WO2024106036A1 - Work machine, controller for work machine, and method for controlling work machine - Google Patents

Work machine, controller for work machine, and method for controlling work machine Download PDF

Info

Publication number
WO2024106036A1
WO2024106036A1 PCT/JP2023/035837 JP2023035837W WO2024106036A1 WO 2024106036 A1 WO2024106036 A1 WO 2024106036A1 JP 2023035837 W JP2023035837 W JP 2023035837W WO 2024106036 A1 WO2024106036 A1 WO 2024106036A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel drive
clutch
hydraulic
front wheel
wheels
Prior art date
Application number
PCT/JP2023/035837
Other languages
French (fr)
Japanese (ja)
Inventor
悠紀 岡宗
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2024106036A1 publication Critical patent/WO2024106036A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives

Definitions

  • the present disclosure relates to a work machine, a work machine controller, and a work machine control method.
  • Patent Document 1 discloses a motor grader in which a clutch is placed between the front wheels and a hydraulic motor that drives the front wheels, and the clutch is released to put the machine into rear-wheel drive mode and the clutch is engaged to put the machine into all-wheel drive mode.
  • a shock may occur when switching the driving mode from all-wheel drive to rear-wheel drive.
  • This disclosure proposes a work machine, a work machine controller, and a work machine control method that can reduce the shock when switching from all-wheel drive to rear-wheel drive.
  • a work machine in accordance with one aspect of the present disclosure, includes front wheels, a front-wheel drive unit that rotationally drives the front wheels, rear wheels, a rear-wheel drive unit that rotationally drives the rear wheels, a clutch that selectively connects the front wheels and the front-wheel drive unit, and a controller that controls the front-wheel drive unit and the clutch.
  • the controller receives an input of a command to maintain the rotational drive of the rear wheels by the rear-wheel drive unit and to stop the rotational drive of the front wheels by the front-wheel drive unit, the controller starts to reduce the rotational drive force transmitted from the front-wheel drive unit to the front wheels.
  • the controller determines that the rotational drive force has become smaller than a determination value or that a certain time has elapsed since the controller started to reduce the rotational drive force, the controller releases the clutch.
  • a controller for a work machine starts reducing the rotational drive force transmitted from the front wheel drive unit to the front wheels upon receiving an input of a command to maintain the rotational drive of the rear wheels of the work machine by the rear wheel drive unit and to stop the rotational drive of the front wheels of the work machine by the front wheel drive unit.
  • the controller determines whether the rotational drive force is smaller than a determination value.
  • the controller determines whether a certain amount of time has passed since the reduction in the rotational drive force started. When the controller determines that the rotational drive force has become smaller than a determination value or that a certain amount of time has passed since the reduction in the rotational drive force started, the controller releases the clutch between the front wheels and the front wheel drive unit.
  • a control method for a work machine includes the following steps.
  • the first step is to receive an input of a command to maintain rotational driving of the rear wheels of the work machine by the rear wheel drive unit and to stop rotational driving of the front wheels of the work machine by the front wheel drive unit.
  • the second step is to start reducing the rotational driving force transmitted from the front wheel drive unit to the front wheels.
  • the third step is to determine whether the rotational driving force is smaller than a judgment value.
  • the fourth step is to determine whether a certain time has passed since the reduction in the rotational driving force started.
  • the fifth step is to release the clutch between the front wheels and the front wheel drive unit when it is determined that the rotational driving force has become smaller than the judgment value or that a certain time has passed since the reduction in the rotational driving force started.
  • the work machine, work machine controller, and work machine control method disclosed herein can reduce the shock that occurs when switching from all-wheel drive to rear-wheel drive.
  • FIG. 1 is a side view showing a schematic configuration of a motor grader according to an embodiment.
  • FIG. 2 is a diagram showing a schematic configuration of the motor grader shown in FIG. 1 .
  • FIG. 4 is a diagram showing the configuration of a circuit for supplying clutch actuation pressure.
  • FIG. 2 is a block diagram illustrating a functional configuration of a controller. 4 is a flowchart showing a process flow of travel control of a motor grader in an embodiment.
  • FIG. 1 is a side view showing a schematic configuration of the motor grader 1 in this embodiment.
  • the motor grader 1 of the embodiment is a vehicle with a total of six wheels.
  • the motor grader 1 is equipped with running wheels consisting of a pair of left and right front wheels and two rear wheels on each side.
  • the front wheels include a left front wheel 2 and a right front wheel not shown in FIG. 1.
  • the rear wheels include a left rear front wheel 4, a left rear rear wheel 5, and a right rear front wheel and a right rear rear wheel not shown.
  • the number and arrangement of the front and rear wheels are not limited to the example shown in FIG. 1.
  • the motor grader 1 is equipped with a work machine that includes a blade 50.
  • the blade 50 is provided between the front and rear wheels.
  • the motor grader 1 can use the blade 50 to perform tasks such as ground leveling, snow removal, and light cutting.
  • the motor grader 1 has a vehicle body frame.
  • the vehicle body frame has a front frame 51 and a rear frame 52.
  • the front frame 51 is rotatably connected to the rear frame 52.
  • the front wheels are mounted on the front frame 51 together with the blades 50.
  • the front wheels are rotatably attached to the front end of the front frame 51.
  • the rear wheels are mounted on the rear frame 52.
  • the rear wheels are rotatably attached to the rear frame 52 by the driving force from the engine, as described below.
  • FIG. 2 is a diagram showing the schematic configuration of the motor grader 1 shown in FIG. 1.
  • the pair of left and right front wheels described above includes a left front wheel 2 and a right front wheel 3.
  • the motor grader 1 is equipped with an engine 6.
  • the engine 6 is supported by a rear frame 52 shown in FIG. 1.
  • the engine 6 is a drive source that generates a driving force to rotate the front and rear wheels, and is, for example, a diesel engine.
  • the output side of the engine 6 is connected to the left rear wheels 4, 5, and the left rear wheels 4, 5 and a pair of right rear wheels (not shown) via a torque converter 8, a transmission 9, a final reduction gear 10, and a tandem device 11.
  • the torque converter 8 is a fluid clutch that transmits driving force from the engine 6 using oil as a medium.
  • the transmission 9 is a mechanical transmission.
  • the transmission 9 has multiple clutches corresponding to multiple speed stages.
  • the transmission 9 switches between multiple speed stages by switching between the engaged and disengaged states of each clutch.
  • the engine 6 drives the left rear wheels 4, 5 and the right rear wheel via the torque converter 8, the transmission 9, a final reduction gear 10, and a tandem device 11.
  • the torque converter 8, the transmission 9, the final reduction gear 10, and the tandem gear 11 constitute a rear wheel power transmission device that transmits the driving force generated by the engine 6 to the rear wheels.
  • the final reduction gear 10 corresponds to an example of a rear wheel drive device that drives and rotates the rear wheels.
  • a pair of left and right hydraulic systems 7L, 7R are connected to the transmission 9.
  • the hydraulic system 7L drives the left front wheel 2.
  • the hydraulic system 7R drives the right front wheel 3.
  • the engine 6 drives the left front wheel 2 and the right front wheel 3 via a torque converter 8, the transmission 9, and the hydraulic systems 7L, 7R.
  • the hydraulic systems 7L, 7R may be connected to the other output side of the engine 6 without going through the mechanical transmission 9.
  • the left and right hydraulic systems 7L, 7R each constitute an HST (Hydraulic Static Transmission).
  • the motor grader 1 is an all-wheel drive vehicle in which the front wheels 2, 3, the left rear wheels 4, 5, and the right rear wheel can all be driven by power generation and transmission devices 6-11. These devices 6-11 make up the all-wheel drive device 12.
  • the engine 6, parts of the hydraulic systems 7L, 7R, the torque converter 8, the transmission 9, and the final reduction gear 10 are supported by the rear frame 52.
  • Hydraulic system 7L includes a left hydraulic pump 15 and a left hydraulic motor 16.
  • Hydraulic system 7R includes a right hydraulic pump 17 and a right hydraulic motor 18.
  • the output of the engine 6 is transmitted to the left hydraulic pump 15 and the right hydraulic pump 17 via the PTO (Power Take-Off) 14, driving the left hydraulic pump 15 and the right hydraulic pump 17.
  • the left hydraulic motor 16 is rotated by the hydraulic oil discharged from the left hydraulic pump 15, and drives the left front wheel 2.
  • the right hydraulic motor 18 is rotated by the hydraulic oil discharged from the right hydraulic pump 17, and drives the right front wheel 3.
  • Hydraulic pumps 15, 17 are variable displacement hydraulic pumps. Hydraulic pumps 15, 17 may be swash plate type hydraulic pumps having a variable swash plate. The angle of the variable swash plate of the left hydraulic pump 15 is continuously and steplessly controlled by swash plate driver 15A in accordance with a control command value output from a controller described later. The angle of the variable swash plate of the right hydraulic pump 17 is continuously and steplessly controlled by swash plate driver 17A, independently of the variable swash plate of the left hydraulic pump 15, in accordance with a control command value output from a controller described later. Swash plate drivers 15A, 17A are, for example, solenoids.
  • the hydraulic motors 16, 18 may be variable displacement motors.
  • the hydraulic motors 16, 18 may be bent-axis axial motors.
  • the displacement of the hydraulic motors 16, 18 is a constant value depending on the speed stage selected by the operator.
  • the hydraulic motors 16, 18 may be fixed displacement motors.
  • the left hydraulic pump 15 and the left hydraulic motor 16 are connected by the left hydraulic circuit 21.
  • the hydraulic oil discharged from the left hydraulic pump 15 is supplied to the left hydraulic motor 16 via the left hydraulic circuit 21.
  • the rotation speed of the left front wheel 2 when the left front wheel 2 is driven is controlled by the hydraulic oil discharged from the left hydraulic pump 15.
  • the left hydraulic circuit 21 is provided with pressure sensors 27L, 28L that detect the pressure of the hydraulic oil in the left hydraulic circuit 21.
  • the pressure sensors 27L, 28L output signals that indicate the hydraulic pressure in the left hydraulic circuit 21.
  • the right hydraulic pump 17 and the right hydraulic motor 18 are connected by a right hydraulic circuit 22.
  • the hydraulic oil discharged from the right hydraulic pump 17 is supplied to the right hydraulic motor 18 via the right hydraulic circuit 22.
  • the rotation speed of the right front wheel 3 when the right front wheel 3 is driven is controlled by the hydraulic oil discharged from the right hydraulic pump 17.
  • the right hydraulic circuit 22 is provided with pressure sensors 27R, 28R that detect the pressure of the hydraulic oil in the right hydraulic circuit 22.
  • the pressure sensors 27R, 28R output signals indicative of the hydraulic pressure in the right hydraulic circuit 22.
  • the power transmission device for transmitting the driving force from the engine 6 to the front wheels 2, 3 generates pressure in the hydraulic oil by driving hydraulic pumps 15, 17 with the engine 6, and the hydraulic motors 16, 18 are driven by the pressurized oil discharged from the hydraulic pumps 15, 17, thereby generating rotational force again.
  • the left and right hydraulic systems 7L, 7R each constitute an HST.
  • Pressure sensors 27L, 27R are provided in the oil passage through which hydraulic oil flows from the hydraulic pump to the hydraulic motor when the motor grader 1 is traveling forward. Pressure sensors 27L, 27R detect the pressure of high-pressure hydraulic oil discharged from the hydraulic pump when the motor grader 1 is traveling forward. Pressure sensors 28L, 28R are provided in the oil passage through which hydraulic oil flows from the hydraulic pump to the hydraulic motor when the motor grader 1 is traveling backward. Pressure sensors 28L, 28R detect the pressure of high-pressure hydraulic oil discharged from the hydraulic pump when the motor grader 1 is traveling backward.
  • the left hydraulic clutch mechanism 23 and the left reducer 25 are provided between the left front wheel 2 and the left hydraulic motor 16.
  • the right hydraulic clutch mechanism 24 and the right reducer 26 are provided between the right front wheel 3 and the right hydraulic motor 18.
  • the torque converter 8, transmission 9, PTO 14, hydraulic systems 7L, 7R, clutch mechanisms 23, 24, and reducers 25, 26 constitute a front wheel power transmission device that transmits the driving force generated by the engine 6 to the front wheels.
  • the hydraulic motors 16, 18 correspond to an example of a front wheel drive device that drives the front wheels to rotate.
  • the rotation speed of the front wheels can be increased by increasing the amount of hydraulic oil supplied from the hydraulic pumps 15, 17 to the hydraulic motors 16, 18 (the hydraulic pump discharge volume).
  • the rotation speed of the front wheels can be decreased by decreasing the amount of hydraulic oil supplied from the hydraulic pumps 15, 17 to the hydraulic motors 16, 18.
  • the speed sensor 31 is mounted on the output shaft of the transmission 9.
  • the speed sensor 31 detects the rotational speed of the rear wheels when the motor grader 1 is moving (driving) by measuring the rotational speed of the output shaft of the transmission 9.
  • the speed sensor 31 outputs a signal indicating the rotational speed of the rear wheels.
  • FIG. 3 is a diagram showing the configuration of a circuit that supplies clutch actuation pressure.
  • the motor grader 1 of the embodiment has an external pressure clutch that has a clutch control circuit that supplies clutch actuation pressure, separate from the HST that transmits rotational driving force to the front wheels 2, 3.
  • FIG. 3 representatively illustrates the left hydraulic circuit 21 and left hydraulic clutch mechanism 23.
  • FIG. 3 also representatively illustrates a charge circuit 40 that switches the left hydraulic clutch mechanism 23 between an engaged state and a released state.
  • the hydraulic clutch mechanisms 23, 24 are also simply referred to as clutches 23, 24.
  • the left hydraulic clutch mechanism 23 is a wet multi-plate clutch.
  • the clutch plates 23A and 23B shown in FIG. 3 are representative of two adjacent plates among the multiple plates included in the left hydraulic clutch mechanism 23.
  • the clutch plates 23A and 23B are arranged facing each other.
  • the left front wheel rotating shaft 29A is connected to the left hydraulic motor 16 so as to be rotatable integrally with the output shaft of the left hydraulic motor 16.
  • the left front wheel rotating shaft 29B is connected to the left front wheel 2 so as to be rotatable integrally with the left front wheel 2.
  • Clutch plates 23A, 23B are disposed between the left front wheel rotating shaft 29A and the left front wheel rotating shaft 29B.
  • clutch plates 23A and 23B are in contact and rotate together.
  • the state in which clutch plates 23A and 23B are spaced apart, a gap is formed between clutch plates 23A and 23B, and the rotation of clutch plate 23A is not transmitted to clutch plate 23B even when clutch plate 23A rotates is the released state of clutch 23.
  • the rotation sensor 32 is provided on the left front wheel rotating shaft 29A and detects the rotation speed of the left front wheel rotating shaft 29A.
  • the rotation sensor 32 outputs a signal indicating the rotation speed of the left front wheel rotating shaft 29A.
  • the rotation sensor 33 is provided on the left front wheel rotating shaft 29B and detects the rotation speed of the left front wheel rotating shaft 29B.
  • the rotation sensor 33 outputs a signal indicating the rotation speed of the left front wheel rotating shaft 29B.
  • the piston rod 45 presses the clutch plate 23A towards the clutch plate 23B to engage the clutch 23.
  • the clutch cylinder 44 has a cylindrical shape and houses a piston inside.
  • the piston rod 45 extends from the inside to the outside of the clutch cylinder 44.
  • the base end of the piston rod 45 is disposed inside the clutch cylinder 44 and is attached to the piston.
  • the tip of the piston rod 45 is disposed outside the clutch cylinder 44.
  • the piston rod 45 is configured to be able to reciprocate relative to the clutch cylinder 44 in the axial direction of the cylindrical clutch cylinder 44 (the up and down direction in FIG. 3), and the length by which the piston rod 45 protrudes from the clutch cylinder 44 can be changed.
  • a return spring 46 is disposed inside the clutch cylinder 44.
  • the charge pump 41 is provided as a separate component from the left hydraulic circuit 21.
  • the charge pump 41 supplies pressurized oil to the charge oil passage 42.
  • the charge pump 41 supplies pressurized oil to the clutch cylinder 44 via the charge oil passage 42.
  • a clutch control valve 43 is provided in the charge oil passage 42.
  • the clutch control valve 43 is, for example, a solenoid valve. When the clutch control valve 43 is in a non-energized state, the supply of pressurized oil to the oil chamber inside the clutch cylinder 44 is stopped, and the clutch 23 is released. When the clutch control valve 43 is switched to an energized state, pressurized oil is supplied to the oil chamber inside the clutch cylinder 44, and the clutch 23 is engaged.
  • the charge circuit 40 that switches the left hydraulic clutch mechanism 23 between the engaged and released states has been described with reference to Figure 3, but the charge circuit (not shown) that switches the right hydraulic clutch mechanism 24 (Figure 2) between the engaged and released states is also provided separately from the right hydraulic circuit 22 and has a similar configuration to the charge circuit 40 for the left hydraulic clutch mechanism 23.
  • the charge pump 41 is common to the left and right charge circuits. There is one charge pump 41, and each of the left and right charge circuits has a clutch control valve that supplies charge pressure to the clutch.
  • FIG. 4 is a block diagram explaining the functional configuration of the controller 60.
  • the motor grader 1 is equipped with the controller 60.
  • the controller 60 reads and executes various programs using a CPU (central processing unit) (not shown) and performs various calculation processes.
  • CPU central processing unit
  • the driving mode changeover switch 80 is operated by an operator.
  • the amount of operation of the driving mode changeover switch 80 by the operator is converted into an electrical signal and input to the controller 60.
  • the driving modes include an all-wheel drive driving mode and a rear-wheel drive driving mode.
  • the all-wheel drive driving mode power is transmitted to the front wheels 2 and 3, and also to the left and right rear wheels, and the motor grader 1 drives with all six driving wheels as drive wheels.
  • the rear-wheel drive driving mode the transmission of power to the front wheels 2 and 3 is cut off, power is transmitted to the left and right rear wheels, and the motor grader 1 drives with all four driving wheels as drive wheels.
  • the driving mode selected by the operator is input to the driving mode input unit 61 of the controller 60.
  • the driving mode input unit 61 accepts the input of the driving mode by the operator's operation.
  • the pressure sensor 27L provided in the left hydraulic circuit 21 and the pressure sensor 27R provided in the right hydraulic circuit 22 shown in FIG. 2 are collectively referred to as pressure sensor 27.
  • the pressure sensor 28L provided in the left hydraulic circuit 21 and the pressure sensor 28R provided in the right hydraulic circuit 22 are collectively referred to as pressure sensor 28.
  • the detection results of the pressure of the hydraulic oil in the hydraulic circuits from the pressure sensors 27 and 28 are input to the pressure detection value input unit 63 of the controller 60.
  • the controller 60 has a memory 72.
  • the memory 72 stores a program for controlling the operation of the motor grader 1, and various data required for executing the program.
  • the memory 72 also temporarily stores working data that is generated as work is performed.
  • the controller 60 has a timer 73.
  • the timer 73 keeps track of time.
  • FIG. 5 is a flowchart showing the flow of the process of driving control of the motor grader 1 in the embodiment. Below, the process executed when the controller 60 switches the driving mode of the motor grader 1 from the all-wheel drive driving mode to the rear-wheel drive driving mode will be explained with appropriate reference to FIG. 4 and FIG. 5.
  • step S1 the controller 60 receives an input that the operator has switched the driving mode. More specifically, in step S1 of FIG. 5, the driving mode input unit 61 receives an input from the driving mode changeover switch 80 that the operator has operated the driving mode changeover switch 80 to switch the driving mode from the all-wheel drive (AWD) driving mode to the rear-wheel drive (RWD) driving mode.
  • the driving mode input unit 61 receives an input of a command to maintain the rotational drive of the rear wheels by the rear-wheel drive unit, while stopping the rotational drive of the front wheels 2, 3 by the front-wheel drive unit.
  • step S2 the controller 60 controls the capacity of the hydraulic pumps 15, 17.
  • the hydraulic pumps 15, 17 are variable capacity hydraulic pumps, and the pump capacity command unit 71 reduces the flow rate of hydraulic oil discharged by the hydraulic pumps 15, 17.
  • the pump capacity command unit 71 controls the flow rate of hydraulic oil discharged by the hydraulic pumps 15, 17 to be gradually reduced over time, rather than being reduced all at once to zero.
  • the pump capacity command unit 71 sets the flow rate of hydraulic oil that is smaller than the current flow rate of hydraulic oil discharged by the hydraulic pumps 15, 17 and greater than zero.
  • the pump capacity command unit 71 sets the flow rate of hydraulic oil so that it decreases as time passes.
  • the pump capacity command unit 71 may decrease the flow rate of hydraulic oil in stages.
  • the pump capacity command unit 71 may decrease the flow rate of hydraulic oil gradually, or may decrease the flow rate of hydraulic oil so that it is proportional to time.
  • the pump capacity command unit 71 sends a control signal to the swash plate drive units 15A, 17A of each hydraulic pump 15, 17 so that hydraulic oil is supplied at that flow rate from the hydraulic pumps 15, 17 to the hydraulic motors 16, 18. Even if the engine 6 rotation speed is the same, the flow rate of hydraulic oil discharged from the hydraulic pumps 15, 17 can be changed by controlling the swash plates of each hydraulic pump 15, 17. In this manner, the hydraulic pumps 15, 17 are controlled.
  • the clutches 23, 24 are engaged.
  • the clutches 23, 24 are maintained in the engaged state.
  • no command is output to the clutch control valve 43 to release the clutches 23, 24.
  • step S3 the controller 60 determines whether the estimated front wheel drive force is smaller than the judgment value.
  • the estimated front wheel driving force is calculated by adding the estimated value of the rotational driving force applied to the left front wheel 2 (referred to herein as the “estimated front wheel driving force (left)”) and the estimated value of the rotational driving force applied to the right front wheel 3 (referred to herein as the “estimated front wheel driving force (right)”).
  • the estimated front wheel driving force is calculated by the following formula (1).
  • the estimated front wheel driving force (left) and the estimated front wheel driving force (right) are collectively referred to as the estimated front wheel driving force (left/right).
  • the estimated front wheel driving force (left/right) is calculated by the following formula (2).
  • the HST circuit pressure is the pressure of the hydraulic oil in the hydraulic circuit detected by the pressure sensors 27, 28 and input to the pressure detection value input unit 63.
  • the motor capacity is the capacity of the hydraulic motors 16, 18.
  • the reduction ratio is the reduction ratio of the reducers 25, 26.
  • the efficiency is a coefficient that takes into account the efficiency of the hydraulic motors 16, 18 and the efficiency of the reducers 25, 26.
  • the tire load radius is the effective radius of the front wheels 2, 3 that is calculated from the distance that the front wheels 2, 3 actually travel.
  • the reduction ratio, efficiency, and tire load radius are stored in memory 72.
  • the judgment value is calculated by multiplying the running resistance by a coefficient.
  • the judgment value is calculated by the following formula (3).
  • the running resistance in equation (3) is calculated using the weight (machine weight) of the motor grader 1 acting on the front wheels 2 and 3 and the rolling resistance coefficient of the front wheels 2 and 3, as shown in the following equation (4).
  • the coefficient in equation (3) is set to a value that can sufficiently reduce the shock that occurs even if the clutches 23, 24 are released while the motor grader 1 is traveling.
  • the coefficient is set to a value greater than 0 and less than 1.
  • the coefficient may be set to a value of 0.5 or less. For example, the coefficient may be set to 0.3.
  • the coefficient may be set to 0.2.
  • the front wheel driving force determination unit 64 shown in FIG. 4 applies the HST circuit pressure input to the pressure detection value input unit 63, the capacity of the hydraulic motors 16, 18, and the reduction ratio, efficiency, and tire load radius read from the memory 72 to equations (1) and (2). In this way, the front wheel driving force determination unit 64 calculates an estimated front wheel driving force. The front wheel driving force determination unit 64 also calculates a determination value based on equations (3) and (4).
  • the front wheel drive force determination unit 64 compares the calculated estimated front wheel drive force with the calculated determination value. If it is determined that the estimated front wheel drive force is equal to or greater than the determination value (NO in step S3), in step S4, the controller 60 determines whether a certain amount of time has elapsed since control to reduce the flow rate of hydraulic oil discharged by the hydraulic pumps 15, 17 was started.
  • the time determination unit 66 reads the current time from the timer 73.
  • the time determination unit 66 calculates the elapsed time from the time when the pump capacity command unit 71 started sending control signals to the swash plate drives 15A, 17A in the processing of step S2 to the current time.
  • the time determination unit 66 determines whether the elapsed time has reached a predetermined time threshold.
  • the time determination unit 66 reads from the memory 72 the time threshold (the "fixed time” shown in FIG. 5) stored in the memory 72.
  • the time determination unit 66 compares the calculated elapsed time with the fixed time read from the memory 72. If, as a result of comparing the elapsed time with the fixed time, the time determination unit 66 determines that the fixed time has not yet elapsed since control to reduce the flow rate of hydraulic oil was started.
  • step S4 If it is determined that a certain amount of time has not yet elapsed since control to reduce the flow rate of hydraulic oil was started (NO in step S4), the clutches 23, 24 are maintained in an engaged state in step S6.
  • the clutch command unit 70 sends a control signal to the clutch control valve 43 to continue supplying pressurized oil to the clutch cylinder 44 and maintain the state in which clutch plate 23A is pressed against clutch plate 23B. This maintains the clutches 23, 24 in an engaged state. Then, the process returns to the determination in step S3.
  • step S3 If it is determined in step S3 that the estimated front wheel drive force is less than the judgment value (YES in step S3), or if it is determined in step S4 that a certain amount of time has passed since control to reduce the flow rate of hydraulic oil was started (YES in step S4), a clutch release command is output.
  • step S7 the clutches 23, 24 are released.
  • the clutch command unit 70 sends a control signal to the clutch control valve 43 to stop the supply of pressurized oil to the clutch cylinder 44 and separate the clutch plate 23A from the clutch plate 23B. This releases the clutches 23, 24 and switches the motor grader 1 to a rear-wheel drive state. In this way, the switching of the drive mode of the motor grader 1 from the all-wheel drive drive mode to the rear-wheel drive drive mode is completed ("END" in Figure 5).
  • the clutch release condition determination unit 67 shown in FIG. 4 determines whether the clutch release condition is satisfied.
  • the clutch release condition determination unit 67 may receive input of the rotation state of the engine 6 from, for example, an engine speed sensor (not shown). The clutch release condition determination unit 67 may determine that the clutch release condition is met when the engine 6 speed is lower than a threshold value.
  • the clutch release condition determination unit 67 may receive an input of the pressure of the hydraulic oil in the charge oil passage 42, for example, from a pressure sensor (not shown). The clutch release condition determination unit 67 may determine that the clutch release condition is met when the pressure of the hydraulic oil in the charge oil passage 42 is lower than a threshold value.
  • the clutch release condition determination unit 67 may receive an input of the traveling direction of the motor grader 1 from a travel operation detection unit (not shown) that detects the amount of operation of a travel operation device operated to travel the motor grader 1. The clutch release condition determination unit 67 may determine that the clutch release condition is met when an operation of a travel operation device that switches between forward travel and reverse travel of the motor grader 1 is performed.
  • the controller 60 (travel mode input unit 61) receives an input of a command to switch the travel mode of the motor grader 1 from all-wheel drive travel mode to rear-wheel drive travel mode.
  • the controller 60 (pump capacity command unit 71) reduces the flow rate of hydraulic oil supplied to the hydraulic motors 16, 18. As the flow rate of hydraulic oil decreases, the pressure of the hydraulic oil in the hydraulic circuit gradually decreases.
  • the hydraulic motors 16, 18 are front-wheel drive devices that drive the front wheels 2, 3 to rotate, and the pressure of the hydraulic oil supplied to the hydraulic motors 16, 18 corresponds to an example of the rotational drive force transmitted to the front wheels 2, 3.
  • the driving force of the front wheels 2, 3 accounts for a large proportion of the running resistance of the motor grader 1. If the clutches 23, 24 are instantly released and the driving force is suddenly no longer applied to the front wheels 2, 3 when the front wheel driving force is greater than the running resistance, the vehicle will start running using the driving force of the rear wheels from the point of release. If the running resistance of the motor grader 1 is greater than the rotational driving force of the rear wheels, a shock may occur. Shocks are more likely to occur when the speed ratio, which is the ratio of the speed of the front wheels 2, 3 to the speed of the rear wheels, is large (for example, speed ratio > 1).
  • the flow rate of hydraulic oil discharged from the hydraulic pumps 15, 17 is reduced while the clutches 23, 24 are maintained in an engaged state for a certain period of time.
  • the pressure of the hydraulic oil supplied to the hydraulic motors 16, 18 is reduced, thereby reducing the rotational driving force transmitted to the front wheels 2, 3.
  • the clutches 23, 24 are released only when it is determined that the proportion of the driving force borne by the rear wheels relative to the running resistance of the motor grader 1 has increased to such an extent that no shock occurs when the clutches 23, 24 are switched from an engaged state to a released state.
  • the clutches 23, 24 are released even if the estimated front wheel drive force is still equal to or greater than the determination value. If the operator switches the driving mode from all-wheel drive to rear-wheel drive and then leaves the driving mode in all-wheel drive for a long period of time, the responsiveness to the operation is impaired, which may cause the operator discomfort. When a certain amount of time has passed since receiving a command from the operator, the clutches 23, 24 are released even if some shock occurs. By not leaving the clutches 23, 24 engaged for a long period of time and improving responsiveness to the operator's operation, the operator's discomfort can be eliminated.
  • the estimated front wheel drive force (left/right) is proportional to the pressure of the hydraulic oil supplied to the hydraulic motors 16, 18.
  • the controller 60 front wheel drive force determination unit 64 determines that the estimated front wheel drive force has become smaller than the determination value
  • the pressure of the hydraulic oil supplied to the hydraulic motors 16, 18 has become smaller than a predetermined value.
  • the clutches 23, 24 are maintained engaged until a certain time has elapsed since the rotational drive force of the front wheels 2, 3 began to decrease and as long as the rotational drive force of the front wheels 2, 3 is equal to or greater than the judgment value. Even when a command is input to switch the driving mode of the motor grader 1 from all-wheel drive driving mode to rear-wheel drive driving mode, the clutches 23, 24 are not suddenly released, but the rotational drive force transmitted to the front wheels 2, 3 is reduced before the clutches 23, 24 are released. This reliably reduces the possibility of shock occurring when the clutches 23, 24 are released.
  • power is transmitted to the front wheels 2, 3 by the HST, while power is mechanically transmitted to the rear wheels via the transmission 9.
  • any power transmission device can be selected as long as the rear wheels are rotationally driven by a rear-wheel drive device, and the front wheels are rotationally driven independently of the rear wheels by a front-wheel drive device.
  • power may be transmitted to the rear wheels via an HST separate from the hydraulic systems 7L, 7R.
  • the front-wheel drive device that rotates the front wheels 2, 3 is not limited to the hydraulic motors 16, 18, and may be, for example, an electric motor.
  • the controller that executes the process of switching the driving mode of the motor grader 1, as described in the above embodiment, does not necessarily have to be mounted on the motor grader 1.
  • a system may be configured in which the controller 60 mounted on the motor grader 1 performs the process of transmitting the detection values of the pressure sensors 27, 28 to an external controller, and the external controller that receives the signal switches the driving mode.
  • the external controller may be located at the work site of the motor grader 1, or may be located in a remote location away from the work site of the motor grader 1.
  • a motor grader 1 is given as an example of a work machine, but the present invention is not limited to the motor grader 1 and can be applied to other types of work machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

The present invention reduces shock during switching from all-wheel driving to rear-wheel driving. This work machine comprises: front wheels; a front-wheel driving device that rotationally drives the front wheels; rear wheels; a rear-wheel driving device that rotationally drives the rear wheels; a clutch that selectively connects the front wheels and the front-wheel driving device; and a controller that controls the front-wheel driving device and the clutch. Upon reception of an input of an instruction for maintaining rotationally driving of the rear wheels carried out by the rear-wheel driving device and stopping the rotationally driving of the front wheels carried out by the front-wheel driving device, the controller starts reduction of the rotational driving force transmitted from the front-wheel driving device to the front wheels. The controller releases the clutch when it is determined that the rotational driving force has become smaller than a determination value or that a certain period of time has elapsed from the start of reduction of the rotational driving force.

Description

作業機械、作業機械のコントローラ、および作業機械の制御方法Work machine, work machine controller, and work machine control method
 本開示は、作業機械、作業機械のコントローラ、および作業機械の制御方法に関する。 The present disclosure relates to a work machine, a work machine controller, and a work machine control method.
 モータグレーダなどの作業機械に、前後輪の全てを駆動する全輪駆動装置を設けることがある。米国特許第6644429号明細書(特許文献1)には、前輪を駆動する油圧モータと前輪との間にクラッチを配置し、クラッチを解放して後輪駆動状態にし、クラッチを係合させて全輪駆動状態にする、モータグレーダが開示されている。 Working machines such as motor graders may be equipped with an all-wheel drive system that drives both the front and rear wheels. U.S. Patent No. 6,644,429 (Patent Document 1) discloses a motor grader in which a clutch is placed between the front wheels and a hydraulic motor that drives the front wheels, and the clutch is released to put the machine into rear-wheel drive mode and the clutch is engaged to put the machine into all-wheel drive mode.
米国特許第6644429号明細書U.S. Pat. No. 6,644,429
 全輪駆動式の作業機械において、走行モードを全輪駆動から後輪駆動に切り替える際に、ショックが発生することがある。 In all-wheel drive work machines, a shock may occur when switching the driving mode from all-wheel drive to rear-wheel drive.
 本開示では、全輪駆動から後輪駆動に切り替える際のショックを低減できる、作業機械、作業機械のコントローラ、および作業機械の制御方法が提案される。 This disclosure proposes a work machine, a work machine controller, and a work machine control method that can reduce the shock when switching from all-wheel drive to rear-wheel drive.
 本開示のある局面に従うと、前輪と、前輪を回転駆動させる前輪駆動装置と、後輪と、後輪を回転駆動させる後輪駆動装置と、前輪と前輪駆動装置とを選択的に連結するクラッチと、前輪駆動装置およびクラッチを制御するコントローラとを備える、作業機械が提案される。コントローラは、後輪駆動装置による後輪の回転駆動を維持し前輪駆動装置による前輪の回転駆動を停止させる指令の入力を受けると、前輪駆動装置から前輪に伝達される回転駆動力の減少を開始する。コントローラは、回転駆動力が判定値よりも小さくなったと判断されるか、または、回転駆動力の減少を開始してから一定時間が経過したと判断されると、クラッチを解放する。 In accordance with one aspect of the present disclosure, a work machine is proposed that includes front wheels, a front-wheel drive unit that rotationally drives the front wheels, rear wheels, a rear-wheel drive unit that rotationally drives the rear wheels, a clutch that selectively connects the front wheels and the front-wheel drive unit, and a controller that controls the front-wheel drive unit and the clutch. When the controller receives an input of a command to maintain the rotational drive of the rear wheels by the rear-wheel drive unit and to stop the rotational drive of the front wheels by the front-wheel drive unit, the controller starts to reduce the rotational drive force transmitted from the front-wheel drive unit to the front wheels. When the controller determines that the rotational drive force has become smaller than a determination value or that a certain time has elapsed since the controller started to reduce the rotational drive force, the controller releases the clutch.
 本開示のある局面に従うと、作業機械のコントローラが提案される。コントローラは、後輪駆動装置による作業機械の後輪の回転駆動を維持し前輪駆動装置による作業機械の前輪の回転駆動を停止させる指令の入力を受けて、前輪駆動装置から前輪に伝達される回転駆動力の減少を開始する。コントローラは、回転駆動力が判定値よりも小さいか否かを判断する。コントローラは、回転駆動力の減少を開始してから一定時間が経過したか否かを判断する。コントローラは、回転駆動力が判定値よりも小さくなったと判断されるか、または、回転駆動力の減少を開始してから一定時間が経過したと判断されると、前輪と前輪駆動装置との間のクラッチを解放する。 In accordance with one aspect of the present disclosure, a controller for a work machine is proposed. The controller starts reducing the rotational drive force transmitted from the front wheel drive unit to the front wheels upon receiving an input of a command to maintain the rotational drive of the rear wheels of the work machine by the rear wheel drive unit and to stop the rotational drive of the front wheels of the work machine by the front wheel drive unit. The controller determines whether the rotational drive force is smaller than a determination value. The controller determines whether a certain amount of time has passed since the reduction in the rotational drive force started. When the controller determines that the rotational drive force has become smaller than a determination value or that a certain amount of time has passed since the reduction in the rotational drive force started, the controller releases the clutch between the front wheels and the front wheel drive unit.
 本開示のある局面に従うと、作業機械の制御方法が提案される。制御方法は、以下のステップを備えている。第1のステップは、後輪駆動装置による作業機械の後輪の回転駆動を維持し前輪駆動装置による作業機械の前輪の回転駆動を停止させる指令の入力を受けることである。第2のステップは、前輪駆動装置から前輪に伝達される回転駆動力の減少を開始することである。第3のステップは、回転駆動力が判定値よりも小さいか否かを判断することである。第4のステップは、回転駆動力の減少を開始してから一定時間が経過したか否かを判断することである。第5のステップは、回転駆動力が判定値よりも小さくなったと判断されるか、または、回転駆動力の減少を開始してから一定時間が経過したと判断されると、前輪と前輪駆動装置との間のクラッチを解放することである。 According to one aspect of the present disclosure, a control method for a work machine is proposed. The control method includes the following steps. The first step is to receive an input of a command to maintain rotational driving of the rear wheels of the work machine by the rear wheel drive unit and to stop rotational driving of the front wheels of the work machine by the front wheel drive unit. The second step is to start reducing the rotational driving force transmitted from the front wheel drive unit to the front wheels. The third step is to determine whether the rotational driving force is smaller than a judgment value. The fourth step is to determine whether a certain time has passed since the reduction in the rotational driving force started. The fifth step is to release the clutch between the front wheels and the front wheel drive unit when it is determined that the rotational driving force has become smaller than the judgment value or that a certain time has passed since the reduction in the rotational driving force started.
 本開示の作業機械、作業機械のコントローラ、および作業機械の制御方法によると、全輪駆動から後輪駆動に切り替える際のショックを低減することができる。 The work machine, work machine controller, and work machine control method disclosed herein can reduce the shock that occurs when switching from all-wheel drive to rear-wheel drive.
実施形態におけるモータグレーダの構成を概略的に示す側面図である。1 is a side view showing a schematic configuration of a motor grader according to an embodiment. 図1に示すモータグレーダの概略構成を示す構成図である。FIG. 2 is a diagram showing a schematic configuration of the motor grader shown in FIG. 1 . クラッチ作動圧を供給する回路の構成を示す図である。FIG. 4 is a diagram showing the configuration of a circuit for supplying clutch actuation pressure. コントローラの機能構成を説明するブロック図である。FIG. 2 is a block diagram illustrating a functional configuration of a controller. 実施形態におけるモータグレーダの走行制御の処理の流れを示すフローチャートである。4 is a flowchart showing a process flow of travel control of a motor grader in an embodiment.
 以下、実施形態について図に基づいて説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらについての詳細な説明は繰り返さない。実施形態から任意の構成が抽出され、それらが任意に組み合わされることも、当初から予定されている。 The following describes the embodiments with reference to the drawings. In the following description, identical parts and components are given the same reference numerals. Their names and functions are also the same. Therefore, detailed descriptions of these will not be repeated. It is intended from the outset that any configuration may be extracted from the embodiments and arbitrarily combined.
 実施形態においては、作業機械の一例としてモータグレーダ1について説明する。図1は、実施形態におけるモータグレーダ1の構成を概略的に示す側面図である。 In this embodiment, a motor grader 1 will be described as an example of a work machine. Figure 1 is a side view showing a schematic configuration of the motor grader 1 in this embodiment.
 図1に示されるように、実施形態のモータグレーダ1は、全6輪の車両である。モータグレーダ1は、左右一対の前輪と、片側2輪ずつの後輪とからなる走行輪を備えている。前輪は、左前輪2と、図1には図示しない右前輪とを有している。後輪は、左後前輪4と、左後後輪5と、図示しない右後前輪および右後後輪とを有している。前輪および後輪の数および配置は、図1に示される例に限られるものではない。 As shown in FIG. 1, the motor grader 1 of the embodiment is a vehicle with a total of six wheels. The motor grader 1 is equipped with running wheels consisting of a pair of left and right front wheels and two rear wheels on each side. The front wheels include a left front wheel 2 and a right front wheel not shown in FIG. 1. The rear wheels include a left rear front wheel 4, a left rear rear wheel 5, and a right rear front wheel and a right rear rear wheel not shown. The number and arrangement of the front and rear wheels are not limited to the example shown in FIG. 1.
 モータグレーダ1は、ブレード50を含む作業機を備えている。ブレード50は、前輪と後輪との間に設けられている。モータグレーダ1は、ブレード50で、地面の整地作業、除雪作業、軽切削などの作業を行なうことができる。 The motor grader 1 is equipped with a work machine that includes a blade 50. The blade 50 is provided between the front and rear wheels. The motor grader 1 can use the blade 50 to perform tasks such as ground leveling, snow removal, and light cutting.
 モータグレーダ1は、車体フレームを備えている。車体フレームは、フロントフレーム51と、リアフレーム52とを有している。フロントフレーム51は、リアフレーム52に、回動可能に連結されている。 The motor grader 1 has a vehicle body frame. The vehicle body frame has a front frame 51 and a rear frame 52. The front frame 51 is rotatably connected to the rear frame 52.
 前輪は、ブレード50と共に、フロントフレーム51に設けられている。前輪は、フロントフレーム51の前端部に、回転可能に取り付けられている。後輪は、リアフレーム52に設けられている。後輪は、リアフレーム52に、後述するようにエンジンからの駆動力によって回転駆動可能に取り付けられている。 The front wheels are mounted on the front frame 51 together with the blades 50. The front wheels are rotatably attached to the front end of the front frame 51. The rear wheels are mounted on the rear frame 52. The rear wheels are rotatably attached to the rear frame 52 by the driving force from the engine, as described below.
 図2は、図1に示すモータグレーダ1の概略構成を示す構成図である。上述した左右一対の前輪は、左前輪2と、右前輪3とを有している。モータグレーダ1は、エンジン6を備えている。エンジン6は、図1に示されるリアフレーム52に支持されている。エンジン6は、前輪および後輪を回転駆動させる駆動力を発生する駆動源であり、たとえばディーゼルエンジンである。 FIG. 2 is a diagram showing the schematic configuration of the motor grader 1 shown in FIG. 1. The pair of left and right front wheels described above includes a left front wheel 2 and a right front wheel 3. The motor grader 1 is equipped with an engine 6. The engine 6 is supported by a rear frame 52 shown in FIG. 1. The engine 6 is a drive source that generates a driving force to rotate the front and rear wheels, and is, for example, a diesel engine.
 エンジン6の出力側には、トルクコンバータ8、変速機9、終減速装置10およびタンデム装置11を介して、左後輪4,5と、左後輪4,5と一対の右後輪(図示は省略する)と、が接続されている。トルクコンバータ8は、オイルを媒体としてエンジン6からの駆動力を伝達する流体クラッチである。変速機9は、機械式変速機である。変速機9は、複数の速度段に対応した複数のクラッチを有している。各クラッチの連結状態および非連結状態を切り替えることにより、変速機9は速度段を複数段階に切り替える。エンジン6は、トルクコンバータ8、変速機9、終減速装置10およびタンデム装置11を介して、左後輪4,5と右後輪とを駆動する。 The output side of the engine 6 is connected to the left rear wheels 4, 5, and the left rear wheels 4, 5 and a pair of right rear wheels (not shown) via a torque converter 8, a transmission 9, a final reduction gear 10, and a tandem device 11. The torque converter 8 is a fluid clutch that transmits driving force from the engine 6 using oil as a medium. The transmission 9 is a mechanical transmission. The transmission 9 has multiple clutches corresponding to multiple speed stages. The transmission 9 switches between multiple speed stages by switching between the engaged and disengaged states of each clutch. The engine 6 drives the left rear wheels 4, 5 and the right rear wheel via the torque converter 8, the transmission 9, a final reduction gear 10, and a tandem device 11.
 トルクコンバータ8、変速機9、終減速装置10およびタンデム装置11は、エンジン6の発生する駆動力を後輪に伝達する、後輪動力伝達装置を構成している。終減速装置10は、後輪を回転駆動させる後輪駆動装置の一例に対応する。 The torque converter 8, the transmission 9, the final reduction gear 10, and the tandem gear 11 constitute a rear wheel power transmission device that transmits the driving force generated by the engine 6 to the rear wheels. The final reduction gear 10 corresponds to an example of a rear wheel drive device that drives and rotates the rear wheels.
 変速機9に、左右一対の油圧システム7L,7Rが接続されている。油圧システム7Lは、左前輪2を駆動する。油圧システム7Rは、右前輪3を駆動する。エンジン6は、トルクコンバータ8、変速機9、油圧システム7L,7Rを介して、左前輪2と右前輪3とを駆動する。油圧システム7L,7Rは、機械式の変速機9を介さずに、エンジン6の他方の出力側に接続されていてもよい。左右の油圧システム7L,7Rは、それぞれ、HST(Hydraulic Static Transmission)を構成している。 A pair of left and right hydraulic systems 7L, 7R are connected to the transmission 9. The hydraulic system 7L drives the left front wheel 2. The hydraulic system 7R drives the right front wheel 3. The engine 6 drives the left front wheel 2 and the right front wheel 3 via a torque converter 8, the transmission 9, and the hydraulic systems 7L, 7R. The hydraulic systems 7L, 7R may be connected to the other output side of the engine 6 without going through the mechanical transmission 9. The left and right hydraulic systems 7L, 7R each constitute an HST (Hydraulic Static Transmission).
 モータグレーダ1は、前輪2,3と左後輪4,5および右後輪との全てを動力発生用および伝達用の各装置6~11で共に駆動することが可能な、全輪駆動車両である。当該装置6~11は、全輪駆動装置12を構成している。全輪駆動装置12のうち、エンジン6、油圧システム7L,7Rの一部、トルクコンバータ8、変速機9および終減速装置10は、リアフレーム52に支持されている。 The motor grader 1 is an all-wheel drive vehicle in which the front wheels 2, 3, the left rear wheels 4, 5, and the right rear wheel can all be driven by power generation and transmission devices 6-11. These devices 6-11 make up the all-wheel drive device 12. Of the all-wheel drive device 12, the engine 6, parts of the hydraulic systems 7L, 7R, the torque converter 8, the transmission 9, and the final reduction gear 10 are supported by the rear frame 52.
 油圧システム7Lは、左油圧ポンプ15と、左油圧モータ16とを備えている。油圧システム7Rは、右油圧ポンプ17と、右油圧モータ18とを備えている。エンジン6の出力がPTO(Power Take-Off)14を介して左油圧ポンプ15および右油圧ポンプ17へ伝達されて、左油圧ポンプ15および右油圧ポンプ17が駆動される。左油圧モータ16は、左油圧ポンプ15から吐出する作動油で回転されて、左前輪2を駆動する。右油圧モータ18は、右油圧ポンプ17から吐出する作動油で回転されて、右前輪3を駆動する。 Hydraulic system 7L includes a left hydraulic pump 15 and a left hydraulic motor 16. Hydraulic system 7R includes a right hydraulic pump 17 and a right hydraulic motor 18. The output of the engine 6 is transmitted to the left hydraulic pump 15 and the right hydraulic pump 17 via the PTO (Power Take-Off) 14, driving the left hydraulic pump 15 and the right hydraulic pump 17. The left hydraulic motor 16 is rotated by the hydraulic oil discharged from the left hydraulic pump 15, and drives the left front wheel 2. The right hydraulic motor 18 is rotated by the hydraulic oil discharged from the right hydraulic pump 17, and drives the right front wheel 3.
 油圧ポンプ15,17は、可変容量型油圧ポンプである。油圧ポンプ15,17は、可変斜板を有する斜板式油圧ポンプであってもよい。左油圧ポンプ15の可変斜板の角度は、後述するコントローラから出力される制御指令値に従って、斜板駆動部15Aにより無段階で連続的に制御される。右油圧ポンプ17の可変斜板の角度は、後述するコントローラから出力される制御指令値に従って、斜板駆動部17Aにより無段階で連続的に、左油圧ポンプ15の可変斜板とは独立して制御される。斜板駆動部15A,17Aは、たとえばソレノイドである。 Hydraulic pumps 15, 17 are variable displacement hydraulic pumps. Hydraulic pumps 15, 17 may be swash plate type hydraulic pumps having a variable swash plate. The angle of the variable swash plate of the left hydraulic pump 15 is continuously and steplessly controlled by swash plate driver 15A in accordance with a control command value output from a controller described later. The angle of the variable swash plate of the right hydraulic pump 17 is continuously and steplessly controlled by swash plate driver 17A, independently of the variable swash plate of the left hydraulic pump 15, in accordance with a control command value output from a controller described later. Swash plate drivers 15A, 17A are, for example, solenoids.
 油圧モータ16,18は、可変容量形のモータであってもよい。油圧モータ16,18は、斜軸式アキシャル形のモータであってもよい。油圧モータ16,18の容量は、オペレータが選択した速度段によって、一定の値となる。油圧モータ16,18は、固定容量形のモータであってもよい。 The hydraulic motors 16, 18 may be variable displacement motors. The hydraulic motors 16, 18 may be bent-axis axial motors. The displacement of the hydraulic motors 16, 18 is a constant value depending on the speed stage selected by the operator. The hydraulic motors 16, 18 may be fixed displacement motors.
 左油圧ポンプ15と、左油圧モータ16とは、左油圧回路21により接続されている。左油圧ポンプ15から吐出する作動油は、左油圧回路21を経由して、左油圧モータ16に供給される。左前輪2が駆動されるときの左前輪2の回転速度は、左油圧ポンプ15から吐出する作動油によって、制御されている。左油圧回路21には、左油圧回路21内の作動油の圧力を検出する圧力センサ27L,28Lが設けられている。圧力センサ27L,28Lは、左油圧回路21内の油圧を示す信号を出力する。 The left hydraulic pump 15 and the left hydraulic motor 16 are connected by the left hydraulic circuit 21. The hydraulic oil discharged from the left hydraulic pump 15 is supplied to the left hydraulic motor 16 via the left hydraulic circuit 21. The rotation speed of the left front wheel 2 when the left front wheel 2 is driven is controlled by the hydraulic oil discharged from the left hydraulic pump 15. The left hydraulic circuit 21 is provided with pressure sensors 27L, 28L that detect the pressure of the hydraulic oil in the left hydraulic circuit 21. The pressure sensors 27L, 28L output signals that indicate the hydraulic pressure in the left hydraulic circuit 21.
 右油圧ポンプ17と、右油圧モータ18とは、右油圧回路22により接続されている。右油圧ポンプ17から吐出する作動油は、右油圧回路22を経由して、右油圧モータ18に供給される。右前輪3が駆動されるときの右前輪3の回転速度は、右油圧ポンプ17から吐出する作動油によって、制御されている。右油圧回路22には、右油圧回路22内の作動油の圧力を検出する圧力センサ27R,28Rが設けられている。圧力センサ27R,28Rは、右油圧回路22内の油圧を示す信号を出力する。 The right hydraulic pump 17 and the right hydraulic motor 18 are connected by a right hydraulic circuit 22. The hydraulic oil discharged from the right hydraulic pump 17 is supplied to the right hydraulic motor 18 via the right hydraulic circuit 22. The rotation speed of the right front wheel 3 when the right front wheel 3 is driven is controlled by the hydraulic oil discharged from the right hydraulic pump 17. The right hydraulic circuit 22 is provided with pressure sensors 27R, 28R that detect the pressure of the hydraulic oil in the right hydraulic circuit 22. The pressure sensors 27R, 28R output signals indicative of the hydraulic pressure in the right hydraulic circuit 22.
 エンジン6からの駆動力を前輪2,3へ伝達するための動力伝達装置は、エンジン6で油圧ポンプ15,17を駆動することにより作動油に圧力を発生させ、油圧ポンプ15,17から吐出した圧油によって油圧モータ16,18が駆動されることで回転力が再び発生する。すなわち、前述した通り、左右の油圧システム7L,7Rは、それぞれ、HSTを構成している。 The power transmission device for transmitting the driving force from the engine 6 to the front wheels 2, 3 generates pressure in the hydraulic oil by driving hydraulic pumps 15, 17 with the engine 6, and the hydraulic motors 16, 18 are driven by the pressurized oil discharged from the hydraulic pumps 15, 17, thereby generating rotational force again. In other words, as mentioned above, the left and right hydraulic systems 7L, 7R each constitute an HST.
 圧力センサ27L,27Rは、モータグレーダ1の前進走行時に油圧ポンプから油圧モータへ作動油が流れる油路に設けられている。圧力センサ27L,27Rは、モータグレーダ1の前進走行時に油圧ポンプから吐出される高圧の作動油の圧力を検出する。圧力センサ28L,28Rは、モータグレーダ1の後進走行時に油圧ポンプから油圧モータへ作動油が流れる油路に設けられている。圧力センサ28L,28Rは、モータグレーダ1の後進走行時に油圧ポンプから吐出される高圧の作動油の圧力を検出する。 Pressure sensors 27L, 27R are provided in the oil passage through which hydraulic oil flows from the hydraulic pump to the hydraulic motor when the motor grader 1 is traveling forward. Pressure sensors 27L, 27R detect the pressure of high-pressure hydraulic oil discharged from the hydraulic pump when the motor grader 1 is traveling forward. Pressure sensors 28L, 28R are provided in the oil passage through which hydraulic oil flows from the hydraulic pump to the hydraulic motor when the motor grader 1 is traveling backward. Pressure sensors 28L, 28R detect the pressure of high-pressure hydraulic oil discharged from the hydraulic pump when the motor grader 1 is traveling backward.
 左油圧式クラッチ機構23と左減速機25とが、左前輪2と左油圧モータ16との間に設けられている。右油圧式クラッチ機構24と右減速機26とが、右前輪3と右油圧モータ18との間に設けられている。左油圧式クラッチ機構23および右油圧式クラッチ機構24に油圧が供給されることにより、左前輪2と右前輪3とに動力が伝達されて、モータグレーダ1は全輪駆動となる。左油圧式クラッチ機構23および右油圧式クラッチ機構24への油圧の供給が遮断されると、モータグレーダ1は、全輪駆動が解除されて後輪駆動となる。 The left hydraulic clutch mechanism 23 and the left reducer 25 are provided between the left front wheel 2 and the left hydraulic motor 16. The right hydraulic clutch mechanism 24 and the right reducer 26 are provided between the right front wheel 3 and the right hydraulic motor 18. When hydraulic pressure is supplied to the left hydraulic clutch mechanism 23 and the right hydraulic clutch mechanism 24, power is transmitted to the left front wheel 2 and the right front wheel 3, and the motor grader 1 becomes all-wheel drive. When the supply of hydraulic pressure to the left hydraulic clutch mechanism 23 and the right hydraulic clutch mechanism 24 is cut off, the motor grader 1 is released from all-wheel drive and becomes rear-wheel drive.
 トルクコンバータ8、変速機9、PTO14、油圧システム7L,7R、クラッチ機構23,24および減速機25,26は、エンジン6の発生する駆動力を前輪に伝達する、前輪動力伝達装置を構成している。油圧モータ16,18は、前輪を回転駆動させる前輪駆動装置の一例に対応する。油圧ポンプ15,17から油圧モータ16,18に供給される作動油の供給量(油圧ポンプの吐出量)を上げることで、前輪の回転速度を増加できる。油圧ポンプ15,17から油圧モータ16,18に供給される作動油の供給量を下げることで、前輪の回転速度を減少できる。 The torque converter 8, transmission 9, PTO 14, hydraulic systems 7L, 7R, clutch mechanisms 23, 24, and reducers 25, 26 constitute a front wheel power transmission device that transmits the driving force generated by the engine 6 to the front wheels. The hydraulic motors 16, 18 correspond to an example of a front wheel drive device that drives the front wheels to rotate. The rotation speed of the front wheels can be increased by increasing the amount of hydraulic oil supplied from the hydraulic pumps 15, 17 to the hydraulic motors 16, 18 (the hydraulic pump discharge volume). The rotation speed of the front wheels can be decreased by decreasing the amount of hydraulic oil supplied from the hydraulic pumps 15, 17 to the hydraulic motors 16, 18.
 速度センサ31は、変速機9の出力軸に設けられている。速度センサ31は、変速機9の出力軸の回転速度を測定することにより、モータグレーダ1の移動時(走行時)の後輪の回転速度を検出する。速度センサ31は、後輪の回転速度を示す信号を出力する。 The speed sensor 31 is mounted on the output shaft of the transmission 9. The speed sensor 31 detects the rotational speed of the rear wheels when the motor grader 1 is moving (driving) by measuring the rotational speed of the output shaft of the transmission 9. The speed sensor 31 outputs a signal indicating the rotational speed of the rear wheels.
 図3は、クラッチ作動圧を供給する回路の構成を示す図である。実施形態のモータグレーダ1は、クラッチ作動圧を供給するクラッチ制御回路を、前輪2,3に回転駆動力を伝達するHSTとは別に有する、外部圧式のクラッチを有している。図3には、左右の油圧回路およびクラッチのうち、左油圧回路21および左油圧式クラッチ機構23が、代表的に図示されている。図3にはまた、左油圧式クラッチ機構23の係合状態と解放状態とを切り替えるチャージ回路40が、代表的に図示されている。油圧式クラッチ機構23,24を、以下では単にクラッチ23,24とも称する。 FIG. 3 is a diagram showing the configuration of a circuit that supplies clutch actuation pressure. The motor grader 1 of the embodiment has an external pressure clutch that has a clutch control circuit that supplies clutch actuation pressure, separate from the HST that transmits rotational driving force to the front wheels 2, 3. Of the left and right hydraulic circuits and clutches, FIG. 3 representatively illustrates the left hydraulic circuit 21 and left hydraulic clutch mechanism 23. FIG. 3 also representatively illustrates a charge circuit 40 that switches the left hydraulic clutch mechanism 23 between an engaged state and a released state. Below, the hydraulic clutch mechanisms 23, 24 are also simply referred to as clutches 23, 24.
 左油圧式クラッチ機構23は、湿式多板式のクラッチである。図3に示されるクラッチ板23A,23Bは、左油圧式クラッチ機構23に含まれる複数枚の板のうちの隣り合う2枚の板を、代表的に示すものである。クラッチ板23Aとクラッチ板23Bとは、互いに向き合って配置されている。 The left hydraulic clutch mechanism 23 is a wet multi-plate clutch. The clutch plates 23A and 23B shown in FIG. 3 are representative of two adjacent plates among the multiple plates included in the left hydraulic clutch mechanism 23. The clutch plates 23A and 23B are arranged facing each other.
 左前輪回転軸29Aは、左油圧モータ16の出力軸と一体的に回転可能に、左油圧モータ16に接続されている。左前輪回転軸29Bは、左前輪2と一体的に回転可能に、左前輪2に接続されている。左前輪回転軸29Aと左前輪回転軸29Bとの間に、クラッチ板23A,23Bが配置されている。 The left front wheel rotating shaft 29A is connected to the left hydraulic motor 16 so as to be rotatable integrally with the output shaft of the left hydraulic motor 16. The left front wheel rotating shaft 29B is connected to the left front wheel 2 so as to be rotatable integrally with the left front wheel 2. Clutch plates 23A, 23B are disposed between the left front wheel rotating shaft 29A and the left front wheel rotating shaft 29B.
 クラッチ板23Aとクラッチ板23Bとが接触して一体的に回転する状態が、クラッチ23の係合状態である。クラッチ板23Aとクラッチ板23Bとが離れて配置され、クラッチ板23Aとクラッチ板23Bとの間に隙間が形成され、クラッチ板23Aが回転してもクラッチ板23Aの回転がクラッチ板23Bには伝達されない状態が、クラッチ23の解放状態である。 The state in which clutch plates 23A and 23B are in contact and rotate together is the engaged state of clutch 23. The state in which clutch plates 23A and 23B are spaced apart, a gap is formed between clutch plates 23A and 23B, and the rotation of clutch plate 23A is not transmitted to clutch plate 23B even when clutch plate 23A rotates is the released state of clutch 23.
 回転センサ32は、左前輪回転軸29Aに設けられており、左前輪回転軸29Aの回転速度を検出する。回転センサ32は、左前輪回転軸29Aの回転速度を示す信号を出力する。回転センサ33は、左前輪回転軸29Bに設けられており、左前輪回転軸29Bの回転速度を検出する。回転センサ33は、左前輪回転軸29Bの回転速度を示す信号を出力する。 The rotation sensor 32 is provided on the left front wheel rotating shaft 29A and detects the rotation speed of the left front wheel rotating shaft 29A. The rotation sensor 32 outputs a signal indicating the rotation speed of the left front wheel rotating shaft 29A. The rotation sensor 33 is provided on the left front wheel rotating shaft 29B and detects the rotation speed of the left front wheel rotating shaft 29B. The rotation sensor 33 outputs a signal indicating the rotation speed of the left front wheel rotating shaft 29B.
 ピストンロッド45は、クラッチ板23Aをクラッチ板23Bに向けて押圧して、クラッチ23を係合状態にする。クラッチシリンダ44は、筒状の形状を有しており、内部にピストンを収容している。ピストンロッド45は、クラッチシリンダ44の内部と外部とに亘って延びている。ピストンロッド45の基端は、クラッチシリンダ44内に配置されており、ピストンに取り付けられている。ピストンロッド45の先端は、クラッチシリンダ44の外部に配置されている。ピストンロッド45は、筒状のクラッチシリンダ44の軸方向(図3においては、図中の上下方向)に、クラッチシリンダ44に対して往復移動可能に構成されており、ピストンロッド45がクラッチシリンダ44から突き出る長さを変更可能である。クラッチシリンダ44の内部には、戻しばね46が配置されている。 The piston rod 45 presses the clutch plate 23A towards the clutch plate 23B to engage the clutch 23. The clutch cylinder 44 has a cylindrical shape and houses a piston inside. The piston rod 45 extends from the inside to the outside of the clutch cylinder 44. The base end of the piston rod 45 is disposed inside the clutch cylinder 44 and is attached to the piston. The tip of the piston rod 45 is disposed outside the clutch cylinder 44. The piston rod 45 is configured to be able to reciprocate relative to the clutch cylinder 44 in the axial direction of the cylindrical clutch cylinder 44 (the up and down direction in FIG. 3), and the length by which the piston rod 45 protrudes from the clutch cylinder 44 can be changed. A return spring 46 is disposed inside the clutch cylinder 44.
 クラッチシリンダ44の内部の油室に、チャージ油路42を介して圧油が供給されると、圧油がピストンに作用して、ピストンロッド45はクラッチシリンダ44から押し出される向きに移動する。ピストンロッド45がクラッチ板23Aを、クラッチ板23Aをクラッチ板23Bに近づける向きに押圧する。これにより、クラッチ板23Aがクラッチ板23Bに接触して、クラッチ23が係合状態になる。 When pressurized oil is supplied to the oil chamber inside the clutch cylinder 44 via the charge oil passage 42, the pressurized oil acts on the piston, and the piston rod 45 moves in a direction that pushes it out of the clutch cylinder 44. The piston rod 45 presses the clutch plate 23A in a direction that brings the clutch plate 23A closer to the clutch plate 23B. As a result, the clutch plate 23A comes into contact with the clutch plate 23B, and the clutch 23 enters an engaged state.
 クラッチシリンダ44の内部の油室への圧油の供給が停止されると、戻しばね46が、ピストンロッド45をクラッチシリンダ44の内部に引き込む付勢力を作用する。ピストンロッド45とクラッチ板23Aとが、クラッチ板23Aがクラッチ板23Bから離隔する方向に移動する。これにより、クラッチ板23Aとクラッチ板23Bとは非接触となり、クラッチ23が解放状態になる。 When the supply of pressurized oil to the oil chamber inside the clutch cylinder 44 is stopped, the return spring 46 exerts a biasing force that draws the piston rod 45 into the clutch cylinder 44. The piston rod 45 and clutch plate 23A move in a direction in which the clutch plate 23A moves away from the clutch plate 23B. As a result, the clutch plate 23A and the clutch plate 23B are no longer in contact with each other, and the clutch 23 is released.
 チャージポンプ41は、左油圧回路21とは別の構成として設けられている。チャージポンプ41は、チャージ油路42に圧油を供給する。チャージポンプ41は、チャージ油路42を経由させて、クラッチシリンダ44に圧油を供給する。チャージ油路42に、クラッチ制御弁43が設けられている。クラッチ制御弁43は、たとえばソレノイドバルブである。クラッチ制御弁43が非通電状態で、クラッチシリンダ44の内部の油室への圧油の供給は停止しており、クラッチ23は解放されている。クラッチ制御弁43が通電状態に切り替えられることにより、クラッチシリンダ44の内部の油室へ圧油が供給されて、クラッチ23が係合状態になる。 The charge pump 41 is provided as a separate component from the left hydraulic circuit 21. The charge pump 41 supplies pressurized oil to the charge oil passage 42. The charge pump 41 supplies pressurized oil to the clutch cylinder 44 via the charge oil passage 42. A clutch control valve 43 is provided in the charge oil passage 42. The clutch control valve 43 is, for example, a solenoid valve. When the clutch control valve 43 is in a non-energized state, the supply of pressurized oil to the oil chamber inside the clutch cylinder 44 is stopped, and the clutch 23 is released. When the clutch control valve 43 is switched to an energized state, pressurized oil is supplied to the oil chamber inside the clutch cylinder 44, and the clutch 23 is engaged.
 図3を参照して左油圧式クラッチ機構23の係合状態と解放状態とを切り換えるチャージ回路40について説明したが、右油圧式クラッチ機構24(図2)の係合状態と解放状態とを切り換えるチャージ回路(不図示)もまた、右油圧回路22とは別に設けられており、左油圧式クラッチ機構23用のチャージ回路40と同様の構成を有している。チャージポンプ41は、左右のチャージ回路に共通である。チャージポンプ41は1つで、チャージ圧をクラッチに供給するクラッチ制御弁は、左右のチャージ回路がそれぞれ有している。 The charge circuit 40 that switches the left hydraulic clutch mechanism 23 between the engaged and released states has been described with reference to Figure 3, but the charge circuit (not shown) that switches the right hydraulic clutch mechanism 24 (Figure 2) between the engaged and released states is also provided separately from the right hydraulic circuit 22 and has a similar configuration to the charge circuit 40 for the left hydraulic clutch mechanism 23. The charge pump 41 is common to the left and right charge circuits. There is one charge pump 41, and each of the left and right charge circuits has a clutch control valve that supplies charge pressure to the clutch.
 図4は、コントローラ60の機能構成を説明するブロック図である。モータグレーダ1は、コントローラ60を備えている。コントローラ60は、図示しないCPU(中央処理装置)により各種のプログラムを読み出して実行し、各種演算処理を行う。 FIG. 4 is a block diagram explaining the functional configuration of the controller 60. The motor grader 1 is equipped with the controller 60. The controller 60 reads and executes various programs using a CPU (central processing unit) (not shown) and performs various calculation processes.
 走行モード切替スイッチ80は、オペレータによって操作される。オペレータによる走行モード切替スイッチ80の操作量は、電気信号に変換されて、コントローラ60に入力される。 The driving mode changeover switch 80 is operated by an operator. The amount of operation of the driving mode changeover switch 80 by the operator is converted into an electrical signal and input to the controller 60.
 走行モードは、全輪駆動走行モードと、後輪駆動走行モードとを含んでいる。全輪駆動走行モードの状態では、前輪2,3に動力が伝達され、かつ、左右の後輪に動力が伝達され、6輪全ての走行輪を駆動輪としてモータグレーダ1が走行する。後輪駆動走行モードの状態では、前輪2,3への動力の伝達が遮断され、左右の後輪には動力が伝達され、左右の後輪4輪を駆動輪としてモータグレーダ1が走行する。 The driving modes include an all-wheel drive driving mode and a rear-wheel drive driving mode. In the all-wheel drive driving mode, power is transmitted to the front wheels 2 and 3, and also to the left and right rear wheels, and the motor grader 1 drives with all six driving wheels as drive wheels. In the rear-wheel drive driving mode, the transmission of power to the front wheels 2 and 3 is cut off, power is transmitted to the left and right rear wheels, and the motor grader 1 drives with all four driving wheels as drive wheels.
 オペレータが走行モード切替スイッチ80を手動で操作することにより、オペレータが選択した走行モードが、コントローラ60の走行モード入力部61に入力される。走行モード入力部61は、オペレータの操作による走行モードの入力を受け付ける。 When the operator manually operates the driving mode changeover switch 80, the driving mode selected by the operator is input to the driving mode input unit 61 of the controller 60. The driving mode input unit 61 accepts the input of the driving mode by the operator's operation.
 図2に示される、左油圧回路21に設けられる圧力センサ27Lと、右油圧回路22に設けられる圧力センサ27Rとを、圧力センサ27と総称する。左油圧回路21に設けられる圧力センサ28Lと、右油圧回路22に設けられる圧力センサ28Rとを、圧力センサ28と総称する。圧力センサ27,28から、油圧回路内の作動油の圧力の検出結果が、コントローラ60の圧力検出値入力部63に入力される。 The pressure sensor 27L provided in the left hydraulic circuit 21 and the pressure sensor 27R provided in the right hydraulic circuit 22 shown in FIG. 2 are collectively referred to as pressure sensor 27. The pressure sensor 28L provided in the left hydraulic circuit 21 and the pressure sensor 28R provided in the right hydraulic circuit 22 are collectively referred to as pressure sensor 28. The detection results of the pressure of the hydraulic oil in the hydraulic circuits from the pressure sensors 27 and 28 are input to the pressure detection value input unit 63 of the controller 60.
 コントローラ60は、メモリ72を有している。メモリ72には、モータグレーダ1の動作を制御するためのプログラム、およびそのプログラムの実行に必要な各種データが記憶されている。メモリ72にはまた、作業実行にともなって発生するワーキングデータが一時的に記憶される。コントローラ60は、タイマ73を有している。タイマ73は、時刻を計時する。 The controller 60 has a memory 72. The memory 72 stores a program for controlling the operation of the motor grader 1, and various data required for executing the program. The memory 72 also temporarily stores working data that is generated as work is performed. The controller 60 has a timer 73. The timer 73 keeps track of time.
 図5は、実施形態におけるモータグレーダ1の走行制御の処理の流れを示すフローチャートである。以下、コントローラ60がモータグレーダ1の走行モードを全輪駆動走行モードから後輪駆動走行モードへ切り替えるときに実行される処理について、図4、図5を適宜参照して、説明する。 FIG. 5 is a flowchart showing the flow of the process of driving control of the motor grader 1 in the embodiment. Below, the process executed when the controller 60 switches the driving mode of the motor grader 1 from the all-wheel drive driving mode to the rear-wheel drive driving mode will be explained with appropriate reference to FIG. 4 and FIG. 5.
 図5に示されるように、ステップS1において、コントローラ60は、オペレータが走行モードを切り替えたことの入力を受ける。より詳細には、図5のステップS1において、走行モード入力部61は、走行モード切替スイッチ80から、走行モードを全輪駆動(AWD)走行モードから後輪駆動(RWD)走行モードへ切り替えるように、オペレータが走行モード切替スイッチ80を操作したことの入力を受ける。走行モード入力部61は、後輪駆動装置による後輪の回転駆動を維持する一方、前輪駆動装置による前輪2,3の回転駆動を停止させる指令の入力を受ける。 As shown in FIG. 5, in step S1, the controller 60 receives an input that the operator has switched the driving mode. More specifically, in step S1 of FIG. 5, the driving mode input unit 61 receives an input from the driving mode changeover switch 80 that the operator has operated the driving mode changeover switch 80 to switch the driving mode from the all-wheel drive (AWD) driving mode to the rear-wheel drive (RWD) driving mode. The driving mode input unit 61 receives an input of a command to maintain the rotational drive of the rear wheels by the rear-wheel drive unit, while stopping the rotational drive of the front wheels 2, 3 by the front-wheel drive unit.
 ステップS2において、コントローラ60は、油圧ポンプ15,17の容量を制御する。油圧ポンプ15,17は可変容量形油圧ポンプであり、ポンプ容量指令部71は、油圧ポンプ15,17が吐出する作動油の流量を減少させる。ポンプ容量指令部71は、油圧ポンプ15,17が吐出する作動油の流量を、一気にゼロにまで下げるのではなく、時間をかけて徐々に下げる制御をする。 In step S2, the controller 60 controls the capacity of the hydraulic pumps 15, 17. The hydraulic pumps 15, 17 are variable capacity hydraulic pumps, and the pump capacity command unit 71 reduces the flow rate of hydraulic oil discharged by the hydraulic pumps 15, 17. The pump capacity command unit 71 controls the flow rate of hydraulic oil discharged by the hydraulic pumps 15, 17 to be gradually reduced over time, rather than being reduced all at once to zero.
 具体的に、ポンプ容量指令部71は、油圧ポンプ15,17が吐出する作動油の現在の流量よりも小さくゼロよりも大きい、作動油の流量を設定する。ポンプ容量指令部71は、作動油の流量を、時間が経過するに従って減少するように、設定する。ポンプ容量指令部71は、作動油の流量を段階的に減少させてもよい。ポンプ容量指令部71は、作動油の流量を漸次的に減少させてもよく、作動油の流量が時間に対して比例するように減少させてもよい。 Specifically, the pump capacity command unit 71 sets the flow rate of hydraulic oil that is smaller than the current flow rate of hydraulic oil discharged by the hydraulic pumps 15, 17 and greater than zero. The pump capacity command unit 71 sets the flow rate of hydraulic oil so that it decreases as time passes. The pump capacity command unit 71 may decrease the flow rate of hydraulic oil in stages. The pump capacity command unit 71 may decrease the flow rate of hydraulic oil gradually, or may decrease the flow rate of hydraulic oil so that it is proportional to time.
 ポンプ容量指令部71は、油圧ポンプ15,17から油圧モータ16,18へその流量の作動油が供給されるように、各油圧ポンプ15,17の斜板駆動部15A,17Aへ制御信号を送信する。エンジン6の回転数が同じでも、各油圧ポンプ15,17の斜板を制御することで、油圧ポンプ15,17から吐出される作動油の流量を変更できる。このように油圧ポンプ15,17の制御が行われる。 The pump capacity command unit 71 sends a control signal to the swash plate drive units 15A, 17A of each hydraulic pump 15, 17 so that hydraulic oil is supplied at that flow rate from the hydraulic pumps 15, 17 to the hydraulic motors 16, 18. Even if the engine 6 rotation speed is the same, the flow rate of hydraulic oil discharged from the hydraulic pumps 15, 17 can be changed by controlling the swash plates of each hydraulic pump 15, 17. In this manner, the hydraulic pumps 15, 17 are controlled.
 全輪駆動走行モードでは、クラッチ23,24は、係合状態にある。油圧ポンプ15,17が吐出する作動油の流量を減少させる制御が開始される時点では、クラッチ23,24は、係合状態に維持されている。油圧ポンプ15,17が吐出する作動油の流量を減少させる制御が開始される時点では、クラッチ制御弁43に対して、クラッチ23,24を解放状態にする指令は出力されない。 In the all-wheel drive mode, the clutches 23, 24 are engaged. When control begins to reduce the flow rate of hydraulic oil discharged by the hydraulic pumps 15, 17, the clutches 23, 24 are maintained in the engaged state. When control begins to reduce the flow rate of hydraulic oil discharged by the hydraulic pumps 15, 17, no command is output to the clutch control valve 43 to release the clutches 23, 24.
 ステップS3において、コントローラ60は、推定前輪駆動力が判定値よりも小さいか否かを判断する。 In step S3, the controller 60 determines whether the estimated front wheel drive force is smaller than the judgment value.
 推定前輪駆動力は、左前輪2に付与される回転駆動力の推定値(本明細書中では「推定前輪駆動力(左)」と称する)と、右前輪3に付与される回転駆動力の推定値(本明細書中では「推定前輪駆動力(右)」と称する)と、の和によって求められる。すなわち、以下の式(1)により、推定前輪駆動力が求められる。 The estimated front wheel driving force is calculated by adding the estimated value of the rotational driving force applied to the left front wheel 2 (referred to herein as the "estimated front wheel driving force (left)") and the estimated value of the rotational driving force applied to the right front wheel 3 (referred to herein as the "estimated front wheel driving force (right)"). In other words, the estimated front wheel driving force is calculated by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 推定前輪駆動力(左)と推定前輪駆動力(右)とを総称して、推定前輪駆動力(左/右)とする。推定前輪駆動力(左/右)は、以下の式(2)により求められる。 The estimated front wheel driving force (left) and the estimated front wheel driving force (right) are collectively referred to as the estimated front wheel driving force (left/right). The estimated front wheel driving force (left/right) is calculated by the following formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)における、HST回路圧は、圧力センサ27,28により検出され圧力検出値入力部63に入力される、油圧回路内の作動油の圧力である。モータ容量は、油圧モータ16,18の容量である。減速比は、減速機25,26の減速比である。効率は、油圧モータ16,18の効率と減速機25,26の効率とを考慮した係数である。タイヤ負荷半径は、前輪2,3が実際に移動した距離から求められる前輪2,3の有効半径である。減速比、効率、およびタイヤ負荷半径は、メモリ72に記憶されている。 In equation (2), the HST circuit pressure is the pressure of the hydraulic oil in the hydraulic circuit detected by the pressure sensors 27, 28 and input to the pressure detection value input unit 63. The motor capacity is the capacity of the hydraulic motors 16, 18. The reduction ratio is the reduction ratio of the reducers 25, 26. The efficiency is a coefficient that takes into account the efficiency of the hydraulic motors 16, 18 and the efficiency of the reducers 25, 26. The tire load radius is the effective radius of the front wheels 2, 3 that is calculated from the distance that the front wheels 2, 3 actually travel. The reduction ratio, efficiency, and tire load radius are stored in memory 72.
 判定値は、走行抵抗に係数を乗じることにより求められる。すなわち、以下の式(3)により、判定値が求められる。 The judgment value is calculated by multiplying the running resistance by a coefficient. In other words, the judgment value is calculated by the following formula (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)における走行抵抗は、前輪2,3に作用するモータグレーダ1の重量(機械重量)と、前輪2,3の転がり抵抗係数とにより、以下の式(4)で求められる。 The running resistance in equation (3) is calculated using the weight (machine weight) of the motor grader 1 acting on the front wheels 2 and 3 and the rolling resistance coefficient of the front wheels 2 and 3, as shown in the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(3)における係数は、モータグレーダ1が走行中にクラッチ23,24を解放状態にしても発生するショックを十分に小さくできる値に設定される。係数は、0よりも大きく1よりも小さい値に設定される。係数は、0.5以下の値に設定されてもよい。たとえば係数は、0.3に設定されてもよい。係数は、0.2に設定されてもよい。 The coefficient in equation (3) is set to a value that can sufficiently reduce the shock that occurs even if the clutches 23, 24 are released while the motor grader 1 is traveling. The coefficient is set to a value greater than 0 and less than 1. The coefficient may be set to a value of 0.5 or less. For example, the coefficient may be set to 0.3. The coefficient may be set to 0.2.
 図4に示される前輪駆動力判定部64は、圧力検出値入力部63に入力されるHST回路圧と、油圧モータ16,18の容量と、メモリ72から読み出される減速比、効率およびタイヤ負荷半径とを、式(1)および式(2)に適用する。これにより、前輪駆動力判定部64は、推定前輪駆動力を算出する。前輪駆動力判定部64はまた、式(3)および式(4)に基づいて、判定値を算出する。 The front wheel driving force determination unit 64 shown in FIG. 4 applies the HST circuit pressure input to the pressure detection value input unit 63, the capacity of the hydraulic motors 16, 18, and the reduction ratio, efficiency, and tire load radius read from the memory 72 to equations (1) and (2). In this way, the front wheel driving force determination unit 64 calculates an estimated front wheel driving force. The front wheel driving force determination unit 64 also calculates a determination value based on equations (3) and (4).
 前輪駆動力判定部64は、算出した推定前輪駆動力と、算出した判定値とを比較する。推定前輪駆動力が判定値以上であると判断された場合(ステップS3においてNO)、ステップS4において、コントローラ60は、油圧ポンプ15,17が吐出する作動油の流量を減少させる制御が開始されてから、一定時間が経過したか否かを判断する。時間判定部66は、タイマ73から現在時刻を読み出す。時間判定部66は、ステップS2の処理でポンプ容量指令部71が斜板駆動部15A,17Aへの制御信号の送信を開始した時刻から、現在時刻までの、経過時間を算出する。 The front wheel drive force determination unit 64 compares the calculated estimated front wheel drive force with the calculated determination value. If it is determined that the estimated front wheel drive force is equal to or greater than the determination value (NO in step S3), in step S4, the controller 60 determines whether a certain amount of time has elapsed since control to reduce the flow rate of hydraulic oil discharged by the hydraulic pumps 15, 17 was started. The time determination unit 66 reads the current time from the timer 73. The time determination unit 66 calculates the elapsed time from the time when the pump capacity command unit 71 started sending control signals to the swash plate drives 15A, 17A in the processing of step S2 to the current time.
 時間判定部66は、その経過時間が、予め定められた時間の閾値に到達したか否かを判断する。時間判定部66は、メモリ72に記憶されている時間の閾値(図5に示される「一定時間」)をメモリ72から読み出す。時間判定部66は、算出した経過時間と、メモリ72から読み出した一定時間とを比較する。時間判定部66は、経過時間と一定時間とを比較した結果、現時点での経過時間が一定時間よりも小さい場合、作動油の流量を減少させる制御が開始されてから一定時間が未だ経過していないと判断する。 The time determination unit 66 determines whether the elapsed time has reached a predetermined time threshold. The time determination unit 66 reads from the memory 72 the time threshold (the "fixed time" shown in FIG. 5) stored in the memory 72. The time determination unit 66 compares the calculated elapsed time with the fixed time read from the memory 72. If, as a result of comparing the elapsed time with the fixed time, the time determination unit 66 determines that the fixed time has not yet elapsed since control to reduce the flow rate of hydraulic oil was started.
 作動油の流量を減少させる制御が開始されてから一定時間が未だ経過していないと判断された場合(ステップS4においてNO)、ステップS6において、クラッチ23,24を係合状態に維持する。クラッチ指令部70は、クラッチシリンダ44への圧油の供給を続けて、クラッチ板23Aをクラッチ板23Bに押し付けた状態を維持するように、クラッチ制御弁43へ制御信号を送信する。これにより、クラッチ23,24が係合状態に維持される。そして、ステップS3の判断に戻る。 If it is determined that a certain amount of time has not yet elapsed since control to reduce the flow rate of hydraulic oil was started (NO in step S4), the clutches 23, 24 are maintained in an engaged state in step S6. The clutch command unit 70 sends a control signal to the clutch control valve 43 to continue supplying pressurized oil to the clutch cylinder 44 and maintain the state in which clutch plate 23A is pressed against clutch plate 23B. This maintains the clutches 23, 24 in an engaged state. Then, the process returns to the determination in step S3.
 ステップS3の判断において、推定前輪駆動力が判定値より小さいと判断された場合(ステップS3においてYES)、または、ステップS4の判断において、作動油の流量を減少させる制御が開始されてから一定時間が経過したと判断された場合(ステップS4においてYES)、クラッチ解放指令が出力される。 If it is determined in step S3 that the estimated front wheel drive force is less than the judgment value (YES in step S3), or if it is determined in step S4 that a certain amount of time has passed since control to reduce the flow rate of hydraulic oil was started (YES in step S4), a clutch release command is output.
 ステップS7において、クラッチ23,24を解放状態にする処理が行われる。クラッチ指令部70は、クラッチシリンダ44への圧油の供給を停止して、クラッチ板23Aをクラッチ板23Bから離隔させるように、クラッチ制御弁43へ制御信号を送信する。これにより、クラッチ23,24が解放状態にされ、モータグレーダ1が後輪走行状態に切り替えられる。このようにして、モータグレーダ1の走行モードの、全輪駆動走行モードから後輪駆動走行モードへの切り替えが完了する(図5の「END」)。 In step S7, the clutches 23, 24 are released. The clutch command unit 70 sends a control signal to the clutch control valve 43 to stop the supply of pressurized oil to the clutch cylinder 44 and separate the clutch plate 23A from the clutch plate 23B. This releases the clutches 23, 24 and switches the motor grader 1 to a rear-wheel drive state. In this way, the switching of the drive mode of the motor grader 1 from the all-wheel drive drive mode to the rear-wheel drive drive mode is completed ("END" in Figure 5).
 なお、図5に示されるフローとは別に、クラッチ解放条件が成立すると、クラッチ23,24が解放状態にされる。図4に示されるクラッチ解放条件判定部67が、クラッチ解放条件が成立しているか否かを判断する。 In addition to the flow shown in FIG. 5, when the clutch release condition is satisfied, the clutches 23 and 24 are released. The clutch release condition determination unit 67 shown in FIG. 4 determines whether the clutch release condition is satisfied.
 クラッチ解放条件判定部67は、たとえば、図示しないエンジン回転数センサから、エンジン6の回転状態の入力を受けてもよい。クラッチ解放条件判定部67は、エンジン6の回転数が閾値よりも小さいときに、クラッチ解放条件が成立したと判定してもよい。 The clutch release condition determination unit 67 may receive input of the rotation state of the engine 6 from, for example, an engine speed sensor (not shown). The clutch release condition determination unit 67 may determine that the clutch release condition is met when the engine 6 speed is lower than a threshold value.
 クラッチ解放条件判定部67は、たとえば、図示しない圧力センサから、チャージ油路42内の作動油の圧力の入力を受けてもよい。クラッチ解放条件判定部67は、チャージ油路42内の作動油の圧力が閾値よりも小さいときに、クラッチ解放条件が成立したと判定してもよい。 The clutch release condition determination unit 67 may receive an input of the pressure of the hydraulic oil in the charge oil passage 42, for example, from a pressure sensor (not shown). The clutch release condition determination unit 67 may determine that the clutch release condition is met when the pressure of the hydraulic oil in the charge oil passage 42 is lower than a threshold value.
 クラッチ解放条件判定部67は、たとえば、モータグレーダ1の走行のために操作される走行操作装置の操作量を検出する走行操作検出部(不図示)から、モータグレーダ1の進行方向の入力を受けてもよい。クラッチ解放条件判定部67は、モータグレーダ1の前進走行と後進走行とを切り替える走行操作装置の操作がされたときに、クラッチ解放条件が成立したと判定してもよい。 The clutch release condition determination unit 67 may receive an input of the traveling direction of the motor grader 1 from a travel operation detection unit (not shown) that detects the amount of operation of a travel operation device operated to travel the motor grader 1. The clutch release condition determination unit 67 may determine that the clutch release condition is met when an operation of a travel operation device that switches between forward travel and reverse travel of the motor grader 1 is performed.
 以上説明したように本実施形態においては、図4,5に示されるように、コントローラ60(走行モード入力部61)は、モータグレーダ1の走行モードを全輪駆動走行モードから後輪駆動走行モードへと切り替える指令の入力を受ける。コントローラ60(ポンプ容量指令部71)は、油圧モータ16,18に供給される作動油の流量を減少させる。作動油の流量が低下することで、油圧回路内の作動油の圧力が徐々に低下する。油圧モータ16,18は前輪2,3を回転駆動させる前輪駆動装置であり、油圧モータ16,18に供給される作動油の圧力は、前輪2,3に伝達される回転駆動力の一例に対応する。 As described above, in this embodiment, as shown in Figures 4 and 5, the controller 60 (travel mode input unit 61) receives an input of a command to switch the travel mode of the motor grader 1 from all-wheel drive travel mode to rear-wheel drive travel mode. The controller 60 (pump capacity command unit 71) reduces the flow rate of hydraulic oil supplied to the hydraulic motors 16, 18. As the flow rate of hydraulic oil decreases, the pressure of the hydraulic oil in the hydraulic circuit gradually decreases. The hydraulic motors 16, 18 are front-wheel drive devices that drive the front wheels 2, 3 to rotate, and the pressure of the hydraulic oil supplied to the hydraulic motors 16, 18 corresponds to an example of the rotational drive force transmitted to the front wheels 2, 3.
 図4,5に示されるように、コントローラ60(前輪駆動力判定部64)が、推定前輪駆動力が判定値よりも小さくなったと判断するか、または、コントローラ60(時間判定部66)が、前輪2,3に伝達される回転駆動力の減少を開始してから一定時間が経過したと判断すると、コントローラ60(クラッチ指令部70)は、クラッチ23,24を解放する。 As shown in Figures 4 and 5, when the controller 60 (front wheel drive force determination unit 64) determines that the estimated front wheel drive force is smaller than the determination value, or when the controller 60 (time determination unit 66) determines that a certain time has elapsed since the rotational drive force transmitted to the front wheels 2 and 3 started to decrease, the controller 60 (clutch command unit 70) releases the clutches 23 and 24.
 推定前輪駆動力が判定値以上の状態では、モータグレーダ1の走行抵抗に対して前輪2,3の駆動力が負担する割合が大きいと考えられる。前輪駆動力が走行抵抗よりも大きい状態でクラッチ23,24を即時に解放して前輪2,3に対して駆動力を突然に付与しなくすると、その解放の時点から後輪の駆動力による走行が開始される。モータグレーダ1の走行抵抗が後輪の回転駆動力よりも大きいと、ショックが発生することがある。後輪の速度に対する前輪2,3の速度の比である速度比が大きい(たとえば、速度比>1)ときに、ショックが発生しやすい。 When the estimated front wheel driving force is equal to or greater than the judgment value, it is considered that the driving force of the front wheels 2, 3 accounts for a large proportion of the running resistance of the motor grader 1. If the clutches 23, 24 are instantly released and the driving force is suddenly no longer applied to the front wheels 2, 3 when the front wheel driving force is greater than the running resistance, the vehicle will start running using the driving force of the rear wheels from the point of release. If the running resistance of the motor grader 1 is greater than the rotational driving force of the rear wheels, a shock may occur. Shocks are more likely to occur when the speed ratio, which is the ratio of the speed of the front wheels 2, 3 to the speed of the rear wheels, is large (for example, speed ratio > 1).
 走行モードの切替操作後、一定時間はクラッチ23,24を係合状態に維持したまま、油圧ポンプ15,17から吐出される作動油の流量を減少させる。クラッチ23,24を解放する前に、油圧モータ16,18に供給される作動油の圧力を減少させることで、前輪2,3に伝達される回転駆動力が低下する。クラッチ23,24を係合状態から解放状態に切り替えてもショックが発生しない程度に、モータグレーダ1の走行抵抗に対して後輪の駆動力が負担する割合が増大したと判断されてから、クラッチ23,24を解放する。このように全輪駆動走行モードから後輪駆動走行モードに切り替えることで、走行モードを切り替える際のショックを低減することができる。 After the driving mode is switched, the flow rate of hydraulic oil discharged from the hydraulic pumps 15, 17 is reduced while the clutches 23, 24 are maintained in an engaged state for a certain period of time. Before the clutches 23, 24 are released, the pressure of the hydraulic oil supplied to the hydraulic motors 16, 18 is reduced, thereby reducing the rotational driving force transmitted to the front wheels 2, 3. The clutches 23, 24 are released only when it is determined that the proportion of the driving force borne by the rear wheels relative to the running resistance of the motor grader 1 has increased to such an extent that no shock occurs when the clutches 23, 24 are switched from an engaged state to a released state. By switching from the all-wheel drive driving mode to the rear-wheel drive driving mode in this way, the shock when switching driving modes can be reduced.
 前輪2,3に伝達される回転駆動力の減少を開始してから一定時間が経過したと判断されると、推定前輪駆動力が依然として判定値以上であっても、クラッチ23,24を解放する。オペレータが走行モードを全輪駆動走行モードから後輪駆動走行モードに切り替える操作をしてから、長時間全輪駆動走行モードのままにされると、操作に対する応答性が損なわれることで、オペレータが不快感を抱くことがある。オペレータによる指令を受け付けてから一定時間が経過すると、多少のショックが発生してもクラッチ23,24を解放する。長時間クラッチ23,24を係合状態のままにせず、オペレータの操作に対する応答性を向上させることで、オペレータの不快感を解消することができる。 When it is determined that a certain amount of time has passed since the rotational drive force transmitted to the front wheels 2, 3 began to decrease, the clutches 23, 24 are released even if the estimated front wheel drive force is still equal to or greater than the determination value. If the operator switches the driving mode from all-wheel drive to rear-wheel drive and then leaves the driving mode in all-wheel drive for a long period of time, the responsiveness to the operation is impaired, which may cause the operator discomfort. When a certain amount of time has passed since receiving a command from the operator, the clutches 23, 24 are released even if some shock occurs. By not leaving the clutches 23, 24 engaged for a long period of time and improving responsiveness to the operator's operation, the operator's discomfort can be eliminated.
 推定前輪駆動力(左/右)は、油圧モータ16,18に供給される作動油の圧力に比例する。コントローラ60(前輪駆動力判定部64)が、推定前輪駆動力が判定値よりも小さくなったと判断するとき、油圧モータ16,18に供給される作動油の圧力が所定値よりも小さくなっている。油圧モータ16,18に供給される作動油の圧力が所定値よりも小さくなったことを判断して、クラッチ23,24を解放することで、クラッチ23,24を解放する際にショックが発生する可能性を軽減することができる。 The estimated front wheel drive force (left/right) is proportional to the pressure of the hydraulic oil supplied to the hydraulic motors 16, 18. When the controller 60 (front wheel drive force determination unit 64) determines that the estimated front wheel drive force has become smaller than the determination value, the pressure of the hydraulic oil supplied to the hydraulic motors 16, 18 has become smaller than a predetermined value. By determining that the pressure of the hydraulic oil supplied to the hydraulic motors 16, 18 has become smaller than the predetermined value and releasing the clutches 23, 24, the possibility of shock occurring when the clutches 23, 24 are released can be reduced.
 図4,5に示されるように、前輪2,3の回転駆動力の減少を開始してから一定時間が経過しておらず、かつ前輪2,3の回転駆動力が判定値以上である間、クラッチ23,24の係合を維持する。モータグレーダ1の走行モードを全輪駆動走行モードから後輪駆動走行モードへと切り替える指令の入力を受けても、クラッチ23,24を突然に解放することはせず、前輪2,3に伝達される回転駆動力を低下させてから、クラッチ23,24を解放する。これにより、クラッチ23,24を解放する際にショックが発生する可能性を確実に軽減することができる。 As shown in Figures 4 and 5, the clutches 23, 24 are maintained engaged until a certain time has elapsed since the rotational drive force of the front wheels 2, 3 began to decrease and as long as the rotational drive force of the front wheels 2, 3 is equal to or greater than the judgment value. Even when a command is input to switch the driving mode of the motor grader 1 from all-wheel drive driving mode to rear-wheel drive driving mode, the clutches 23, 24 are not suddenly released, but the rotational drive force transmitted to the front wheels 2, 3 is reduced before the clutches 23, 24 are released. This reliably reduces the possibility of shock occurring when the clutches 23, 24 are released.
 上記の実施形態では、前輪2,3にはHSTによって動力が伝達され、一方、後輪には変速機9を経由して機械的な動力伝達が行われる。この例に限られず、後輪が後輪駆動装置によって回転駆動され、前輪が前輪駆動装置によって後輪とは独立して回転駆動されるのであれば、動力伝達装置は任意に選択され得る。たとえば、油圧システム7L,7Rとは別のHSTを介して、後輪に動力が伝達されてもよい。前輪2,3を回転駆動させる前輪駆動装置は、油圧モータ16,18に限られず、たとえば電動モータであってもよい。 In the above embodiment, power is transmitted to the front wheels 2, 3 by the HST, while power is mechanically transmitted to the rear wheels via the transmission 9. This example is not limiting, and any power transmission device can be selected as long as the rear wheels are rotationally driven by a rear-wheel drive device, and the front wheels are rotationally driven independently of the rear wheels by a front-wheel drive device. For example, power may be transmitted to the rear wheels via an HST separate from the hydraulic systems 7L, 7R. The front-wheel drive device that rotates the front wheels 2, 3 is not limited to the hydraulic motors 16, 18, and may be, for example, an electric motor.
 上記の実施形態で説明した、モータグレーダ1の走行モードを切り替える処理を実行するコントローラは、必ずしもモータグレーダ1に搭載されていなくてもよい。モータグレーダ1に搭載されたコントローラ60が、圧力センサ27,28の検出値を外部のコントローラへ送信する処理を行い、信号を受信した外部のコントローラが走行モードを切り替えるシステムを構成してもよい。外部のコントローラは、モータグレーダ1の作業現場に配置されてもよく、モータグレーダ1の作業現場から離れた遠隔地に配置されてもよい。 The controller that executes the process of switching the driving mode of the motor grader 1, as described in the above embodiment, does not necessarily have to be mounted on the motor grader 1. A system may be configured in which the controller 60 mounted on the motor grader 1 performs the process of transmitting the detection values of the pressure sensors 27, 28 to an external controller, and the external controller that receives the signal switches the driving mode. The external controller may be located at the work site of the motor grader 1, or may be located in a remote location away from the work site of the motor grader 1.
 上記の実施形態では、作業機械の一例としてモータグレーダ1を挙げているが、モータグレーダ1に限らず、他の種類の作業機械にも適用可能である。 In the above embodiment, a motor grader 1 is given as an example of a work machine, but the present invention is not limited to the motor grader 1 and can be applied to other types of work machines.
 今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed herein are illustrative in all respects and should not be considered limiting. The scope of the present invention is indicated by the claims, not by the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 モータグレーダ、2 左前輪、3 右前輪、4 左後前輪、5 左後後輪、6 エンジン、7L,7R 油圧システム、8 トルクコンバータ、9 変速機、10 終減速装置、11 タンデム装置、12 全輪駆動装置、15 左油圧ポンプ、15A,17A 斜板駆動部、16 左油圧モータ、17 右油圧ポンプ、18 右油圧モータ、21 左油圧回路、22 右油圧回路、23 左油圧式クラッチ機構、23A,23B クラッチ板、24 右油圧式クラッチ機構、25 左減速機、26 右減速機、27,28 圧力センサ、29A,29B 左前輪回転軸、31 速度センサ、32,33 回転センサ、40 チャージ回路、41 チャージポンプ、42 チャージ油路、43 クラッチ制御弁、44 クラッチシリンダ、45 ピストンロッド、46 戻しばね、50 ブレード、51 フロントフレーム、52 リアフレーム、60 コントローラ、61 走行モード入力部、63 圧力検出値入力部、64 前輪駆動力判定部、66 時間判定部、67 クラッチ解放条件判定部、70 クラッチ指令部、71 ポンプ容量指令部、72 メモリ、73 タイマ、80 走行モード切替スイッチ。 1 motor grader, 2 left front wheel, 3 right front wheel, 4 left rear front wheel, 5 left rear wheel, 6 engine, 7L, 7R hydraulic system, 8 torque converter, 9 transmission, 10 final drive, 11 tandem device, 12 all-wheel drive, 15 left hydraulic pump, 15A, 17A swash plate drive, 16 left hydraulic motor, 17 right hydraulic pump, 18 right hydraulic motor, 21 left hydraulic circuit, 22 right hydraulic circuit, 23 left hydraulic clutch mechanism, 23A, 23B clutch plate, 24 right hydraulic clutch mechanism, 25 left reduction gear, 26 right reduction gear, 27, 28 pressure sensor, 29A, 29B Left front wheel rotating shaft, 31 speed sensor, 32, 33 rotation sensor, 40 charge circuit, 41 charge pump, 42 charge oil passage, 43 clutch control valve, 44 clutch cylinder, 45 piston rod, 46 return spring, 50 blade, 51 front frame, 52 rear frame, 60 controller, 61 driving mode input section, 63 pressure detection value input section, 64 front wheel drive force determination section, 66 time determination section, 67 clutch release condition determination section, 70 clutch command section, 71 pump capacity command section, 72 memory, 73 timer, 80 driving mode changeover switch.

Claims (6)

  1.  前輪と、
     前記前輪を回転駆動させる前輪駆動装置と、
     後輪と、
     前記後輪を回転駆動させる後輪駆動装置と、
     前記前輪と前記前輪駆動装置とを選択的に連結するクラッチと、
     前記前輪駆動装置および前記クラッチを制御するコントローラとを備え、
     前記コントローラは、前記後輪駆動装置による前記後輪の回転駆動を維持し前記前輪駆動装置による前記前輪の回転駆動を停止させる指令の入力を受けると、前記前輪駆動装置から前記前輪に伝達される回転駆動力の減少を開始し、前記回転駆動力が判定値よりも小さくなったと判断されるか、または、前記回転駆動力の減少を開始してから一定時間が経過したと判断されると、前記クラッチを解放する、作業機械。
    The front wheel and
    a front wheel drive device that drives and rotates the front wheels;
    The rear wheel and
    a rear wheel drive device that drives and rotates the rear wheels;
    a clutch selectively connecting the front wheels to the front wheel drive system;
    a controller for controlling the front wheel drive device and the clutch,
    When the controller receives an input of a command to maintain the rotational driving of the rear wheels by the rear wheel drive device and to stop the rotational driving of the front wheels by the front wheel drive device, the controller begins to reduce the rotational driving force transmitted from the front wheel drive device to the front wheels, and when it is determined that the rotational driving force has become smaller than a determination value or that a certain time has elapsed since the reduction in the rotational driving force began, the controller releases the clutch.
  2.  前記前輪駆動装置は、作動油の供給を受けて回転する油圧モータを含み、
     前記コントローラは、前記前輪の回転駆動を停止させる指令の入力を受けると、前記油圧モータに供給される前記作動油の圧力の減少を開始する、請求項1に記載の作業機械。
    The front wheel drive device includes a hydraulic motor that is rotated by receiving a supply of hydraulic oil,
    The work machine according to claim 1 , wherein the controller starts reducing the pressure of the hydraulic oil supplied to the hydraulic motor when a command to stop driving the rotation of the front wheels is received.
  3.  前記コントローラは、前記作動油の圧力が所定値よりも小さくなったと判断されると、前記クラッチを解放する、請求項2に記載の作業機械。 The work machine according to claim 2, wherein the controller releases the clutch when it is determined that the pressure of the hydraulic oil is less than a predetermined value.
  4.  前記コントローラは、前記回転駆動力の減少を開始してから一定時間が経過しておらず、かつ前記回転駆動力が前記判定値以上である間、前記クラッチの係合を維持する、請求項1から請求項3のいずれか1項に記載の作業機械。 The work machine according to any one of claims 1 to 3, wherein the controller maintains the clutch engaged until a certain time has elapsed since the rotational drive force started to decrease and the rotational drive force is equal to or greater than the determination value.
  5.  後輪駆動装置による作業機械の後輪の回転駆動を維持し前輪駆動装置による前記作業機械の前輪の回転駆動を停止させる指令の入力を受けて、前記前輪駆動装置から前記前輪に伝達される回転駆動力の減少を開始し、
     前記回転駆動力が判定値よりも小さいか否かを判断し、
     前記回転駆動力の減少を開始してから一定時間が経過したか否かを判断し、
     前記回転駆動力が前記判定値よりも小さくなったと判断されるか、または、前記回転駆動力の減少を開始してから前記一定時間が経過したと判断されると、前記前輪と前記前輪駆動装置との間のクラッチを解放する、作業機械のコントローラ。
    upon receiving an input of a command to maintain the rotational driving of the rear wheels of the work machine by the rear wheel drive device and to stop the rotational driving of the front wheels of the work machine by the front wheel drive device, starting a reduction in the rotational driving force transmitted from the front wheel drive device to the front wheels;
    determining whether the rotational driving force is smaller than a threshold value;
    determining whether a certain time has elapsed since the reduction in the rotational drive force was started;
    A controller for a work machine that releases a clutch between the front wheels and the front wheel drive device when it is determined that the rotational driving force has become smaller than the judgment value, or when it is determined that the certain time has elapsed since the rotational driving force began to decrease.
  6.  後輪駆動装置による作業機械の後輪の回転駆動を維持し前輪駆動装置による前記作業機械の前輪の回転駆動を停止させる指令の入力を受けることと、
     前記前輪駆動装置から前記前輪に伝達される回転駆動力の減少を開始することと、
     前記回転駆動力が判定値よりも小さいか否かを判断することと、
     前記回転駆動力の減少を開始してから一定時間が経過したか否かを判断することと、
     前記回転駆動力が前記判定値よりも小さくなったと判断されるか、または、前記回転駆動力の減少を開始してから前記一定時間が経過したと判断されると、前記前輪と前記前輪駆動装置との間のクラッチを解放することと、を備える、作業機械の制御方法。
    receiving an input of a command to maintain rotational driving of the rear wheels of the work machine by the rear wheel drive device and to stop rotational driving of the front wheels of the work machine by the front wheel drive device;
    commencing a reduction in rotational drive force transmitted from the front wheel drive system to the front wheels;
    determining whether the rotational driving force is smaller than a threshold value;
    determining whether a certain time has elapsed since the reduction in the rotational drive force was started;
    and releasing a clutch between the front wheels and the front wheel drive device when it is determined that the rotational driving force has become smaller than the judgment value or when it is determined that the certain time has elapsed since the rotational driving force started to decrease.
PCT/JP2023/035837 2022-11-15 2023-10-02 Work machine, controller for work machine, and method for controlling work machine WO2024106036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022182855A JP2024072154A (en) 2022-11-15 2022-11-15 Work machine, work machine controller, and work machine control method
JP2022-182855 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024106036A1 true WO2024106036A1 (en) 2024-05-23

Family

ID=91084163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035837 WO2024106036A1 (en) 2022-11-15 2023-10-02 Work machine, controller for work machine, and method for controlling work machine

Country Status (2)

Country Link
JP (1) JP2024072154A (en)
WO (1) WO2024106036A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0891087A (en) * 1994-09-21 1996-04-09 Nissan Motor Co Ltd Four-wheel drive controller for vehicle
JPH0891075A (en) * 1994-09-21 1996-04-09 Nissan Motor Co Ltd Transfer device for vehicle
US6644429B2 (en) * 2002-01-28 2003-11-11 Deere & Co Hydrostatic auxiliary drive system
JP2006258119A (en) * 2005-03-15 2006-09-28 Hitachi Constr Mach Co Ltd Hst running system for work machine
JP2020131814A (en) * 2019-02-14 2020-08-31 トヨタ自動車株式会社 Control device for four-wheel drive vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0891087A (en) * 1994-09-21 1996-04-09 Nissan Motor Co Ltd Four-wheel drive controller for vehicle
JPH0891075A (en) * 1994-09-21 1996-04-09 Nissan Motor Co Ltd Transfer device for vehicle
US6644429B2 (en) * 2002-01-28 2003-11-11 Deere & Co Hydrostatic auxiliary drive system
JP2006258119A (en) * 2005-03-15 2006-09-28 Hitachi Constr Mach Co Ltd Hst running system for work machine
JP2020131814A (en) * 2019-02-14 2020-08-31 トヨタ自動車株式会社 Control device for four-wheel drive vehicle

Also Published As

Publication number Publication date
JP2024072154A (en) 2024-05-27

Similar Documents

Publication Publication Date Title
AU2009285867B2 (en) Control system and method for braking a hydrostatic drive machine
CA2503916C (en) Drive system of a working vehicle
CA2095353C (en) Method and apparatus for controlling a supplemental vehicle drive in response to slip in a main vehicle drive
JP4327284B2 (en) Four-wheel drive vehicle
JP5301509B2 (en) Travel control device for work vehicle
JP2000085606A (en) Steering system for automobile
CN110621825B (en) Hydraulic system for construction machinery
CA2056847C (en) Method and apparatus for maintaining a speed relationship between main and supplemental vehicle drives
US7219967B2 (en) Brake system for a vehicle driven by at least one hydraulic motor fed in a closed circuit
US10071719B2 (en) Hydrostatic traction drive in closed hydraulic circuit and method for controlling the hydrostatic traction drive
US7661266B2 (en) Method for braking a vehicle driven by means of a hydrostatic gearbox and also a hydrostatic drive
WO2018087898A1 (en) Working machine
WO2024106036A1 (en) Work machine, controller for work machine, and method for controlling work machine
GB2275761A (en) Improvements in braking vehicles with hydrostatic drive
JP5581479B2 (en) Hydraulic four-wheel drive work vehicle
WO2024106019A1 (en) Work machine, work machine controller, and method for controlling work machine
JP3070451B2 (en) Braking energy regeneration device
JP3441098B2 (en) Shift control device for four-wheel drive system
JPH09126246A (en) Driving device for motive power unit
JP2008095710A (en) Working vehicle
CN116334977A (en) Hydraulic drive for a roller press and roller press
JP2021152383A (en) Transmission of work vehicle
JPH09175204A (en) Hydraulic transmission for vehicle
US20050016166A1 (en) Hydraulic drive system and improved filter sub-system therefor
JPH06156102A (en) Front-wheel driving force control device in four-wheel traveling device of large dump truck