WO2024105999A1 - Hot-rolled steel sheet and method for producing same - Google Patents

Hot-rolled steel sheet and method for producing same Download PDF

Info

Publication number
WO2024105999A1
WO2024105999A1 PCT/JP2023/033820 JP2023033820W WO2024105999A1 WO 2024105999 A1 WO2024105999 A1 WO 2024105999A1 JP 2023033820 W JP2023033820 W JP 2023033820W WO 2024105999 A1 WO2024105999 A1 WO 2024105999A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
less
steel sheet
rolled steel
rolling
Prior art date
Application number
PCT/JP2023/033820
Other languages
French (fr)
Japanese (ja)
Inventor
典晃 ▲高▼坂
広志 松田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024105999A1 publication Critical patent/WO2024105999A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a hot-rolled steel sheet having a yield strength of 650 MPa or more and excellent stretch flange formability and shrink flange formability, and a method for manufacturing the same.
  • the hot-rolled steel sheet of the present invention is suitable as a material for automobile parts.
  • Patent Document 1 discloses a hot-rolled steel sheet in which the main phase of the matrix is a ferrite phase with an area ratio of more than 95%, and in which Ti carbides with an average particle size of less than 10 nm are finely precipitated within the ferrite crystal grains. This is said to result in a high-strength hot-rolled steel sheet with excellent workability and a tensile strength of 780 MPa or more.
  • Patent Document 2 discloses a method for manufacturing a hot-rolled steel sheet, which includes hot rolling consisting of rough rolling at a rolling start temperature of 1200°C or higher and finish rolling at a rolling end temperature of 900°C or higher, and coiling at 580°C or higher.
  • the hot-rolled steel sheet has a ferrite phase with an area ratio of 95% or higher and fine carbides containing TiN with an average particle size of 20 nm or more and Ti with an average particle size of less than 6 nm dispersed in the metal structure.
  • a high-tensile hot-rolled steel sheet with a tensile strength of 590 MPa to 750 MPa and excellent punchability and stretch flangeability can be obtained.
  • Patent Document 3 discloses a hot-rolled steel sheet in which 1.0% or more of Mn is added for the purpose of improving hardenability, upper bainite having an area ratio of 75.0% or more and less than 97.0% as the main phase, and the number density of second phase particles of 0.5 ⁇ m or more is 150,000 particles/ mm2 or less. As a result, it is said that a high-strength hot-rolled steel sheet having a tensile strength of 980 MPa or more can be obtained.
  • Patent Documents 1 and 2 have a ferrite phase as the main phase, in which a large amount of finely dispersed Ti-containing carbides are used, which results in poor shrink flangeability and may cause specific cracking at the shrink flange area.
  • the main phase is an upper bainite structure (including structures without Fe-based carbides and retained austenite) that has Fe-based carbides and/or retained austenite between bainitic ferrite with a lath-like morphology.
  • the lath-like structure means that the transformation is carried out at low temperatures, and there has been no precedent for the precipitation of Ti-containing carbides into a structure with this lath-like structure.
  • bainite structures obtained at low temperatures in the past often contained a mixture of martensite and retained austenite, resulting in poor stretch flangeability.
  • the present invention was developed in consideration of the above-mentioned problems with the conventional technology, and aims to provide a hot-rolled steel sheet having a yield strength of 650 MPa or more and excellent bending workability, stretch flangeability, and shrink flangeability, as well as a manufacturing method thereof.
  • the inventors have thoroughly studied the requirements for hot-rolled steel sheets to have both stretch flangeability and shrink flangeability as well as high strength.
  • the thickness of the hot-rolled steel sheets concerned in this case is 1.0 mm or more and 35.0 mm or less. They have found that shrink flangeability is correlated with toughness, and have concluded that good shrink flangeability cannot be obtained with ferrite-based phase steels that have poor toughness.
  • conventional bainite-based phase steels inevitably produce hard martensite and retained austenite, so they do not obtain the required bending workability or stretch flangeability.
  • the hot-rolled steel sheet according to the present invention which has been developed based on the above findings, has the following configuration.
  • the composition further contains one or more of V, Mo, Sb, REM, Mg, Ca, Sn, Ni, Cu, Co, As, Cr, W, Ta, Pb, Cs, Zr, Hf, Te, Bi, and Se in a total amount of 1% or less, with the balance being Fe and unavoidable impurities;
  • the hot-rolled steel sheet has a metallographic area ratio of 0% or more and 75% or less of
  • the hot-rolled steel sheet has a plating layer on a surface thereof.
  • a method for producing a hot-rolled steel sheet comprising: a rough rolling step in which a steel material having the composition described in [1] above is heated to a heating temperature of 1200°C or higher, or is not heated after casting, and is rough-rolled to a sheet bar; a finish rolling step in which the sheet bar is finish-rolled to a hot-rolled steel sheet at a rolling start temperature exceeding 1000°C, with rolling reductions of 35% or more in the first and second passes, and a total rolling reduction of 85% or less from the third pass to the end of rolling; a cooling step in which the hot-rolled steel sheet is cooled at an average cooling rate of 40°C/s or higher to a cooling stop temperature of 600°C to 700°C; and a coiling step in which the cooled hot-rolled steel sheet is coiled at a coiling temperature of 600°C to 700°C.
  • the method for producing a hot-rolled steel sheet includes a casting step of casting a steel material having a thickness of 35 mm or more and 200 mm or less and having the component composition described in [1] before the rough rolling step or the finish rolling step, and the hot-rolled steel sheet is produced into a sheet bar with or without applying the rough rolling step.
  • the method for producing a hot-rolled steel sheet according to the above item [3] further includes a joining step of joining the roughly rolled sheet bar and a preceding sheet bar at 1070°C or higher between the rough rolling step and the finish rolling step, and in the finish rolling step, the joined sheet bar is finish-rolled.
  • the method for producing a hot-rolled steel sheet further includes a hot-rolled sheet annealing step of annealing the hot-rolled steel sheet at an annealing temperature of 720°C or less, and a plating step of plating the annealed hot-rolled steel sheet.
  • the present invention it is possible to manufacture hot-rolled steel sheets that have high strength, with a yield strength of 650 MPa or more, and excellent bendability, stretch flangeability, and shrink flangeability.
  • the hot-rolled steel sheets according to the present invention to automobile parts, further weight reduction of the automobile parts can be achieved.
  • the composition of the hot-rolled steel sheet is, in mass%, C: 0.045% or more and less than 0.110%, Si: 1.5% or less, Mn: 0.7% or less, P: 0.05% or less, S: 0.010% or less, Al: 0.005% or more and 0.080% or less, N: 0.0060% or less, B: 0.0002% or more and 0.0050% or less, and further contains one or both of Ti and Nb in a range that satisfies the following formula (1): 0.09 ⁇ ([%Nb]/2)+[%Ti*]...(1)
  • [% Ti*] [% Ti] - 48 [% N] / 14
  • % representing the content of a component means "% by mass.”
  • C 0.045% or more and less than 0.110% C contributes to increasing the strength of the steel sheet by combining with Ti and Nb.
  • the C content is set to 0.045% or more.
  • the C content is set to 0.045% or more and less than 0.110%.
  • it is 0.050% or more and 0.100% or less.
  • Si 1.5% or less Si is an element that increases the driving force for the transformation from austenite to ferrite and is effective in modifying the parent phase structure at a coiling temperature of 600°C or more.
  • the Si content is set to 1.5% or less. It is preferably 0.15% or more and 1.1% or less.
  • Mn 0.7% or less Mn reduces the driving force for transformation from austenite to ferrite. It is also an element that is prone to segregation, and this segregation reduces shrink flangeability. Therefore, the Mn content must be reduced as much as possible, and is set to 0.7% or less.
  • the Mn content is preferably less than 0.50%. In manufacturing, 0.05% is inevitably mixed in, but even if it is 0%, the effect of the present invention is not impaired.
  • the following formula (2) is satisfied. 0.35 ⁇ 0.8[%Si]+[%Mn] ⁇ 1.35 (2)
  • P 0.05% or less
  • P is a harmful element that segregates at grain boundaries and reduces shrink flangeability, so it is reduced as much as possible, with the P content being 0.05% or less.
  • the P content is preferably 0.04% or less, but for use under more severe shrink flange processing conditions, it is more preferable to keep it 0.02% or less. On the other hand, there are cases where 0.002% P is inevitably mixed in during manufacturing.
  • S 0.010% or less S forms coarse sulfides in steel, which expand during hot rolling to become wedge-shaped inclusions, adversely affecting stretch flangeability. Therefore, since S is also a harmful element, it is preferable to reduce it as much as possible, and the S content is 0.010% or less. Preferably, the S content is 0.003% or less, but for use under more severe stretch flange processing conditions, it is more preferable to make it 0.001% or less. In manufacturing, 0.0001% S may be inevitably mixed in.
  • Al 0.005% to 0.080%
  • the Al content is 0.005% or more.
  • Al forms oxides, which reduces stretch flangeability. Therefore, the Al content is set to 0.080% or less.
  • the Al content is 0.010% to 0.070%.
  • N 0.0060% or less
  • N is a harmful element that combines with Ti and Nb to form coarse carbonitrides, thereby adversely affecting workability, stretch flangeability, and strength. Therefore, the N content is reduced as much as possible to 0.0060% or less. Preferably, the N content is 0.0050% or less. In manufacturing, about 0.0005% of N may be inevitably mixed in.
  • B 0.0002% or more and 0.0050% or less B is considered to contribute to the formation of crystal grains including small angle grain boundaries, and is also an effective element for improving hardenability, and in order to obtain a bainitic ferrite structure, the B content is 0.0002% or more. However, even if the B content exceeds 0.0050%, the effect on the hardenability of the steel is saturated, so the B content is set to 0.0050% or less. Preferably, the B content is 0.0004% or more and 0.0030% or less.
  • Ti and Nb are contained within a range satisfying the formula (1): 0.09 ⁇ ([%Nb]/2)+[%Ti*]...(1)
  • [% Ti*] [% Ti] - 48 [% N] / 14
  • Ti and Nb combine with C and contribute to increasing the strength of the steel sheet.
  • Ti and Nb need to satisfy formula (1) in order to stably obtain a yield strength of 650 MPa or more.
  • Ti and Nb are contained, and preferably, the Ti content is 0.06% or more and 0.18% or less, and the Nb content is 0.02% or more and 0.18% or less.
  • C contributes to the formation of a structure with large crystal strain
  • Ti and Nb to form carbides.
  • This use of C to form carbides reduces the hardenability of the steel.
  • C is contained in excess of Ti and Nb, coarse TiC cannot be dissolved when the slab is reheated, and the strength and bending workability are reduced. From the above viewpoints, it is preferable that C, Ti, and Nb satisfy formula (3).
  • V, Mo, Sb, REM, Mg, Ca, Sn, Ni, Cu, Co, As, Cr, W, Ta, Pb, Cs, Zr, Hf, Te, Bi, and Se may be further contained in a total amount of 1% or less.
  • the content of each element is 0.03% or less.
  • the chemical composition of the hot-rolled steel sheet according to this embodiment contains the above elements, with the remainder being Fe and unavoidable impurities.
  • the metal structure of the hot-rolled steel sheet according to this embodiment has an area ratio of ferrite of 0% or more and 75% or less, a total area ratio of bainite, martensite, tempered martensite and retained austenite of 3% or less, crystal grains containing low-angle grain boundaries of 25% or more, and carbides containing Ti or Nb with an average particle size of 8 nm or less.
  • "%" representing the metal structure means "area ratio”.
  • Ferrite is 0% or more and 75% or less
  • Ferrite is a structure that reduces shrink flangeability. Ferrite does not contain small angle grain boundaries and is a structure with poor toughness, which also has a negative effect on shrink flangeability.
  • the area ratio of ferrite is 75% or less.
  • the area ratio of ferrite is 0% or more and 65% or less.
  • the total of bainite, martensite, tempered martensite, and retained austenite is 3% or less (including 0%) Bainite, martensite, tempered martensite, and retained austenite deteriorate bending workability and stretch flangeability, so it is preferable to reduce them as much as possible, and the total content of the above structures is set to 3% or less.
  • the total content of the above structures may be 0%, and is preferably 0% or more and 2% or less. Bainite, martensite, and tempered martensite may be separated by crystal structure using electron backscatter diffraction pattern (EBSD) analysis.
  • EBSD electron backscatter diffraction pattern
  • bainite, martensite, and tempered martensite that satisfy the Kurdjumov-Sachs relationship with the parent phase are applicable is determined from the (001) ⁇ pole figure of a single prior ⁇ (austenite) grain region.
  • the heat-rolled steel sheet according to the present embodiment is characterized in that nano-sized carbides containing Ti or Nb are precipitated in the grains containing the low-angle grain boundaries.
  • the grains containing the low-angle grain boundaries make it possible to achieve both high strength with a yield strength of 650 MPa or more and workability, stretch flangeability, and shrink flangeability. Therefore, the grains containing the low-angle grain boundaries are 25% or more. Preferably, the grains containing the low-angle grain boundaries are 30% or more.
  • the average particle size of the carbide containing Ti or Nb is 8 nm or less
  • the steel sheet is strengthened by the carbide containing Ti or Nb.
  • the carbide containing Ti or Nb may be a composite carbide, or may be a single carbide containing either Ti or Nb. Furthermore, in the manufacture of the hot-rolled steel sheet according to this embodiment, when the coiling temperature of the hot-rolled steel sheet is 600° C. or higher, Nb, even though it is a substitutional element, diffuses sufficiently in the steel. By utilizing this property of Ti or Nb and diffusing and precipitating Ti or Nb in the steel, a steel sheet having a yield strength of 650 MPa or more can be obtained even if the structure of bainite, martensite, and tempered martensite, which are often used in high-strength steel sheets, is small. To obtain a steel sheet having a yield strength of 650 MPa or more, 80% or more of the contained Ti or Nb is utilized for precipitation. Preferably, 85% or more of the contained Ti or Nb is utilized for precipitation.
  • the hot-rolled steel sheet according to the present embodiment preferably has a plating layer on the surface. Even if the plating layer is formed, the function of the hot-rolled steel sheet is not impaired.
  • the composition of the plating layer is preferably one or more selected from Zn, Si, Al, Ni, and Mg.
  • the plated steel sheet in the present invention includes steel sheets that have been subjected to hot-dip galvanizing treatment (GI), steel sheets that have been subjected to hot-dip galvanizing treatment followed by alloying treatment (GA), and steel sheets that have been subjected to electrolytic galvanizing treatment (EG).
  • hot-rolled steel sheets are manufactured by casting a slab (steel material), loading the slab (steel material) whose temperature has been reduced to 1000° C. or less into a heating furnace, heating it for a short time, and then reducing the thickness to a predetermined thickness in a hot rolling line and winding it into a coil.
  • the slab (steel material) that has once cooled to room temperature is heated for a long time in a heating furnace, and then reducing the thickness to a predetermined thickness in a hot rolling line and winding it into a coil.
  • the manufacturing method of the hot-rolled steel sheet according to this embodiment can be applied not only to a process in which the steel material is heated after casting, but also to a process in which the steel material is directly sent to a hot rolling line without being heated after casting.
  • the smelting method for producing the steel material of this embodiment is not particularly limited, and known smelting methods such as converters and electric furnaces can be adopted. Secondary refining may also be performed in a vacuum degassing furnace.
  • the molten steel thus adjusted to the above-mentioned composition is then preferably made into a slab (steel material) by a continuous casting method, taking into consideration productivity and quality.
  • the slab may be made into a slab by an ingot casting-blooming rolling method or other known casting methods.
  • ⁇ First form of rough rolling step> the steel material is heated to a heating temperature of 1200° C. or higher, or is not heated after casting, and is roughly rolled to form a sheet bar.
  • finish rolling is performed with a starting temperature of over 1000°C, a rolling reduction of 35% or more in the first and second passes, and a total rolling reduction of 85% or less from the third pass to the end of rolling, to produce a hot-rolled steel sheet.
  • the hot-rolled steel sheet is cooled to a cooling stop temperature of 600° C. or more and 700° C. or less at an average cooling rate of 40° C./s or more.
  • ⁇ Winding process of the first embodiment> Thereafter, the cooled hot-rolled steel sheet is coiled at a coiling temperature of 600°C or higher and 700°C or lower.
  • Heating of steel material heating to 1200°C or higher, or not heating.
  • Coarse carbides containing Ti or Nb precipitated in the slab (steel material) are dissolved in a heating process before hot rolling, so that fine carbides containing Ti or Nb are precipitated after hot rolling. Therefore, in order to obtain carbides containing Ti or Nb with an average particle size of 8 nm or less, the slab (steel material) is heated to 1200°C or higher.
  • the temperature is preferably 1220°C or higher, and when the Nb content is 0.12% or more, it is more preferable to heat the slab (steel material) to 1240°C or higher.
  • the hot-rolled steel sheet according to this embodiment has a steel composition with an increased driving force for the transformation from austenite to ferrite, so that under normal hot rolling conditions, ferrite is generated at a high temperature range of 600°C or higher coiling temperature, and the desired steel structure cannot be obtained. Therefore, it is necessary to increase the hot rolling temperature and avoid rolling in the austenite non-recrystallization temperature range. Therefore, the starting temperature of finish rolling is over 1000°C. Preferably, the starting temperature of finish rolling is 1010°C or higher. Due to the nature of the steel, there is no particular upper limit for the starting temperature of finish rolling. Unless there is a heating device in the hot rolling line, the slab heating temperature is the substantial upper limit temperature for the starting temperature of finish rolling, and is often 1200°C or lower.
  • the reduction ratios of the first and second passes are each 35% or more.
  • the reduction ratios of the first and second passes are each 35% or more.
  • the reduction ratios of the first and second passes are each 38% or more.
  • the rolling reductions in the first and second passes can be calculated by the following formulas (4) and (5), respectively.
  • t 0 , t 1 , and t 2 are the sheet thickness before finish rolling, the sheet thickness after one pass, and the sheet thickness after two passes, respectively.
  • Total reduction ratio from the third pass to the end of rolling 85% or less
  • the total reduction ratio from the third pass to the end of rolling is 85% or less.
  • the total reduction ratio from the third pass to the end of rolling is 80% or less.
  • the total rolling reduction from the third pass to the end of rolling can be calculated by formula (6).
  • Total reduction rate from the third pass to the end of rolling (t 2 ⁇ t f )/t 2 (6)
  • tf is the plate thickness after the completion of finish rolling.
  • Cooling stop temperature after finish rolling is 600°C to 700°C at an average cooling rate of 40°C/s or more If the cooling rate to 700°C or less after hot rolling is slow, polygonal ferrite (ferrite) that is coarse at high temperature and has small crystal strain within the grains is generated. In order to suppress the generation of this ferrite, it is necessary to cool at an average cooling rate of 40°C/s or more after hot rolling, and it is preferable to cool at an average cooling rate of 50°C/s or more to 700°C or less within 2 seconds after hot rolling. On the other hand, if the cooling stop temperature is below 600° C., it is difficult to obtain carbides containing Ti or Nb, and a steel sheet having a yield strength of 650 MPa or more cannot be obtained.
  • the cooling stop temperature is set to 600° C. or more and 700° C. or less.
  • the cooling stop temperature is 610° C. or more and 690° C. or less.
  • the average cooling rate may be calculated by ⁇ (cooling start temperature)-(cooling completion temperature) ⁇ /(forced cooling time other than natural cooling) after hot rolling, in which forced cooling other than natural cooling is performed.
  • An example of the forced cooling method is water cooling.
  • Coiling temperature 600° C. or higher and 700° C. or lower
  • the coiling temperature is set to 600° C. or higher and 700° C. or lower.
  • the coiling temperature is preferably 610° C. or higher and 690° C. or lower. If coiling is performed in this temperature range, the generation of ferrite, bainite, martensite, and retained austenite can be suppressed.
  • the hot rolled steel sheet according to the present embodiment can also be produced by a thin slab continuous casting method.
  • a steel material having a thickness of 35 mm to 200 mm is cast.
  • ⁇ Second type rough rolling step> The cast steel material is heated to a heating temperature of 1200° C. or higher, or is not heated after casting, and is roughly rolled as necessary to form a sheet bar.
  • the process after the finish rolling step is the same as that of the first embodiment.
  • Slab (steel material) thickness 35 mm to 200 mm
  • the thin slab before hot rolling is thin in the thin slab continuous casting method, so the degree of austenite processing in the hot rolling is low. If the slab thickness is less than 35 mm, the specified reduction rate cannot be obtained from the first pass to the second pass, or from the third pass to the completion of rolling. On the other hand, if the slab thickness exceeds 200 mm, the casting speed of the steel material becomes slow, and the productivity advantage of the thin slab continuous casting method compared to the continuous casting method is lost. Therefore, the slab thickness in the thin slab continuous casting method is set to 35 mm or more and 200 mm or less.
  • a third embodiment of the method for producing a hot-rolled steel sheet according to the present embodiment will be described.
  • the difference from the first and second embodiments will be described.
  • a continuous hot rolling technique can be applied.
  • ⁇ Joining process of the third embodiment The sheet bar obtained in the first or second embodiment is joined to the preceding sheet bar at 1070° C. or higher before finish rolling. If the temperature is lower than 1070° C., it becomes difficult to perform rolling at the finish rolling start temperature of 1000° C. or higher.
  • the preferred heating temperature of the sheet bar during joining is 1100° C. or higher.
  • the steps after the cooling step are the same as those in the first embodiment.
  • the manufacturing method for the hot-rolled steel sheet according to this embodiment can apply an annealing process in which annealing is performed in a continuous annealing line where the annealing temperature is 720°C or less, and a plating process in which plating is performed in a continuous plating line.
  • an alloying process may be included in which the plated hot-rolled steel sheet is heated to 460°C or more and 600°C or less and alloyed. This annealing process or this plating process does not affect the material properties of the hot-rolled steel sheet according to this embodiment. Therefore, it is possible to further plate the surface of the hot-rolled steel sheet to provide a plating layer on the steel sheet surface.
  • the plating process and the composition of the plating bath do not affect the material of the hot-rolled steel sheet according to this embodiment, and therefore any of hot-dip galvanizing, alloyed hot-dip galvanizing, and electrolytic galvanizing processes can be applied as the plating process.
  • the composition of the plating bath can include one or more of Zn, Al, Mg, Si, and Ni.
  • the composition of the plating layer formed on the surface of the hot-rolled steel sheet in the plating process can include one or more of Zn, Al, Mg, Si, and Ni.
  • the hot-rolled steel sheets obtained under the conditions shown in Tables 2 to 5 were evaluated in terms of metal structure, tensile properties, bending workability, stretch flangeability, and shrink flangeability using the following methods. The results are shown in Table 6.
  • Martensite is a crystal grain that does not show any corrosion marks within the grain, but is observed with a higher brightness than ferrite (white in SEM).
  • the area ratio of the metal structure of the structure separated in the above manner was determined using image analysis software (Photoshop elements and Image J).
  • the retained austenite was measured by grinding the surface of the test piece to 3/4 of the total thickness, chemically polishing it to 0.1 mm or more, and measuring the polished surface by X-ray diffraction.
  • the volume fraction of the retained austenite was measured from the peaks of (200) ⁇ , (211) ⁇ , (220) ⁇ , (200) ⁇ , (220) ⁇ , and (311) ⁇ using MoK ⁇ radiation as the incident radiation source.
  • the volume fraction of the retained austenite phase obtained in this manner was taken as the area fraction of the retained austenite.
  • the procedure for determining the area fraction was as follows: first, the fractions of bainite, martensite, and cementite, which are lath-shaped structures, were obtained from SEM images; next, the fraction of retained austenite was obtained from XRD; and next, the fraction of crystal grains that did not have a lath morphology and contained low-angle grain boundaries was obtained using EBSD. The remainder of these crystal grains was calculated as the ferrite fraction, thereby deriving the fraction of each structure.
  • the area ratio of the structure of crystal grains containing low-angle grain boundaries was obtained by analyzing a visual field of 1 mm2 or more by electron backscatter diffraction (EBSD). Using OIM Analysis software manufactured by TSL, grain boundaries with an angle difference of 15° or more were defined as high-angle grain boundaries, and grain boundaries with an angle difference of 2° or more and less than 15° were defined as low-angle grain boundaries, and the area ratio of crystal grains containing low-angle grain boundaries in grain boundaries surrounded by high-angle grain boundaries was obtained. For bainite and martensite, low-angle grain boundaries are also included in high-angle grain boundaries.
  • the area ratio of crystal grains containing low-angle grain boundaries in the hot-rolled steel sheet according to this embodiment was obtained by subtracting the area ratios of bainite, tempered martensite, and martensite from the area ratio of crystal grains containing low-angle grain boundaries obtained by EBSD analysis.
  • the cylindrical drawing process was placed so that the opening of the cylindrical drawing process was at the top, at a position where the center of the truncated cone punch and the center of the cylindrical drawing process were aligned.
  • the upper weight was immediately allowed to fall freely in the vertical direction of the cylindrical drawing process, and the presence or absence of cracks in the cylindrical drawing process after the weight was dropped was confirmed.
  • Table 6 cylindrical drawn products that did not crack in any of the five repeated tests are marked with "O" as the characteristics required by the present invention, and cylindrical drawn products that cracked in any of the five repeated tests or that cracked at least once due to the impact of the falling weight are marked with "X".
  • All of the examples of the present invention had a yield strength (YS) of 650 MPa or more, and good bending workability, stretch flangeability and shrink flangeability were obtained.
  • the comparative examples outside the range of the present invention either had a yield strength not reaching 650 MPa or did not obtain the bending workability, stretch flangeability or shrink flangeability required in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention provides a hot-rolled steel sheet having a yield strength of not less than 650 MPa, and having excellent bending workability, stretch flange formability, and shrink flange formability. The present invention also provides a method for producing the same. Provided is a hot-rolled steel sheet having a component composition arbitrarily selected of C, Si, Mn, P, S, Al, N, B, Ti, and Nb, having a metal structure which, in terms of area ratio, is 0-75% ferrite, with the total of bainite, martensite, tempered martensite, and residual austenite being not more than 3%, and crystal grains including a small angle boundary being not less than 25%, said hot-rolled steel sheet comprising a carbide including Ti or Nb with a mean particle size of not more than 8 nm, wherein yield strength is not less than 650 MPa. Also provided is a method for producing a hot-rolled steel sheet, said method comprising: a rough rolling step in which a steel raw material having the above component composition is heated or not heated; a finish rolling step in which a starting temperature is higher than 1000°C, the rolling reduction in each of a first pass and a second pass is not less than 35%, and the total rolling reduction from a third pass to rolling completion is not more than 85%; a cooling step; and a winding step.

Description

熱延鋼板およびその製造方法HOT-ROLLED STEEL SHEET AND ITS MANUFACTURING METHOD
 本発明は、降伏強さが650MPa以上で、優れた伸びフランジ成形性と縮みフランジ成形性を有する熱延鋼板およびその製造方法に関する。本発明の熱延鋼板は、自動車部品用の素材に適する。 The present invention relates to a hot-rolled steel sheet having a yield strength of 650 MPa or more and excellent stretch flange formability and shrink flange formability, and a method for manufacturing the same. The hot-rolled steel sheet of the present invention is suitable as a material for automobile parts.
 近年、地球環境保全の観点から、CO排出量の規制を目的として自動車業界全体で自動車の燃費改善が指向されている。自動車の燃費改善には、使用部品の薄肉化による自動車の軽量化が最も有効であるため、近年、自動車部品用素材としての高強度鋼板の使用量が増加しつつある。
 一般に、鋼板の高強度化にともない成形性は悪化する傾向にあるため、高強度鋼板の普及をさらに拡大させるには成形性の改善が必須である。特に熱延鋼板は複雑な形状に成形されるサスペンションアーム部品に利用されることが多く、優れた曲げ性、伸びフランジ性、及び縮みフランジ性が求められる。
In recent years, from the perspective of protecting the global environment, the entire automobile industry has been oriented toward improving automobile fuel efficiency in order to regulate CO2 emissions. The most effective way to improve automobile fuel efficiency is to reduce the weight of automobiles by making the parts thinner, so in recent years the amount of high-strength steel sheets used as materials for automobile parts has been increasing.
Generally, the formability of steel sheets tends to deteriorate as the strength of the steel sheets increases, so that improvement of the formability is essential to further expand the use of high-strength steel sheets. In particular, hot-rolled steel sheets are often used for suspension arm parts that are formed into complex shapes, and therefore excellent bendability, stretch flangeability, and shrink flangeability are required.
 そこで、これらの問題を解決するため、これまでに様々な鋼板の高強度化と加工性向上の技術が提案されている。 In order to solve these problems, various technologies have been proposed to increase the strength and improve the workability of steel plates.
 例えば、特許文献1では、面積率が95%超えのフェライト相をマトリックスの主相とし、フェライト結晶粒内に平均粒子径が10nm未満のTi炭化物を微細析出させた熱延鋼板が開示されている。そうすることで、引張強さが780MPa以上の加工性に優れた高強度熱延鋼板が得られるとしている。 For example, Patent Document 1 discloses a hot-rolled steel sheet in which the main phase of the matrix is a ferrite phase with an area ratio of more than 95%, and in which Ti carbides with an average particle size of less than 10 nm are finely precipitated within the ferrite crystal grains. This is said to result in a high-strength hot-rolled steel sheet with excellent workability and a tensile strength of 780 MPa or more.
 また、特許文献2では、圧延開始温度を1200℃以上とする粗圧延と圧延終了温度を900℃以上とする仕上げ圧延からなる熱間圧延と、580℃以上で巻き取り処理を行う熱間圧延鋼板の製造方法が開示されている。熱延鋼板は、面積率が95%以上のフェライト相と金属組織中に平均粒子径が20nm以上のTiNと平均粒子径が6nm未満であるTiを含む微細炭化物が分散している。その結果、引張強さ590MPa以上750MPa以下であって、打ち抜き性と伸びフランジ性に優れた高張力熱延鋼板が得られるとしている。 Patent Document 2 discloses a method for manufacturing a hot-rolled steel sheet, which includes hot rolling consisting of rough rolling at a rolling start temperature of 1200°C or higher and finish rolling at a rolling end temperature of 900°C or higher, and coiling at 580°C or higher. The hot-rolled steel sheet has a ferrite phase with an area ratio of 95% or higher and fine carbides containing TiN with an average particle size of 20 nm or more and Ti with an average particle size of less than 6 nm dispersed in the metal structure. As a result, it is said that a high-tensile hot-rolled steel sheet with a tensile strength of 590 MPa to 750 MPa and excellent punchability and stretch flangeability can be obtained.
 特許文献3では、焼入れ性向上を目的として1.0%以上のMnを添加したうえで、面積率で75.0%以上97.0%未満の上部ベイナイトを主相とし、0.5μm以上の第2相粒子の数密度を150000個/mm以下とする熱延鋼板が開示されている。その結果、引張強さが980MPa以上である高強度熱延鋼板が得られるとしている。 Patent Document 3 discloses a hot-rolled steel sheet in which 1.0% or more of Mn is added for the purpose of improving hardenability, upper bainite having an area ratio of 75.0% or more and less than 97.0% as the main phase, and the number density of second phase particles of 0.5 μm or more is 150,000 particles/ mm2 or less. As a result, it is said that a high-strength hot-rolled steel sheet having a tensile strength of 980 MPa or more can be obtained.
特開2013-95996号公報JP 2013-95996 A 特開2013-133525号公報JP 2013-133525 A 国際公開第2018/150955号International Publication No. 2018/150955
 しかし、上記特許文献に開示された従来技術には、以下のような問題がある。 However, the conventional technology disclosed in the above patent document has the following problems:
 特許文献1及び特許文献2で提案された技術では、Tiを含む炭化物が多量に微細分散したフェライト相を主相とするため、縮みフランジ性が悪く、縮みフランジ部で特異的に割れる場合がある。 The technologies proposed in Patent Documents 1 and 2 have a ferrite phase as the main phase, in which a large amount of finely dispersed Ti-containing carbides are used, which results in poor shrink flangeability and may cause specific cracking at the shrink flange area.
 また、特許文献3では、縮みフランジ性に悪影響を及ぼすMnを多量に添加している。また、ラス状の形態を持つベイニティックフェライト間にFe系炭化物および、または残留オーステナイトを有する上部ベイナイト組織(ただし、Fe系炭化物および残留オーステナイトを有さない組織を含む)を主相とする。ラス状組織は低温で変態させることを意味しており、このラス状組織を持つ組織へのTiを含む炭化物の析出はこれまでに前例がなく、さらに従来は低温で得るベイナイト組織はマルテンサイトや残留オーステナイトが混在する場合が多く、伸びフランジ性は低位である。 In addition, in Patent Document 3, a large amount of Mn is added, which has a negative effect on shrink flangeability. In addition, the main phase is an upper bainite structure (including structures without Fe-based carbides and retained austenite) that has Fe-based carbides and/or retained austenite between bainitic ferrite with a lath-like morphology. The lath-like structure means that the transformation is carried out at low temperatures, and there has been no precedent for the precipitation of Ti-containing carbides into a structure with this lath-like structure. Furthermore, bainite structures obtained at low temperatures in the past often contained a mixture of martensite and retained austenite, resulting in poor stretch flangeability.
 本発明は、従来技術が抱える上記の問題点に鑑み開発したものであって、降伏強さが650MPa以上で、優れた曲げ加工性、伸びフランジ性、及び縮みフランジ性を有する熱延鋼板およびその製造方法を提供することを目的とする。 The present invention was developed in consideration of the above-mentioned problems with the conventional technology, and aims to provide a hot-rolled steel sheet having a yield strength of 650 MPa or more and excellent bending workability, stretch flangeability, and shrink flangeability, as well as a manufacturing method thereof.
 発明者らは上記課題を解決するために、熱延鋼板における伸びフランジ性及び縮みフランジ性、並びに高強度を兼備する要件について鋭意検討した。本件で対象とする熱延鋼板の板厚は、1.0mm以上35.0mm以下である。縮みフランジ性は靭性と相関があることを見出し、靭性に劣るフェライト主相組織鋼では良好な縮みフランジ性が得られないと結論した。一方、従来のベイナイト主相組織鋼では、硬質なマルテンサイトや残留オーステナイトが不可避的に生じるため、要求される曲げ加工性や伸びフランジ性が得られない。 In order to solve the above problems, the inventors have thoroughly studied the requirements for hot-rolled steel sheets to have both stretch flangeability and shrink flangeability as well as high strength. The thickness of the hot-rolled steel sheets concerned in this case is 1.0 mm or more and 35.0 mm or less. They have found that shrink flangeability is correlated with toughness, and have concluded that good shrink flangeability cannot be obtained with ferrite-based phase steels that have poor toughness. On the other hand, conventional bainite-based phase steels inevitably produce hard martensite and retained austenite, so they do not obtain the required bending workability or stretch flangeability.
 そこで、TiまたはNbを含む炭化物を鋼中に析出させたうえ、該炭化物の析出温度域である600℃以上の巻取温度において母相組織を従来、主に活用されてきたフェライトではない組織への改質を試みた。オーステナイトからフェライトへ変態する駆動力を十分に高める成分で、さらに焼入性を高めるため、Bを添加し、熱間圧延でオーステナイトの加工度が過度に高まらない条件とした。そうすると従来のフェライトとは異なる新しい組織が得られることがわかり、この新たな組織を有する熱延鋼板の曲げ加工性、伸びフランジ性、及び縮みフランジ性は良好であることが判明した。 Therefore, they attempted to precipitate carbides containing Ti or Nb in the steel, and then modify the parent phase structure to a structure other than ferrite, which has been mainly used in the past, at a coiling temperature of 600°C or higher, which is the temperature range in which the carbides precipitate. B was added as a component that sufficiently increases the driving force for the transformation from austenite to ferrite, and to further improve hardenability, and conditions were set in which the degree of processing of austenite during hot rolling was not excessively increased. It was found that this resulted in a new structure that differed from conventional ferrite, and that the bendability, stretch flangeability, and shrink flangeability of hot-rolled steel sheets with this new structure were good.
 上記知見に基づき開発した本発明に係る熱延鋼板は、以下のように構成される。
[1]質量%で、C:0.045%以上0.110%未満、Si:1.5%以下、Mn:0.7%以下、P:0.05%以下、S:0.010%以下、Al:0.005%以上0.080%以下、N:0.0060%以下、B:0.0002%以上0.0050%以下、さらに、Ti及びNbの1種又は2種を、下記(1)式を満たす範囲で含有し、
任意選択的に、さらに、V、Mo、Sb、REM、Mg、Ca、Sn、Ni、Cu、Co、As、Cr、W、Ta、Pb、Cs、Zr、Hf、Te、Bi及びSeのいずれか1種以上を合計で1%以下を含有し残部がFe及び不可避的不純物からなる成分組成を有し、
金属組織の面積率で、フェライトが0%以上75%以下、ベイナイト、マルテンサイト、焼き戻しマルテンサイト及び残留オーステナイトの合計が3%以下、小角粒界を含む結晶粒が25%以上であって、平均粒子径が8nm以下のTi又はNbを含む炭化物を有する、降伏強さが650MPa以上の熱延鋼板である。
0.09≦([%Nb]/2)+[%Ti*]・・・(1)
ここで、[%Ti*]=[%Ti]-48[%N]/14であり、[%M](M=Nb、Ti、N)は質量%でNb、Ti、及びNの含有量である。
[2]上記の[1]において、前記熱延鋼板の表面にめっき層を有する熱延鋼板である。
The hot-rolled steel sheet according to the present invention, which has been developed based on the above findings, has the following configuration.
[1] In mass%, C: 0.045% or more and less than 0.110%, Si: 1.5% or less, Mn: 0.7% or less, P: 0.05% or less, S: 0.010% or less, Al: 0.005% or more and 0.080% or less, N: 0.0060% or less, B: 0.0002% or more and 0.0050% or less, and further, one or two of Ti and Nb are contained within a range satisfying the following formula (1),
Optionally, the composition further contains one or more of V, Mo, Sb, REM, Mg, Ca, Sn, Ni, Cu, Co, As, Cr, W, Ta, Pb, Cs, Zr, Hf, Te, Bi, and Se in a total amount of 1% or less, with the balance being Fe and unavoidable impurities;
The hot-rolled steel sheet has a metallographic area ratio of 0% or more and 75% or less of ferrite, a total of 3% or less of bainite, martensite, tempered martensite and retained austenite, and 25% or more of crystal grains containing small-angle grain boundaries, and has carbides containing Ti or Nb with an average grain size of 8 nm or less, and has a yield strength of 650 MPa or more.
0.09≦([% Nb]/2)+[% Ti*] (1)
Here, [% Ti*] = [% Ti] - 48 [% N] / 14, and [% M] (M = Nb, Ti, N) is the content of Nb, Ti, and N in mass%.
[2] In the above [1], the hot-rolled steel sheet has a plating layer on a surface thereof.
 上記知見に基づき開発した本発明に係る熱延鋼板の製造方法は、以下のように構成される。
[3]上記の[1]に記載の成分組成を有する鋼素材を、加熱温度が1200℃以上に加熱し、又は鋳造後加熱せずに、粗圧延してシートバーとする粗圧延工程と、該シートバーを圧延の開始温度が1000℃超え、1パス目と2パス目の圧下率がそれぞれ35%以上、3パス目から圧延完了までの総圧下率が85%以下で仕上げ圧延して熱延鋼板とする仕上げ圧延工程と、該熱延鋼板を600℃以上700℃以下の冷却停止温度まで平均冷却速度40℃/s以上で冷却する冷却工程と、冷却された前記熱延鋼板を巻取温度が600℃以上700℃以下で巻き取る巻取工程と、を含む熱延鋼板の製造方法である。
[4]上記の[3]において、前記粗圧延工程、又は前記仕上げ圧延工程の前に、[1]に記載の成分組成を有する、厚さが35mm以上200mm以下の鋼素材を鋳造する鋳造工程を含み、前記粗圧延工程を適用し、または、適用せずにシートバーとする熱延鋼板の製造方法である。
[5]上記の[3]において、前記粗圧延工程と前記仕上げ圧延工程の間に、粗圧延された前記シートバーと先行するシートバーとを1070℃以上で接合する接合工程を含み、前記仕上げ圧延工程では、接合されたシートバーを仕上げ圧延する熱延鋼板の製造方法である。
[6]上記の[3]から[5]のいずれかにおいて、さらに、前記熱延鋼板を、焼鈍温度が720℃以下で焼鈍する熱延板焼鈍工程と、焼鈍された前記熱延鋼板にめっき処理を施すめっき工程と、を含む熱延鋼板の製造方法である。
[7]上記の[6]において、さらに、めっきされた前記熱延鋼板に460℃以上600℃以下の合金化処理を施す合金化工程を含む熱延鋼板の製造方法である。
The method for producing a hot-rolled steel sheet according to the present invention, which was developed based on the above findings, is configured as follows.
[3] A method for producing a hot-rolled steel sheet, comprising: a rough rolling step in which a steel material having the composition described in [1] above is heated to a heating temperature of 1200°C or higher, or is not heated after casting, and is rough-rolled to a sheet bar; a finish rolling step in which the sheet bar is finish-rolled to a hot-rolled steel sheet at a rolling start temperature exceeding 1000°C, with rolling reductions of 35% or more in the first and second passes, and a total rolling reduction of 85% or less from the third pass to the end of rolling; a cooling step in which the hot-rolled steel sheet is cooled at an average cooling rate of 40°C/s or higher to a cooling stop temperature of 600°C to 700°C; and a coiling step in which the cooled hot-rolled steel sheet is coiled at a coiling temperature of 600°C to 700°C.
[4] In the above [3], the method for producing a hot-rolled steel sheet includes a casting step of casting a steel material having a thickness of 35 mm or more and 200 mm or less and having the component composition described in [1] before the rough rolling step or the finish rolling step, and the hot-rolled steel sheet is produced into a sheet bar with or without applying the rough rolling step.
[5] The method for producing a hot-rolled steel sheet according to the above item [3] further includes a joining step of joining the roughly rolled sheet bar and a preceding sheet bar at 1070°C or higher between the rough rolling step and the finish rolling step, and in the finish rolling step, the joined sheet bar is finish-rolled.
[6] In any one of the above [3] to [5], the method for producing a hot-rolled steel sheet further includes a hot-rolled sheet annealing step of annealing the hot-rolled steel sheet at an annealing temperature of 720°C or less, and a plating step of plating the annealed hot-rolled steel sheet.
[7] The method for producing a hot-rolled steel sheet according to the above [6], further comprising an alloying step of subjecting the plated hot-rolled steel sheet to an alloying treatment at a temperature of 460°C or higher and 600°C or lower.
 本発明によれば、降伏強さが650MPa以上の高強度と、優れた曲げ性、伸びフランジ性、及び縮みフランジ性を備える熱延鋼板を製造することが可能となる。本発明に係る熱延鋼板を自動車部品に適用すれば、自動車部品のさらなる軽量化が実現される。 According to the present invention, it is possible to manufacture hot-rolled steel sheets that have high strength, with a yield strength of 650 MPa or more, and excellent bendability, stretch flangeability, and shrink flangeability. By applying the hot-rolled steel sheets according to the present invention to automobile parts, further weight reduction of the automobile parts can be achieved.
以下、本実施形態に係る熱延鋼板について説明する。
<熱延鋼板の化学成分>
 熱延鋼板の成分組成は、質量%で、C:0.045%以上0.110%未満、Si:1.5%以下、Mn:0.7%以下、P:0.05%以下、S:0.010%以下、Al:0.005%以上0.080%以下、N:0.0060%以下、B:0.0002%以上0.0050%以下、さらに、Ti及びNbの1種又は2種を、以下の(1)式を満たす範囲で含有する。0.09≦([%Nb]/2)+[%Ti*]・・・(1)
ここで、[%Ti*]=[%Ti]-48[%N]/14であり、[%M](M=Nb、Ti、N)は質量%でNb、Ti、及びNの含有量である。
 以下で各成分を説明する。以下の説明において、成分の含有量を表す「%」は「質量%」を意味する。
Hereinafter, the hot-rolled steel sheet according to this embodiment will be described.
<Chemical composition of hot-rolled steel sheet>
The composition of the hot-rolled steel sheet is, in mass%, C: 0.045% or more and less than 0.110%, Si: 1.5% or less, Mn: 0.7% or less, P: 0.05% or less, S: 0.010% or less, Al: 0.005% or more and 0.080% or less, N: 0.0060% or less, B: 0.0002% or more and 0.0050% or less, and further contains one or both of Ti and Nb in a range that satisfies the following formula (1): 0.09≦([%Nb]/2)+[%Ti*]...(1)
Here, [% Ti*] = [% Ti] - 48 [% N] / 14, and [% M] (M = Nb, Ti, N) is the content of Nb, Ti, and N in mass%.
Each component will be described below. In the following description, "%" representing the content of a component means "% by mass."
C:0.045%以上0.110%未満
 Cは、TiやNbと結合することで鋼板の高強度化に寄与する。降伏強さが650MPa以上の鋼板を得るには、仕上げ圧延終了後のフェライト変態の進行を抑制するための十分な焼入性を確保する必要があり、C含有量は0.045%以上とする。一方、C含有量が0.110%以上では粗大なセメンタイトが析出し、良好な曲げ加工性及び伸びフランジ性が得られなくなる。そのため、C含有量は0.045%以上0.110%未満とする。好ましくは、0.050%以上0.100%以下である。
C: 0.045% or more and less than 0.110% C contributes to increasing the strength of the steel sheet by combining with Ti and Nb. In order to obtain a steel sheet with a yield strength of 650 MPa or more, it is necessary to ensure sufficient hardenability to suppress the progress of ferrite transformation after the end of finish rolling, and the C content is set to 0.045% or more. On the other hand, if the C content is 0.110% or more, coarse cementite precipitates, making it impossible to obtain good bending workability and stretch flangeability. Therefore, the C content is set to 0.045% or more and less than 0.110%. Preferably, it is 0.050% or more and 0.100% or less.
Si:1.5%以下
 Siはオーステナイトからフェライトへ変態する駆動力を上昇させ、巻取温度600℃以上で母相組織を改質するのに有効な元素である。しかし、Si含有量が1.5%を超えると過度にオーステナイトからフェライトへ変態する駆動力が高くなり、熱延後の冷却過程でフェライト生成のリスクが高まる。そのため、Si含有量は1.5%以下とする。好ましくは0.15%以上1.1%以下である。
Si: 1.5% or less Si is an element that increases the driving force for the transformation from austenite to ferrite and is effective in modifying the parent phase structure at a coiling temperature of 600°C or more. However, if the Si content exceeds 1.5%, the driving force for the transformation from austenite to ferrite becomes excessively high, and the risk of ferrite formation during the cooling process after hot rolling increases. Therefore, the Si content is set to 1.5% or less. It is preferably 0.15% or more and 1.1% or less.
Mn:0.7%以下
 Mnは、オーステナイトからフェライトへ変態する駆動力を低下させる。また、偏析しやすい元素であり、この偏析により縮みフランジ性が低下する。したがって、Mn含有量は、極力低減する必要があり、0.7%以下とする。好ましくは、Mn含有量は0.50%未満である。製造上、0.05%は不可避的に混入するが、0%であっても本発明の効果は損なわれない。
 また、オーステナイトからフェライトへ変態する駆動力および焼入性向上の点から、次の(2)式を満たすことが好ましい。
 0.35≦0.8[%Si]+[%Mn]≦1.35・・・(2)
 ここで、[%M](M=Si、Mn)は、質量%でSi、Mnの含有量である。
Mn: 0.7% or less Mn reduces the driving force for transformation from austenite to ferrite. It is also an element that is prone to segregation, and this segregation reduces shrink flangeability. Therefore, the Mn content must be reduced as much as possible, and is set to 0.7% or less. The Mn content is preferably less than 0.50%. In manufacturing, 0.05% is inevitably mixed in, but even if it is 0%, the effect of the present invention is not impaired.
In addition, from the viewpoint of improving the driving force for transformation from austenite to ferrite and hardenability, it is preferable that the following formula (2) is satisfied.
0.35≦0.8[%Si]+[%Mn]≦1.35 (2)
Here, [%M] (M=Si, Mn) is the content of Si and Mn in mass %.
P:0.05%以下
 Pは、粒界に偏析することで縮みフランジ性を低下させる有害元素であるため、極力低減し、P含有量は0.05%以下とする。好ましくは、P含有量は0.04%以下であるが、より厳しい縮みフランジ加工条件下で使用するには、0.02%以下とすることがより好ましい。一方、製造上、0.002%のPが不可避的に混入する場合がある。
P: 0.05% or less P is a harmful element that segregates at grain boundaries and reduces shrink flangeability, so it is reduced as much as possible, with the P content being 0.05% or less. The P content is preferably 0.04% or less, but for use under more severe shrink flange processing conditions, it is more preferable to keep it 0.02% or less. On the other hand, there are cases where 0.002% P is inevitably mixed in during manufacturing.
S:0.010%以下
 Sは、鋼中で粗大な硫化物を形成し、これが熱間圧延時に伸展し楔状の介在物となることで、伸びフランジ性に悪影響をもたらす。そのため、Sも有害元素であるため極力低減することが好ましく、S含有量は、0.010%以下とする。好ましくは、S含有量は0.003%以下であるが、より厳しい伸びフランジ加工条件下で使用するには、0.001%以下とすることがより好ましい。製造上、0.0001%のSが不可避的に混入する場合がある。
S: 0.010% or less S forms coarse sulfides in steel, which expand during hot rolling to become wedge-shaped inclusions, adversely affecting stretch flangeability. Therefore, since S is also a harmful element, it is preferable to reduce it as much as possible, and the S content is 0.010% or less. Preferably, the S content is 0.003% or less, but for use under more severe stretch flange processing conditions, it is more preferable to make it 0.001% or less. In manufacturing, 0.0001% S may be inevitably mixed in.
Al:0.005%以上0.080%以下
 Alを製鋼の段階で脱酸剤として添加する場合、Al含有量は0.005%以上である。Alは酸化物を形成することで伸びフランジ性を低下させる。そこで、Al含有量は、0.080%以下とする。好ましくは、Al含有量は、0.010%以上0.070%以下である。
Al: 0.005% to 0.080% When Al is added as a deoxidizer at the steelmaking stage, the Al content is 0.005% or more. Al forms oxides, which reduces stretch flangeability. Therefore, the Al content is set to 0.080% or less. Preferably, the Al content is 0.010% to 0.070%.
N:0.0060%以下
 Nは、TiやNbと結合し粗大な炭窒化物を形成することで、加工性、伸びフランジ性、及び強度に対して悪影響をもたらす有害元素である。そのため、N含有量は出来る限り低減し、0.0060%以下とする。好ましくは、N含有量は0.0050%以下である。製造上、0.0005%程度のNが不可避的に混入する場合がある。
N: 0.0060% or less N is a harmful element that combines with Ti and Nb to form coarse carbonitrides, thereby adversely affecting workability, stretch flangeability, and strength. Therefore, the N content is reduced as much as possible to 0.0060% or less. Preferably, the N content is 0.0050% or less. In manufacturing, about 0.0005% of N may be inevitably mixed in.
B:0.0002%以上0.0050%以下
 Bは小角粒界を含む結晶粒の形成に寄与すると考えられ、また焼入性を向上させるために有効な元素であり、ベイニティックフェライト組織を得るには、B含有量は、0.0002%以上である。しかし、B含有量は、0.0050%を超えても、鋼の焼入性に対する効果が飽和するため、0.0050%以下とする。好ましくは、B含有量は0.0004%以上0.0030%以下である。
B: 0.0002% or more and 0.0050% or less B is considered to contribute to the formation of crystal grains including small angle grain boundaries, and is also an effective element for improving hardenability, and in order to obtain a bainitic ferrite structure, the B content is 0.0002% or more. However, even if the B content exceeds 0.0050%, the effect on the hardenability of the steel is saturated, so the B content is set to 0.0050% or less. Preferably, the B content is 0.0004% or more and 0.0030% or less.
Ti及びNbの1種又は2種を、(1)式を満たす範囲で含有
 0.09≦([%Nb]/2)+[%Ti*]・・・(1)
 ここで、[%Ti*]=[%Ti]-48[%N]/14であり、[%M](M=Nb,Ti、N)は質量%でNb、Ti、及びNの含有量である。
 TiおよびNbはCと結合し、鋼板の高強度化に寄与する。TiおよびNbは、降伏強さが650MPa以上を安定的に得るには、(1)式を満たす必要がある。
 また、650MPa以上の降伏強さを得るためには、TiおよびNbが1種または2種を含有し、好ましくは、Ti含有量は0.06%以上0.18%以下、Nb含有量は0.02%以上0.18%以下である。
One or both of Ti and Nb are contained within a range satisfying the formula (1): 0.09≦([%Nb]/2)+[%Ti*]...(1)
Here, [% Ti*] = [% Ti] - 48 [% N] / 14, and [% M] (M = Nb, Ti, N) is the content of Nb, Ti, and N in mass %.
Ti and Nb combine with C and contribute to increasing the strength of the steel sheet. Ti and Nb need to satisfy formula (1) in order to stably obtain a yield strength of 650 MPa or more.
In order to obtain a yield strength of 650 MPa or more, one or both of Ti and Nb are contained, and preferably, the Ti content is 0.06% or more and 0.18% or less, and the Nb content is 0.02% or more and 0.18% or less.
 Cは結晶ひずみが大きい組織形成に寄与する一方で、TiやNbと結合し、炭化物を形成することに利用される。このCの炭化物形成の利用により鋼の焼き入れ性が低下する。しかし、TiやNbに対して過度にCが含有すると、スラブの再加熱時に粗大なTiCを溶解できなくなり、強度が低下したり、曲げ加工性が低下したりする。以上の観点から、C、Ti、及びNbは(3)式を満たすことが好ましい。
 1.8≦([%C]/12)/([%Nb]/93+[%Ti*]/48)≦4.0
・・・(3)
 ここで、[%Ti*]=[%Ti]-48[%N]/14であり、[%M](C、Nb、Ti、N)は、質量%でC、Nb、Ti、及びNの含有量である。
While C contributes to the formation of a structure with large crystal strain, it is also used to combine with Ti and Nb to form carbides. This use of C to form carbides reduces the hardenability of the steel. However, if C is contained in excess of Ti and Nb, coarse TiC cannot be dissolved when the slab is reheated, and the strength and bending workability are reduced. From the above viewpoints, it is preferable that C, Ti, and Nb satisfy formula (3).
1.8≦([%C]/12)/([%Nb]/93+[%Ti*]/48)≦4.0
...(3)
Here, [% Ti*] = [% Ti] - 48 [% N] / 14, and [% M] (C, Nb, Ti, N) is the content of C, Nb, Ti, and N in mass%.
 以上が本実施形態に係る熱延鋼板の成分組成の基本構成であるが、任意選択的に、さらに、V、Mo、Sb、REM、Mg、Ca、Sn、Ni、Cu、Co、As、Cr、W、Ta、Pb、Cs、Zr、Hf、Te、Bi及びSeのいずれか1種以上を合計で1%以下を含有することができる。
 いずれか1種以上を合計で1%以下の含有量であれば、本実施形態に係る熱延鋼板の特性への影響は少ないからである。また、好ましくは、各々の元素の含有量は、0.03%以下である。
The above is the basic configuration of the composition of the hot-rolled steel sheet according to this embodiment, but optionally, one or more of V, Mo, Sb, REM, Mg, Ca, Sn, Ni, Cu, Co, As, Cr, W, Ta, Pb, Cs, Zr, Hf, Te, Bi, and Se may be further contained in a total amount of 1% or less.
This is because if the total content of any one or more elements is 1% or less, the effect on the properties of the hot-rolled steel sheet according to the present embodiment is small. Preferably, the content of each element is 0.03% or less.
 本実施形態に係る熱延鋼板の化学組成は、上記の元素を含有し、残部はFe及び不可避的不純物である。 The chemical composition of the hot-rolled steel sheet according to this embodiment contains the above elements, with the remainder being Fe and unavoidable impurities.
<熱延鋼板の金属組織>
 次に、熱延鋼板の金属組織について説明する。
 本実施形態に係る熱延鋼板の金属組織は、フェライトの面積率が0%以上75%以下、ベイナイト、マルテンサイト、焼き戻しマルテンサイト及び残留オーステナイトの合計面積率が3%以下、小角粒界を含む結晶粒が25%以上であって、平均粒子径が8nm以下のTi又はNbを含む炭化物を有するものである。
 以下の説明において、金属組織を表す「%」は「面積率」を意味する。
<Metal structure of hot-rolled steel sheet>
Next, the metal structure of the hot-rolled steel sheet will be described.
The metal structure of the hot-rolled steel sheet according to this embodiment has an area ratio of ferrite of 0% or more and 75% or less, a total area ratio of bainite, martensite, tempered martensite and retained austenite of 3% or less, crystal grains containing low-angle grain boundaries of 25% or more, and carbides containing Ti or Nb with an average particle size of 8 nm or less.
In the following description, "%" representing the metal structure means "area ratio".
フェライトが0%以上75%以下
 フェライトは、縮みフランジ性を低下させる組織である。フェライトは小角粒界を含まず、靭性が劣る組織であり、縮みフランジ性にも悪影響をもたらす。所望の縮みフランジ性を得るため、フェライトの面積率は、75%以下とする。好ましくは、フェライトの面積率は0%以上65%以下である。
Ferrite is 0% or more and 75% or less Ferrite is a structure that reduces shrink flangeability. Ferrite does not contain small angle grain boundaries and is a structure with poor toughness, which also has a negative effect on shrink flangeability. In order to obtain the desired shrink flangeability, the area ratio of ferrite is 75% or less. Preferably, the area ratio of ferrite is 0% or more and 65% or less.
ベイナイト、マルテンサイト、焼き戻しマルテンサイト、及び残留オーステナイトの合計が3%以下(0%を含む)
 ベイナイト、マルテンサイト、焼き戻しマルテンサイト、及び残留オーステナイトは曲げ加工性および伸びフランジ性を低下させることから、可能な限り低減することが好ましく、上記組織は、合計で3%以下とする。上記組織の合計は、0%であっても良く、好ましくは0%以上2%以下である。
 ベイナイト、マルテンサイト、及び焼き戻しマルテンサイトは電子線後方散乱回折(Electron backscatter diffraction pattern:EBSD)解析により結晶構造で分離すれば良い。例えば、母相とKurdjumov-Sachsの関係を満たすベイナイト、マルテンサイト、及び焼き戻しマルテンサイトは、単一の旧γ(オーステナイト)粒領域の(001)α極点図から該当するか否かを判断する。
The total of bainite, martensite, tempered martensite, and retained austenite is 3% or less (including 0%)
Bainite, martensite, tempered martensite, and retained austenite deteriorate bending workability and stretch flangeability, so it is preferable to reduce them as much as possible, and the total content of the above structures is set to 3% or less. The total content of the above structures may be 0%, and is preferably 0% or more and 2% or less.
Bainite, martensite, and tempered martensite may be separated by crystal structure using electron backscatter diffraction pattern (EBSD) analysis. For example, whether or not bainite, martensite, and tempered martensite that satisfy the Kurdjumov-Sachs relationship with the parent phase are applicable is determined from the (001) α pole figure of a single prior γ (austenite) grain region.
小角粒界を含む結晶粒が25%以上
 本実施形態に係る熱延鋼板では、この小角粒界を含む結晶粒にTi又はNbを含むナノサイズの炭化物を析出させたことに特徴がある。小角粒界を含む結晶粒により、降伏強さが650MPa以上の高強度と加工性、伸びフランジ性、及び縮みフランジ性との両立が可能となる。このため、小角粒界を含む結晶粒は、25%以上である。好ましくは、小角粒界を含む結晶粒は、30%以上である。
The heat-rolled steel sheet according to the present embodiment is characterized in that nano-sized carbides containing Ti or Nb are precipitated in the grains containing the low-angle grain boundaries. The grains containing the low-angle grain boundaries make it possible to achieve both high strength with a yield strength of 650 MPa or more and workability, stretch flangeability, and shrink flangeability. Therefore, the grains containing the low-angle grain boundaries are 25% or more. Preferably, the grains containing the low-angle grain boundaries are 30% or more.
Ti又はNbを含む炭化物の平均粒子径が8nm以下
 本実施形態に係る熱延鋼板では、Ti又はNbを含む炭化物によって鋼板を強化している。降伏強さが650MPa以上の高強度の熱延鋼板を得るには、鋼中に分散するTi又はNbを含む炭化物の平均粒子径を8nm以下とする必要がある。安定的に650MPa以上の降伏強さを得るには、Ti又はNbを含む炭化物の平均粒子径を5nm以下とすることが好ましい。Ti又はNbを含む炭化物は複合炭化物であっても良く、Ti又はNbのいずれの元素を含む単独炭化物であっても良い。
 さらに、本実施形態に係る熱延鋼板の製造において、熱延鋼板の巻取温度を600℃以上とすると、置換型元素であってもNbは、鋼中で十分に拡散する。このTi又はNbの性質を利用し、Ti又はNbを鋼中で拡散、析出させることで、高強度鋼板で良く活用されるベイナイト、マルテンサイト及び焼き戻しマルテンサイトの組織が少量であっても、降伏強さ650MPa以上の鋼板を得ることができる。降伏強さ650MPa以上の鋼板を得るには、含有するTi又はNbの80%以上を析出に活用する。好ましくは、含有するTi又はNbの85%以上を析出に活用する。
The average particle size of the carbide containing Ti or Nb is 8 nm or less In the hot-rolled steel sheet according to the present embodiment, the steel sheet is strengthened by the carbide containing Ti or Nb. In order to obtain a high-strength hot-rolled steel sheet having a yield strength of 650 MPa or more, it is necessary to set the average particle size of the carbide containing Ti or Nb dispersed in the steel to 8 nm or less. In order to stably obtain a yield strength of 650 MPa or more, it is preferable to set the average particle size of the carbide containing Ti or Nb to 5 nm or less. The carbide containing Ti or Nb may be a composite carbide, or may be a single carbide containing either Ti or Nb.
Furthermore, in the manufacture of the hot-rolled steel sheet according to this embodiment, when the coiling temperature of the hot-rolled steel sheet is 600° C. or higher, Nb, even though it is a substitutional element, diffuses sufficiently in the steel. By utilizing this property of Ti or Nb and diffusing and precipitating Ti or Nb in the steel, a steel sheet having a yield strength of 650 MPa or more can be obtained even if the structure of bainite, martensite, and tempered martensite, which are often used in high-strength steel sheets, is small. To obtain a steel sheet having a yield strength of 650 MPa or more, 80% or more of the contained Ti or Nb is utilized for precipitation. Preferably, 85% or more of the contained Ti or Nb is utilized for precipitation.
 本実施形態に係る熱延鋼板は、表面にめっき層を有することが好ましい。めっき層が形成されても、熱延鋼板の機能は損なわれない。めっき層の組成は、Zn、Si、Al、Ni、Mgから1種または2種以上を選択することが好ましい。
 なお、本願発明におけるめっき鋼板は、溶融亜鉛めっき処理を施したもの(GI)、溶融亜鉛めっき処理後にさらに合金化処理を施したもの(GA)、電気亜鉛めっき処理を施したもの(EG)のいずれも対象とする。
The hot-rolled steel sheet according to the present embodiment preferably has a plating layer on the surface. Even if the plating layer is formed, the function of the hot-rolled steel sheet is not impaired. The composition of the plating layer is preferably one or more selected from Zn, Si, Al, Ni, and Mg.
The plated steel sheet in the present invention includes steel sheets that have been subjected to hot-dip galvanizing treatment (GI), steel sheets that have been subjected to hot-dip galvanizing treatment followed by alloying treatment (GA), and steel sheets that have been subjected to electrolytic galvanizing treatment (EG).
 次に、本実施形態に係る熱延鋼板の製造方法の第一形態を説明する。
 一般に、熱延鋼板の製造は、スラブ(鋼素材)を鋳造後、1000℃以下まで温度低下したスラブ(鋼素材)を加熱炉に装入して、短時間で加熱した後に熱間圧延ラインで所定の厚みまで減厚してコイルに巻き取る。あるいは、スラブ(鋼素材)を鋳造後、一旦常温まで冷えてしまったスラブ(鋼素材)を加熱炉内にて長時間加熱した後に熱間圧延ラインで所定の厚みまで減厚してコイルに巻き取る。また、鋳造されたスラブ(鋼素材)を、加熱炉内で加熱することなく熱間圧延ラインに直送し、所定の厚みまで減厚してコイルに巻き取る製造方法がある。
 本実施形態に係る熱延鋼板の製造方法は、鋳造後、鋼素材を加熱するプロセスだけでなく、鋳造後、鋼素材を加熱することなく熱間圧延ラインに直送するプロセスにも適用できる。
Next, a first embodiment of the method for producing a hot-rolled steel sheet according to the present embodiment will be described.
In general, hot-rolled steel sheets are manufactured by casting a slab (steel material), loading the slab (steel material) whose temperature has been reduced to 1000° C. or less into a heating furnace, heating it for a short time, and then reducing the thickness to a predetermined thickness in a hot rolling line and winding it into a coil. Alternatively, after casting a slab (steel material), the slab (steel material) that has once cooled to room temperature is heated for a long time in a heating furnace, and then reducing the thickness to a predetermined thickness in a hot rolling line and winding it into a coil. There is also a manufacturing method in which the cast slab (steel material) is directly sent to a hot rolling line without being heated in a heating furnace, and reduced to a predetermined thickness and wound into a coil.
The manufacturing method of the hot-rolled steel sheet according to this embodiment can be applied not only to a process in which the steel material is heated after casting, but also to a process in which the steel material is directly sent to a hot rolling line without being heated after casting.
<第一形態の鋼素材>
 本実施形態の鋼素材製造のための溶製方法は、特に限定せず、転炉、電気炉等、公知の溶製方法を採用することができる。また、真空脱ガス炉にて2次精錬を行ってもよい。そのようにして上記成分組成に調整した溶鋼を、その後、生産性や品質を考慮して、連続鋳造法によりスラブ(鋼素材)とすることが好ましい。また、造塊-分塊圧延法、その他公知の鋳造方法でスラブとしてもよい。
<First form steel material>
The smelting method for producing the steel material of this embodiment is not particularly limited, and known smelting methods such as converters and electric furnaces can be adopted. Secondary refining may also be performed in a vacuum degassing furnace. The molten steel thus adjusted to the above-mentioned composition is then preferably made into a slab (steel material) by a continuous casting method, taking into consideration productivity and quality. Alternatively, the slab may be made into a slab by an ingot casting-blooming rolling method or other known casting methods.
<第一形態の粗圧延工程>
 本実施形態では、鋼素材を、加熱温度が1200℃以上に加熱し、又は鋳造後加熱せずに、鋼素材を粗圧延し、シートバーとする。
<第一形態の仕上げ圧延工程>
 次いで、仕上げ圧延の開始温度が1000℃超え、1パス目と2パス目の圧下率がそれぞれ35%以上、3パス目から圧延完了までの総圧下率が85%以下の仕上げ圧延する熱間圧延を施し、熱延鋼板とする。
<第一形態の冷却工程>
 次いで、熱間圧延された熱延鋼板を600℃以上700℃以下の冷却停止温度まで平均冷却速度40℃/s以上で冷却する。
<第一形態の巻取工程>
 その後、冷却された熱延鋼板を巻取温度が600℃以上700℃以下で巻き取るものである。
<First form of rough rolling step>
In this embodiment, the steel material is heated to a heating temperature of 1200° C. or higher, or is not heated after casting, and is roughly rolled to form a sheet bar.
<Finish rolling process of the first embodiment>
Next, finish rolling is performed with a starting temperature of over 1000°C, a rolling reduction of 35% or more in the first and second passes, and a total rolling reduction of 85% or less from the third pass to the end of rolling, to produce a hot-rolled steel sheet.
<Cooling step of the first embodiment>
Next, the hot-rolled steel sheet is cooled to a cooling stop temperature of 600° C. or more and 700° C. or less at an average cooling rate of 40° C./s or more.
<Winding process of the first embodiment>
Thereafter, the cooled hot-rolled steel sheet is coiled at a coiling temperature of 600°C or higher and 700°C or lower.
鋼素材の加熱:1200℃以上に加熱、又は加熱せず
 スラブ(鋼素材)中に析出したTi又はNbを含む粗大な炭化物を、熱間圧延前の加熱工程で溶解することで、熱間圧延後にTi又はNbを含む微細な炭化物が析出する。そこで、平均粒子径が8nm以下のTi又はNbを含む炭化物を得るには、スラブ(鋼素材)を1200℃以上に加熱する。好ましくは1220℃以上であり、Nb含有量が0.12%以上の場合には1240℃以上にスラブ(鋼素材)を加熱することがより好ましい。上限は特に設けないが、加熱炉の熱損傷を避けるため、1300℃が製造上の制約である。
 鋳造後、1200℃以上に保持した鋼素材を熱間圧延ラインに直送する場合は、鋳造後の鋼素材を加熱しない。
Heating of steel material: heating to 1200°C or higher, or not heating. Coarse carbides containing Ti or Nb precipitated in the slab (steel material) are dissolved in a heating process before hot rolling, so that fine carbides containing Ti or Nb are precipitated after hot rolling. Therefore, in order to obtain carbides containing Ti or Nb with an average particle size of 8 nm or less, the slab (steel material) is heated to 1200°C or higher. The temperature is preferably 1220°C or higher, and when the Nb content is 0.12% or more, it is more preferable to heat the slab (steel material) to 1240°C or higher. There is no particular upper limit, but 1300°C is a manufacturing constraint in order to avoid thermal damage to the heating furnace.
When the steel material held at 1200° C. or higher after casting is directly sent to the hot rolling line, the cast steel material is not heated.
仕上げ圧延の開始温度:1000℃超え
 本実施形態に係る熱延鋼板は、オーステナイトからフェライトへ変態する駆動力を高めた鋼成分であることから、常法の熱間圧延条件では巻取温度600℃以上の高温域でフェライトが生成し、所望の鋼組織が得られない。そこで、熱間圧延温度を高め、オーステナイトの未再結晶温度域における圧延を避ける必要がある。したがって、仕上げ圧延の開始温度は1000℃超えとする。好ましくは、仕上げ圧延の開始温度は1010℃以上である。鋼の性質上、仕上げ圧延の開始温度について、上限は特に設けない。熱間圧延ラインに加熱装置がない限りはスラブ加熱温度が、仕上げ圧延の開始温度における実質的な上限温度であり、1200℃以下になることが多い。
Starting temperature of finish rolling: over 1000°C The hot-rolled steel sheet according to this embodiment has a steel composition with an increased driving force for the transformation from austenite to ferrite, so that under normal hot rolling conditions, ferrite is generated at a high temperature range of 600°C or higher coiling temperature, and the desired steel structure cannot be obtained. Therefore, it is necessary to increase the hot rolling temperature and avoid rolling in the austenite non-recrystallization temperature range. Therefore, the starting temperature of finish rolling is over 1000°C. Preferably, the starting temperature of finish rolling is 1010°C or higher. Due to the nature of the steel, there is no particular upper limit for the starting temperature of finish rolling. Unless there is a heating device in the hot rolling line, the slab heating temperature is the substantial upper limit temperature for the starting temperature of finish rolling, and is often 1200°C or lower.
1パス目と2パス目の圧下率がそれぞれ35%以上
 オーステナイトが再結晶する高温域で圧下率を高めることで、仕上げ圧延終了時のオーステナイトの加工度が下げられ、その結果、フェライトの核生成が抑制され、小角粒界を含む結晶粒の金属組織が得られる。小角粒界を含む結晶粒の金属組織を得るには、1パス目と2パス目の圧下率はそれぞれ35%以上である。好ましくは、1パス目と2パス目の圧下率はそれぞれ38%以上である。
 1パス目および2パス目の圧下率はそれぞれ下記(4)式および(5)式で算出することができる。
 1パス目の圧下率=(t-t)/t・・・(4)
 2パス目の圧下率=(t-t)/t・・・(5)
 ここで、t、t、およびtはそれぞれ仕上げ圧延前の板厚、1パス後の板厚、および2パス後の板厚である。
The reduction ratios of the first and second passes are each 35% or more. By increasing the reduction ratio in the high temperature region where austenite recrystallizes, the degree of austenite processing at the end of finish rolling is reduced, and as a result, the nucleation of ferrite is suppressed, and a metal structure with crystal grains containing low-angle grain boundaries is obtained. To obtain a metal structure with crystal grains containing low-angle grain boundaries, the reduction ratios of the first and second passes are each 35% or more. Preferably, the reduction ratios of the first and second passes are each 38% or more.
The rolling reductions in the first and second passes can be calculated by the following formulas (4) and (5), respectively.
Reduction rate of first pass=(t 0 −t 1 )/t 0 (4)
Reduction rate of second pass=(t 1 −t 2 )/t 1 (5)
Here, t 0 , t 1 , and t 2 are the sheet thickness before finish rolling, the sheet thickness after one pass, and the sheet thickness after two passes, respectively.
3パス目から圧延完了までの総圧下率:85%以下
 仕上げ圧延完了までのオーステナイトの加工度を制御し、フェライトの核生成サイトの密度を低下させることで、ポリゴナルフェライトの生成が抑制され、小角粒界を含む組織の形成が促進される。小角粒界を含む組織を得るには、3パス目から圧延完了までの総圧下率は、85%以下とする。好ましくは、3パス目から圧延完了までの総圧下率は、80%以下である。
 また、3パス目から圧延完了までの総圧下率は(6)式で算出することができる。
 3パス目から圧延完了までの総圧下率=(t-t)/t・・・(6)
 ここで、tは仕上げ圧延完了後の板厚である。
Total reduction ratio from the third pass to the end of rolling: 85% or less By controlling the degree of austenite processing until the end of finish rolling and reducing the density of ferrite nucleation sites, the generation of polygonal ferrite is suppressed and the formation of a structure containing low-angle grain boundaries is promoted. To obtain a structure containing low-angle grain boundaries, the total reduction ratio from the third pass to the end of rolling is 85% or less. Preferably, the total reduction ratio from the third pass to the end of rolling is 80% or less.
In addition, the total rolling reduction from the third pass to the end of rolling can be calculated by formula (6).
Total reduction rate from the third pass to the end of rolling=(t 2 −t f )/t 2 (6)
Here, tf is the plate thickness after the completion of finish rolling.
仕上げ圧延後の冷却停止温度600℃以上700℃以下まで平均冷却速度40℃/s以上
 熱延後、700℃以下までの冷却速度が遅いと高温で粗大かつ粒内に結晶ひずみの小さいポリゴナルフェライト(フェライト)が生成する。このフェライトの生成を抑制するには、熱延後、平均冷却速度40℃/s以上で冷却する必要があり、熱延後2s以内で700℃以下まで平均冷却速度50℃/s以上で冷却することが好ましい。
 一方、冷却停止温度が600℃を下回ると、Ti又はNbを含む炭化物が得られにくく、降伏強さが650MPa以上の鋼板が得られない。
 したがって、冷却停止温度を600℃以上700℃以下とする。好ましくは、冷却停止温度は、610℃以上690℃以下である。ここで、平均冷却速度は、熱延後、放冷以外の強制冷却で{(冷却開始温度)-(冷却完了温度)}/(放冷以外の強制冷却時間)で計算すれば良い。強制冷却の手段として、例えば水冷が挙げられる。
Cooling stop temperature after finish rolling is 600°C to 700°C at an average cooling rate of 40°C/s or more If the cooling rate to 700°C or less after hot rolling is slow, polygonal ferrite (ferrite) that is coarse at high temperature and has small crystal strain within the grains is generated. In order to suppress the generation of this ferrite, it is necessary to cool at an average cooling rate of 40°C/s or more after hot rolling, and it is preferable to cool at an average cooling rate of 50°C/s or more to 700°C or less within 2 seconds after hot rolling.
On the other hand, if the cooling stop temperature is below 600° C., it is difficult to obtain carbides containing Ti or Nb, and a steel sheet having a yield strength of 650 MPa or more cannot be obtained.
Therefore, the cooling stop temperature is set to 600° C. or more and 700° C. or less. Preferably, the cooling stop temperature is 610° C. or more and 690° C. or less. Here, the average cooling rate may be calculated by {(cooling start temperature)-(cooling completion temperature)}/(forced cooling time other than natural cooling) after hot rolling, in which forced cooling other than natural cooling is performed. An example of the forced cooling method is water cooling.
巻取温度:600℃以上700℃以下
 冷却停止温度と同一の理由で巻取温度を600℃以上700℃以下とする。好ましくは610℃以上690℃以下である。この温度域で巻き取りをすれば、フェライト、ベイナイト、マルテンサイト、及び残留オーステナイトの生成を抑制することができる。
Coiling temperature: 600° C. or higher and 700° C. or lower For the same reason as the cooling stop temperature, the coiling temperature is set to 600° C. or higher and 700° C. or lower. The coiling temperature is preferably 610° C. or higher and 690° C. or lower. If coiling is performed in this temperature range, the generation of ferrite, bainite, martensite, and retained austenite can be suppressed.
 次に、本実施形態に係る熱延鋼板の製造方法の第二形態を説明する。本実施形態では第一形態との違いを説明する。
<第二形態の鋳造工程>
 本実施形態に係る熱延鋼板は薄スラブ連鋳法でも製造することが可能である。薄スラブ連鋳法で製造する場合には、厚さ35mm以上200mm以下の鋼素材を鋳造する。
<第二形態の粗圧延工程>
鋳造された前記鋼素材を、加熱温度が1200℃以上に加熱し、又は鋳造後加熱せずに、必要に応じて粗圧延して、シートバーとする。
 仕上げ圧延工程以降は第一形態と同様である。
Next, a second embodiment of the method for producing a hot-rolled steel sheet according to the present embodiment will be described. In this embodiment, the difference from the first embodiment will be described.
<Second type casting process>
The hot rolled steel sheet according to the present embodiment can also be produced by a thin slab continuous casting method. When produced by the thin slab continuous casting method, a steel material having a thickness of 35 mm to 200 mm is cast.
<Second type rough rolling step>
The cast steel material is heated to a heating temperature of 1200° C. or higher, or is not heated after casting, and is roughly rolled as necessary to form a sheet bar.
The process after the finish rolling step is the same as that of the first embodiment.
 ここでは、薄スラブ連鋳法で特有のスラブ(鋼素材)厚さについて説明する。 Here, we will explain the slab (steel material) thickness that is unique to the thin slab continuous casting method.
スラブ(鋼素材)厚さ:厚さ35mm以上200mm以下
 薄スラブ連鋳法では連続鋳造法とは異なり、熱間圧延前のスラブが薄いことから、熱間圧延におけるオーステナイトの加工度が低い。スラブ厚さが35mmを下回ると、1パス目から2パス目、3パス目から圧延完了までの所定の圧下率が得られない。
 一方、スラブ厚さが200mmを上回ると、鋼素材の鋳造速度が遅くなり、連続鋳造法に比べて薄スラブ連鋳法における生産性の優位性が失われる。したがって、薄スラブ連鋳法におけるスラブ厚さは35mm以上200mm以下とする。
Slab (steel material) thickness: 35 mm to 200 mm Unlike the continuous casting method, the thin slab before hot rolling is thin in the thin slab continuous casting method, so the degree of austenite processing in the hot rolling is low. If the slab thickness is less than 35 mm, the specified reduction rate cannot be obtained from the first pass to the second pass, or from the third pass to the completion of rolling.
On the other hand, if the slab thickness exceeds 200 mm, the casting speed of the steel material becomes slow, and the productivity advantage of the thin slab continuous casting method compared to the continuous casting method is lost. Therefore, the slab thickness in the thin slab continuous casting method is set to 35 mm or more and 200 mm or less.
 次に、本実施形態に係る熱延鋼板の製造方法の第三形態を説明する。本実施形態では第一形態や第二形態との違いを説明する。第三形態は、熱間連続圧延技術を適用することができる。
<第三形態の接合工程>
 第一形態または第二形態で得たシートバーを仕上げ圧延前に先行するシートバーと1070℃以上で接合する。1070℃を下回ると1000℃以上の仕上げ圧延開始温度で圧延することが困難となる。好ましい接合時のシートバーの加熱温度は、1100℃以上である。
 冷却工程以降は第一形態と同様である。
Next, a third embodiment of the method for producing a hot-rolled steel sheet according to the present embodiment will be described. In this embodiment, the difference from the first and second embodiments will be described. In the third embodiment, a continuous hot rolling technique can be applied.
<Joining process of the third embodiment>
The sheet bar obtained in the first or second embodiment is joined to the preceding sheet bar at 1070° C. or higher before finish rolling. If the temperature is lower than 1070° C., it becomes difficult to perform rolling at the finish rolling start temperature of 1000° C. or higher. The preferred heating temperature of the sheet bar during joining is 1100° C. or higher.
The steps after the cooling step are the same as those in the first embodiment.
 本実施形態に係る熱延鋼板の製造方法では、焼鈍温度が720℃以下の連続焼鈍ラインで焼鈍する焼鈍工程と、連続めっきラインでめっきするめっき工程と、を適用することができる。さらに、めっき処理した熱延鋼板を460℃以上600℃以下に加熱し合金化処理を施す合金化工程を有していてもよい。この焼鈍処理、又はこのめっき処理しても本実施形態に係る熱延鋼板の材質に影響をおよぼさない。そのため、熱延鋼板表面に、さらにめっき処理を施し、鋼板表面にめっき層を有することが可能である。 The manufacturing method for the hot-rolled steel sheet according to this embodiment can apply an annealing process in which annealing is performed in a continuous annealing line where the annealing temperature is 720°C or less, and a plating process in which plating is performed in a continuous plating line. In addition, an alloying process may be included in which the plated hot-rolled steel sheet is heated to 460°C or more and 600°C or less and alloyed. This annealing process or this plating process does not affect the material properties of the hot-rolled steel sheet according to this embodiment. Therefore, it is possible to further plate the surface of the hot-rolled steel sheet to provide a plating layer on the steel sheet surface.
 また、前述のように、めっき処理やめっき浴の組成は、本実施形態に係る熱延鋼板の材質に影響をおよぼさないため、めっき処理としては、溶融亜鉛めっき処理、合金化溶融亜鉛めっき処理、電気亜鉛めっき処理のいずれも適用可能である。めっき浴の組成は、Zn、Al、Mg、Si、及びNiの1種または2種以上を含むことができる。すなわち、めっき処理において熱延鋼板の表面に形成されるめっき層の組成は、Zn、Al、Mg、Si、及びNiの1種または2種以上を含むことが可能である。 As described above, the plating process and the composition of the plating bath do not affect the material of the hot-rolled steel sheet according to this embodiment, and therefore any of hot-dip galvanizing, alloyed hot-dip galvanizing, and electrolytic galvanizing processes can be applied as the plating process. The composition of the plating bath can include one or more of Zn, Al, Mg, Si, and Ni. In other words, the composition of the plating layer formed on the surface of the hot-rolled steel sheet in the plating process can include one or more of Zn, Al, Mg, Si, and Ni.
 本発明の実施形態を実施例によりさらに説明する。なお、本発明は、以下に実施例で示す製造条件及び製品性能に限定されるものではない。実施形態が本発明の範囲内では、所望の性能を達成し得るものである。 The embodiments of the present invention will be further explained using examples. Note that the present invention is not limited to the manufacturing conditions and product performance shown in the examples below. As long as the embodiments are within the scope of the present invention, they can achieve the desired performance.
<連続鋳造法による第一形態>
 表1に示す成分組成を有する厚さ250mmの鋼素材を、表2に示す粗圧延、仕上げ圧延の条件で熱間圧延し、次いで伸長率0.1~0.5%の調質圧延、酸洗を施した後、評価に供する鋼板を製造した。
<First form using continuous casting method>
Steel materials having a thickness of 250 mm and having the chemical composition shown in Table 1 were hot rolled under the rough rolling and finish rolling conditions shown in Table 2, and then temper rolled at an elongation rate of 0.1 to 0.5% and pickled to produce steel plates to be evaluated.
<薄スラブ連鋳法による第二形態>
 表1に示す成分組成を有する鋼を表3に示す条件で薄スラブを熱間圧延し、伸長率0.1~0.5%の調質圧延、酸洗を施した後、評価に供する鋼板を製造した。
<Second method using thin slab continuous casting method>
Steel having the chemical composition shown in Table 1 was hot-rolled into thin slabs under the conditions shown in Table 3, and then the steel was temper-rolled to an elongation rate of 0.1 to 0.5% and pickled to produce steel sheets for evaluation.
<熱間連続圧延法による第三形態>
 表1に示す成分組成を有する鋼を表4に示す条件でシートバー接合し、その接合されたシートバーを熱間圧延し、伸長率0.1~0.5%の調質圧延、酸洗を施した後、評価に供する鋼板を製造した。
<Third form by hot continuous rolling method>
Steels having the chemical compositions shown in Table 1 were joined into sheet bars under the conditions shown in Table 4, and the joined sheet bars were hot rolled, temper rolled to an elongation rate of 0.1 to 0.5%, and pickled to produce steel sheets for evaluation.
<熱延鋼板にめっき層を付与する製造>
 表2の条件で製造した熱延コイルを酸洗し、次いで、表5に示す条件で、連続溶融めっきライン(CGL)で、熱延鋼板をZnめっき処理した。これにより、連続溶融めっき鋼板(GI)、及び合金化溶融めっき鋼板(GA)を製造した。
<Production of applying a plating layer to a hot-rolled steel sheet>
The hot-rolled coil produced under the conditions shown in Table 2 was pickled, and then the hot-rolled steel sheet was Zn-plated in a continuous hot-dip galvanizing line (CGL) under the conditions shown in Table 5. In this manner, a continuous hot-dip galvanized steel sheet (GI) and an alloyed hot-dip galvanized steel sheet (GA) were produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2から表5に示す条件で得られた熱延鋼板を、金属組織、引張特性、曲げ加工性、伸びフランジ性、縮みフランジ性の観点から以下の方法で評価した。その結果を表6に示す。 The hot-rolled steel sheets obtained under the conditions shown in Tables 2 to 5 were evaluated in terms of metal structure, tensile properties, bending workability, stretch flangeability, and shrink flangeability using the following methods. The results are shown in Table 6.
(i)金属組織の面積率
 熱延鋼板から、圧延方向に平行な断面が観察面となるように、試験片を切り出し、板厚中心部を1%ナイタールで腐食し、組織を現出させ、走査電子顕微鏡(SEM)で2000倍に拡大して加速電圧15kVで、板厚1/4t部を10視野分撮影した。
 フェライトは粒内に腐食痕が認められずマルテンサイトよりも低い輝度(SEMでは灰色)で観察される結晶粒である。ベイナイトおよび焼き戻しマルテンサイトは粒内に幅500nm以下のラス状の腐食痕が3つ以上隣接して観察される結晶粒である。マルテンサイトは粒内に腐食痕は認められないが、フェライトよりも高い輝度(SEMでは白色)で観察される結晶粒である。以上のようにして分離した組織を画像解析ソフト(Photoshop elementsおよびImage J)を用いて、金属組織の面積率を求めた。
 残留オーステナイトは、試験片表面を全厚に対し、3/4まで研削し、0.1mm以上化学研磨し、研磨された表面をX線回折法により測定した。残留オーステナイトの体積率は、入射線源はMoKα線を用い、(200)α、(211)α、(220)α、(200)γ、(220)γ、(311)γのピークから測定した。これにより得られた残留オーステナイト相の体積率を残留オーステナイトの面積率とした。
 面積率の決定手順は、まずSEM像からラス状組織であるベイナイト、マルテンサイト分率とセメンタイト分率を求め、次にXRDから残留オーステナイト分率を求め、次いでEBSDを用いて、ラス形態を持たず、小角粒界を含む結晶粒の分率を求め、この結晶粒の残部はフェライト分率として算出することで、各組織の分率を導出した。
(i) Area ratio of metal structure A test piece was cut out from a hot-rolled steel sheet so that a cross section parallel to the rolling direction was the observation surface, and the center part of the sheet thickness was etched with 1% nital to reveal the structure. Then, images of 10 fields of view of the ¼t part of the sheet thickness were taken with a scanning electron microscope (SEM) at a magnification of 2000 times and an acceleration voltage of 15 kV.
Ferrite is a crystal grain that does not show any corrosion marks within the grain and is observed with a lower brightness than martensite (gray in SEM). Bainite and tempered martensite are crystal grains in which three or more adjacent lath-shaped corrosion marks with a width of 500 nm or less are observed within the grain. Martensite is a crystal grain that does not show any corrosion marks within the grain, but is observed with a higher brightness than ferrite (white in SEM). The area ratio of the metal structure of the structure separated in the above manner was determined using image analysis software (Photoshop elements and Image J).
The retained austenite was measured by grinding the surface of the test piece to 3/4 of the total thickness, chemically polishing it to 0.1 mm or more, and measuring the polished surface by X-ray diffraction. The volume fraction of the retained austenite was measured from the peaks of (200)α, (211)α, (220)α, (200)γ, (220)γ, and (311)γ using MoKα radiation as the incident radiation source. The volume fraction of the retained austenite phase obtained in this manner was taken as the area fraction of the retained austenite.
The procedure for determining the area fraction was as follows: first, the fractions of bainite, martensite, and cementite, which are lath-shaped structures, were obtained from SEM images; next, the fraction of retained austenite was obtained from XRD; and next, the fraction of crystal grains that did not have a lath morphology and contained low-angle grain boundaries was obtained using EBSD. The remainder of these crystal grains was calculated as the ferrite fraction, thereby deriving the fraction of each structure.
 小角粒界を含む結晶粒の組織の面積率は、1mm以上の視野に対し、電子線後方散乱回折(Electron BackScatter Diffraction pattern:EBSD)により解析して求めた。TSL社製のOIM Analysisソフトウェアを使用し、角度差が15°以上の粒界を大角粒界、角度差が2°以上15°未満の粒界を小角粒界とし、大角粒界で囲まれる粒界中に小角粒界を含む結晶粒の面積率を求めた。ベイナイトやマルテンサイトについても、大角粒界中に、小角粒界は含まれる。そこで、EBSD解析によって求めた小角粒界を含む結晶粒の面積率から、ベイナイトおよび焼き戻しマルテンサイト、マルテンサイトの面積率を差し引いて、本実施形態に係る熱延鋼板における小角粒界を含む結晶粒の面積率とした。 The area ratio of the structure of crystal grains containing low-angle grain boundaries was obtained by analyzing a visual field of 1 mm2 or more by electron backscatter diffraction (EBSD). Using OIM Analysis software manufactured by TSL, grain boundaries with an angle difference of 15° or more were defined as high-angle grain boundaries, and grain boundaries with an angle difference of 2° or more and less than 15° were defined as low-angle grain boundaries, and the area ratio of crystal grains containing low-angle grain boundaries in grain boundaries surrounded by high-angle grain boundaries was obtained. For bainite and martensite, low-angle grain boundaries are also included in high-angle grain boundaries. Therefore, the area ratio of crystal grains containing low-angle grain boundaries in the hot-rolled steel sheet according to this embodiment was obtained by subtracting the area ratios of bainite, tempered martensite, and martensite from the area ratio of crystal grains containing low-angle grain boundaries obtained by EBSD analysis.
(ii)Ti又はNbを含む炭化物の平均粒子径
 試験片の板厚1/4に相当する場所から観察用薄膜を採取し、透過型電子顕微鏡により60万倍以上の倍率で300個以上のTi又はNbを含む炭化物を撮影した。撮影したTi又はNbを含む炭化物の円相当径を求め、その平均値を平均粒子径とした。Ti又はNbを含む炭化物の特定はTEMに付帯するEDXでNbに由来するピークの有無を確認すれば良い。
(ii) Average particle size of Ti or Nb-containing carbides A thin film for observation was taken from a location equivalent to 1/4 of the plate thickness of the test piece, and 300 or more Ti or Nb-containing carbides were photographed at a magnification of 600,000 times or more using a transmission electron microscope. The circle equivalent diameters of the photographed Ti or Nb-containing carbides were calculated, and the average value was taken as the average particle size. The Ti or Nb-containing carbides can be identified by checking the presence or absence of a peak derived from Nb using EDX attached to the TEM.
(iii)Ti又はNbを含む炭化物の析出量分析
 試験片の表裏面を、それぞれ板厚に対して25%研削加工し、次いで10%AA電解溶液にて溶解し、その溶解液をメッシュ径0.2μmのフィルターでろ過し、ろ過後の電解溶液に含まれるTiおよびNb濃度をICP-MSを用いて分析した。含有するTiおよびNb量から電解溶液に含まれるTiおよびNb濃度を差し引くことで、TiおよびNbを含む炭化物の析出量とした。
(iii) Analysis of the amount of carbide precipitated containing Ti or Nb The front and back surfaces of the test pieces were ground by 25% of the plate thickness, and then dissolved in a 10% AA electrolytic solution. The solution was filtered through a filter with a mesh size of 0.2 μm, and the Ti and Nb concentrations in the filtered electrolytic solution were analyzed using ICP-MS. The amount of carbide precipitated containing Ti and Nb was determined by subtracting the Ti and Nb concentrations in the electrolytic solution from the amount of Ti and Nb contained.
(iv)引張試験
 表2から表5に示す条件で得られた熱延鋼板から、圧延方向に対して垂直方向にJIS5号の引張試験片を作製し、JIS Z 2241(2011)の規定に準拠した引張試験を5回行い、平均の引張強さ(TS)を求めた。引張試験のクロスヘッドスピードは10mm/minとした。表6において、降伏強さが650MPa以上を発明例とした。
(iv) Tensile test From the hot-rolled steel sheets obtained under the conditions shown in Tables 2 to 5, tensile test pieces of JIS No. 5 were prepared in the direction perpendicular to the rolling direction, and tensile tests in accordance with the provisions of JIS Z 2241 (2011) were performed five times to obtain the average tensile strength (TS). The crosshead speed of the tensile test was 10 mm/min. In Table 6, the steel sheets with a yield strength of 650 MPa or more were considered to be inventive examples.
(v)曲げ試験
 表2から表5に示す条件で得られた熱延鋼板から、端面を研削加工した幅35mm、長さ100mmの試験片を採取し、JIS Z 2248に記載のVブロック法で5回曲げ試験を行った。R/tが0.5以下の試験片を本発明で求める特性として表6の結果に“〇”を、5回試験したうち、前記条件で1回以上、試験片表面に割れが認められた試験片は本発明で求める特性ではないとして“×”を記した。
(v) Bending test From the hot rolled steel sheets obtained under the conditions shown in Tables 2 to 5, test pieces with a width of 35 mm and a length of 100 mm were taken by grinding the end faces, and a bending test was carried out five times by the V-block method described in JIS Z 2248. Test pieces with an R/t of 0.5 or less are marked with "◯" in the results in Table 6, as they have the characteristics required by the present invention, and test pieces in which cracks were found on the surface of the test piece at least once out of the five tests under the above conditions are marked with "X", as they do not have the characteristics required by the present invention.
(vi)伸びフランジ性
 表2から表5に示す条件で得られた熱延鋼板から120mm×120mmの試験片を3枚採取し、JFST1001(日本鉄鋼連盟規格)に準拠した穴広げ試験を5回行い、その平均の穴広げ率λ(%)を求め、伸びフランジ性を評価した。表6において、λ80%以上を発明例として、本発明鋼で求める鋼板の機械的性質とした。
(vi) Stretch flangeability Three test pieces of 120 mm x 120 mm were taken from the hot-rolled steel sheets obtained under the conditions shown in Tables 2 to 5, and a hole expansion test in accordance with JFST1001 (Japan Iron and Steel Federation standard) was carried out five times to determine the average hole expansion ratio λ (%) and evaluate the stretch flangeability. In Table 6, λ of 80% or more is regarded as an invention example, and is the mechanical property of the steel sheet required for the steel of the present invention.
(vii)縮みフランジ性
 表2から表5に示す条件で得られた熱延鋼板からφ110mmの深絞り成形用サンプルを5枚採取し、ポンチ肩部の半径が5mmのφ50mmのポンチを使用して、円筒絞り加工を行った後、円筒絞り加工品を氷水に30分浸漬した。その後、ただちに高さ1m上方にある、円筒深絞り加工底面に当たらないように調整された先端角度45°の円錐台ポンチが付いた重さ10kgの錘の下へ円筒絞り加工品を配置した。円錐台ポンチ中央と円筒絞り加工品の中央が一致する位置へ円筒絞り加工品の開口部が上方となるように設置した。ただちに上方の錘を円筒絞り加工品がある鉛直方向へ自由落下させ、錘落下後の円筒絞り加工品の割れ有無を確認した。表6において、5回の繰り返し試験でいずれも割れが生じなかった円筒絞り加工品は、本発明で求める特性として、“〇”を、5回の繰り返し試験でいずれも割れが生じた、もしくは錘落下による衝撃で割れが1回以上発生した円筒絞り加工品には“×”を記した。
(vii) Shrinkage flangeability Five samples for deep drawing with a diameter of 110 mm were taken from the hot-rolled steel sheets obtained under the conditions shown in Tables 2 to 5, and a cylindrical drawing process was performed using a punch with a diameter of 50 mm and a radius of the punch shoulder of 5 mm. The cylindrical drawing process was then immersed in ice water for 30 minutes. Immediately thereafter, the cylindrical drawing process was placed under a weight of 10 kg with a truncated cone punch with a tip angle of 45°, which was adjusted so as not to hit the bottom surface of the cylindrical deep drawing process, located 1 m above. The cylindrical drawing process was placed so that the opening of the cylindrical drawing process was at the top, at a position where the center of the truncated cone punch and the center of the cylindrical drawing process were aligned. The upper weight was immediately allowed to fall freely in the vertical direction of the cylindrical drawing process, and the presence or absence of cracks in the cylindrical drawing process after the weight was dropped was confirmed. In Table 6, cylindrical drawn products that did not crack in any of the five repeated tests are marked with "O" as the characteristics required by the present invention, and cylindrical drawn products that cracked in any of the five repeated tests or that cracked at least once due to the impact of the falling weight are marked with "X".
 本発明例はいずれも、降伏強さ(YS)が650MPa以上であり、良好な曲げ加工性、伸びフランジ性および縮みフランジ性が得られた。一方、本発明の範囲を外れる比較例は、降伏強さが650MPaに達していないか、本発明で求める曲げ加工性、伸びフランジ性もしくは縮みフランジ性が得られなかった。

 
All of the examples of the present invention had a yield strength (YS) of 650 MPa or more, and good bending workability, stretch flangeability and shrink flangeability were obtained. On the other hand, the comparative examples outside the range of the present invention either had a yield strength not reaching 650 MPa or did not obtain the bending workability, stretch flangeability or shrink flangeability required in the present invention.

Claims (7)

  1. 質量%で、
    C:0.045%以上0.110%未満、
    Si:1.5%以下、
    Mn:0.7%以下、
    P:0.05%以下、
    S:0.010%以下、
    Al:0.005%以上0.080%以下、
    N:0.0060%以下、
    B:0.0002%以上0.0050%以下、
    さらに、Ti及びNbの1種又は2種を、下記(1)式を満たす範囲で含有し、
    任意選択的に、さらに、V、Mo、Sb、REM、Mg、Ca、Sn、Ni、Cu、Co、As、Cr、W、Ta、Pb、Cs、Zr、Hf、Te、Bi及びSeのいずれか1種以上を合計で1%以下を含有し、
    残部がFe及び不可避的不純物からなる成分組成を有し、
    金属組織の面積率で、
    フェライトが0%以上75%以下、
    ベイナイト、マルテンサイト、焼き戻しマルテンサイト及び残留オーステナイトの合計が3%以下、
    小角粒界を含む結晶粒が25%以上であって、
    平均粒子径が8nm以下のTi又はNbを含む炭化物を有する、降伏強さが650MPa以上の熱延鋼板。
            記
    0.09≦([%Nb]/2)+[%Ti*]・・・(1)
    ここで、[%Ti*]=[%Ti]-48[%N]/14であり、[%M](M=Nb、Ti、N)は質量%でNb、Ti、及びNの含有量である。
    In mass percent,
    C: 0.045% or more and less than 0.110%;
    Si: 1.5% or less,
    Mn: 0.7% or less,
    P: 0.05% or less,
    S: 0.010% or less,
    Al: 0.005% or more and 0.080% or less,
    N: 0.0060% or less,
    B: 0.0002% or more and 0.0050% or less,
    Furthermore, one or both of Ti and Nb are contained in a range satisfying the following formula (1),
    Optionally, the composition further contains one or more of V, Mo, Sb, REM, Mg, Ca, Sn, Ni, Cu, Co, As, Cr, W, Ta, Pb, Cs, Zr, Hf, Te, Bi, and Se in a total amount of 1% or less;
    The balance is Fe and unavoidable impurities.
    The area ratio of the metal structure is
    Ferrite is 0% or more and 75% or less.
    The total of bainite, martensite, tempered martensite and retained austenite is 3% or less;
    The percentage of crystal grains containing small angle boundaries is 25% or more,
    A hot-rolled steel sheet having a yield strength of 650 MPa or more and containing carbides containing Ti or Nb with an average grain size of 8 nm or less.
    0.09≦([% Nb]/2)+[% Ti*] (1)
    Here, [% Ti*] = [% Ti] - 48 [% N] / 14, and [% M] (M = Nb, Ti, N) is the content of Nb, Ti, and N in mass%.
  2. 前記熱延鋼板の表面にめっき層を有することを特徴とする請求項1に記載の熱延鋼板。 The hot-rolled steel sheet according to claim 1, characterized in that the surface of the hot-rolled steel sheet has a plating layer.
  3. 請求項1に記載の成分組成を有する鋼素材を、加熱温度が1200℃以上に加熱し、又は鋳造後加熱せずに、粗圧延してシートバーとする粗圧延工程と、
    該シートバーを圧延の開始温度が1000℃超え、1パス目と2パス目の圧下率がそれぞれ35%以上、3パス目から圧延完了までの総圧下率が85%以下で仕上げ圧延して熱延鋼板とする仕上げ圧延工程と、
    該熱延鋼板を600℃以上700℃以下の冷却停止温度まで平均冷却速度40℃/s以上で冷却する冷却工程と、
    冷却された前記熱延鋼板を巻取温度が600℃以上700℃以下で巻き取る巻取工程と、
    を含むことを特徴とする熱延鋼板の製造方法。
    A rough rolling process in which the steel material having the composition according to claim 1 is roughly rolled into a sheet bar by heating the steel material to a heating temperature of 1200 ° C. or more, or by not heating the steel material after casting;
    a finish rolling process in which the sheet bar is finish-rolled at a rolling start temperature exceeding 1000°C, with rolling reductions of 35% or more in the first and second passes, and with a total rolling reduction of 85% or less from the third pass to the end of rolling, to obtain a hot-rolled steel sheet;
    A cooling step of cooling the hot-rolled steel sheet to a cooling stop temperature of 600° C. or more and 700° C. or less at an average cooling rate of 40° C./s or more;
    a coiling step of coiling the cooled hot-rolled steel sheet at a coiling temperature of 600° C. or more and 700° C. or less;
    A method for producing a hot-rolled steel sheet, comprising:
  4. 前記粗圧延工程、又は前記仕上げ圧延工程の前に、請求項1に記載の成分組成を有する、厚さが35mm以上200mm以下の鋼素材を鋳造する鋳造工程を含み、
    前記粗圧延工程を適用し、または、適用せずにシートバーとすることを特徴とする請求項3に記載の熱延鋼板の製造方法。
    The method includes a casting step of casting a steel material having a thickness of 35 mm or more and 200 mm or less and having the component composition according to claim 1, prior to the rough rolling step or the finish rolling step;
    The method for producing a hot-rolled steel sheet according to claim 3, characterized in that the rough rolling step is applied or not applied to produce a sheet bar.
  5. 前記粗圧延工程と前記仕上げ圧延工程の間に、粗圧延された前記シートバーと先行するシートバーとを1070℃以上で接合する接合工程を含み、
    前記仕上げ圧延工程では、接合された前記シートバーを仕上げ圧延することを特徴とする請求項3に記載の熱延鋼板の製造方法。
    Between the rough rolling step and the finish rolling step, a joining step of joining the roughly rolled sheet bar and a preceding sheet bar at 1070 ° C. or more is included,
    The method for producing a hot-rolled steel sheet according to claim 3, characterized in that, in the finish rolling step, the joined sheet bar is finish-rolled.
  6. さらに、前記熱延鋼板を、焼鈍温度が720℃以下で焼鈍する熱延板焼鈍工程と、
    焼鈍された前記熱延鋼板にめっき処理を施すめっき工程と、
    を含むことを特徴とする請求項3から5のいずれか1項に記載の熱延鋼板の製造方法。
    Further, a hot-rolled steel sheet annealing process is performed in which the hot-rolled steel sheet is annealed at an annealing temperature of 720° C. or less.
    A plating process for plating the annealed hot-rolled steel sheet;
    The method for producing a hot-rolled steel sheet according to any one of claims 3 to 5, further comprising the steps of:
  7. さらに、めっきされた前記熱延鋼板に460℃以上600℃以下の合金化処理を施す合金化工程を含むことを特徴とする請求項6に記載の熱延鋼板の製造方法。

     
    The method for producing a hot-rolled steel sheet according to claim 6, further comprising an alloying step of subjecting the plated hot-rolled steel sheet to an alloying treatment at a temperature of 460°C or higher and 600°C or lower.

PCT/JP2023/033820 2022-11-16 2023-09-19 Hot-rolled steel sheet and method for producing same WO2024105999A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-183476 2022-11-16
JP2022183476 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024105999A1 true WO2024105999A1 (en) 2024-05-23

Family

ID=91084303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033820 WO2024105999A1 (en) 2022-11-16 2023-09-19 Hot-rolled steel sheet and method for producing same

Country Status (1)

Country Link
WO (1) WO2024105999A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147898A1 (en) * 2011-04-25 2012-11-01 Jfeスチール株式会社 High-strength steel plate with excellent formability and stability of material properties, and method for manufacturing same
WO2014119259A1 (en) * 2013-01-31 2014-08-07 Jfeスチール株式会社 High-strength hot-rolled steel sheet and manufacturing process therefor
WO2015093596A1 (en) * 2013-12-19 2015-06-25 日新製鋼株式会社 Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same
WO2016136810A1 (en) * 2015-02-24 2016-09-01 新日鐵住金株式会社 Cold-rolled steel sheet and method for manufacturing same
WO2018143318A1 (en) * 2017-02-06 2018-08-09 Jfeスチール株式会社 Molten zinc plating steel sheet and production method therefor
JP2021055135A (en) * 2019-09-27 2021-04-08 日本製鉄株式会社 HOT-DIP Zn-Al-Mg BASED PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147898A1 (en) * 2011-04-25 2012-11-01 Jfeスチール株式会社 High-strength steel plate with excellent formability and stability of material properties, and method for manufacturing same
WO2014119259A1 (en) * 2013-01-31 2014-08-07 Jfeスチール株式会社 High-strength hot-rolled steel sheet and manufacturing process therefor
WO2015093596A1 (en) * 2013-12-19 2015-06-25 日新製鋼株式会社 Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same
WO2016136810A1 (en) * 2015-02-24 2016-09-01 新日鐵住金株式会社 Cold-rolled steel sheet and method for manufacturing same
WO2018143318A1 (en) * 2017-02-06 2018-08-09 Jfeスチール株式会社 Molten zinc plating steel sheet and production method therefor
JP2021055135A (en) * 2019-09-27 2021-04-08 日本製鉄株式会社 HOT-DIP Zn-Al-Mg BASED PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME

Similar Documents

Publication Publication Date Title
JP6052472B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP5565534B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
WO2011162412A1 (en) High-strength hot-rolled steel sheet having excellent stretch flangeability and method for producing same
WO2016113788A1 (en) High-strength hot-dip galvanized steel sheet and production method thereof
WO2013046476A1 (en) High strength steel plate and manufacturing method thereof
WO2014188966A1 (en) Hot-rolled steel sheet and method for manufacturing same
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
WO2020136988A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
CN113366134B (en) High-strength steel sheet and method for producing same
KR20210091790A (en) grater
TW202016327A (en) Hot rolled steel plate and manufacturing method thereof
WO2016120914A1 (en) High-strength plated steel sheet and production method for same
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP2004250749A (en) High strength thin steel sheet having burring property, and production method therefor
JP2018090893A (en) Process for manufacturing hot-rolled steel plate and process for manufacturing cold-rolled full hard steel plate
JP5594438B2 (en) High tensile hot rolled galvanized steel sheet and method for producing the same
JP5076480B2 (en) High-strength steel sheet excellent in strength-ductility balance and deep drawability and method for producing the same
WO2021172299A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
WO2021172298A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
WO2021172297A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
WO2021140901A1 (en) Steel sheet and method for manufacturing same
JP5861434B2 (en) High-strength hot-rolled steel sheet excellent in punchability and manufacturing method thereof
JP2012158797A (en) High strength steel sheet and method for manufacturing the same
JP4506380B2 (en) Manufacturing method of high-strength steel sheet