WO2024104293A1 - 多点检平调平方法及装置 - Google Patents

多点检平调平方法及装置 Download PDF

Info

Publication number
WO2024104293A1
WO2024104293A1 PCT/CN2023/131296 CN2023131296W WO2024104293A1 WO 2024104293 A1 WO2024104293 A1 WO 2024104293A1 CN 2023131296 W CN2023131296 W CN 2023131296W WO 2024104293 A1 WO2024104293 A1 WO 2024104293A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
silicon wafer
plane
axis
distance
Prior art date
Application number
PCT/CN2023/131296
Other languages
English (en)
French (fr)
Inventor
李奕
冯金花
余逸芳
王彦钦
赵立新
Original Assignee
中国科学院光电技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院光电技术研究所 filed Critical 中国科学院光电技术研究所
Publication of WO2024104293A1 publication Critical patent/WO2024104293A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/16Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/42Alignment or registration features, e.g. alignment marks on the mask substrates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/44Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically

Definitions

  • the present disclosure relates to the technical field of projection lithography, and in particular to a multi-point leveling method and device.
  • the leveling mechanism adjusts the distance between the silicon wafer and the lens according to the measurement results to complete the entire closed-loop leveling action.
  • the existing leveling device is generally a four-point leveling device, which uses the ratio of the height difference between the four points to the distance between them as the angle offset, and rotates the silicon wafer according to the angle offset as the tilt amount, so that the local area of the exposure field is parallel to the ideal focal plane.
  • the present disclosure provides a multi-point leveling method and device, which are used to at least partially solve the above technical problems.
  • the first aspect of the present disclosure provides a multi-point leveling method, including: using a wafer stage to support and drive a silicon wafer to move to a target area of the wafer stage; using at least three gap sensors in a gap sensor array to respectively transmit signals through a non-graphic area of the mask through the mask to a measuring point on the silicon wafer in the target area, and respectively measuring the distance from the mask to the measuring point; calculating the plane coefficient of the plane to be leveled according to the positions of at least three gap sensors and the distance from the mask to the measuring point measured by each gap sensor; calculating the rotation angle of the silicon wafer relative to the mask according to the plane coefficient; and leveling the silicon wafer according to the rotation angle.
  • the plane coefficient of the plane to be leveled is calculated according to the positions of at least three gap sensors and the distance from the mask to the measuring point measured by each gap sensor, specifically including: based on the right-hand rule, a spatial rectangular coordinate system is established with the center of the silicon wafer as the origin and the axis perpendicular to the mask surface as the z-axis; the plane coordinates of at least three gap sensors on the xoy plane of the spatial rectangular coordinate system are obtained, and the distance from the mask to the measuring point corresponding to each gap sensor is converted into the z-axis coordinate, wherein the plane coordinates and the z-axis coordinate corresponding to each gap sensor constitute the coordinates of the gap sensor in the spatial rectangular coordinate system; the plane equation of the plane to be leveled is constructed; based on the least squares method, the coordinates of at least three gap sensors in the spatial rectangular coordinate system are substituted into the plane equation to calculate the plane coefficient of the plane to be leveled.
  • the rotation angle of the silicon wafer relative to the mask is calculated based on the plane coefficient, specifically including: based on the right-hand rule, a spatial rectangular coordinate system is established with the center of the silicon wafer as the origin and the axis perpendicular to the mask surface as the z-axis; and the rotation angle of the silicon wafer relative to the mask around the x-axis and the rotation angle around the y-axis are calculated based on the plane coefficient.
  • the silicon wafer in the process of leveling the silicon wafer according to the rotation angle, is first rotated about the y-axis and then rotated about the x-axis.
  • the silicon wafer in the process of leveling the silicon wafer according to the rotation angle, is first rotated about the x-axis and then rotated about the y-axis.
  • the multi-point leveling method also includes repeatedly performing the following operations: using at least three gap sensors in the gap sensor array to respectively transmit signals through the non-graphic area of the mask through the mask to the measuring points on the silicon wafer in the target area, and respectively measuring the distance from the mask to the measuring point; calculating the plane coefficient of the plane to be leveled based on the positions of the at least three gap sensors and the distance from the mask to the measuring point measured by each gap sensor; calculating the rotation angle of the silicon wafer relative to the mask based on the plane coefficient; and leveling the silicon wafer based on the rotation angle.
  • the multi-point leveling method further includes: eliminating the distance from the mask to the measuring point measured by the gap sensor whose error is greater than a preset value, and retaining at least three distances from the mask to the measuring point measured by the gap sensors after elimination.
  • the distance from the mask to the measuring point measured by the gap sensor with an error greater than a preset value is eliminated, specifically including: calculating the mean or median of the distances from the mask to the measuring point measured by all current gap sensors; judging whether the absolute value of the difference between the distance from the mask to the measuring point measured by each gap sensor and the mean or median is greater than a preset value, and if so, eliminating the distance from the mask to the measuring point measured by the gap sensor.
  • the second aspect of the present disclosure provides a multi-point leveling device, comprising: a wafer table for Support and drive the silicon wafer to move to the target area; the mask is fixed above the wafer stage; the gap sensor array is arranged above the mask, and is used to transmit signals through the non-graphic area of the mask through the mask to the measuring points on the silicon wafer in the target area, and measure the distance from the mask to the measuring points; the controller is used to control the wafer stage and the gap sensor, and calculate the plane coefficient of the plane to be leveled according to the position of the gap sensor and the distance from the mask to the measuring points measured by the gap sensor, calculate the rotation angle of the silicon wafer relative to the mask according to the plane coefficient, and transmit a control signal according to the rotation angle to control the wafer stage to level the silicon wafer.
  • the distance from the mask to the silicon wafer can be measured at multiple points. Then, based on the least squares method, the plane coefficient of the plane to be leveled is fitted according to the distance measured at multiple points to level the silicon wafer, thereby reducing the impact of data with large errors on the leveling results and improving the leveling accuracy, thereby improving the exposure accuracy of the silicon wafer and improving the robustness of the leveling.
  • the position and number of measuring points are no longer fixed and can be flexibly selected according to actual needs. They can be adaptively changed for different masks with different light-transmitting areas or for scenes with special positions of leveling measuring points, making the mask more compatible and adaptable.
  • FIG1 schematically shows an overall structural diagram of a multi-point leveling device provided in an embodiment of the present disclosure.
  • FIG2 schematically shows a cross-sectional view of the structure of a multi-point leveling device provided by an embodiment of the present disclosure.
  • FIG3 schematically shows a flow chart of a multi-point leveling method provided by an embodiment of the present disclosure.
  • FIG. 4 schematically shows a flow chart of operation S304 in the multi-point leveling method provided by an embodiment of the present disclosure.
  • FIG. 5 schematically shows a coordinate diagram corresponding to leveling using four gap sensors provided in an embodiment of the present disclosure.
  • FIG. 6 schematically shows a coordinate diagram corresponding to leveling using 84 gap sensors provided in an embodiment of the present disclosure.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or can communicate with each other; it can be a direct connection, or it can be indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed installed
  • connected connected
  • a detachable connection or an integral connection
  • it can be a mechanical connection, an electrical connection, or can communicate with each other
  • it can be a direct connection, or it can be indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, a feature defined as “first” or “second” may explicitly or implicitly include one or more of the feature. In the description of the present disclosure, the meaning of "plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • Fig. 1 schematically shows the overall structure of a multi-point leveling device provided by an embodiment of the present disclosure.
  • Fig. 2 schematically shows a cross-sectional view of the structure of a multi-point leveling device provided by an embodiment of the present disclosure.
  • the multi-point leveling device may include, for example, a wafer stage 1, a mask 3 and a gap sensor 4, wherein:
  • the wafer stage 1 is used to support the silicon wafer 2 and drive the silicon wafer 2 to move so as to switch between different exposure scenes.
  • the mask 3 is fixed on the wafer stage 1. Generally, during a certain exposure process, the projection area of the mask 3 on the wafer stage 1 can be used as the target area 5 of the silicon wafer 2. The mask 3 is fixed during the leveling and exposure process.
  • the gap sensor 4 is arranged in an array above the mask 3, and is used to transmit a signal through the non-pattern area of the mask 3 to the measuring point on the silicon wafer 2 in the target area 5, and measure the distance from the mask 3 to the measuring point.
  • the signal emitted by the gap sensor 4 is reflected by the silicon wafer 2 and then returned to the gap sensor.
  • the distance from the mask 3 to the measuring point can be obtained by using the gap sensor 4.
  • the light-transmitting areas of different masks 3 are different. Therefore, in order to measure the distance between different masks 3 and the silicon wafer, the gap sensor corresponding to the non-pattern area of the mask 3 can be selected for measurement.
  • the controller 6 is used to control the wafer stage 1 and the gap sensor 4, and calculate the plane coefficient of the plane to be leveled according to the position of the gap sensor 4 and the distance from the mask 3 to the measuring point measured by the gap sensor 4, calculate the rotation angle of the silicon wafer 2 relative to the mask 3 according to the plane coefficient, and transmit a control signal according to the rotation angle to control the wafer stage 1 to level the silicon wafer 2.
  • an embodiment of the present disclosure further provides a multi-point leveling method.
  • FIG3 schematically shows a flow chart of a multi-point leveling method provided by an embodiment of the present disclosure.
  • the multi-point leveling method may include, for example, operations S301 to S305 .
  • a wafer stage is used to support and drive a silicon wafer to move to a target area under a mask.
  • the target area is the exposure area of a certain exposure session, and the silicon wafer leveling and adjustment must be completed in this area before exposure.
  • At least three gap sensors in the gap sensor array are used to transmit signals respectively through the non-pattern area of the mask, through the mask to the measuring points on the silicon wafer in the target area, and the distances from the mask to the measuring points are respectively measured.
  • a plane coefficient of the plane to be leveled is calculated according to positions of at least three gap sensors and a distance from the mask to a measuring point measured by each gap sensor.
  • a rotation angle of the silicon wafer relative to the mask is calculated according to the plane coefficient.
  • the reason for selecting at least three gap sensors is that three points can determine a plane, thereby obtaining a leveled plane to meet the leveling requirement.
  • the specific gap sensor can be determined according to the actual exposure requirement, and the present disclosure does not limit it.
  • FIG. 4 schematically shows a flow chart of operation S304 in the multi-point leveling method provided by an embodiment of the present disclosure.
  • operation S304 may include, for example, operations S401 to S402 .
  • a spatial rectangular coordinate system is established with the center of the silicon wafer as the origin and the axis perpendicular to the mask surface as the z-axis.
  • a rotation angle of the silicon wafer relative to the mask around the x-axis and a rotation angle around the y-axis are calculated according to the plane coefficient.
  • the plane coordinates of the gap sensors 4 on the xoy plane of the spatial rectangular coordinate system are ( xi , yi ), i is 1 to n, and the distance value from the mask to the measuring point measured by each gap sensor 4 is converted into the z-axis coordinate zi , and the n coordinate values ( xi , yi , zi ) are substituted into the above formula.
  • m, p, q can be calculated.
  • leveling is performed with the assistance of the carrier 1.
  • the leveling principle is as follows:
  • the silicon wafer 2 in the target area 5 is a plane in a certain scene. Ideally, its direction vector should be (0, 0, 1). However, in fact, the plane in the target area 5 is rotated by ⁇ around the x-axis and ⁇ around the y-axis relative to the ideal plane. If ⁇ and ⁇ can be calculated, the plane corresponding to the silicon wafer 2 is rotated by - ⁇ around the y-axis and - ⁇ around the x-axis during leveling, so that the direction vector of the plane becomes (0, 0, 1). At this time, the leveling is completed, and the plane in the target area 5 is parallel to the ideal plane after leveling. The following introduces two ways to calculate ⁇ and ⁇ .
  • the first method is:
  • the angle ⁇ of the ideal plane rotating around the x-axis and the angle ⁇ of the ideal plane rotating around the y-axis can be obtained according to the direction vector of the plane at this time.
  • the plane can be restored to the ideal plane by rotating - ⁇ around the y-axis and then - ⁇ around the x-axis.
  • the plane to be leveled is regarded as the plane of the wafer in the target area 5, and its direction vector should be the same as the direction vector of the ideal plane rotated by ⁇ angle around the x-axis and then rotated by ⁇ angle around the y-axis.
  • the process of leveling the silicon wafer is to first rotate the silicon wafer around the y-axis and then rotate the silicon wafer around the x-axis. Specifically, first rotate the silicon wafer around the y-axis by - ⁇ and then rotate it around the x-axis by - ⁇ .
  • the second method is:
  • the angle ⁇ of the ideal plane's rotation around the y-axis and the angle ⁇ of the ideal plane's rotation around the x-axis can be obtained based on the plane's direction vector at this time.
  • the plane can be restored to the ideal plane by rotating it around the x-axis by - ⁇ and then around the y-axis by - ⁇ .
  • its direction vector should be the same as the direction vector of the ideal plane after rotating around the y-axis by an angle of ⁇ and then around the x-axis by an angle of ⁇ .
  • the process of leveling the silicon wafer The silicon wafer is first rotated around the x-axis and then around the y-axis. Specifically, the silicon wafer is first rotated around the x-axis by - ⁇ and then around the y-axis by - ⁇ .
  • the multi-point leveling method may further include: repeatedly performing operations S302 to S305 multiple times, that is, the silicon wafer may be repeatedly leveled multiple times to further improve the accuracy of the multi-point leveling.
  • any point among the multiple points whose error is greater than a preset distance can be eliminated in advance to reduce the impact of data with large errors on the leveling result.
  • eliminating the distance from the mask to the measuring point measured by the gap sensor with an error greater than a preset value can include: calculating the mean or median of the distance from the mask to the measuring point measured by all current gap sensors, and determining whether the absolute value of the difference between the distance from the mask to the measuring point measured by each gap sensor and the mean or median is greater than a preset value; if so, eliminating the distance from the mask to the measuring point measured by the gap sensor, and retaining at least three distances from the mask to the measuring point measured by the gap sensors after elimination.
  • the gap sensors are set to 10 ⁇ 10 array-arranged gap sensors. Since the 100 gap sensors 4 are fixed above the mask and their positions are known, after the gap measurement points are selected, the (x i , y i ) coordinates of the gap sensors 4 are automatically obtained.
  • FIG. 5 schematically shows a coordinate diagram corresponding to leveling using four gap sensors provided in an embodiment of the present disclosure.
  • the selected four gap sensors may form a rectangle, for example, and the coordinates of the four gap sensors in the spatial rectangular coordinate system are shown in Table 1:
  • the leveling process calculated based on the above coordinates is: - ⁇ rotation around the y-axis is 49.999 ⁇ rad, and - ⁇ rotation around the x-axis is 79.999 ⁇ rad.
  • the leveling process calculated based on the above coordinates is: - ⁇ rotation around the y-axis is -1.000 ⁇ rad, and - ⁇ rotation around the x-axis is 1.000 ⁇ rad.
  • the silicon wafer is substantially parallel to the reference plane (the plane where the mask is located).
  • FIG. 6 schematically shows a coordinate diagram corresponding to leveling using 84 gap sensors provided in an embodiment of the present disclosure.
  • the selected 84 gap sensors may be, for example, 16 gap sensors in the middle of the 10 ⁇ 10 array-arranged gap sensors.
  • the coordinates of the 84 gap sensors in the spatial rectangular coordinate system are shown in Table 3:
  • the leveling process calculated based on the above coordinates is: - ⁇ rotation around the y-axis is 36.291 ⁇ rad, and - ⁇ rotation around the x-axis is 80.230 ⁇ rad.
  • the leveling process calculated based on the above coordinates is: - ⁇ rotation around the y-axis is -0.385 ⁇ rad, and - ⁇ rotation around the x-axis is 1.180 ⁇ rad.
  • the silicon wafer is substantially parallel to the reference plane.
  • the leveling method and device provided in the embodiment of the present disclosure can achieve an error within 1nm Check and level the level.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本公开提供一种多点检平调平方法及装置,方法包括:利用承片台支撑并带动硅片移动至承片台的目标区域;利用间隙传感器阵列中的至少三个间隙传感器分别发射信号经掩模的非图形区域通过掩模至目标区域硅片上的测点,分别测量掩模到测点的距离;根据至少三个间隙传感器的位置和每一间隙传感器测得的掩模到测点的距离,计算待调平平面的平面系数;根据平面系数计算硅片相对于掩模的旋转角度;根据旋转角度对硅片进行调平。该方法及装置提高了检平调平精度,从而提高了硅片的曝光精度,并且,掩模的兼容性更好,适应性更好。

Description

多点检平调平方法及装置
本公开要求于2022年11月16日提交的申请号为202211432021.1的中国专利的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及投影光刻技术领域,尤其涉及一种多点检平调平方法及装置。
背景技术
传统投影光刻领域,在硅片开始曝光到曝光完成的任意时刻,需要实时测量硅片内的一个小区域硅片与镜头之间的距离,区域大小常常和物镜视场相当,测量的点一般选择区域内四点及以上有代表意义的点,测量不同区域时,测量传感器位置不变,被测量区域随硅片步进或扫描而呈变化状态。对某区域测量结束后,调平机构根据测量结果对硅片与镜头之间距离调整,完成整个闭环检平调平动作。
现有的检平装置一般为四点检平装置,通过四个点之间的高度差与相互之间距离之比作为角度的偏移量,根据角度的偏移量作为倾斜量旋转硅片,使得曝光场局部区域与理想焦平面平行。
然而,由于随硅片面积的增大,容易产生非常小的形变,这种精度较低的检平方式无法满足现有的曝光精度。并且,由于掩模图形区不透光,测点只能选择在掩模的透光区,但不同掩模的透光区并不相同,固定位置的四点检平装置并不适用于透光区不同的掩模,掩模兼容性差。此外,四点检平装置中四个点其中某个点存在较大的误差,检平受到的干扰较大,进而影响曝光精度。
发明内容
针对上述技术问题,本公开提供一种多点检平调平方法及装置,用于至少部分解决上述技术问题。
基于此,本公开第一方面提供一种多点检平调平方法,包括:利用承片台支撑并带动硅片移动至承片台的目标区域;利用间隙传感器阵列中的至少三个间隙传感器分别发射信号经掩模的非图形区域通过掩模至目标区域内硅片上的测点,分别测量掩模到测点的距离;根据至少三个间隙传感器的位置和每一间隙传感器测得的掩模到测点的距离,计算待调平平面的平面系数;根据平面系数计算硅片相对于掩模的旋转角度;根据旋转角度对硅片进行调平。
根据本公开的实施例,根据至少三个间隙传感器的位置和每一间隙传感器测得的掩模到测点的距离,计算待调平平面的平面系数,具体包括:基于右手定则,以硅片的中心为原点,垂直于掩模表面的轴为z轴,建立空间直角坐标系;获取至少三个间隙传感器在空间直角坐标系xoy平面上的平面坐标,并将每一间隙传感器对应的掩模到测点的距离转化为z轴坐标,其中,每一间隙传感器对应的平面坐标和z轴坐标构成该间隙传感器在空间直角坐标系中的坐标;构建待调平平面的平面方程;基于最小二乘法,将至少三个间隙传感器在空间直角坐标系中的坐标代入平面方程,计算待调平平面的平面系数。
根据本公开的实施例,根据平面系数计算硅片相对于掩模的旋转角度,具体包括:基于右手定则,以硅片的中心为原点,垂直于掩模表面的轴为z轴,建立空间直角坐标系;根据平面系数计算硅片相对于掩模绕x轴旋转的角度和绕y轴旋转的角度。
根据本公开的实施例,在根据旋转角度对硅片进行调平的过程为先绕y轴旋转硅片,再绕x轴旋转硅片的情况下,根据

计算硅片相对于掩模绕x轴旋转的角度-β和绕y轴旋转的角度-γ,其中,m、p、-1为待调平平面的三个平面系数。
根据本公开的实施例,在根据旋转角度对硅片进行调平的过程为先绕x轴旋转硅片,再绕y轴旋转硅片的情况下,根据

计算硅片相对于掩模绕x轴旋转的角度-β和绕y轴旋转的角度-γ,其中,m、p、-1为待调平平面的三个平面系数。
根据本公开的实施例,多点检平调平方法还包括多次重复执行以下操作:利用间隙传感器阵列中的至少三个间隙传感器分别发射信号经掩模的非图形区域通过掩模至目标区域内硅片上的测点,分别测量掩模到测点的距离;根据至少三个间隙传感器的位置和每一间隙传感器测得的掩模到测点的距离,计算待调平平面的平面系数;根据平面系数,计算硅片相对于掩模的旋转角度;根据旋转角度对硅片进行调平。
根据本公开的实施例,多点检平调平方法还包括:剔除间隙传感器测得的掩模到测点的距离中误差大于预设值的距离,剔除后至少保留三个间隙传感器测得的掩模到测点的距离。
根据本公开的实施例,剔除间隙传感器测得的掩模到测点的距离中误差大于预设值的距离,具体包括:计算当前所有间隙传感器测得的掩模到测点的距离的均值或中值;判断每一间隙传感器测得的掩模到测点的距离与均值或中值的差值的绝对值是否大于预设值,若是,则剔除该间隙传感器测得的掩模到测点的距离。
本公开第二方面提供一种多点检平调平装置,包括:承片台,用于 支撑并带动硅片移动到目标区域;掩模,固定在承片台的上方;间隙传感器,阵列设置在掩模上方,用于发射信号经掩模的非图形区域通过掩模至目标区域内硅片上的测点,测量掩模到测点的距离;控制器,用于控制承片台和间隙传感器,并根据间隙传感器的位置和间隙传感器测得的掩模到测点的距离,计算待调平平面的平面系数,根据平面系数计算硅片相对于掩模的旋转角度,以及根据旋转角度发射控制信号控制承片台对硅片进行调平。
根据本公开实施例提供的多点检平调平方法及装置,至少包括以下有益效果:
通过在掩模上方设置阵列排布的间隙传感器,能够多点测量掩模到硅片的距离,再基于最小二乘法,根据多点测量的距离拟合出待调平平面的平面系数对硅片进行调平,减少误差较大的数据对检平结果的影响,提高检平调平精度,从而提高了硅片的曝光精度,并且提高了检平调平的鲁棒性。
由于间隙传感器阵列排布,使得测点的位置和数量不再固定,可以根据实际需求灵活选取,对于不同掩模不同透光区或检平测点的位置比较特别的场景能够适应性地改变,掩模的兼容性更好,适应性更好。
附图说明
通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:
图1示意性示出了本公开实施例提供的多点检平调平装置的整体结构图。
图2示意性示出了本公开实施例提供的多点检平调平装置结构的剖视图。
图3示意性示出了本公开实施例提供的多点检平调平方法的流程图。
图4示意性示出了本公开实施例提供的多点检平调平方法中操作S304的流程图。
图5示意性示出了本公开实施例提供的采用四个间隙传感器进行检平调平对应的坐标图。
图6示意性示出了本公开实施例提供的采用84个间隙传感器进行检平调平对应的坐标图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或可以互相通讯;可以是直接连接,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开的描述中,需要理解的是,术语“纵向”、“长度”、“周向”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的子系统或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
贯穿附图,相同的元素由相同或相近的附图标记来表示。可能导致本公开的理解造成混淆时,将省略常规结构或构造。并且图中各部件的 形状、尺寸、位置关系不反映真实大小、比例和实际位置关系。另外,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。
类似地,为了精简本公开并帮助理解各个公开方面中的一个或多个,在上面对本公开示例性实施例的描述中,本公开的各个特征有时被一起分到单个实施例、图或者对其描述中。参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或者多个实施例或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。因此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
图1示意性示出了本公开实施例提供的多点检平调平装置的整体结构图。图2示意性示出了本公开实施例提供的多点检平调平装置结构的剖视图。
如图1和图2所示,该多点检平调平装置例如可以包括承片台1、掩模3和间隙传感器4,其中:
承片台1,用于支撑硅片2,并带动硅片2移动,以实现不同曝光场次的切换。
掩模3,固定在承片台1的上方,其中,一般情况下,某一场次曝光过程中,掩模3在承片台1上的投影区域可以作为硅片2的目标区域5。掩模3在检平和曝光过程中固定不动。
间隙传感器4,阵列设置在掩模3上方,用于发射信号经掩模3的非图形区域通过掩模3至目标区域5内硅片2上的测点,测量掩模3到测点的距离。间隙传感器4发射的信号经过硅片2反射后回到间隙传感 器4,进而可以得到掩模3到测点的距离。不同掩模3的透光区并不相同,因此为了测量不同掩模3与硅片之间的距离,可选取掩模3非图形区域对应的间隙传感器进行测量。
控制器6,用于控制承片台1和间隙传感器4,并根据间隙传感器4的位置和间隙传感器4测得的掩模3到测点的距离,计算待调平平面的平面系数,根据平面系数计算硅片2相对于掩模3的旋转角度,根据旋转角度发射控制信号控制承片台1对硅片2进行调平。
基于图1和图2所示的多点检平调平装置,本公开实施例还提供一种多点检平调平方法。
图3示意性示出了本公开实施例提供的多点检平调平方法的流程图。
如图3所示,该多点检平调平方法例如可以包括操作S301~操作S305。
在操作S301,利用承片台支撑并带动硅片移动至掩模下方的目标区域。
该目标区域为某一曝光场次的曝光区域,在曝光前需在该区域完成硅片的检平与调平。
在操作S302,利用间隙传感器阵列中至少三个间隙传感器分别发射信号经掩模的非图形区域通过掩模至目标区域内硅片上的测点,分别测量掩模到测点的距离。
在操作S303,根据至少三个间隙传感器的位置和每一间隙传感器测得的掩模到测点的距离,计算待调平平面的平面系数。
在操作S304,根据平面系数计算硅片相对于掩模的旋转角度。
在操作S305,根据旋转角度对硅片进行调平。
应当理解,选择至少三个间隙传感器的原因在于:三个点即可以确定一个平面,进而获得一个调平的平面,满足调平需求。具体间隙传感器可以根据实际曝光需求而定,本公开不作限制。
图4示意性示出了本公开实施例提供的多点检平调平方法中操作S304的流程图。
如图4所示,操作S304例如可以包括操作S401~操作S402。
在操作S401,基于右手定则,以硅片的中心为原点,垂直于掩模表面的轴为z轴,建立空间直角坐标系。
在操作S402,根据平面系数计算硅片相对于掩模绕x轴旋转的角度和绕y轴旋转的角度。
为了更清楚地阐述根据平面系数计算硅片相对于掩模绕x轴旋转的角度和绕y轴旋转的角度,下面预先对检平调平的原理进行介绍,具体如下:
相对于基准平面(掩模所在的平面),设构建的待调平平面的平面方程为ax+by+cz+d=0,由于待调平平面不可能与硅片2垂直,也即不可能与z轴平行,因此,待调平平面的平面方程中的c不可能为0,待调平平面的方程两边除以c可得:
即:
变形可得:
mx+py+q=z
由此,对于n个点矩阵方程为:
A·ΔP=E
其中:
检平时,选取n个间隙传感器4,间隙传感器4在空间直角坐标系xoy平面上的平面坐标为(xi,yi),i取1到n,将每个间隙传感器4测得的掩模到测点的距离值转化为z轴坐标zi,将n个坐标值(xi,yi,zi)代入上式,基于最小二乘法,可以计算得到m,p,q。此时,待调平平面 mx+py+q=z上n个点(xi,yi)与n个间隙传感器4所测出的硅片2上的测点的距离平方和最小,则可以认为该平面为待调平平面。即利用硅片2上实际存在的点拟合出一个平面的平面方程,该待调平平面上各点到测点间的距离平方和最小。也即根据公式ΔP=(ATA)-1ATE可以求出满足要求的平面系数m、p、-1。
在检平获得待调平平面后,在承载台1的协助下进行调平,调平原理为:
假设某一场次时目标区域5内的硅片2是一个平面,理想情况下其方向向量应为(0,0,1),但实际上目标区域5内的平面相对于该理想平面绕x轴旋转了β,绕y轴旋转了γ,如果能够计算出β和γ,则调平时硅片2对应的平面绕y轴旋转-γ,绕x轴旋转-β,使该平面的方向向量变为(0,0,1),此时,调平结束,调平后目标区域5内的平面与理想平面平行。下面介绍两种计算β和γ的方式。
第一种方式为:
理想平面绕x轴旋转了β角度后,方向向量为:
然后再绕y轴旋转了γ角度后,方向向量为:
由上可知,理想平面绕x轴旋转了β角度,再绕y轴旋转了γ角度后,得到的新平面的方向向量为:
由此,可以根据此时平面的方向向量获得理想平面绕x轴旋转的角度β和绕y轴旋转的角度γ,将该平面绕y轴旋转-γ,再绕x轴旋转-β就可以恢复到理想平面。
由于根据实际测量,检平得到的待调平平面为mx+py-z+q=0,将该待调平平面视为晶圆在目标区域5内的平面,其方向向量应该与理想平面绕x轴旋转了β角度,再绕y轴旋转了γ角度后的方向向量相同。待调平平面为mx+py-z+q=0的方向向量为:
其中:
由此:
进而可以得到:

也即,基于第一种方式计算得到β和γ后,对硅片进行调平的过程为先绕y轴旋转硅片,再绕x轴旋转硅片,具体地,先将硅片绕y轴旋转-γ,再绕x轴旋转-β。
第二种方式为:
理想平面绕y轴旋转了γ角度后,方向向量为:
然后再绕x轴旋转了β角度后,方向向量为:
由上可知,理想平面绕y轴旋转了γ角度,再绕x轴旋转了β角度后,得到的新平面的方向向量为:
[sinγ-sinβcosγcosβcosγ]
由此,可以根据此时平面的方向向量获得理想平面绕y轴旋转的角度γ和绕x轴旋转的角度β,将该平面绕x轴旋转-β,再绕y轴旋转-γ就可以恢复到理想平面。
由于根据实际测量,检平得到的待调平平面为mx+py-z+q=0,其方向向量应该与理想平面绕y轴旋转了γ角度,再绕x轴旋转了β角度后的方向向量相同。待调平平面为mx+py-z+q=0的方向向量为:
其中:
由此:
进而可以得到:

也即,基于第二种方式计算得到β和γ后,对硅片进行调平的过程 为先绕x轴旋转硅片,再绕y轴旋转硅片,具体地,先将硅片绕x轴旋转-β,再绕y轴旋转-γ。
在上述实施例的基础上,多点检平调平方法还可以包括:多次重复执行操作S302~S305,也即可以对硅片进行多次重复调平后,进一步提高多点检平调平的精度。
在上述实施例的基础上,由于本公开实施例的检平调平选择的多点,因此,对多点中某个点存在的误差大于预设值的距离,可以预先对其进行剔除,减少误差较大的数据对检平结果的影响。
具体地,剔除间隙传感器测得的掩模到测点的距离中误差大于预设值的距离可以包括:计算当前所有间隙传感器测得的掩模到测点的距离的均值或中值,判断每一间隙传感器测得的掩模到测点的距离与所述均值或中值的差值的绝对值是否大于预设值,若是,则剔除该间隙传感器测得的掩模到测点的距离,剔除后至少保留三个间隙传感器测得的掩模到测点的距离。
为了证明本公开实施例提供的检平调平方法及装置的优势,下面列举几个具体的示例进行说明,示例中间隙传感器设置为10×10个阵列排布间隙传感器,由于100个间隙传感器4是固定在掩膜上方且位置已知的,所以选择好间隙测量点之后,间隙传感器4的(xi,yi)坐标就自动获得。
图5示意性示出了本公开实施例提供的采用四个间隙传感器进行检平调平对应的坐标图。
如图5所示,选择的四个间隙传感器例如可以组成一个矩形,四个间隙传感对应的空间直角坐标系中的坐标如表1所示:
表1
基于上述坐标计算得到的调平过程为:绕y轴旋转-γ为49.999μrad,绕x轴旋转-β为79.999μrad。
经过上述第一次修正后,再进行检测,得到的四个间隙传感对应的空间直角坐标系中的坐标如表2所示:
表2
基于上述坐标计算得到的调平过程为:绕y轴旋转-γ为-1.000μrad,绕x轴旋转-β为1.000μrad。
此时,硅片基本与基准平面(掩模所在平面)基本平行。
图6示意性示出了本公开实施例提供的采用84个间隙传感器进行检平调平对应的坐标图。
如图6所示,选择的84个间隙传感器例如可以为除10×10个阵列排布间隙传感器中间的16个间隙传感器,84个间隙传感对应的空间直角坐标系中的坐标如表3所示:
表3


基于上述坐标计算得到的调平过程为:绕y轴旋转-γ为36.291μrad,绕x轴旋转-β为80.230μrad。
经过上述第一次修正后,再进行检测,得到的84个间隙传感对应的空间直角坐标系中的坐标如表4所示:
表4


基于上述坐标计算得到的调平过程为:绕y轴旋转-γ为-0.385μrad,绕x轴旋转-β为1.180μrad。
此时,硅片基本与基准平面基本平行。
本公开实施例提供的检平调平方法及装置能够实现误差1nm以内 的检平调平。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (9)

  1. 一种多点检平调平方法,其特征在于,包括:
    利用承片台支撑并带动硅片移动至所述承片台的目标区域;
    利用间隙传感器阵列中的至少三个间隙传感器分别发射信号经掩模的非图形区域通过所述掩模至所述目标区域内硅片上的测点,分别测量所述掩模到所述测点的距离;
    根据所述至少三个间隙传感器的位置和每一所述间隙传感器测得的掩模到所述测点的距离,计算待调平平面的平面系数;
    根据所述平面系数计算硅片相对于所述掩模的旋转角度;
    根据所述旋转角度对所述硅片进行调平。
  2. 根据权利要求1所述的多点检平调平方法,其特征在于,所述根据所述至少三个间隙传感器的位置和每一所述间隙传感器测得的掩模到所述测点的距离,计算待调平平面的平面系数,具体包括:
    基于右手定则,以所述硅片的中心为原点,垂直于所述掩模表面的轴为z轴,建立空间直角坐标系;
    获取所述至少三个间隙传感器在所述空间直角坐标系xoy平面上的平面坐标,并将每一所述间隙传感器对应的掩模到所述测点的距离转化为z轴坐标,其中,每一间隙传感器对应的平面坐标和z轴坐标构成该间隙传感器在所述空间直角坐标系中的坐标;
    构建所述待调平平面的平面方程;
    基于最小二乘法,将所述至少三个间隙传感器在所述空间直角坐标系中的坐标代入所述平面方程,计算所述待调平平面的平面系数。
  3. 根据权利要求1所述的多点检平调平方法,其特征在于,根据所述平面系数计算硅片相对于所述掩模的旋转角度,具体包括:
    基于右手定则,以所述硅片的中心为原点,垂直于所述掩模表面的轴为z轴,建立空间直角坐标系;
    根据所述平面系数计算所述硅片相对于所述掩模绕x轴旋转的角度和绕y轴旋转的角度。
  4. 根据权利要求3所述的多点检平调平方法,其特征在于,在根据 所述旋转角度对所述硅片进行调平的过程为先绕y轴旋转所述硅片,再绕x轴旋转所述硅片的情况下,根据

    计算所述硅片相对于所述掩模绕x轴旋转的角度-β和绕y轴旋转的角度-γ,其中,m、p、-1为所述待调平平面的三个平面系数。
  5. 根据权利要求3所述的多点检平调平方法,其特征在于,在根据所述旋转角度对所述硅片进行调平的过程为先绕x轴旋转所述硅片,再绕y轴旋转所述硅片的情况下,根据

    计算所述硅片相对于所述掩模绕x轴旋转的角度-β和绕y轴旋转的角度-γ,其中,m、p、-1为所述待调平平面的三个平面系数。
  6. 根据权利要求1-5任一项所述的多点检平调平方法,其特征在于,所述多点检平调平方法还包括多次重复执行以下操作:
    利用所述间隙传感器阵列中的至少三个间隙传感器分别发射信号经所述掩模的非图形区域通过所述掩模至所述目标区域内硅片上的测点,分别测量所述掩模到所述测点的距离;
    根据所述至少三个间隙传感器的位置和每一所述间隙传感器测得的掩模到所述测点的距离,计算待调平平面的平面系数;
    根据所述平面系数,计算硅片相对于所述掩模的旋转角度;
    根据所述旋转角度对所述硅片进行调平。
  7. 根据权利要求1-5任一项所述的多点检平调平方法,其特征在于,所述多点检平调平方法还包括:
    剔除所述间隙传感器测得的掩模到所述测点的距离中误差大于预 设值的距离,剔除后至少保留三个间隙传感器测得的掩模到所述测点的距离。
  8. 根据权利要求7所述的多点检平调平方法,其特征在于,所述剔除间隙传感器测得的掩模到所述测点的距离中误差大于预设值的距离,具体包括:
    计算当前所有间隙传感器测得的掩模到所述测点的距离的均值或中值;
    判断每一间隙传感器测得的掩模到所述测点的距离与所述均值或中值的差值的绝对值是否大于所述预设值,若是,则剔除该间隙传感器测得的掩模到所述测点的距离。
  9. 一种多点检平调平装置,其特征在于,包括:
    承片台,用于支撑并带动硅片移动到目标区域;
    掩模,固定在所述承片台的上方;
    间隙传感器,阵列设置在所述掩模上方,用于发射信号经所述掩模的非图形区域通过所述掩模至所述目标区域内硅片上的测点,测量所述掩模到所述测点的距离;
    控制器,用于控制所述承片台和所述间隙传感器,并根据间隙传感器的位置和所述间隙传感器测得的掩模到所述测点的距离,计算待调平平面的平面系数,根据所述平面系数计算硅片相对于所述掩模的旋转角度,以及根据所述旋转角度发射控制信号控制所述承片台对所述硅片进行调平。
PCT/CN2023/131296 2022-11-16 2023-11-13 多点检平调平方法及装置 WO2024104293A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211432021.1 2022-11-16
CN202211432021.1A CN118050951A (zh) 2022-11-16 2022-11-16 多点检平调平方法及装置

Publications (1)

Publication Number Publication Date
WO2024104293A1 true WO2024104293A1 (zh) 2024-05-23

Family

ID=91052608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131296 WO2024104293A1 (zh) 2022-11-16 2023-11-13 多点检平调平方法及装置

Country Status (2)

Country Link
CN (1) CN118050951A (zh)
WO (1) WO2024104293A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291012A (ja) * 1993-04-01 1994-10-18 Hitachi Electron Eng Co Ltd 基板露光装置
JP2006201092A (ja) * 2005-01-21 2006-08-03 Yaskawa Electric Corp 6自由度移動体の位置・姿勢計測方法および位置・姿勢計測装置
JP2011164595A (ja) * 2010-01-14 2011-08-25 Nsk Ltd 近接露光装置及び近接露光方法
CN103631098A (zh) * 2013-12-23 2014-03-12 成都虹博宇光电科技有限公司 一种非接触式光刻机调平调焦系统、方法和光刻机
CN103885295A (zh) * 2012-12-19 2014-06-25 上海微电子装备有限公司 一种曝光装置及其调焦调平方法
CN108037647A (zh) * 2017-12-18 2018-05-15 中国科学院光电技术研究所 一种接近式光刻机实时调平系统及调平方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291012A (ja) * 1993-04-01 1994-10-18 Hitachi Electron Eng Co Ltd 基板露光装置
JP2006201092A (ja) * 2005-01-21 2006-08-03 Yaskawa Electric Corp 6自由度移動体の位置・姿勢計測方法および位置・姿勢計測装置
JP2011164595A (ja) * 2010-01-14 2011-08-25 Nsk Ltd 近接露光装置及び近接露光方法
CN103885295A (zh) * 2012-12-19 2014-06-25 上海微电子装备有限公司 一种曝光装置及其调焦调平方法
CN103631098A (zh) * 2013-12-23 2014-03-12 成都虹博宇光电科技有限公司 一种非接触式光刻机调平调焦系统、方法和光刻机
CN108037647A (zh) * 2017-12-18 2018-05-15 中国科学院光电技术研究所 一种接近式光刻机实时调平系统及调平方法

Also Published As

Publication number Publication date
CN118050951A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
CN111536902B (zh) 一种基于双棋盘格的振镜扫描系统标定方法
CN108072319B (zh) 一种运动平台的快速标定系统及标定方法
CN107367229B (zh) 自由双目立体视觉转轴参数标定方法
CN101334267B (zh) 数字影像测头矢量坐标变换标定与误差修正方法及其装置
CN107256568B (zh) 一种高精度机械臂手眼相机标定方法及标定系统
CN110966935B (zh) 基于标志点的偏折测量系统一体化几何标定方法
WO2007043535A1 (ja) 光学特性計測方法、露光方法及びデバイス製造方法、並びに検査装置及び計測方法
JP6967140B2 (ja) 検流計補正システム及び方法
TW561241B (en) Method and apparatus for calibrating laser three-dimensional digitizing sensor
TWI786856B (zh) 畸變像差校正處理裝置、畸變像差校正方法及程式
CN110260822B (zh) 一种多目结构光系统高精度标定方法
CN109916342A (zh) 一种定位平台直线度测量系统及方法
CN109272555B (zh) 一种rgb-d相机的外部参数获得及标定方法
TWI755991B (zh) 用於投影機系統的自動梯形校正方法
US20140168625A1 (en) Positioning apparatus, lithography apparatus, and article manufacturing method
CN103869595A (zh) 一种离轴三反相机焦面装调的方法
CN112132891A (zh) 一种扩大标定空间的方法
CN105388708B (zh) 投影曝光装置和方法、光掩模以及基板的制造方法
US20130090877A1 (en) Lithography tool alignment control system
WO2024104293A1 (zh) 多点检平调平方法及装置
CN103543610B (zh) 一种调焦调平光斑位置校准方法
TWI504475B (zh) 用於多軸機械之補償控制方法
CN110490941B (zh) 一种基于法向量的远心镜头外参数标定方法
CN101482399B (zh) 基底倾斜和基石倾斜的测量方法和系统
CN114061472B (zh) 基于标靶的测量坐标误差修正的方法