示す第2変換信号Coは、理想的な余弦波の形状に対して歪みを含むとともに、不図示の周波数成分が重畳した余弦波状である。
 このような場合に、第1ゲイン用補正項および第1オフセット用補正項は、第1変換信号Siが理想的な正弦波状に近付くように導出される。また、第2ゲイン用補正項および第2オフセット用補正項は、第2変換信号Coが理想的な余弦波状に近付くように導出される。
 ところで、本実施形態の位置検出装置1は、回転軸心CLまわりの所定の角度範囲内で往復運動するペダルの回転位置を検出するために用いられている。具体的に、本実施形態の位置検出装置1は、ペダルの踏込み操作が行われることによって、回転軸心CLまわりに0°から24°までの角度範囲内で往復運動する回転部材20の回転位置を検出する。この場合、位置検出装置1が検出する回転部材20の検出範囲は、0°から24°までである。
 このため、0°から24°までの検出範囲を検出する位置検出装置1では、検出範囲外における回転位置の誤差を小さくするように第1ゲイン用補正項、第1オフセット用補正項、第2ゲイン用補正項および第2オフセット用補正項を導出する必要が無い。換言すれば、0°から24°までの検出範囲を検出する位置検出装置1は、検出範囲内における回転位置の誤差が小さくなるように第1ゲイン用補正項、第1オフセット用補正項、第2ゲイン用補正項および第2オフセット用補正項を導出すればよい。
 このため、本実施形態では、第1ゲイン用補正項および第1オフセット用補正項は、検出範囲である0°から24°までの角度範囲内において、第1変換信号Siが理想的な正弦波状に近づくように導出される。また、第2ゲイン用補正項および第2オフセット用補正項は、検出範囲である0°から24°までの角度範囲内において、第2変換信号Coが理想的な余弦波状に近づくように導出される。
 このように、位置検出装置1が検出する角度範囲に限定して第1補正項および第2補正項を導出したとする。そして、導出した第1補正項および第2補正項を用いて回転部材20の回転角度である機械角を求めたとする。すると、回転部材20の回転角度と第1受信コイル32の電気角との関係は図9のようになる。具体的に、回転部材20の回転角度(すなわち、機械角)は、第1受信コイル32の電気角に比例する。そして、ギャップGに関わらず、回転部材20の機械角と第1受信コイル32の電気角との相対関係は略同じになる。
 これによれば、回転角度は、ギャップGの大きさにかかわらず、図10に示すように、24°より大きい角度範囲内における誤差より0°から24°までの角度範囲内における誤差を比較的小さくできる。
 なお、図10に示す実線Aは、回転軸70に回転部材20および基板30を組付ける際のギャップGの設計値が3mmに設定された場合において、実際のギャップGが2mmに設定された場合の回転角度の誤差を示す。また、実線Bは、ギャップGの設計値が3mmに設定された場合において、実際のギャップGが2.5mmに設定された場合の回転角度の誤差を示す。また、実線Cは、ギャップGの設計値が3mmに設定された場合において、実際のギャップGが設計値である3mmに設定された場合の回転角度の誤差を示す。また、実線Dは、ギャップGの設計値が3mmに設定された場合において、実際のギャップGが3.5mmに設定された場合の回転角度の誤差を示す。また、実線Eは、ギャップGの設計値が3mmに設定された場合において、実際のギャップGが4mmに設定された場合の回転角度の誤差を示す。回転角の誤差は、ギャップGが長くなるほど振幅が小さくなり、ギャップGが短くなるほど振幅が大きくなる。
 ただし、図10に示すように、ギャップGが設計値から外れた場合の誤差は、ギャップGが設計値である場合の誤差に比較して大きくなっている。ここで、設計値とは、回転軸70に回転部材20および基板30を組付ける際の基準となるギャップGの大きさである。このため、ギャップGの大きさが基準ギャップから外れた大きさである2mm、2.5mm、3.5mm、4mmである場合の誤差は、基準ギャップとなる3mmである場合の誤差に比較して大きくなっている。したがって、ギャップGが設計値である場合の誤差と、ギャップGが設計値から外れた場合の誤差との差がそれぞれ小さくなるように第1補正項および第2補正項が導出される。
 以下では設計値から外れたこれらギャップGのうち、基準ギャップより回転部材20と基板30との間隔が小さい2mmおよび2.5mmのギャップGを近ギャップとする。また、設計値から外れたこれらギャップGのうち、基準ギャップより回転部材20と基板30との間隔が大きい3.5mm、4mmのギャップGを遠ギャップとする。
 そして、近ギャップである2mmおよび2.5mmのうちの最も基準ギャップから離れたギャップGの大きさと、遠ギャップである3.5mmおよび4mmのうちの最も基準ギャップから離れたギャップGとの中心である3mmに基準ギャップが設定されている。
 そして、図10に示すギャップGが3mmである場合の誤差を基準誤差、ギャップGが2mm、2.5mm、3.5mm、4mmそれぞれの場合の誤差を基準外誤差とする。
 第1補正項および第2補正項は、0°から24°までの角度範囲内における機械角毎の基準誤差および基準外誤差がそれぞれ0に近づくように導出される。本実施形態の第1補正項および第2補正項は、基準誤差を基準として、基準誤差と4つの基準外誤差それぞれとの差が小さくなるように導出される。具体的に、第1ゲイン用補正項および第1オフセット用補正項は、0°から24°までの角度範囲内における機械角毎の基準誤差から4つの基準外誤差それぞれを減算して得られる値の絶対値が小さくなるように導出される。また、第2ゲイン用補正項および第2オフセット用補正項は、0°から24°までの角度範囲内における機械角毎の基準誤差から4つの基準外誤差それぞれを減算して得られる値の絶対値が小さくなるように導出される。
 このように、ギャップGが設計値である場合の誤差と、ギャップGが設計値から外れた場合の誤差との差がそれぞれ小さくなるように第1補正項および第2補正項を導出し、回転部材20の回転角度である機械角を求めたとする。すると、図11に示すように、ギャップGが設計値である場合も、ギャップGが設計値から外れる場合であっても、位置算出部55が算出する回転角度θの機械角毎の誤差を小さくすることができる。
 このように、ギャップGが設計値である場合の誤差と、ギャップGが設計値から外れた場合の誤差との差がそれぞれ小さくなるように第1補正項および第2補正項を導出する理由について説明する。
 上述したように、第1受信コイル32および第2受信コイル33を通過する軸方向Daの磁界では、回転部材20と基板30とのギャップGの大きさに基づいて磁束が変化する。このため、第1受信コイル32に発生する第1電圧値V1および第2受信コイル33に発生する第2電圧値V2は、回転部材20と基板30とのギャップGに基づいて変化する。したがって、第1電圧値V1に基づく第1変換信号Siおよび第2電圧値V2に基づく第2変換信号Coそれぞれの振幅及びオフセットは、ギャップGに応じて変化する。そして、第1変換信号Siおよび第2変換信号Coそれぞれの振幅の変化およびオフセットの変化は、位置算出部55が算出する回転角度θに誤差を発生させる要因となる。
 発明者らの鋭意検討によれば、図12に示すように、ギャップGに応じて変化する第1変換信号Siおよび第2変換信号Coそれぞれのオフセットには、振幅の変化によらないオフセット成分と、振幅の変化に応じて変化するオフセット成分とを含むことが判った。具体的には、振幅の変化によらないオフセット成分は、振幅の変化に応じて変化するオフセット成分に比較してギャップGの変化に伴う変化量が少ないことが判った。例えば、図12に示す一例では、振幅の変化によらないオフセット成分は、ギャップGの大きさによらず、その大きさがほとんど変化せず、略一定であった。このような振幅の変化によらないオフセット成分は、例えば、基板30における送信コイル31、第1受信コイル32および第2受信コイル33とは異なる配線パターンなどがコイル成分を有すること等に起因するものである。
 これに対して、振幅の変化に応じて変化するオフセット成分は、ギャップGが小さいほど大きくなり、ギャップGが大きいほど小さくなる。換言すれば、振幅の変化に応じて変化するオフセット成分は、ギャップGが近ギャップである場合、ギャップGが遠ギャップである場合に比較して大きくなる。本実施形態では、振幅の変化に応じて変化するオフセット成分は、ギャップGが小さくなるにしたがい、その大きさが比例的に小さくなった。
 なお、図12では、振幅の変化によらないオフセット成分を白抜きで示し、振幅の変化に応じて変化するオフセット成分をハッチングで示す。以下、第1変換信号Siのオフセットのうち、第1変換信号Siの振幅の変化によらないオフセット成分を第1定量オフセット、第1変換信号Siの振幅の変化に応じて信号の大きさが変化するオフセット成分を第1可変オフセットとも呼ぶ。また、第2変換信号Coのオフセットのうち第2変換信号Coの振幅の変化によらないオフセット成分を第2定量オフセット、第2変換信号Coの振幅の変化に応じて信号の大きさが変化するオフセット成分を第2可変オフセットとも呼ぶ。
 なお、第1定量オフセットは、第1変換信号Siの振幅の変化によってその大きさがほとんど変化しないものの、必ずしも一定であることを意味するものではない。また、第2定量オフセットは、第2変換信号Coの振幅の変化によってその大きさがほとんど変化しないものの、必ずしも一定であることを意味するものではない。
 ところで、第1変換信号Siおよび第2変換信号Coそれぞれの振幅は、ギャップGが小さいほど大きくなり、ギャップGが大きいほど小さくなる。このため、ギャップGが大きくなるほど、第1変換信号Siおよび第2変換信号Coのオフセットの変化の影響が大きくなる。
 また、上述したように、第1変換信号Siは、周波数成分が重畳した正弦波状である。第2変換信号Coは、周波数成分が重畳した余弦波状である。発明者らのさらなる鋭意検討によれば、第1変換信号Siおよび第2変換信号Coに重畳する周波数成分には0次成分、1次成分に加えて高次成分が含まれるところ、ギャップGに応じて、周波数成分に含まれるこれらの成分が異なることが判った。具体的には、第1変換信号Siおよび第2変換信号Coに重畳する高次成分は、ギャップGが小さいほど高次成分の周波数成分が多くなり、ギャップGが大きいほど高次成分の周波数成分が少なくなる傾向があることが判った。
 例えば、第1変換信号Siおよび第2変換信号Coに重畳する高次成分は、ギャップGが近ギャップである場合、ギャップGが遠ギャップである場合に比較して2次以上の高次成分が多くなる。また、第1変換信号Siおよび第2変換信号Coに重畳する高次成分は、ギャップGが近ギャップである場合、ギャップGが遠ギャップである場合に比較して1次以下の成分が少なくなり、ギャップGの大きさが小さいほど、0次成分の成分が少なくなる。
 これに対して、第1変換信号Siおよび第2変換信号Coに重畳する高次成分は、ギャップGが遠ギャップである場合、ギャップGが近ギャップである場合に比較して0次成分が多く含まれる。また、第1変換信号Siおよび第2変換信号Coに重畳する高次成分は、ギャップGが遠ギャップである場合、他の成分に比較して0次成分が多く含まれる。第1変換信号Siに重畳する0次成分は、第1定量オフセットおよび第1可変オフセットに起因するものである。また、第2変換信号Coに重畳する0次成分は、第2定量オフセットおよび第2可変オフセットに起因するものである。
 このようなことは、発明者らが回転部材20と基板30とのギャップGの設定値を様々に変化させて、各ギャップGの設定値における第1変換信号Siおよび第2変換信号CoそれぞれをFFT解析することによって見出された。
 ところで、位置算出部55は、第1変換信号Siおよび第2変換信号Coを用いて逆正接関数を演算してアークタンジェント変換することで回転角度θを算出する。このため、第1変換信号Siおよび第2変換信号Coに重畳する周波数成分は、位置算出部55が算出する回転角度θの算出結果に誤差を生じさせる要因となる。そして、第1変換信号Siおよび第2変換信号Coに重畳する周波数成分は、アークタンジェント変換されることで、アークタンジェント変換される前に比較して各成分の次数がそれぞれ1つ大きくなる。
 例えば、第1変換信号Siおよび第2変換信号Coに重畳する2次成分は、アークタンジェント変換することで3次成分となる。また、第1変換信号Siおよび第2変換信号Coに重畳する0次成分は、アークタンジェント変換することで1次成分となる。
 このため、ギャップGが1次以下の成分に比較して2次以上の高次成分が大きく含まれる近ギャップの場合、第1変換信号Siおよび第2変換信号Coをアークタンジェント変換して算出する回転角度θには、3次以上の高次成分の誤差が含まれることとなる。ただし、ギャップGが近ギャップの場合の第1変換信号Siおよび第2変換信号Coは、ギャップGが遠ギャップである場合に比較して1次以下の成分が少ない。このため、ギャップGが近ギャップの場合の回転角度θの誤差には、ギャップGが遠ギャップである場合に比較して2次以下の成分があまり含まれない。この場合、位置算出部55が算出する0°から24°までの角度範囲内における回転角度θには、全角度範囲内において3次以上の高次成分の誤差が重畳する。
 これに対して、ギャップGが他の成分に比較して0次成分が大きく含まれる遠ギャップの場合、第1変換信号Siおよび第2変換信号Coをアークタンジェント変換して算出する回転角度θには、1次成分の誤差が多く含まれることとなる。この場合、位置算出部55が算出する0°から24°までの角度範囲内における回転角度θには、算出する回転角度θが大きくなるほど比例的に大きくなる誤差が重畳する。
 このように、第1変換信号Siおよび第2変換信号Coに周波数成分が重畳する場合、高次成分の周波数成分より0次成分の方が回転角度θの算出結果に与える影響が大きくなる。そして、第1変換信号Siに重畳する0次成分は、第1定量オフセットおよび第1可変オフセットに起因するものである。また、第2変換信号Coに重畳する0次成分は、第2定量オフセットおよび第2可変オフセットに起因するものである。このため、ギャップGが大きくなるほど、これら第1変換信号Siおよび第2変換信号Coそれぞれのオフセット成分の影響が大きくなる。
 本実施形態では、GOP補正部54は、ギャップGが設計値である場合の誤差と、ギャップGが遠ギャップである場合の誤差との差が小さくなるように第1補正項および第2補正項を導出する。具体的に、GOP補正部54は、ギャップGが遠ギャップである場合における位置算出部55が第1変換信号Siおよび第2変換信号Coをアークタンジェント変換して得られる1次成分が、ギャップGが近ギャップである場合における位置算出部55が第1変換信号Siおよび第2変換信号Coをアークタンジェント変換して得られる1次成分に近づくように第1オフセット用補正項および第2オフセット用補正項を導出する。
 さらに、GOP補正部54は、第1定量オフセットを調整することによって、第1変換信号Siの振幅の変化量と第1変換信号Siの振幅の変化量に基づく第1変換信号Siのオフセットの変化量との関係が比例関係となるように第1オフセット用補正項を導出する。換言すれば、第1定量オフセットを調整後の第1変換信号Siのオフセットが、第1変換信号Siの振幅が小さくなるに比例して直線的に小さくなるように第1オフセット用補正項を導出する。
 例えば、本実施形態のように、第1変換信号Siの振幅が小さくなるに比例して第1可変オフセットが直線的に小さくなる場合、GOP補正部54は、オフセットのうちの第1定量オフセット分の除去を可能とする第1オフセット用補正項を導出してもよい。これにより、第1変換信号Siの振幅の変化量と第1変換信号Siの振幅の変化量に基づく第1変換信号Siのオフセットの変化量との関係を、比例定数が負の値である比例関係とすることができる。そしてこれにより、GOP補正部54がオフセット調整した第1変換信号Siには、第1変換信号Siの振幅の変化量に応じて比例的に変化するオフセットが残存することとなる。
 また、GOP補正部54は、第2定量オフセットを調整することによって、第2変換信号Coの振幅の変化量と第2変換信号Coの振幅の変化量に基づく第2変換信号Coのオフセットの変化量との関係が比例関係となるように第2オフセット用補正項を導出する。換言すれば、第2定量オフセットを調整後の第2変換信号Coのオフセットが、第2変換信号Coの振幅が小さくなるに比例して直線的に小さくなるように第2オフセット用補正項を導出する。
 例えば、本実施形態のように、第2変換信号Coの振幅が小さくなるに比例して第2可変オフセットが直線的に小さくなる場合、GOP補正部54は、オフセットのうちの第2定量オフセット分の除去を可能とする第2オフセット用補正項を導出してもよい。これにより、第2変換信号Coの振幅の変化量と第2変換信号Coの振幅の変化量に基づく第2変換信号Coのオフセットの変化量との関係を、比例定数が負の値である比例関係とすることができる。そしてこれにより、GOP補正部54がオフセット調整した第2変換信号Coには、第2変換信号Coの振幅の変化量に応じて比例的に変化するオフセットが残存することとなる。
 このように、第1変換信号Siに残存する第1変換信号Siの振幅の変化量に応じて比例的に変化するオフセットは、第1変換信号Siに重畳する周波数成分のうち0次成分の発生要因となるものである。また、第2変換信号Coに残存する第2変換信号Coの振幅の変化量に応じて比例的に変化するオフセットは、第2変換信号Coに重畳する周波数成分のうち0次成分の発生要因となるものである。そして、オフセット調整後の第1変換信号Siおよび第2変換信号Coそれぞれに残存するこれらオフセットは、第1変換信号Siおよび第2変換信号Coを用いてアークタンジェント変換することで1次成分となるものである。
 オフセット調整後の第1変換信号Siおよび第2変換信号Coを用いてアークタンジェント変換することで得られる回転角度θに残存する1次成分は、後述の区間補正部56が実行する処理によって除去することができる。
 上記したように第1補正項および第2補正項を導出することで、ギャップGが設計値である場合の誤差と、ギャップGが近ギャップである場合の誤差との差を小さくすることができる。また、振幅の変化によらないオフセット成分の影響を小さくすることができる。
 なお、基準誤差および基準外誤差がそれぞれ0に近づくように第1補正項および第2補正項を導出する方法は、上記に限定されない。
 例えば、第1補正項および第2補正項を導出する方法は、機械角毎の基準誤差の絶対値と基準外誤差の絶対値との和が最小値となるように導出してもよい。また、第1補正項および第2補正項を導出する方法は、最小二乗法を用いて導出してもよい。最小二乗法による導出方法によれば、第1電圧値V1および第2電圧値V2にノイズが重畳する場合であっても、ノイズの影響を低減可能な第1補正項および第2補正項を導出することができる。
 そして、このように導出される第1補正項および第2補正項を用いてGOP補正部54は、ギャップGが設計値である場合の誤差と、ギャップGが設計値から外れた場合の誤差がそれぞれ0に近づくように第1変換信号Siおよび第2変換信号Coを補正する。そして、GOP補正部54は、数式1を用いてtanθを導出する。GOP補正部54は、導出したtanθの情報を位置算出部55に送信する。
 なお、本実施形態に示す一例では、図11に示すように、機械角が0°から24°の角度範囲において、0°、12°および21°である際に、基準誤差が0となっている。そして、基準誤差は、機械角が0°から12°の範囲および21°から24°までの範囲において0より大きいプラス側となっており、機械角が12°から21°までの範囲において0より小さいマイナス側となっている。すなわち、基準誤差は、機械角が0°から24°までの角度範囲において、プラス側とマイナス側とに交互に変化する波形状となっている。
 また、ギャップGが近ギャップである2mmおよび2.5mmである場合の基準外誤差は、機械角が約2°から約10°までの範囲において、その誤差の値が同じ機械角で比較した場合の基準誤差より大きくなっている。また、ギャップGが近ギャップである2mmおよび2.5mmである場合の基準外誤差は、機械角が0°から約2°までの範囲および10°から約24°までの範囲において、その誤差の値が同じ機械角で比較した場合の基準誤差より小さくなっている。
 このように、ギャップGが近ギャップである場合の基準外誤差は、基準誤差と同様、機械角が0°から24°までの角度範囲において波形状に変化するとともに、基準誤差と交差してその値が変化する。そして、波形状に変化するギャップGが近ギャップである場合の基準外誤差は、基準誤差の値の変化に沿ってその値が変化する。すなわち、ギャップGが近ギャップである場合の基準外誤差は、基準誤差がプラス側である機械角の範囲と略同じ範囲において、その値がプラス側となっている。そして、ギャップGが近ギャップである場合の基準外誤差は、基準誤差がマイナス側である機械角の範囲と略同じ範囲において、その値がマイナス側となっている。
 また、ギャップGが遠ギャップである3.5mmおよび4mmである場合の基準外誤差は、機械角が約0°から約13°までの範囲および22°から約24°までにおいて、その誤差の値が同じ機械角で比較した場合の基準誤差より小さくなっている。また、ギャップGが遠ギャップである3.5mmおよび4mmである場合の基準外誤差は、機械角が13°から約22°までの範囲において、その誤差の値が同じ機械角で比較した場合の基準誤差より大きくなっている。
 このように、ギャップGが遠ギャップである場合の基準外誤差は、基準誤差と同様、機械角が0°から24°までの角度範囲において、波形状に変化するとともに、基準誤差と交差してその値が変化する。そして、波形状に変化するギャップGが遠ギャップである場合の基準外誤差は、基準誤差の値の変化に沿ってその値が変化する。すなわち、ギャップGが遠ギャップである場合の基準外誤差は、基準誤差がプラス側である機械角の範囲と略同じ範囲において、その値がプラス側となっている。そして、ギャップGが遠ギャップである場合の基準外誤差は、基準誤差がマイナス側である機械角の範囲と略同じ範囲において、その値がマイナス側となっている。
 位置算出部55は、GOP補正部54が導出したtanθの情報を用いて回転部材20の補正前の検出体位置(すなわち、補正前検出体位置)である回転角度θを算出する。本実施形態では、位置算出部55は、数式1によって導出されるtanθを用いて回転部材20の回転角度θを算出するものである。
 区間補正部56は、位置算出部55および出力部57と接続されており、位置算出部55が算出した補正前検出体位置である回転角度θを補正した補正回転角度θaを出力部57に出力する。本実施形態では、区間補正部56は、算出した回転角度θの誤差および下記数式2に示す補正関数を用いて、区間補正を行って補正回転角度θaを算出する。
 (数2)
 y=αx+β・・・(数式2)
 数式2におけるyは、出力値である補正回転角度θaを示し、xは、位置算出部55が算出する回転角度θを示す。また、数式2におけるαは、傾き補正値を示し、βは、オフセット補正値を示す。
 そして、区間補正部56は、予め設定された区間毎において、基準誤差が0に近づくように、複数の区間(すなわち、回転角度範囲)毎に傾き補正値αとオフセット補正値βとを導出する。なお、本実施形態の例では、図13に示すように、検出範囲である0°から24°までの角度範囲が7つの区間に区分けされている。
 数式2に示す補正関数は、7つの区間それぞれにおける機械角と回転角度θの誤差の関係を示すものであって、位置算出部55が算出した回転角度θに基づいている。区間補正部56は、当該7つの区間毎に傾き補正値αとオフセット補正値βとを導出する。そして、区間補正部56は、位置算出部55が算出する回転角度θと、導出した傾き補正値αと、オフセット補正値βとを用いて7つの区間毎の回転角度θを補正して補正回転角度θaを算出する。
 これにより、図13に示すように、ギャップGが設計値である3mmにおいて、図13に示した回転角度θの基準誤差に比較して、補正回転角度θaの基準誤差を0に近付けることができる。
 ところで、区間補正部56は、位置算出部55が第1変換信号Siおよび第2変換信号Coを用いてアークタンジェント変換した回転角度θに基づいて補正回転角度θaを算出する。そして、回転角度θを求めるために用いられる第1変換信号Siおよび第2変換信号Coには、上述したように、0次成分の周波数成分が重畳する。第1変換信号Siおよび第2変換信号Coに重畳する0次成分は、高次成分の周波数成分に比較して回転角度θに含まれる誤差が大きくなる要因となる。これは、第1変換信号Siおよび第2変換信号Coをアークタンジェント変換して回転角度θを求める際に、第1変換信号Siおよび第2変換信号Coに重畳する0次成分が1次成分となるためである。
 そして、GOP補正部54によって補正された第1変換信号Siには、0次成分の発生要因となる第1変換信号Siの振幅の変化量に応じて変化するオフセットが含まれる。また、GOP補正部54によって補正された第2変換信号Coには、0次成分の発生要因となる第2変換信号Coの振幅の変化量に応じて変化するオフセットが含まれる。
 そこで、本実施形態の区間補正部56は、第1変換信号Siおよび第2変換信号Coを用いてアークタンジェント変換した回転角度θに含まれる1次成分を除去するように、数式2に示す補正関数を用いて区間補正を行う。換言すれば、区間補正部56は、GOP補正部54によってオフセット調整された後の第1変換信号Siおよび第2変換信号Coを用いてアークタンジェント変換することで得られる回転角度θに残存する1次成分を除去するために区間補正を行う。
 なお、区間補正部56は、7つのより少ない区間毎や7つより多い区間毎に傾き補正値αおよびオフセット補正値βを導出してもよい。
 また、全基準外誤差における最も大きい誤差と最も小さい誤差との差を小さくすることができる。本実施形態に示す一例では、全基準外誤差のうち、最も誤差が大きい基準外誤差は、ギャップGが近ギャップである2mmであって機械角が8°の場合であった。また、全基準外誤差のうち、最も誤差が小さい基準外誤差は、ギャップGが近ギャップである2mmであって機械角が16°の場合であった。そして、最も大きい誤差と最も小さい誤差との差は、0.18degとすることができた。
 ここで、上述したように、ギャップGが2mm、2.5mm、3.5mmおよび4mmそれぞれの基準外誤差は、基準誤差と同様、機械角が0°から24°までの角度範囲において、波形状にその値が変化する。これら基準外誤差は、基準誤差がプラス側である機械角の範囲と略同じ範囲において、その値がプラス側となっており、基準誤差がマイナス側である機械角の範囲と略同じ範囲において、その値がマイナス側となっている。
 このため、回転部材20および基板30の組付け誤差等によって、ギャップGが設計値から外れる場合であっても、基準誤差が0に近づくように導出した傾き補正値αおよびオフセット補正値βを用いて基準外誤差を0に近付けることができる。
 例えば、基準誤差は、機械角が0°から12°の範囲および21°から24°の範囲において0より大きいプラス側となっている。このため、基準誤差が0に近づくように導出した傾き補正値αおよびオフセット補正値βを用いることで、機械角が0°から12°の範囲および21°から24°までの範囲における基準誤差は、小さくされて0に近づけられる。すなわち、基準誤差は、機械角が0°から12°の範囲および21°から24°までの範囲において、マイナス側に補正される。
 そして、基準外誤差を、これら傾き補正値αおよびオフセット補正値βを用いて補正することによって、基準外誤差は、基準誤差がプラス側となっている機械角の範囲においてマイナス側に補正される。このため、基準誤差と略同じ機械角の範囲においてプラス側となっている基準外誤差を、傾き補正値αおよびオフセット補正値βを用いて補正することで、0に近づけることができる。
 また、基準誤差は、機械角が12°から21°の範囲において0より小さいマイナス側となっている。このため、基準誤差が0に近づくように導出した傾き補正値αおよびオフセット補正値βを用いることで、機械角が12°から21°の範囲における基準誤差は、大きくされて0に近づけられる。すなわち、基準誤差は、機械角が12°から21°の範囲において、プラス側に補正される。
 そして、基準外誤差を、これら傾き補正値αおよびオフセット補正値βを用いて補正することによって、基準外誤差は、基準誤差がマイナス側となっている機械角の範囲においてプラス側に補正される。このため、基準誤差と略同じ機械角の範囲においてマイナス側となっている基準外誤差を、傾き補正値αおよびオフセット補正値βを用いて補正することで、0に近づけることができる。
 このように、数式2を用いて補正回転角度θaを算出する場合において、ギャップG毎に傾き補正値αおよびオフセット補正値βを導出することなく、基準外誤差を0に近づけることができる。
 以上の如く、本実施形態の信号処理部50は、第1変換信号Siおよび第2変換信号Coを補正するGOP補正部54と、GOP補正部54が補正した第1変換信号Siおよび第2変換信号Coに基づいて補正前の回転角度θを算出する位置算出部55と、を有する。さらに、信号処理部50は、7つの区間毎に回転角度θを補正して補正回転角度θaを算出する区間補正部56を有する。GOP補正部54は、ギャップGが2mm、2.5mm、3mm、3.5mmおよび4mmとなるように回転部材20と基板30とが配置された際の回転角度θの誤差がそれぞれ0に近づくように第1変換信号Siおよび第2変換信号Coを補正する。区間補正部56は、7つの区間毎に補正関数における傾き補正値αおよびオフセット補正値βを導出する。
 これによれば、回転部材20と基板30との間隔が設計値のギャップGとなるように配置された場合において、回転角度θを補正回転角度θaに補正することで、補正しない場合に比較して、検出誤差を小さくすることができる。すなわち、位置検出装置1における検出精度を向上させることができる。
 また、回転部材20と基板30との間隔が設計値から外れたギャップGで配置された場合においても、設計値のギャップGとなるように配置された場合の傾き補正値αおよびオフセット補正値βを用いて補正することで、検出誤差を小さくすることができる。
 また、上記実施形態によれば、以下のような効果を得ることができる。
 (1)上記実施形態では、回転部材20は、回転体であって、0°から360°より小さい0°から24°までの回転範囲内で回転可能に構成されている。第1受信コイル32は、回転部材20が0°から24°までの回転範囲内で回転する際の回転部材20の回転角度θに応じた第1電圧値V1を出力する。第2受信コイル33は、回転部材20が0°から24°までの回転範囲内で回転する際の回転部材20の回転角度θに応じた第2電圧値V2を出力する。位置算出部55は、回転部材20の回転角度θに応じた第1電圧値V1および第2電圧値V2に基づいて0°から24°までの回転範囲内で回転する回転部材20の回転角度θを算出する。GOP補正部54は、位置算出部55が算出する0°から24°までの回転範囲内の回転角度θの誤差が0に近づくように第1変換信号Siおよび第2変換信号Coを補正する。
 これによれば、回転角度θの誤差を0に近づける角度範囲が限定されているため、誤差を0に近づける角度範囲が限定されていない場合に比較して、回転範囲内における角度毎の誤差の絶対値を小さくし易い。
 (2)上記実施形態では、基準ギャップが2つの近ギャップである2mmおよび2.5mmのうちの最も基準ギャップから離れた2mmと、2つの遠ギャップである3.5mmおよび4mmのうちの最も基準ギャップから離れた4mmとの中心に設定されている。
 これによれば、基準ギャップがこのように設定されていない場合に比較して、回転角度θの誤差を小さくし易い。すなわち、位置検出装置1における検出精度を向上させ易い。
 (第1実施形態の第1の変形例)
 上述の第1実施形態では、位置検出装置1が0°から360°より小さい0°から24°までの角度範囲内で回転する回転部材20の回転位置を算出する例について説明したが、位置検出装置1が算出する回転位置はこれに限定されない。例えば、位置検出装置1は、0°~360°より小さい範囲内であって、0°から24°までとは異なる角度範囲内で回転する回転部材20の回転位置を算出してもよい。また、位置検出装置1は、0°~360°の角度範囲内で回転する回転部材20の回転位置を算出してもよい。また、位置検出装置1が算出する検出体は、回転体である場合においてペダルに限定されない。
 (第1実施形態の第2の変形例)
 上述の第1本実施形態では、GOP補正部54が、基準誤差を基準として、基準誤差と4つの基準外誤差それぞれとの差が小さくなるように第1補正項および第2補正項を導出する例について説明したが、これに限定されない。
 例えば、基準誤差および4つの基準外誤差の5つの誤差における中心値を基準値としたとする。そして、当該基準値と、基準誤差および4つの基準外誤差それぞれとの差が小さくなるように第1補正項および第2補正項を導出してもよい。
 (第1実施形態の第3の変形例)
 上述の第1実施形態では、第1補正項および第2補正項を位置検出装置1とは別の外部装置が導出する例について説明したが、これに限定されない。例えば、位置検出装置1が上記した導出方法によって第1補正項および第2補正項を導出してもよい。具体的に、位置検出装置1における信号処理部50の構成機器(例えば、GOP補正部54)が導出してもよい。また、位置検出装置1は、第1補正項および第2補正項を導出するための補正項導出部を有する構成であってもよい。
 (第1実施形態の第4の変形例)
 上述の第1実施形態では、GOP補正部54が第1変換信号Siおよび第2変換信号Coそれぞれを補正し、補正した第1変換信号Siおよび第2変換信号Coと、数式1とを用いてtanθを導出する例について説明したが、これに限定されない。例えば、GOP補正部54が補正した第1変換信号Siおよび第2変換信号Coと、数式1とを用いて位置算出部55がtanθを導出する構成であってもよい。
 このような構成の場合、図14に示すように、GOP補正部54は、ゲイン用補正項、オフセット用補正項、位相用補正項のうち、少なくとも1つの補正項を用いて第1変換信号Siおよび第2変換信号Coを補正する。そして、補正した第1変換信号Siおよび第2変換信号Coの情報を位置算出部55に出力する。
 位置算出部55は、GOP補正部54から補正した第1変換信号Siおよび第2変換信号Coの情報を受信すると、数式1によって、tanθを算出し、算出したtanθを用いて回転部材20の回転角度θを算出してもよい。
 (第2実施形態)
 次に、第2実施形態について、図15および図16を参照して説明する。本実施形態では、第1受信コイル32および第2受信コイル33のパターン形状が第1実施形態と相違している。これ以外は、第1実施形態と同様である。このため、本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
 本実施形態の第1受信コイル32および第2受信コイル33は、図15に示すように、基板30の周方向Dcに沿って延びる円環状に形成されている。
 また、第1受信コイル32および第2受信コイル33は、法線方向に沿う方向視において、送信コイル31の内側に配置されている。また、第1受信コイル32および第2受信コイル33は、互いに干渉しない(すなわち、同じ層内で重ならない)ように、ビア34を介して異なる配線層に適宜接続されることで構成されている。
 第1受信コイル32は、閉ループの正弦波状となるように正弦曲線を描くパターン形状で形成されている。そして、第1受信コイル32は、順に積層された配線層のうちの隣り合う2つの配線層がビア34で接続されて構成されている。
 第2受信コイル33は、閉ループの余弦波状となるように正弦曲線と位相が異なる余弦曲線を描くパターン形状で形成されている。そして、第2受信コイル33は、順に積層された配線層のうちの隣り合う2つの配線層がビア34で接続されて構成されている。
 図15における第1受信コイル32および第2受信コイル33の表示に関しては、分かり易くするため、積層された複数の配線層に亘って形成される第1受信コイル32および第2受信コイル33を全て実線で表示している。
 なお、第1受信コイル32は、閉ループの余弦波状となるように余弦曲線を描くパターン形状で形成されていてもよい。この場合、第2受信コイル33は、閉ループの正弦波状となるように余弦曲線と位相が異なる正弦曲線を描くパターン形状で形成される。
 また、本実施形態の回転部材20の4つのターゲット22~25は、図16に示すように、径方向Drの外側ほど周方向Dcに拡幅する扇形形状を成している。このため、4つのターゲット22~25それぞれの周方向Dcにおける一方側端部および他方側端部は、軸方向Daに沿う方向視で径方向Drに沿った直線状に延伸している。
 本実施形態によれば、第1受信コイル32および第2受信コイル33が、法線方向に沿う方向視で正弦曲線または余弦曲線を描くパターン形状を成している。したがって、第1受信コイル32は、回転部材20の回転位置に応じた正弦波状の第1電圧値V1を出力する。また、第2受信コイル33は、回転部材20の回転位置に応じた余弦波状の第2電圧値V2を出力する。
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
 (第3実施形態)
 次に、第3実施形態について、図17および図18を参照して説明する。本実施形態では、位置検出装置1の形状および構成が第1実施形態と相違している。これ以外は、第1実施形態と同様である。このため、本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
 本実施形態の位置検出装置1は、検出体のストローク方向における位置を検出可能に構成されている。検出体は、例えば車両に搭載された可動部品100である。位置検出装置1は、ストローク方向に沿って移動する検出体である可動部品100の位置を検出する。
 本実施形態の可動部品100は、ストローク方向に沿って所定の範囲内で直進するとともに、往復する。図17に示すように、可動部品100は、複数の磁石110、120、130を有する。複数の磁石110、120、130は、ストローク方向に沿って離隔して配置される。複数の磁石110、120、130それぞれは、N極またはS極の極性を有する磁極面111、121、131を有する。そして、複数の磁石110、120、130は、互いに隣り合う磁極面111、121、131がそれぞれN極とS極とで反対の極となるように配置される。
 位置検出装置1は、可動部品100の側の先端部に後述する検出部60が設けられるケース部10を有する。そして、位置検出装置1は、複数の磁石110、120、130それぞれの磁極面111、121、131とケース部10との間に所定の間隔が設けられる。換言すれば、ケース部10は、複数の磁石110、120、130それぞれと離隔した状態で可動部品100に対して対向して配置される。また、ケース部10は、それぞれの磁極面111、121、131とケース部10との間の所定の間隔が一定となるように配置されている。本実施形態におけるギャップGは、それぞれの磁極面111、121、131とケース部10との間の距離に相当する。
 また、本実施形態の位置検出装置1は、外部から磁界の影響を受けたときに抵抗値が変化する図18に示す磁気抵抗素子61、62を用いた磁気検出方式が採用されており、ケース部10の内部に、当該磁気抵抗素子61、62が設けられている。磁気抵抗素子61、62は、例えば、異方向性磁気抵抗素子、すなわちAMR(Anisotropic Magneto Resistive)素子、巨大磁気抵抗素子、すなわちGMR(Giant Magneto Resistive)素子、トンネル磁気抵抗素子、すなわちTMR(Tunnel Magneto Resistive)素子等を採用することができる。
 なお、磁気抵抗素子61、62の代わりにホール素子を採用して、位置検出装置1をホール素子を用いた磁気検出方式として用いることもできる。
 図18に示すよう、検出部60は、磁気検出部として機能する2個の磁気抵抗素子61、62を有する。2個の磁気抵抗素子61、62は、磁界の影響を受けたときの抵抗値の変化を電圧値として取得する。以下、2個の磁気抵抗素子61、62のうち、一方を第1磁気検出部61、他方を第2磁気検出部62と呼ぶ。
 第1磁気検出部61は、可動部品100の位置に応じて正弦波状の第1電圧値V1を出力する。第2磁気検出部62は、可動部品100の位置に応じて余弦波状の第2電圧値V2を出力する。このため、本実施形態では、検出部60が検出体である可動部品100の位置に応じた正弦波状の第1信号および余弦波状の第2信号を出力する信号出力部として機能する。また、ケース部10が配置部として機能する。
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
 (第4実施形態)
 次に、第4実施形態について、図19および図20を参照して説明する。本実施形態では、第1補正項および第2補正項の導出方法が第1実施形態と相違している。これ以外は、第1実施形態と同様である。このため、本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
 本実施形態では、第1補正項および第2補正項は、0°から24°までの角度範囲内において、ギャップGが設計値である場合の誤差が最も小さくなるように導出される。
 具体的に、第1ゲイン用補正項、第1オフセット用補正項、第2ゲイン用補正項および第2オフセット用補正項は、0°から24°までの角度範囲内における機械角毎の基準誤差が0に近づくように導出される。この際、本実施形態では、0°から24°までの角度範囲内における機械角毎の基準外誤差は考慮せずに第1ゲイン用補正項、第1オフセット用補正項、第2ゲイン用補正項および第2オフセット用補正項が導出される。
 これにより、図19に示すように、ギャップGが設計値である場合の回転角度θの機械角毎の誤差を小さくすることができる。また、ギャップGが設計値である場合の回転角度θの機械角毎の誤差を小さくなるように導出した第1補正項および第2補正項を用いることで、ギャップGが設計値から外れる場合の回転角度θの機械角毎の誤差も小さくすることができる。
 また、図19に示すように、基準誤差は、機械角が0°から24°までの角度範囲において、プラス側とマイナス側とに交互に変化する波形状となっている。
 そして、ギャップGが近ギャップである2mmおよび2.5mmである場合の基準外誤差は、基準誤差と同様、波形状に変化するとともに、基準誤差の値の変化に沿ってその値が変化する。また、機械角が0°から24°まで全検出範囲において、その誤差の値が同じ機械角で比較した場合の基準誤差より小さくなっている。このため、近ギャップである場合の基準外誤差は、基準誤差と交差しないでその値が変化する。
 また、ギャップGが遠ギャップである3.5mmおよび4mmである場合の基準外誤差は、基準誤差と同様、波形状に変化するとともに、基準誤差の値の変化に沿ってその値が変化する。また、機械角が0°から24°までの全検出範囲において、その誤差の値が同じ機械角で比較した場合の基準誤差より大きくなっている。このため、遠ギャップである場合の基準外誤差は、基準誤差と交差しないでその値が変化する。
 そして、GOP補正部54は、このように導出される第1ゲイン用補正項、第1オフセット用補正項、第2ゲイン用補正項および第2オフセット用補正項を用いて第1変換信号Siおよび第2変換信号Coを補正する。そして、GOP補正部54は、数式1を用いてtanθを導出する。GOP補正部54は、導出したtanθの情報を位置算出部55に送信する。
 位置算出部55は、GOP補正部54が導出したtanθの情報を用いて回転部材20の補正前の回転角度θを算出する。そして、区間補正部56は、位置算出部55が算出した補正前の回転角度θおよび第1実施形態で説明した数式2を用いて、区間補正を行って補正回転角度θaを算出する。
 また、区間補正部56は、第1実施形態と同様、検出範囲である0°から24°までの角度範囲における7つの区間毎に、基準誤差が0に近づくように、傾き補正値αとオフセット補正値βとを導出する。そして、区間補正部56は、位置算出部55が算出する回転角度θと、導出した傾き補正値αと、オフセット補正値βとを用いて補正回転角度θaを算出する。
 これにより、図20に示すように、ギャップGが設計値である3mmにおいて、図19に示した回転角度θの基準誤差に比較して、補正回転角度θaの基準誤差を0に近付けることができる。
 また、全基準外誤差における最も大きい誤差と最も小さい誤差との差を小さくすることができる。本実施形態では、全基準外誤差のうち、最も誤差が大きい基準外誤差は、ギャップGが4mmであって機械角が18°の場合であった。また、全基準外誤差のうち、最も誤差が小さい基準外誤差は、ギャップGが2mmであって機械角が16°の場合であった。そして、最も大きい誤差と最も小さい誤差との差は、0.50degとすることができた。
 (第4実施形態のまとめ)
 第4実施形態は、上記のように構成されている。このため、まとめると、以下の観点を備えているといえる。
 (観点1)
 検出体(20、100)の位置を検出する位置検出装置であって、
 前記検出体の位置に応じた正弦波状の第1信号(V1)と、前記第1信号と位相が異なる余弦波状の前記検出体の位置に応じた第2信号(V2)とを出力する信号出力部(32、33、61、62)と、
 前記信号出力部が設けられ、前記検出体と離隔した状態で前記検出体と対向して配置される配置部(30、10)と、
 前記信号出力部が出力する前記第1信号および前記第2信号に基づいて、前記検出体が所定の検出範囲において変位する際の前記検出体の位置である検出体位置を算出する信号処理部(50)と、を備え、
 前記信号処理部は、
 前記第1信号および前記第2信号を補正する信号補正部(54)と、
 前記信号補正部が補正した前記第1信号および前記第2信号に基づいて補正前の前記検出体の位置である補正前検出体位置を算出する位置算出部(55)と、
 前記位置算出部が算出する前記補正前検出体位置の誤差に基づいた補正関数を演算して、前記検出範囲を複数の区間に区分けした際の前記複数の区間毎の前記位置算出部が算出する前記補正前検出体位置を補正する区間補正部(56)と、を有し、
 前記検出体と前記配置部とが対向する方向である対向方向における前記検出体と前記配置部との間隔をギャップ(G)とし、基準となる前記ギャップを基準ギャップとし、前記基準ギャップより前記検出体と前記配置部との間隔が小さい前記ギャップを近ギャップとし、前記基準ギャップより前記検出体と前記配置部との間隔が大きい前記ギャップを遠ギャップとしたとき、
 前記信号補正部は、前記配置部が、前記基準ギャップとなるように配置された前記補正前検出体位置の誤差が0に近づくように前記第1信号および前記第2信号を補正することで、前記配置部が、前記近ギャップおよび前記遠ギャップの少なくともどちらかとなるように配置された際の各ギャップの前記補正前検出体位置の誤差をそれぞれ0に近づけ、
 前記区間補正部は、前記複数の区間毎に前記補正関数における補正値を導出する位置検出装置。
 (第5実施形態)
 次に、第5実施形態について、図21を参照して説明する。本実施形態では、基板30に送信コイル31が形成されていない点が第1実施形態と相違している。これ以外は、第1実施形態と同様である。このため、本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
 本実施形態の基板30は、図21に示すように、第1実施形態と異なり、送信コイル31の配線パターンが形成されていない。そして、第1受信コイル32および第2受信コイル33は、第1実施形態で説明した通り、主に渦巻形状となっている。本実施形態では、基板30に形成される第1受信コイル32および第2受信コイル33は、発振部51から交流電流が印加された際に所定のインダクタンスの大きさを有するインダクタンス素子として機能する。なお、図21では、接続配線35の図示を省略している。
 このような基板30が送信コイル31を有さない構成の場合、回転部材20の回転位置に応じて回転部材20に発生する渦電流が変化する。例えば、回転部材20が回転して第1受信コイル32および第2受信コイル33に対向する第1ターゲット22の回転位置が変化すると、第1ターゲット22に発生する渦電流が変化する。
 すると、第1ターゲット22に対向する第1受信コイル32および第2受信コイル33のインダクタンスが変化する。このようなインダクタンスの変化は、不図示の検出回路によって検出することができる。検出回路は、例えば、コイルおよびコンデンサなどを含む共振回路によって構成される。換言すれば、第1受信コイル32は、回転部材20の回転位置に応じて変化する自身のインダクタンスの変化を出力する。また、第2受信コイル33は、回転部材20の回転位置に応じて変化する自身のインダクタンスの変化を出力する。
 検出回路が検出する第1受信コイル32および第2受信コイル33それぞれのインダクタンスの変化は、回転部材20の回転位置に応じて周期的に変化する。検出回路は、検出する第1受信コイル32および第2受信コイル33それぞれのインダクタンスの変化の情報をAD変換部53に出力する。検出回路が出力する第1受信コイル32のインダクタンスの変化の情報は、第1実施形態における第1電圧値V1に相当する。また、検出回路が出力する第2受信コイル33のインダクタンスの変化の情報は、第1実施形態における第2電圧値V2に相当する。
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
 上述の実施形態では、基準ギャップが設計値である3mmであって、設計値から外れたギャップGが2mm、2.5mm、3.5mm、4mmである例について説明した。また、基準ギャップが、基準ギャップから最も離れた2mmと4mmとの中心である3mmである例について説明したが、これに限定されない。
 基準ギャップは、3mmに限定されず、適宜変更可能である。また、設計値から外れたギャップGは、2mmより小さい大きさのものが含まれていてもよいし、4mmより大きいものが含まれていてもよい。また、設計値から外れたギャップGのうち、近ギャップが1つであってもよいし、3つ以上であってもよい。また、設計値から外れたギャップGのうち、遠ギャップが1つであってもよいし、3つ以上であってもよい。また、基準ギャップは、複数の近ギャップのうちの最も基準ギャップから離れた大きさと、複数の遠ギャップのうちの最も基準ギャップから離れた大きさとの中心から外れた大きさで設定されていてもよい。
 上述の実施形態では、GOP補正部54が第1変換信号Siおよび第2変換信号Coそれぞれに対するゲイン用補正項、オフセット用補正項、位相用補正項のうち、ゲイン用補正項およびオフセット用補正項を導出する例について説明したが、これに限定されない。
 例えば、GOP補正部54は、第1変換信号Siおよび第2変換信号Coそれぞれに対するゲイン用補正項、オフセット用補正項、位相用補正項のうち、少なくとも1つを導出すればよい。具体的には、GOP補正部54は、第1変換信号Siおよび第2変換信号Coそれぞれに対するゲイン用補正項、オフセット用補正項、位相用補正項のうち、例えば、いずれか1つのみの補正項を導出してもよい。また、GOP補正部54は、第1変換信号Siおよび第2変換信号Coそれぞれに対するゲイン用補正項、オフセット用補正項、位相用補正項のうち、任意の2つの補正項を導出してもよい。さらに、GOP補正部54は、第1変換信号Siおよび第2変換信号Coそれぞれに対するゲイン用補正項、オフセット用補正項、位相用補正項の全てを導出してもよい。
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。
 本開示の信号処理回路40及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータで、実現されてもよい。本開示の信号処理回路40及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータで、実現されてもよい。本開示の信号処理回路40及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせで構成された一つ以上の専用コンピュータで、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
(本発明の特徴)
[請求項1]
 検出体(20、100)の位置を検出する位置検出装置であって、
 前記検出体の位置に応じた正弦波状の第1信号(V1)と、前記第1信号と位相が異なる余弦波状の前記検出体の位置に応じた第2信号(V2)とを出力する信号出力部(32、33、61、62)と、
 前記信号出力部が設けられ、前記検出体と離隔した状態で前記検出体と対向して配置される配置部(30、10)と、
 前記第1信号および前記第2信号に基づいて、前記検出体が所定の検出範囲において変位する際の前記検出体の位置である検出体位置を算出する信号処理部(50)と、を備え、
 前記信号処理部は、
 前記第1信号および前記第2信号を補正し、補正した前記第1信号および前記第2信号に基づいて補正前の前記検出体位置である補正前検出体位置を算出し、算出する前記補正前検出体位置の誤差に基づいた補正関数を演算して、前記検出範囲を複数の区間に区分けした際の前記複数の区間毎に算出する前記補正前検出体位置を補正可能であって、
 前記検出体と前記配置部とが対向する方向である対向方向における前記検出体と前記配置部との間隔をギャップ(G)とし、基準となる前記ギャップを基準ギャップとし、前記基準ギャップより前記検出体と前記配置部との間隔が小さい前記ギャップを近ギャップとし、前記基準ギャップより前記検出体と前記配置部との間隔が大きい前記ギャップを遠ギャップとしたとき、
 前記配置部が、前記基準ギャップ、1つ以上の前記近ギャップ、1つ以上の前記遠ギャップそれぞれとなるように配置された際の前記補正前検出体位置の誤差がそれぞれ0に近づくように前記第1信号および前記第2信号を補正するとともに、前記複数の区間毎に前記補正関数における補正値を導出する位置検出装置。
[請求項2]
 検出体(20、100)の位置を検出する位置検出装置であって、
 前記検出体の位置に応じた正弦波状の第1信号(V1)と、前記第1信号と位相が異なる余弦波状の前記検出体の位置に応じた第2信号(V2)とを出力する信号出力部(32、33、61、62)と、
 前記信号出力部が設けられ、前記検出体と離隔した状態で前記検出体と対向して配置される配置部(30、10)と、
 前記第1信号および前記第2信号に基づいて、前記検出体が所定の検出範囲において変位する際の前記検出体の位置である検出体位置を算出する信号処理部(50)と、を備え、
 前記信号処理部は、
 前記第1信号および前記第2信号を補正する信号補正部(54)と、
 前記信号補正部が補正した前記第1信号および前記第2信号に基づいて補正前の前記検出体位置である補正前検出体位置を算出する位置算出部(55)と、
 前記位置算出部が算出する前記補正前検出体位置の誤差に基づいた補正関数を演算して、前記検出範囲を複数の区間に区分けした際の前記複数の区間毎の前記位置算出部が算出する前記補正前検出体位置を補正する区間補正部(56)と、を有し、
 前記検出体と前記配置部とが対向する方向である対向方向における前記検出体と前記配置部との間隔をギャップ(G)とし、基準となる前記ギャップを基準ギャップとし、前記基準ギャップより前記検出体と前記配置部との間隔が小さい前記ギャップを近ギャップとし、前記基準ギャップより前記検出体と前記配置部との間隔が大きい前記ギャップを遠ギャップとしたとき、
 前記信号補正部は、前記配置部が、前記基準ギャップ、1つ以上の前記近ギャップ、1つ以上の前記遠ギャップそれぞれとなるように配置された際の前記補正前検出体位置の誤差がそれぞれ0に近づくように前記第1信号および前記第2信号を補正し、
 前記区間補正部は、前記複数の区間毎に前記補正関数における補正値を導出する位置検出装置。
[請求項3]
 前記検出体は、回転体であって、0°から360°より小さい所定の回転範囲内で回転可能であって、
 前記信号出力部は、前記検出体が前記所定の回転範囲内で回転する際の前記検出体の回転角度に応じて前記第1信号および前記第2信号を出力し、
 前記信号補正部は、前記位置算出部が算出する前記所定の回転範囲内の前記補正前検出体位置の誤差が0に近づくように前記第1信号および前記第2信号を補正し、
 前記位置算出部は、前記信号補正部が補正した前記第1信号および前記第2信号に基づいて前記所定の回転範囲内の前記補正前検出体位置を算出する請求項2に記載の位置検出装置。
[請求項4]
 前記基準ギャップは、1つ以上の前記近ギャップのうちの前記基準ギャップから最も離れた前記近ギャップの大きさと、1つ以上の前記遠ギャップのうちの前記基準ギャップから最も離れた前記遠ギャップの大きさとの中心の大きさに設定される請求項2または3に記載の位置検出装置。
[請求項5]
 前記信号補正部は、前記第1信号の位相、ゲイン、オフセットのうちの少なくとも1つを補正するとともに、前記第2信号の位相、ゲイン、オフセットのうちの少なくとも1つを補正する請求項2ないし4のいずれか1つに記載の位置検出装置。
[請求項6]
 前記信号補正部は、前記配置部が前記基準ギャップとなるように配置された際の前記補正前検出体位置の誤差と、前記配置部が前記遠ギャップとなるように配置された際の前記補正前検出体位置の誤差との差が0に近づくように前記第1信号のオフセットを補正するとともに、前記第2信号のオフセットを補正する請求項5に記載の位置検出装置。
[請求項7]
 前記信号処理部は、前記第1信号および前記第2信号に基づいて、逆正接関数を演算してアークタンジェント変換することで前記検出体の位置を算出し、
 前記信号補正部は、前記配置部が前記遠ギャップとなるように配置された場合に前記信号処理部が前記第1信号および前記第2信号をアークタンジェント変換して得られる1次成分が、前記配置部が前記近ギャップとなるように配置された場合に前記信号処理部が前記第1信号および前記第2信号をアークタンジェント変換して得られる1次成分に近づくように前記第1信号のオフセットを補正するとともに、前記第2信号のオフセットを補正する請求項5に記載の位置検出装置。
[請求項8]
 前記第1信号のオフセットは、前記第1信号の振幅の変化によらないオフセット成分である第1定量オフセットおよび前記第1信号の振幅の変化に応じて信号の大きさが変化するオフセット成分である第1可変オフセットを含み、
 前記第2信号のオフセットは、前記第2信号の振幅の変化によらないオフセット成分である第2定量オフセットおよび前記第2信号の振幅の変化に応じて信号の大きさが変化するオフセット成分である第2可変オフセットを含み、
 前記信号補正部は、前記第1信号の振幅の変化量と前記第1信号の振幅の変化量に基づく前記第1信号のオフセットの変化量との関係が比例関係となるように前記第1定量オフセットを調整するとともに、前記第2信号の振幅の変化量と前記第2信号の振幅の変化量に基づく前記第2信号のオフセットの変化量との関係が比例関係となるように前記第2定量オフセットを調整し、
 前記区間補正部は、前記第1信号および前記第2信号をアークタンジェント変換して算出した前記検出体の位置に含まれる1次成分を除去するように、前記複数の区間毎の前記位置算出部が算出する前記補正前検出体位置を補正する請求項7に記載の位置検出装置。[請求項9]
 前記配置部は、基板であって、
 前記信号出力部は、前記基板に形成されるとともに、送信コイル(31)と、前記送信コイルへの通電による電磁誘導によって、誘導結合する第1受信コイル(32)および第2受信コイル(33)と、を含み、
 前記第1受信コイルは、通電する前記送信コイルからの電磁誘導によって前記検出体に流れる渦電流の影響を受けて変化する、前記検出体の位置に応じた前記第1信号を第1電圧値として出力し、
 前記第2受信コイルは、通電する前記送信コイルからの電磁誘導によって前記検出体に流れる渦電流の影響を受けて変化する、前記検出体の位置に応じた前記第2信号を第2電圧値として出力し、
 前記信号処理部は、前記第1電圧値および前記第2電圧値に基づいて、前記検出体位置を算出する請求項1ないし8のいずれか1つに記載の位置検出装置。
[請求項10]
 前記配置部は、基板であって、
 前記信号出力部は、前記基板に設けられるとともに、前記検出体の位置に応じてインダクタンスが変化する第1受信コイル(32)および第2受信コイル(33)を含み、
 前記第1受信コイルは、前記検出体の位置に応じて変化する自身のインダクタンスの変化を前記第1信号として出力し、
 前記第2受信コイルは、前記検出体の位置に応じて変化する自身のインダクタンスの変化を前記第2信号として出力し、
 前記信号処理部は、前記第1受信コイルのインダクタンスの変化および前記第2受信コイルのインダクタンスの変化に基づいて、前記検出体位置を算出する請求項1ないし8のいずれか1つに記載の位置検出装置。
[請求項11]
 前記第1受信コイルおよび前記第2受信コイルは、渦巻状のパターン形状である部分を含む請求項9または10に記載の位置検出装置。
[請求項12]
 前記第1受信コイルおよび前記第2受信コイルは、前記第1受信コイルおよび前記第2受信コイルのうちの一方が正弦曲線を描くパターン形状を含み、前記第1受信コイルおよび前記第2受信コイルのうちの他方が前記正弦曲線と位相が異なる余弦曲線を描くパターン形状を含む請求項9または10に記載の位置検出装置。
[請求項13]
 前記検出体には、磁石(110、120、130)が配置されており、
 前記信号出力部は、前記検出体の位置に応じて変化する前記磁石から受ける磁界の変化に基づいて、前記第1信号を出力する第1磁気検出部(61)および前記第2信号を出力する第2磁気検出部(62)を有する請求項1ないし8のいずれか1つに記載の位置検出装置。

Claims (13)

  1.  検出体(20、100)の位置を検出する位置検出装置であって、
     前記検出体の位置に応じた正弦波状の第1信号(V1)と、前記第1信号と位相が異なる余弦波状の前記検出体の位置に応じた第2信号(V2)とを出力する信号出力部(32、33、61、62)と、
     前記信号出力部が設けられ、前記検出体と離隔した状態で前記検出体と対向して配置される配置部(30、10)と、
     前記第1信号および前記第2信号に基づいて、前記検出体が所定の検出範囲において変位する際の前記検出体の位置である検出体位置を算出する信号処理部(50)と、を備え、
     前記信号処理部は、
     前記第1信号および前記第2信号を補正し、補正した前記第1信号および前記第2信号に基づいて補正前の前記検出体位置である補正前検出体位置を算出し、算出する前記補正前検出体位置の誤差に基づいた補正関数を演算して、前記検出範囲を複数の区間に区分けした際の前記複数の区間毎に算出する前記補正前検出体位置を補正可能であって、
     前記検出体と前記配置部とが対向する方向である対向方向における前記検出体と前記配置部との間隔をギャップ(G)とし、基準となる前記ギャップを基準ギャップとし、前記基準ギャップより前記検出体と前記配置部との間隔が小さい前記ギャップを近ギャップとし、前記基準ギャップより前記検出体と前記配置部との間隔が大きい前記ギャップを遠ギャップとしたとき、
     前記配置部が、前記基準ギャップ、1つ以上の前記近ギャップ、1つ以上の前記遠ギャップそれぞれとなるように配置された際の前記補正前検出体位置の誤差がそれぞれ0に近づくように前記第1信号および前記第2信号を補正するとともに、前記複数の区間毎に前記補正関数における補正値を導出する位置検出装置。
  2.  検出体(20、100)の位置を検出する位置検出装置であって、
     前記検出体の位置に応じた正弦波状の第1信号(V1)と、前記第1信号と位相が異なる余弦波状の前記検出体の位置に応じた第2信号(V2)とを出力する信号出力部(32、33、61、62)と、
     前記信号出力部が設けられ、前記検出体と離隔した状態で前記検出体と対向して配置される配置部(30、10)と、
     前記第1信号および前記第2信号に基づいて、前記検出体が所定の検出範囲において変位する際の前記検出体の位置である検出体位置を算出する信号処理部(50)と、を備え、
     前記信号処理部は、
     前記第1信号および前記第2信号を補正する信号補正部(54)と、
     前記信号補正部が補正した前記第1信号および前記第2信号に基づいて補正前の前記検出体位置である補正前検出体位置を算出する位置算出部(55)と、
     前記位置算出部が算出する前記補正前検出体位置の誤差に基づいた補正関数を演算して、前記検出範囲を複数の区間に区分けした際の前記複数の区間毎の前記位置算出部が算出する前記補正前検出体位置を補正する区間補正部(56)と、を有し、
     前記検出体と前記配置部とが対向する方向である対向方向における前記検出体と前記配置部との間隔をギャップ(G)とし、基準となる前記ギャップを基準ギャップとし、前記基準ギャップより前記検出体と前記配置部との間隔が小さい前記ギャップを近ギャップとし、前記基準ギャップより前記検出体と前記配置部との間隔が大きい前記ギャップを遠ギャップとしたとき、
     前記信号補正部は、前記配置部が、前記基準ギャップ、1つ以上の前記近ギャップ、1つ以上の前記遠ギャップそれぞれとなるように配置された際の前記補正前検出体位置の誤差がそれぞれ0に近づくように前記第1信号および前記第2信号を補正し、
     前記区間補正部は、前記複数の区間毎に前記補正関数における補正値を導出する位置検出装置。
  3.  前記検出体は、回転体であって、0°から360°より小さい所定の回転範囲内で回転可能であって、
     前記信号出力部は、前記検出体が前記所定の回転範囲内で回転する際の前記検出体の回転角度に応じて前記第1信号および前記第2信号を出力し、
     前記信号補正部は、前記位置算出部が算出する前記所定の回転範囲内の前記補正前検出体位置の誤差が0に近づくように前記第1信号および前記第2信号を補正し、
     前記位置算出部は、前記信号補正部が補正した前記第1信号および前記第2信号に基づいて前記所定の回転範囲内の前記補正前検出体位置を算出する請求項2に記載の位置検出装置。
  4.  前記基準ギャップは、1つ以上の前記近ギャップのうちの前記基準ギャップから最も離れた前記近ギャップの大きさと、1つ以上の前記遠ギャップのうちの前記基準ギャップから最も離れた前記遠ギャップの大きさとの中心の大きさに設定される請求項2または3に記載の位置検出装置。
  5.  前記信号補正部は、前記第1信号の位相、ゲイン、オフセットのうちの少なくとも1つを補正するとともに、前記第2信号の位相、ゲイン、オフセットのうちの少なくとも1つを補正する請求項2または3に記載の位置検出装置。
  6.  前記信号補正部は、前記配置部が前記基準ギャップとなるように配置された際の前記補正前検出体位置の誤差と、前記配置部が前記遠ギャップとなるように配置された際の前記補正前検出体位置の誤差との差が0に近づくように前記第1信号のオフセットを補正するとともに、前記第2信号のオフセットを補正する請求項5に記載の位置検出装置。
  7.  前記信号処理部は、前記第1信号および前記第2信号に基づいて、逆正接関数を演算してアークタンジェント変換することで前記検出体の位置を算出し、
     前記信号補正部は、前記配置部が前記遠ギャップとなるように配置された場合に前記信号処理部が前記第1信号および前記第2信号をアークタンジェント変換して得られる1次成分が、前記配置部が前記近ギャップとなるように配置された場合に前記信号処理部が前記第1信号および前記第2信号をアークタンジェント変換して得られる1次成分に近づくように前記第1信号のオフセットを補正するとともに、前記第2信号のオフセットを補正する請求項5に記載の位置検出装置。
  8.  前記第1信号のオフセットは、前記第1信号の振幅の変化によらないオフセット成分である第1定量オフセットおよび前記第1信号の振幅の変化に応じて信号の大きさが変化するオフセット成分である第1可変オフセットを含み、
     前記第2信号のオフセットは、前記第2信号の振幅の変化によらないオフセット成分である第2定量オフセットおよび前記第2信号の振幅の変化に応じて信号の大きさが変化するオフセット成分である第2可変オフセットを含み、
     前記信号補正部は、前記第1信号の振幅の変化量と前記第1信号の振幅の変化量に基づく前記第1信号のオフセットの変化量との関係が比例関係となるように前記第1定量オフセットを調整するとともに、前記第2信号の振幅の変化量と前記第2信号の振幅の変化量に基づく前記第2信号のオフセットの変化量との関係が比例関係となるように前記第2定量オフセットを調整し、
     前記区間補正部は、前記第1信号および前記第2信号をアークタンジェント変換して算出した前記検出体の位置に含まれる1次成分を除去するように、前記複数の区間毎の前記位置算出部が算出する前記補正前検出体位置を補正する請求項7に記載の位置検出装置。
  9.  前記配置部は、基板であって、
     前記信号出力部は、前記基板に形成されるとともに、送信コイル(31)と、前記送信コイルへの通電による電磁誘導によって、誘導結合する第1受信コイル(32)および第2受信コイル(33)と、を含み、
     前記第1受信コイルは、通電する前記送信コイルからの電磁誘導によって前記検出体に流れる渦電流の影響を受けて変化する、前記検出体の位置に応じた前記第1信号を第1電圧値として出力し、
     前記第2受信コイルは、通電する前記送信コイルからの電磁誘導によって前記検出体に流れる渦電流の影響を受けて変化する、前記検出体の位置に応じた前記第2信号を第2電圧値として出力し、
     前記信号処理部は、前記第1電圧値および前記第2電圧値に基づいて、前記検出体位置を算出する請求項2または3に記載の位置検出装置。
  10.  前記配置部は、基板であって、
     前記信号出力部は、前記基板に設けられるとともに、前記検出体の位置に応じてインダクタンスが変化する第1受信コイル(32)および第2受信コイル(33)を含み、
     前記第1受信コイルは、前記検出体の位置に応じて変化する自身のインダクタンスの変化を前記第1信号として出力し、
     前記第2受信コイルは、前記検出体の位置に応じて変化する自身のインダクタンスの変化を前記第2信号として出力し、
     前記信号処理部は、前記第1受信コイルのインダクタンスの変化および前記第2受信コイルのインダクタンスの変化に基づいて、前記検出体位置を算出する請求項2または3に記載の位置検出装置。
  11.  前記第1受信コイルおよび前記第2受信コイルは、渦巻状のパターン形状である部分を含む請求項9に記載の位置検出装置。
  12.  前記第1受信コイルおよび前記第2受信コイルは、前記第1受信コイルおよび前記第2受信コイルのうちの一方が正弦曲線を描くパターン形状を含み、前記第1受信コイルおよび前記第2受信コイルのうちの他方が前記正弦曲線と位相が異なる余弦曲線を描くパターン形状を含む請求項9に記載の位置検出装置。
  13.  前記検出体には、磁石(110、120、130)が配置されており、
     前記信号出力部は、前記検出体の位置に応じて変化する前記磁石から受ける磁界の変化に基づいて、前記第1信号を出力する第1磁気検出部(61)および前記第2信号を出力する第2磁気検出部(62)を有する請求項2または3に記載の位置検出装置。
PCT/JP2023/037549 2022-11-16 2023-10-17 位置検出装置 WO2024106107A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022183453 2022-11-16
JP2022-183453 2022-11-16
JP2023-166407 2023-09-27
JP2023166407A JP2024072782A (ja) 2022-11-16 2023-09-27 位置検出装置

Publications (1)

Publication Number Publication Date
WO2024106107A1 true WO2024106107A1 (ja) 2024-05-23

Family

ID=91084259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037549 WO2024106107A1 (ja) 2022-11-16 2023-10-17 位置検出装置

Country Status (1)

Country Link
WO (1) WO2024106107A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156365A (ja) * 2001-11-20 2003-05-30 Tamagawa Seiki Co Ltd エンコーダ信号処理装置及び方法
JP2005156565A (ja) * 2003-11-26 2005-06-16 General Electric Co <Ge> 磁界内で渦電流トランスデューサを使用する方法及び装置
JP2009008515A (ja) * 2007-06-27 2009-01-15 Tamagawa Seiki Co Ltd アナログ角度センサ精度補正プログラム、補正方法、記録媒体およびサーボドライバ
JP2017207319A (ja) * 2016-05-17 2017-11-24 株式会社デンソー 位置センサ
US20190063954A1 (en) * 2017-08-29 2019-02-28 KSR IP Holdings, LLC Systems and methods for correcting non-sinusoidal signals generated from high speed inductive sensors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156365A (ja) * 2001-11-20 2003-05-30 Tamagawa Seiki Co Ltd エンコーダ信号処理装置及び方法
JP2005156565A (ja) * 2003-11-26 2005-06-16 General Electric Co <Ge> 磁界内で渦電流トランスデューサを使用する方法及び装置
JP2009008515A (ja) * 2007-06-27 2009-01-15 Tamagawa Seiki Co Ltd アナログ角度センサ精度補正プログラム、補正方法、記録媒体およびサーボドライバ
JP2017207319A (ja) * 2016-05-17 2017-11-24 株式会社デンソー 位置センサ
US20190063954A1 (en) * 2017-08-29 2019-02-28 KSR IP Holdings, LLC Systems and methods for correcting non-sinusoidal signals generated from high speed inductive sensors

Similar Documents

Publication Publication Date Title
JP6671498B2 (ja) 回転角度センサ
CN110785632B (zh) 旋转角度传感器
JP5094390B2 (ja) 位置センサ
US10895475B2 (en) Angular position sensor
US11525702B2 (en) Sensor system for determining at least one rotation characteristic of a rotating element
US10330498B2 (en) Sensor arrangement for the contactless sensing of angles of rotation on a rotating part
US9851221B2 (en) Hall sensor insensitive to external magnetic fields
WO2009099054A1 (ja) 回転角度検出装置、回転機及び回転角度検出方法
US20120038359A1 (en) Rotating field sensor
US9989381B2 (en) Angle sensor with magnetic patterns
KR20070010053A (ko) 유도 위치 센서
KR20070088294A (ko) 공통 모드 교정 권선 및 단순화된 신호 조정을 가지는유도형 위치결정 센서
JP5016165B2 (ja) 相対回転位置検出装置
US20210131830A1 (en) Rotational angle sensor
JP2021025851A (ja) 回転センサ
JP5522845B2 (ja) 回転型位置検出装置
JP4063402B2 (ja) シリンダ位置検出装置
WO2024106107A1 (ja) 位置検出装置
US10775196B2 (en) System for determining at least one rotation parameter of a rotary member
JP2024072782A (ja) 位置検出装置
US20230288181A1 (en) Method and device for measuring the mechanical angular position of a rotor
JP6201910B2 (ja) 回転検出センサ及びその製造方法
JP4217423B2 (ja) 軸受における回転位置検出装置
JP7515929B1 (ja) 磁歪式トルクアングルセンサ及び磁歪式トルクアングルセンシングシステム
WO2024116660A1 (ja) 位置検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891264

Country of ref document: EP

Kind code of ref document: A1