WO2024104180A1 - 基站数据传输方法、装置、设备及可读存储介质 - Google Patents

基站数据传输方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2024104180A1
WO2024104180A1 PCT/CN2023/129159 CN2023129159W WO2024104180A1 WO 2024104180 A1 WO2024104180 A1 WO 2024104180A1 CN 2023129159 W CN2023129159 W CN 2023129159W WO 2024104180 A1 WO2024104180 A1 WO 2024104180A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
channel
data
docking
proxy terminal
Prior art date
Application number
PCT/CN2023/129159
Other languages
English (en)
French (fr)
Inventor
张雷
陈盛伟
周剑
刘喜
李帆
Original Assignee
中移(成都)信息通信科技有限公司
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中移(成都)信息通信科技有限公司, 中国移动通信集团有限公司 filed Critical 中移(成都)信息通信科技有限公司
Publication of WO2024104180A1 publication Critical patent/WO2024104180A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/06Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to the field of communication technology, and is related to but not limited to base station data transmission methods, devices, equipment and readable storage media.
  • the base station side With the rapid development of wireless networks, communication, perception, artificial intelligence, etc. are integrated into the base station side, which enhances the base station capabilities.
  • the various information collected by the base station side needs to be distributed and transmitted between the functional network elements of the network for collaborative processing, or uploaded to the capability exposure node to provide to third-party applications (Application, APP) for use.
  • the methods commonly used to solve the problem of base station data distribution include adding network functional network elements, building backhaul links, or connecting to real terminals.
  • the above method has problems such as increased protocol complexity, reduced communication flexibility, and base station data transmission delay, which makes it impossible for the base station and the remote target node to meet point-to-point two-way communication.
  • the base station data transmission method, device, equipment and readable storage medium provided in the present application can improve the flexibility of base station data transmission, so that the base station and the remote target node can perform point-to-point two-way communication.
  • a base station data transmission method is provided, which is applied to a proxy terminal, wherein the proxy terminal has the ability to communicate with a base station, a target terminal, and a core network; the target terminal is a terminal accessing the base station; the method includes:
  • the bidirectional data transmission channel is a channel for the proxy terminal and the base station to implement data interaction between peer layers;
  • the base station data is sent to the target terminal to perform data interaction between the base station and the target terminal.
  • a base station data transmission device comprising: a data receiving part and a data transmission part, wherein:
  • the data receiving part is configured to receive base station data transmitted by the base station through the established bidirectional data transmission channel;
  • the bidirectional data transmission channel is a channel for the proxy terminal and the base station to realize data interaction between the peer layer;
  • the data transmission part is configured to send the base station data to the target network node through the core network to
  • the base station may be used to perform data interaction between the base station and the target network node; or the base station data may be sent to the target terminal to perform data interaction between the base station and the target terminal.
  • an electronic device including a memory and a processor, wherein the memory stores a computer program executable on the processor, and when the processor executes the program, the method described in the embodiment of the present application is implemented.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the method provided in the embodiment of the present application is implemented.
  • the present application implements a proxy terminal on the base station, and the proxy terminal has the ability to communicate with the base station, the target terminal and the core network, so that the base station is not only an access device of the network service provider, but also has the data transmission capability of the terminal, and the base station can realize the two-way data distribution and interaction between the base station and the target terminal and the core network through the proxy terminal.
  • the present application constructs a data transmission channel between the proxy terminal and the base station, so that the base station can transmit the base station data through the constructed two-way data transmission channel, and the proxy terminal sends the base station data to the target terminal or the target network node to perform data interaction between the base station and the target network node or the target terminal, thereby completing the two-way communication between the base station and the target terminal or the target network node.
  • the base station can realize point-to-point two-way communication with any network function node (including various terminals in the network) through the two-way data transmission channel, which greatly expands the flexibility and security of data transmission between the base station and other function nodes.
  • the bidirectional data transmission channel of the present application can realize bidirectional data interaction between the proxy terminal and the peer layer of the base station. In this way, the proxy terminal does not need to perform air interface signal transmission, and thus will not occupy precious air interface resources and will not cause signal interference to the base station, thereby simplifying the installation and deployment of the base station.
  • FIG1 is a flow chart of a communication perception fusion system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a flow chart of base station data transmission provided in an embodiment of the present application.
  • FIG3 is a second schematic diagram of a flow chart of base station data transmission provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of a MAC layer docking channel provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a control plane protocol stack of a MAC layer provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a user plane protocol stack of a MAC layer provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a docking channel of an RLC layer provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of a control plane protocol stack of an RLC layer provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of a user plane protocol stack of an RLC layer provided in an embodiment of the present application.
  • FIG10 is a third schematic diagram of a flow chart of base station data transmission provided in an embodiment of the present application.
  • FIG11 is a fourth schematic diagram of a flow chart of base station data transmission provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of a remote sensing intelligent integrated base station provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of a fifth flow chart of a base station data transmission process provided by an embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of a base station data transmission device provided in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application. It is known to those skilled in the art that with the evolution of network architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of the present application are also applicable to similar technical problems.
  • base station capabilities have been enhanced, and native AI, edge computing and perception capabilities have been integrated to become more intelligent.
  • Various information collected by the base station side needs to be distributed and transmitted between various functional network elements of the network for collaborative processing, or uploaded to the capability exposure node to provide to third-party APP (Application).
  • the distribution of this data requires efficient, flexible, low-latency and secure channels or methods to carry it.
  • the communication perception fusion scenario is still in the research and discussion stage, and the industry has not yet formed a unified view.
  • the mainstream view is to maximize the reuse of 5GC functional network element interfaces, add communication perception functional units with control and computing capabilities, and provide capability exposure functions.
  • the overall architecture of the communication perception fusion system is shown in Figure 1.
  • the application layer function (Application Function, AF) network element is connected to the network exposure function (Network Exposure Function, NEF) network element through an interface
  • the NEF network element is connected to the communication perception fusion function network element through the Nx interface (5G interface)
  • the communication perception fusion function network element is connected to the mobility management function (Access and Mobility Management Function, AMF) network element through the Ny interface (5G interface)
  • the communication perception fusion function network element is connected to the user plane function (The User Plane Function, UPF) network element through the N6 interface (5G interface)
  • the AMF network element transmits perception control instructions to the base station (communicative integrated base station) through the N2 interface (5G interface)
  • the base station reports perception data to the UPF network element through the N3 interface (5G interface).
  • the newly added communication perception fusion function network element is responsible for the management and control of perception functions, the calculation and opening of perception information.
  • management and control are mainly reflected in the management and control of the AMF network element perception function; computing is mainly reflected in the intelligent computing and processing of reported perception information; openness is reflected in the opening of perception information and data to the inside or outside of the network.
  • the AMF is enhanced to have the communication perception function.
  • a north-south interface is added to the communication perception fusion function network element, and the Nx interface (5G interface) of the NEF network element that opens external capabilities calls the Ny (5G interface) interface of the AMF, and reuses the N2 interface (5G interface).
  • the Nx interface is used to realize the call of the perception capability of external applications or NFs inside the network and the reporting of perception results through NEF;
  • the Ny interface is used to realize the control of the AMF perception function by the communication perception fusion network element;
  • the N2 interface is used to realize the control of the base station perception function by AMF, and the AMF forwards the control instructions of the communication perception fusion network element function to the base station (communicative integrated base station).
  • the N3 interface (5G interface) and the N6 interface (5G interface) are multiplexed, wherein the base station (synesthesia integrated base station) perception data is reported based on the N3 interface, and the perception data obtained by the base station (synesthesia integrated base station) is forwarded to the communication perception fusion functional network element based on the N6 interface.
  • the base station management plane mainly controls and collects parameters for the base station through the network management system.
  • Base stations can achieve collaboration by exchanging data through the Xn interface (5G interface) or X2 (5G interface).
  • the base station and the core network element interact with each other through the N2 or S1 interface (5G interface). If the data is to be distributed to the intelligent processing node (or network element), it needs to be forwarded by the core network related network elements. The interaction process is too long, the logic is complex, and the current interface protocol needs to be modified.
  • the current system and protocol do not support the interaction of application layer data such as perception data between the base station and the terminal, and edge computing is required to achieve the interaction of perception data with the terminal. Due to the huge number of base stations, it is difficult to deploy core network user plane network elements or edge computing units in each base station, making it difficult to achieve low-cost and low-latency perception data delivery with the current network deployment method.
  • base station side video backhaul In order to realize the integration of communication perception and enhance the intelligence of base stations, it is necessary to realize efficient data distribution at the base station, such as base station side video backhaul, environmental monitoring data backhaul, perception data backhaul, air-space base station drone data backhaul, integrated perception network Two-way communication between Yuan and base station, base station data sending terminal, etc.
  • the existing technical solution adds a communication perception fusion network element in the core network, and reuses the control plane and user plane of the existing cellular system to realize the control instructions and perception data transmission between the communication perception fusion network element and the base station.
  • this solution can realize data distribution between the fusion perception network element and the base station, it is necessary to enhance the AMF (Access and Mobility Management Function) function and add a new interface, which increases the complexity of the interface and protocol, and has a negative impact on the perception data transmission delay.
  • AMF Access and Mobility Management Function
  • the protocol plane exposure points are increased, which adds new risk points to the stable operation of the network and network security.
  • NF Network Function
  • the current technical solutions usually use network management channels or transmission protocol interfaces, such as Xn interface to other base stations or N2 interface, N3 interface to the core network. Since there are no other channels for two-way data transmission, the data distribution and native intelligent expansion of base stations are limited.
  • base stations Under the current network management system, base stations have the ability to communicate with management nodes, but to achieve communication between base stations and other network elements or NR (5G) nodes, the network management system cannot be used.
  • the network management system needs to be isolated from the business system to ensure that the business system is not affected by the management system.
  • a special data transmission channel can be isolated from the backhaul link to achieve data transmission and reception (first hop) between the base station and the anchor node, and the target node data is forwarded through the anchor node routing.
  • this solution requires special configuration and transmission resource reservation at the base station and anchor node.
  • the configuration for roaming or slicing scenarios is complex, and it lacks flexibility and scalability.
  • the anchor node function is similar to the core network user plane gateway function, which makes the network networking complex and difficult to manage, increases the network's attack surface, and cannot reuse the various authentication, encryption and other existing mechanisms of the terminal and the network. As a result, this method cannot communicate directly with the terminal served by the base station.
  • the base station external real terminal solution To achieve base station data distribution, you can also use the base station external real terminal solution to communicate with other network function nodes through the terminal.
  • the external terminal solution needs to occupy valuable air interface resources and is close to the base station, causing interference to the base station's transmission and reception.
  • it creates additional complexity and cost for the installation and deployment of the base station, such as the need to power the terminal and add an additional installation antenna.
  • the embodiment of the present application provides a base station data transmission method.
  • the core idea of the present application is to implement a proxy terminal on the base station, so that the base station is not only an access device for the network service provider, and any communication can only be achieved through protocol conversion through the core network interface protocol. It also has terminal data transmission capabilities.
  • the base station can achieve point-to-point two-way communication with any network function node (including various terminals of the network), thereby greatly expanding the flexibility and security of data transmission between the base station and other function nodes.
  • the base station has the data communication functions of the transport layer and application layer at the network layer and above, and can communicate directly with other function nodes conveniently, efficiently and safely.
  • the present application provides a base station data transmission method, as shown in FIG2 , which is applied to a proxy terminal, wherein the proxy terminal has the ability to communicate with a base station, a target terminal, and a core network; the method includes steps 101 to 102:
  • Step 101 The proxy terminal receives base station data transmitted by the base station through the established bidirectional data transmission channel; the bidirectional data transmission channel is a channel for the proxy terminal and the base station to realize data interaction between the peer layers.
  • the relationship between the proxy terminal and the base station is one-to-one.
  • the proxy terminal can be a software function module deployed in the base station.
  • the proxy terminal can also be connected to the base station through other hardware access methods such as network cables and USB (Universal Serial Bus) interfaces.
  • the embodiments of the present application do not impose any restrictions on the way in which the proxy terminal accesses the base station, which can be determined specifically according to the actual application scenario.
  • the proxy terminal has the ability to communicate with the base station, the target terminal and the core network.
  • the proxy terminal has a complete TCP/IP protocol stack and terminal communication capabilities, and complies with the 3GPP (3rd Generation Partnership Project) protocol.
  • the base station data is at least one of base station internal data and base station external data, wherein the base station internal data is data generated and/or collected in the base station; the base station external data is data transmitted to the base station through an interface.
  • the various functional modules built into the base station may include at least one of a parameter acquisition module, a native intelligent module, a perception module, and a network element collaboration module.
  • the internal data of the base station may be data that is interacted between the internal functional modules of the base station including the parameter acquisition module, the native intelligent module, the perception module, the network element collaboration module, and other network functional modules (network function nodes).
  • the internal data of the base station may also include processing data generated and/or collected by the base station during the processing process.
  • the internal data of the base station can be understood as the data generated and processed by the base station itself, including but not limited to the perception and communication fusion module (or perception module), parameter acquisition module, native intelligent module, network element collaboration module and other base station internal functional modules and other network functional nodes (centrally or distributedly deployed according to the actual scenario) data interacting.
  • the perception and communication fusion module or perception module
  • parameter acquisition module or parameter acquisition module
  • native intelligent module or network element collaboration module
  • network element collaboration module and other base station internal functional modules and other network functional nodes (centrally or distributedly deployed according to the actual scenario) data interacting.
  • the base station provides a data transmission channel for the external data source module by providing an interface, and the external function module can realize two-way communication with the target terminal or target network node through the data transmission channel.
  • the external function module can be various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user terminal devices (terminal device), etc.
  • the external function module is also called the external data source.
  • the external data source refers to the data transmission channel provided by the base station to the peripheral device through the interface, and the peripheral device communicates bidirectionally with the destination node (target terminal or target network node) through this channel.
  • Step 102 The proxy terminal sends the base station data to the target network node through the core network to perform data interaction between the base station and the target network node; or, the proxy terminal sends the base station data to the target terminal to perform data interaction between the base station and the target terminal.
  • the target network node includes at least one of the following: a resource collaboration network element, a perception network element, an intelligent processing network element, and a capability exposure network element.
  • the target network node is not limited to the various network function nodes mentioned above, and the target network node can also be any third-party application platform or server that needs to communicate bidirectionally with the base station.
  • the target terminal is a terminal that accesses the base station, and can be various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, as well as various forms of user terminal devices, etc. This application does not impose any restrictions on this.
  • the base station data communicates bidirectionally with the remote target network node or target terminal through the proxy terminal, and the proxy terminal plays the role of a data gateway in the above communication process.
  • the proxy terminal distributes the data to the target network node or the target terminal through the core network.
  • the target network node or target terminal sends the data to the proxy terminal through reverse addressing, and the proxy terminal forwards the received data to the various functional modules inside the base station or the external functional modules.
  • This application can also solve the communication between the external functional modules of the base station and the terminals (proxy terminals) connected to the base station.
  • the base station proxy terminal proxy terminal
  • the base station proxy terminal can directly communicate with the real terminal (target terminal) point-to-point to achieve data exchange.
  • the perception data (after fusion processing) is transmitted to the broadcast channel queue of the corresponding cell of the base station through the custom channel of the base station proxy terminal and the base station air interface protocol processing module, and then broadcast to the cell, which can greatly reduce the perception data distribution delay.
  • the broadcast base station side pushes the collected perception data required for unmanned driving (after fusion processing) directly to the broadcast channel queue of the corresponding cell through the two-way data transmission channel of the proxy terminal, and sends the perception data to the corresponding unmanned vehicle through the broadcast channel by broadcast or multicast.
  • the proxy terminal in this application can be understood as a software function module deployed in the base station. On the one hand, it obtains network data transmission services by accessing the base station to which it belongs. On the other hand, it has the data transmission function and gateway data exchange function of the real terminal, and provides a data transmission channel to the base station to realize base station data distribution. The proxy terminal obtains data transmission services by accessing the base station, and has the access layer AS and non-access layer NAS protocol processing capabilities of the terminal.
  • the proxy terminal obtains network data transmission services by accessing the base station to which it belongs, so that the base station has the access layer (Access Stratum, AS) and non-access layer (Non-Access Stratum, NAS) functions of the terminal.
  • the proxy terminal has the data transmission function and gateway data exchange function of the real terminal, providing a two-way data transmission channel for the base station to realize the distribution of base station data.
  • the proxy terminal from the perspective of the core network (or from the perspective of the base station), the proxy terminal has the network access and data transmission functions of an ordinary terminal, and supports the control plane and user plane protocols.
  • NAS implementation fully complies with the 3GPP protocol specifications, and the proxy terminal can ensure the security of data transmission and the corresponding QoS (Quality of Service) requirements.
  • QoS Quality of Service
  • the base station access network function implementation needs to perceive the existence of the proxy terminal and adapt the proxy terminal, and some functions can be simplified when implemented.
  • the simplified processing here can be flexibly tailored according to the specific implementation method.
  • some functional modules of the proxy terminal can refer to the implementation of the ordinary terminal.
  • some functional modules can be simplified to reduce the complexity of the protocol implementation.
  • the mobility management module, the measurement configuration module, the wireless resource scheduling and allocation module, etc. the proxy terminal may not perform any switching processing, the base station may not send measurement configuration information to the proxy terminal, and the base station and the proxy terminal may not perform any infinite resource scheduling processing.
  • the base station data transmission method of the embodiment of the present application can be applied to the fourth generation mobile communication system (the 4th generation mobile communication system, 4G), the fifth generation mobile communication technology (5G) new radio (New Radio, NR) system or future communication system, and can also be used in various other wireless communication systems, such as: Narrow Band-Internet of Things (NB-IoT) system, Global System of Mobile communication (GSM), Enhanced Data rate for GSM Evolution (EDGE) system, Wideband Code Division Multiple Access (WCDMA) system, and the like.
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System of Mobile communication
  • EDGE Enhanced Data rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • WCDMA Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • TD-SCDMA Time Division Synchronization Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the bidirectional data transmission channel is a channel for the proxy terminal and the base station to realize data interaction between the peer layer.
  • the proxy terminal can connect itself with each channel of the peer layer of the base station through channel staking to establish a bidirectional data transmission channel between the proxy terminal and the base station.
  • the proxy terminal needs to implement the AS protocol and NAS protocol of the terminal.
  • the implementation of the NAS protocol is the same as that of the ordinary terminal.
  • the proxy terminal does not need to implement the processing of the physical layer signal.
  • the proxy terminal and the base station AS air interface peer layer protocol communication are realized through channel staking. It can be understood that the two-way data transmission channel can realize the proxy terminal Communicate with the base station AS air interface peer layer protocol.
  • channel staking can be understood as establishing a direct data channel between two internal functional modules or protocol entities.
  • the direct data channel here is also called a data transmission channel or a bidirectional data transmission channel.
  • the proxy terminal needs to implement the AS control plane and user plane functions, and the air interface access layer (AS layer) implementation also follows the 3GPP protocol.
  • the bidirectional data transmission channel eliminates the need to implement the signal processing part of the L1 layer (physical layer) between the proxy terminal and the base station.
  • the proxy terminal directly implements the docking of each channel through channel staking above the L2 layer (data link layer), thereby realizing the protocol PDU (Protocol Data Unit) data interaction.
  • PDU Protocol Data Unit
  • This mechanism allows the proxy terminal to save the antenna, intermediate frequency and baseband signal processing hardware, reduce product cost and complexity, and provide a low error and high reliability channel without occupying precious air interface resources. At the same time, it has the security of terminal access authentication and the large bandwidth, high reliability and low latency characteristics of cellular network data transmission. Generally speaking, the proxy terminal performs channel staking at the physical layer or data link layer to achieve direct interaction of PDU data.
  • the proxy terminal can save the antenna, intermediate frequency and baseband signal processing hardware, thereby reducing product cost and complexity, and providing a low-error and highly reliable channel without occupying precious air interface resources, thereby reducing the strong dependence of physical layer signal processing between the proxy terminal and the base station on hardware, and realizing direct channel connection between the proxy terminal and the base station.
  • the process of establishing a bidirectional data transmission channel includes steps 201 to 203:
  • Step 201 the proxy terminal connects each channel of the preset piling layer with each channel of the preset piling layer in the base station one by one through inter-process communication according to the protocol followed by each channel, so as to obtain each connection channel of the preset piling layer, where the preset piling layer is at least one of each sublayer of the physical layer and each sublayer of the data link layer.
  • inter-process communication can be used to propagate or exchange information between different processes.
  • the preset piling layer is at least one of the sublayers of the data link layer (L2). This is because the purpose of channel piling is to reduce the strong dependence of physical layer signal processing on hardware. Therefore, the preset piling layer is located below the network layer in the seven-layer network model to achieve data distribution between the base station and the proxy terminal.
  • MAC Media Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • SDAP Service Data Adaptation Protocol
  • the preset piling layer may also be at least one of the sublayers of the physical layer, and data distribution between the proxy terminal and the base station is achieved by piling the physical layer of the proxy terminal.
  • the proxy terminal and the base station can also realize data distribution between the proxy terminal and the base station by decoupling the control plane or the user plane.
  • the proxy terminal and the base station can pile from the L1 layer and the L2 layer of the control plane protocol stack, and pile from the L2 layer of the user plane protocol stack.
  • Step 202 The proxy terminal performs channel mapping on each channel carried outside the preset piling layer according to the protocol followed by each channel to obtain each docking channel outside the preset piling layer.
  • the channels outside the preset piling layer refer to the channels of the layers above the preset piling layer in the OSI model (Open System Interconnection Reference Model).
  • the hierarchical division of the OSI model is from bottom to top: physical layer (Physical Layer), data link layer (Data Link Layer), network layer (Network Layer), transport layer (Transport Layer), presentation layer (Presentation Layer) and application layer (Application Layer).
  • the preset piling layer is the data link layer
  • the layers above the preset piling layer are the network layer, transport layer, presentation layer and application layer.
  • the channels above the preset piling layer are the network layer, transport layer, presentation layer and application layer.
  • the various channels in the transport layer, presentation layer, and application layer are possible channels in the transport layer, presentation layer, and application layer.
  • the proxy terminal performs channel mapping for each first channel of each layer carried in the proxy terminal and the base station outside the preset piling layer according to the 3GPP protocol followed by each first channel, and obtains a first docking channel, where the first channel is a channel in the control plane protocol stack of the proxy terminal and the base station.
  • the proxy terminal performs channel mapping for each second channel of each layer carried in the proxy terminal and the base station outside the preset piling layer according to the 3GPP protocol followed by each second channel, and obtains a second docking channel, where the second channel is a channel in the user plane protocol stack of the proxy terminal and the base station; finally, the proxy terminal obtains each docking channel outside the preset piling layer according to the first docking channel and the second docking channel.
  • the logical channels and transmission channels carried on the preset piling layer are channel mapped, and the channel mapping follows the 3GPP protocol. Since there is no need to implement physical layer signal processing between the proxy terminal and the base station, the base station does not need to perform wireless resource scheduling and allocation, and the transmission channel and the logical channel are carried through the internal channel.
  • the proxy terminal distributes data (data transmission, communication) with the base station, the data retransmission (Hybrid Automatic Repeat Request, data retransmission) caused by bit errors can be ignored, so the physical layer can be considered as an ideal channel with reliability, low latency and unlimited bandwidth. It should be noted that the transmission rate and latency of the proxy terminal are constrained by the QoS configuration and the base station backhaul link.
  • Step 203 The proxy terminal establishes a bidirectional data transmission channel between the proxy terminal and the base station based on each docking channel of the preset piling layer and each docking channel outside the preset piling layer.
  • the proxy terminal needs to implement the AS and NAS protocols of the terminal.
  • the NAS protocol is implemented the same as that of the normal terminal.
  • the AS part does not need to implement physical layer signal processing. It connects through channel piling to realize the air interface peer layer protocol communication with the base station AS.
  • the implementation of each channel protocol refers to the 3GPP protocol.
  • the following describes the channel piling implementation method of the mobile terminal using the 5G system as an example.
  • Other network standards (4G or future evolved 6G, 7G and other network standards) can refer to similar methods for implementation.
  • the preset piling layer is the medium access control MAC layer in each sublayer of the data link layer; each channel of the MAC layer includes at least one of the following: an uplink shared channel ULSCH, a random access channel RACH, a downlink shared channel DLSCH, a paging channel PCH and a broadcast channel BCH.
  • FIG4 is a schematic diagram of a MAC layer docking channel provided by an embodiment of the present application.
  • the proxy terminal uses its own ULSCH to implement data transmission with the ULSCH of the base station through the IPC, completes the docking of its own ULSCH with the ULSCH of the base station, and establishes a docking channel between the proxy terminal and the ULSCH of the base station.
  • Its own ULSCH and the ULSCH of the base station follow the same protocol; uses its own RACH to implement data transmission with the RACH of the base station through the IPC, completes the docking of its own RACH with the RACH of the base station, and establishes a docking channel between the proxy terminal and the RACH of the base station.
  • Its own RACH and the RACH of the base station follow the same protocol; uses its own DLSCH to implement data transmission with the DLSCH of the base station through the IPC, completes the docking of its own DLSCH with the DLSCH of the base station, and establishes a proxy terminal.
  • the docking channel between the proxy terminal and the DLSCH of the base station, and its own DLSCH follows the same protocol as the DLSCH of the base station; its own PCH is used to realize data transmission with the PCH of the base station through IPC, and the docking of its own PCH with the PCH of the base station is completed to establish a docking channel between the proxy terminal and the PCH of the base station, and its own PCH follows the same protocol as the PCH of the base station; its own BCH is used to realize data transmission with the BCH of the base station through IPC, and the docking of its own BCH with the BCH of the base station is completed to establish a docking channel between the proxy terminal and the BCH of the base station, and its own BCH follows the same protocol as the BCH of the base station; at least one of the docking channel of ULSCH, the docking channel of RACH, the docking channel of DLSCH, the docking channel of PCH and the docking channel of BCH: it is a common channel for each docking channel of
  • the proxy terminal performs channel staking at the MAC layer and realizes the connection of each channel between the proxy terminal and the base station through IPC.
  • Each channel is connected one by one according to the 3GPP protocol. It can be understood that each connection channel complies with follow the same 3GPP protocol specifications.
  • the proxy terminal After the proxy terminal completes the one-to-one docking of each channel of the MAC layer with each channel of the MAC layer in the base station according to the protocol followed by each channel, and obtains each docking channel of the MAC layer.
  • the proxy terminal performs channel mapping for each first channel of each layer carried outside the MAC layer in the base station and itself according to the 3GPP protocol followed by each first channel, and obtains the first docking channel.
  • the proxy terminal performs channel mapping for each second channel of each layer carried outside the MAC layer in the base station and itself according to the 3GPP protocol followed by each second channel, and obtains the second docking channel.
  • the first docking channel is a channel in a control plane protocol stack between the proxy terminal and the base station
  • the second channel is a channel in a user plane protocol stack between the proxy terminal and the base station.
  • FIG5 is a schematic diagram of a control plane protocol stack (also called a control plane point end-to-end protocol stack) of a MAC layer provided in an embodiment of the present application.
  • the agent terminal (agent UE) implements channel piling through IPC in the MAC layer in the L2 layer, so that each channel of the MAC layer between the agent terminal (agent UE) and the base station (gNodeB) can be connected.
  • NAS-SM is two functional layers in the NAS layer
  • NAS-MM is two functional layers in the NAS layer, which comply with the 3GPP protocol.
  • SCTP Stream Control Transmission Protocol, stream control transmission layer
  • IP Internet Protocol Internet Protocol, network interconnection protocol
  • NG-AP Access Point, wireless access point
  • the base station is connected to AMF (Access and Mobility Management Function, access and mobility management function) and SMF (Session Management function, session management function) through the N2 interface of the 5G core network.
  • AMF Access and Mobility Management Function, access and mobility management function
  • SMF Session Management function, session management function
  • the agent terminal realizes the connection of each channel of the MAC layer through IPC at the MAC layer in the L2 layer
  • the agent terminal and each layer (RLC, PDCP, RRC) carried by the base station above the MAC layer are mapped in accordance with the 3GPP specifications.
  • the channels between the agent terminal and AMF and SMF are mapped in accordance with the 3GPP specifications.
  • the channels between the base station and AMF and SMF are mapped in accordance with the 3GPP specifications.
  • FIG6 is a schematic diagram of a user plane protocol stack (also called a user plane point-to-end protocol stack) of a MAC layer provided in an embodiment of the present application.
  • the proxy terminal performs channel staking through IPC at the MAC layer of the user plane protocol stack, so that the proxy terminal and each channel of the MAC layer of the user plane protocol stack of the base station are connected.
  • the RLC layer, PDCP layer (Packet Data Convergence Protocol), and SDAP layer (Service Discovery Application Profile) carried on the MAC layer of the proxy terminal follow the 3GPP protocol specification for channel mapping.
  • PDCP layer Packet Data Convergence Protocol
  • SDAP layer Service Discovery Application Profile
  • the PDU Layer (Protocol Data Unit) of the proxy terminal, the UPF (User Plane Function) network element in the 5G core network, and the DN (Data Network) network element of the 5G core network perform channel mapping in accordance with the 3GPP protocol specification.
  • the proxy terminal is connected to the UPF through the N3 interface of the 5G core network, and the UPF is connected to the DN through the N6 interface of the 5G core network.
  • the APP layer (Application layer) of the proxy terminal and the DN network element of the 5G core network perform channel mapping in accordance with the 3GPP protocol specifications.
  • the L1 layer, L2 layer, UDP (User Datagram Protocol)/IP layer, and GTP-U (GPRS Tunneling Protocol-User) channels of the base station and UPF network element perform channel mapping in accordance with the 3GPP protocol specifications.
  • the L1 layer, L2 layer, and PDU Layer channels of the UPF network element and DN network element perform channel mapping in accordance with the 3GPP protocol specifications.
  • the mapping of each logical channel and transmission channel carried thereon and the implementation of each layer protocol refer to the 3GPP protocol. Since there is no need to implement physical layer signal processing, the base station does not need to perform wireless resource scheduling and allocation. The transmission channel is carried through the internal channel, and the data retransmission (HARQ) caused by bit errors is not considered.
  • the physical layer can be considered to be an ideal channel with reliability, low latency and unlimited bandwidth. The transmission rate and latency of the proxy terminal are constrained by the QoS configuration and the base station backhaul link.
  • the preset piling layer is the radio link control RLC layer in each sublayer of the data link layer; each channel of the RLC layer includes at least one of the following: a dedicated service channel DTCH, a common control channel CCCH, a dedicated control channel DCCH, a paging control channel PCCH and a broadcast control channel BCCH.
  • FIG7 is a schematic diagram of a docking channel of an RLC layer provided in an embodiment of the present application.
  • the agent terminal implements data transmission of its own DTCH with the DTCH of the base station (gNodeB) through IPC, completes the docking of its own DTCH with the DTCH of the base station, so as to establish a docking channel between the agent terminal and the DTCH of the base station, and its own DTCH and the DTCH of the base station follow the same protocol;
  • the agent terminal implements data transmission of its own CCCH with the CCCH of the base station through IPC, completes the docking of its own CCCH with the CCCH of the base station, so as to establish a docking channel between the agent terminal and the CCCH of the base station, and its own CCCH and the CCCH of the base station follow the same protocol;
  • the agent terminal implements data transmission of its own DCCH with the DCCH of the base station through IPC, completes the docking
  • the proxy terminal uses its own PCCH to realize data transmission with the PCCH of the base station through IPC, completes the docking of its own PCCH with the PCCH of the base station, so as to establish a docking channel between the proxy terminal and the PCCH of the base station, and its own PCCH follows the same protocol as the PCCH of the base station;
  • the proxy terminal uses its own BCCH to realize data transmission with the BCCH of the base station through IPC, completes the docking of its own BCCH with the BCCH of the base station, so as to establish a docking channel between the proxy terminal and the BCCH of the base station, and its own BCCH follows the same protocol as the BCCH of the base station;
  • at least one of the docking channel of DTCH and the docking channel of DCCH is a dedicated channel for each docking channel of the RLC layer;
  • at least one of the docking channel of CCCH, the docking channel of PCCH and the docking channel of BCCH is a
  • the proxy terminal performs channel staking at the RLC layer through IPC, thereby realizing the connection between the proxy terminal and the base station at the RLC layer of each logical channel.
  • Each channel is connected one by one according to the 3GPP protocol followed. It can be understood that each connection channel follows the same 3GPP protocol specification. As shown in Figure 7, the connection of the logical channel corresponding to the signaling radio bearer (SRB) realizes the connection of the air interface RLC layer control data protocol, and the connection of the logical channel corresponding to the data radio bearer (DRB) realizes the connection of the air interface RLC layer user service data protocol.
  • SRB signaling radio bearer
  • DRB data radio bearer
  • the proxy terminal needs to create a data radio bearer DRB and a signaling radio bearer SRB to realize the transmission of service data and control signaling. It should be noted that the number of data radio bearer DRBs is dynamically created and configured according to the RRC (Radio Resource Control) configuration signaling.
  • RRC Radio Resource Control
  • the proxy terminal After the proxy terminal completes the one-to-one docking of each channel of the RLC layer with each channel of the RLC layer in the base station according to the protocol followed by each channel, and obtains each docking channel of the RLC layer.
  • the proxy terminal performs channel mapping for each first channel of each layer carried outside the RLC layer in the base station and itself according to the 3GPP protocol followed by each first channel, and obtains a first docking channel.
  • the proxy terminal performs channel mapping for each second channel of each layer carried outside the RLC layer in the base station and itself according to the 3GPP protocol followed by each second channel, and obtains a second docking channel.
  • FIG 8 is a schematic diagram of a control plane protocol stack of an RLC layer provided in an embodiment of the present application.
  • the agent terminal (agent UE) implements channel piling through IPC in the RLC layer in the L2 layer, so that the agent terminal can be connected to each channel of the RLC layer of the base station control plane protocol stack.
  • the agent terminal and each layer carried above the RLC layer in the base station perform channel mapping between peer layers in accordance with the 3GPP protocol specification.
  • the control plane end-to-end protocol stack also called the control plane protocol stack
  • the difference from the 3GPP protocol stack lies in the air interface protocol stack part.
  • the logical channels of the RLC layer need to be mapped to the transmission channels of the MAC layer for data encapsulation and transmission.
  • the various logical channels of the RLC layer of the agent terminal are connected to the various logical channels of the RLC layer of the base station.
  • the control plane protocol stack mainly The control channels, BCCH, and PCCH corresponding to SRB0, SRB1, and SRB2 of the proxy terminal are connected to the logical channels corresponding to the base station. It should be noted that the RLC of the control plane protocol stack and the various layers (PDCP, RRC) carried on the RLC layer follow the 3GPP protocol specifications for communication between peer layers.
  • FIG9 is a schematic diagram of a user plane protocol stack of an RLC layer provided by an embodiment of the present application.
  • the proxy terminal implements channel piling through IPC in the RLC layer in the L2 layer, so that the proxy terminal can be connected to each channel of the RLC layer of the user plane protocol stack of the base station.
  • the proxy terminal and each layer carried above the RLC layer in the base station perform channel mapping between peer layers by following the 3GPP protocol specification.
  • the end-to-end process is similar to the 3GPP protocol stack. The difference lies in the air interface protocol stack part.
  • the RLC layer of the user plane protocol stack carries the user's service data.
  • the user plane protocol stack is the same as the control plane protocol stack.
  • the 3GPP protocol defines the data encapsulation and decapsulation corresponding to the sending and receiving of the PDU data of the RLC layer through mapping and demapping between the RLC logical channel and the MAC transport channel.
  • Each logical service channel in the RLC layer is carried according to the DRB entity created by the RRC reconfiguration signaling.
  • each logical service channel of the RLC layer of the user plane protocol stack is directly connected to each logical service channel of the RCL layer of the base station, so as to realize the sending and receiving of SDU (Service Data Unit) of the RLC layer.
  • SDU Service Data Unit
  • the proxy terminal or base station does not need to encapsulate the SDU into PDU (Protocol Data Unit) at the RLC layer and send it to the MAC layer. Similarly, the proxy terminal or base station does not need to decapsulate the received PDU into SDU at the MAC layer.
  • PDU Protocol Data Unit
  • the above-mentioned channel piling implementation method of the proxy terminal described by taking the 5G system as an example is only an example, and the selection of the channel piling method needs to be selected according to the actual application scenario.
  • the implementation of the inter-process communication IPC within the base station can be determined according to the software and hardware architecture of the base station itself. It is understandable that the implementation of the IPC within the base station can be an intra-process communication within the chip, or it can be an inter-process communication across chips.
  • the proxy terminal implemented in this application has complete control plane signaling interaction capabilities with the base station and the core network, as well as complete user plane data transmission capabilities with the base station and the core network, supports the separation of the core network control plane and the user plane, supports edge computing and various types of network slicing.
  • the proxy terminal is no different from a normal UE in terms of protocol completeness and consistency, except that the air interface protocol stack can be cut (the physical layer is not implemented, and the MAC and RLC layer implementations are determined according to the configuration).
  • step 101 includes steps 301 to 302:
  • Step 301 When the proxy terminal is in a powered-on state, the proxy terminal sends random access information to the base station through a common channel in a bidirectional data transmission channel.
  • the user sets the proxy terminal to a power-on state.
  • the proxy terminal when the proxy terminal is in the power-on state, the proxy terminal is connected to each public channel of the RLC layer of the base station through IPC, and each public channel of the RLC layer can be RACH, CCCH, BCCH, PCCH, etc.
  • the proxy terminal sends random access information to the base station through the public channel of the bidirectional data transmission channel.
  • Step 302 The proxy terminal completes the random access process with the base station based on the random access information, and receives the base station data transmitted by the base station through a dedicated channel in the constructed bidirectional data transmission channel.
  • the base station receives the random access information sent by the proxy terminal through the public channel of the bidirectional data transmission channel, and based on the random access information, the proxy terminal completes the random access process with the base station. Subsequently, the base station sends the base station data to the proxy terminal based on the dedicated channel of the bidirectional data transmission channel, and the dedicated channel of the bidirectional data transmission channel can be DCCH or DTCH.
  • the proxy terminal receives the base station data sent by the base station based on the dedicated channel of the bidirectional data transmission channel.
  • step 102 includes steps 401 to 403:
  • Step 401 The proxy terminal sends base station data to the core network based on the radio access network protocol.
  • Radio Access Network is a part of the mobile communication system and the implementation of radio access technology.
  • RAN exists between a device (for example, a mobile phone, a computer, or any remotely controlled machine) and the core network, providing a communication connection between the device and the core network.
  • Step 402 When the authentication result of the core network is passed, a connection with the core network is established.
  • Step 403 When the connection with the core network is successful, the base station data is sent to the target network node through the core network to perform data interaction between the base station and the target network node.
  • the core network performs authentication on the identity information of the proxy terminal. If the authentication result of the core network on the proxy terminal is passed, the proxy terminal establishes a connection with the core network.
  • the proxy terminal is a real terminal in the core network.
  • the core network can choose to use a SIM card (Subscriber Identity Module) or eSIM card (Embedded Subscriber Identity Module) similar to the real terminal to solve the identity authentication problem according to the actual deployment scenario.
  • SIM card Subscriber Identity Module
  • eSIM card Embedded Subscriber Identity Module
  • user contract information is determined according to the specific usage scenario, such as encryption scheme, user QoS configuration, billing method, slice information, etc.
  • the target network node includes at least one of the following: a resource coordination network element, a perception network element, an intelligent processing network element, and a capability exposure network element.
  • the proxy terminal after the proxy terminal establishes a connection with the core network, the proxy terminal sends the base station data to the target network node through the core network.
  • the proxy terminal receives the first target data sent by the target network node, and forwards the first target data to the target module corresponding to the base station to perform data interaction between the base station and the target network node, wherein the first target data represents the data sent by the target network node to the target module.
  • the proxy terminal sends the base station data to the target terminal, the proxy terminal receives the second target data sent by the target terminal, and forwards the second target data to the target module corresponding to the base station to perform data interaction between the base station and the target terminal, and the second target data represents the data sent by the target terminal to the target module.
  • the target module includes at least one of the following: a parameter acquisition module, a native intelligent module, a perception module, a network element collaboration module, and an external function module.
  • the target network node includes at least one of the following: a resource coordination network element, a perception network element, an intelligent processing network element, and a capability exposure network element.
  • FIG. 12 is a schematic diagram of the structure of a remote sensing intelligent integrated base station proposed in an embodiment of the present application.
  • the remote sensing intelligent integrated base station also referred to as a base station
  • the proxy terminal belongs to a software function module inside the base station
  • the transmission process of the base station data is that the base station data of the target module in the base station side is transmitted to the target network node or the target terminal through the proxy terminal.
  • the target module includes various functional modules built into the base station and external functional modules, and the various functional modules built into the base station are data acquisition modules, perception modules, native intelligent modules, and network element collaboration modules.
  • the target network node includes resource collaboration network elements, perception network elements, intelligent processing network elements, capability exposure network elements, and other functional network elements.
  • the base station data can be internal data of the base station and external data of the base station, wherein the internal data of the base station is data generated and/or collected by the base station, and the external data of the base station is data transmitted to the base station through an interface. It can be understood that the internal data of the base station is data generated by various functional modules built into the base station, and the base station data can be at least one of the following: data generated by the data acquisition module, data generated by the perception module, data generated by the native intelligent module, data generated by the network element collaboration module, and data generated by the external functional module.
  • the workflow of the proxy terminal performing base station data transmission is introduced, as shown in FIG13 , the method includes steps 501 to 513:
  • Step 501 Set the proxy terminal to the power-on state.
  • the proxy terminal After the proxy terminal is turned on, it initiates registration with the base station and establishes IPC channels of RACH, CCCH, BCCH, and PCCH. The base station also establishes corresponding IPC channels for communication with the proxy terminal.
  • Step 502 The proxy terminal connects its own RLC layer DTCH, CCCH, DCCH, PCCH, BCCH, and RACH with each channel of RLC in the base station one by one through the inter-process communication IPC according to the protocol followed by each channel, and obtains each connection channel of the RLC layer.
  • Step 503 The proxy terminal performs channel mapping on each channel carried outside the RLC layer according to the protocol followed by each channel to obtain each docking channel outside the RLC layer.
  • Step 504 The proxy terminal establishes a bidirectional data transmission channel between the proxy terminal and the base station based on each docking channel of the RLC layer and each docking channel outside the RLC layer.
  • Step 505 The proxy terminal sends random access information to the base station via RACH, CCCH, BCCH, and PCCH in the bidirectional data transmission channel.
  • the proxy terminal After being powered on, the proxy terminal initiates registration with the base station, and sends random access information to the base station through RACH, CCCH, BCCH, and PCCH in the bidirectional data transmission channel. Then the proxy terminal and the base station carry out subsequent actions according to the normal random access process.
  • Step 506 Based on the random access information, the proxy terminal completes the random access process with the base station.
  • the proxy terminal and the base station implement the transmission of signaling and service data based on the DTCH and DCCH in the bidirectional data transmission channel, and the proxy terminal and the base station complete the establishment of the radio signaling bearer SRB and the radio data bearer DRB.
  • Step 507 The proxy terminal performs authentication with the base station through the DTCH and DCCH in the bidirectional data transmission channel. If the authentication result is passed, the proxy terminal receives the base station data transmitted by the base station.
  • the proxy terminal and the base station After the proxy terminal and the base station complete the establishment of the radio signaling bearer SRB and the radio data bearer DRB, it is necessary to further start the authentication, certification, registration and other processes between the proxy terminal and the base station to complete the authentication and certification of the proxy terminal and the base station. If the authentication result is passed, the proxy terminal sends the base station data to the target terminal or the target network node. If the proxy terminal sends the base station data to the target network node, execute steps 508 to 510. If the proxy terminal sends the base station data to the target terminal, execute steps 511 to 513.
  • Step 508 Based on the radio access network RAN protocol, the proxy terminal sends the base station data to the core network.
  • the core network authenticates the proxy terminal. If the authentication result is passed, a connection between the proxy terminal and the core network is established.
  • Step 509 The proxy terminal sends and receives data with the target network node through the core network.
  • the proxy terminal receives the first target data sent by the target network node through the core network, and forwards the first target data to the target module corresponding to the base station, completing the two-way communication (data transmission and reception) between the base station and the target network node; the first target data represents the data sent by the target network node to the target module.
  • Step 510 Determine whether the proxy terminal is in shutdown state.
  • repeat step 509 end the bidirectional data transmission between the base station and the target network node.
  • Step 511 Based on the radio access network RAN protocol, the proxy terminal performs authentication with the target terminal. If the authentication result is passed, a connection between the proxy terminal and the target terminal is established.
  • Step 512 The proxy terminal sends and receives data with the target terminal.
  • the proxy terminal sends the base station data to the target terminal, the proxy terminal receives the second target data sent by the target terminal, and forwards the second target data to the base station.
  • the corresponding target module completes the two-way communication (data transmission and reception) between the base station and the target terminal, and the second target data represents the data sent by the target terminal to the target module.
  • Step 513 Determine whether the proxy terminal is in shutdown state.
  • repeat step 512 terminates the two-way data transmission between the base station and the target terminal.
  • the proxy terminal initiates registration with the base station through IPC after powering on, establishes RACH, CCCH, BCCH, and PCCH channels, and the base station also establishes a corresponding IPC channel for communicating with the proxy terminal, and then the proxy terminal and the base station carry out subsequent actions according to the normal random access process.
  • the proxy terminal and the base station establish DCCH and DTCH channels to realize data transmission of signaling and services.
  • the proxy terminal and the base station complete the establishment of SRB and DRB, it is necessary to further initiate the authentication, certification, and registration process with the core network to complete the network access.
  • the proxy terminal can perform data transmission services with the core network, and the base station can communicate bidirectionally with the target node (target module) through the proxy terminal.
  • the proxy terminal is a software function module inside the base station.
  • the base station needs to perform corresponding processing to support channel piling and docking with the proxy terminal, and perform corresponding simplification and adaptation when implementing certain functions, such as mobility management, measurement configuration, wireless resource allocation, etc.
  • the base station's special treatment of the proxy terminal is to directly connect with the IPC channel pile of each logical channel of the proxy terminal. It can be understood that the base station's special treatment of the proxy terminal is that the proxy terminal and each channel of the base station are piled through IPC to achieve direct connection of each channel, rather than sending and receiving data according to the interface from the L1 layer (physical layer) to the L2 layer (radio link layer) between the base station and the conventional terminal.
  • the preset pile layer for example, the MAC layer and RLC layer in L2
  • the protocols of the above layers are the same as those of conventional terminals.
  • the user context of the base station and the proxy terminal, and the user instance interacting with the core network are no different from those of ordinary terminals, and are all implemented in the same way as ordinary terminals.
  • proxy terminal due to the particularity of the proxy terminal, some functions of the base station need to be simplified when implemented.
  • the proxy terminal is fixedly accessed to its corresponding base station, and mobility management can be simplified, measurement configuration and reporting can be omitted or simplified, the proxy terminal access process can be simplified, and the proxy terminal does not need to make TA (Time Advanced, maximum time advance) adjustments, resynchronization, etc.
  • the proxy terminal does not need to perform channel detection and wireless resource allocation scheduling, and the proxy terminal does not need to configure various channel detection resources.
  • the base station Since the air interface communication between the proxy terminal and the base station does not require the implementation of the physical layer, the base station does not need to allocate air interface RB (Resource Element, resource element) resources and resource scheduling, link adaptation processing to the proxy terminal when performing wireless resource scheduling, and the physical channels of the base station do not need to configure resources and implementation.
  • RB Resource Element, resource element
  • the proxy terminal and the base station can send and receive data in sequence according to the cache situation when performing air interface data transmission. For example, each time the MAC layer PDU is packaged or the RLC layer PDU is packaged, the package can be packaged in a one-to-one ratio of PDU and corresponding SDU.
  • the base station has terminal communication capabilities, providing point-to-point communication capabilities with remote target nodes for various functional modules within the base station, making the base station intelligent.
  • the proxy terminal can serve as a gateway to provide real-time collection and collaborative processing of various network data of various functional modules within the base station.
  • Various intelligent decision-making data can be distributed to the base station for real-time execution, allowing the base station to support more convenient deployment of edge computing, edge storage, edge intelligence, etc.
  • the base station has terminal communication capabilities and can provide point-to-point bidirectional data transmission channels for base station peripherals, support communication, perception, computing, storage fusion and intelligent processing, and transmit fused or non-fused data to the target node (target network node or target terminal).
  • the base station has terminal communication capabilities and can communicate with the terminals served by this base station (external functional modules).
  • the base station can communicate directly with the intelligent terminal (block), or directly communicate with other terminals (target terminals) under the base station.
  • Various fusion perception systems deployed at the base station can interact and collaborate with surrounding intelligent terminals quickly, conveniently and safely through the base station, enabling large-scale commercial use and deployment of features such as automatic driving of intelligent machine terminals such as cars and drones.
  • the terminal function of the base station is realized through the proxy terminal, and the air interface protocol stack between the proxy terminal and the base station is connected through channel piling.
  • the channel piling connection can be realized through pure software of inter-process communication, without the need to implement air interface physical layer signal processing and additional hardware support. Through this mechanism, high reliability, low latency, on-demand bandwidth and security level two-way data communication can be achieved, and the complexity of product implementation and installation cost can be reduced.
  • the current support for communication-aware computing fusion requires the expansion of core network network element functions and protocols to support data communication between communication-aware functional network elements and base stations.
  • the addition of new interfaces will increase the complexity of protocol implementation and increase transmission delay, and reduce the flexibility of network deployment.
  • the present application supports base stations to communicate directly with various functional network elements, which undoubtedly reduces the complexity of protocols and data transmission delays, and has considerable flexibility.
  • the present application also has good support for the introduction of future intelligent base stations.
  • the proxy terminal of this application does not need to perform air interface signal transmission, will not occupy precious air interface resources, and will not cause signal interference to the base station, thereby simplifying the installation and deployment of the base station.
  • the current network architecture and protocol do not support base stations to carry data along the way to other network nodes. This application can enable the base station to transmit peripheral data to the target node through the proxy terminal without destroying the current network architecture and protocol system.
  • the core idea of this application is that the base station data is sent and received through the terminal (proxy terminal), and the terminal (proxy terminal) assists in forming a data tunnel to provide data distribution to the base station, and the terminal (proxy terminal) still transmits data through the base station, transmission network, and core network according to the normal access process.
  • the core idea of this application is that the proxy terminal communicates with the base station through channel staking during implementation, thereby reducing dependence on hardware and reducing product complexity.
  • this application can be laid out in advance in the promotion of the 6G standard to solve the data communication needs of the base station and other nodes for the integration of inter-sensory perception and intelligent base stations; secondly, it can also be implemented in 4G and 5G base stations, and applied to scenes such as unmanned driving and drone base stations, especially drone base station scenes.
  • drones as peripherals of base stations can return the video data or other sensor data collected by drones to the platform in real time, and support remote control of drones and real-time return of flight information.
  • drones whether large fixed-wing drones, vertical fixed-wing drones, helicopters or rotor drones, do not have interfaces for intercommunication with base stations, and cannot return data through base stations, nor can they be combined with base station information fusion processing.
  • This application can solve the needs of drone base stations for real-time return of drone flight data, videos, and base station information in emergency communication scenarios, and remotely control drones through base station data channels to achieve integrated communication, perception, and control.
  • FIG14 is a schematic diagram of the structure of a base station data transmission device provided in an embodiment of the present application.
  • the base station data transmission device 600 includes: a data receiving part 601, a data transmission part 602 and a channel construction part 603, wherein:
  • the data receiving part 601 is configured to receive base station data transmitted by the base station through the established bidirectional data transmission channel;
  • the bidirectional data transmission channel is a channel for the proxy terminal and the base station to realize data interaction between the peer layer;
  • the data transmission part 602 is configured to send the base station data to the target network node through the core network to perform data interaction between the base station and the target network node; or, to send the base station data to the target terminal to perform data interaction between the base station and the target terminal.
  • the base station data is at least one of base station internal data and base station external data
  • the base station internal data is data generated and/or collected by the base station
  • the base station external data is data transmitted to the base station through an interface.
  • the base station data transmission device 600 also includes: a channel construction part 603, which is configured to connect itself with each channel of the peer layer of the base station through channel staking to establish the two-way data transmission channel between the proxy terminal and the base station.
  • the channel construction part 603 is also configured to connect each channel of the preset piling layer with each channel of the preset piling layer in the base station one by one through inter-process communication IPC according to the protocol followed by each channel, so as to obtain each docking channel of the preset piling layer, where the preset piling layer is at least one of the sublayers of the physical layer and the sublayers of the data link layer; map each channel carried outside the preset piling layer according to the protocol followed by each channel, so as to obtain each docking channel outside the preset piling layer; and establish a bidirectional data transmission channel between the proxy terminal and the base station based on each docking channel of the preset piling layer and each docking channel outside the preset piling layer.
  • the preset piling layer is the medium access control MAC layer in the sublayer of the data link layer;
  • the various channels include at least one of the following: an uplink shared channel ULSCH, a random access channel RACH, a downlink shared channel DLSCH, a paging channel PCH and a broadcast channel BCH.
  • the channel construction part 603 is further configured to be at least one of the following: using its own ULSCH to realize data transmission with the ULSCH of the base station through the IPC, completing the docking of the own ULSCH with the ULSCH of the base station to establish a docking channel between the proxy terminal and the ULSCH of the base station, and the own ULSCH and the ULSCH of the base station follow the same protocol; using its own RACH to realize data transmission with the RACH of the base station through the IPC, completing the docking of the own RACH with the RACH of the base station to establish a docking channel between the proxy terminal and the RACH of the base station, and the own RACH and the RACH of the base station follow the same protocol; using its own DLS The CH realizes data transmission with the DLSCH of the base station through the IPC, completes the docking of its own DLSCH with the DLSCH of the base station, so as to establish a docking channel between the proxy terminal and the DLSCH of
  • the preset piling layer is the wireless link control RLC layer in the sublayer of the data link layer;
  • the various channels include at least one of the following: a dedicated service channel DTCH, a common control channel CCCH, a dedicated control channel DCCH, a paging control channel PCCH and a broadcast control channel BCCH.
  • the channel construction part 603 is also configured to be at least one of the following: using its own DTCH to realize data transmission with the DTCH of the base station through the IPC, completing the docking of its own DTCH with the DTCH of the base station to establish a docking channel between the proxy terminal and the DTCH of the base station, and the DTCH of its own and the DTCH of the base station follow the same protocol; using its own CCCH to realize data transmission with the CCCH of the base station through the IPC, completing the docking of its own CCCH with the CCCH of the base station to establish a docking channel between the proxy terminal and the CCCH of the base station, and the CCCH of its own and the CCCH of the base station follow the same protocol; using its own DCCH to realize data transmission with the DCCH of the base station through the IPC, completing the docking of its own DCCH with the DCCH of the base station to establish a docking channel between the proxy terminal and the DC
  • the channel construction part 603 is also configured to perform channel mapping for each first channel between itself and each layer carried in the base station outside the preset piling layer, according to the 3GPP protocol followed by each first channel, to obtain a first docking channel, where the first channel is a channel in the control plane protocol stack between the proxy terminal and the base station; for each second channel between itself and each layer carried in the base station outside the preset piling layer, perform channel mapping for each second channel between itself and the base station outside the preset piling layer, according to the 3GPP protocol followed by each second channel, to obtain a second docking channel, where the second channel is a channel in the user plane protocol stack between the proxy terminal and the base station; and obtain each docking channel outside the preset piling layer based on the first docking channel and the second docking channel.
  • the data receiving part 601 is also configured to send random access information to the base station through the common channel in the bidirectional data transmission channel when it is in the power-on state; based on the random access information, complete the random access process with the base station, and receive the base station data transmitted by the base station through the dedicated channel in the constructed bidirectional data transmission channel.
  • the data transmission part block 602 is also configured to send the base station data to the core network based on the radio access network RAN protocol; if the authentication result of the core network is passed, establish a connection with the core network; if the connection with the core network is successful, send the base station data to the target network node through the core network to perform data interaction between the base station and the target network node.
  • the data transmission part 602 is further configured to receive the The first target data sent by the target network node is forwarded to the target module corresponding to the base station to perform data interaction between the base station and the target network node; the first target data represents the data sent by the target network node to the target module.
  • the data transmission part 602 is also configured to send the base station data to the target terminal based on the radio access network RAN protocol; receive second target data sent by the target terminal, and forward the second target data to the target module corresponding to the base station to perform data interaction between the base station and the target terminal, wherein the second target data represents the data sent by the target terminal to the target module.
  • the target module includes at least one of the following: a parameter acquisition module, a native intelligent module, a perception module, a network element collaboration module, and an external function module.
  • the target network node includes at least one of the following: a resource coordination network element, a perception network element, an intelligent processing network element, and a capability exposure network element.
  • each functional unit in each embodiment of the present application may be integrated into a processing unit, or may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of a software functional unit. It may also be implemented in the form of a combination of software and hardware.
  • the technical solution of the embodiment of the present application can be essentially or partly reflected in the form of a software product, which is stored in a storage medium and includes several instructions for enabling an electronic device to execute all or part of the methods described in each embodiment of the present application.
  • the aforementioned storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read-only memory (ROM), a magnetic disk or an optical disk. In this way, the embodiments of the present application are not limited to any specific combination of hardware and software.
  • an electronic device 700 provided in an embodiment of the present application includes a memory 701 and a processor 702; wherein the memory 701 is configured to store executable instructions; the processor 702 is configured to execute the executable instructions stored in the memory to implement the base station data transmission method as described in the embodiment of the present application.
  • An embodiment of the present application provides a computer-readable storage medium having a computer program stored thereon.
  • the computer program is executed by a processor, the steps in the base station data transmission method provided in the above embodiment are implemented.
  • An embodiment of the present application provides a computer program product including instructions, which, when executed on a computer, enables the computer to execute the steps in the base station data transmission method provided in the above method embodiment.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of hardware embodiments, software embodiments, or embodiments in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) that contain computer-usable program code.
  • a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) that contain computer-usable program code.
  • references to “one embodiment” or “an embodiment” or “some embodiments” throughout the specification mean that a particular feature, structure or characteristic related to the embodiment is included in at least one embodiment of the present application.
  • the phrases “in one embodiment” or “in an embodiment” or “in some embodiments” appearing in various places in the specification do not necessarily refer to the same embodiment.
  • these specific features, structures or characteristics may be combined in one or more embodiments in any suitable manner.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution. The execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • object A and/or object B can mean: object A exists alone, object A and object B exist at the same time, and object B exists alone.
  • modules described above as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules; they may be located in one place or distributed on multiple network units; some or all of the modules may be selected according to actual needs to achieve the purpose of the present embodiment.
  • all functional modules in the embodiments of the present application may be integrated into one processing unit, or each module may be a separate unit, or two or more modules may be integrated into one unit; the above-mentioned integrated modules may be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-mentioned integrated unit of the present application is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer-readable storage medium.
  • the technical solution of the embodiment of the present application can essentially or in other words, the part that contributes to the relevant technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions for enabling an electronic device to execute all or part of the methods described in each embodiment of the present application.
  • the aforementioned storage medium includes: various media that can store program codes, such as mobile storage devices, ROMs, magnetic disks, or optical disks.
  • the embodiment of the present application discloses a base station data transmission method, device, equipment and readable storage medium, which are applied to a proxy terminal, and the proxy terminal has the ability to communicate with a base station, a target terminal and a core network; the target terminal is a terminal accessing the base station, and the method includes: receiving base station data transmitted by the base station through a constructed two-way data transmission channel; the two-way data transmission channel is a channel for the proxy terminal and the base station to realize data interaction between the peer layer; sending the base station data to the target network node through the core network to perform data interaction between the base station and the target network node; or, sending the base station data to the target terminal to perform data interaction between the base station and the target terminal.
  • the present application constructs a data transmission channel between the proxy terminal and the base station, so that the base station can transmit the base station data through the constructed two-way data transmission channel, and the proxy terminal sends the base station data to the target terminal or the target network node to perform data interaction between the base station and the target network node or the target terminal, thereby completing the two-way communication between the base station and the target terminal or the target network node.
  • the base station can realize point-to-point two-way communication with any network function node (including various terminals in the network) through the two-way data transmission channel, which greatly expands the flexibility and security of data transmission between the base station and other function nodes.
  • the two-way data transmission channel of the present application can realize two-way data interaction between the proxy terminal and the peer layer of the base station, so that the proxy terminal does not need to perform air interface signal transmission, and thus will not occupy precious air interface resources, and will not cause signal interference to the base station, thereby simplifying the installation and deployment of the base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种基站数据传输方法、装置、设备及可读存储介质,方法应用于代理终端,代理终端具备与基站、目标终端以及核心网进行通信的能力;目标终端为接入基站的终端;该方法包括:接收基站通过已构建的双向数传通道传输的基站数据;双向数传通道为代理终端与基站实现对等层之间数据交互的通道;通过核心网将基站数据发送至目标网络节点,以进行基站与目标网络节点的数据交互;或者,将基站数据发送至目标终端,以进行基站与目标终端的数据交互。本申请能够提高基站数据传输的灵活性,使得基站与远端的目标节点能够进行点到点的双向通信。

Description

基站数据传输方法、装置、设备及可读存储介质
相关申请的交叉引用
本申请基于申请号为202211440548.9、申请日为2022年11月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,涉及但不限于基站数据传输方法、装置、设备及可读存储介质。
背景技术
在无线网络快速发展的背景下,将通信、感知、人工智能等融入到基站侧,使得基站能力得到了增强。基站侧采集到的各种信息需要在网络各功能网元间分发传递以进行协同处理,或者上传给能力开放节点以提供给第三方应用程序(Application,APP)使用。目前,解决基站数据分发通常采用的方法有增加网络功能网元、构建回传链路或者外接真实终端等等。
但是,上述方法存在协议复杂度增加、通信灵活性降低、基站数据传输时延等问题,导致基站与远端的目标节点无法满足点到点的双向通信。
发明内容
有鉴于此,本申请提供的基站数据传输方法、装置、设备及可读存储介质,能够提高基站数据传输的灵活性,使得基站与远端的目标节点能够进行点到点的双向通信。
本申请实施例的技术方案是这样实现的:
根据本申请实施例的一个方面,提供一种基站数据传输方法,应用于代理终端,所述代理终端具备与基站、目标终端以及核心网进行通信的能力;所述目标终端为接入所述基站的终端;所述方法包括:
接收所述基站通过已构建的双向数传通道传输的基站数据;所述双向数传通道为所述代理终端与所述基站实现对等层之间数据交互的通道;
通过核心网将所述基站数据发送至目标网络节点,以进行所述基站与所述目标网络节点的数据交互;或者,
将所述基站数据发送至所述目标终端,以进行所述基站与所述目标终端的数据交互。
根据本申请实施例的一个方面,提供一种基站数据传输装置,包括:数据接收部分以及数据传输部分,其中,
所述数据接收部分,被配置为接收所述基站通过已构建的双向数传通道传输的基站数据;所述双向数传通道为所述代理终端与所述基站实现对等层之间数据交互的通道;
所述数据传输部分,被配置为通过核心网将所述基站数据发送至目标网络节点,以进 行所述基站与所述目标网络节点的数据交互;或者,将所述基站数据发送至所述目标终端,以进行所述基站与所述目标终端的数据交互。
根据本申请实施例的一个方面,提供一种电子设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现本申请实施例所述的方法。
根据本申请实施例的一个方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本申请实施例提供的所述的方法。
在本申请实施例中,一方面,本申请在基站上实现一个代理终端,该代理终端具备与基站、目标终端以及核心网进行通信的能力,如此,使得该基站不仅仅作为网络服务商的接入设备,还使基站具有终端的数据传输能力,基站可以通过该代理终端实现基站与目标终端、核心网的双向数据分发以及交互。另一方面,本申请通过在代理终端与基站构建数传通道,使得基站可以通过已构建的双向数传通道传输的基站数据,代理终端将基站数据发送至目标终端或者目标网络节点,以进行基站与目标网络节点或者目标终端的数据交互,从而完成基站与目标终端或者目标网络节点的双向通信。由于双向数传通道为代理终端与基站实现对等层之间双向数据交互的通道,如此,基站可以通过该双向数传通道实现与任何网络功能节点(包括网络中的各种终端)的点对点双向通信,极大的扩展了基站和其它功能节点数据传输的灵活性和安全性。又一方面,本申请的双向数传通道可以实现代理终端与基站的对等层之间双向数据交互,如此,代理终端无须进行空口信号传输,进而不会占用宝贵空口资源,不会对基站造成信号干扰,从而可以简化基站的安装部署。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本申请的实施例,并与说明书一起用于说明本申请的技术方案。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
图1为本申请实施例提供的一种通信感知融合系统的流程示意图;
图2为本申请实施例提供的一种基站数据传输的流程示意图一;
图3为本申请实施例提供的一种基站数据传输的流程示意图二;
图4为本申请实施例提供的一种MAC层的对接信道的示意图;
图5为本申请实施例提供的一种MAC层的控制面协议栈的示意图;
图6为本申请实施例提供的一种MAC层的用户面协议栈的示意图;
图7为本申请实施例提供的一种RLC层的对接信道的示意图;
图8为本申请实施例提供的一种RLC层的控制面协议栈的示意图;
图9为本申请实施例提供的一种RLC层的用户面协议栈的示意图;
图10为本申请实施例提供的一种基站数据传输的流程示意图三;
图11为本申请实施例提供的一种基站数据传输的流程示意图四;
图12为本申请实施例提供的一种遥感智能一体化基站的结构示意图;
图13为本申请实施例提供的一种基站数据传输的流程示意图五;
图14为本申请实施例提供的一种基站数据传输装置的结构示意图;
图15为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请的具体技术方案做进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
在以下的描述中,涉及到“一些实施例”、“本实施例”、“本申请实施例”以及举例等等,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
如果申请文件中出现“第一/第二”的类似描述则增加以下的说明,在以下的描述中,所涉及的术语“第一\第二\第三”仅仅是是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本申请实施例能够以除了在这里图示或描述的以外的顺序实施。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
近年来,随着自动驾驶、无人机、XR(Extended Reality,扩展现实)、工业互联网等技术不断发展,未来智能应用对网络,尤其是无线网络提出了更多维度的极致性能需求。这需要突破通信本身的范畴,将传统定位、探测、成像等无线感知功能同无线通信功能深度融合,实现通信感知计算的交叉融合。
人工智能在近十年发展迅速,在挖掘大数据样本的非线性规律、与环境交互的在线精准决策方面超过了以人工为主的专家经验模式,在计算机视觉、自然语言处理、机器人控制等领域取得了巨大进步。从5G开始,人工智能在移动通信中也逐渐得到了广泛应用,从网络配置优化到资源调度,甚至空口物理层的智能化都引入了人工智能。5G网络智能化大多数使用外挂AI(Artificial Intelligence,人工智能)的模式,算力、数据、模型和通信连接属于不同技术体系,未定义规范的接口和交互规则,跨域技术协同只能通过管理面拉通进行,导致秒级甚至分钟级时延,服务质量也难以得到有效保障。
在通信、感知、计算融合和人工智能融入无线网络背景下,基站能力得到了增强,融入原生AI、边缘计算、感知能力,变得更加的智能。基站侧采集到的各种信息需要在网络各功能网元间分发传递以进行协同处理,或者上传给能力开放节点以提供给第三方APP(Application,应用)使用,这些数据的分发需要高效、灵活、低时延、安全的通道或方法来承载。
目前,对于通信感知融合场景,当前仍处于研究探讨阶段,业内尚未形成统一观点。基于目前已知研究进展和标准推进方向,主流观点为最大化复用5GC功能网元接口,新增具备控制、计算能力的通信感知功能单元,提供能力开放功能。通信感知融合系统整体架构如图1所示,图1中,应用层功能(Application Function,AF)网元与网络开放功能(Network Exposure Function,NEF)网元通过接口连接,NEF网元和通信感知融合功能网元通过Nx接口(5G接口)连接,通信感知融合功能网元与移动性管理功能(Access and Mobility Management Function,AMF)网元通过Ny接口(5G接口)连接,通信感知融合功能网元与用户面功能(The User Plane Function,UPF)网元通过N6接口(5G接口)连接,AMF网元通过N2接口(5G接口)向基站(通感一体化基站)传输感知控制指令,基站通过N3接口(5G接口)向UPF网元进行感知数据上报。图1中,新增的通信感知融合功能网元,负责感知功能的管控、感知信息的计算和开放。其中,管控主要体现在对AMF网元感知功能进行管理控制;计算主要体现在对上报的感知信息的智能化计算处理;开放体现为对感知信息和数据对网络内部或网络外部开放。
在控制面协议栈中,对AMF进行功能增强,具备通信感知功能,同时在通信感知融合功能网元增加南北向接口,与NEF网元对外能力开放的Nx接口(5G接口),调用AMF的Ny(5G接口)接口,并复用N2接口(5G接口)。其中,通过Nx接口实现通过NEF对外部应用或网络内部NF感知能力调用、感知结果上报;通过Ny接口实现通信感知融合网元对AMF感知功能控制;通过N2接口,实现AMF对基站感知功能的控制,AMF将通信感知融合网元功能的控制指令转发给基站(通感一体化基站)。
在用户面协议栈中,复用N3接口(5G接口)、N6接口(5G接口),其中,基于N3接口将基站(通感一体化基站)感知数据上报,基于N6接口将基站(通感一体化基站)获取的感知数据转发给通信感知融合功能网元。
对于基站智能化场景,当前并未定义明确的接口和协议来支持数据的交互和处理。如果通过扩展管理面来实现,会增大时延,且不够灵活。基站管理面主要通过网管系统对基站进行管控和参数搜集。基站之间可通过Xn接口(5G接口)或X2(5G接口)口交互数据实现协同,基站和核心网网元通过N2或S1接口(5G接口)交互控制数据,如果要分发数据到智能化处理节点(或网元),需要核心网相关网元转发,交互流程过长,逻辑复杂,且需要修改当前接口协议。
对于基站本地采集、融合的感知数据下发到基站所服务终端的场景,例如C-V2X(Cellular Vehicle-to-Everything,车联网)应用场景,当前系统和协议并不支持基站和终端进行感知数据等应用层数据交互,需要边缘计算来实现和终端的感知数据交互。由于基站数量巨大,很难实现每个基站都部署核心网用户面网元或边缘计算单元,造成当前网络部署方式很难实现低成本、低时延的感知数据下发。
为实现通信感知一体化、增强基站智能化,需要在基站实现高效数据分发,例如基站侧视频回传、环境监控数据回传、感知数据回传、空天基站无人机数据回传、融合感知网 元和基站双向通信、基站数据下发终端等。
对于通信感知一体化,现有技术方案在核心网中新增通信感知融合网元,并复用现有蜂窝系统的控制面和用户面来实现通信感知融合网元和基站之间的控制指令和感知数据传输。虽然此方案能实现融合感知网元和基站之间数据分发,但需要增强AMF(Access and Mobility Management Function,接入和移动性管理功能)功能并新增接口,提高了接口和协议复杂度,同时对感知数据传输时延产生负面影响。另外,AMF功能扩展后,增加了协议面暴露点,对网络稳定运行和网络安全增加了新的风险点。
要增加基站的智能水平,需要基站和其他网元或NF(Network Function,网络功能)交互数据,当前技术方案通常走网管通道或传输协议接口,如Xn接口到其他基站或N2接口、N3接口到核心网。由于没有其他通道可实现双向数据传输,从而限制了基站数据分发和原生智能扩展。在当前网管系统体系下,基站具备和管理节点通信能力,但要实现基站和其他网元或NR(5G)节点通信,无法使用网管系统,网管系统需要和业务系统之间互相隔离,保障业务系统不受管理系统的影响。
与网管系统类似,要实现基站侧数据收发,可以从回传链路隔离出一个专门数传通道,实现基站和锚定节点的数据收发(首跳),目标节点数据通过锚定节点路由转发。一方面此解决方案需要在基站和锚定节点做专门的配置和传输资源预留,数据目标节点种类繁多,路由转发路径复杂,对于漫游或者切片等场景配置复杂,缺乏灵活性和扩展性;另一方面,锚定节点功能类似于核心网用户面网关功能,造成网络组网复杂和难于管理,增加了网络的被攻击面,不能复用终端和网络的各种鉴权、加密等现有机制;如此,此方法无法很好的和基站下服务的终端进行直接通信。
要实现基站数据分发,还可以采用基站外接真实终端方案,通过终端实现和其他网络功能节点通信。不过外接终端方案,需要占用宝贵的空口资源,而且距离基站较近,对基站收发造成干扰,同时对基站安装部署产生额外的复杂度和成本,例如需要给终端供电、新增安装件天线等。
基于此,本申请实施例提供一种基站数据传输方法,本申请的核心思想是在基站上实现一个代理终端,使得基站不是只作为网络服务商的接入设备,任何通信只能通过核心网接口协议进行协议转换来实现,还兼有终端数传能力,基站可以实现与任何网络功能节点(包括网络的各种终端)的点对点双向通信,从而极大的扩展了基站和其它功能节点数据传输的灵活性和安全性。另外,使得基站具备网络层及以上的传输层、应用层数据通信功能,可以便捷、高效、安全的和其他功能节点直接通信。
本申请实施例提供一种基站数据传输方法,如图2所示,该方法应用于代理终端,其中,代理终端具备与基站、目标终端以及核心网进行通信的能力;该方法包括步骤101至步骤102:
步骤101、代理终端接收基站通过已构建的双向数传通道传输的基站数据;双向数传通道为代理终端与基站实现对等层之间数据交互的通道。
在本申请的一些实施例中,代理终端和基站为一对一的关系,代理终端可以为基站中部署的软件功能模块,代理终端也可以通过网线、USB(Universal Serial Bus,串行总线)接口等其他硬件接入的方式实现代理终端与基站的互联,本申请实施例对代理终端接入基站的方式不作任何限制,具体可以根据实际应用场景确定。
在本申请的一些实施例中,代理终端具备与基站、目标终端以及核心网进行通信的能 力,代理终端具备完整的TCP/IP协议栈和终端通信能力,并遵循3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)协议。
在本申请的一些实施例中,基站数据为基站内部数据和基站外部数据中的至少一种,其中,基站内部数据为基站中产生和/或采集的数据;基站外部数据为通过接口向基站传输的数据。
这里,基站中内置的各种功能模块可以包括参数采集模块、原生智能模块、感知模块、网元协同模块的至少一种。如此,基站内部数据可以为包括参数采集模块、原生智能模块、感知模块、网元协同模块等基站内部功能模块和其他网络功能模块(网络功能节点)交互的数据。另外,基站内部数据还可以包括基站在处理过程中产生和/或采集的处理数据。
需要说明的是,基站内部数据可以理解为基站自身产生和处理的数据,包括但不限于感知通信融合模块(或者感知模块)、参数采集模块、原生智能模块、网元协同模块等基站内部功能模块和其他各网络功能节点(根据实际场景集中式或分布式部署的)交互的数据。
基站通过提供接口为外部数据源模块提供数据传输通道,外部功能模块通过该数据传输通可以实现与目标终端或者目标网络节点的双向通信。这里,外部功能模块可以为各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户终端设备(terminal device)等等。
需要说明的是,外部功能模块也称为外部数据源,外部数据源是指基站通过接口给外设提供数传通道,外设通过此通道和目的节点(目标终端或者目标网络节点)进行双向通信的数据。
步骤102、代理终端通过核心网将基站数据发送至目标网络节点,以进行基站与目标网络节点的数据交互;或者,代理终端将基站数据发送至目标终端,以进行基站与目标终端的数据交互。
在本申请的一些实施例中,目标网络节点包括以下至少一项:资源协同网元、感知网元、智能处理网元和能力开放网元。这里,目标网络节点不限于上述提到的各种网络功能节点,目标网络节点还可以为任意一个需要和基站进行双向通信的第三方应用平台或者服务器。目标终端为接入基站的终端,可以为各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户终端设备等等。本申请对此不作任何限制。
基站数据通过代理终端和远端的目标网络节点或者目标终端进行双向通信,代理终端在上述通信过程中扮演着数据网关的作用。当基站数据从基站内部(各种内置的功能模块)或者外部功能模块通过双向数传通道路由到代理终端时,代理终端通过核心网把数据分发到目标网络节点或者目标终端对应的目标地址;反之,目标网络节点或者目标终端通过反方向寻址将数据发送至代理终端,代理终端将接收到的数据转发至基站内部的各个功能模块或者外部功能模块。
本申请还可以解决基站外部功能模块和接入基站的终端(代理终端)间通信。按正常流程,基站代理终端(代理终端)可以直接和真实终端(目标终端)点对点通信实现数据交换。对于无人驾驶等需要广播基站侧搜集的感知数据的场景,感知数据(融合处理后)通过基站代理终端和基站空口协议处理模块的自定义通道传递到基站对应小区的广播信道队列中,再广播到小区中,可以极大降低感知数据分发时延。
示例性的,以无人驾驶的应用环境为例,广播基站侧(基站)将搜集到的无人驾驶需要的感知数据(融合处理后)通过代理终端的双向数传通道直接推送到对应小区的广播信道队列中,通过广播信道利用广播或者多播的方式将感知数据发送到对应的无人驾驶汽车中。
本申请中的代理终端可理解为基站中部署的软件功能模块,一方面通过接入所属的基站获取网络数传服务,另一方面具有真实终端的数传功能和网关数据交换功能,提供数传通道给基站以实现基站数据分发。代理终端为接入基站获取数传服务,具有终端的接入层AS和非接入层NAS协议处理能力。
可以理解的是,一方面,代理终端通过接入所属的基站获取网络数传服务,使得基站具有终端的接入层(Access Stratum,AS)以及非接入层(Non-Access Stratum,NAS)功能。另一方面,代理终端具有真实终端的数据传输功能和网关数据交换功能,为基站提供双向数据传输通道从而实现基站数据的分发。又一方面,从核心网角度看(或者从基站角度看),代理终端具备普通终端的网路接入和数据传输功能,支持控制面和用户面协议。例如,针对NAS信令和数据传输流程,NAS实现完全遵循3GPP协议规范,代理终端可以保障数据传输的安全性以及对应的QoS(Quality of Service,服务质量)需求。再一方面。在实现代理终端的同时,基站接入网功能实现需要感知代理终端的存在,并对代理终端做适配处理,在有些功能实现时可做简化处理。
需要说明的是,这里的简化处理根据具体的实施方式可以进行灵活剪裁,在一般情况下,代理终端的一些功能模块可以全量参照普通终端的实现。但是由于代理终端的特殊性,一些功能模块可以进行简化处理,降低协议实现的复杂度。比如,移动性管理模块、测量配置模块、无线资源调度分配模块等。也就是说,代理终端可以不作任何切换处理,基站可以不下发测量配置信息给代理终端,基站与代理终端也可以不做任何无限资源调度处理。
需要说明的是,本申请实施例的基站数据传输方法可以应用第四代移动通信系统(the 4th generation mobile communication system,4G)、第五代移动通信技术(5th-Generation wireless communication technology,5G)新空口(New Radio,NR)系统或未来的通信系统,也可以用于其他各种无线通信系统,例如:窄带物联网(Narrow Band-Internet of Things,NB-IoT)系统、全球移动通讯系统(Global System of Mobilecommunication,GSM)、增强型数据速率GSM演进(Enhanced Data rate for GSM Evolution,EDGE)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、码分多址2000(Code Division Multiple Access,CDMA2000)系统、时分同步码分多址(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
在本申请实施例中,双向数传通道为代理终端与基站实现对等层之间数据交互的通道,代理终端可以通过信道打桩,将自身与基站的对等层的各个信道进行对接,以建立代理终端与基站之间的双向数传通道。
代理终端需要实现终端的AS协议和NAS协议,其中NAS协议与普通终端的实现方式一样,针对AS协议部分,代理终端无需实现物理层信号的处理,通过信道打桩实现代理终端与基站AS空口对等层协议通信,可以理解的是,双向数传通道可以实现代理终端 与基站AS空口对等层协议通信。
需要说明的是,信道打桩可以理解为建立内部两个功能模块或者协议实体之间的直通数据通道,这里的直通数据通道也称为数据传输通道或者双向数传通道。从基站角度(或核心网角度)来看,代理终端需要实现AS控制面和用户面功能,空口接入层(AS层)实现也遵循3GPP协议。双向数传通道使得代理终端与基站之间的L1层(物理层)的信号处理部分无需实现,代理终端直接通过在L2层(数据链路层)以上信道打桩实现各个信道的对接,进而实现协议PDU(Protocol Data Unit,协议数据单元)数据交互,此机制可以让代理终端省去天线、中射频和基带信号处理硬件,降低产品成本和复杂度,不占用宝贵的空口资源便提供低误码高可靠信道,同时兼有终端接入鉴权认证的安全性和蜂窝网络数传大带宽、高可靠、低时延特性。一般来说,代理终端在物理层或者数据链路层进行信道打桩,从而实现PDU数据的直接交互。
如此,通过信道打桩,可以让代理终端省去天线、中射频和基带信号处理硬件,进而降低产品成本和复杂度,不占用宝贵的空口资源便可提供低误码高可靠的信道,从而降低代理终端与基站之间物理层信号处理对硬件的强依赖,实现代理终端与基站的信道直通。
在本申请实施例中,如图3所示,建立双向数传通道的过程包括步骤201至步骤203:
步骤201、代理终端通过进程间通信,将预设打桩层的各个信道与基站中预设打桩层的各个信道,按照各个信道遵循的协议进行一一对接,得到预设打桩层的各个对接信道,预设打桩层为物理层的各个子层以及数据链路层的各个子层的至少一种。
在本申请的一些实施例中,进程间通信(Inter-Process Communication,IPC)可以实现在不同进程之间传播或交换信息。通常情况下,预设打桩层为数据链路层(L2)的各个子层的至少一种,这是由于信道打桩的目的是为了降低物理层信号处理对硬件的强依赖,因此预设打桩层位于七层网络模型中网络层以下,以实现基站与代理终端之间的数据分发。
需要说明的是,在NR网络的L2层的网络模型中,由下往上依次为:介质访问控制层(Media Access Control,MAC)、无线链路控制层(Radio Link Control,RLC)、分组数据汇聚层(Packet Data Convergence Protocol,PDCP)、服务数据应用(Service Data Adaptation Protocol,SDAP)。
在本申请的一些实施例中,预设打桩层也可以为物理层的各个子层的至少一种,通过对代理终端的物理层进行打桩来实现代理终端与基站之间的数据分发。
在本申请的一些实施例中,代理终端和基站还可以通过控制面或者用户面解耦的方来实现代理终端与基站之间的数据分发,比如,代理终端和基站可以从控制面协议栈的L1层和L2层进行打桩,以及用户面协议栈的L2层进行打桩。
步骤202、代理终端将承载在预设打桩层之外的各个信道,按照各个信道遵循的协议进行信道映射,得到预设打桩层之外的各个对接信道。
在本申请的一些实施例中,预设打桩层之外的各个信道指的是,OSI模型(Open System Interconnection Reference Model,开放式系统互联通信参考模型)中预设打桩层之上的各个层的各个信道。OSI模型的层次划分由下至上依次为:物理层(Physical Layer)、数据链路层(Data Link Layer)、网络层(Network Layer)、传输层(Transport Layer)、表达层(Presentation Layer)以及应用层(Application Layer)。示例性的,若预设打桩层为数据链路层,此时,预设打桩层之上(或者预设打桩层之外)的各个层为网络层、传输层、表达层以及应用层。那么,预设打桩层之上(或者预设打桩层之外)的各个信道为网络层、传 输层、表达层以及应用层中的各个信道。
作为一种可实现的方式,首先,代理终端针对自身与基站中承载在预设打桩层之外的各个层的各个第一信道,按照各个第一信道遵循的3GPP协议进行信道映射,得到第一对接信道,第一信道为代理终端与基站的控制面协议栈中的信道。然后,代理终端针对自身与基站中承载在预设打桩层之外的各个层的各个第二信道,按照各个第二信道遵循的3GPP协议进行信道映射,得到第二对接信道,第二信道为代理终端与基站的用户面协议栈中的信道;最后,代理终端根据第一对接信道以及第二对接信道,得到预设打桩层之外的各个对接信道。
在实现代理终端与基站的预设打桩层的各个信道对接之后,将承载在预设打桩层之上的各个逻辑信道以及各个传输信道进行信道映射,信道映射遵循3GPP协议。由于代理终端与基站之间无需实现物理层信号处理,因此,基站也无需进行无线资源调度分配,传输信道以及逻辑信道通过内部信道承载。代理终端与基站进行数据分发(数据传输、通信)时,可以不考虑误码产生的数据重传(Hybrid Automatic Repeat Request,数据重传),从而可以认为物理层是可靠、低时延且带宽不受限的理想信道。需要说明的是,代理终端的传输速率、时延收到QoS配置和基站回传链路的约束。
步骤203、代理终端基于预设打桩层的各个对接信道以及预设打桩层之外的各个对接信道,建立代理终端与基站之间的双向数传通道。
代理终端需要实现终端的AS和NAS协议,其中NAS和正常终端的协议实现一样,AS部分无须实现物理层信号处理,通过信道打桩对接,实现和基站AS空口对等层协议通信,各信道协议实现参考3GPP协议。下面以5G系统为例描述移动终端的信道打桩实现方法,其他网络制式(4G或者未来演进的6G、7G等网络制式)可参考类似方法实现。
作为一种实施方式,预设打桩层为数据链路层的各个子层中的介质访问控制MAC层;MAC层的各个信道包括以下至少一种:上行共享信道ULSCH、随机接入信道RACH、下行共享信道DLSCH、寻呼信道PCH和广播信道BCH。
图4为本申请实施例提供的一种MAC层的对接信道示意图,如图4所示,代理终端将自身的ULSCH通过IPC实现与基站的ULSCH的数据传输,完成自身的ULSCH与基站的ULSCH的对接,以建立代理终端与基站的ULSCH的对接信道,自身的ULSCH与基站的ULSCH遵循相同的协议;将自身的RACH通过IPC实现与基站的RACH的数据传输,完成自身的RACH与基站的RACH的对接,以而建立代理终端与基站的RACH的对接信道,自身的RACH与基站的RACH遵循相同的协议;将自身的DLSCH通过IPC实现与基站的DLSCH的数据传输,完成自身的DLSCH与基站的DLSCH的对接,以建立代理终端与基站的DLSCH的对接信道,自身的DLSCH与基站的DLSCH遵循相同的协议;将自身的PCH通过IPC实现与基站的PCH的数据传输,完成自身的PCH与基站的PCH的对接,以建立代理终端与基站的PCH的对接信道,自身的PCH与基站的PCH遵循相同的协议;将自身的BCH通过IPC实现与基站的BCH的数据传输,完成自身的BCH与基站的BCH的对接,以建立代理终端与基站的BCH的对接信道,自身的BCH与基站的BCH遵循相同的协议;ULSCH的对接信道、RACH的对接信道、DLSCH的对接信道、PCH的对接信道以及BCH的对接信道中的至少一种:为MAC层的各个对接信道的公共信道。
代理终端通过在MAC层进行信道打桩,通过IPC实现代理终端与基站之间各个信道的对接,各个信道根据遵循的3GPP协议进行一一对接,可以理解的是,各个对接信道遵 循相同的3GPP协议规范。
代理终端在完成MAC层的各个信道与基站中MAC层的各个信道按照各个信道遵循的协议进行一一对接之后,得到MAC层的各个对接信道之后。代理终端针对自身与基站中承载在MAC层之外的各个层的各个第一信道,按照各个第一信道遵循的3GPP协议进行信道映射,得到第一对接信道。与此同时,代理终端针对自身与基站中承载在MAC层之外的各个层的各个第二信道,按照各个第二信道遵循的3GPP协议进行信道映射,得到第二对接信道。
需要说明的是,第一对接信道为代理终端与基站的控制面协议栈中的信道,第二信道为代理终端与基站的用户面协议栈中的信道。
图5为本申请实施例提供的一种MAC层的控制面协议栈(也称为控制面点端到端协议栈)的示意图,如图5所示,代理终端(agent UE)在L2层中的MAC层通过IPC实现信道打桩,使得代理终端(agent UE)与基站(gNodeB)之间的MAC层的各个信道实现对接。图5中,NAS-SM为NAS-MM为NAS层中的两个功能层,遵循3GPP协议。SCTP(Stream Control Transmission Protocol,流控制传输层)/(IP Internet Protocol,网络互连协议)、NG-AP(Access Point,无线接入点)遵循3GPP协议。基站与AMF(Access and Mobility Management Function,接入和移动性管理功能)和SMF(Session Management function,会话管理功能)通过5G核心网的N2接口进行连接。代理终端(agent UE)在L2层中的MAC层通过IPC实现MAC层的各个信道的对接之后,代理终端与基站的承载在MAC层之上的各个层(RLC、PDCP、RRC)遵循3GPP规范进行信道映射,代理终端与AMF和SMF之间的各个信道遵循3GPP规范进行信道映射,基站与AMF和SMF之间的各个信道遵循3GPP规范进行信道映射。
图6为本申请实施例提供的一种MAC层的用户面协议栈(也称为用户面点端到端协议栈)的示意图,如图6所示,代理终端在用户面协议栈的MAC层通过IPC进行信道打桩,使得代理终端与基站的用户面协议栈的MAC层的各个信道实现对接。代理终端的承载在MAC层之上的RLC层、PDCP层(Packet Data Convergence Protocol,分组数据汇聚协议)、SDAP层(Service Discovery Application Profile,发现应用规范)遵循3GPP协议规范进行信道映射。代理终端的PDU Layer(Protocol Data Unit,协议数据单元)、5G核心网中的UPF(User Plane Function,用户面功能)网元以及5G核心网的DN(Data Network,数据网络)网元通过遵循3GPP协议规范进行信道映射,代理终端与UPF通过5G核心网的N3接口进行连接,UPF与DN通过5G核心网的N6接口进行连接。代理终端的APP层(Application,应用层)与5G核心网的DN网元通过遵循3GPP协议规范进行信道映射。基站与UPF网元的L1层、L2层、UDP(User Datagram Protocol,用户数据报协议)/IP层、GTP-U(GPRS Tunneling Protocol-User,用户隧道协议)的各个信道通过遵循3GPP协议规范进行信道映射。UPF网元和DN网元的L1层、L2层、PDU Layer的各个信道通过遵循3GPP协议规范进行信道映射。
在本申请实施例中,在实现了代理终端和基站间传输信道打桩对接后,承载在其上的各逻辑信道和传输信道映射以及各层协议实现参考3GPP协议。由于无须实现物理层信号处理,基站无须进行无线资源调度分配,传输信道通过内部通道承载,不考虑误码产生的数据重传(HARQ),可以认为物理层是可靠、低时延且带宽不受限的理想信道。代理终端传输速率、时延受QoS配置和基站回传链路约束。
作为另一种实施方式,预设打桩层为数据链路层的各个子层中的无线链路控制RLC层;RLC层的各个信道包括以下至少一种:专用业务信道DTCH、公共控制信道CCCH、专用控制信道DCCH、寻呼控制信道PCCH和广播控制信道BCCH。
图7为本申请实施例提供的一种RLC层的对接信道示意图,如图7所示,代理终端(agent UE)将自身的DTCH通过IPC实现与基站(gNodeB)的DTCH的数据传输,完成自身的DTCH与基站的DTCH的对接,以建立代理终端与基站的DTCH的对接信道,自身的DTCH与基站的DTCH遵循相同的协议;代理终端将自身的CCCH通过IPC实现与基站的CCCH的数据传输,完成自身的CCCH与基站的CCCH的对接,以建立代理终端与基站的CCCH的对接信道,自身的CCCH与基站的CCCH遵循相同的协议;代理终端将自身的DCCH通过IPC实现与基站的DCCH的数据传输,完成自身的DCCH与基站的DCCH的对接,以建立代理终端与基站的DCCH的对接信道,自身的DCCH与基站的DCCH遵循相同的协议;代理终端将自身的PCCH通过IPC实现与基站的PCCH的数据传输,完成自身的PCCH与基站的PCCH的对接,以建立代理终端与基站的PCCH的对接信道,自身的PCCH与基站的PCCH遵循相同的协议;代理终端将自身的BCCH通过IPC实现与基站的BCCH的数据传输,完成自身的BCCH与基站的BCCH的对接,以建立代理终端与基站的BCCH的对接信道,自身的BCCH与基站的BCCH遵循相同的协议;DTCH的对接信道以及DCCH的对接信道的至少一种:为RLC层的各个对接信道的专用信道;CCCH的对接信道、PCCH的对接信道以及BCCH的对接信道中的至少一种:为RLC层的各个对接信道的公共信道。
代理终端通过IPC在RLC层进行信道打桩,从而实现代理终端和基站在RLC层的各个逻辑信道的对接,各个信道根据遵循的3GPP协议进行一一对接,可以理解的是,各个对接信道遵循相同的3GPP协议规范。如图7所示,信令无线承载(Signalling Radio Bearer,SRB)对应的逻辑信道的连接实现空口RLC层控制数据协议的对接,数据无线承载(Data Radio Bearer,DRB)对应的逻辑信道的连接实现空口RLC层用户业务数据协议的对接。代理终端与普通终端一样,代理终端需要创建数据无线承载DRB和信令无线承载SRB来实现业务数据和控制信令的传输。需要注意的是,数据无线承载DRB的数量根据RRC(Radio Resource Control,无线资源控制)配置信令来动态创建和配置。
代理终端在完成RLC层的各个信道与基站中RLC层的各个信道按照各个信道遵循的协议进行一一对接之后,得到RLC层的各个对接信道之后。代理终端针对自身与基站中承载在RLC层之外的各个层的各个第一信道,按照各个第一信道遵循的3GPP协议进行信道映射,得到第一对接信道。与此同时,代理终端针对自身与基站中承载在RLC层之外的各个层的各个第二信道,按照各个第二信道遵循的3GPP协议进行信道映射,得到第二对接信道。
图8为本申请实施例提供的一种RLC层的控制面协议栈的示意图,如图8所示,代理终端(agent UE)在L2层中的RLC层通过IPC实现信道打桩,使得代理终端与基站控制面协议栈的RLC层的各个信道实现对接。代理终端与基站中承载在RLC层之上的各个层通过遵循3GPP协议规范进行对等层之间的信道映射。对于控制面端到端协议栈(也称为控制面协议栈),和3GPP协议栈的区别在于空口协议栈部分。一般情况下,RLC层的逻辑信道需要映射到MAC层的传输信道进行数据封装传输,在实现代理终端时,代理终端的RLC层的各个逻辑信道与基站的RLC层的各个逻辑信道进行对接。控制面协议栈主要 是代理终端的SRB0、SRB1、SRB2对应的控制信道、BCCH、PCCH与基站对应的各个逻辑信道进行对接。需要说明的是,控制面协议栈的RLC以及承载在RLC层之上的各个层(PDCP、RRC)遵循3GPP协议规范进行对等层之间的通信。
图9为本申请实施例提供的一种RLC层的用户面协议栈的示意图,如图9所示,代理终端在L2层中的RLC层通过IPC实现信道打桩,使得代理终端与基站用户面协议栈的RLC层的各个信道实现对接。代理终端与基站中承载在RLC层之上的各个层通过遵循3GPP协议规范进行对等层之间的信道映射。对于用户面协议栈,端到端流程与3GPP协议栈类似,差异点在于空口协议栈部分,用户面协议栈的RLC层承载了用户的业务数据。用户面协议栈与控制面协议栈一样,3GPP协议定义了RLC逻辑信道和MAC传输信道之间通过映射和解映射来实现RLC层的PDU数据的发送接收对应的数据封装和解封装。RLC层中各个逻辑业务信道根据RRC重配置信令创建的DRB实体来承载。在RLC层的信道打桩方案下,用户面协议栈的RLC层的各个逻辑业务信道直接和基站的RCL层的各个逻辑业务信道进行对接,从而实现RLC层的SDU(Service Data Unit,服务数据单元)的收发。也就是说,代理终端或者基站在RLC层无须将SDU封装成PDU(Protocol Data Unit,协议数据单元)发送给MAC层,同样的,代理终端或者基站在MAC层也无须将接收的PDU进行解封装成SDU。
需要说明的是,上述以5G系统为例描述代理终端的信道打桩实现方法仅为一种示例,信道打桩方法的选择需要根据实际的应用场景进行选择。基站内部进程间通信IPC的实现可以根据基站自身的软件以及硬件的架构来确定。可以理解的是,基站内部IPC的实现可以是芯片内进程间通信,也可以为跨芯片的进程间通信。本申请实现的代理终端具备和基站、核心网完整的控制面信令交互能力,以及和基站、核心网完整的用户面数传能力,支持核心网控制面、用户面分离,支持边缘计算以及各种类型网络切片。代理终端从协议完备性、一致性和正常UE并无差异,只是空口协议栈实现可裁剪(不实现物理层,MAC和RLC层实现根据配置确定)。
在本申请实施例中,如图10所示,步骤101包括步骤301至步骤302:
步骤301、在代理终端处于开机状态时,代理终端通过双向数传通道中的公共信道,向基站发送随机接入信息。
在本申请的一些实施例中,代理终端与基站建立双向数传通道之前,使用人员将代理终端设置为开机状态。
作为一种可实现的方式,在代理终端处于开机状态时,代理终端与基站的RLC层的各个公共通道通过IPC进行对接,RLC层的各个公共通道可以为RACH、CCCH、BCCH、PCCH等。代理终端通过双向数传通道的公共通道,向基站发送随机接入信息。
步骤302、代理终端基于随机接入信息,完成与基站的随机接入过程,并通过构建的双向数传通道中的专用信道,接收基站传输的基站数据。
作为一种可实现的方式,基站通过双向数传通道的公共通道接收到代理终端发送的随机接入信息,基于随机接入信息,代理终端完成与基站的随机接入过程。随后,基站基于双向数传通道的专用信道向代理终端发送基站数据,双向数传通道的专用信道可以为DCCH、DTCH,代理终端基于双向数传通道的专用信道接收基站发送的基站数据。
在本申请实施例中,如图11所示,步骤102包括步骤401至步骤403:
步骤401、代理终端基于无线电接入网协议,将基站数据发送至核心网。
无线电接入网(Radio Access Network,RAN)是移动通信系统中的一部分,是无线电接入技术的实现,RAN存在于一个设备(例如,移动电话、计算机或任何被远程控制的机器)与核心网之间,提供设备与核心网之间的通信连接。
步骤402、在核心网的鉴权认证结果为通过的情况下,建立与核心网的连接。
步骤403、在与核心网连接成功的情况下,通过核心网将基站数据发送至目标网络节点,进行基站与目标网络节点的数据交互。
作为一种可实现的方式,核心网对代理终端的身份信息进行鉴权认证,若核心网对代理终端的鉴权认证结果为通过,则代理终端建立与核心网的连接。
作为一种代理终端身份识别和用户签约信息方案,代理终端在核心网看来是一个真实存在的终端,对于代理终端的接入认证以及用户上下文信息的存储,核心网可以根据实际部署场景选择是采用和真实终端类似的SIM卡(Subscriber Identity Module,用户识别卡)或者eSIM卡(Embedded Subscriber Identity Module,嵌入式用户识别卡)来解决身份认证问题。另外,核心网还可以采用其他自定义的终端身份识别方案,在核心网中用户签约信息根据具体使用场景确定,例如:加密方案、用户QoS配置、计费方式、切片信息等等。
在本申请的一些实施例中,目标网络节点包括以下至少一项:资源协同网元、感知网元、智能处理网元和能力开放网元。
作为一种可实现的方式,当代理终端与核心网建立连接之后,代理终端将基站数据通过核心网发送至目标网络节点,通过核心网,代理终端接收目标网络节点发送的第一目标数据,并将第一目标数据转发至基站对应的目标模块,以进行基站与目标网络节点的数据交互,其中,第一目标数据表征目标网络节点发送至目标模块的数据。
作为另一种可实现的方式,基于无线电接入网RAN协议,代理终端将基站数据发送至目标终端,代理终端接收目标终端发送的第二目标数据,并将第二目标数据转发至基站对应的目标模块,以进行基站与目标终端的数据交互,第二目标数据表征目标终端发送至目标模块的数据。
在本申请的一些实施例中,目标模块包括以下至少一项:参数采集模块、原生智能模块、感知模块、网元协同模块以及外部功能模块。
在本申请的一些实施例中,目标网络节点包括以下至少一项:资源协同网元、感知网元、智能处理网元和能力开放网元。
本申请提出了一种遥感智能一体化基站用于实现基站数据传输,图12为本申请实施例提出的一种遥感智能一体化基站的结构示意图,如图12所示,遥感智能一体化基站(也称为基站),代理终端属于基站内部一个软件功能模块,基站数据的传输过程为基站侧中目标模块的基站数据通过代理终端传输至目标网络节点或者目标终端。其中,目标模块包括基站中内置的各个功能模块以及外部功能模块,基站中内置的各个功能模块为数据采集模块、感知模块、原生智能模块以及网元协同模块。目标网络节点包括资源协同网元、感知网元、智能处理网元、能力开放网元以及其他功能网元。基站数据可以为基站内部数据和基站外部数据,其中,基站内部数据为基站产生和/或采集的数据,,基站外部数据为通过接口向基站传输的数据。可以理解的是,基站内部数据为基站中内置的各种功能模块产生的数据,基站数据可以为以下至少一种:数据采集模块产生的数据、感知模块产生的数据、原生智能模块产生的数据、网元协同模块产生的数据、外部功能模块产生的数据。
作为一种可实现的方式,针对图12中的遥感智能一体化基站,下面以RLC层信道打 桩方式为例介绍代理终端进行基站数据传输的工作流程,如图13所示,该方法包括步骤501至步骤513:
步骤501、将代理终端设置为开机状态。
代理终端开机后向基站发起注册,建立RACH、CCCH、BCCH、PCCH的IPC通道,基站对应也建立和代理终端通信的对应IPC通道。
步骤502、代理终端通过进程间通信IPC,将自身的RLC层的DTCH、CCCH、DCCH、PCCH、BCCH、RACH与基站中RLC的各个信道按照各个信道遵循的协议进行一一对接,得到RLC层的各个对接信道。
步骤503、代理终端将承载在RLC层之外的各个信道,按照各个信道遵循的协议进行信道映射,得到RLC层之外的各个对接信道。
步骤504、代理终端基于RLC层的各个对接信道以及RLC层之外的各个对接信道,建立代理终端与基站之间的双向数传通道。
步骤505、代理终端通过双向数传通道中的RACH、CCCH、BCCH、PCCH,向基站发送随机接入信息。
代理终端在开机后向基站发起注册,通过双向数传通道中的RACH、CCCH、BCCH、PCCH,向基站发送随机接入信息,然后代理终端和基站按照正常的随机接入流程开展后续动作。
步骤506、基于随机接入信息,代理终端完成与基站的随机接入过程。
在随机接入过程中,代理终端与基站基于双向数传通道中的DTCH、DCCH实现信令和业务数据的传输,代理终端和基站完成无线信令承载SRB和无线数据承载DRB的建立。
步骤507、代理终端通过双向数传通道中的DTCH、DCCH,代理终端与基站进行鉴权认证,若鉴权认证结果为通过,则代理终端接收基站传输的基站数据。
代理终端和基站完成无线信令承载SRB和无线数据承载DRB的建立之后,需要进一步启动代理终端与基站的鉴权、认证、注册等流程已完成代理终端与基站的鉴权认证。若鉴权认证结果为通过,则代理终端将基站数据发送至目标终端或者目标网络节点,若代理终端将基站数据发送至目标网络节点,则执行步骤508至步骤510,若代理终端将基站数据发送至目标终端,则执行步骤511至步骤513。
步骤508、基于无线电接入网RAN协议,代理终端将基站数据发送至核心网,核心网对代理终端进行鉴权认证,若鉴权认证结果为通过,则建立代理终端与核心网的连接。
步骤509、通过核心网,代理终端与目标网络节点进行数据收发。
作为一种可实现的方式,代理终端通过核心网,接收目标网络节点发送的第一目标数据,并将第一目标数据转发至基站对应的目标模块,完成基站与目标网络节点的双向通信(数据收发);第一目标数据表征目标网络节点发送至目标模块的数据。
步骤510、判断代理终端是否为关机状态。
若否,则重复步骤509,若是,则结束基站与目标网络节点的双向数据传输。
步骤511、基于无线电接入网RAN协议,代理终端与目标终端进行鉴权认证,若鉴权认证结果为通过,则建立代理终端与目标终端的连接。
步骤512、代理终端与目标终端进行数据收发。
作为一种可实现的方式,基于无线电接入网RAN协议,代理终端将基站数据发送至目标终端,代理终端接收目标终端发送的第二目标数据,并将第二目标数据转发至基站对 应的目标模块,完成基站与目标终端的双向通信(数据收发),第二目标数据表征目标终端发送至目标模块的数据。
步骤513、判断代理终端是否为关机状态。
若否,则重复步骤512,若是,则结束基站与目标终端的双向数据传输。
在本申请实施例中,代理终端在开机后通过IPC向基站发起注册,建立RACH、CCCH、BCCH、PCCH信道,基站对应也建立和代理终端通信的对应的IPC通道,然后代理终端和基站按照正常的随机接入流程开展后续的动作。在随机接入过程中,代理终端和基站建立DCCH、DTCH通道实现信令和业务的数据传输。代理终端和基站完成SRB和DRB建立后,需要进一步和核心网启动鉴权、认证、注册流程以完成入网。入网流程完成之后,代理终端可以和核心网进行数据传输业务,此时基站可以通过代理终端和目标节点(目标模块)进行双向通信。
需要说明的是,代理终端属于基站内部一个软件功能模块,在接入基站实现数据传输时,基站需要做相应的处理以支持和代理终端的信道打桩对接,并在某些功能实现时做相应的简化和适配,比如,移动性管理、测量配置、无线资源分配等等。
另外,基站对于代理终端的特殊处理在于和代理终端各逻辑信道的IPC通道打桩直接对接,可以理解的是,基站对于代理终端的特殊处理在于代理终端与基站的各个信道的通过IPC进行信道打桩进而实现各个信道的直接对接,而不是按照基站与常规终端从L1层(物理层)到L2层(无线链路层)的接口进行数据收发。预设打桩层(例如,L2中的MAC层和RLC层)及以上各层协议均和常规终端处理一样,基站与代理终端的用户上下文、同核心网交互的用户实例与普通终端无差别,均按照普通终端的方式实现。
此外,由于代理终端的特殊性,基站部分功能实现时需要做简化处理。代理终端是固定接入其对应的基站,移动性管理可以做简化处理,测量配置和上报可以省略或做简化处理,代理终端接入流程可以简化,代理终端无须做TA(Time Advanced,最大时间提前量)调整、重同步等。另外,代理终端无须做信道探测以及无线资源分配调度,同样代理终端也无须配置各种信道探测资源。由于代理终端和基站空口通信无须实现物理层,如此,基站做无线资源调度时不需要给代理终端分配空口RB(Resource Element,资源元素)资源和资源调度、链路自适应处理,基站的各物理信道也无须配置资源和实现。
需要说明的是,在传输信道打桩或逻辑信道打桩对接时需要确定MAC层PDU大小(针对MAC层信道打桩)或RLC层PDU大小(针对RLC信道打桩)以及TTI(Time to Interactive,互动时间)起点和间隔。由于代理终端和基站无须实现严格的时间同步,也不占用空口RB资源,如此,代理终端和基站之间在进行空口数据传输的时候,可以按照缓存情况按序收发数据。例如,每次MAC层PDU组包或RLC层PDU组包时,可以按照PDU和对应的SDU一比一的比例进行组包。
可以理解的是,一方面,基站具备终端通信能力,为基站内部的各个功能模块提供和远端目标节点的点对点通信能力,使得基站智能化。代理终端可以作为网关,为基站内各个功能模块的各种网络数据提供实时搜集和协同处理,各种智能化决策数据可以分发到基站实时执行,使得基站支持更加便捷地部署边缘计算、边缘存储、边缘智能等。一方面,基站具备终端通信能力,可以为基站外设提供点对点双向数传通道,支持通信、感知、计算、存储融合以及智能处理,把融合或无须融合的数据传输到目标节点(目标网络节点或者目标终端)。一方面,基站具备终端通信能力,可以和本基站服务的终端(外部功能模 块)直接通信,也可以和其他基站下的终端(目标终端)直接通信,在基站部署的各种融合感知系统可以通过基站快速、便捷、安全的和周围智能终端交互、协同,使能汽车、无人机等智能机器终端自动驾驶等特性大规模商用和部署。一方面,基站的终端功能通过代理终端实现,代理终端和基站之间空口协议栈通过信道打桩对接,信道打桩对接可通过进程间通信纯软件实现,无须实现空口物理层信号处理和额外硬件支撑。通过此机制,可实现高可靠,低时延,按需带宽和安全等级的双向数据通信,并降低产品实现复杂度和安装成本。
可以理解的是,在本申请实施例中,另一个方面,当前支持通信感知计算融合,需要扩展核心网网元功能和协议已支持通信感知功能网元和基站的数据通信,通过新增接口的方式会增加协议实现复杂度和增加传输时延,并且降低了网络部署灵活性。在未来服务化核心网和接入网时代,本申请支持基站直接和各功能网元通信,无疑降低了协议复杂度和数据传输时延,且具有相当大的灵活度。本申请对基站未来智能化引入也有很好的支持,由于基站直接具备和其他节点的点到点通信能力,和各种智能化网元,异构功能节点交互更加灵活高效,无须扩展传统的控制面节点协议和组网架构。再一个方面,如果使用网管系统来实现基站和其他功能节点数据分发和交互,会打破管理系统和业务系统界限,对安全和网络运行造成不可预知的问题和风险。同时,组网灵活性和数传时延对应用造成不可克服的障碍。本申请把基站数据通过代理终端到核心网端到端的通信方式,从组网灵活性(如边缘计算、服务化网络架构)、安全性、低时延高可靠等方面相较网络系统的方式具有较强的优势。再一个方面,针对基站外挂终端作为数据传输的锚点方案,本申请的代理终端无须进行空口信号传输,不会占用宝贵空口资源,不会对基站造成信号干扰,进而简化基站的安装部署。又一方面,当前网络架构和协议并不支持基站随路捎带数据到其他网络节点,本申请可以实现基站将外设数据通过代理终端回传数据到目标节点,且不破坏当前网络架构和协议体系。
本申请的核心思想是基站数据通过终端(代理终端)进行收发,终端(代理终端)辅助形成一个数据隧道提供给基站进行数据分发,终端(代理终端)还是按照正常的接入流程通过基站、传输网、核心网进行数据传输。另外本申请的核心思想还在于代理终端在实现时通过信道打桩和基站进行通信,从而降低对硬件的依赖并减小产品复杂度。
在通信感知一体化、基站智能化时代,基站自身的数据或基站外设的数据需要更多的其他网络节点或终端节点进行点对点数据交换,当前协议体系结构并不直接支持基站和这些节点通信,存在强烈的技术和市场需求。本申请首先可以在6G标准推进中提前进行布局,解决通感一体化和基站智能化基站和其他节点数据通信需求;其次在4G、5G基站中也可以实施,应用在无人驾驶、无人机基站等场景,尤其是无人机基站场景,把无人机作为基站的外设,可以实时把无人机采集的视频数据或其他传感数据回传到平台,并支持无人机远程操控以及飞行信息实时回传。当前无人机,不管是大型固定翼无人机、垂起固定翼无人机、直升机还是旋翼无人机均没有和基站互通的接口,无法通过基站进行数据回传,也无法结合基站信息融合处理。本申请可解决无人机基站在应急通信场景无人机飞行数据、视频、基站本身信息实时回传的需求,并通过基站数据通道远程操控无人机,实现通信、感知、控制一体化。
应当注意,尽管在附图中以特定顺序描述了本申请中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实 现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等;或者,将不同实施例中步骤组合为新的技术方案。
图14为本申请实施例提供的一种基站数据传输装置的结构示意图,如图14所示,基站数据传输装置600包括:数据接收部分601、数据传输部分602和信道构建部分603,其中:
数据接收部分601,被配置为接收所述基站通过已构建的双向数传通道传输的基站数据;所述双向数传通道为所述代理终端与所述基站实现对等层之间数据交互的通道;
数据传输部分602,被配置为通过核心网将所述基站数据发送至目标网络节点,以进行所述基站与所述目标网络节点的数据交互;或者,将所述基站数据发送至所述目标终端,以进行所述基站与所述目标终端的数据交互。
在本申请的一些实施例中,所述基站数据为基站内部数据和基站外部数据中的至少一种,所述基站内部数据为所述基站产生和/或采集的数据;所述基站外部数据为通过接口向所述基站传输的数据。
在本申请的一些实施例中,基站数据传输装置600还包括:信道构建部分603,被配置为通过信道打桩,将自身与所述基站的对等层的各个信道进行对接,以建立所述代理终端与所述基站之间的所述双向数传通道。
在本申请的一些实施例中,信道构建部分603,还被配置为通过进程间通信IPC,将预设打桩层的各个信道与所述基站中预设打桩层的各个信道,按照各个信道遵循的协议进行一一对接,得到所述预设打桩层的各个对接信道,所述预设打桩层为物理层的各个子层以及数据链路层的各个子层的至少一种;将承载在所述预设打桩层之外的各个信道,按照各个信道遵循的协议进行信道映射,得到所述预设打桩层之外的各个对接信道;基于所述预设打桩层的各个对接信道以及所述预设打桩层之外的各个对接信道,建立所述代理终端与所述基站之间的双向数传通道。
在本申请的一些实施例中,所述预设打桩层为所述数据链路层的子层中的介质访问控制MAC层;所述各个信道包括以下至少一种:上行共享信道ULSCH、随机接入信道RACH、下行共享信道DLSCH、寻呼信道PCH和广播信道BCH。
在本申请的一些实施例中,信道构建部分603,还被配置为以下至少一种:将自身的ULSCH通过所述IPC实现与所述基站的ULSCH的数据传输,完成所述自身的ULSCH与所述基站的ULSCH的对接,以建立所述代理终端与所述基站的ULSCH的对接信道,所述自身的ULSCH与所述基站的ULSCH遵循相同的协议;将自身的RACH通过所述IPC实现与所述基站的RACH的数据传输,完成所述自身的RACH与所述基站的RACH的对接,以建立所述代理终端与所述基站的RACH的对接信道,所述自身的RACH与所述基站的RACH遵循相同的协议;将自身的DLSCH通过所述IPC实现与所述基站的DLSCH的数据传输,完成所述自身的DLSCH与所述基站的DLSCH的对接,以建立所述代理终端与所述基站的DLSCH的对接信道,所述自身的DLSCH与所述基站的DLSCH遵循相同的协议;将自身的PCH通过所述IPC实现与所述基站的PCH的数据传输,完成所述自身的PCH与所述基站的PCH的对接,以建立所述代理终端与所述基站的PCH的对接信道,所述自身的PCH与所述基站的PCH遵循相同的协议;将自身的BCH通过所述IPC实现与所述基站的BCH的数据传输,完成所述自身的BCH与所述基站的BCH的对接,以建 立所述代理终端与所述基站的BCH的对接信道,所述自身的BCH与所述基站的BCH遵循相同的协议;所述ULSCH的对接信道、所述RACH的对接信道、所述DLSCH的对接信道、所述PCH的对接信道以及所述BCH的对接信道中的至少一种:为所述MAC层的各个对接信道的公共信道。
在本申请的一些实施例中,所述预设打桩层为所述数据链路层的子层中的无线链路控制RLC层;所述各个信道包括以下至少一种:专用业务信道DTCH、公共控制信道CCCH、专用控制信道DCCH、寻呼控制信道PCCH和广播控制信道BCCH。
在本申请的一些实施例中,信道构建部分603,还被配置为以下至少一种:将自身的DTCH通过所述IPC实现与所述基站的DTCH的数据传输,完成所述自身的DTCH与所述基站的DTCH的对接,以建立所述代理终端与所述基站的DTCH的对接信道,所述自身的DTCH与所述基站的DTCH遵循相同的协议;将自身的CCCH通过所述IPC实现与所述基站的CCCH的数据传输,完成所述自身的CCCH与所述基站的CCCH的对接,以建立所述代理终端与所述基站的CCCH的对接信道,所述自身的CCCH与所述基站的CCCH遵循相同的协议;将自身的DCCH通过所述IPC实现与所述基站的DCCH的数据传输,完成所述自身的DCCH与所述基站的DCCH的对接,以建立所述代理终端与所述基站的DCCH的对接信道,所述自身的DCCH与所述基站的DCCH遵循相同的协议;将自身的PCCH通过所述IPC实现与所述基站的PCCH的数据传输,完成所述自身的PCCH与所述基站的PCCH的对接,以建立所述代理终端与所述基站的PCCH的对接信道,所述自身的PCCH与所述基站的PCCH遵循相同的协议;将自身的BCCH通过所述IPC实现与所述基站的BCCH的数据传输,完成所述自身的BCCH与所述基站的BCCH的对接,以建立所述代理终端与所述基站的BCCH的对接信道,所述自身的BCCH与所述基站的BCCH遵循相同的协议;所述DTCH的对接信道以及所述DCCH的对接信道的至少一种:为所述RLC层的各个对接信道的专用信道;所述CCCH的对接信道、所述PCCH的对接信道以及所述BCCH的对接信道中的至少一种:为所述RLC层的各个对接信道的公共信道。
在本申请的一些实施例中,信道构建部分603,还被配置为针对自身与所述基站中承载在所述预设打桩层之外的各个层的各个第一信道,按照所述各个第一信道遵循的3GPP协议进行信道映射,得到第一对接信道,所述第一信道为所述代理终端与所述基站的控制面协议栈中的信道;针对自身与所述基站中承载在所述预设打桩层之外的各个层的各个第二信道,按照所述各个第二信道遵循的3GPP协议进行信道映射,得到第二对接信道,所述第二信道为所述代理终端与所述基站的用户面协议栈中的信道;根据所述第一对接信道以及所述第二对接信道,得到所述预设打桩层之外的各个对接信道。
在本申请的一些实施例中,数据接收部分601,还被配置为在处于开机状态时,通过所述双向数传通道中的公共信道,向所述基站发送随机接入信息;基于所述随机接入信息,完成与所述基站的随机接入过程,并通过所述构建的双向数传通道中的专用信道,接收所述基站传输的所述基站数据。
在本申请的一些实施例中,数据传输部分块602,还被配置为基于无线电接入网RAN协议,将所述基站数据发送至核心网;在所述核心网的鉴权认证结果为通过的情况下,建立与所述核心网的连接;在与所述核心网连接成功的情况下,通过所述核心网将所述基站数据发送至所述目标网络节点,以进行所述基站与所述目标网络节点的数据交互。
在本申请的一些实施例中,数据传输部分602,还被配置为通过所述核心网,接收所 述目标网络节点发送的第一目标数据,并将所述第一目标数据转发至所述基站对应的目标模块,以进行所述基站与所述目标网络节点的数据交互;所述第一目标数据表征所述目标网络节点发送至所述目标模块的数据。
在本申请的一些实施例中,数据传输部分602,还被配置为基于无线电接入网RAN协议,将所述基站数据发送至所述目标终端;接收所述目标终端发送的第二目标数据,并将所述第二目标数据转发至所述基站对应的目标模块,以进行所述基站与所述目标终端的数据交互,所述第二目标数据表征所述目标终端发送至所述目标模块的数据。
在本申请的一些实施例中,所述目标模块包括以下至少一项:参数采集模块、原生智能模块、感知模块、网元协同模块以及外部功能模块。
在本申请的一些实施例中,所述目标网络节点包括以下至少一项:资源协同网元、感知网元、智能处理网元和能力开放网元。
需要说明的是,本申请实施例中的基站数据传输装置对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。也可以采用软件和硬件结合的形式实现。
需要说明的是,本申请实施例中,如果以软件功能模块的形式实现上述的方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得电子设备执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本申请实施例不限制于任何特定的硬件和软件结合。
基于上述实施例的方法,如图15所示,本申请实施例提供的一种电子设备700,包括存储器701以及处理器702;其中,所述存储器701,被配置为存储可执行指令;所述处理器702,被配置为执行所述存储器中存储的可执行指令时,实现执行如本申请实施例所述的基站数据传输方法。
本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中提供的基站数据传输方法中的步骤。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例提供的基站数据传输方法中的步骤。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
这里需要指出的是:以上存储介质和设备实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请存储介质、存储介质和设备实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”或“一些实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整 个说明书各处出现的“在一个实施例中”或“在一实施例中”或“在一些实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。上文对各个实施例的描述倾向于强调各个实施例之间的不同之处,其相同或相似之处可以互相参考,为了简洁,本文不再赘述。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如对象A和/或对象B,可以表示:单独存在对象A,同时存在对象A和对象B,单独存在对象B这三种情况。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者设备中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个模块或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的模块可以是、或也可以不是物理上分开的,作为模块显示的部件可以是、或也可以不是物理模块;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部模块来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能模块可以全部集成在一个处理单元中,也可以是各模块分别单独作为一个单元,也可以两个或两个以上模块集成在一个单元中;上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本申请上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得电子设备执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。
本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以任意组合, 得到新的产品实施例。
本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
以上所述,仅为本申请的实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以本申请实施例的保护范围为准。
工业实用性
本申请实施例公开了一种基站数据传输方法、装置、设备及可读存储介质,应用于代理终端,代理终端具备与基站、目标终端以及核心网进行通信的能力;目标终端为接入基站的终端,方法包括:接收基站通过已构建的双向数传通道传输的基站数据;双向数传通道为代理终端与基站实现对等层之间数据交互的通道;通过核心网将基站数据发送至目标网络节点,以进行基站与目标网络节点的数据交互;或者,将基站数据发送至目标终端,以进行基站与目标终端的数据交互。一方面,本申请通过在代理终端与基站构建数传通道,使得基站可以通过已构建的双向数传通道传输的基站数据,代理终端将基站数据发送至目标终端或者目标网络节点,以进行基站与目标网络节点或者目标终端的数据交互,从而完成基站与目标终端或者目标网络节点的双向通信。由于双向数传通道为代理终端与基站实现对等层之间双向数据交互的通道,如此,基站可以通过该双向数传通道实现与任何网络功能节点(包括网络中的各种终端)的点对点双向通信,极大的扩展了基站和其它功能节点数据传输的灵活性和安全性。另一方面,本申请的双向数传通道可以实现代理终端与基站的对等层之间双向数据交互,如此,代理终端无须进行空口信号传输,进而不会占用宝贵空口资源,不会对基站造成信号干扰,从而可以简化基站的安装部署。

Claims (28)

  1. 一种基站数据传输方法,应用于代理终端,所述代理终端具备与基站、目标终端以及核心网进行通信的能力;所述目标终端为接入所述基站的终端,所述方法包括:
    接收所述基站通过已构建的双向数传通道传输的基站数据;所述双向数传通道为所述代理终端与所述基站实现对等层之间数据交互的通道;
    通过核心网将所述基站数据发送至目标网络节点,以进行所述基站与所述目标网络节点的数据交互;或者,
    将所述基站数据发送至所述目标终端,以进行所述基站与所述目标终端的数据交互。
  2. 根据权利要求1所述的方法,其中,所述基站数据为基站内部数据和基站外部数据中的至少一种,所述基站内部数据为所述基站产生和/或采集的数据;所述基站外部数据为通过接口向所述基站传输的数据。
  3. 根据权利要求1或2所述的方法,其中,所述接收所述基站通过已构建的双向数传通道传输的基站数据之前,所述方法还包括:
    通过信道打桩,将自身与所述基站的对等层的各个信道进行对接,以建立所述代理终端与所述基站之间的所述双向数传通道。
  4. 根据权利要求3所述的方法,其中,所述通过信道打桩,将自身与所述基站的对等层的各个信道进行对接,以建立所述代理终端与所述基站之间的所述双向数传通道,包括:
    通过进程间通信IPC,将预设打桩层的各个信道与所述基站中预设打桩层的各个信道,按照各个信道遵循的协议进行一一对接,得到所述预设打桩层的各个对接信道,所述预设打桩层为物理层的各个子层以及数据链路层的各个子层的至少一种;
    将承载在所述预设打桩层之外的各个信道,按照各个信道遵循的协议进行信道映射,得到所述预设打桩层之外的各个对接信道;
    基于所述预设打桩层的各个对接信道以及所述预设打桩层之外的各个对接信道,建立所述代理终端与所述基站之间的双向数传通道。
  5. 根据权利要求4所述的方法,其中,所述预设打桩层为所述数据链路层的子层中的介质访问控制MAC层;所述各个信道包括以下至少一种:上行共享信道ULSCH、随机接入信道RACH、下行共享信道DLSCH、寻呼信道PCH和广播信道BCH;
    所述通过进程间通信IPC,将预设打桩层的各个信道与所述基站中预设打桩层的各个信道,按照各个信道遵循的协议进行一一对接,得到所述预设打桩层的各个对接信道,包括以下至少一种:
    将自身的ULSCH通过所述IPC实现与所述基站的ULSCH的数据传输,完成所述自身的ULSCH与所述基站的ULSCH的对接,以建立所述代理终端与所述基站的ULSCH的对接信道,所述自身的ULSCH与所述基站的ULSCH遵循相同的协议;
    将自身的RACH通过所述IPC实现与所述基站的RACH的数据传输,完成所述自身的RACH与所述基站的RACH的对接,以建立所述代理终端与所述基站的RACH的对接信道,所述自身的RACH与所述基站的RACH遵循相同的协议;
    将自身的DLSCH通过所述IPC实现与所述基站的DLSCH的数据传输,完成所述自 身的DLSCH与所述基站的DLSCH的对接,以建立所述代理终端与所述基站的DLSCH的对接信道,所述自身的DLSCH与所述基站的DLSCH遵循相同的协议;
    将自身的PCH通过所述IPC实现与所述基站的PCH的数据传输,完成所述自身的PCH与所述基站的PCH的对接,以建立所述代理终端与所述基站的PCH的对接信道,所述自身的PCH与所述基站的PCH遵循相同的协议;
    将自身的BCH通过所述IPC实现与所述基站的BCH的数据传输,完成所述自身的BCH与所述基站的BCH的对接,以建立所述代理终端与所述基站的BCH的对接信道,所述自身的BCH与所述基站的BCH遵循相同的协议;
    所述ULSCH的对接信道、所述RACH的对接信道、所述DLSCH的对接信道、所述PCH的对接信道以及所述BCH的对接信道中的至少一种:为所述MAC层的各个对接信道的公共信道。
  6. 根据权利要求4所述的方法,其中,所述预设打桩层为所述数据链路层的子层中的无线链路控制RLC层;所述各个信道包括以下至少一种:专用业务信道DTCH、公共控制信道CCCH、专用控制信道DCCH、寻呼控制信道PCCH和广播控制信道BCCH;
    所述通过进程间通信IPC,将预设打桩层的各个信道与所述基站中预设打桩层的各个信道按照各个信道遵循的协议进行一一对接,得到所述预设打桩层的各个对接信道,包括以下至少一种:
    将自身的DTCH通过所述IPC实现与所述基站的DTCH的数据传输,完成所述自身的DTCH与所述基站的DTCH的对接,以建立所述代理终端与所述基站的DTCH的对接信道,所述自身的DTCH与所述基站的DTCH遵循相同的协议;
    将自身的CCCH通过所述IPC实现与所述基站的CCCH的数据传输,完成所述自身的CCCH与所述基站的CCCH的对接,以建立所述代理终端与所述基站的CCCH的对接信道,所述自身的CCCH与所述基站的CCCH遵循相同的协议;
    将自身的DCCH通过所述IPC实现与所述基站的DCCH的数据传输,完成所述自身的DCCH与所述基站的DCCH的对接,以建立所述代理终端与所述基站的DCCH的对接信道,所述自身的DCCH与所述基站的DCCH遵循相同的协议;
    将自身的PCCH通过所述IPC实现与所述基站的PCCH的数据传输,完成所述自身的PCCH与所述基站的PCCH的对接,以建立所述代理终端与所述基站的PCCH的对接信道,所述自身的PCCH与所述基站的PCCH遵循相同的协议;
    将自身的BCCH通过所述IPC实现与所述基站的BCCH的数据传输,完成所述自身的BCCH与所述基站的BCCH的对接,以建立所述代理终端与所述基站的BCCH的对接信道,所述自身的BCCH与所述基站的BCCH遵循相同的协议;
    所述DTCH的对接信道以及所述DCCH的对接信道的至少一种:为所述RLC层的各个对接信道的专用信道;所述CCCH的对接信道、所述PCCH的对接信道以及所述BCCH的对接信道中的至少一种:为所述RLC层的各个对接信道的公共信道。
  7. 根据权利要求4所述的方法,其中,所述将承载在所述预设打桩层之外的各个信道,按照各个信道遵循的协议进行信道映射,得到所述预设打桩层之外的各个对接信道,包括:
    针对自身与所述基站中承载在所述预设打桩层之外的各个层的各个第一信道,按照所述各个第一信道遵循的3GPP协议进行信道映射,得到第一对接信道,所述第一信道为所 述代理终端与所述基站的控制面协议栈中的信道;
    针对自身与所述基站中承载在所述预设打桩层之外的各个层的各个第二信道,按照所述各个第二信道遵循的3GPP协议进行信道映射,得到第二对接信道,所述第二信道为所述代理终端与所述基站的用户面协议栈中的信道;
    根据所述第一对接信道以及所述第二对接信道,得到所述预设打桩层之外的各个对接信道。
  8. 根据权利要求1或2所述的方法,其中,所述接收所述基站通过已构建的双向数传通道传输的基站数据,包括:
    在处于开机状态时,通过所述双向数传通道中的公共信道,向所述基站发送随机接入信息;
    基于所述随机接入信息,完成与所述基站的随机接入过程,并通过所述构建的双向数传通道中的专用信道,接收所述基站传输的所述基站数据。
  9. 根据权利要求1所述的方法,其中,所述通过核心网将所述基站数据发送至目标网络节点,以进行所述基站与所述目标网络节点的数据交互,包括:
    基于无线电接入网RAN协议,将所述基站数据发送至核心网;
    在所述核心网的鉴权认证结果为通过的情况下,建立与所述核心网的连接;
    在与所述核心网连接成功的情况下,通过所述核心网将所述基站数据发送至所述目标网络节点,以进行所述基站与所述目标网络节点的数据交互。
  10. 根据权利要求9所述的方法,其中,所述通过所述核心网将所述基站数据发送至所述目标网络节点之后,所述方法还包括:
    通过所述核心网,接收所述目标网络节点发送的第一目标数据,并将所述第一目标数据转发至所述基站对应的目标模块,以进行所述基站与所述目标网络节点的数据交互;所述第一目标数据表征所述目标网络节点发送至所述目标模块的数据。
  11. 根据权利要求1所述的方法,其中,所述将所述基站数据发送至所述目标终端,以进行所述基站与所述目标终端的数据交互,包括:
    基于无线电接入网RAN协议,将所述基站数据发送至所述目标终端;
    接收所述目标终端发送的第二目标数据,并将所述第二目标数据转发至所述基站对应的目标模块,以进行所述基站与所述目标终端的数据交互,所述第二目标数据表征所述目标终端发送至所述目标模块的数据。
  12. 根据权利要求10或11所述的方法,其中,所述目标模块包括以下至少一项:参数采集模块、原生智能模块、感知模块、网元协同模块以及外部功能模块。
  13. 根据权利要求9至11任一项所述的方法,其中,所述目标网络节点包括以下至少一项:资源协同网元、感知网元、智能处理网元和能力开放网元。
  14. 一种基站数据传输装置,所述装置包括数据接收部分以及数据传输部分,其中,
    所述数据接收部分,被配置为接收所述基站通过已构建的双向数传通道传输的基站数据;所述双向数传通道为代理终端与所述基站实现对等层之间数据交互的通道;
    所述数据传输部分,被配置为通过核心网将所述基站数据发送至目标网络节点,以进行所述基站与所述目标网络节点的数据交互;或者,将所述基站数据发送至目标终端,以进行所述基站与所述目标终端的数据交互。
  15. 根据权利要求14所述的装置,其中,所述基站数据为基站内部数据和基站外部 数据中的至少一种,所述基站内部数据为所述基站产生和/或采集的数据;所述基站外部数据为通过接口向所述基站传输的数据。
  16. 根据权利要求14或15所述的装置,其中,所述装置还包括信道构建部分;
    所述信道构建部分,被配置为通过信道打桩,将自身与所述基站的对等层的各个信道进行对接,以建立所述代理终端与所述基站之间的所述双向数传通道。
  17. 根据权利要求16所述的装置,其中,所述信道构建部分,还被配置为通过进程间通信IPC,将预设打桩层的各个信道与所述基站中预设打桩层的各个信道,按照各个信道遵循的协议进行一一对接,得到所述预设打桩层的各个对接信道,所述预设打桩层为物理层的各个子层以及数据链路层的各个子层的至少一种;将承载在所述预设打桩层之外的各个信道,按照各个信道遵循的协议进行信道映射,得到所述预设打桩层之外的各个对接信道;基于所述预设打桩层的各个对接信道以及所述预设打桩层之外的各个对接信道,建立所述代理终端与所述基站之间的双向数传通道。
  18. 根据权利要求17所述的装置,其中,所述预设打桩层为所述数据链路层的子层中的介质访问控制MAC层;所述各个信道包括以下至少一种:上行共享信道ULSCH、随机接入信道RACH、下行共享信道DLSCH、寻呼信道PCH和广播信道BCH;所述信道构建部分,还被配置为以下至少一种:
    将自身的ULSCH通过所述IPC实现与所述基站的ULSCH的数据传输,完成所述自身的ULSCH与所述基站的ULSCH的对接,以建立所述代理终端与所述基站的ULSCH的对接信道,所述自身的ULSCH与所述基站的ULSCH遵循相同的协议;
    将自身的RACH通过所述IPC实现与所述基站的RACH的数据传输,完成所述自身的RACH与所述基站的RACH的对接,以建立所述代理终端与所述基站的RACH的对接信道,所述自身的RACH与所述基站的RACH遵循相同的协议;
    将自身的DLSCH通过所述IPC实现与所述基站的DLSCH的数据传输,完成所述自身的DLSCH与所述基站的DLSCH的对接,以建立所述代理终端与所述基站的DLSCH的对接信道,所述自身的DLSCH与所述基站的DLSCH遵循相同的协议;
    将自身的PCH通过所述IPC实现与所述基站的PCH的数据传输,完成所述自身的PCH与所述基站的PCH的对接,以建立所述代理终端与所述基站的PCH的对接信道,所述自身的PCH与所述基站的PCH遵循相同的协议;
    将自身的BCH通过所述IPC实现与所述基站的BCH的数据传输,完成所述自身的BCH与所述基站的BCH的对接,以建立所述代理终端与所述基站的BCH的对接信道,所述自身的BCH与所述基站的BCH遵循相同的协议;
    所述ULSCH的对接信道、所述RACH的对接信道、所述DLSCH的对接信道、所述PCH的对接信道以及所述BCH的对接信道中的至少一种:为所述MAC层的各个对接信道的公共信道。
  19. 根据权利要求17所述的装置,其中,所述预设打桩层为所述数据链路层的子层中的无线链路控制RLC层;所述各个信道包括以下至少一种:专用业务信道DTCH、公共控制信道CCCH、专用控制信道DCCH、寻呼控制信道PCCH和广播控制信道BCCH;所述信道构建部分,还被配置为以下至少一种:
    将自身的DTCH通过所述IPC实现与所述基站的DTCH的数据传输,完成所述自身的DTCH与所述基站的DTCH的对接,以建立所述代理终端与所述基站的DTCH的对接 信道,所述自身的DTCH与所述基站的DTCH遵循相同的协议;
    将自身的CCCH通过所述IPC实现与所述基站的CCCH的数据传输,完成所述自身的CCCH与所述基站的CCCH的对接,以建立所述代理终端与所述基站的CCCH的对接信道,所述自身的CCCH与所述基站的CCCH遵循相同的协议;
    将自身的DCCH通过所述IPC实现与所述基站的DCCH的数据传输,完成所述自身的DCCH与所述基站的DCCH的对接,以建立所述代理终端与所述基站的DCCH的对接信道,所述自身的DCCH与所述基站的DCCH遵循相同的协议;
    将自身的PCCH通过所述IPC实现与所述基站的PCCH的数据传输,完成所述自身的PCCH与所述基站的PCCH的对接,以建立所述代理终端与所述基站的PCCH的对接信道,所述自身的PCCH与所述基站的PCCH遵循相同的协议;
    将自身的BCCH通过所述IPC实现与所述基站的BCCH的数据传输,完成所述自身的BCCH与所述基站的BCCH的对接,以建立所述代理终端与所述基站的BCCH的对接信道,所述自身的BCCH与所述基站的BCCH遵循相同的协议;
    所述DTCH的对接信道以及所述DCCH的对接信道的至少一种:为所述RLC层的各个对接信道的专用信道;所述CCCH的对接信道、所述PCCH的对接信道以及所述BCCH的对接信道中的至少一种:为所述RLC层的各个对接信道的公共信道。
  20. 根据权利要求17所述的装置,其中,所述信道构建部分,还被配置为针对自身与所述基站中承载在所述预设打桩层之外的各个层的各个第一信道,按照所述各个第一信道遵循的3GPP协议进行信道映射,得到第一对接信道,所述第一信道为所述代理终端与所述基站的控制面协议栈中的信道;针对自身与所述基站中承载在所述预设打桩层之外的各个层的各个第二信道,按照所述各个第二信道遵循的3GPP协议进行信道映射,得到第二对接信道,所述第二信道为所述代理终端与所述基站的用户面协议栈中的信道;根据所述第一对接信道以及所述第二对接信道,得到所述预设打桩层之外的各个对接信道。
  21. 根据权利要求14或15所述的装置,其中,所述数据接收部分,还被配置为在处于开机状态时,通过所述双向数传通道中的公共信道,向所述基站发送随机接入信息;基于所述随机接入信息,完成与所述基站的随机接入过程,并通过所述构建的双向数传通道中的专用信道,接收所述基站传输的所述基站数据。
  22. 根据权利要求14所述的装置,其中,所述数据传输部分,还被配置为基于无线电接入网RAN协议,将所述基站数据发送至核心网;在所述核心网的鉴权认证结果为通过的情况下,建立与所述核心网的连接;在与所述核心网连接成功的情况下,通过所述核心网将所述基站数据发送至所述目标网络节点,以进行所述基站与所述目标网络节点的数据交互。
  23. 根据权利要求22所述的装置,其中,所述数据传输部分,还被配置为通过所述核心网,接收所述目标网络节点发送的第一目标数据,并将所述第一目标数据转发至所述基站对应的目标模块,以进行所述基站与所述目标网络节点的数据交互;所述第一目标数据表征所述目标网络节点发送至所述目标模块的数据。
  24. 根据权利要求14所述的装置,其中,所述数据传输部分,还被配置为基于无线电接入网RAN协议,将所述基站数据发送至所述目标终端;接收所述目标终端发送的第二目标数据,并将所述第二目标数据转发至所述基站对应的目标模块,以进行所述基站与所述目标终端的数据交互,所述第二目标数据表征所述目标终端发送至所述目标模块的数 据。
  25. 根据权利要求23或24所述的装置,其中,所述目标模块包括以下至少一项:参数采集模块、原生智能模块、感知模块、网元协同模块以及外部功能模块。
  26. 根据权利要求22至24任一项所述的装置,其中,所述目标网络节点包括以下至少一项:资源协同网元、感知网元、智能处理网元和能力开放网元。
  27. 一种电子设备,所述电子设备包括:
    存储器,被配置为存储可执行指令;
    处理器,被配置为执行所述存储器中存储的可执行指令时,实现权利要求1-13任一项所述的方法。
  28. 一种计算机可读存储介质,所述存储介质存储有可执行指令,当所述可执行指令被执行时,被配置为引起处理器执行如权利要求1-13任一项所述的基站数据传输方法。
PCT/CN2023/129159 2022-11-17 2023-11-01 基站数据传输方法、装置、设备及可读存储介质 WO2024104180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211440548.9 2022-11-17
CN202211440548.9A CN118102506A (zh) 2022-11-17 2022-11-17 基站数据传输方法、装置、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024104180A1 true WO2024104180A1 (zh) 2024-05-23

Family

ID=91083783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129159 WO2024104180A1 (zh) 2022-11-17 2023-11-01 基站数据传输方法、装置、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN118102506A (zh)
WO (1) WO2024104180A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893696A (zh) * 2010-04-07 2013-01-23 高通股份有限公司 用于向空闲状态中的无线客户端设备进行寻呼传递的系统和方法
WO2016183729A1 (zh) * 2015-05-15 2016-11-24 华为技术有限公司 一种VoLTE业务实现方法、系统及设备
CN110830600A (zh) * 2018-08-10 2020-02-21 中兴通讯股份有限公司 地址的获取方法、地址的发送方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893696A (zh) * 2010-04-07 2013-01-23 高通股份有限公司 用于向空闲状态中的无线客户端设备进行寻呼传递的系统和方法
WO2016183729A1 (zh) * 2015-05-15 2016-11-24 华为技术有限公司 一种VoLTE业务实现方法、系统及设备
CN110830600A (zh) * 2018-08-10 2020-02-21 中兴通讯股份有限公司 地址的获取方法、地址的发送方法及装置

Also Published As

Publication number Publication date
CN118102506A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
US11510131B2 (en) Configuration method, data transmission method, and apparatus
US20230073469A1 (en) Sidelink relay communication method and apparatus, device and medium
US10728948B2 (en) System and method for network access using a relay
EP3509371B1 (en) Method and device for transmitting message
WO2018219248A1 (zh) 数据传输的方法、终端设备和网络设备
CN113905397B (zh) 中继确定方法、配置方法、装置、终端及网络侧设备
CN104023411A (zh) 在无线通信系统中使用中继节点的方法
WO2015032043A1 (zh) 传输数据的方法、装置和系统
TWI804984B (zh) 用於第2層ue到網絡中繼的連接建立方法與設備
CN113453176B (zh) 一种使卫星终端支持nas信令实现5g核心网管控的方法
KR20220125209A (ko) 서비스 품질 파라미터(QoS) 구성 방법 및 관련 장치
US20240089337A1 (en) Broker circuitry, network broker circuitries, broker devices, base station, publisher devices, subscriber devices
JP7301849B2 (ja) 中継伝送方法及び中継ノード
KR20230098569A (ko) Nr v2x에서 harq 피드백에 대한 설정에 기반하여 drx와 관련된 타이머를 동작시키는 방법 및 장치
KR20230105304A (ko) Cu-du 분리를 고려한 mt-sdt 지원
KR20230003558A (ko) 멀티캐스트에 의한 통신 방법
WO2018145292A1 (zh) 通信方法、装置和系统
WO2024104180A1 (zh) 基站数据传输方法、装置、设备及可读存储介质
JP7511771B2 (ja) Nr v2xにおける端末タイプによるsl drx動作方法及び装置
WO2021078170A1 (zh) 一种通信方法及装置
CN116097890A (zh) 通信设备、数据传输的方法和装置
WO2024207216A1 (zh) 一种传输控制方法、装置、通信设备及存储介质
CN111698731B (zh) 协议实体建立、数据缓存方法及其装置、设备、存储介质
WO2024140747A1 (zh) 通信方法及相关装置
CN111818567B (zh) 一种数据处理方法、装置、相关设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890616

Country of ref document: EP

Kind code of ref document: A1