JPS62217144A - Photometric part for chemical analysis - Google Patents

Photometric part for chemical analysis

Info

Publication number
JPS62217144A
JPS62217144A JP6187086A JP6187086A JPS62217144A JP S62217144 A JPS62217144 A JP S62217144A JP 6187086 A JP6187086 A JP 6187086A JP 6187086 A JP6187086 A JP 6187086A JP S62217144 A JPS62217144 A JP S62217144A
Authority
JP
Japan
Prior art keywords
light source
light
optical sensor
chemical analysis
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6187086A
Other languages
Japanese (ja)
Inventor
Tadashi Uekusa
植草 正
Takashi Koizumi
孝 小泉
Shunichi Seto
俊一 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP6187086A priority Critical patent/JPS62217144A/en
Publication of JPS62217144A publication Critical patent/JPS62217144A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres

Abstract

PURPOSE:To improve assembling workability by fitting a light source and optical sensors into a single block, thereby unitizing the titled photometric part. CONSTITUTION:A fitting hole 2A for the light source is formed at the center in the lower part of the block 2 and four fitting holes 2B are formed around said hole. The light source 3 such as tungsten lamp and the four optical sensors 4 are respectively fitted into the fitting hole 2A for the light source and the fitting holes 2B for the optical sensors and are mounted to the block 2. The need for making exact positioning of the light source and optical sensors for every photometric part is thereby eliminated and the assembling workability is remarkably improved.

Description

【発明の詳細な説明】 (発明の分野) 本発明は、試料を収容してなる化学分析スライドの測定
面に照射光を照射し、該測定面から反射された反射光を
光センサで受光して該測定面の反射濃度の測定を行なう
化学分析用測光部に関し、特に詳細には、組み立てを容
易に行なうことのできる化学分析用測光部に関するもの
である。
Detailed Description of the Invention (Field of the Invention) The present invention irradiates a measurement surface of a chemical analysis slide containing a sample with irradiation light, and receives reflected light from the measurement surface with an optical sensor. The present invention relates to a photometric unit for chemical analysis that measures the reflection density of the measurement surface, and particularly relates to a photometric unit for chemical analysis that can be easily assembled.

(発明の挟術的背mおよび先行技術) 近年、例えば血液や尿等の試料液の小滴を点着供給する
だけで該試料液中に含まれている特定の化学成分または
有形成分を定量分析することのできるドライタイプの化
学分析スライドが開発され(特公昭53−2167γ号
、持聞昭55−16435PQ等)、実用化されている
(Specific Background of the Invention and Prior Art) In recent years, it has become possible to detect specific chemical components or organic components contained in a sample liquid, such as blood or urine, simply by drip-feeding a small drop of the sample liquid. Dry type chemical analysis slides capable of quantitative analysis have been developed (Japanese Patent Publication No. 53-2167γ, Jibun Sho 55-16435PQ, etc.) and have been put into practical use.

このような化学分析スライドを用いる試料液中の化学成
分等の分析は、試料液を化学分析スライドに点着供給し
た後、これをインキュベータ(恒温機)内で所定時間恒
温保持(インキュベージコン)して呈色反応(色素生成
反応)させ、その呈色光学!1度を光学的に測定し、即
ち、試料液中の被測定成分と化学分析スライドの試薬層
に含まれる試薬との組み合わせにより予め選定された波
長゛を含む測定用照射光をこの化学分析スライドに照射
してその反射光学濃度を測定し、これにより主どして比
色法の原理により被測定物質の含有量を定量分析するこ
とにより行なわれる。
In order to analyze the chemical components in a sample solution using such a chemical analysis slide, the sample solution is dotted onto the chemical analysis slide and then kept at a constant temperature for a predetermined period of time in an incubator (incubator). Color reaction (pigment formation reaction) and its color forming optics! 1 degree optically, that is, a measurement irradiation light containing a wavelength preselected by the combination of the component to be measured in the sample solution and the reagent contained in the reagent layer of the chemical analysis slide is applied to the chemical analysis slide. The content of the substance to be measured is quantitatively analyzed based mainly on the principle of colorimetry.

インキュベーションが終了した後に行なわれる、上記反
!)j 6度測定は化学分析用測光部により行なわれる
。上記測光部は、化学分析スライドの測定面に照射光を
照射する光源および測定面により反射された照射光の反
射光を受光する光センサを備えてなり、この先センサの
出力によって測定面の濃度を測定するようになっている
The above reaction is carried out after the incubation is completed! )j The 6-degree measurement is performed by a photometer for chemical analysis. The photometry section is equipped with a light source that irradiates the measurement surface of the chemical analysis slide with irradiation light and an optical sensor that receives the reflected light of the irradiation light reflected by the measurement surface.Then, the concentration of the measurement surface is determined by the output of the sensor. It is designed to be measured.

上記測光部において正確な1濃度測定を行なうためには
、照射光が所望の位置に入射し、かつ照射光の反射光が
光センサにより良好に受光されるように、光源および光
センサの位置決めを精度良く行なわなければならない。
In order to perform accurate concentration measurements in the photometry section, the light source and optical sensor must be positioned so that the irradiated light enters the desired position and the reflected light of the irradiated light is well received by the optical sensor. It must be done with precision.

しかしながら、各測光部について1つずつ光源および光
センサの高精度な位置決めを行なう作業は煩雑であり、
かかる位置決めのために測光部の組立て時の作業性を思
うように高めることができないという問題がある。
However, the work of precisely positioning the light source and optical sensor one by one for each photometry unit is complicated;
Due to such positioning, there is a problem in that it is not possible to improve the workability as desired when assembling the photometric section.

(発明の目的) 本発明は上記のような問題点に鑑みてなされたものであ
り、光源と光センサの位置決めが容易に行なわれ、組立
作業性を向上させることのできる化学分析用測光部を提
供することを目的とするものである。
(Object of the Invention) The present invention has been made in view of the above-mentioned problems, and provides a photometric unit for chemical analysis in which the positioning of the light source and optical sensor can be easily performed and the assembly work efficiency can be improved. The purpose is to provide

(発明の構成) 本発明の化学分析用測光部は、前述した光源および光セ
ンサが単一のブロックに嵌め込まれてユニット化されて
なることを特徴とするものである。
(Structure of the Invention) The photometric section for chemical analysis of the present invention is characterized in that the above-described light source and optical sensor are fitted into a single block to form a unit.

すなわち、本発明の測光部によれば、光源および光セン
サはブロックに嵌め込まれるようになっているので、予
め光源J3よび光センサとの嵌合部を備えたブロックを
作っておけば、光源および光センサをブロックに嵌め込
むだけで組立てが完了し、各測光部について光源および
光センサの位置決めを行なう必要がなくなる。
That is, according to the photometry section of the present invention, the light source and the optical sensor are fitted into the block, so if the block is made in advance with a fitting part for the light source J3 and the optical sensor, the light source and the optical sensor can be fitted into the block. Assembly is completed simply by fitting the optical sensor into the block, and there is no need to position the light source and optical sensor for each photometric section.

(実施態様) 以下、図面を参照して本発明の実77I!i態様につい
て説明する。
(Embodiments) Hereinafter, the embodiments of the present invention will be described with reference to the drawings. The i-mode will be explained.

第1A図および第1B図は本発明の一実施態様による化
学分析用測光部の作用を説明するだめの概略側面図であ
る。
FIGS. 1A and 1B are schematic side views illustrating the operation of a photometric section for chemical analysis according to an embodiment of the present invention.

測光部1は単一のブロック2に光源3および複数の光セ
ンサ4が嵌め込まれてなり、支持部材6により、上面を
露出させて支持されている。上記測光部1により温度測
定が行なわれる化学分析用スライド5は、第2図に示す
ように、枠部5A内に、支持体、試′Ji1層、展開層
を積層してなる乾式多層フィルム5Bが収容されてなり
、裏面(図中上面)に測定面5aが形成されている。こ
のスライド5は表面に設けられた円孔(図示せず)から
前記フィルム5B上に尿、血液等の試料(被測定物質)
を所定量滴下された後、所定時間恒温保持゛ (インキ
ュベーション)されて呈色反応せしめられる。またスラ
イド5の裏面にはバーコード5bが記載されている。こ
のスライド5は裏面が前記支持部材6と接するように支
持部材上にU置される。
The photometry section 1 is constructed by fitting a light source 3 and a plurality of optical sensors 4 into a single block 2, and is supported by a support member 6 with the top surface exposed. As shown in FIG. 2, the slide 5 for chemical analysis on which the temperature is measured by the photometer 1 is a dry multilayer film 5B, which is formed by laminating a support, one layer of sample, and a developing layer in a frame 5A. is accommodated, and a measurement surface 5a is formed on the back surface (upper surface in the figure). This slide 5 allows a sample (substance to be measured) such as urine or blood to be deposited on the film 5B through a circular hole (not shown) provided on the surface.
After a predetermined amount of the solution is dropped, the solution is kept at a constant temperature (incubation) for a predetermined period of time to allow a color reaction to occur. Further, a barcode 5b is written on the back side of the slide 5. The slide 5 is placed on the support member 6 so that its back surface is in contact with the support member 6.

上記測光部1上には、第1A図に示すようにスライド5
の測光に先立って、スライド5の反射濃度測定値の誤差
を修正するための基準白板7Wおよび基準黒板7Bがレ
バー8によって移動せしめられ、測光部1はこれらの基
準白板7Wおよび基準黒板7Bの反射濃度を測定する。
As shown in FIG. 1A, a slide 5 is placed on the photometry section 1.
Prior to photometry, the reference white board 7W and the reference blackboard 7B for correcting errors in the measured reflection density values of the slide 5 are moved by the lever 8, and the photometry section 1 measures the reflection of the reference white board 7W and the reference blackboard 7B. Measure concentration.

続いて測光部1上にはスライド5がレバー8に押されて
移動せしめられるが、このスライド5は反gA濃度の測
定が行なわれる前に、支持部材6内に設けられたバーコ
ード読取手段9により、裏面に付されたバーコード5b
の読み取りが行なわれる。バーコード5bの読取りが終
了すると、第1B図に示すようにスライド5は、測光部
1上に移動せしめられて測定面5aの反射ff1lI!
l[測定が行なわれる。以下、第3図および第4図を参
照して本実施態様の測光部の構造について更に説明する
Next, a slide 5 is moved onto the photometer 1 by being pushed by a lever 8, but before the anti-gA concentration is measured, the slide 5 is moved by a barcode reading means 9 provided in the support member 6. Accordingly, the barcode 5b attached to the back side
is read. When the reading of the barcode 5b is completed, the slide 5 is moved onto the photometer 1 as shown in FIG. 1B, and the reflection of the measurement surface 5a is ff1lI!
l[Measurements are taken. The structure of the photometry section of this embodiment will be further explained below with reference to FIGS. 3 and 4.

第3図J3よび第4図はそれぞれ測光部1のブロック2
の断面図および底面図である。ブロック2にはその下部
の中央に光源用嵌合孔2Δが、その周囲に一例として4
つの光センサ用嵌合孔2Bが形成されている。タングス
テンランプ等の光源3および4つの光センサ4はそれぞ
れ前記光源用嵌合孔2Aおよび光センサ用嵌合孔2Bに
嵌め込まれてブロック2に取り付けられる。光源3はス
ライド5の測定に適した照射光を発し、この照射光は、
ブロック2内の照射光通路2Cを通過してスライド5の
測定部5aに、該測定面に垂直に入射する。測定部5a
により反射された照射光の反射光は、ブロック2内に形
成された反射光通路2Dを通過して各光センサ4に向か
う。ところで、光lI!3は、比較的広い波長領域に亘
る光を発するものであるが、測定に有効な波長は、スラ
イド5内の試料中の、測定が行なわれる成分によって異
なったものとなる。すなわち、ある測定成分の濃度が変
化した場合に測定面からの反射光の光量が最も顕著に変
化する波長の光は測定成分毎に異なっている。
Figure 3 J3 and Figure 4 are block 2 of photometry section 1, respectively.
FIG. The block 2 has a light source fitting hole 2Δ in the center of its lower part, and 4 holes for example around it.
Two optical sensor fitting holes 2B are formed. A light source 3 such as a tungsten lamp and four optical sensors 4 are attached to the block 2 by fitting into the light source fitting hole 2A and the optical sensor fitting hole 2B, respectively. The light source 3 emits illumination light suitable for measuring the slide 5, and this illumination light is
The light passes through the irradiation light path 2C in the block 2 and enters the measurement section 5a of the slide 5 perpendicularly to the measurement surface. Measuring part 5a
The reflected light of the irradiation light passes through a reflected light path 2D formed in the block 2 and heads toward each optical sensor 4. By the way, Hikari! 3 emits light over a relatively wide wavelength range, but the effective wavelength for measurement differs depending on the component in the sample in the slide 5 to be measured. That is, the wavelength of light at which the amount of reflected light from the measurement surface changes most significantly when the concentration of a certain measurement component changes varies depending on the measurement component.

例えばグルコースの測定に対しては510rv *後の
光が最も有効である。従って光センサ4は測定項目に応
じて上記特定波長の光のみを選択的に受光すれば、測定
を行なうべき成分の濃度を最も効果的に測定することが
できる。光センサ4に特定の波長の反射光のみを入射さ
せるためには光センサ4の受光面上に、特定の波長の光
のみを選択的に入射させる干渉フィルタを形成すればよ
いが、測定を行なう項目は複数種類あり、測定項目が変
化するために、測定項目に応じた、特性の異なる干渉フ
ィルタを付は替えることは非常に面倒である。
For example, light after 510 rv* is most effective for measuring glucose. Therefore, the optical sensor 4 can most effectively measure the concentration of the component to be measured by selectively receiving only the light of the specific wavelength according to the measurement item. In order to make only the reflected light of a specific wavelength enter the optical sensor 4, it is sufficient to form an interference filter on the light-receiving surface of the optical sensor 4 that selectively allows only the light of a specific wavelength to enter. Since there are multiple types of items and the measurement items change, it is extremely troublesome to replace interference filters with different characteristics depending on the measurement items.

そこで、上記測光部1は4つの光センサ4の各受光面上
に互いに選択的に透過する光の波長の異なる干渉フィル
タ10を設け、測定項目に応じて所望の特性の干渉フィ
ルタ10を有する光センサ4のみを用いて検出を行なう
ようになっている。このような測光部を用いれば各光セ
ンサ4の出力を電気的に切り換えるだけで項目に応じた
高精度な測定を容易に行なうことができる。このように
4つの光センサのうちの、選択された光センサからの出
力は、第1B図に示すように増幅器13およびA/D変
換器14へ送られた後、cpu c中央処理装置)15
に送られて処理され、このように測定された成分の濃度
は、必要に応じて外部の表示装置(図示せず)に表示さ
れたりする。なお、上記実施態様の測光部は1つの光源
3から射出された照射光の反射光を効率的に複数の位置
にある光センサ4に入射させることができるように、ス
ライド5に対向して配されているので、光源3による熱
がスライド5に影響することのないよう、スライド5の
測定面5aに対向する部分に断熱フィルタ11が設けら
れている。
Therefore, the photometry section 1 is provided with interference filters 10 having different wavelengths of light that selectively pass through each other on the light-receiving surfaces of the four optical sensors 4. Detection is performed using only the sensor 4. If such a photometry section is used, it is possible to easily perform highly accurate measurements according to the item simply by electrically switching the output of each optical sensor 4. The output from the selected optical sensor among the four optical sensors is sent to the amplifier 13 and A/D converter 14 as shown in FIG.
The concentration of the component thus measured is displayed on an external display device (not shown) if necessary. Note that the photometry section of the above embodiment is arranged opposite to the slide 5 so that the reflected light of the irradiation light emitted from one light source 3 can be efficiently incident on the optical sensors 4 located at a plurality of positions. Therefore, in order to prevent the heat from the light source 3 from affecting the slide 5, a heat insulating filter 11 is provided on the portion of the slide 5 facing the measurement surface 5a.

ところで、スライド5の所望の位置に照射光が入射し、
光センサにより照射光の反射光が効率的に検出されるよ
うにするためには、光源および光センサの位置決めを正
確に行なう必要がある。これらの部材の正確な位置決め
を各測定部毎に行なうことは非常に煩雑な作業であり、
特に上記実施態様の測光部1のように、複数の光センサ
が設けられている場合にはその位置決めは一層面倒なも
のとなる。そこで、本実施態様の測光部1は、前述のよ
うに光源3および光センサ4がブロック2に嵌め込まれ
てユニット化されてJ3す、煩雑な位置決めを行なう必
要のないものとなっている。前記ブロック2には前記光
源用嵌合孔2八および光センサ用嵌合孔2Bが形成され
ているので、測光部1を組み立てる際には光源3.15
よび光センサ4を各嵌合孔に沿ってブロック2に1■合
させることによって容易に正確な位置に配置せしめるこ
とができる。従って同一形状のブロックを多数作成して
おけば、各ブロックに光源および光センサを嵌め込むだ
けで、複雑な位′a調整を行なうことなく極めて容易に
高精度な測光部を多数組み立てることができる。
By the way, the irradiation light is incident on the desired position of the slide 5,
In order for the optical sensor to efficiently detect the reflected light of the irradiated light, it is necessary to accurately position the light source and the optical sensor. Accurately positioning these parts for each measuring section is a very complicated task.
In particular, when a plurality of optical sensors are provided as in the photometric section 1 of the above embodiment, positioning thereof becomes even more troublesome. Therefore, in the photometry section 1 of this embodiment, the light source 3 and the optical sensor 4 are fitted into the block 2 to form a unit as described above, so that there is no need for complicated positioning. Since the light source fitting hole 28 and the light sensor fitting hole 2B are formed in the block 2, when assembling the photometry section 1, the light source 3.15
By aligning the optical sensor 4 with the block 2 along each fitting hole, the optical sensor 4 can be easily placed at an accurate position. Therefore, by creating a large number of blocks of the same shape, it is possible to assemble a large number of high-precision photometers extremely easily by simply fitting a light source and optical sensor into each block, without having to make complicated positional adjustments. .

なJ3、ブロック2は、光WA3および光センサ4を確
実に支持することのできるものであれば任意の材質によ
り形成することができるが、ブロック2を金属等、熱伝
導性の高いものにより形成すれば、光IQ3は前述のよ
うに熱を発するものであるので、光a3の熱を利用して
測光部をインキュベータとしても用いることができる。
The block 2 can be made of any material as long as it can reliably support the optical WA3 and the optical sensor 4, but the block 2 can be made of a material with high thermal conductivity such as metal. Then, since the light IQ3 emits heat as described above, the photometry section can also be used as an incubator by utilizing the heat of the light a3.

すなわち、第1B図に示されるように測光部1上に配さ
れたスライド5は外部のインキュベータにより既に恒温
保持されたものであってもよいが、ブロック2が金属等
により形成されている場合には測光部1上でインキュベ
ーションが行なわれてもよい。測光部1上でインキュベ
ーションを行なう場合には、例えばブロック2内に温度
センサを設置プるとともに、この温度センサからの出力
に応じて光源3を点滅させてスライド5を保持する温度
を一定に保つ制御回路(前記CP U 15であっても
よい)を設けてスライド5を所定時間恒温保持する。こ
のインキュベーションが終了した債、光源3を前述した
ような本来の照射光照射用として用い、光センサを作動
させて!1度測定を行なうようにする。このように光源
をブロックに嵌め込めば、測光部上においてインキュベ
ーションを完了することも可能となり、別途インキュベ
ータを設ける必要が無くなるのでシステム全体を小型化
、簡略化させることができるという効果も奏する。この
場合には前記支持部材6は、測光部1に至る前のスライ
ドに熱の影響が及ばないようにまた無駄な放熱を防ぐた
めに断熱材により形成されることが望ましい。
That is, as shown in FIG. 1B, the slide 5 placed on the photometer 1 may be kept at a constant temperature in an external incubator, but if the block 2 is made of metal or the like, may be incubated on the photometric section 1. When performing incubation on the photometer 1, for example, a temperature sensor is installed in the block 2, and the light source 3 is turned on and off according to the output from this temperature sensor to keep the temperature at which the slide 5 is held constant. A control circuit (which may be the CPU 15) is provided to maintain the slide 5 at a constant temperature for a predetermined period of time. Once this incubation has been completed, use light source 3 for the original irradiation as described above, and activate the optical sensor! Make sure to perform the measurement once. By fitting the light source into the block in this way, it becomes possible to complete the incubation on the photometry section, and there is no need to provide a separate incubator, which also has the effect of making the entire system smaller and simpler. In this case, the support member 6 is desirably formed of a heat insulating material so that the slide before reaching the photometric section 1 is not affected by heat and to prevent wasteful heat radiation.

なお、本発明の測光部にJ3ける光源および光センサの
数および配置は上述した実施態様にJ3いて示したもの
に限られるものではなく、良好にブロックに嵌め込まれ
ることのできるものであれば任意に設定することができ
る。
Note that the number and arrangement of light sources and optical sensors in J3 of the photometry section of the present invention are not limited to those shown in J3 in the above-described embodiment, and may be any number as long as they can be fitted well into the block. Can be set to .

(発明の効果) 以上説明したように、本発明の化学分析用測光部によれ
ば光源および光センサがブロックに嵌め込まれてユニッ
ト化されていることにより、測光部毎に光源および光セ
ンサの正確な位置決めを行なう必要が無くなり、組立作
業性を大きく向上させることができる。またブロックの
材質を熱伝導性の高いものにすれば測光部をインキュベ
ータとして用いることも可能となる。
(Effects of the Invention) As explained above, according to the photometric section for chemical analysis of the present invention, the light source and the optical sensor are fitted into the block to form a unit. There is no need for precise positioning, and assembly work efficiency can be greatly improved. Furthermore, if the material of the block is made of a material with high thermal conductivity, the photometry section can also be used as an incubator.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図および第1B図は本発明の一実施態様による化
学分析用測光部の作用を説明する概略側面図、 第2図は化学分析スライドを示す斜視図、第3図は上記
実施態様による化学分析用測光部のブロックの断面図、 第4図は上記ブロックの底面図である。 1・・・化学分析用測光部 2・・・ブロック3・・・
光源       4・・・光センサ5・・・化学分析
スライド 5a・・・測定面第1Aj!! 第七図 第2図
1A and 1B are schematic side views illustrating the operation of a photometric section for chemical analysis according to an embodiment of the present invention, FIG. 2 is a perspective view showing a chemical analysis slide, and FIG. FIG. 4 is a cross-sectional view of the block of the analytical photometry section. FIG. 4 is a bottom view of the block. 1... Photometry section for chemical analysis 2... Block 3...
Light source 4... Optical sensor 5... Chemical analysis slide 5a... Measurement surface 1st Aj! ! Figure 7 Figure 2

Claims (1)

【特許請求の範囲】 1)試料を収容してなる化学分析スライドの測定面に照
射光を照射する光源、および前記測定面により反射され
た照射光の反射光を受光する光センサを備え、該光セン
サの出力により前記測定面の濃度測定を行なう化学分析
用測光部において、前記光源および光センサが単一のブ
ロックに嵌め込まれてユニット化されてなることを特徴
とする化学分析用測光部。 2)前記光源が前記測定面の配される位置に対向して設
けられ、前記光センサが前記反射光を受光可能な位置に
複数個設けられていることを特徴とする特許請求の範囲
第1項記載の化学分析用測光部。
[Scope of Claims] 1) A light source that irradiates a measurement surface of a chemical analysis slide containing a sample with irradiation light, and a light sensor that receives reflected light of the irradiation light reflected by the measurement surface; A photometric unit for chemical analysis that measures the concentration of the measurement surface using the output of an optical sensor, characterized in that the light source and the optical sensor are fitted into a single block to form a unit. 2) The light source is provided opposite to the position where the measurement surface is arranged, and a plurality of the optical sensors are provided at positions where the reflected light can be received. Photometric section for chemical analysis as described in section.
JP6187086A 1986-03-19 1986-03-19 Photometric part for chemical analysis Pending JPS62217144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6187086A JPS62217144A (en) 1986-03-19 1986-03-19 Photometric part for chemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6187086A JPS62217144A (en) 1986-03-19 1986-03-19 Photometric part for chemical analysis

Publications (1)

Publication Number Publication Date
JPS62217144A true JPS62217144A (en) 1987-09-24

Family

ID=13183588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6187086A Pending JPS62217144A (en) 1986-03-19 1986-03-19 Photometric part for chemical analysis

Country Status (1)

Country Link
JP (1) JPS62217144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326192A (en) * 1998-04-20 1999-11-26 Bayer Corp Photometric reading head with beam shaping plate
JP2019078720A (en) * 2017-10-27 2019-05-23 国立研究開発法人宇宙航空研究開発機構 Information processing device, information processing method, program, and monitoring system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240193A (en) * 1975-09-25 1977-03-28 Toshiba Betsukuman Kk Dividing lens and automatic analysis device with it
JPS546387A (en) * 1977-06-16 1979-01-18 Aroozu Kk Reflecting oximeter
JPS5555233A (en) * 1978-10-13 1980-04-23 Tobias Philip E Scanning head which irradiates white light upon region of sheettlike piece

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240193A (en) * 1975-09-25 1977-03-28 Toshiba Betsukuman Kk Dividing lens and automatic analysis device with it
JPS546387A (en) * 1977-06-16 1979-01-18 Aroozu Kk Reflecting oximeter
JPS5555233A (en) * 1978-10-13 1980-04-23 Tobias Philip E Scanning head which irradiates white light upon region of sheettlike piece

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326192A (en) * 1998-04-20 1999-11-26 Bayer Corp Photometric reading head with beam shaping plate
JP2019078720A (en) * 2017-10-27 2019-05-23 国立研究開発法人宇宙航空研究開発機構 Information processing device, information processing method, program, and monitoring system
US11635373B2 (en) 2017-10-27 2023-04-25 Japan Aerospace Exploration Agency Information processing apparatus, information processing method, program, and monitoring system

Similar Documents

Publication Publication Date Title
AU725643B2 (en) Method and device for measuring reflected optical radiation
US7791728B2 (en) System for optically analyzing a substance with a selected single-wavelength
KR100251999B1 (en) Reading devices for teststrips
US5508200A (en) Method and apparatus for conducting multiple chemical assays
US7713751B2 (en) Method of optical detection of binding of a material component to a sensor substance due to a biological, chemical or physical interaction and apparatus for its embodiment (variants)
KR20190059307A (en) Analytical test equipment
CN102216745A (en) Polarized optics for optical diagnostic device
JP2003524178A (en) SPR sensor system
US5039225A (en) Apparatus for measurement of reflection density
US20230324307A1 (en) Circuit board with onboard light sources
JP2008507694A (en) Read head for optical diagnostic equipment
JP3533502B2 (en) Automatic chemical analyzer
Neeley A reflectance photometer with a square photodiode array detector for use on multilayer dry-film slides.
JPS62217144A (en) Photometric part for chemical analysis
JP2006098227A (en) Reflected light measuring instrument and biochemical analyzer
JP2000065729A (en) Sensor chip for surface plasmon resonance angle detection device
JP2002214126A (en) Biochemical measuring device
JPS59109844A (en) Measuring device for reflected light
JP2002267664A (en) Measuring apparatus for immunochromatographic test piece
JPH0617865B2 (en) Photometric unit for chemical analysis
US20210148829A1 (en) Reading device for a lateral flow test strip
US20230324422A1 (en) Diagnostic analyzer having a dual-purpose imager
JPH0572977B2 (en)
CN112004604B (en) Optical measuring unit and optical measuring method for obtaining a measuring signal of a fluid medium
JPS63205546A (en) Automatic analysis instrument