WO2024105106A1 - Membranes composites à film mince de polyamine aliphatique fabriquées par polymérisation interfaciale - Google Patents
Membranes composites à film mince de polyamine aliphatique fabriquées par polymérisation interfaciale Download PDFInfo
- Publication number
- WO2024105106A1 WO2024105106A1 PCT/EP2023/081911 EP2023081911W WO2024105106A1 WO 2024105106 A1 WO2024105106 A1 WO 2024105106A1 EP 2023081911 W EP2023081911 W EP 2023081911W WO 2024105106 A1 WO2024105106 A1 WO 2024105106A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- halide
- membrane
- polymerization
- functional groups
- membranes
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 71
- 125000001931 aliphatic group Chemical group 0.000 title claims abstract description 20
- 229920000768 polyamine Polymers 0.000 title claims abstract description 10
- 238000012695 Interfacial polymerization Methods 0.000 title claims description 22
- 239000010409 thin film Substances 0.000 title description 10
- 239000002131 composite material Substances 0.000 title description 4
- 238000000034 method Methods 0.000 claims abstract description 37
- 125000000524 functional group Chemical group 0.000 claims abstract description 20
- 150000004820 halides Chemical class 0.000 claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims abstract description 10
- 125000003277 amino group Chemical group 0.000 claims abstract description 9
- 125000002577 pseudohalo group Chemical group 0.000 claims abstract description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims abstract description 5
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 claims abstract description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 claims abstract description 5
- 230000000379 polymerizing effect Effects 0.000 claims abstract description 4
- 229920000642 polymer Polymers 0.000 claims description 18
- 238000006116 polymerization reaction Methods 0.000 claims description 10
- 238000011282 treatment Methods 0.000 claims description 9
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 claims description 8
- 238000004132 cross linking Methods 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 7
- SGRHVVLXEBNBDV-UHFFFAOYSA-N 1,6-dibromohexane Chemical compound BrCCCCCCBr SGRHVVLXEBNBDV-UHFFFAOYSA-N 0.000 claims description 6
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 238000005956 quaternization reaction Methods 0.000 claims description 5
- UTXIKCCNBUIWPT-UHFFFAOYSA-N 1,2,4,5-tetrakis(bromomethyl)benzene Chemical group BrCC1=CC(CBr)=C(CBr)C=C1CBr UTXIKCCNBUIWPT-UHFFFAOYSA-N 0.000 claims description 4
- 230000002378 acidificating effect Effects 0.000 claims description 3
- 239000003518 caustics Substances 0.000 claims description 3
- 238000000935 solvent evaporation Methods 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 2
- SSJXIUAHEKJCMH-OLQVQODUSA-N (1s,2r)-cyclohexane-1,2-diamine Chemical compound N[C@H]1CCCC[C@H]1N SSJXIUAHEKJCMH-OLQVQODUSA-N 0.000 claims 1
- YMHQVDAATAEZLO-UHFFFAOYSA-N cyclohexane-1,1-diamine Chemical compound NC1(N)CCCCC1 YMHQVDAATAEZLO-UHFFFAOYSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000000178 monomer Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000010408 film Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- SSJXIUAHEKJCMH-UHFFFAOYSA-N cyclohexane-1,2-diamine Chemical compound NC1CCCCC1N SSJXIUAHEKJCMH-UHFFFAOYSA-N 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- 239000004952 Polyamide Substances 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 150000004985 diamines Chemical class 0.000 description 5
- 239000012466 permeate Substances 0.000 description 5
- 229920002647 polyamide Polymers 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000010612 desalination reaction Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- -1 trimesoylchloride Chemical compound 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- RBZMSGOBSOCYHR-UHFFFAOYSA-N 1,4-bis(bromomethyl)benzene Chemical compound BrCC1=CC=C(CBr)C=C1 RBZMSGOBSOCYHR-UHFFFAOYSA-N 0.000 description 1
- FZZMTSNZRBFGGU-UHFFFAOYSA-N 2-chloro-7-fluoroquinazolin-4-amine Chemical group FC1=CC=C2C(N)=NC(Cl)=NC2=C1 FZZMTSNZRBFGGU-UHFFFAOYSA-N 0.000 description 1
- CNPURSDMOWDNOQ-UHFFFAOYSA-N 4-methoxy-7h-pyrrolo[2,3-d]pyrimidin-2-amine Chemical compound COC1=NC(N)=NC2=C1C=CN2 CNPURSDMOWDNOQ-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000003113 alkalizing effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012527 feed solution Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- IQDRAVRWQIIASA-VZPOTTSCSA-N phlorin Chemical compound C/1=C(N2)\C=C\C2=C\C(N2)=CC=C2CC(N2)=CC=C2\C=C2\C=CC\1=N2 IQDRAVRWQIIASA-VZPOTTSCSA-N 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0006—Organic membrane manufacture by chemical reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0093—Chemical modification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/125—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
- B01D69/1251—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/58—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
- B01D71/60—Polyamines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/30—Cross-linking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/22—Thermal or heat-resistance properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/30—Chemical resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
Definitions
- the present invention relates to thin-film composite (TFC) membranes produced by interfacial polymerization (IP). More particularly, TFC membranes with an aliphatic polyamine top layer.
- TFC membranes are stable in various challenging conditions of extreme pH and chlorine exposure.
- the polyamine membrane can be tuned in different ways. It is possible to functionalize and cross-link the membrane. Additionally, a positive or negative charge can be introduced.
- a method of preparing a polyamine-based membranes comprising the steps of polymerizing An with Bm, wherein A is a molecule or a part of a molecule with n amine functional groups, and, wherein Bm is a molecule or a part of a molecule with m aliphatic halide functional groups or pseudohalide, ammonium, phosphonium, sulfonium functional groups wherein n ⁇ 1 ⁇ ⁇ 5, ⁇ 10, or ⁇ 20 and wherein m ⁇ 2, ⁇ 5, ⁇ 10, or ⁇ 20.
- An can be a polymer itself with a plurality of amine functional groups. Hence the possibility of A having n ⁇ 1, ⁇ 5, ⁇ 10 n amine functional groups.
- a subunit typically comprises 2 or 4 amine functional groups. In specific embodiments all subunits have the same amount of functional groups. In other embodiments only a fraction (eg 1/2, 1/4 1/8) of the subunits have amine functional groups.
- Bn can be a polymer itself with a plurality of aliphatic halide functional groups. Hence the possibility of Bm having m ⁇ 2, ⁇ 5, ⁇ 10, or ⁇ 20.
- a subunit typically comprises 2 or 4 aliphatic halide functional groups. In specific embodiments all subunits have the same amount of functional groups. In other embodiments only a fraction (eg 1/2, 1/4 1/8) of the subunits have aliphatic halide functional groups.
- An aliphatic polyamine membrane is chosen because of its amine bond which is more robust than amide bonds.
- the amine bonds are resistant to hydrolysis and are more pH resistant.
- the polymer is made by a reaction of an aliphatic (oligo) amine, e.g. trans-cyclohexane diamine, and an aliphatic oligohalide via a nucleophilic substitution, e.g.
- One aspect of the invention relates to methods of preparing a polyamine-based membranes comprising the steps of polymerizing compound An with compound Bm.
- An is a molecule with n amine functional groups
- Bm is a molecule with m aliphatic functional groups selected from a halide, pseudohalide, ammonium, phosphonium, and sulfonium functional group.
- n 1, ⁇ 5, ⁇ 10, or ⁇ 20 and m ⁇ 2, ⁇ 5, ⁇ 10, or ⁇ 20.
- the m functional group is a halide.
- Examples of the amine functional group of An are substituents such as -NH 2 , -CH 2 - NH 2 , -(CH 2 ) 2 -NH 2 , -(CH 2 ) 3 -NH 2 , or -(CH 2 ) 4 -NH Z .
- Examples of the aliphatic functional group are substituents such -CH 2 -halide, - (CH 2 ) 2 -halide, -(CH 2 ) 3 -halide, or -(CH z ) 4 -halide.
- Equally such C1-C4 alkyl chains can have a pseudohalide, ammonium, phosphonium, or sulfonium functional group instead of the halide group.
- n is between 2 and 5 and m is between 2 and 5, more specifically is 2 or 4, and m is 2 or 4.
- n and m values are typical for An and Bm molecules with a molecular weight below 500, below 1000 or below 2000
- Typical molecules as use in the examples contain one six-membered aliphatic or six- membered aromatic ring.
- Examples are 1,2-cyclohexane diamine (CHDA), l,2,4,5-tetra(bromomethyl)benzene and l,4-di(bromomethyl)benzene (TBMB).
- CHDA 1,2-cyclohexane diamine
- TBMB l,2,4,5-tetra(bromomethyl)benzene
- An and/or Bm themselves can be polymers of repeating subunits with n and m functional group. These polymers are used in the formation of membranes in the currently claimed methods
- An and Bm as a whole m and n have higher values, e.g ⁇ 10, ⁇ 20, ⁇ 50.
- n and m values are independently between 10 and 50, 10 and 100, 10 and 150, 10 and 200, 25 and 50, 25 and 100, 25 and 150, 25 and 200, 50 and 100, 50 and 150, 50 and 200, 100 and 150, 100 and 200, 150 and 200.
- each repeating subunit typically has n or m values of 2 or 4.
- the polymerization of An with Bm can be performed by interfacial polymerization, phase inversion or solvent evaporation, typically by interfacial polymerization. After or during polymerization residual functional groups can be treated to alter the membrane structure and performance, for example by quaternization or crosslinking. Quaternization can be performed with methyliodide or benzylbromide.
- Crosslinking can be performed with 1,6-dibromohexane.
- Membranes obtained by the methods of the present invention can be used in harsh physicochemical conditions such as
- filtration in these conditions can occur at room temperature or at a temperature above 100 °C, above 150 °C or above 200 °C.
- Reproducibility via interfacial polymerization is obtained by increasing the degree of polymerization and reaction rate. Slower reactions result in looser and thicker films characterized by a lower rejection (Zhu et al. (2020) Sep. Purif. Technol. 239, 116528; Wang eta/. (2019) RscAdv. 9, 2042-2054).
- the reason is that the monomer in the aqueous phase has more time to diffuse deeper into the organic phase, which results in a thicker reaction zone.
- the precise membrane formation must be considered, and is achieved by the formation of a cross-linked polymer network. This is typically obtained by a polycondensation of An and Bm monomers.
- the formation of the network polymer depends on the Pn, the degree of polymerization, which is most affected by f, the mean number of functional groups, and p, the conversion.
- a network is formed if Pn reaches infinity, this implies that f and p must be high.
- unreacted functional groups can still react with each other, which further tightens the network.
- the reaction is performed fast, to avoid that the monomer in one phase can diffuse in the other phase further away from the interface. Two different circumstances occur, one close to the interface, where the monomer concentration reaches its maximum, and one further away from the interface, where the monomer concentration is lower. Because of the lower concentration, a fully cross-linked network polymer can never be formed. As a result, a very tick film, which is very loose on top and denser at the support layer is obtained.
- the solution to make a reproducible, thin and dense top layer is achieved by increasing the mean number of functional groups f.
- Membrane separation technology has gained an important place in the chemical industry. It can be applied in the separation of a range of components of varying molecular weights in gas or liquid phases, including but not limited to nanofiltration, desalination, and water treatment. It has several advantages to offer compared to the traditional separation processes, such as distillation, adsorption, absorption or solvent extraction. The benefits include continuous operation, lower energy consumption, the possibility of integration with other separation processes, mild conditions and thus more environment friendly, easy but linear up-scaling, the feasibility of making tailor-made membranes and less requirement of additives (Basic Principles of Membrane Technology, Second Edition, M. Mulder, Kluwer Academic Press, Dordrecht. 564p).
- Membranes are used in many applications, for example as inorganic semiconductors, biosensors, heparinized surfaces, facilitated transport membranes utilizing crown ethers and other carriers, targeted drug delivery systems including membrane-bound antigens, catalyst containing membranes, treated surfaces, sharpened resolution chromatographic packing materials, narrow-band optical absorbers, and in various water treatments which involve removal of a solute or contaminant for example dialysis, electrolysis, microfiltration, ultrafiltration and reverse osmosis (Membrane technology and applications, R. Baker, John Wiley & Sons, 2004, 538p).
- membrane separation processes are widely applied in the filtration of mild aqueous fluids, they have not been (widely) used under highly challenging pH or oxidizing conditions. Their relatively poor performance and/or stability in these conditions decreases their applicability in more aggressive feeds, despite an enormous potential economical market.
- chemical and pharmaceutical syntheses or textile dyeing are frequently performed in organic solvents containing products with high added value, like acids and bases or catalysts, which would be recoverable via membrane technology.
- the recovery of metal salts from acid mine leachates, treatment of harsh waste streams from chemical and pharmaceutical industries and purification of chlorinated water streams in desalination are other examples in which ultra-stable membranes could serve a purpose.
- TFC thin film composite
- IFP interfacial polymerization
- an aqueous solution of a reactive monomer (often an amine (e.g. a diamine)) is first deposited in the pores of a porous support membrane (e.g. a polysulfone ultrafiltration membrane)- this step is also referred to as support membrane impregnation.
- a porous support membrane e.g. a polysulfone ultrafiltration membrane
- the porous support membrane, loaded with the first monomer is immersed in a water-immiscible (organic) solvent solution containing a second reactive monomer (e.g. a tri- or diacid chloride).
- a second reactive monomer e.g. a tri- or diacid chloride
- the thin film layer can be from several tens of nanometers to a few micrometers thick.
- the thin film is selective between molecules, and this selective layer can be optimized for solute rejection and solvent flux by controlling the coating conditions, the characteristics and concentrations of the reactive monomers, the choice of the support membrane or the use of additives (e.g. acid-acceptors, surfactants ... ).
- the (micro-)porous support can be selectively chosen for porosity, strength and solvent resistance.
- supports or substrates for membranes There is a myriad of supports or substrates for membranes. Specific physical and chemical characteristics to be considered when selecting a suitable substrate include porosity, surface porosity, pore size distribution of surface and bulk, permeability, solvent resistance, hydrophilicity, flexibility, mechanical integrity and charges. Pore size distribution and overall surface porosity of the surface pores are of great importance when preparing a support for IFP.
- polyamides which belong to a class of polymers referred to as polyamides.
- One such polyamide is made, for example, by reacting a triacyl chloride, such as trimesoylchloride, with a diamine, such as m- phenylenediamine. The reaction can be carried out at an interface by dissolving the diamine in water and bringing a hexane solution of the triacyl chloride on top of the water phase. The diamine reacts with the triacyl chloride at the interface between these two immiscible solvents, forming a polyamide film at or near the interface which is less permeable to the reactants. Thus, once the film forms, the reaction slows down drastically, leaving a very thin film. In fact, if the film is removed from the interface by mechanical means, fresh film forms almost instantly at the interface, because the reactants are so highly reactive.
- interfacial polymerization examples include polyamides, polyureas, polyurethanes, polysulfonamides, polyesters (US 4,917,800), polyacrylates, or 13- alkanolamines (US20170065937).
- Factors affecting the making of continuous, thin interfacial films include temperature, the nature of the solvents and co-solvents (including ionic liquids: Marien et al. (2016) ChemSusChem 9, 1101-111), and the concentration and the reactivity of monomers and additives.
- Example 1 Membranes from 1,2-cyclohexanediamine (CHDA) with 1, 2,4,5- tetra(bromomethyl)benzene (TBMB)
- 1,2-cyclohexanediamine (CHDA) and potassiumphosphate (K3PO4) were dissolved in water, (the aqueous phase), and l,2,4,5-tetra(bromomethyl)benzene (TBMB) was dissolved in methylisobutylketon (MIBK) (the organic phase) ( Figure 1 top part).
- MIBK methylisobutylketon
- a polyimide support was immersed in the aqueous amine solution for 5 minutes. Afterwards, the support was removed from the solution, residual amine solution was removed with a wiper and the top of the support was contacted with the organic phase. The two phases were kept in contact for 30 minutes, whereafter the organic solution was removed. The membrane was rinsed with clean MIBK, left to dry in the air for 1 min and placed in a beaker with distilled water.
- the performance of the membranes was determined using a dead-end high- throughput filtration set-up. A feed solution of 35pM Rose Bengal (RB 1017 g/mol) or Methyl Orange (MO, 327 g/mol) in water is used and stirred at 340 ppm to minimize concentration polarization. Three coupons were cut from the membrane and tested to check the reproducibility and determine the standard deviation. The pressure applied on the membranes were kept at 10 bar. The permeance (P, L/m z hbar) was calculated using the following equation
- Membranes as prepared in Example 1 were treated with methyl iodide (Mel) for quaternation or with 1,6-dibromohexane (BrC 6 Hi Z Br) for crosslinking (figure 2 top panel). This was done by pouring a solution of these compounds on top of the membrane. The treatment was performed for both reagents of 10 minutes and 1 hour.
- Mel methyl iodide
- BrC 6 Hi Z Br 1,6-dibromohexane
- Example 3 stability of membranes from 1,2-cyclohexane diamine with l,2,4,5-tetra(bromomethyl)benzene.
- Membranes prepared from via interfacial polymerization 1,2-cyclohexane diamine with 1,2,4, 5 tetra (bromomethyl) benzene, and were treated with IM HCI, IM NaOH, NaOCI room temperature and at 40 °C for 1 h and 24 h, respectively.
- FTIR of the membranes does not change significantly after treatment with acid, alkali or oxidizing reagents (figure).
- Example 4 Membranes from 1,2-cyclohexane diamine (CHDA) with 1,4- di(bromomethyl)benzene (TBMB)
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
L'invention concerne des procédés de préparation de membranes à base de polyamine comprenant les étapes consistant à polymériser un composé A avec un composé Bm, A étant une molécule avec n groupes fonctionnels amine, et Bm étant une molécule avec m groupes fonctionnels aliphatiques choisis parmi un groupe fonctionnel halogénure, pseudohalogénure, ammonium, phosphonium et sulfonium, n > 1, >5, >10, ou >20 et m > 2, >5, >10, ou >20.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22207625 | 2022-11-15 | ||
EP22207625.9 | 2022-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024105106A1 true WO2024105106A1 (fr) | 2024-05-23 |
Family
ID=84358226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/081911 WO2024105106A1 (fr) | 2022-11-15 | 2023-11-15 | Membranes composites à film mince de polyamine aliphatique fabriquées par polymérisation interfaciale |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024105106A1 (fr) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3133132A (en) | 1960-11-29 | 1964-05-12 | Univ California | High flow porous membranes for separating water from saline solutions |
US3744642A (en) | 1970-12-30 | 1973-07-10 | Westinghouse Electric Corp | Interface condensation desalination membranes |
US4277244A (en) | 1976-08-20 | 1981-07-07 | Societe Anonyme Dite: L'oreal | Dye compositions for keratinic fibers containing paraphenylenediamines |
US4277344A (en) | 1979-02-22 | 1981-07-07 | Filmtec Corporation | Interfacially synthesized reverse osmosis membrane |
US4917800A (en) | 1986-07-07 | 1990-04-17 | Bend Research, Inc. | Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers |
US4950404A (en) | 1989-08-30 | 1990-08-21 | Allied-Signal Inc. | High flux semipermeable membranes |
CN103657610A (zh) * | 2013-12-09 | 2014-03-26 | 南京工业大学 | 选择性吸附二氧化碳的多孔聚合物吸附剂及其制备方法 |
KR101599864B1 (ko) * | 2012-03-05 | 2016-03-04 | 도레이케미칼 주식회사 | 산업폐수에서의 디메틸포름아미드 분리회수방법 |
US20170065937A1 (en) | 2014-02-27 | 2017-03-09 | Katholieke Universiteit Leuven | Solvent resistant thin film composite membrane and its preparation |
CN115007003A (zh) * | 2022-05-13 | 2022-09-06 | 天津工业大学 | 一种高通量荷正电复合纳滤膜、制备方法及应用 |
-
2023
- 2023-11-15 WO PCT/EP2023/081911 patent/WO2024105106A1/fr unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3133132A (en) | 1960-11-29 | 1964-05-12 | Univ California | High flow porous membranes for separating water from saline solutions |
US3744642A (en) | 1970-12-30 | 1973-07-10 | Westinghouse Electric Corp | Interface condensation desalination membranes |
US4277244A (en) | 1976-08-20 | 1981-07-07 | Societe Anonyme Dite: L'oreal | Dye compositions for keratinic fibers containing paraphenylenediamines |
US4277344A (en) | 1979-02-22 | 1981-07-07 | Filmtec Corporation | Interfacially synthesized reverse osmosis membrane |
US4917800A (en) | 1986-07-07 | 1990-04-17 | Bend Research, Inc. | Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers |
US4950404A (en) | 1989-08-30 | 1990-08-21 | Allied-Signal Inc. | High flux semipermeable membranes |
US4950404B1 (fr) | 1989-08-30 | 1991-10-01 | Allied Signal Inc | |
KR101599864B1 (ko) * | 2012-03-05 | 2016-03-04 | 도레이케미칼 주식회사 | 산업폐수에서의 디메틸포름아미드 분리회수방법 |
CN103657610A (zh) * | 2013-12-09 | 2014-03-26 | 南京工业大学 | 选择性吸附二氧化碳的多孔聚合物吸附剂及其制备方法 |
US20170065937A1 (en) | 2014-02-27 | 2017-03-09 | Katholieke Universiteit Leuven | Solvent resistant thin film composite membrane and its preparation |
CN115007003A (zh) * | 2022-05-13 | 2022-09-06 | 天津工业大学 | 一种高通量荷正电复合纳滤膜、制备方法及应用 |
Non-Patent Citations (7)
Title |
---|
KOOPS ET AL., J. APPL. POLYMER SCI., vol. 53, 1994, pages 1639 - 1651 |
M. MULDER: "Basic Principles of Membrane Technology", 2004, KLUWER ACADEMIC PRESS, pages: 538p |
MARIEN ET AL., CHEMSUSCHEM, vol. 9, 2016, pages 1101 - 111 |
PETERSEN, J. MEMBR. SCI, vol. 83, 1993, pages 81 - 150 |
WANG ET AL., POLYMER BULLETIN, vol. 31, 1993, pages 323 - 330 |
WANG ET AL., RSCADV., vol. 9, 2019, pages 2042 - 2054 |
ZHU ET AL., SEP. PURIF. TECHNOL., vol. 239, 2020, pages 116528 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2398839B1 (fr) | Membranes de polyamide avec fonctionnalité de fluoro-alcool | |
JP5964292B2 (ja) | 薄膜複合材 | |
Zou et al. | Synthesis and characterization of thin film composite reverse osmosis membranes via novel interfacial polymerization approach | |
US5616249A (en) | Nanofiltration apparatus and processes | |
US8196754B2 (en) | Water permeable membranes and methods of making water permeable membranes | |
EP1434647B1 (fr) | Membranes de nanofiltration de composites et d'osmose inverse, et procede de production associe | |
US10898857B2 (en) | Membranes with alternative selective layers | |
McVerry et al. | Next-generation asymmetric membranes using thin-film liftoff | |
US11207645B2 (en) | Composite semipermeable membrane and spiral wound separation membrane element | |
AU2019204206A1 (en) | Polysulfonamide membrane by interfacial polymerisation | |
AU2017201747B2 (en) | Polyamide membranes via interfacial polymersation with monomers comprising a protected amine group | |
US6837381B2 (en) | Highly permeable composite reverse osmosis membrane and method of producing the same | |
US20230182087A1 (en) | Thin-Film Composite Membranes Synthesized by Multi-Step Coating Methods | |
WO2024105106A1 (fr) | Membranes composites à film mince de polyamine aliphatique fabriquées par polymérisation interfaciale | |
WO2007084921A2 (fr) | Membranes permeables a l’eau et leurs procedes de formation | |
US20050103705A1 (en) | Process for preparing semipermeable membranes having improved permeability | |
NO20170560A1 (en) | TFC membranes and a process for the preparation of such membranes | |
WO2018220209A1 (fr) | Membranes composites à film mince de poly(époxy)éther ultra-stables fabriquées par initiation interfaciale | |
Maaskant | Mix and match: new monomers for interfacial polymerization | |
JP2000237560A (ja) | 高透過性複合逆浸透膜及びその製造方法 | |
JP2021098171A (ja) | 複合半透膜 | |
WO2018164585A1 (fr) | Membranes en tfc hydrophiles et procédé de préparation de telles membranes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23805615 Country of ref document: EP Kind code of ref document: A1 |