WO2024105880A1 - Drive device, power converter, and drive method - Google Patents
Drive device, power converter, and drive method Download PDFInfo
- Publication number
- WO2024105880A1 WO2024105880A1 PCT/JP2022/042852 JP2022042852W WO2024105880A1 WO 2024105880 A1 WO2024105880 A1 WO 2024105880A1 JP 2022042852 W JP2022042852 W JP 2022042852W WO 2024105880 A1 WO2024105880 A1 WO 2024105880A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- impedance
- power converter
- path
- drive device
- current value
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 13
- 239000004065 semiconductor Substances 0.000 claims abstract description 38
- 238000006243 chemical reaction Methods 0.000 claims description 33
- 230000001172 regenerating effect Effects 0.000 claims description 9
- 238000009499 grossing Methods 0.000 claims description 6
- 238000010248 power generation Methods 0.000 claims 1
- 230000008929 regeneration Effects 0.000 claims 1
- 238000011069 regeneration method Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 17
- 238000001514 detection method Methods 0.000 description 16
- 230000007423 decrease Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
Definitions
- Embodiments of the present invention relate to a drive device, a power converter, and a drive method.
- the semiconductor switching elements of a power converter are driven by signals generated by a drive device associated with the semiconductor switching elements.
- a drive device associated with the semiconductor switching elements.
- the temperature fluctuation of the semiconductor switching elements during operation can sometimes become greater than the desired range.
- the object of the present invention is to provide a drive device and a drive method that can reduce the amount of temperature fluctuation of a semiconductor switching element during operation.
- the driving device of one embodiment includes an impedance adjustment unit.
- the impedance adjustment unit uses the value of the current flowing through an element of the power converter to adjust the impedance of the path that sends a control signal from the driving unit of the element to the semiconductor switching element in the element.
- FIG. 1 is a configuration diagram of a power conversion device according to an embodiment.
- FIG. 2 is a configuration diagram of a leg including a drive device according to the embodiment.
- FIG. 2 is a configuration diagram of an impedance adjustment unit according to an embodiment.
- FIG. 4 is a configuration diagram of a resistor section in an impedance adjustment section according to the embodiment.
- 5 is a diagram for explaining the relationship between the current value of the element and the loss of the element according to the embodiment.
- FIG. 5 is a diagram for explaining the relationship between the current value of the element and the loss of the element according to the embodiment.
- FIG. 5 is a diagram for explaining the relationship between the current value of the element and the loss of the element according to the embodiment.
- FIG. 5 is a diagram for explaining the relationship between the current value of the element and the loss of the element according to the embodiment.
- FIG. 6 is a diagram for explaining a data table correlating element loss with current value of the element according to the embodiment of the present invention.
- FIG. FIG. 4 is a diagram for explaining an example of control of an electric motor according to the embodiment.
- FIG. 6 is a diagram for explaining another example of the control of the electric motor according to the embodiment.
- a drive device a power converter, and a drive method according to embodiments will be described with reference to the drawings.
- the same reference numerals are used for components having the same or similar functions. Duplicate descriptions of those components may be omitted.
- Electrical connection may simply be referred to as "connected.”
- "based on XX” means “based on at least XX” and includes cases where it is based on other elements in addition to XX.
- "based on XX” is not limited to cases where XX is used directly, but also includes cases where it is based on XX that has been subjected to calculations or processing.
- XX is any element (for example, any information).
- the gate resistance value in the embodiment refers to the impedance of a path that transmits a control signal from a drive unit of an element in a power converter to a semiconductor switching element in the element.
- FIG. 1 is a configuration diagram of a power conversion device 1 according to an embodiment. 1 converts DC power into polyphase AC power and supplies the polyphase AC power to an electric motor 2 to drive the electric motor 2.
- the electric motor 2 is a three-phase AC motor and is an example of an AC load.
- the electric motor 2 is provided with a speed sensor 2A that detects and outputs a speed ⁇ r of the electric motor 2.
- the current detector CT detects a current flowing through an AC bus connecting the main circuit 10 of the power conversion device 1 and the motor 2.
- the currents flowing through the phase voltages of the U phase, V phase, and W phase are called phase currents Iu, Iv, and Iw.
- a voltage detector VDET for detecting a phase voltage is provided on each of the AC buses.
- the phase voltages of the U phase, V phase, and W phase are indicated by voltages Vu, Vv, and Vw.
- the voltage detector VDET may be provided in the main circuit 10.
- the power conversion device 1 includes, for example, a main circuit 10 and a control device 20 .
- the main circuit 10 is a three-phase inverter (power converter) including legs UA, VA, and WA. When the legs UA, VA, and WA are not distinguished from each other, they are simply referred to as "each leg.”
- the power conversion device 1 causes the main circuit 10 to function as a three-level inverter.
- the control device 20 controls the main circuit 10 to control the power conversion by the main circuit 10.
- the control device 20 includes, for example, a PWM conversion unit 21 and a controller 22.
- the PWM conversion unit 21 converts the voltage reference generated by the controller 22 by pulse width modulation (PWM) using a carrier signal of a predetermined frequency to generate gate pulses GPU, GPV, and GPW.
- PWM pulse width modulation
- the PWM conversion unit 21 supplies the gate pulses GPU, GPV, and GPW to legs UA, VA, and WA, respectively.
- the gate pulse GPU includes a control signal for driving each element of leg UA. The same is true for the gate pulses GPV and GPW.
- the controller 22 generates the above voltage reference and supplies it to the PWM conversion unit 21 .
- the controller 22 performs speed control to make the motor 2 follow the speed reference ⁇ * based on the speed ⁇ r of the motor 2 and the speed reference ⁇ * , and generates a torque reference at each time point.
- the controller 22 performs current control based on a current command value I * based on the torque reference and the motor currents Iu, IV, and Iw, and generates a voltage reference used in PWM control. This voltage reference is supplied to the PWM conversion unit 21.
- FIG. 2 is a configuration diagram of a leg UA including a driving device according to the embodiment.
- a positive power supply terminal of the leg UA is supplied with a positive voltage DCP via a first DC bus, and a negative power supply terminal of the leg UA is supplied with a negative voltage DCN via a second DC bus.
- a reference voltage terminal of the leg UA is connected to a neutral point NP.
- An output terminal TU of the leg UA is connected to a U-phase winding of the motor 2 via an AC bus.
- leg UA includes switch units 11 to 14.
- Switch units 11 to 14 include, for example, elements DEV1 to DEV4, respectively.
- Leg UA further includes diodes DP and DN.
- Element DEV1 includes a pair of semiconductor switching element Q1 and diode D1.
- Element DEV2 includes a pair of semiconductor switching element Q2 and diode D2.
- Element DEV3 includes a pair of semiconductor switching element Q3 and diode D3.
- Element DEV4 includes a pair of semiconductor switching element Q4 and diode D4.
- the semiconductor switching elements Q1 to Q4 of leg UA are, for example, IGBTs.
- the type of semiconductor switching elements is not limited to IGBTs and may be changed to MOSFETs, etc.
- the semiconductor switching elements Q1 to Q4 are connected in series in the order listed.
- a reverse-connected diode D1 is connected in parallel to the emitter and collector of the semiconductor switching element Q1.
- Diodes D2 to D4 are similarly connected in parallel to the semiconductor switching elements Q2 to Q4.
- semiconductor switching elements Q1 and Q2 are included in the positive arm, and semiconductor switching elements Q3 and Q4 are included in the negative arm.
- the anode of diode DP and the cathode of diode DN are connected to the neutral terminal NP.
- the cathode of diode DP is connected to the connection point between the emitter of semiconductor switching element Q2 and the collector of semiconductor switching element Q3.
- the anode of diode DN is connected to the connection point between the emitter of semiconductor switching element Q3 and the collector of semiconductor switching element Q4.
- the output terminal TU is connected to the emitter of semiconductor switching element Q2, the collector of semiconductor switching element Q3, the anode of diode D2, and the cathode of diode D3.
- the switch section of each stage includes a gate drive circuit (GDC), an impedance adjustment section (ZADJ), and a current detection section.
- GDC gate drive circuit
- ZADJ impedance adjustment section
- current detection section a current detection section.
- the switch unit 11 includes a gate drive circuit (GDC) 111, an impedance adjustment unit (ZADJ) 112, and a current detection unit 113.
- the switch unit 12 includes a gate drive circuit (GDC) 121, an impedance adjustment unit (ZADJ) 122, and a current detection unit 123.
- the switch unit 13 includes a gate drive circuit (GDC) 131, an impedance adjustment unit (ZADJ) 132, and a current detection unit 133.
- the switch unit 14 includes a gate drive circuit (GDC) 141, an impedance adjustment unit (ZADJ) 142, and a current detection unit 143.
- the gate drive circuit (GDC) 111 receives a first signal in the gate pulse GPU and performs a predetermined signal conversion on the first signal to generate a gate signal for element DEV1.
- the signal conversion in the gate drive circuit (GDC) 111 may be a known type.
- the current detection unit 113 is disposed on the positive electrode side of element DEV1 and detects the current flowing through element DEV1.
- the impedance adjustment unit (ZADJ) 112 adjusts the impedance of the path of the gate signal supplied to element DEV1 based on the magnitude of the current flowing through element DEV1.
- the gate drive circuit (GDC) 121 receives the second signal in the gate pulse GPU and performs a predetermined signal conversion on the second signal to generate a gate signal for element DEV2.
- the current detection unit 123 is disposed on the positive electrode side of element DEV2 and detects the current flowing through element DEV2.
- the impedance adjustment unit (ZADJ) 122 adjusts the impedance of the path of the gate signal supplied to element DEV2 based on the magnitude of the current flowing through element DEV2.
- the gate drive circuit (GDC) 131 receives the third signal in the gate pulse GPU and performs a predetermined signal conversion on the third signal to generate a gate signal for element DEV3.
- the current detection unit 133 is disposed on the positive electrode side of element DEV3 and detects the current flowing through element DEV3.
- the impedance adjustment unit (ZADJ) 132 adjusts the impedance of the path of the gate signal supplied to element DEV3 based on the magnitude of the current flowing through element DEV3.
- the gate drive circuit (GDC) 141 receives the fourth signal in the gate pulse GPU and performs a predetermined signal conversion on the fourth signal to generate a gate signal for element DEV4.
- the current detection unit 143 is disposed on the positive electrode side of element DEV4 and detects the current flowing through element DEV4.
- the impedance adjustment unit (ZADJ) 142 adjusts the impedance of the path of the gate signal supplied to element DEV4 based on the magnitude of the current flowing through element DEV4.
- FIGS. 3A and 3B are configuration diagrams of an impedance adjustment unit (ZADJ) and a resistor unit in the impedance adjustment unit (ZADJ) of the embodiment;
- the impedance adjustment unit (ZADJ) 112 in the first stage from the top side shown in FIG. 3A includes a switching unit (ZSW) 1121 and an impedance calculation unit 1122.
- the second stage impedance adjustment unit (ZADJ) 122 includes a switching unit (ZSW) 1221 and an impedance calculation unit 1222 .
- the third stage impedance adjustment unit (ZADJ) 132 includes a switching unit (ZSW) 1321 and an impedance calculation unit 1322 .
- the fourth stage impedance adjuster (ZADJ) 142 includes a switch (ZSW) 1421 and an impedance calculator 1422 .
- the switching unit (ZSW) 1121 includes multiple resistors, resistors RG1 to RG3, and a signal switch SW.
- resistors RG1 to RG3 have different impedances.
- the switching unit (ZSW) 1121 selects a specified resistor from the multiple resistors using the signal switch SW.
- the impedance calculation unit 1122 generates a switching signal for selecting the resistor.
- the impedance calculation unit 1122 may determine the impedance of the path of the gate signal supplied to element DEV1 based on the operation pattern of the power conversion device 1 and the value of the current flowing through element DEV1 of the main circuit 10 (power converter).
- the impedance calculation unit 1122 includes an operation pattern determination unit 11221, an element current detection unit 11222, a smoothing processing unit 11223, and a gate resistance value determination unit 11224.
- the operation pattern determination unit 11221 obtains command values for driving the electric motor 2 and information on the operating state of the electric motor 2 to determine the current operating state.
- the operation pattern determination unit 11221 further obtains command values for the power factor and carrier frequency of PWM control to control the electric motor 2 in a desired state.
- the operation pattern determination unit 11221 outputs the above-mentioned power factor command value, carrier frequency command value, and also information indicating either the powering state or the regenerative state.
- the current operation state includes the powering state, the regenerative state, the stationary state, etc. The following explanation focuses on the control of each element in the powering state and the regenerative state. Note that the stationary state may also be considered as the powering state.
- the element current detection unit 11222 obtains information indicating the magnitude of the current flowing through element DEV1 from the current detection unit 133.
- the smoothing processing unit 11223 smoothes the current detection result.
- the process of smoothing the current detection result includes a filter process that suppresses components with frequencies higher than a predetermined cutoff frequency so that the control period of PWM control and carrier frequency components are not included, a moving average process, and the like.
- the gate resistance value determination unit 11224 obtains information on the driving pattern indicating the driving state from the driving pattern determination unit 11221, obtains information on the smoothed current value from the smoothing processing unit 11223, and generates a switching signal for controlling the signal switch SW of the switching unit (ZSW) 1121.
- the gate resistance value determination unit 11224 includes a conversion table that associates the current value flowing through element DEV1 of the main circuit 10 with the impedance of the path that sends the switching signal to element DEV.
- the gate resistance value determination unit 11224 uses the current value of the current flowing through element DEV1 of the main circuit 10 to refer to the above conversion table and generate a selection signal for selecting a resistor.
- the gate resistance value determination unit 11224 may classify the current value of the current flowing through element DEV1 of the main circuit 10 based on its magnitude and use it in processing that refers to the above conversion table.
- the above is a description of the first stage impedance adjustment section (ZADJ) 112, but the same applies to the second stage impedance adjustment section (ZADJ) 122 to the fourth stage impedance adjustment section (ZADJ) 142.
- the data registered in the conversion tables used by the first stage impedance adjustment unit (ZADJ) 112 to the fourth stage impedance adjustment unit (ZADJ) 142 may be common.
- leg UA associated with the U phase, but the same applies to the V and W phases.
- the main circuit 10 is formed as a three-level converter.
- the main circuit 10 allows operation in a powering state in which the main circuit 10 converts DC power to AC power and supplies the AC power to a load, and a regenerative state in which the main circuit 10 converts AC power generated by the load into DC power and supplies the DC power to the DC side.
- the main circuit 10 can adjust the power factor and the frequency of the carrier signal (carrier frequency) used for PWM control, for example, by commands from a higher-level device.
- the command to switch between the powering state and the regenerative state, the power factor command, and the carrier frequency command are collectively called the operation pattern command.
- the power factor and the carrier frequency, as well as the powering state or the regenerative state determined by the command, are collectively called the operation pattern.
- the impedance of the path that sends the switching signal to the element DEV is determined based on the operation pattern. This will be described later. Note that the items included in this operation pattern are not limited to these, and can be reduced or added as appropriate.
- FIGS. 4A to 4C are diagrams for explaining the relationship of element losses to current values of the elements of the embodiment.
- FIG. 5 is a diagram for explaining a data table relating element losses to current values of the elements of the embodiment.
- the graphs shown in Figures 4A to 4C show the relationship between the current flowing through the element (horizontal axis: element current) and the element loss (vertical axis).
- the element is divided into, for example, three regions depending on the magnitude of the current flowing through it.
- Ith1 to Ith3 are thresholds that divide the regions. Larger values are set in the order of Ith1, Ith2, and Ith3.
- the three dashed lines drawn through the origin of the graph indicate the conversion rate of the element loss to the element current value when resistors Rg1 to Rg3 with different impedances are selected.
- the impedances assigned to resistors Rg1 to Rg3 are in the ascending order. Portions of the three dashed lines are drawn in solid lines, which indicate the resistance selected in that region.
- the data table shown in Figure 5 is used to correlate element losses to element current values based on a combination of a first variable (operating pattern) determined based on commands such as operating state, power factor, and carrier frequency, and a second variable (element current value) determined based on a detected current value.
- This data table is an example in which 12 different operating patterns are associated with each other using the first variable.
- a table of this size can be realized by combining an FPGA or logic circuits.
- resistor Rg1 which makes the element loss relatively small.
- resistor Rg3 which can make the element loss relatively large.
- resistor Rg2 or resistor Rg1 which can reduce element loss more than resistor Rg3.
- the carrier frequency is selected so that no mechanical resonance occurs in the motor 2 and its load.
- FIG. 4A The operation pattern in the top row of this data table is shown in FIG. 4A
- FIG. 4B the operation pattern in the fourth row from the top row is shown in FIG. 4B
- FIG. 4C the operation pattern in the seventh row from the top row is shown in FIG. 4C.
- the operating conditions common to the operating patterns of each stage are when the carrier frequency is set to 1 kHz and the operating state is power running.
- the operating conditions different from each other in the operating patterns of each stage are different in the power factor.
- the power factor is set to 0.9
- the condition shown in Figure 4B the power factor is set to 0.95
- the condition shown in Figure 4C the power factor is set to 1.
- the losses of multiple elements do not change evenly, and there may be a bias in the changes in element losses. In such cases, the loss generated by each element can be changed by changing the operating pattern.
- the temperature of a particular element may become excessive or the temperature fluctuation of a particular element may become large.
- the temperature fluctuation of the elements during operation may vary. Such an event may lead to a decrease in the thermal cycle resistance of the elements.
- FIG. 6 is a diagram for explaining an example of control of the electric motor 2 according to the embodiment.
- the magnitudes of the speed reference, the actual speed, the torque reference, and the motor current are shown.
- the electric motor 2 is stopped.
- the control device 20 starts the operation of the electric motor 2.
- the control device 20 sets the speed reference, which is the required speed, to +100%, and commands the motor 2 to accelerate in the positive direction at the highest speed.
- the torque reference which indicates the required torque for the electric motor 2
- the amplitude of the motor current gradually increases.
- the operating state during this time is power running. Accordingly, the actual speed of the electric motor 2 gradually increases.
- the actual speed of the motor 2 approaches the required speed, causing the torque reference to gradually decrease.
- the amplitude of the motor current gradually decreases.
- the control device 20 passes a current sufficient to maintain the speed of the motor 2.
- the control device 20 sets the speed reference to -100% and commands the motor 2 to rotate in the negative direction at the fastest speed in the shortest time possible.
- the torque reference indicating the required torque for the motor 2 has exceeded the negative limit value (Limit).
- the amplitude of the motor current increases once to the maximum allowable amplitude. This current acts to decelerate the motor 2.
- This deceleration control causes the actual speed of the motor 2 to decelerate in the shortest possible time, and the speed of the motor 2 becomes zero. However, because the control of the control device 20 continues, the actual speed of the motor 2 immediately accelerates in the negative direction at the fastest possible speed in the shortest possible time due to acceleration control in the reverse direction.
- the actual speed of the motor 2 approaches the required speed, causing the torque reference to gradually decrease.
- the amplitude of the motor current gradually decreases.
- the control device 20 passes a current sufficient to maintain the speed of the motor 2.
- the control device 20 sets the speed reference to 0% to command the motor 2 to stop, and commands the motor 2 to reach a stop in the shortest time possible. Accordingly, the AC power supplied from the motor 2 is regenerated through the power converter. In this case, the torque reference indicating the required torque for the motor 2 has exceeded the positive limit value (Limit). As a result of current control being performed in accordance with the torque reference of the negative limit value, the amplitude of the motor current increases once to the maximum allowable amplitude. This current acts to decelerate the motor 2.
- the control device 20 stops supplying current to the motor 2.
- the above control range includes several characteristic control operation patterns.
- FIG. 7 is a diagram for explaining another example of the control of the electric motor 2 according to the embodiment.
- the magnitudes of the speed reference, actual speed, motor voltage, and torque reference are shown. Since the actual speed is almost the same as the speed reference, the waveforms overlap with little difference.
- the motor voltage shown here indicates the amplitude of AC. Therefore, regardless of the direction of rotation of the electric motor 2, the amplitude of the motor voltage is large when the motor is rotating fast. Note that the peak of the motor voltage is outside this measurement range.
- the magnitude of the speed reference is controlled to change within a range of a specified rate of change.
- the torque reference becomes a positive or negative value accordingly.
- the switch unit 11 (drive device) of the embodiment includes an impedance adjustment unit 112.
- the impedance adjustment unit 112 uses the value of the current flowing through the element DEV1 of the main circuit 10 (power converter) to adjust the impedance (gate resistance value) of the path that sends a control signal from the gate drive circuit 111 (drive unit) of the element DEV1 to the semiconductor switching element Q1 in the element DEV1. This suppresses changes in loss in the semiconductor switching element Q1 during operation, thereby reducing the amount of temperature fluctuation of the semiconductor switching element Q1.
- the power conversion device 1 is used for various purposes, and may be applied to an application in which the operation pattern changes frequently, as shown in FIG.
- the driving device of the embodiment can reduce the amount of fluctuation in temperature of the semiconductor switching element Q1, and is therefore applicable to a variety of applications.
- the power conversion device 1 of the embodiment is an example of a three-level converter.
- the losses in the outer and inner elements based on the midpoint potential may vary greatly. Therefore, by individually setting the gate resistance value of each element, the variation in losses during operation in the semiconductor switching elements of the three-level converter can be suppressed, thereby reducing the amount of temperature fluctuation in the semiconductor switching elements.
- the outer elements mentioned above are, for example, elements DEV1 and DEV4, and the inner elements mentioned above are, for example, elements DEV2 and DEV3.
- the drive device includes an impedance adjustment unit.
- the impedance adjustment unit uses the value of the current flowing through an element of the power converter to adjust the impedance of the path that sends a control signal from the drive unit of the element to the semiconductor switching element in the element. This makes it possible to reduce the amount of temperature fluctuation of the semiconductor switching element during operation.
- One aspect of the above embodiment is a drive device including an impedance adjustment unit that adjusts the impedance of a path that transmits a control signal from a drive unit of an element of a power converter to a semiconductor switching element within the element, using a current value flowing through the element.
- the impedance adjustment unit described in [1] above may include a plurality of resistors, and may include a switching unit that selects a specified resistor from the plurality of resistors, and an impedance calculation unit that generates a switching signal for selecting the resistor.
- the impedance calculation unit according to the above [2] may include a conversion table that associates a current value flowing through an element of the power converter with the impedance of the path.
- the impedance calculation unit according to the above [3] may refer to the conversion table using a current value flowing through an element of the power converter to generate a selection signal for selecting the resistor.
- the impedance calculation unit according to the above [2] to [4] may determine the impedance of the path based on an operation pattern of the power converter and a current value flowing through an element of the power converter.
- the impedance calculation unit described in [2] to [5] above may smooth a current value flowing through an element of the power converter and use the smoothed current value to determine the impedance of the path.
- the operation pattern of the power converter described in [5] above may be divided into a powering state and a regenerative state.
- the operation pattern of the power converter according to the above [5] or [6] may be classified according to the magnitude of the power factor.
- the operation patterns of the power converter described in [5] to [7] above may be classified according to the height of a carrier frequency.
- the conversion table described in [3] or [4] above may be configured to select, for each operation pattern of the power converter, an impedance of the path such that the loss of the element falls within a desired range.
- the operation pattern of the power converter described in [5] to [10] above may be determined from a combination of a first condition classified according to a powering state and a regenerative state, a second condition classified according to a power factor, and a third condition classified according to a carrier frequency.
- 1...power conversion device 2...Electric motor, 10...Main circuit, 11...Switch unit (drive device), 111...gate drive circuit (GDC, drive unit), 112...Impedance adjustment unit (ZADJ), 113...current detection unit, 1121...switching unit (ZSW), 1122...Impedance calculation unit, 11221...operation pattern determination unit, 11222: element current detection unit, 11223...smoothing processing unit, 11224...Gate resistance value determination unit.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
A drive device according to a first aspect of an embodiment comprises an impedance adjusting unit. The impedance adjusting unit uses a current value flowing through elements of a power converter and adjusts the impedance of a path for sending a control signal from a drive unit of the elements to a semiconductor switching element among the elements.
Description
本発明の実施形態は、駆動装置、電力変換器及び駆動方法に関する。
Embodiments of the present invention relate to a drive device, a power converter, and a drive method.
電力変換器の半導体スイッチング素子は、その半導体スイッチング素子に対応付けられた駆動装置が生成する信号によって駆動される。電力変換器において、その運転パターンが変わったときなどに、運転中の半導体スイッチング素子の温度の変動量が所望の範囲よりも大きくなることがあった。しかしながら運転中の半導体スイッチング素子の温度の変化を検出することは容易なことではなかった。
The semiconductor switching elements of a power converter are driven by signals generated by a drive device associated with the semiconductor switching elements. In a power converter, when the operating pattern changes, the temperature fluctuation of the semiconductor switching elements during operation can sometimes become greater than the desired range. However, it is not easy to detect changes in the temperature of a semiconductor switching element during operation.
本発明の目的は、運転中の半導体スイッチング素子の温度の変動量を低減できる駆動装置及び駆動方法を提供することである。
The object of the present invention is to provide a drive device and a drive method that can reduce the amount of temperature fluctuation of a semiconductor switching element during operation.
実施形態の一態様の駆動装置は、インピーダンス調整部を備える。前記インピーダンス調整部は、電力変換器の素子に流れる電流値を用いて、前記素子の駆動部から前記素子内の半導体スイッチング素子に制御信号を送る経路のインピーダンスを調整する。
The driving device of one embodiment includes an impedance adjustment unit. The impedance adjustment unit uses the value of the current flowing through an element of the power converter to adjust the impedance of the path that sends a control signal from the driving unit of the element to the semiconductor switching element in the element.
以下、実施形態の駆動装置、電力変換器及び駆動方法を、図面を参照して説明する。
なお、以下の説明では、同一又は類似の機能を有する構成に同一の符号を付す。そして、それらの構成の重複する説明は省略する場合がある。なお、電気的に接続されることを、単に「接続される」ということがある。なお、本明細書で言う「XXに基づく」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含む。さらに、「XXに基づく」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含む。「XX」は、任意の要素(例えば、任意の情報)である。
実施形態のゲート抵抗値とは、電力変換器内の素子の駆動部から、その素子内の半導体スイッチング素子に制御信号を送る経路のインピーダンスのことである。 Hereinafter, a drive device, a power converter, and a drive method according to embodiments will be described with reference to the drawings.
In the following description, the same reference numerals are used for components having the same or similar functions. Duplicate descriptions of those components may be omitted. Electrical connection may simply be referred to as "connected." In this specification, "based on XX" means "based on at least XX" and includes cases where it is based on other elements in addition to XX. Furthermore, "based on XX" is not limited to cases where XX is used directly, but also includes cases where it is based on XX that has been subjected to calculations or processing. "XX" is any element (for example, any information).
The gate resistance value in the embodiment refers to the impedance of a path that transmits a control signal from a drive unit of an element in a power converter to a semiconductor switching element in the element.
なお、以下の説明では、同一又は類似の機能を有する構成に同一の符号を付す。そして、それらの構成の重複する説明は省略する場合がある。なお、電気的に接続されることを、単に「接続される」ということがある。なお、本明細書で言う「XXに基づく」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含む。さらに、「XXに基づく」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含む。「XX」は、任意の要素(例えば、任意の情報)である。
実施形態のゲート抵抗値とは、電力変換器内の素子の駆動部から、その素子内の半導体スイッチング素子に制御信号を送る経路のインピーダンスのことである。 Hereinafter, a drive device, a power converter, and a drive method according to embodiments will be described with reference to the drawings.
In the following description, the same reference numerals are used for components having the same or similar functions. Duplicate descriptions of those components may be omitted. Electrical connection may simply be referred to as "connected." In this specification, "based on XX" means "based on at least XX" and includes cases where it is based on other elements in addition to XX. Furthermore, "based on XX" is not limited to cases where XX is used directly, but also includes cases where it is based on XX that has been subjected to calculations or processing. "XX" is any element (for example, any information).
The gate resistance value in the embodiment refers to the impedance of a path that transmits a control signal from a drive unit of an element in a power converter to a semiconductor switching element in the element.
(第1の実施形態)
図1は、実施形態の電力変換装置1の構成図である。
図1に示す電力変換装置1は、直流電力を多相交流電力に変換して、その多相交流電力を電動機2に供給して電動機2を駆動する。例えば、電動機2は、3相交流電動機であり、交流負荷の一例である。例えば、電動機2には速度センサ2Aが設けられていて、電動機2の速度ωrを検出して出力する。
電流検出器CTは、電力変換装置1の主回路10と電動機2とを繋ぐ交流バスに流れる電流を検出する。U相、V相、W相の各相電圧に流れる電流を相電流Iu、Iv、Iwと呼ぶ。3相のうちの2相の電流を検出して、残りの1相の電流値を、変換式を用いて推定してもよい。
上記の交流バスのそれぞれに、相電圧を検出する電圧検出器VDETがそれぞれ設けられている。U相、V相、W相の各相電圧を、電圧Vu、Vv、Vwで示す。なお、電圧検出器VDETは、主回路10内に設けられていてもよい。 First Embodiment
FIG. 1 is a configuration diagram of apower conversion device 1 according to an embodiment.
1 converts DC power into polyphase AC power and supplies the polyphase AC power to anelectric motor 2 to drive the electric motor 2. For example, the electric motor 2 is a three-phase AC motor and is an example of an AC load. For example, the electric motor 2 is provided with a speed sensor 2A that detects and outputs a speed ωr of the electric motor 2.
The current detector CT detects a current flowing through an AC bus connecting themain circuit 10 of the power conversion device 1 and the motor 2. The currents flowing through the phase voltages of the U phase, V phase, and W phase are called phase currents Iu, Iv, and Iw. The currents of two of the three phases may be detected, and the current value of the remaining phase may be estimated using a conversion equation.
A voltage detector VDET for detecting a phase voltage is provided on each of the AC buses. The phase voltages of the U phase, V phase, and W phase are indicated by voltages Vu, Vv, and Vw. The voltage detector VDET may be provided in themain circuit 10.
図1は、実施形態の電力変換装置1の構成図である。
図1に示す電力変換装置1は、直流電力を多相交流電力に変換して、その多相交流電力を電動機2に供給して電動機2を駆動する。例えば、電動機2は、3相交流電動機であり、交流負荷の一例である。例えば、電動機2には速度センサ2Aが設けられていて、電動機2の速度ωrを検出して出力する。
電流検出器CTは、電力変換装置1の主回路10と電動機2とを繋ぐ交流バスに流れる電流を検出する。U相、V相、W相の各相電圧に流れる電流を相電流Iu、Iv、Iwと呼ぶ。3相のうちの2相の電流を検出して、残りの1相の電流値を、変換式を用いて推定してもよい。
上記の交流バスのそれぞれに、相電圧を検出する電圧検出器VDETがそれぞれ設けられている。U相、V相、W相の各相電圧を、電圧Vu、Vv、Vwで示す。なお、電圧検出器VDETは、主回路10内に設けられていてもよい。 First Embodiment
FIG. 1 is a configuration diagram of a
1 converts DC power into polyphase AC power and supplies the polyphase AC power to an
The current detector CT detects a current flowing through an AC bus connecting the
A voltage detector VDET for detecting a phase voltage is provided on each of the AC buses. The phase voltages of the U phase, V phase, and W phase are indicated by voltages Vu, Vv, and Vw. The voltage detector VDET may be provided in the
電力変換装置1は、例えば、主回路10と、制御装置20とを備える。
主回路10は、レグUA、VA、WAを備える3相インバータ(電力変換器)である。レグUA、VA、WAを区別しない場合には、単に「各レグ」という。電力変換装置1は、主回路10を3レベル型のインバータとして機能させる。 Thepower conversion device 1 includes, for example, a main circuit 10 and a control device 20 .
Themain circuit 10 is a three-phase inverter (power converter) including legs UA, VA, and WA. When the legs UA, VA, and WA are not distinguished from each other, they are simply referred to as "each leg." The power conversion device 1 causes the main circuit 10 to function as a three-level inverter.
主回路10は、レグUA、VA、WAを備える3相インバータ(電力変換器)である。レグUA、VA、WAを区別しない場合には、単に「各レグ」という。電力変換装置1は、主回路10を3レベル型のインバータとして機能させる。 The
The
制御装置20は、主回路10を制御することにより、主回路10による電力変換を制御する。制御装置20は、例えば、PWM変換部21と、コントローラ22とを備える。
The control device 20 controls the main circuit 10 to control the power conversion by the main circuit 10. The control device 20 includes, for example, a PWM conversion unit 21 and a controller 22.
PWM変換部21は、コントローラ22によって生成される電圧基準を、所定の周波数のキャリア信号を用いてパルス幅変調(PWM)することにより変換して、ゲートパルスGPU、GPV、GPWを生成する。PWM変換部21は、ゲートパルスGPU、GPV、GPWを、それぞれレグUA、VA、WAに供給する。例えば、ゲートパルスGPUは、レグUAの各素子を駆動するための制御信号を含む。ゲートパルスGPV、GPWについても同様である。
The PWM conversion unit 21 converts the voltage reference generated by the controller 22 by pulse width modulation (PWM) using a carrier signal of a predetermined frequency to generate gate pulses GPU, GPV, and GPW. The PWM conversion unit 21 supplies the gate pulses GPU, GPV, and GPW to legs UA, VA, and WA, respectively. For example, the gate pulse GPU includes a control signal for driving each element of leg UA. The same is true for the gate pulses GPV and GPW.
コントローラ22は、上記の電圧基準を生成してPWM変換部21に供給する。
例えば、コントローラ22は、電動機2の速度ωrと、速度基準ω*とに基づいて速度基準ω*に追従させる速度制御を実施して、夫々の時点のトルク基準を生成する。コントローラ22は、トルク基準に基づいた電流指令値I*と、モータ電流Iu,IV,Iwとに基づいた電流制御を実施して、PWM制御に用いる電圧基準を生成する。この電圧基準がPWM変換部21に供給される。 Thecontroller 22 generates the above voltage reference and supplies it to the PWM conversion unit 21 .
For example, thecontroller 22 performs speed control to make the motor 2 follow the speed reference ω * based on the speed ωr of the motor 2 and the speed reference ω * , and generates a torque reference at each time point. The controller 22 performs current control based on a current command value I * based on the torque reference and the motor currents Iu, IV, and Iw, and generates a voltage reference used in PWM control. This voltage reference is supplied to the PWM conversion unit 21.
例えば、コントローラ22は、電動機2の速度ωrと、速度基準ω*とに基づいて速度基準ω*に追従させる速度制御を実施して、夫々の時点のトルク基準を生成する。コントローラ22は、トルク基準に基づいた電流指令値I*と、モータ電流Iu,IV,Iwとに基づいた電流制御を実施して、PWM制御に用いる電圧基準を生成する。この電圧基準がPWM変換部21に供給される。 The
For example, the
図2を参照して、主回路10の各レグを代表してレグUAについて説明する。
図2は、実施形態の駆動装置を含むレグUAの構成図である。
レグUAの正極電源端子には、第1直流バスを介して正極側の電圧DCPが供給され、レグUAの負極電源端子には、第2直流バスを介して負極側の電圧DCNが供給される。レグUAの基準電圧端子が、中性点NPに接続されている。レグUAの出力端子TUは、交流バスを介して電動機2のU相の巻線に接続されている。 With reference to FIG. 2, the leg UA will be described as a representative of the legs of themain circuit 10.
FIG. 2 is a configuration diagram of a leg UA including a driving device according to the embodiment.
A positive power supply terminal of the leg UA is supplied with a positive voltage DCP via a first DC bus, and a negative power supply terminal of the leg UA is supplied with a negative voltage DCN via a second DC bus. A reference voltage terminal of the leg UA is connected to a neutral point NP. An output terminal TU of the leg UA is connected to a U-phase winding of themotor 2 via an AC bus.
図2は、実施形態の駆動装置を含むレグUAの構成図である。
レグUAの正極電源端子には、第1直流バスを介して正極側の電圧DCPが供給され、レグUAの負極電源端子には、第2直流バスを介して負極側の電圧DCNが供給される。レグUAの基準電圧端子が、中性点NPに接続されている。レグUAの出力端子TUは、交流バスを介して電動機2のU相の巻線に接続されている。 With reference to FIG. 2, the leg UA will be described as a representative of the legs of the
FIG. 2 is a configuration diagram of a leg UA including a driving device according to the embodiment.
A positive power supply terminal of the leg UA is supplied with a positive voltage DCP via a first DC bus, and a negative power supply terminal of the leg UA is supplied with a negative voltage DCN via a second DC bus. A reference voltage terminal of the leg UA is connected to a neutral point NP. An output terminal TU of the leg UA is connected to a U-phase winding of the
図2に示すように、レグUAは、スイッチ部11から14を備える。スイッチ部11から14は、例えば、素子DEV1からDEV4をそれぞれ備える。さらにレグUAは、ダイオードDPとDNとを備える。
As shown in FIG. 2, leg UA includes switch units 11 to 14. Switch units 11 to 14 include, for example, elements DEV1 to DEV4, respectively. Leg UA further includes diodes DP and DN.
素子DEV1は、半導体スイッチング素子Q1とダイオードD1の組を備える。素子DEV2は、半導体スイッチング素子Q2とダイオードD2の組を備える。素子DEV3は、半導体スイッチング素子Q3とダイオードD3の組を備える。素子DEV4は、半導体スイッチング素子Q4とダイオードD4の組を備える。
Element DEV1 includes a pair of semiconductor switching element Q1 and diode D1. Element DEV2 includes a pair of semiconductor switching element Q2 and diode D2. Element DEV3 includes a pair of semiconductor switching element Q3 and diode D3. Element DEV4 includes a pair of semiconductor switching element Q4 and diode D4.
レグUAの半導体スイッチング素子Q1からQ4は、例えばIGBTである。半導体スイッチング素子の種別は、IGBTに制限されることなく、MOSFETなどに変更してもよい。半導体スイッチング素子Q1からQ4は記載の順に直列に接続さている。半導体スイッチング素子Q1のエミッタとコレクタには、逆接続されたダイオードD1が並列に接続されている。半導体スイッチング素子Q2からQ4についても、ダイオードD2からD4が同様に並列に接続されている。半導体スイッチング素子Q1からQ4のうち、半導体スイッチング素子Q1とQ2は、正極側アームに含まれ、半導体スイッチング素子Q3とQ4は、負極側アームに含まれる。
The semiconductor switching elements Q1 to Q4 of leg UA are, for example, IGBTs. The type of semiconductor switching elements is not limited to IGBTs and may be changed to MOSFETs, etc. The semiconductor switching elements Q1 to Q4 are connected in series in the order listed. A reverse-connected diode D1 is connected in parallel to the emitter and collector of the semiconductor switching element Q1. Diodes D2 to D4 are similarly connected in parallel to the semiconductor switching elements Q2 to Q4. Of the semiconductor switching elements Q1 to Q4, semiconductor switching elements Q1 and Q2 are included in the positive arm, and semiconductor switching elements Q3 and Q4 are included in the negative arm.
中性点端子NPには、ダイオードDPのアノードと、ダイオードDNのカソードとが接続されている。ダイオードDPのカソードは、半導体スイッチング素子Q2のエミッタと半導体スイッチング素子Q3のコレクタの接続点に接続される。ダイオードDNのアノードは、半導体スイッチング素子Q3のエミッタと半導体スイッチング素子Q4のコレクタの接続点に接続される。
The anode of diode DP and the cathode of diode DN are connected to the neutral terminal NP. The cathode of diode DP is connected to the connection point between the emitter of semiconductor switching element Q2 and the collector of semiconductor switching element Q3. The anode of diode DN is connected to the connection point between the emitter of semiconductor switching element Q3 and the collector of semiconductor switching element Q4.
出力端子TUには、半導体スイッチング素子Q2のエミッタと、半導体スイッチング素子Q3のコレクタと、ダイオードD2のアノードと、ダイオードD3のカソードとが接続されている。
The output terminal TU is connected to the emitter of semiconductor switching element Q2, the collector of semiconductor switching element Q3, the anode of diode D2, and the cathode of diode D3.
各段のスイッチ部は、ゲートドライブ回路(GDC)と、インピーダンス調整部(ZADJ)と、電流検出部とをそれぞれ含む。
The switch section of each stage includes a gate drive circuit (GDC), an impedance adjustment section (ZADJ), and a current detection section.
例えば、スイッチ部11は、ゲートドライブ回路(GDC)111と、インピーダンス調整部(ZADJ)112と、電流検出部113とをそれぞれ含む。スイッチ部12は、ゲートドライブ回路(GDC)121と、インピーダンス調整部(ZADJ)122と、電流検出部123とをそれぞれ含む。スイッチ部13は、ゲートドライブ回路(GDC)131と、インピーダンス調整部(ZADJ)132と、電流検出部133とをそれぞれ含む。スイッチ部14は、ゲートドライブ回路(GDC)141と、インピーダンス調整部(ZADJ)142と、電流検出部143とをそれぞれ含む。
For example, the switch unit 11 includes a gate drive circuit (GDC) 111, an impedance adjustment unit (ZADJ) 112, and a current detection unit 113. The switch unit 12 includes a gate drive circuit (GDC) 121, an impedance adjustment unit (ZADJ) 122, and a current detection unit 123. The switch unit 13 includes a gate drive circuit (GDC) 131, an impedance adjustment unit (ZADJ) 132, and a current detection unit 133. The switch unit 14 includes a gate drive circuit (GDC) 141, an impedance adjustment unit (ZADJ) 142, and a current detection unit 143.
ゲートドライブ回路(GDC)111は、ゲートパルスGPUの中の第1信号を受け、その第1信号に対し所定の信号変換を実施して、素子DEV1用のゲート信号を生成する。ゲートドライブ回路(GDC)111における信号変換は、既知のものであって良い。電流検出部113は、素子DEV1の正極側に配置され、素子DEV1に流れる電流を検出する。インピーダンス調整部(ZADJ)112は、素子DEV1に流れる電流の大きさに基づいて、素子DEV1に供給されるゲート信号の経路のインピーダンスを調整する。
The gate drive circuit (GDC) 111 receives a first signal in the gate pulse GPU and performs a predetermined signal conversion on the first signal to generate a gate signal for element DEV1. The signal conversion in the gate drive circuit (GDC) 111 may be a known type. The current detection unit 113 is disposed on the positive electrode side of element DEV1 and detects the current flowing through element DEV1. The impedance adjustment unit (ZADJ) 112 adjusts the impedance of the path of the gate signal supplied to element DEV1 based on the magnitude of the current flowing through element DEV1.
ゲートドライブ回路(GDC)121は、ゲートパルスGPUの中の第2信号を受け、その第2信号に対し所定の信号変換を実施して、素子DEV2用のゲート信号を生成する。電流検出部123は、素子DEV2の正極側に配置され、素子DEV2に流れる電流を検出する。インピーダンス調整部(ZADJ)122は、素子DEV2に流れる電流の大きさに基づいて、素子DEV2に供給されるゲート信号の経路のインピーダンスを調整する。
The gate drive circuit (GDC) 121 receives the second signal in the gate pulse GPU and performs a predetermined signal conversion on the second signal to generate a gate signal for element DEV2. The current detection unit 123 is disposed on the positive electrode side of element DEV2 and detects the current flowing through element DEV2. The impedance adjustment unit (ZADJ) 122 adjusts the impedance of the path of the gate signal supplied to element DEV2 based on the magnitude of the current flowing through element DEV2.
ゲートドライブ回路(GDC)131は、ゲートパルスGPUの中の第3信号を受け、その第3信号に対し所定の信号変換を実施して、素子DEV3用のゲート信号を生成する。電流検出部133は、素子DEV3の正極側に配置され、素子DEV3に流れる電流を検出する。インピーダンス調整部(ZADJ)132は、素子DEV3に流れる電流の大きさに基づいて、素子DEV3に供給されるゲート信号の経路のインピーダンスを調整する。
The gate drive circuit (GDC) 131 receives the third signal in the gate pulse GPU and performs a predetermined signal conversion on the third signal to generate a gate signal for element DEV3. The current detection unit 133 is disposed on the positive electrode side of element DEV3 and detects the current flowing through element DEV3. The impedance adjustment unit (ZADJ) 132 adjusts the impedance of the path of the gate signal supplied to element DEV3 based on the magnitude of the current flowing through element DEV3.
ゲートドライブ回路(GDC)141は、ゲートパルスGPUの中の第4信号を受け、その第4信号に対し所定の信号変換を実施して、素子DEV4用のゲート信号を生成する。電流検出部143は、素子DEV4の正極側に配置され、素子DEV4に流れる電流を検出する。インピーダンス調整部(ZADJ)142は、素子DEV4に流れる電流の大きさに基づいて、素子DEV4に供給されるゲート信号の経路のインピーダンスを調整する。
The gate drive circuit (GDC) 141 receives the fourth signal in the gate pulse GPU and performs a predetermined signal conversion on the fourth signal to generate a gate signal for element DEV4. The current detection unit 143 is disposed on the positive electrode side of element DEV4 and detects the current flowing through element DEV4. The impedance adjustment unit (ZADJ) 142 adjusts the impedance of the path of the gate signal supplied to element DEV4 based on the magnitude of the current flowing through element DEV4.
図3Aと図3Bとを参照して、各段のインピーダンス調整部(ZADJ)について説明する。
図3Aは、実施形態のインピーダンス調整部(ZADJ)の構成図である。図3Bは、実施形態のインピーダンス調整部(ZADJ)内の抵抗部の構成図である。 The impedance adjustment unit (ZADJ) of each stage will be described with reference to FIGS. 3A and 3B.
3A and 3B are configuration diagrams of an impedance adjustment unit (ZADJ) and a resistor unit in the impedance adjustment unit (ZADJ) of the embodiment;
図3Aは、実施形態のインピーダンス調整部(ZADJ)の構成図である。図3Bは、実施形態のインピーダンス調整部(ZADJ)内の抵抗部の構成図である。 The impedance adjustment unit (ZADJ) of each stage will be described with reference to FIGS. 3A and 3B.
3A and 3B are configuration diagrams of an impedance adjustment unit (ZADJ) and a resistor unit in the impedance adjustment unit (ZADJ) of the embodiment;
図3Aに示す上段側から第1段目のインピーダンス調整部(ZADJ)112は、切替部(ZSW)1121と、インピーダンス算出部1122とを備える。
第2段目のインピーダンス調整部(ZADJ)122は、切替部(ZSW)1221と、インピーダンス算出部1222とを備える。
第3段目のインピーダンス調整部(ZADJ)132は、切替部(ZSW)1321と、インピーダンス算出部1322とを備える。
第4段目のインピーダンス調整部(ZADJ)142は、切替部(ZSW)1421と、インピーダンス算出部1422とを備える。 The impedance adjustment unit (ZADJ) 112 in the first stage from the top side shown in FIG. 3A includes a switching unit (ZSW) 1121 and animpedance calculation unit 1122.
The second stage impedance adjustment unit (ZADJ) 122 includes a switching unit (ZSW) 1221 and animpedance calculation unit 1222 .
The third stage impedance adjustment unit (ZADJ) 132 includes a switching unit (ZSW) 1321 and animpedance calculation unit 1322 .
The fourth stage impedance adjuster (ZADJ) 142 includes a switch (ZSW) 1421 and animpedance calculator 1422 .
第2段目のインピーダンス調整部(ZADJ)122は、切替部(ZSW)1221と、インピーダンス算出部1222とを備える。
第3段目のインピーダンス調整部(ZADJ)132は、切替部(ZSW)1321と、インピーダンス算出部1322とを備える。
第4段目のインピーダンス調整部(ZADJ)142は、切替部(ZSW)1421と、インピーダンス算出部1422とを備える。 The impedance adjustment unit (ZADJ) 112 in the first stage from the top side shown in FIG. 3A includes a switching unit (ZSW) 1121 and an
The second stage impedance adjustment unit (ZADJ) 122 includes a switching unit (ZSW) 1221 and an
The third stage impedance adjustment unit (ZADJ) 132 includes a switching unit (ZSW) 1321 and an
The fourth stage impedance adjuster (ZADJ) 142 includes a switch (ZSW) 1421 and an
例えば、切替部(ZSW)1121は、図3Bに示すように、抵抗RG1から抵抗RG3の複数の抵抗と、信号スイッチSWを含む。例えば、抵抗RG1から抵抗RG3は、互いに異なるインピーダンスを有する。切替部(ZSW)1121は、信号スイッチSWによって、その複数の抵抗の中から指定された抵抗を選択する。
For example, as shown in FIG. 3B, the switching unit (ZSW) 1121 includes multiple resistors, resistors RG1 to RG3, and a signal switch SW. For example, resistors RG1 to RG3 have different impedances. The switching unit (ZSW) 1121 selects a specified resistor from the multiple resistors using the signal switch SW.
インピーダンス算出部1122は、その抵抗を選択するための切替信号を生成する。
インピーダンス算出部1122は、電力変換装置1の運転パターンと主回路10(電力変換器)の素子DEV1に流れる電流値とに基づいて、素子DEV1に供給されるゲート信号の経路のインピーダンスを決定するとよい。 Theimpedance calculation unit 1122 generates a switching signal for selecting the resistor.
Theimpedance calculation unit 1122 may determine the impedance of the path of the gate signal supplied to element DEV1 based on the operation pattern of the power conversion device 1 and the value of the current flowing through element DEV1 of the main circuit 10 (power converter).
インピーダンス算出部1122は、電力変換装置1の運転パターンと主回路10(電力変換器)の素子DEV1に流れる電流値とに基づいて、素子DEV1に供給されるゲート信号の経路のインピーダンスを決定するとよい。 The
The
例えば、インピーダンス算出部1122は、運転パターン決定部11221と、素子電流検出部11222と、平滑化処理部11223と、ゲート抵抗値決定部11224とを備える。
For example, the impedance calculation unit 1122 includes an operation pattern determination unit 11221, an element current detection unit 11222, a smoothing processing unit 11223, and a gate resistance value determination unit 11224.
運転パターン決定部11221は、電動機2を駆動するための指令値と、電動機2の稼働状態に関する情報を取得して、現時点の運転状態を決定する。運転パターン決定部11221は、さらに、電動機2を所望の状態で制御するための力率、PWM制御のキャリア周波数の指令値を取得する。
The operation pattern determination unit 11221 obtains command values for driving the electric motor 2 and information on the operating state of the electric motor 2 to determine the current operating state. The operation pattern determination unit 11221 further obtains command values for the power factor and carrier frequency of PWM control to control the electric motor 2 in a desired state.
運転パターン決定部11221は、上記の力率の指令値と、キャリア周波数の指令値と、さらに、力行状態と回生状態の何れかの状態を示す情報とを出力する。現時点の運転状態には、力行状態、回生状態、静止状態などが含まれる。以下の説明では、力行状態と回生状態における各素子の制御を中心に説明する。なお、静止状態を力行状態とみなしてもよい。
The operation pattern determination unit 11221 outputs the above-mentioned power factor command value, carrier frequency command value, and also information indicating either the powering state or the regenerative state. The current operation state includes the powering state, the regenerative state, the stationary state, etc. The following explanation focuses on the control of each element in the powering state and the regenerative state. Note that the stationary state may also be considered as the powering state.
素子電流検出部11222は、素子DEV1に流れる電流の大きさを示す情報を、電流検出部133から取得する。平滑化処理部11223は、その電流の検出結果を平滑化する。例えば、電流の検出結果を平滑化処理には、PWM制御の制御周期、キャリア周波数の成分が含まれないように、所定のカットオフ周波数よりも周波数が高い成分を抑圧するフィルタ処理、移動平均処理などが含まれる。
The element current detection unit 11222 obtains information indicating the magnitude of the current flowing through element DEV1 from the current detection unit 133. The smoothing processing unit 11223 smoothes the current detection result. For example, the process of smoothing the current detection result includes a filter process that suppresses components with frequencies higher than a predetermined cutoff frequency so that the control period of PWM control and carrier frequency components are not included, a moving average process, and the like.
ゲート抵抗値決定部11224は、運転パターン決定部11221から運転状態を示す運転パターンの情報を取得して、平滑化処理部11223から平滑化された電流値の情報を取得して、切替部(ZSW)1121の信号スイッチSWを制御するための切替信号を生成する。
The gate resistance value determination unit 11224 obtains information on the driving pattern indicating the driving state from the driving pattern determination unit 11221, obtains information on the smoothed current value from the smoothing processing unit 11223, and generates a switching signal for controlling the signal switch SW of the switching unit (ZSW) 1121.
例えば、ゲート抵抗値決定部11224(インピーダンス算出部)は、主回路10の素子DEV1に流れる電流値と、上記切替信号を素子DEVに送る経路のインピーダンスとを関連付ける変換テーブルを含む。
For example, the gate resistance value determination unit 11224 (impedance calculation unit) includes a conversion table that associates the current value flowing through element DEV1 of the main circuit 10 with the impedance of the path that sends the switching signal to element DEV.
ゲート抵抗値決定部11224(インピーダンス算出部)は、主回路10の素子DEV1に流れる電流の電流値を用いて、上記の変換テーブルを参照して、抵抗を選択するための選択信号を生成する。ゲート抵抗値決定部11224(インピーダンス算出部)は、主回路10の素子DEV1に流れる電流の電流値を、その大きさに基づいてクラス分けして、上記の変換テーブルを参照する処理に用いるとよい。
The gate resistance value determination unit 11224 (impedance calculation unit) uses the current value of the current flowing through element DEV1 of the main circuit 10 to refer to the above conversion table and generate a selection signal for selecting a resistor. The gate resistance value determination unit 11224 (impedance calculation unit) may classify the current value of the current flowing through element DEV1 of the main circuit 10 based on its magnitude and use it in processing that refers to the above conversion table.
上記は、第1段目のインピーダンス調整部(ZADJ)112についての説明であるが、第2段目のインピーダンス調整部(ZADJ)122から第4段目のインピーダンス調整部(ZADJ)142についても同様である。
なお、第1段目のインピーダンス調整部(ZADJ)112から第4段目のインピーダンス調整部(ZADJ)142が夫々用いる変換テーブルに登録される各データを、共通にしてよい。 The above is a description of the first stage impedance adjustment section (ZADJ) 112, but the same applies to the second stage impedance adjustment section (ZADJ) 122 to the fourth stage impedance adjustment section (ZADJ) 142.
The data registered in the conversion tables used by the first stage impedance adjustment unit (ZADJ) 112 to the fourth stage impedance adjustment unit (ZADJ) 142 may be common.
なお、第1段目のインピーダンス調整部(ZADJ)112から第4段目のインピーダンス調整部(ZADJ)142が夫々用いる変換テーブルに登録される各データを、共通にしてよい。 The above is a description of the first stage impedance adjustment section (ZADJ) 112, but the same applies to the second stage impedance adjustment section (ZADJ) 122 to the fourth stage impedance adjustment section (ZADJ) 142.
The data registered in the conversion tables used by the first stage impedance adjustment unit (ZADJ) 112 to the fourth stage impedance adjustment unit (ZADJ) 142 may be common.
上記はU相に対応付けられたレグUAに関する説明であるが、V相、W相についても同様である。
The above is an explanation of leg UA associated with the U phase, but the same applies to the V and W phases.
上記のとおり主回路10は、3レベル変換器として形成されている。主回路10は、直流電力を交流電力に変換して、負荷に交流電力を供給する力行状態と、負荷が生成した交流電力を直流電力に変換して、直流側に直流電力を供給する回生状態との運転を許容する。
主回路10は、例えば上位装置からの指令などにより、力率の調整と、PWM制御に利用するキャリア信号の周波数(キャリア周波数)の調整を可能とする。力行状態と回生状態との切替指令と、力率の指令と、キャリア周波数の指令とを纏めて運転パターンの指令と呼ぶ。指令により定まる力行状態と回生状態との何れかと、力率と、キャリア周波数とを纏めて運転パターンという。 As described above, themain circuit 10 is formed as a three-level converter. The main circuit 10 allows operation in a powering state in which the main circuit 10 converts DC power to AC power and supplies the AC power to a load, and a regenerative state in which the main circuit 10 converts AC power generated by the load into DC power and supplies the DC power to the DC side.
Themain circuit 10 can adjust the power factor and the frequency of the carrier signal (carrier frequency) used for PWM control, for example, by commands from a higher-level device. The command to switch between the powering state and the regenerative state, the power factor command, and the carrier frequency command are collectively called the operation pattern command. The power factor and the carrier frequency, as well as the powering state or the regenerative state determined by the command, are collectively called the operation pattern.
主回路10は、例えば上位装置からの指令などにより、力率の調整と、PWM制御に利用するキャリア信号の周波数(キャリア周波数)の調整を可能とする。力行状態と回生状態との切替指令と、力率の指令と、キャリア周波数の指令とを纏めて運転パターンの指令と呼ぶ。指令により定まる力行状態と回生状態との何れかと、力率と、キャリア周波数とを纏めて運転パターンという。 As described above, the
The
運転パターンに基づいて、切替信号を素子DEVに送る経路のインピーダンスが決定される。これについては後述する。なお、この運転パターンに含まれる項目は、これに制限されず、適宜削減と追加を許容する。
The impedance of the path that sends the switching signal to the element DEV is determined based on the operation pattern. This will be described later. Note that the items included in this operation pattern are not limited to these, and can be reduced or added as appropriate.
図4Aから図4Cは、実施形態の素子の電流値に対する素子の損失の関係を説明するための図である。図5は、実施形態の実施形態の素子の電流値に対する素子の損失の関係付けるデータテーブルを説明するための図である。
FIGS. 4A to 4C are diagrams for explaining the relationship of element losses to current values of the elements of the embodiment. FIG. 5 is a diagram for explaining a data table relating element losses to current values of the elements of the embodiment.
図4Aから図4Cに示すグラフは、素子に流れる電流(横軸:素子電流)と、素子の損失(縦軸)の関係を示す。素子に流れる電流の大きさによって、例えば3つの領域に区分される。Ith1からIth3は、領域を区分する閾値である。Ith1、Ith2、Ith3の順に、より大きな値が設定されている。
The graphs shown in Figures 4A to 4C show the relationship between the current flowing through the element (horizontal axis: element current) and the element loss (vertical axis). The element is divided into, for example, three regions depending on the magnitude of the current flowing through it. Ith1 to Ith3 are thresholds that divide the regions. Larger values are set in the order of Ith1, Ith2, and Ith3.
グラフの原点を通るように描かれた3つの破線は、インピーダンスが互いに異なる抵抗Rg1からRg3がそれぞれ選択された場合の、素子の電流値に対する素子の損失の変換率を示す。抵抗Rg1からRg3の順により大きな値のインピーダンスが割り付けられている。
この3つの破線の一部が実線で描かれている。この実線の部分が、その領域で選択された抵抗を示す。 The three dashed lines drawn through the origin of the graph indicate the conversion rate of the element loss to the element current value when resistors Rg1 to Rg3 with different impedances are selected. The impedances assigned to resistors Rg1 to Rg3 are in the ascending order.
Portions of the three dashed lines are drawn in solid lines, which indicate the resistance selected in that region.
この3つの破線の一部が実線で描かれている。この実線の部分が、その領域で選択された抵抗を示す。 The three dashed lines drawn through the origin of the graph indicate the conversion rate of the element loss to the element current value when resistors Rg1 to Rg3 with different impedances are selected. The impedances assigned to resistors Rg1 to Rg3 are in the ascending order.
Portions of the three dashed lines are drawn in solid lines, which indicate the resistance selected in that region.
図5に示すデータテーブルは、運転状態、力率、キャリア周波数などの指令に基づき決定される第1変数(運転パターン)と、検出された電流値に基づいて決定され第2変数(素子の電流値)との組み合わせから、素子の電流値に対する素子の損失の関係付ける処理に利用される。
The data table shown in Figure 5 is used to correlate element losses to element current values based on a combination of a first variable (operating pattern) determined based on commands such as operating state, power factor, and carrier frequency, and a second variable (element current value) determined based on a detected current value.
このデータテーブルは、第1変数を用いて12個に区分した運転パターンを対応付けた一例である。この程度の規模のテーブルであれば、FPGA又は論理回路の組み合わせにより実現可能である。
This data table is an example in which 12 different operating patterns are associated with each other using the first variable. A table of this size can be realized by combining an FPGA or logic circuits.
例えば、力行運転中に力率を1にする場合、素子の損失を比較的小さくする抵抗Rg1を利用するとよい。これとは逆に、力行運転中に力率を下げる場合、素子の損失を比較的大きくできる抵抗Rg3を利用するとよい。ただし、素子の電流値が大きくなると、素子の損失が過大になることがある。このような素子の損失が過大になることを防ぐには、抵抗Rg3よりも素子の損失を低減可能な抵抗Rg2又は抵抗Rg1を適宜利用するとよい。
For example, if you want to make the power factor 1 during power running, it is a good idea to use resistor Rg1, which makes the element loss relatively small. Conversely, if you want to lower the power factor during power running, it is a good idea to use resistor Rg3, which can make the element loss relatively large. However, if the element current value becomes large, the element loss may become excessive. To prevent such element loss from becoming excessive, it is a good idea to appropriately use resistor Rg2 or resistor Rg1, which can reduce element loss more than resistor Rg3.
なお、キャリア周波数は、電動機2及びその負荷に機械的な共振が生じないように選択される。幾つかのキャリア周波数を、運転パターンとして選択可能にすることで、上記のような機械的な共振の発生を抑制できる。
The carrier frequency is selected so that no mechanical resonance occurs in the motor 2 and its load. By making it possible to select from several carrier frequencies as operation patterns, the occurrence of mechanical resonance as described above can be suppressed.
このデータテーブルに示す設定例の幾つかを、図4Aから図4Cに示す。
このデータテーブルの最上段の運転パターンの場合を図4Aに示し、最上段から4段目の運転パターンの場合を図4Bに示し、最上段から7段目の運転パターンの場合を図4Cに示す。
各段の運転パターンに共通する運転条件は、キャリア周波数を1kHzにして力行運転状態にしたときのものである。これに対し、各段の運転パターンに互いに異なる運転条件は、力率が異なる。図4Aに示す条件では、力率が0.9に設定されていて、図4Bに示す条件では、力率が0.95に設定されていて、図4Cに示す条件では、力率が1に設定されている。 Some example settings shown in this data table are shown in Figures 4A to 4C.
The operation pattern in the top row of this data table is shown in FIG. 4A, the operation pattern in the fourth row from the top row is shown in FIG. 4B, and the operation pattern in the seventh row from the top row is shown in FIG. 4C.
The operating conditions common to the operating patterns of each stage are when the carrier frequency is set to 1 kHz and the operating state is power running. In contrast, the operating conditions different from each other in the operating patterns of each stage are different in the power factor. In the condition shown in Figure 4A, the power factor is set to 0.9, in the condition shown in Figure 4B, the power factor is set to 0.95, and in the condition shown in Figure 4C, the power factor is set to 1.
このデータテーブルの最上段の運転パターンの場合を図4Aに示し、最上段から4段目の運転パターンの場合を図4Bに示し、最上段から7段目の運転パターンの場合を図4Cに示す。
各段の運転パターンに共通する運転条件は、キャリア周波数を1kHzにして力行運転状態にしたときのものである。これに対し、各段の運転パターンに互いに異なる運転条件は、力率が異なる。図4Aに示す条件では、力率が0.9に設定されていて、図4Bに示す条件では、力率が0.95に設定されていて、図4Cに示す条件では、力率が1に設定されている。 Some example settings shown in this data table are shown in Figures 4A to 4C.
The operation pattern in the top row of this data table is shown in FIG. 4A, the operation pattern in the fourth row from the top row is shown in FIG. 4B, and the operation pattern in the seventh row from the top row is shown in FIG. 4C.
The operating conditions common to the operating patterns of each stage are when the carrier frequency is set to 1 kHz and the operating state is power running. In contrast, the operating conditions different from each other in the operating patterns of each stage are different in the power factor. In the condition shown in Figure 4A, the power factor is set to 0.9, in the condition shown in Figure 4B, the power factor is set to 0.95, and in the condition shown in Figure 4C, the power factor is set to 1.
なお、運転状態、力率、キャリア周波数をそれぞれ区分した個数及び値を、このデータテーブルに示したものに制限することはなく、適宜変更してよい。
Note that the number and values of the operating state, power factor, and carrier frequency are not limited to those shown in this data table and may be changed as appropriate.
運転状況により複数の素子の損失が均等に変化するのではなく、素子の損失の変化に偏りが生じることがある。このような事象に対して、運転パターンを変えることで、各素子で発生する損失を変更できる。
Depending on the operating conditions, the losses of multiple elements do not change evenly, and there may be a bias in the changes in element losses. In such cases, the loss generated by each element can be changed by changing the operating pattern.
なお、ゲート抵抗値を固定値にした構成の比較例の場合には、特定の素子の温度が過大になったり、特定の素子の温度変動が大きくなったりすることがあった。また、発生する素子の損失の分布が異なる状況で各素子を一律に制御していると、その運転中の素子の温度変動がばらつくことがあった。このような事象は、素子のサーマルサイクル耐量の低下を招くことになる。
本実施形態では、ゲート抵抗値をリアルタイムで運転パターンと各素子の電流値を元に算出したゲート抵抗値に切り替えて運転することが可能であり、素子温度の変動を抑制することができる。 In the comparative example with a fixed gate resistance, the temperature of a particular element may become excessive or the temperature fluctuation of a particular element may become large. In addition, if each element is uniformly controlled in a situation where the distribution of losses generated by the elements is different, the temperature fluctuation of the elements during operation may vary. Such an event may lead to a decrease in the thermal cycle resistance of the elements.
In this embodiment, it is possible to switch the gate resistance value in real time to a gate resistance value calculated based on the operation pattern and the current value of each element, thereby suppressing fluctuations in element temperature.
本実施形態では、ゲート抵抗値をリアルタイムで運転パターンと各素子の電流値を元に算出したゲート抵抗値に切り替えて運転することが可能であり、素子温度の変動を抑制することができる。 In the comparative example with a fixed gate resistance, the temperature of a particular element may become excessive or the temperature fluctuation of a particular element may become large. In addition, if each element is uniformly controlled in a situation where the distribution of losses generated by the elements is different, the temperature fluctuation of the elements during operation may vary. Such an event may lead to a decrease in the thermal cycle resistance of the elements.
In this embodiment, it is possible to switch the gate resistance value in real time to a gate resistance value calculated based on the operation pattern and the current value of each element, thereby suppressing fluctuations in element temperature.
図6は、実施形態の電動機2の制御の一例を説明するための図である。
図6に示すタイミングチャートには、上段側から速度基準、実速度、トルク基準、及びモータ電流のそれぞれの大きさが示されている。 FIG. 6 is a diagram for explaining an example of control of theelectric motor 2 according to the embodiment.
In the timing chart shown in FIG. 6, from the top, the magnitudes of the speed reference, the actual speed, the torque reference, and the motor current are shown.
図6に示すタイミングチャートには、上段側から速度基準、実速度、トルク基準、及びモータ電流のそれぞれの大きさが示されている。 FIG. 6 is a diagram for explaining an example of control of the
In the timing chart shown in FIG. 6, from the top, the magnitudes of the speed reference, the actual speed, the torque reference, and the motor current are shown.
この図6に示す範囲における初期段階は、電動機2を停止させている状態にある。
時刻t1に、制御装置20は、電動機2の運転を開始する。例えば、制御装置20は、要求速度である速度基準を+100%にして、正の方向に最速で加速することを指令する。その結果、電動機2に対する要求トルクを示すトルク基準が正の限界値(Limit)に制限される値まで振り切れている。正の限界値のトルク基準応じて、電流制御が行われた結果、モータ電流の振幅が徐々に大きくなる。この間の運転状態は力行である。これに伴い電動機2の実速度が徐々に増加する。 In the initial stage in the range shown in FIG. 6, theelectric motor 2 is stopped.
At time t1, thecontrol device 20 starts the operation of the electric motor 2. For example, the control device 20 sets the speed reference, which is the required speed, to +100%, and commands the motor 2 to accelerate in the positive direction at the highest speed. As a result, the torque reference, which indicates the required torque for the electric motor 2, swings out to a value limited to the positive limit value (Limit). As a result of current control being performed in accordance with the torque reference of the positive limit value, the amplitude of the motor current gradually increases. The operating state during this time is power running. Accordingly, the actual speed of the electric motor 2 gradually increases.
時刻t1に、制御装置20は、電動機2の運転を開始する。例えば、制御装置20は、要求速度である速度基準を+100%にして、正の方向に最速で加速することを指令する。その結果、電動機2に対する要求トルクを示すトルク基準が正の限界値(Limit)に制限される値まで振り切れている。正の限界値のトルク基準応じて、電流制御が行われた結果、モータ電流の振幅が徐々に大きくなる。この間の運転状態は力行である。これに伴い電動機2の実速度が徐々に増加する。 In the initial stage in the range shown in FIG. 6, the
At time t1, the
時刻t2になると、電動機2の実速度が要求速度に近づくことにより、トルク基準が徐々に小さくなる。これに伴って、モータ電流の振幅が徐々に小さくなる。制御装置20は、電動機2の速度を維持するだけの電流を流す。
At time t2, the actual speed of the motor 2 approaches the required speed, causing the torque reference to gradually decrease. As a result, the amplitude of the motor current gradually decreases. The control device 20 passes a current sufficient to maintain the speed of the motor 2.
極端な制御であるが、時刻t3に、制御装置20は、速度基準を-100%にして電動機2の反転を指令して、負の方向に最速で回転するまで最短時間で到達させることを指令する。
この場合に、電動機2に対する要求トルクを示すトルク基準が負の限界値(Limit)に制限される値まで振り切れている。負の限界値のトルク基準応じて、電流制御が行われた結果、モータ電流の振幅が許容される最大値の振幅まで一旦大きくなる。この電流は、電動機2を減速させるように作用する。 Although this is an extreme control, at time t3, thecontrol device 20 sets the speed reference to -100% and commands the motor 2 to rotate in the negative direction at the fastest speed in the shortest time possible.
In this case, the torque reference indicating the required torque for themotor 2 has exceeded the negative limit value (Limit). As a result of current control being performed in accordance with the torque reference of the negative limit value, the amplitude of the motor current increases once to the maximum allowable amplitude. This current acts to decelerate the motor 2.
この場合に、電動機2に対する要求トルクを示すトルク基準が負の限界値(Limit)に制限される値まで振り切れている。負の限界値のトルク基準応じて、電流制御が行われた結果、モータ電流の振幅が許容される最大値の振幅まで一旦大きくなる。この電流は、電動機2を減速させるように作用する。 Although this is an extreme control, at time t3, the
In this case, the torque reference indicating the required torque for the
この減速制御により電動機2の実速度が最短時間で減速し、電動機2の速度が0になる。ただし、制御装置20の制御が継続しているため、すぐに反転方向の加速制御により電動機2の実速度が最短時間で負の方向に最速で加速する。
This deceleration control causes the actual speed of the motor 2 to decelerate in the shortest possible time, and the speed of the motor 2 becomes zero. However, because the control of the control device 20 continues, the actual speed of the motor 2 immediately accelerates in the negative direction at the fastest possible speed in the shortest possible time due to acceleration control in the reverse direction.
時刻t4になると、電動機2の実速度が要求速度に近づくことにより、トルク基準が徐々に小さくなる。これに伴って、モータ電流の振幅が徐々に小さくなる。制御装置20は、電動機2の速度を維持するだけの電流を流す。
At time t4, the actual speed of the motor 2 approaches the required speed, causing the torque reference to gradually decrease. As a result, the amplitude of the motor current gradually decreases. The control device 20 passes a current sufficient to maintain the speed of the motor 2.
時刻t5に、制御装置20は、速度基準を0%にして電動機2の停止を指令して、電動機2が停止するまで最短時間で到達させることを指令する。これに伴い、電動機2から供給される交流電力が、電力変換器を通して回生される。
この場合に、電動機2に対する要求トルクを示すトルク基準が正の限界値(Limit)に制限される値まで振り切れている。負の限界値のトルク基準応じて、電流制御が行われた結果、モータ電流の振幅が許容される最大値の振幅まで一旦大きくなる。この電流は、電動機2を減速させるように作用する。 At time t5, thecontrol device 20 sets the speed reference to 0% to command the motor 2 to stop, and commands the motor 2 to reach a stop in the shortest time possible. Accordingly, the AC power supplied from the motor 2 is regenerated through the power converter.
In this case, the torque reference indicating the required torque for themotor 2 has exceeded the positive limit value (Limit). As a result of current control being performed in accordance with the torque reference of the negative limit value, the amplitude of the motor current increases once to the maximum allowable amplitude. This current acts to decelerate the motor 2.
この場合に、電動機2に対する要求トルクを示すトルク基準が正の限界値(Limit)に制限される値まで振り切れている。負の限界値のトルク基準応じて、電流制御が行われた結果、モータ電流の振幅が許容される最大値の振幅まで一旦大きくなる。この電流は、電動機2を減速させるように作用する。 At time t5, the
In this case, the torque reference indicating the required torque for the
時刻t6になると、電動機2の実速度が要求速度である0に近づくことにより、トルク基準が徐々に小さくなる。これに伴って、モータ電流の振幅が徐々に小さくなる。こののち制御装置20は、電動機2への通電を中断する。
At time t6, the actual speed of the motor 2 approaches the required speed of 0, so that the torque reference gradually decreases. As a result, the amplitude of the motor current gradually decreases. After this, the control device 20 stops supplying current to the motor 2.
上記の制御範囲には、幾つかの特徴的な制御の運転パターンが含まれている。
The above control range includes several characteristic control operation patterns.
図7は、実施形態の電動機2の制御の他の一例を説明するための図である。
図7に示すタイミングチャートには、上段側から速度基準、実速度、モータ電圧、及びトルク基準のそれぞれの大きさが示されている。実速度が速度基準にほぼ一致しているため、それぞれの波形に差が少なく重なった状況になっている。ここで示すモータ電圧は、交流の振幅を示している。そのため、電動機2の回転方向によらず、速く回転している場合のモータ電圧の振幅が大きくなっている。なお、モータ電圧のピークがこの測定範囲外になっている。 FIG. 7 is a diagram for explaining another example of the control of theelectric motor 2 according to the embodiment.
In the timing chart shown in Fig. 7, from the top, the magnitudes of the speed reference, actual speed, motor voltage, and torque reference are shown. Since the actual speed is almost the same as the speed reference, the waveforms overlap with little difference. The motor voltage shown here indicates the amplitude of AC. Therefore, regardless of the direction of rotation of theelectric motor 2, the amplitude of the motor voltage is large when the motor is rotating fast. Note that the peak of the motor voltage is outside this measurement range.
図7に示すタイミングチャートには、上段側から速度基準、実速度、モータ電圧、及びトルク基準のそれぞれの大きさが示されている。実速度が速度基準にほぼ一致しているため、それぞれの波形に差が少なく重なった状況になっている。ここで示すモータ電圧は、交流の振幅を示している。そのため、電動機2の回転方向によらず、速く回転している場合のモータ電圧の振幅が大きくなっている。なお、モータ電圧のピークがこの測定範囲外になっている。 FIG. 7 is a diagram for explaining another example of the control of the
In the timing chart shown in Fig. 7, from the top, the magnitudes of the speed reference, actual speed, motor voltage, and torque reference are shown. Since the actual speed is almost the same as the speed reference, the waveforms overlap with little difference. The motor voltage shown here indicates the amplitude of AC. Therefore, regardless of the direction of rotation of the
この事例は、速度基準の大きさを、所定の変化率の範囲内で変更するように制御した事例である。この場合も前述の図6と同様に、速度基準の大きさを変更した場合に、これに伴ってトルク基準が正の値になったり、負の値になったりする。
In this example, the magnitude of the speed reference is controlled to change within a range of a specified rate of change. In this case, as in Figure 6 above, when the magnitude of the speed reference is changed, the torque reference becomes a positive or negative value accordingly.
上記の図6と図7に示したように、電動機2の運転中に制御状態が変更された場合に、電力変換器の各レグに流れる電流と、各レグから出力される交流電圧の振幅が変化する。これに伴い、レグを構成する素子に流れる電流の大きさに比較的大きな変化が生じることになる。
As shown in Figures 6 and 7 above, when the control state is changed while the motor 2 is operating, the current flowing through each leg of the power converter and the amplitude of the AC voltage output from each leg change. As a result, a relatively large change occurs in the magnitude of the current flowing through the elements that make up the legs.
上記のように、実施形態のスイッチ部11(駆動装置)は、インピーダンス調整部112を備える。インピーダンス調整部112は、主回路10(電力変換器)の素子DEV1に流れる電流値を用いて、素子DEV1のゲートドライブ回路111(駆動部)から素子DEV1内の半導体スイッチング素子Q1に制御信号を送る経路のインピーダンス(ゲート抵抗値)を調整する。これにより、運転中の半導体スイッチング素子Q1における損失の変化を抑制することで、半導体スイッチング素子Q1の温度の変動量を低減できる。
As described above, the switch unit 11 (drive device) of the embodiment includes an impedance adjustment unit 112. The impedance adjustment unit 112 uses the value of the current flowing through the element DEV1 of the main circuit 10 (power converter) to adjust the impedance (gate resistance value) of the path that sends a control signal from the gate drive circuit 111 (drive unit) of the element DEV1 to the semiconductor switching element Q1 in the element DEV1. This suppresses changes in loss in the semiconductor switching element Q1 during operation, thereby reducing the amount of temperature fluctuation of the semiconductor switching element Q1.
なお、実際の電力変換装置1は、さまざまな用途で利用される。そのため、例えば、図7のように運転パターンが頻繁に変化するアプリケーションに適用されることもある。
実施形態の駆動装置は、半導体スイッチング素子Q1の温度の変動量を低減できることから、さまざまな用途のアプリケーションに適用可能である。 In practice, thepower conversion device 1 is used for various purposes, and may be applied to an application in which the operation pattern changes frequently, as shown in FIG.
The driving device of the embodiment can reduce the amount of fluctuation in temperature of the semiconductor switching element Q1, and is therefore applicable to a variety of applications.
実施形態の駆動装置は、半導体スイッチング素子Q1の温度の変動量を低減できることから、さまざまな用途のアプリケーションに適用可能である。 In practice, the
The driving device of the embodiment can reduce the amount of fluctuation in temperature of the semiconductor switching element Q1, and is therefore applicable to a variety of applications.
なお、実施形態の電力変換装置1は、3レベル変換器の一例である。このような3レベル変換器では、中点電位を基準にした外側と内側の素子において、その損失が大きくばらつくことがある。そのため、各素子のゲート抵抗値を素子ごとに個別に設定することにより、3レベル変換器の半導体スイッチング素子における運転中の損失のばらつきを抑制することで、半導体スイッチング素子の温度の変動量を低減できる。なお、上記の外側の素子とは、例えば素子DEV1とDEV4のことであり、上記の内側の素子とは、例えば素子DEV2とDEV3のことである。
The power conversion device 1 of the embodiment is an example of a three-level converter. In such a three-level converter, the losses in the outer and inner elements based on the midpoint potential may vary greatly. Therefore, by individually setting the gate resistance value of each element, the variation in losses during operation in the semiconductor switching elements of the three-level converter can be suppressed, thereby reducing the amount of temperature fluctuation in the semiconductor switching elements. The outer elements mentioned above are, for example, elements DEV1 and DEV4, and the inner elements mentioned above are, for example, elements DEV2 and DEV3.
以上に説明した少なくとも一つの実施形態によれば、駆動装置は、インピーダンス調整部を備える。インピーダンス調整部は、電力変換器の素子に流れる電流値を用いて、素子の駆動部から前記素子内の半導体スイッチング素子に制御信号を送る経路のインピーダンスを調整する。これにより、運転中の半導体スイッチング素子の温度の変動量を低減できる。
According to at least one of the embodiments described above, the drive device includes an impedance adjustment unit. The impedance adjustment unit uses the value of the current flowing through an element of the power converter to adjust the impedance of the path that sends a control signal from the drive unit of the element to the semiconductor switching element in the element. This makes it possible to reduce the amount of temperature fluctuation of the semiconductor switching element during operation.
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他のさまざまな形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the gist of the invention. These embodiments and their modifications are within the scope of the invention and its equivalents as set forth in the claims, as well as the scope and gist of the invention.
(付記)
[1]上記実施形態の一態様は、電力変換器の素子に流れる電流値を用いて、前記素子の駆動部から前記素子内の半導体スイッチング素子に制御信号を送る経路のインピーダンスを調整するインピーダンス調整部を備える駆動装置である。
[2]上記[1]に記載の前記インピーダンス調整部は、複数の抵抗を含み、前記複数の抵抗の中から指定された抵抗を選択する切替部と、前記抵抗を選択するための切替信号を生成するインピーダンス算出部とを備えるものであってよい。
[3]上記[2]に記載の前記インピーダンス算出部は、前記電力変換器の素子に流れる電流値と、前記経路のインピーダンスとを関連付ける変換テーブルを備えるとよい。
[4]上記[3]に記載の前記インピーダンス算出部は、前記電力変換器の素子に流れる電流値を用いて前記変換テーブルを参照して、前記抵抗を選択するための選択信号を生成するとよい。
[5]上記[2]から[4]に記載の前記インピーダンス算出部は、前記電力変換器の運転パターンと前記電力変換器の素子に流れる電流値とに基づいて、前記経路のインピーダンスを決定するとよい。
[6]上記[2]から[5]に記載の前記インピーダンス算出部は、前記電力変換器の素子に流れる電流値を平滑化して、平滑化したのちの電流値を、前記経路のインピーダンスの決定に用いるとよい。
[7]上記[5]に記載の前記電力変換器の運転パターンは、力行状態と回生状態とによって区分されているとよい。
[8]上記[5]又は[6]に記載の前記電力変換器の運転パターンは、力率の大きさによって区分されているとよい。
[9]上記[5]から[7]に記載の前記電力変換器の運転パターンは、キャリア周波数の高さによって区分されているとよい。
[10]上記[3]又は[4]に記載の前記変換テーブルは、前記電力変換器の運転パターンごとに、前記素子の損失が所望の範囲に収まるような前記経路のインピーダンスを選択するように構成されているとよい。
[11]上記[5]から[10]に記載の前記電力変換器の運転パターンは、力行状態と回生状態とによって区分される第1条件と、力率の大きさによって区分される第2条件と、キャリア周波数の高さによって区分される第3条件との組み合わせから決定されるとよい。 (Additional Note)
[1] One aspect of the above embodiment is a drive device including an impedance adjustment unit that adjusts the impedance of a path that transmits a control signal from a drive unit of an element of a power converter to a semiconductor switching element within the element, using a current value flowing through the element.
[2] The impedance adjustment unit described in [1] above may include a plurality of resistors, and may include a switching unit that selects a specified resistor from the plurality of resistors, and an impedance calculation unit that generates a switching signal for selecting the resistor.
[3] The impedance calculation unit according to the above [2] may include a conversion table that associates a current value flowing through an element of the power converter with the impedance of the path.
[4] The impedance calculation unit according to the above [3] may refer to the conversion table using a current value flowing through an element of the power converter to generate a selection signal for selecting the resistor.
[5] The impedance calculation unit according to the above [2] to [4] may determine the impedance of the path based on an operation pattern of the power converter and a current value flowing through an element of the power converter.
[6] The impedance calculation unit described in [2] to [5] above may smooth a current value flowing through an element of the power converter and use the smoothed current value to determine the impedance of the path.
[7] The operation pattern of the power converter described in [5] above may be divided into a powering state and a regenerative state.
[8] The operation pattern of the power converter according to the above [5] or [6] may be classified according to the magnitude of the power factor.
[9] The operation patterns of the power converter described in [5] to [7] above may be classified according to the height of a carrier frequency.
[10] The conversion table described in [3] or [4] above may be configured to select, for each operation pattern of the power converter, an impedance of the path such that the loss of the element falls within a desired range.
[11] The operation pattern of the power converter described in [5] to [10] above may be determined from a combination of a first condition classified according to a powering state and a regenerative state, a second condition classified according to a power factor, and a third condition classified according to a carrier frequency.
[1]上記実施形態の一態様は、電力変換器の素子に流れる電流値を用いて、前記素子の駆動部から前記素子内の半導体スイッチング素子に制御信号を送る経路のインピーダンスを調整するインピーダンス調整部を備える駆動装置である。
[2]上記[1]に記載の前記インピーダンス調整部は、複数の抵抗を含み、前記複数の抵抗の中から指定された抵抗を選択する切替部と、前記抵抗を選択するための切替信号を生成するインピーダンス算出部とを備えるものであってよい。
[3]上記[2]に記載の前記インピーダンス算出部は、前記電力変換器の素子に流れる電流値と、前記経路のインピーダンスとを関連付ける変換テーブルを備えるとよい。
[4]上記[3]に記載の前記インピーダンス算出部は、前記電力変換器の素子に流れる電流値を用いて前記変換テーブルを参照して、前記抵抗を選択するための選択信号を生成するとよい。
[5]上記[2]から[4]に記載の前記インピーダンス算出部は、前記電力変換器の運転パターンと前記電力変換器の素子に流れる電流値とに基づいて、前記経路のインピーダンスを決定するとよい。
[6]上記[2]から[5]に記載の前記インピーダンス算出部は、前記電力変換器の素子に流れる電流値を平滑化して、平滑化したのちの電流値を、前記経路のインピーダンスの決定に用いるとよい。
[7]上記[5]に記載の前記電力変換器の運転パターンは、力行状態と回生状態とによって区分されているとよい。
[8]上記[5]又は[6]に記載の前記電力変換器の運転パターンは、力率の大きさによって区分されているとよい。
[9]上記[5]から[7]に記載の前記電力変換器の運転パターンは、キャリア周波数の高さによって区分されているとよい。
[10]上記[3]又は[4]に記載の前記変換テーブルは、前記電力変換器の運転パターンごとに、前記素子の損失が所望の範囲に収まるような前記経路のインピーダンスを選択するように構成されているとよい。
[11]上記[5]から[10]に記載の前記電力変換器の運転パターンは、力行状態と回生状態とによって区分される第1条件と、力率の大きさによって区分される第2条件と、キャリア周波数の高さによって区分される第3条件との組み合わせから決定されるとよい。 (Additional Note)
[1] One aspect of the above embodiment is a drive device including an impedance adjustment unit that adjusts the impedance of a path that transmits a control signal from a drive unit of an element of a power converter to a semiconductor switching element within the element, using a current value flowing through the element.
[2] The impedance adjustment unit described in [1] above may include a plurality of resistors, and may include a switching unit that selects a specified resistor from the plurality of resistors, and an impedance calculation unit that generates a switching signal for selecting the resistor.
[3] The impedance calculation unit according to the above [2] may include a conversion table that associates a current value flowing through an element of the power converter with the impedance of the path.
[4] The impedance calculation unit according to the above [3] may refer to the conversion table using a current value flowing through an element of the power converter to generate a selection signal for selecting the resistor.
[5] The impedance calculation unit according to the above [2] to [4] may determine the impedance of the path based on an operation pattern of the power converter and a current value flowing through an element of the power converter.
[6] The impedance calculation unit described in [2] to [5] above may smooth a current value flowing through an element of the power converter and use the smoothed current value to determine the impedance of the path.
[7] The operation pattern of the power converter described in [5] above may be divided into a powering state and a regenerative state.
[8] The operation pattern of the power converter according to the above [5] or [6] may be classified according to the magnitude of the power factor.
[9] The operation patterns of the power converter described in [5] to [7] above may be classified according to the height of a carrier frequency.
[10] The conversion table described in [3] or [4] above may be configured to select, for each operation pattern of the power converter, an impedance of the path such that the loss of the element falls within a desired range.
[11] The operation pattern of the power converter described in [5] to [10] above may be determined from a combination of a first condition classified according to a powering state and a regenerative state, a second condition classified according to a power factor, and a third condition classified according to a carrier frequency.
1…電力変換装置、
2…電動機、
10…主回路、
11…スイッチ部(駆動装置)、
111…ゲートドライブ回路(GDC、駆動部)、
112…インピーダンス調整部(ZADJ)、
113…電流検出部、
1121…切替部(ZSW)、
1122…インピーダンス算出部、
11221…運転パターン決定部、
11222…素子電流検出部、
11223…平滑化処理部、
11224…ゲート抵抗値決定部。 1...power conversion device,
2...Electric motor,
10...Main circuit,
11...Switch unit (drive device),
111...gate drive circuit (GDC, drive unit),
112...Impedance adjustment unit (ZADJ),
113...current detection unit,
1121...switching unit (ZSW),
1122...Impedance calculation unit,
11221...operation pattern determination unit,
11222: element current detection unit,
11223...smoothing processing unit,
11224...Gate resistance value determination unit.
2…電動機、
10…主回路、
11…スイッチ部(駆動装置)、
111…ゲートドライブ回路(GDC、駆動部)、
112…インピーダンス調整部(ZADJ)、
113…電流検出部、
1121…切替部(ZSW)、
1122…インピーダンス算出部、
11221…運転パターン決定部、
11222…素子電流検出部、
11223…平滑化処理部、
11224…ゲート抵抗値決定部。 1...power conversion device,
2...Electric motor,
10...Main circuit,
11...Switch unit (drive device),
111...gate drive circuit (GDC, drive unit),
112...Impedance adjustment unit (ZADJ),
113...current detection unit,
1121...switching unit (ZSW),
1122...Impedance calculation unit,
11221...operation pattern determination unit,
11222: element current detection unit,
11223...smoothing processing unit,
11224...Gate resistance value determination unit.
Claims (18)
- 電力変換器の素子に流れる電流値を用いて、前記素子の駆動部から前記素子内の半導体スイッチング素子に制御信号を送る経路のインピーダンスを調整するインピーダンス調整部
を備える駆動装置。 A drive device comprising: an impedance adjustment unit that adjusts the impedance of a path that transmits a control signal from a drive unit of an element of a power converter to a semiconductor switching element in the element, using a current value flowing through the element. - 前記インピーダンス調整部は、
複数の抵抗を含み、前記複数の抵抗の中から指定された抵抗を選択する切替部と、
前記抵抗を選択するための切替信号を生成するインピーダンス算出部と
を備える請求項1に記載の駆動装置。 The impedance adjustment unit is
A switching unit including a plurality of resistors and selecting a specified resistor from the plurality of resistors;
The drive device according to claim 1 , further comprising: an impedance calculation unit that generates a switching signal for selecting the resistor. - 前記インピーダンス算出部は、
前記電力変換器の素子に流れる電流値と、前記経路のインピーダンスとを関連付ける変換テーブル
を備える請求項2に記載の駆動装置。 The impedance calculation unit
The drive device according to claim 2 , further comprising a conversion table that associates a current value flowing through an element of the power converter with an impedance of the path. - 前記インピーダンス算出部は、
前記電力変換器の素子に流れる電流値を用いて前記変換テーブルを参照して、前記抵抗を選択するための選択信号を生成する、
請求項3に記載の駆動装置。 The impedance calculation unit
generating a selection signal for selecting the resistor by referring to the conversion table using a current value flowing through an element of the power converter;
The drive device according to claim 3. - 前記インピーダンス算出部は、
前記電力変換器の運転パターンと前記電力変換器の素子に流れる電流値とに基づいて、前記経路のインピーダンスを決定する、
請求項2に記載の駆動装置。 The impedance calculation unit
determining an impedance of the path based on an operation pattern of the power converter and a value of a current flowing through an element of the power converter;
The drive device according to claim 2. - 前記インピーダンス算出部は、
前記電力変換器の素子に流れる電流値を平滑化して、平滑化したのちの電流値を、前記経路のインピーダンスの決定に用いる、
請求項2に記載の駆動装置。 The impedance calculation unit
a current value flowing through an element of the power converter is smoothed, and the smoothed current value is used to determine the impedance of the path.
The drive device according to claim 2. - 前記電力変換器の運転パターンは、力行状態と回生状態とによって区分されている
請求項5に記載の駆動装置。 The drive device according to claim 5 , wherein an operation pattern of the power converter is divided into a power generation state and a regeneration state. - 前記電力変換器の運転パターンは、力率の大きさによって区分されている
請求項5に記載の駆動装置。 The drive device according to claim 5 , wherein the operation patterns of the power converter are classified according to the magnitude of a power factor. - 前記電力変換器の運転パターンは、キャリア周波数の高さによって区分されている
請求項5に記載の駆動装置。 The drive device according to claim 5 , wherein the operation patterns of the power converter are classified according to the height of a carrier frequency. - 前記変換テーブルは、前記電力変換器の運転パターンごとに、前記素子の損失が所望の範囲に収まるような前記経路のインピーダンスを選択するように構成されている
請求項3に記載の駆動装置。 The drive device according to claim 3 , wherein the conversion table is configured to select an impedance of the path such that a loss in the element falls within a desired range for each operation pattern of the power converter. - 前記電力変換器の運転パターンは、力行状態と回生状態とによって区分される第1条件と、力率の大きさによって区分される第2条件と、キャリア周波数の高さによって区分される第3条件との組み合わせから決定される
請求項5に記載の駆動装置。 6. The drive device according to claim 5, wherein the operation pattern of the power converter is determined by a combination of a first condition classified according to a powering state and a regenerative state, a second condition classified according to a magnitude of a power factor, and a third condition classified according to a height of a carrier frequency. - スイッチングすることにより電力を変換する複数の素子と、
前記複数の素子の各素子に流れる電流値を用いて、前記素子の駆動部から前記素子内の半導体スイッチング素子に制御信号を送る経路のインピーダンスを調整するインピーダンス算出部と、
を備える電力変換器。 A plurality of elements that convert power by switching;
an impedance calculation unit that adjusts the impedance of a path that transmits a control signal from a drive unit of the element to a semiconductor switching element in the element, using a value of a current flowing through each element of the plurality of elements;
A power converter comprising: - 電力変換器の素子に流れる電流値を用いて、前記素子の駆動部から前記素子内の半導体スイッチング素子に制御信号を送る経路のインピーダンスを調整する過程
を含む駆動方法。 A driving method comprising: a step of adjusting, using a current value flowing through an element of a power converter, an impedance of a path that transmits a control signal from a drive unit of the element to a semiconductor switching element in the element. - 複数の抵抗の中から指定された抵抗を選択するための切替信号を生成する過程
を含む請求項13に記載の駆動方法。 The driving method according to claim 13, further comprising the step of: generating a switching signal for selecting a designated resistor from among the plurality of resistors. - 前記電力変換器の素子に流れる電流値と、前記経路のインピーダンスとを関連付ける過程
を含む請求項14に記載の駆動方法。 The driving method according to claim 14 , further comprising the step of: correlating a value of a current flowing through an element of the power converter with an impedance of the path. - 前記電力変換器の素子に流れる電流値と、前記経路のインピーダンスとを関連付ける変換テーブルを、前記電力変換器の素子に流れる電流値を用いて参照して、前記抵抗を選択するための選択信号を生成する過程、
を含む請求項15に記載の駆動方法。 a step of referring to a conversion table that associates a current value flowing through an element of the power converter with an impedance of the path, by using the current value flowing through the element of the power converter, to generate a selection signal for selecting the resistor;
The driving method according to claim 15 , comprising: - 前記電力変換器の運転パターンと前記電力変換器の素子に流れる電流値とに基づいて、前記経路のインピーダンスを決定する過程、
を含む請求項15に記載の駆動方法。 determining an impedance of the path based on an operation pattern of the power converter and a current value flowing through an element of the power converter;
The driving method according to claim 15 , comprising: - 前記電力変換器の素子に流れる電流値を平滑化して、平滑化したのちの電流値を、前記経路のインピーダンスの決定に用いる過程、
を含む請求項14に記載の駆動方法。 smoothing a current value flowing through an element of the power converter and using the smoothed current value to determine the impedance of the path;
The driving method according to claim 14 , comprising:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023535650A JP7550990B1 (en) | 2022-11-18 | 2022-11-18 | Driving device, power converter, and driving method |
PCT/JP2022/042852 WO2024105880A1 (en) | 2022-11-18 | 2022-11-18 | Drive device, power converter, and drive method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/042852 WO2024105880A1 (en) | 2022-11-18 | 2022-11-18 | Drive device, power converter, and drive method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024105880A1 true WO2024105880A1 (en) | 2024-05-23 |
Family
ID=91084204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042852 WO2024105880A1 (en) | 2022-11-18 | 2022-11-18 | Drive device, power converter, and drive method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7550990B1 (en) |
WO (1) | WO2024105880A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009229133A (en) * | 2008-03-19 | 2009-10-08 | Sanyo Electric Co Ltd | Integrated circuit, semiconductor device, and electric apparatus |
JP2013187955A (en) * | 2012-03-06 | 2013-09-19 | Mitsubishi Electric Corp | Switching element driving circuit |
JP2015162845A (en) * | 2014-02-28 | 2015-09-07 | ローム株式会社 | Fet parallel circuit cell and pseudo high voltage fet module |
JP2021108526A (en) * | 2019-12-27 | 2021-07-29 | 日立Astemo株式会社 | Inverter controller, electric vehicle system |
-
2022
- 2022-11-18 WO PCT/JP2022/042852 patent/WO2024105880A1/en unknown
- 2022-11-18 JP JP2023535650A patent/JP7550990B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009229133A (en) * | 2008-03-19 | 2009-10-08 | Sanyo Electric Co Ltd | Integrated circuit, semiconductor device, and electric apparatus |
JP2013187955A (en) * | 2012-03-06 | 2013-09-19 | Mitsubishi Electric Corp | Switching element driving circuit |
JP2015162845A (en) * | 2014-02-28 | 2015-09-07 | ローム株式会社 | Fet parallel circuit cell and pseudo high voltage fet module |
JP2021108526A (en) * | 2019-12-27 | 2021-07-29 | 日立Astemo株式会社 | Inverter controller, electric vehicle system |
Also Published As
Publication number | Publication date |
---|---|
JP7550990B1 (en) | 2024-09-13 |
JPWO2024105880A1 (en) | 2024-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100825323B1 (en) | A multi level inverter using a cascade configuration with a controller capable of making power factors of cells be same and control method thereof | |
EP2789093B1 (en) | Multi-phase converter system and method | |
EP3651352B1 (en) | Motor drive system and air conditioner | |
CA2890145A1 (en) | System and method for over-current protection | |
JP5492826B2 (en) | AC motor control device and refrigeration air conditioner using the same | |
TW200924366A (en) | Matrix converter | |
WO2020255189A1 (en) | Power supply device, and method for detecting abnormality in ac power supply | |
JP2012117371A (en) | Pump device and power conversion device | |
WO2024105880A1 (en) | Drive device, power converter, and drive method | |
JP6579195B2 (en) | Power control method and power control apparatus | |
JP2012196091A (en) | Motor driving current amplifier, motor driving device, driving method of the same, and motor driving system | |
JP2015073388A (en) | Motor control circuit | |
JP6961096B2 (en) | Inverter device | |
US11095244B2 (en) | Motor drive device and motor drive system | |
JP7193248B2 (en) | power converter | |
JPH02215996A (en) | Turbo-molecular pump driving power unit | |
WO1997050162A1 (en) | Motor driving apparatus | |
JP2014014226A (en) | Ac motor drive device | |
KR101321427B1 (en) | 3 phase converter system for protecting open phase problem and control method thereof | |
JP2017011808A (en) | Control device for rotary machine | |
JP2020048381A (en) | Motor control device, motor system and inverter control method | |
JP2017121135A (en) | Inverter device that can avoid resonance | |
JP2013135516A (en) | Electric power conversion system and air conditioner | |
JP6727093B2 (en) | Auxiliary power supply | |
JP2002165460A (en) | Power converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22965855 Country of ref document: EP Kind code of ref document: A1 |