WO2024105966A1 - Automated analysis device - Google Patents
Automated analysis device Download PDFInfo
- Publication number
- WO2024105966A1 WO2024105966A1 PCT/JP2023/031363 JP2023031363W WO2024105966A1 WO 2024105966 A1 WO2024105966 A1 WO 2024105966A1 JP 2023031363 W JP2023031363 W JP 2023031363W WO 2024105966 A1 WO2024105966 A1 WO 2024105966A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- unit
- light receiving
- light
- photometer
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title abstract description 8
- 230000003287 optical effect Effects 0.000 claims abstract description 11
- 239000011810 insulating material Substances 0.000 claims description 9
- 230000007613 environmental effect Effects 0.000 abstract description 6
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 238000004847 absorption spectroscopy Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 39
- 239000003153 chemical reaction reagent Substances 0.000 description 23
- 230000007246 mechanism Effects 0.000 description 20
- 239000000523 sample Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000031070 response to heat Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
Definitions
- the present invention relates to an automatic analyzer.
- the object of the present invention is to provide an automatic analyzer with high-precision analytical performance by keeping the temperature of the photometer housing constant and stabilizing the temperature of the light receiving part, which is greatly affected by temperature.
- the present invention provides an automatic analyzer that includes a photometer equipped with a spectroscopic section and a light receiving section, and a temperature adjustment section that is attached to the housing of the photometer and equilibrates the temperature of the photometer, the temperature adjustment section being attached to the surface of the photometer opposite to the surface to which the light receiving section is attached.
- FIG. 1 is a schematic diagram of an example of an automatic analyzer.
- FIG. 2 is a diagram showing a configuration example of a photometer in the first embodiment.
- FIG. 4 is a diagram showing another example of the configuration of the photometer in the first embodiment.
- FIG. 4 is a diagram showing another example of the configuration of the photometer in the first embodiment.
- FIG. 13 is a supplementary diagram of a configuration example of a photometer in the first embodiment.
- FIG. 11 is a diagram showing an example of the configuration of a photometer in a second embodiment.
- FIG. 13 is a diagram showing an example of the configuration of a photometer according to a third embodiment.
- FIG. 11 is a top view of a photometer in Example 3.
- FIG. 13 is a diagram showing an example of the configuration of a photometer in Example 4.
- FIG. 1 is a schematic diagram showing the overall configuration of an automatic analyzer 100.
- the automatic analyzer 100 shown in the figure is an apparatus that performs measurements by irradiating a sample with light.
- the automatic analyzer 100 includes a sample disk 103, a reagent disk 106, a reaction disk 109, a dispensing mechanism, a control circuit 201, a light quantity measuring circuit 202, a data processing unit 203, an input unit 204, and an output unit 205.
- the dispensing mechanism on the reaction disk moves samples and reagents between disks.
- the control circuit 201 controls each disk and the dispensing mechanism, and the light quantity measuring circuit 202 measures the absorbance of the reaction solution.
- the data processing unit 203 processes the data measured by the light quantity measuring circuit 202.
- the input unit 204 and the output unit 205 are interfaces with the data processing unit 203.
- the dispensing mechanism includes a sample dispensing mechanism 110 and a reagent dispensing mechanism 111.
- the data processing unit 203 includes an information recording unit 2031 and an analysis unit 2032.
- the information recording unit 2031 stores control data, measurement data, data used in data analysis, analysis result data, etc.
- the data processing unit 203 may be realized using a computer.
- a number of specimen cups 102 which are containers for specimens 101, are arranged on the circumference of the specimen disk 103.
- the specimen 101 is, for example, blood.
- a number of reagent bottles 105 which are containers for reagents 104, are arranged on the circumference of the reagent disk 106.
- a number of reaction cells 108 (reaction containers), which are containers for reaction solutions 107 in which the specimens 101 and reagents 104 are mixed, are arranged on the circumference of the reaction disk 109.
- the specimen dispensing mechanism 110 is a mechanism used to transfer a fixed amount of specimen 101 from the specimen cup 102 to the reaction cell 108.
- the specimen dispensing mechanism 110 is composed of, for example, a nozzle that dispenses or aspirates a solution, a robot that positions and transports the nozzle to a predetermined position, a pump that dispenses or aspirates a solution from the nozzle, and a flow path that connects the nozzle and the pump.
- the reagent dispensing mechanism 111 is a mechanism used when transferring a fixed amount of reagent 104 from the reagent bottle 105 to the reaction cell 108.
- the reagent dispensing mechanism 111 is also composed of, for example, a nozzle that dispenses or aspirates a solution, a robot that positions and transports the nozzle to a predetermined position, a pump that dispenses solution from the nozzle or aspirates solution into the nozzle, and a flow path that connects the nozzle and the pump.
- the stirring unit 112 is a mechanism that stirs and mixes the specimen 101 and the reagent 104 in the reaction cell 108.
- the washing unit 114 is a mechanism that discharges the reaction solution 107 from the reaction cell 108 after the analysis process has been completed, and then washes the reaction cell 108.
- the reaction cell 108 is immersed in a constant temperature fluid 115 in a temperature-controlled thermostatic bath. This allows the reaction cell 108 and the reaction solution 107 therein to be kept at a constant temperature by the control circuit 201 even while being moved by the reaction disk 109.
- a constant temperature fluid 115 For example, water or air is used as the constant temperature fluid 115.
- a photometer 113 that performs absorbance analysis on the sample 101 is positioned on a portion of the circumference of the reaction disk 109.
- the amounts of components such as proteins, sugars, and lipids contained in the sample 101 are calculated according to the following procedure.
- the control circuit 201 causes the sample dispensing mechanism 110 to dispense a fixed amount of the sample 101 in the sample cup 102 into the reaction cell 108.
- the control circuit 201 causes the reagent dispensing mechanism 111 to dispense a fixed amount of the reagent 104 in the reagent bottle 105 into the reaction cell 108.
- the control circuit 201 rotates the specimen disk 103, the reagent disk 106, and the reaction disk 109 using the corresponding drive units. At this time, the specimen cup 102, the reagent bottle 105, and the reaction cell 108 are positioned at a predetermined dispensing position according to the drive timing of the corresponding dispensing mechanism.
- reaction cell 108 containing the reaction solution 107 passes the measurement position where the photometer 113 is located. Each time it passes the measurement position, the amount of light transmitted from the reaction solution 107 is measured via the photometer 113.
- the measurement data is output sequentially to the information recording unit 2031 and stored as reaction process data.
- reaction process data acquired at fixed time intervals is stored in the information recording unit 2031.
- FIG. 2 is a diagram showing an example of the configuration of the photometer of the first embodiment, i.e., the photometer 113.
- the irradiation light generated from the light source unit 301 is emitted along the optical path 401, and is collected by the collecting lens 403 and irradiated onto the reaction cell 108.
- a light source side slit 402 may be arranged to limit the width of the light emitted from the light source unit 301.
- the irradiation light generated from the light source unit 301 is emitted along the optical path 401, and is collected by the collecting lens 403 and irradiated onto the reaction cell 108.
- a light source side slit 402 may be arranged to uniformly distribute the amount of light within the irradiation surface of the light, thereby restricting the width of the light emitted from the light source unit 301.
- the light transmitted through the reaction solution 107 in the reaction cell 108 is split by a spectroscopic unit (e.g., a diffraction grating) 3021 attached to the housing 302, and is received by a light receiving unit 3022 equipped with a number of light receivers.
- a spectroscopic unit e.g., a diffraction grating
- the spectroscopic unit 3021 may not be provided. Since light that has not transmitted through the reaction solution 107 becomes noise, a slit 404 on the spectroscopic unit side may be provided to prevent such stray light from entering the light receiving unit 3022.
- Examples of measurement wavelengths received by the light receiving unit 3022 include 340 nm, 376 nm, 405 nm, 415 nm, 450 nm, 480 nm, 505 nm, 546 nm, 570 nm, 600 nm, 660 nm, 700 nm, 750 nm, and 800 nm.
- the light reception signals from these photoreceivers are sent to the information recording unit 2031 of the data processing unit 203 via the light quantity measurement circuit 202.
- the first temperature adjustment unit 3024 is attached to the housing 302, and is attached to the surface opposite to the surface to which the light receiving unit 3022 is attached.
- the first temperature adjustment unit 3024 is preferably attached near the light receiving unit 3022.
- the first temperature adjustment unit 3024 has a function of controlling the output according to the temperature of the first temperature sensor 3026, and adjusting the temperature by at least raising the temperature.
- the first temperature adjustment unit 3024 can suppress the temperature change of the housing 302, and the analytical performance can be stably maintained. By assembling it near the light receiving unit 3022, which is particularly affected by temperature, the time until the analytical performance stabilizes can be further shortened.
- a heater, a Peltier element, a block in which a temperature-controlled liquid is circulated inside, etc. can be used.
- FIG. 3 shows a form in which the light receiving unit 3022 is attached to a holding member 3023, and the holding member 3023 is then attached to the housing 302.
- the holding member 3023 has a base material of a metal with high thermal conductivity.
- the temperature adjustment unit transfers heat to the housing 302, but dissipates heat from the surface exposed to the outside air. Therefore, as shown in Figure 4, the surface exposed to the outside air and dissipating heat may be covered with insulating material 3029. This allows heat to be transferred to the housing 302 efficiently.
- FIG. 5 is a perspective view focusing on the temperature adjustment unit 3024 in FIG. 4.
- the light receiving unit 3022 is attached to the upper surface of the housing 302, and the first temperature adjustment unit 3024 is attached to the lower surface (opposite surface) of the housing 302.
- the insulation material 3029 consists of two sheets: one plate with screw holes for fixing the temperature sensor, and one regular plate. This is because heat escapes from the screw heads, and insulation is then layered on top to cover the plate.
- optical components such as a mirror 3028 that reflects light, a filter that transmits specific wavelengths, and a filter that reflects heat rays from a light source that is a high-temperature heat source such as a xenon lamp or halogen lamp may be installed on the optical path 401 from the light source unit 301 to the spectroscopic unit 3021.
- Example 1 the output of the first temperature adjustment unit 3024 is adjusted according to the temperature of the first temperature sensor 3026.
- the method of controlling the temperature adjustment unit is not limited to this.
- the automatic analyzer according to Example 2 includes a second temperature sensor 3027 that measures the environmental temperature, as shown in FIG. 6. The rest of the configuration is the same as in Example 1.
- first temperature sensor 3026 When controlling the temperature of first temperature sensor 3026 to, for example, 32°C, the amount of heat required to raise the temperature differs when the ambient temperature is 10°C and 30°C, resulting in differences in the temperature distribution in housing 302, the time it takes for the temperature to stabilize, and power consumption.
- second temperature sensor 3027 By measuring the ambient temperature using second temperature sensor 3027 and switching the target temperature of first temperature sensor 3026 in accordance with the ambient temperature using control circuit 201, it is possible to optimize the target temperature of first temperature sensor 3026. This makes it possible to control first temperature adjustment unit 3024 with a constant amount of heat, regardless of the ambient temperature.
- the number of temperature adjustment units does not have to be one.
- the automatic analyzer according to Example 3 has a configuration in which a second temperature adjustment unit 3025 is assembled to the housing 302, and is assembled to the surface opposite to the surface to which the spectroscopic unit 3021 is assembled. The rest of the configuration is the same as in Example 1.
- FIG. 8 is a top view of FIG. 7.
- the temperature distribution in the housing 302 can be balanced by installing the second temperature adjustment unit 3025, and the effects of changes in the environmental temperature can be reduced.
- the automatic analyzer of Example 4 has a configuration in which the surface of the housing 302 exposed to the outside air is covered with insulating material 3029.
- the other configurations are the same as those of Example 1.
- the surface of the housing 302 exposed to the outside air may be partially covered with the insulating material 3029.
- the insulating material 3029 For example, only the surface close to the heat source around the housing 302 that is affected by the heat source may be covered with the insulating material 3029.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
In order to achieve sufficient analytical performance in absorption spectrometry in which a photometer of an automated analysis device is used, it is necessary to keep the optical path of the photometer constant and make the sensitivity of a light receiving part constant. However, the temperature of the photometer changes in accordance with an increase in temperature within the device, and thus the optical path length changes due to heat distortion, and the sensitivity of the light receiving part changes due to temperature characteristics of the light receiving part, or to changes in the environmental temperature, and thus a photoelectric current varies. This temperature adjustment part that is attached to a housing of the photometer is characterized by being attached to a surface on the opposite side from the surface where the light receiving part of the photometer is attached, and suppresses temperature changes in the photometer, particularly in the light receiving part, that are caused by an increase in the temperature within the device, changes in the environmental temperature, or similar, and thus is able to stabilize the photoelectric current.
Description
本発明は、自動分析装置に関する。
The present invention relates to an automatic analyzer.
生体試料(以下、検体)に含まれる成分量を分析するための自動分析装置において、光源からの受光素子を冷却し、検出感度を高める方法が開示されている(特許文献1参照)。
A method has been disclosed for cooling the light receiving element from the light source to increase detection sensitivity in an automatic analyzer for analyzing the amount of components contained in a biological sample (hereinafter referred to as a specimen) (see Patent Document 1).
自動分析装置の光度計を用いた吸光分析において、十分な分析性能を得るためには、受光部が受光する波長、光量を安定させ、受光部が出力する受光信号を安定させる必要がある。ひいては、光度計の光路を一定に保ち、受光部の感度を一定にする必要がある。しかし、光度計の温度は装置内の温度上昇や、環境温度の変化に追従して変化するため、熱ひずみによって光路長が変化し、受光部の温度特性によって受光部の感度が変化するため受光信号が変動してしまう。また、装置起動から温度安定までは十分な分析性能を得ることができないため、待機時間が発生する。
In absorbance analysis using a photometer in an automatic analyzer, in order to obtain sufficient analytical performance, it is necessary to stabilize the wavelength and amount of light received by the light-receiving unit, and to stabilize the light-receiving signal output by the light-receiving unit. In turn, it is necessary to keep the light path of the photometer constant and maintain the sensitivity of the light-receiving unit constant. However, the temperature of the photometer changes in response to temperature increases within the device and changes in the environmental temperature, so the optical path length changes due to thermal strain, and the sensitivity of the light-receiving unit changes due to the temperature characteristics of the light-receiving unit, resulting in fluctuations in the light-receiving signal. In addition, sufficient analytical performance cannot be obtained from the time the device is started until the temperature stabilizes, so a waiting time occurs.
本発明の目的は、光度計の筐体の温度を一定にし、温度影響の大きい受光部の温度を安定させることで高精度な分析性能を有する自動分析装置を提供することにある。
The object of the present invention is to provide an automatic analyzer with high-precision analytical performance by keeping the temperature of the photometer housing constant and stabilizing the temperature of the light receiving part, which is greatly affected by temperature.
上記課題を解決するため、本発明においては、分光部と受光部を備えた光度計と、光度計の筐体に組付けられ、光度計の温度を平衡化する温度調整部とを備え、温度調整部は、光度計の受光部が組付けられる面と反対側の面に組付けられる構成の自動分析装置を提供する。
In order to solve the above problems, the present invention provides an automatic analyzer that includes a photometer equipped with a spectroscopic section and a light receiving section, and a temperature adjustment section that is attached to the housing of the photometer and equilibrates the temperature of the photometer, the temperature adjustment section being attached to the surface of the photometer opposite to the surface to which the light receiving section is attached.
本発明によれば、光度計の筐体の温度を一定にし、温度影響の大きい受光部の温度を安定させることで高精度な分析性能を有する自動分析装置を提供することができる。
According to the present invention, it is possible to provide an automatic analyzer with high-precision analytical performance by keeping the temperature of the photometer housing constant and stabilizing the temperature of the light receiving part, which is greatly affected by temperature.
図1は、自動分析装置100の全体構成を示す模式図である。
同図に示す自動分析装置100は、検体に対して光を照射することにより測定する装置である。自動分析装置100は、検体ディスク103、試薬ディスク106、反応ディスク109、分注機構、制御回路201、光量測定回路202、データ処理部203、入力部204、出力部205を備える。反応ディスクに分注機構は、ディスク間で検体や試薬を移動させる。制御回路201は、各ディスクや分注機構を制御する、光量測定回路202は、反応溶液の吸光度を測定する。データ処理部203は、光量測定回路202が測定したデータを処理する。入力部204と出力部205は、データ処理部203とのインタフェースである。分注機構は、検体分注機構110と試薬分注機構111を備える。 FIG. 1 is a schematic diagram showing the overall configuration of anautomatic analyzer 100.
Theautomatic analyzer 100 shown in the figure is an apparatus that performs measurements by irradiating a sample with light. The automatic analyzer 100 includes a sample disk 103, a reagent disk 106, a reaction disk 109, a dispensing mechanism, a control circuit 201, a light quantity measuring circuit 202, a data processing unit 203, an input unit 204, and an output unit 205. The dispensing mechanism on the reaction disk moves samples and reagents between disks. The control circuit 201 controls each disk and the dispensing mechanism, and the light quantity measuring circuit 202 measures the absorbance of the reaction solution. The data processing unit 203 processes the data measured by the light quantity measuring circuit 202. The input unit 204 and the output unit 205 are interfaces with the data processing unit 203. The dispensing mechanism includes a sample dispensing mechanism 110 and a reagent dispensing mechanism 111.
同図に示す自動分析装置100は、検体に対して光を照射することにより測定する装置である。自動分析装置100は、検体ディスク103、試薬ディスク106、反応ディスク109、分注機構、制御回路201、光量測定回路202、データ処理部203、入力部204、出力部205を備える。反応ディスクに分注機構は、ディスク間で検体や試薬を移動させる。制御回路201は、各ディスクや分注機構を制御する、光量測定回路202は、反応溶液の吸光度を測定する。データ処理部203は、光量測定回路202が測定したデータを処理する。入力部204と出力部205は、データ処理部203とのインタフェースである。分注機構は、検体分注機構110と試薬分注機構111を備える。 FIG. 1 is a schematic diagram showing the overall configuration of an
The
データ処理部203は、情報記録部2031と解析部2032を備える。情報記録部2031は、制御データ、測定データ、データ解析に用いるデータ、解析結果データなどを格納する。データ処理部203は、コンピュータを用いて実現されてもよい。
The data processing unit 203 includes an information recording unit 2031 and an analysis unit 2032. The information recording unit 2031 stores control data, measurement data, data used in data analysis, analysis result data, etc. The data processing unit 203 may be realized using a computer.
検体ディスク103の円周上には、検体101の収容容器である検体カップ102が複数配置される。検体101は、例えば血液である。試薬ディスク106の円周上には、試薬104の収容容器である試薬ボトル105が複数配置される。反応ディスク109の円周上には、検体101と試薬104を混合させた反応溶液107の収容容器である反応セル108(反応容器)が複数配置される。
A number of specimen cups 102, which are containers for specimens 101, are arranged on the circumference of the specimen disk 103. The specimen 101 is, for example, blood. A number of reagent bottles 105, which are containers for reagents 104, are arranged on the circumference of the reagent disk 106. A number of reaction cells 108 (reaction containers), which are containers for reaction solutions 107 in which the specimens 101 and reagents 104 are mixed, are arranged on the circumference of the reaction disk 109.
検体分注機構110は、検体カップ102から反応セル108に検体101を一定量移動させる際に使用する機構である。検体分注機構110は、例えば溶液を吐出又は吸引するノズル、ノズルを所定位置に位置決め及び搬送するロボット、溶液をノズルから吐出又はノズルに吸引するポンプ、及びノズルとポンプを繋ぐ流路で構成される。
The specimen dispensing mechanism 110 is a mechanism used to transfer a fixed amount of specimen 101 from the specimen cup 102 to the reaction cell 108. The specimen dispensing mechanism 110 is composed of, for example, a nozzle that dispenses or aspirates a solution, a robot that positions and transports the nozzle to a predetermined position, a pump that dispenses or aspirates a solution from the nozzle, and a flow path that connects the nozzle and the pump.
試薬分注機構111は、試薬ボトル105から反応セル108に試薬104を一定量移動させる際に使用する機構である。試薬分注機構111も、例えば溶液を吐出又は吸引するノズル、ノズルを所定位置に位置決め及び搬送するロボット、溶液をノズルから吐出又はノズルに吸引するポンプ、及びノズルとポンプを繋ぐ流路で構成される。
The reagent dispensing mechanism 111 is a mechanism used when transferring a fixed amount of reagent 104 from the reagent bottle 105 to the reaction cell 108. The reagent dispensing mechanism 111 is also composed of, for example, a nozzle that dispenses or aspirates a solution, a robot that positions and transports the nozzle to a predetermined position, a pump that dispenses solution from the nozzle or aspirates solution into the nozzle, and a flow path that connects the nozzle and the pump.
攪拌部112は、反応セル108内で、検体101と試薬104を攪拌し混合させる機構部である。洗浄部114は、分析処理が終了した反応セル108から反応溶液107を排出し、その後、反応セル108を洗浄する機構部である。
The stirring unit 112 is a mechanism that stirs and mixes the specimen 101 and the reagent 104 in the reaction cell 108. The washing unit 114 is a mechanism that discharges the reaction solution 107 from the reaction cell 108 after the analysis process has been completed, and then washes the reaction cell 108.
反応ディスク109において、反応セル108は、温度が制御された恒温槽内の恒温流体115に浸漬されている。これにより、反応セル108及びその中の反応溶液107は、反応ディスク109による移動中も、制御回路201によってその温度は一定温度に保たれる。恒温流体115には、例えば水や空気が使用される。
In the reaction disk 109, the reaction cell 108 is immersed in a constant temperature fluid 115 in a temperature-controlled thermostatic bath. This allows the reaction cell 108 and the reaction solution 107 therein to be kept at a constant temperature by the control circuit 201 even while being moved by the reaction disk 109. For example, water or air is used as the constant temperature fluid 115.
反応ディスク109の円周上の一部に、検体101に対する吸光分析を実施する光度計113が配置される。
A photometer 113 that performs absorbance analysis on the sample 101 is positioned on a portion of the circumference of the reaction disk 109.
検体101に含まれるタンパク質、糖、脂質などの成分量の算出は、次の手順により実施される。まず、制御回路201は、検体分注機構110により、検体カップ102内の検体101を反応セル108に一定量分注する。次に、制御回路201は、試薬分注機構111により、試薬ボトル105内の試薬104を反応セル108に一定量分注する。
The amounts of components such as proteins, sugars, and lipids contained in the sample 101 are calculated according to the following procedure. First, the control circuit 201 causes the sample dispensing mechanism 110 to dispense a fixed amount of the sample 101 in the sample cup 102 into the reaction cell 108. Next, the control circuit 201 causes the reagent dispensing mechanism 111 to dispense a fixed amount of the reagent 104 in the reagent bottle 105 into the reaction cell 108.
各溶液の分注時、制御回路201は、それぞれに対応する駆動部により、検体ディスク103、試薬ディスク106、反応ディスク109を回転駆動させる。この際、検体カップ102、試薬ボトル105、反応セル108は、それぞれに対応する分注機構の駆動タイミングに応じ、所定の分注位置に位置決めされる。
When dispensing each solution, the control circuit 201 rotates the specimen disk 103, the reagent disk 106, and the reaction disk 109 using the corresponding drive units. At this time, the specimen cup 102, the reagent bottle 105, and the reaction cell 108 are positioned at a predetermined dispensing position according to the drive timing of the corresponding dispensing mechanism.
反応ディスク109の回転により、反応溶液107を収容する反応セル108は、光度計113が配置された測定位置を通過する。測定位置を通過するたび、反応溶液107からの透過光量が光度計113を介して測定される。測定データは情報記録部2031に順次出力され、反応過程データとして蓄積される。
As the reaction disk 109 rotates, the reaction cell 108 containing the reaction solution 107 passes the measurement position where the photometer 113 is located. Each time it passes the measurement position, the amount of light transmitted from the reaction solution 107 is measured via the photometer 113. The measurement data is output sequentially to the information recording unit 2031 and stored as reaction process data.
この反応過程データの蓄積の間、必要であれば、別の試薬104を試薬分注機構111により反応セル108に追加で分注し、さらに一定時間測定する。これにより、一定の時間間隔で取得された反応過程データが、情報記録部2031に格納される。
If necessary, while this reaction process data is being accumulated, another reagent 104 is additionally dispensed into the reaction cell 108 by the reagent dispensing mechanism 111, and measurement is performed for a further fixed period of time. As a result, the reaction process data acquired at fixed time intervals is stored in the information recording unit 2031.
図2は、実施例1の光度計、すなわち光度計113の一構成例を示す図である。光源部301から発生した照射光は、光路401に沿って出射され、集光レンズ403により集光されて反応セル108に照射される。このとき、光の照射面内光量分布を均一にするために光源側スリット402を配置し、光源部301からの出射光の幅を制限することがある。
FIG. 2 is a diagram showing an example of the configuration of the photometer of the first embodiment, i.e., the photometer 113. The irradiation light generated from the light source unit 301 is emitted along the optical path 401, and is collected by the collecting lens 403 and irradiated onto the reaction cell 108. At this time, in order to make the light amount distribution within the irradiation surface of the light uniform, a light source side slit 402 may be arranged to limit the width of the light emitted from the light source unit 301.
光源部301から発生した照射光は、光路401に沿って出射され、集光レンズ403により集光されて反応セル108に照射される。このとき、光の照射面内光量分布を均一にするために光源側スリット402を配置し、光源部301からの出射光の幅を制限することがある。
The irradiation light generated from the light source unit 301 is emitted along the optical path 401, and is collected by the collecting lens 403 and irradiated onto the reaction cell 108. At this time, a light source side slit 402 may be arranged to uniformly distribute the amount of light within the irradiation surface of the light, thereby restricting the width of the light emitted from the light source unit 301.
反応セル108の中の反応溶液107を透過した光は、筐体302に組付けられた分光部(例えば、回折格子)3021によって分光され、多数の受光器を備える受光部3022によって受光される。尚、光源部301から発生した照射光が単波長である場合や、受光部3022が備える受光器が光源の数と同じ場合、分光部3021を有さないことがある。反応溶液107を透過していない光はノイズになるので、そうした迷光が受光部3022に入るのを防ぐために分光部側スリット404を配置することがある。 受光部3022が受光する測定波長は、例として、340nm、376nm、405nm、415nm、450nm、480nm、505nm、546nm、570nm、600nm、660nm、700nm、750nm、800nmなどがある。これら受光器による受光信号は、光量測定回路202を通じ、データ処理部203の情報記録部2031に送信される。
The light transmitted through the reaction solution 107 in the reaction cell 108 is split by a spectroscopic unit (e.g., a diffraction grating) 3021 attached to the housing 302, and is received by a light receiving unit 3022 equipped with a number of light receivers. Note that when the irradiation light generated from the light source unit 301 is of a single wavelength, or when the number of light receivers equipped in the light receiving unit 3022 is the same as the number of light sources, the spectroscopic unit 3021 may not be provided. Since light that has not transmitted through the reaction solution 107 becomes noise, a slit 404 on the spectroscopic unit side may be provided to prevent such stray light from entering the light receiving unit 3022.
Examples of measurement wavelengths received by the light receiving unit 3022 include 340 nm, 376 nm, 405 nm, 415 nm, 450 nm, 480 nm, 505 nm, 546 nm, 570 nm, 600 nm, 660 nm, 700 nm, 750 nm, and 800 nm. The light reception signals from these photoreceivers are sent to the information recording unit 2031 of the data processing unit 203 via the light quantity measurement circuit 202.
第1温度調整部3024は筐体302に組付けられ、受光部3022が組付けられた面と反対側の面に組付けられる。第1温度調整部3024は受光部3022の近傍に組付けられることが好ましい。第1温度調整部3024は、第1温度センサ3026の温度によって出力を制御し、少なくとも昇温することで温度を調整する機能を有しており、筐体302を温度調整することで、モータ等の発熱による装置内温度の上昇に対して、筐体302の温度が安定するまでの時間を短縮することができ、分析性能が安定までの待機時間を短縮することができる。また、環境温度が変化した場合も第1温度調整部3024によって筐体302の温度変化を抑制することができ、分析性能を安定して維持することができる。特に温度影響の大きい受光部3022の近傍に組付けることで、さらに分析性能が安定するまでの時間を短縮できる。第1温度調整部3024には、ヒータ、ペルチェ素子、温調された液体を内部で循環させたブロックなどを用いることができる。
The first temperature adjustment unit 3024 is attached to the housing 302, and is attached to the surface opposite to the surface to which the light receiving unit 3022 is attached. The first temperature adjustment unit 3024 is preferably attached near the light receiving unit 3022. The first temperature adjustment unit 3024 has a function of controlling the output according to the temperature of the first temperature sensor 3026, and adjusting the temperature by at least raising the temperature. By adjusting the temperature of the housing 302, the time until the temperature of the housing 302 stabilizes against the rise in the temperature inside the device due to heat generated by the motor, etc., can be shortened, and the waiting time until the analytical performance stabilizes can be shortened. In addition, even if the environmental temperature changes, the first temperature adjustment unit 3024 can suppress the temperature change of the housing 302, and the analytical performance can be stably maintained. By assembling it near the light receiving unit 3022, which is particularly affected by temperature, the time until the analytical performance stabilizes can be further shortened. For the first temperature adjustment unit 3024, a heater, a Peltier element, a block in which a temperature-controlled liquid is circulated inside, etc. can be used.
受光部3022は、筐体302に直接組付けなくてもよい。例えば、受光部3022を保持部材3023に組付け、その保持部材3023を筐体302に組付ける形態を図3に示す。尚、受光部3022を温度調整するために、保持部材3023は熱伝導率の高い金属を基材とすることが好ましい。保持部材3023を介して受光部3022を筐体302に組付けることで、受光部3022の受光面の向きを装置のレイアウトに合わせて自在に設計することができる。
The light receiving unit 3022 does not have to be directly attached to the housing 302. For example, FIG. 3 shows a form in which the light receiving unit 3022 is attached to a holding member 3023, and the holding member 3023 is then attached to the housing 302. In order to regulate the temperature of the light receiving unit 3022, it is preferable that the holding member 3023 has a base material of a metal with high thermal conductivity. By assembling the light receiving unit 3022 to the housing 302 via the holding member 3023, the orientation of the light receiving surface of the light receiving unit 3022 can be freely designed to match the layout of the device.
温度調整部は筐体302に熱を伝える一方で外気にさらされた面からは放熱してしまう。そこで、図4のように外気にさらされて放熱してしまう面を断熱材3029で覆う構成としてもよい。これにより筐体302に熱を効率良く伝えることができる。
The temperature adjustment unit transfers heat to the housing 302, but dissipates heat from the surface exposed to the outside air. Therefore, as shown in Figure 4, the surface exposed to the outside air and dissipating heat may be covered with insulating material 3029. This allows heat to be transferred to the housing 302 efficiently.
図5は図4の温度調整部3024にフォーカスした斜視図である。筐体302の上側の面で受光部3022が組付けられており、筐体302の下側の面(反対側の面)に第1温度調整部3024が組付けられている。尚、断熱材3029には、温度センサ固定用のネジの穴が空いた板と、普通の板と2枚ある。これは、ネジの頭部分から熱が逃げるため、さらに上から断熱材を重ねて蓋をするためである。
FIG. 5 is a perspective view focusing on the temperature adjustment unit 3024 in FIG. 4. The light receiving unit 3022 is attached to the upper surface of the housing 302, and the first temperature adjustment unit 3024 is attached to the lower surface (opposite surface) of the housing 302. The insulation material 3029 consists of two sheets: one plate with screw holes for fixing the temperature sensor, and one regular plate. This is because heat escapes from the screw heads, and insulation is then layered on top to cover the plate.
また図4のように、光源部301から分光部3021までの光路401に、光を反射するミラー3028、特定の波長を透過するフィルター、キセノンランプやハロゲンランプなどの高温発熱体の光源の熱線を反射するフィルター、などの光学部品を設置してもよい。
As shown in FIG. 4, optical components such as a mirror 3028 that reflects light, a filter that transmits specific wavelengths, and a filter that reflects heat rays from a light source that is a high-temperature heat source such as a xenon lamp or halogen lamp may be installed on the optical path 401 from the light source unit 301 to the spectroscopic unit 3021.
実施例1では第1温度センサ3026の温度によって第1温度調整部3024の出力を調節する形態を示した。本発明では、温度調整部の制御方法はこれに限らない。例えば、実施例2に係る自動分析装置は、図6に示すように、環境温度を測定する第2温度センサ3027を備える。その他構成は実施例1と同様である。
In Example 1, the output of the first temperature adjustment unit 3024 is adjusted according to the temperature of the first temperature sensor 3026. In the present invention, the method of controlling the temperature adjustment unit is not limited to this. For example, the automatic analyzer according to Example 2 includes a second temperature sensor 3027 that measures the environmental temperature, as shown in FIG. 6. The rest of the configuration is the same as in Example 1.
第1温度センサ3026の温度を例えば32℃になるように制御する場合、環境温度が10℃と30℃の場合で昇温に必要な熱量が異なり、筐体302の温度分布、温度安定までの時間、消費電力に差異が発生する。しかし、第2温度センサ3027によって環境温度を測定し、環境温度に応じて第1温度センサ3026の目標温度を制御回路201で切り替えることで、第1温度センサ3026の目標温度を最適化することができる。これにより、環境温度によらず、一定の熱量で第1温度調整部3024を制御することができる。
When controlling the temperature of first temperature sensor 3026 to, for example, 32°C, the amount of heat required to raise the temperature differs when the ambient temperature is 10°C and 30°C, resulting in differences in the temperature distribution in housing 302, the time it takes for the temperature to stabilize, and power consumption. However, by measuring the ambient temperature using second temperature sensor 3027 and switching the target temperature of first temperature sensor 3026 in accordance with the ambient temperature using control circuit 201, it is possible to optimize the target temperature of first temperature sensor 3026. This makes it possible to control first temperature adjustment unit 3024 with a constant amount of heat, regardless of the ambient temperature.
本発明では、温度調整部は1つでなくてもよい。例えば、実施例3に係る自動分析装置は、図7に示すように、筐体302に第2温度調整部3025が組付けられ、分光部3021が組付けられた面の反対側の面に組付けられる構成を有する。その他構成は実施例1と同様である。図8は、図7の上面図である。
In the present invention, the number of temperature adjustment units does not have to be one. For example, as shown in FIG. 7, the automatic analyzer according to Example 3 has a configuration in which a second temperature adjustment unit 3025 is assembled to the housing 302, and is assembled to the surface opposite to the surface to which the spectroscopic unit 3021 is assembled. The rest of the configuration is the same as in Example 1. FIG. 8 is a top view of FIG. 7.
本実施例の自動分析装置によれば、第2温度調整部3025を組み付けることで、筐体302の温度分布を平衡化し、環境温度変化などの影響をより少なくすることができる。
In the automated analyzer of this embodiment, the temperature distribution in the housing 302 can be balanced by installing the second temperature adjustment unit 3025, and the effects of changes in the environmental temperature can be reduced.
温度調整部による、筐体302の温度安定までの時間をさらに短縮するためには、筐体302の外気への放熱、外気からの吸熱を抑制することが考えられる。実施例4に係る自動分析装置は、図9に示すように、筐体302の外気にさらされている面を断熱材3029で覆う構成を備える。その他の構成は実施例1と同様である。断熱材3029で筐体302を覆うことで、筐体302の外気への放熱、外気からの吸熱を抑制することができるため、第1温度調整部3024の効率を上げることができ、温度安定までの時間を短縮できる。
In order to further shorten the time it takes for the temperature of the housing 302 to stabilize by the temperature adjustment unit, it is possible to suppress the heat radiation to and absorption from the outside air of the housing 302. As shown in FIG. 9, the automatic analyzer of Example 4 has a configuration in which the surface of the housing 302 exposed to the outside air is covered with insulating material 3029. The other configurations are the same as those of Example 1. By covering the housing 302 with insulating material 3029, it is possible to suppress the heat radiation to and absorption from the outside air of the housing 302, thereby increasing the efficiency of the first temperature adjustment unit 3024 and shortening the time it takes for the temperature to stabilize.
筐体302の外気にさらされている面を断熱材3029で覆う面は一部でもよい。例えば、筐体302の周辺で発熱体に近く、影響を受けている面のみを断熱材3029で覆う、などの構成がある。
The surface of the housing 302 exposed to the outside air may be partially covered with the insulating material 3029. For example, only the surface close to the heat source around the housing 302 that is affected by the heat source may be covered with the insulating material 3029.
以上、本発明の種々の実施例を説明したが、複数の実施例を組み合わせることで、より信頼性の高い自動分析装置を提供することができる。また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されるものではない。
Various embodiments of the present invention have been described above, but by combining multiple embodiments, it is possible to provide a more reliable automatic analyzer. Furthermore, the present invention is not limited to the above-described embodiments, and includes various modified examples. For example, the above-described embodiments have been described in detail to provide a better understanding of the present invention, and are not necessarily limited to those having all of the configurations described.
100:自動分析装置
101:検体
102:検体カップ
103:検体ディスク
104:試薬
105:試薬ボトル
106:試薬ディスク
107:反応溶液
108:反応セル
109:反応ディスク
110:検体分注機構
111:試薬分注機構
112:攪拌部
113:光度計
114:洗浄部
115:恒温流体
201:制御回路
202:光量測定回路
203:データ処理部
2031:情報記録部
2032:解析部
204:入力部
205:出力部
301:光源部
302:筐体
3021:分光部
3022:受光部
3023:受光部保持部材
3024:第1温度調整部
3025:第2温度調整部
3026:第1温度センサ
3027:第2温度センサ
3028:ミラー
3029:断熱材
401:光路
402:光源側スリット
403:集光レンズ
404:分光部側スリット。 100: Automatic analyzer 101: Sample 102: Sample cup 103: Sample disk 104: Reagent 105: Reagent bottle 106: Reagent disk 107: Reaction solution 108: Reaction cell 109: Reaction disk 110: Sample dispensing mechanism 111: Reagent dispensing mechanism 112: Stirring unit 113: Photometer 114: Cleaning unit 115: Constant temperature fluid 201: Control circuit 202: Light quantity measuring circuit 203: Data processing unit 2031: Information Information recording unit 2032: analysis unit 204: input unit 205: output unit 301: light source unit 302: housing 3021: spectroscopic unit 3022: light receiving unit 3023: light receiving unit holding member 3024: first temperature adjustment unit 3025: second temperature adjustment unit 3026: first temperature sensor 3027: second temperature sensor 3028: mirror 3029: insulation material 401: optical path 402: light source side slit 403: condensing lens 404: spectroscopic unit side slit.
101:検体
102:検体カップ
103:検体ディスク
104:試薬
105:試薬ボトル
106:試薬ディスク
107:反応溶液
108:反応セル
109:反応ディスク
110:検体分注機構
111:試薬分注機構
112:攪拌部
113:光度計
114:洗浄部
115:恒温流体
201:制御回路
202:光量測定回路
203:データ処理部
2031:情報記録部
2032:解析部
204:入力部
205:出力部
301:光源部
302:筐体
3021:分光部
3022:受光部
3023:受光部保持部材
3024:第1温度調整部
3025:第2温度調整部
3026:第1温度センサ
3027:第2温度センサ
3028:ミラー
3029:断熱材
401:光路
402:光源側スリット
403:集光レンズ
404:分光部側スリット。 100: Automatic analyzer 101: Sample 102: Sample cup 103: Sample disk 104: Reagent 105: Reagent bottle 106: Reagent disk 107: Reaction solution 108: Reaction cell 109: Reaction disk 110: Sample dispensing mechanism 111: Reagent dispensing mechanism 112: Stirring unit 113: Photometer 114: Cleaning unit 115: Constant temperature fluid 201: Control circuit 202: Light quantity measuring circuit 203: Data processing unit 2031: Information Information recording unit 2032: analysis unit 204: input unit 205: output unit 301: light source unit 302: housing 3021: spectroscopic unit 3022: light receiving unit 3023: light receiving unit holding member 3024: first temperature adjustment unit 3025: second temperature adjustment unit 3026: first temperature sensor 3027: second temperature sensor 3028: mirror 3029: insulation material 401: optical path 402: light source side slit 403: condensing lens 404: spectroscopic unit side slit.
Claims (10)
- 対象物に光を照射する光源と、
前記対象物を透過した透過光を受光する受光部と、
昇温することで温度を調整する機能を含む第1温度調整部と、を備え、
前記第1温度調整部は、前記受光部が組付けられる面の反対側の面に組付けられる、
ことを特徴とする自動分析装置。 A light source that irradiates light onto an object;
A light receiving unit that receives transmitted light that has passed through the object;
A first temperature adjustment unit having a function of adjusting the temperature by increasing the temperature,
The first temperature adjustment unit is attached to a surface opposite to a surface to which the light receiving unit is attached.
An automatic analyzer characterized by: - 請求項1に記載の自動分析装置であって、
前記対象物を透過した透過光を分光する分光部を備え、
前記受光部は、前記分光部により分光された光を受光する、
ことを特徴とする自動分析装置。 The automated analyzer according to claim 1 ,
A spectroscopic unit that spectroscopically separates light transmitted through the object,
The light receiving unit receives the light separated by the spectroscopic unit.
An automatic analyzer characterized by: - 請求項1に記載の自動分析装置であって、
前記第1温度調整部の近傍の温度を測定する第1温度センサと、
装置外気温を測定する第2温度センサと、
前記第2温度センサの温度に基づいて前記第1温度センサの温度が目標温度になるように前記第1温度調整部を制御する制御部と、を備える、
ことを特徴とする自動分析装置。 The automated analyzer according to claim 1 ,
A first temperature sensor that measures a temperature in the vicinity of the first temperature adjustment unit;
A second temperature sensor for measuring an outside air temperature of the device;
a control unit that controls the first temperature adjustment unit based on the temperature of the second temperature sensor so that the temperature of the first temperature sensor becomes a target temperature.
An automatic analyzer characterized by: - 請求項2に記載の自動分析装置であって、
昇温することで温度を調整する機能を含む第2温度調整部と、を備え、
前記第2温度調整部は、前記分光部が組付けられる面の反対側の面に組付けられる、
ことを特徴とする自動分析装置。 The automated analyzer according to claim 2,
A second temperature adjustment unit having a function of adjusting the temperature by increasing the temperature,
The second temperature adjustment unit is attached to a surface opposite to a surface to which the spectroscopic unit is attached.
An automatic analyzer characterized by: - 請求項2に記載の自動分析装置であって、
前記光源から前記分光部までの光路上にミラーを備える、
ことを特徴とする自動分析装置。 The automated analyzer according to claim 2,
A mirror is provided on an optical path from the light source to the spectroscopic unit.
An automatic analyzer characterized by: - 請求項2に記載の自動分析装置であって、
前記光源から前記分光部までの光路上にミラーを備え、
前記ミラーの組付け角度を調整することで光軸の調整ができる、
ことを特徴とする自動分析装置。 The automated analyzer according to claim 2,
a mirror is provided on an optical path from the light source to the spectroscopic unit;
The optical axis can be adjusted by adjusting the mounting angle of the mirror.
An automatic analyzer characterized by: - 請求項2に記載の自動分析装置であって、
前記受光部が組付けられる筐体は断熱材で覆われている、
ことを特徴とする自動分析装置。 The automated analyzer according to claim 2,
The housing in which the light receiving unit is assembled is covered with a heat insulating material.
An automatic analyzer characterized by: - 請求項2に記載の自動分析装置であって、
前記受光部が組付けられる筐体と前記第1温度調整部は断熱材で覆われている、
ことを特徴とする自動分析装置。 The automated analyzer according to claim 2,
A housing in which the light receiving unit is assembled and the first temperature adjustment unit are covered with a heat insulating material.
An automatic analyzer characterized by: - 請求項2に記載の自動分析装置であって、
前記第1温度調整部は断熱材で覆われている、
ことを特徴とする自動分析装置。 The automated analyzer according to claim 2,
The first temperature adjustment unit is covered with a heat insulating material.
An automatic analyzer characterized by: - 請求項9に記載の自動分析装置であって、
前記断熱材は、前記受光部が組付けられる筐体の底部に設置されている、
ことを特徴とする自動分析装置。 The automated analyzer according to claim 9,
The heat insulating material is provided on a bottom of a housing in which the light receiving unit is assembled.
An automatic analyzer characterized by:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022182978 | 2022-11-16 | ||
JP2022-182978 | 2022-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024105966A1 true WO2024105966A1 (en) | 2024-05-23 |
Family
ID=91084311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/031363 WO2024105966A1 (en) | 2022-11-16 | 2023-08-30 | Automated analysis device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024105966A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61209344A (en) * | 1985-03-13 | 1986-09-17 | Konishiroku Photo Ind Co Ltd | Biochemical analyser |
JPH08114541A (en) * | 1994-10-14 | 1996-05-07 | Hitachi Ltd | Automatic chemical analyzing device |
JP2004101295A (en) * | 2002-09-06 | 2004-04-02 | Fuji Kiki Kogyo Kk | Automatic analysis equipment |
KR20070108654A (en) * | 2006-05-08 | 2007-11-13 | 한국유리공업주식회사 | Automatically inspection system for the defects detecting on continuous moving transparent sheet materials and automatically inspection method there for |
JP2008014637A (en) * | 2006-06-30 | 2008-01-24 | Sakae:Kk | Autoanalyzer |
WO2010013777A1 (en) * | 2008-07-30 | 2010-02-04 | 株式会社日立ハイテクノロジーズ | Sample analysis device |
JP2010156611A (en) * | 2008-12-26 | 2010-07-15 | Beckman Coulter Inc | Reaction vessel holder and autoanalyzer |
JP2016024055A (en) * | 2014-07-21 | 2016-02-08 | 株式会社サカエ | Automatic analysis device |
JP2021081312A (en) * | 2019-11-20 | 2021-05-27 | 株式会社日立ハイテク | Automatic analyzer |
-
2023
- 2023-08-30 WO PCT/JP2023/031363 patent/WO2024105966A1/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61209344A (en) * | 1985-03-13 | 1986-09-17 | Konishiroku Photo Ind Co Ltd | Biochemical analyser |
JPH08114541A (en) * | 1994-10-14 | 1996-05-07 | Hitachi Ltd | Automatic chemical analyzing device |
JP2004101295A (en) * | 2002-09-06 | 2004-04-02 | Fuji Kiki Kogyo Kk | Automatic analysis equipment |
KR20070108654A (en) * | 2006-05-08 | 2007-11-13 | 한국유리공업주식회사 | Automatically inspection system for the defects detecting on continuous moving transparent sheet materials and automatically inspection method there for |
JP2008014637A (en) * | 2006-06-30 | 2008-01-24 | Sakae:Kk | Autoanalyzer |
WO2010013777A1 (en) * | 2008-07-30 | 2010-02-04 | 株式会社日立ハイテクノロジーズ | Sample analysis device |
JP2010156611A (en) * | 2008-12-26 | 2010-07-15 | Beckman Coulter Inc | Reaction vessel holder and autoanalyzer |
JP2016024055A (en) * | 2014-07-21 | 2016-02-08 | 株式会社サカエ | Automatic analysis device |
JP2021081312A (en) * | 2019-11-20 | 2021-05-27 | 株式会社日立ハイテク | Automatic analyzer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7489527B2 (en) | Automated Analysis Equipment | |
JP5112518B2 (en) | Sample analyzer | |
RU2437719C2 (en) | Apparatus and method for spectrophotometric analysis | |
JP2002318192A (en) | Fluorescence detection method measurable under external light and its device | |
US5455177A (en) | Method for analysis of a medical sample | |
JP2011237384A (en) | Optical system for analysis and analyzer using the same | |
JP7546141B2 (en) | Light source and automatic analyzer | |
US20230324307A1 (en) | Circuit board with onboard light sources | |
JP5946776B2 (en) | Automatic analyzer | |
WO2024105966A1 (en) | Automated analysis device | |
US6630108B1 (en) | Optical measuring head, in particular for automatic chemical or biological reaction analyzer | |
US11703388B2 (en) | Optical spectrometer modules, systems and methods for optical analysis with multiple light beams | |
JP2007017310A (en) | Analyzer | |
US10890523B2 (en) | Multi-temperature optical spectrometer modules, systems and methods of using the same | |
WO2023276659A1 (en) | Light source and automatic analysis device | |
US12092568B2 (en) | Optical measuring unit and optical measuring method for obtaining measurement signals of fluid media | |
WO2024070206A1 (en) | Analyzing device | |
WO2023238457A1 (en) | Analysis device | |
JP2001194371A (en) | Chemical analyzer | |
WO2023282075A1 (en) | Automatic analysis device and reaction vessel | |
JPS62217144A (en) | Photometric part for chemical analysis | |
JP2005345173A (en) | Medical photometer | |
JPS62217140A (en) | Photometric part for chemical analysis | |
JPH0562306B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23889877 Country of ref document: EP Kind code of ref document: A1 |