WO2024103941A1 - 基于l(0,1)纵向模态导波的微细金属管血栓弹力检测装置和方法 - Google Patents

基于l(0,1)纵向模态导波的微细金属管血栓弹力检测装置和方法 Download PDF

Info

Publication number
WO2024103941A1
WO2024103941A1 PCT/CN2023/118340 CN2023118340W WO2024103941A1 WO 2024103941 A1 WO2024103941 A1 WO 2024103941A1 CN 2023118340 W CN2023118340 W CN 2023118340W WO 2024103941 A1 WO2024103941 A1 WO 2024103941A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal tube
micro
thrombus
tube
module
Prior art date
Application number
PCT/CN2023/118340
Other languages
English (en)
French (fr)
Inventor
唐志峰
张冯江
黄铮扬
伍建军
Original Assignee
浙江大学
浙江大学湖州研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学, 浙江大学湖州研究院 filed Critical 浙江大学
Publication of WO2024103941A1 publication Critical patent/WO2024103941A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details

Definitions

  • the patent of this invention relates to a parameter detection device and method in the field of thrombus elasticity measurement, and specifically to a device and method for detecting thrombus elasticity using longitudinal modal ultrasonic guided waves.
  • Human coagulation function includes coagulation and fibrinolysis, which are closely related to coagulation factors, fibrinogen and platelets in the blood. If the coagulation function is abnormal, it will cause thrombotic or hemorrhagic diseases, endangering health and even life. Therefore, it is very important to realize real-time detection of the patient's coagulation function during surgery. This indicator not only reflects the patient's current physiological condition, but can also be used to guide doctors to formulate appropriate treatment plans.
  • the main thrombus elasticity measurement devices on the market are Sonoclot, TEG and ROTEM.
  • the public document "Application and Progress of Viscoelastic Coagulation Function Monitoring Technology" points out that these devices are only slightly different in technical implementation solutions.
  • the three devices require a large amount of blood and a long detection time.
  • 1 ml of blood and more than 1 hour of detection time are required, which cannot meet the real-time detection needs of coagulation function in some surgical environments.
  • the invention patent with patent number CN202110378292.2 proposes a rapid detection device and method for blood viscosity based on ultrasonic guided waves in micro-metal tubes.
  • the correlation between the T(0,1) torsional mode guided wave signal and liquid viscosity is analyzed through deep learning, which realizes the rapid measurement of blood viscosity to a certain extent.
  • the present invention utilizes the correlation between the propagation attenuation of longitudinal ultrasonic guided waves in micro-metal tubes and liquid viscosity to propose a thrombus elasticity measurement device and method that is easy to operate, has better real-time performance and requires less blood.
  • the present invention generates L(0,1) longitudinal modal ultrasonic guided waves, and based on the correlation between energy attenuation in the guided wave propagation process and the viscosity of the liquid in the micro-metal tube, obtains the attenuation rate of the guided wave signal by processing, thereby achieving real-time and accurate measurement of the elasticity of the thrombus.
  • It includes a device housing, a fine metal tube and a magnetostrictive component
  • a fine metal tube installed inside the device housing and containing a blood sample
  • the magnetostrictive component is arranged at one end of the fine metal tube and includes a permanent magnet and a hollow coil.
  • a permanent magnet is arranged at the end of the fine metal tube
  • the air-core coil is arranged near the end of the fine metal tube.
  • It also includes an excitation receiving module, and the hollow coil is electrically connected to the excitation receiving module.
  • the excitation receiving module is connected to the data processing module, and the data processing module is connected to the display module.
  • the temperature control module includes a temperature detection module and a heating module that are electrically connected, the temperature detection module is connected to the device shell or the fine metal tube, and the heating module is also connected to the device shell or the fine metal tube.
  • the magnetostrictive assembly is installed at one end of the fine metal tube, the permanent magnet is directly connected to the end face of the fine metal tube through magnetism, the hollow coil is sleeved outside the fine metal tube, the inner wall of the coil does not contact the outer wall of the metal tube, and the difference between the inner diameter of the coil and the outer diameter of the metal tube is less than 1.0 mm.
  • the fine metal tube can be directly disassembled and replaced by plugging and unplugging.
  • the fine metal tube is made of magnetic material, and the permanent magnet is magnetically adsorbed on the end of the fine metal tube.
  • the material of the fine metal tube is a magnetic conductive material such as nickel, iron, iron-nickel alloy, iron-aluminum alloy and iron-cobalt alloy.
  • a method for detecting elastic force of thrombus in a micro-metal tube based on L(0,1) longitudinal modal guided wave the method steps are as follows:
  • the waveguide dispersion curve of the micro-metal tube is calculated, and the frequency point with the smallest dispersion degree is selected as the excitation frequency according to the waveguide dispersion curve;
  • the small dispersion degree is defined as the frequency range of ⁇ v/ ⁇ f ⁇ 0.25m/(s*kHz), ⁇ v is the phase velocity change, ⁇ f is the frequency change, and for the L(0,1) mode waveguide, the range is f ⁇ 250kHz.
  • the hollow coil on the micro-metal tube is excited to generate L(0,1) mode guided wave which propagates back and forth between the two end surfaces of the micro-metal tube until the energy is exhausted.
  • the tube length is d meters.
  • the hollow coil is used to collect the first k reciprocating processes, and the total echo signal of k*2d meters is used as the empty tube reference signal w 0 ;
  • the i-th filling detection signal is w i ;
  • a positive correlation is established between the relative blood viscosity and the attenuation rate of the blood sample.
  • the innovation of the present invention is that a micro-metal tube is provided for measuring blood samples to obtain the thrombus elasticity test results.
  • the echo signal obtained by the measurement is subjected to specific echo peak processing to obtain an accurate attenuation rate, and the relationship between the attenuation rate and the relative blood viscosity of the blood sample is discovered and established, and the accurate thrombus elasticity test results are obtained by using this relationship.
  • x represents the sequence number of the echo peak
  • y is the value of the echo peak
  • b is the attenuation rate of the echo peak
  • a represents the amplitude normalization coefficient
  • the method of the present invention has a fast data transmission speed.
  • the relative blood viscosity collected at each interval ⁇ t will be updated in real time on the display module without waiting until all samples are completed before displaying the test results.
  • the method of the present invention obtains the echo peak attenuation rate by adopting a specific method, which can better and more accurately reflect the thrombus elastic parameter results compared with the parameters such as amplitude attenuation and flight time in the prior art; and the method of the present invention only establishes the nonlinear relationship between the echo peak attenuation rate and the relative blood viscosity, which can Better and more accurate detection of thromboelastometry results.
  • the detection device of the invention comprises a device shell, a temperature control module, a fine metal tube, a magnetostrictive component, an excitation receiving module, a data processing module and a display module.
  • the shell is connected to an external temperature control module to achieve internal constant temperature, and a replaceable fine metal tube is installed inside; a magnetostrictive component consisting of a permanent magnet and a coil is provided at one end outside the tube;
  • the magnetostrictive component is connected to the excitation receiving module, and the excitation receiving module is connected to the data processing module and the display module.
  • the present invention excites L(0,1) longitudinal modal guided waves on a micro-metal tube.
  • the energy attenuation of the guided waves propagating along the tube is different.
  • the guided wave energy attenuation is defined by the attenuation rate of multiple echo peaks, which can reflect the change of blood viscosity.
  • the present invention overcomes the defects of the traditional thrombus elasticity measuring device, such as poor real-time performance, large blood sampling volume and poor portability, and can realize the real-time and accurate measurement of thrombus elasticity, with a small blood sampling volume and simple and convenient detection method operation.
  • the present invention can detect blood viscosity by utilizing the correlation between the peak attenuation rate of the L(0,1) longitudinal modal guided wave echo and the change of blood viscosity.
  • Data collection and processing are simple.
  • a micro-metal tube is used as a carrier during the detection process.
  • a small amount of blood is required and the overall measurement time is short. This effectively overcomes the problems of poor real-time performance and large collection volume of traditional thrombus elastic devices.
  • the detection device proposed in the present invention has high integration, small size, and portability, and can update the blood viscosity changes during the measurement process in real time on the host computer display module. It can be used on-site and help medical staff understand the patient's condition in a timely and convenient manner.
  • FIG1 is a structural diagram of a thrombus elasticity measurement device
  • Figure 2 is an empty pipe detection signal
  • FIG3 is a diagram of a liquid filling detection signal
  • FIG4 is a liquid filling detection signal envelope
  • FIG5 is a schematic diagram of setting a threshold
  • FIG6 is a diagram showing the effect of measuring thrombus elasticity.
  • the device comprises a housing 1, a fine metal tube 2 and a magnetostrictive component;
  • the fine metal tube 2 is installed inside the device housing 1 and serves as a container for the liquid to be tested and a carrier for wave transmission.
  • the device housing 1 is in contact with the fine metal tube 2, and contains an isolated blood sample;
  • the magnetostrictive component is arranged at one end of the fine metal tube 2, and includes a permanent magnet 3 and a hollow coil 4.
  • the permanent magnet 3 is used to provide a longitudinal constant magnetic field
  • the hollow coil 4 is used to provide a dynamic longitudinal magnetic field and receive an echo signal when powered.
  • the permanent magnet 3 is arranged at the end of the fine metal tube 2 and is used to provide a longitudinal constant magnetic field
  • the hollow coil 4 is arranged near the end of the fine metal tube 2 and can be hollowly sleeved outside the fine metal tube 2 for providing a dynamic longitudinal magnetic field and receiving echo signals when energized.
  • the excitation receiving module 8 is connected to the data processing module 9
  • the data processing module 9 is connected to the display module 10 .
  • the excitation receiving module 8 generates multiple periodic pulse signals, which are applied to the excitation receiving module 8 of the magnetostrictive component.
  • the hollow coil 4 is energized through the excitation receiving module 8 to generate a dynamic longitudinal magnetic field, while the permanent magnet 3 is fixed to generate a longitudinal constant magnetic field.
  • the micro-metal tube 2 Under the combined effect of the longitudinal constant magnetic field generated by the permanent magnet 3 and the dynamic longitudinal magnetic field generated by the power supply of the air-core coil 4, the micro-metal tube 2 is deformed based on the magnetostrictive effect, thereby generating an L(0,1) modal guided wave that is affected by the blood sample in the micro-metal tube 2 and propagates on the micro-metal tube 2;
  • the hollow coil 4 receives the echo signal after propagation based on the magnetostrictive inverse effect, collects it through the excitation receiving module 8, transmits it to the data processing module 9 for data processing such as filtering, amplification and sampling, and finally uploads it to the display module 10 for display.
  • the temperature control module 5 installed on the device housing 1, the temperature control module 5 includes a temperature detection module 6 and a heating module 7 which are electrically connected, the temperature detection module 6 is connected to the device housing 1 or the fine metal tube 2, and the heating module 7 is also connected to the device housing 1 or the fine metal tube 2 to achieve an internal constant temperature of 37°C to simulate the internal environment of blood in the human body.
  • the temperature detection module 6 detects the temperature of the fine metal tube 2 in real time through the temperature sensor inside itself, and drives the heating module 7 to work and heat to achieve constant temperature of human blood when the temperature changes.
  • the magnetostrictive component is installed at one end of the fine metal tube 2, the permanent magnet 3 is directly connected to the end face of the fine metal tube 2 through magnetism, the hollow coil 4 is sleeved on the outside of the fine metal tube 2, the inner wall of the coil does not contact the outer wall of the metal tube, and the difference between the inner diameter of the coil and the outer diameter of the metal tube is less than 1.0 mm.
  • the fine metal tube 2 can be directly disassembled and replaced by plugging and unplugging.
  • the fine metal tube 2 is made of magnetic material, and the permanent magnet 3 is magnetically adsorbed on the end of the fine metal tube 2 .
  • the fine metal tube 2 is made of magnetic conductive materials such as nickel, iron, iron-nickel alloy, iron-aluminum alloy and iron-cobalt alloy.
  • the inner diameter of the fine metal tube 2 is very fine, with a length not exceeding 200 mm and an inner diameter not exceeding 1.5 mm.
  • the fine metal tube 2 is a fine carbon steel tube with a length of 200 mm, an outer diameter of 3 mm, and an inner diameter of 1 mm;
  • the coil 4 is 15 mm long, 4 mm in inner diameter, 1500 turns, and a wire diameter of 0.1 mm;
  • the permanent magnet 3 is a circular magnet magnetized in the thickness direction, with a diameter of 10 mm and a height of 5 mm.
  • the heating module 7 selects a heating sheet with a power of 0.02W to be attached to the inner wall of the device housing 1; the excitation receiving module 8 excites the L(0,1) longitudinal mode guided wave.
  • the density, elastic modulus and Poisson's ratio of iron, the L(0,1) dispersion curve is calculated to find the best excitation frequency around 87 kHz.
  • the measurement results are shown in Figure 6.
  • the relative blood viscosity increases first and then decreases with time, which is consistent with the whole process of blood coagulation and fibrinolysis in vitro. Therefore, it can be used as the result image of thrombus elasticity measurement.
  • Parameters further calculated based on the image such as viscosity drop, total rise time, slope, viscosity turn-up inflection point time, etc., can help medical staff understand the specific situation of the patient's coagulation function.
  • the relative blood viscosity reaches the lowest point after about 900s, that is, the entire coagulation process is measured for about 15 minutes, which is significantly shorter than the traditional thrombus elasticity measurement device and has better real-time performance.
  • the method proposed in the present invention has higher measurement accuracy.
  • the six viscosity liquids with viscosities of 4.8cp, 21.2cp, 48.2cp, 98.5cp, 198cp, and 476cp were used for verification experiments.
  • the attenuation rates of 4.8cp, 48.2cp, 98.5cp, and 476cp viscosity liquids were calculated according to the method of the present invention to be 0.9946, 0.9331, 0.8967, and 0.8122.
  • y represents the attenuation rate
  • x represents the liquid viscosity value.
  • the remaining two viscosity liquids of 21.2cp and 198cp are taken, and the attenuation rates are calculated to be 0.9559 and 0.8667 according to the method of the present invention.
  • the liquid viscosities are inferred to be 22.0973cp and 191.3934cp according to the fitting formula, and the measurement errors are 4.23% and 3.34%, which are less than 5%.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了一种基于L(0,1)纵向模态导波的微细金属管血栓弹力检测装置和方法。装置包括装置壳体、温度控制模块、微细金属管、磁致伸缩组件,壳体外接温度控制模块实现内部恒温,内部安装更换的微细金属管,管外一端设有永磁体和线圈组成的磁致伸缩组件;在微细金属管上激励L(0,1)纵向模态导波,当管内液体粘度变化时,沿管传播的导波能量衰减不同,通过多次回波峰值衰减率定义导波能量衰减,即可反映血液粘度变化。本发明克服了传统血栓弹力测量装置实时性差、采集量大且便携性差的缺陷,能够实现血栓弹力的实时准确测量,血液取样量少,检测方法操作简便。

Description

基于L(0,1)纵向模态导波的微细金属管血栓弹力检测装置和方法 技术领域
本发明专利涉及血栓弹力测量领域的一种参数检测装置和方法,具体涉及到一种利用纵向模态超声导波检测血栓弹力的装置和方法。
背景技术
人类凝血功能包括凝血与纤溶两部分,与血液中的凝血因子、纤维原蛋白和血小板等息息相关。若凝血功能发生异常,则会引发血栓性或出血性疾病,危害健康甚至生命。因此,实现在手术期间对于患者凝血功能的实时检测十分重要,该指标不仅反映该患者目前的生理状况,也可用于指导医生制定合适的治疗方案。目前市场中的血栓弹力测量设备主要有Sonoclot、TEG和ROTEM。公开文献《粘弹性凝血功能监测技术的应用及进展》指出这些设备仅在技术实现方案上略有区别。但由于探针大小和灵敏度的限制,三种设备检测所需血量大,检测时间长,通常需要1ml的血量与超过1小时的检测时间,不能满足一些手术环境下的凝血功能实时检测需求。
因此,开发一种所需样本量小、检测快速便捷的血栓弹力测量技术具有十分重要的研究以及实用价值。
专利号为CN202110378292.2的发明专利提出了一种基于微细金属管超声导波血液粘度快速检测装置和方法,通过深度学习对T(0,1)扭转模态导波信号和液体粘度的相关性进行分析,在一定程度上实现了血液粘度的快速测量。但其激励方式复杂,需要在微细金属管上喷涂磁致伸缩粉末或安装带材,制作成本高;激励的磁场分布不均匀,所激发的T(0,1)导波不纯净,引起测量误差,无温度测量血液粘度值较不准确;装置对激发和接收所用的传感器技术要求高,不利于实际应用和普及。同时该专利只能获得静态血液粘度值,并未实现动态的血栓弹力测量,且无法分析血液粘度变化和时间的相关性。
发明内容
针对目前血栓弹力测量所需血量大与实时性不高的问题,本发明是利用纵向超声导波在微细金属管上的传播衰减与液体粘度的相关性,提出了一种操作简便、实时性更强且所需血量更小的血栓弹力测量装置和方法。
本发明产生L(0,1)纵向模态超声导波,在建立导波传播过程中的能量衰减与微细金属管内液体粘度相关性的基础上,通过对导波信号衰减率的处理获得,进而实现对于血栓弹力的实时准确测量。
本发明通过以下技术方案予以实现:
一、一种基于L(0,1)纵向模态导波的微细金属管血栓弹力检测装置:
包括装置壳体、微细金属管和磁致伸缩组件;
微细金属管,安装在装置壳体内部,内容置有血液样本;
磁致伸缩组件,设置在微细金属管的一端,包括永磁体和空心线圈,
永磁体,布置在微细金属管的端部;
空心线圈,布置在靠近微细金属管的端部处。
还包括激励接收模块,空心线圈与激励接收模块电连接。
还包括数据处理模块与显示模块,激励接收模块与数据处理模块连接,数据处理模块与显示模块连接。
还包括安装于装置壳体的温度控制模块,温度控制模块包括相电连接的温度检测模块和加热模块,温度检测模块连接到装置壳体或者微细金属管上,加热模块也连接到装置壳体或者微细金属管上。
所述的磁致伸缩组件安装在微细金属管一端,永磁体通过磁性直接与微细金属管端面连接,空心线圈套接在微细金属管外,线圈内壁不与金属管外壁接触,线圈内径与金属管外径相差小于1.0mm。微细金属管通过插拔的方式直接拆卸更换。
所述的微细金属管采用磁性材料,永磁体磁性吸附在微细金属管端部上。
所述的微细金属管的材质为镍、铁、铁镍合金、铁铝合金和铁钴合金等导磁性材料。
二、一种基于L(0,1)纵向模态导波的微细金属管血栓弹力检测方法,方法步骤如下:
1)根据微细金属管的结构几何参数与材料力学特征,计算微细金属管的导波频散曲线,根据导波频散曲线选取频散程度小的频率点作为激励频率;频散程度小定义为Δv/Δf<0.25m/(s*kHz)的频率范围,Δv为相速度变化量,Δf为频率变化量,对于L(0,1)模态导波该范围取f<250kHz。
2)当微细金属管为空管时,对微细金属管上的空心线圈进行激励产生L(0,1)模态导波在微细金属管的两端面之间往复传播直至能量耗尽,管长为d米,通过空心线圈采集前k个往复过程,合计将k*2d米的回波信号作为空管基准信号w0
3)在微细金属管内充入离体的血液样本,按照步骤2)相同方式获得回波信号作为充液检测信号,第i次充液检测信号为wi
4)对空管基准信号w0和每次充液检测信号wi取包络获得各自的包络信号,从包络信号中取n个回波峰值进行拟合获得各自的衰减率b0和bi,根据衰减率b0和bi结合预先标定获得的血液样本的相对血液粘度和衰减率的关系获得每次充液检测信号wi对应的相对血液粘度,即通过bi/b0反映第i次检测时的相对血液粘度;
本发明中,血液样本的相对血液粘度和衰减率是建立了正相关的关系。
5)设定检测的采样次数m与采样间隔Δt,在微细金属管内充入血液样本后连续不断重复步骤3)和4)进行采样并获得每次检测的相对血液粘度,从而绘制获得时间m*Δt内血液样本的相对血液粘度随时间变化曲线作为血栓弹力图,实现血栓弹力测量。
本发明的创新在于设置了微细金属管用于对血液样本进行测量,获得了血栓弹力检测结果。其中对测量获得的回波信号进行特定的回波峰值处理获得了准确的衰减率,还发现并建立了衰减率和血液样本的相对血液粘度之间的关系,利用这个关系获得了准确的血栓弹力检测结果。
所述步骤4)中,从包络信号中取n个回波峰值的具体方法为:根据包络信号选择合适的第一门限l1和第二门限l2,两者间隔l=l1-l2,从包络信号上选择的起点x0处,即第一门限l1所在位置,开始建立连续n个长度为l的区间,即区间[x0,x0+l],[x0+lx0+2l]……[x0+(n-1)lx0+nl],使得每个区间内仅包含一个峰值,提取每个区间内的峰值作为回波峰值,提取n个区间内的所有峰值作为最终选取的n个回波峰值,编号1-n。
所述步骤4)中,回波峰值衰减率的具体拟合方法是,所述衰减率按照以下公式拟合获得:
y=a*bx
其中,x代表回波峰值的序号,y为回波峰值的值,b为回波峰值的衰减率,a表示幅值归一化系数。
本发明方法数据传输速度快,通过本发明方法使得所述步骤5)中,每间隔Δt时间采集的相对血液粘度将在显示模块实时更新,而无需等待至全部采样完毕后再显示检测结果。
本发明方法通过采用特定方式处理获得了回波峰值衰减率,相比现有技术中的幅值衰减、飞行时间等参数,能够更好地准确反映血栓弹力参数结果;且本发明方法是仅建立了回波峰值衰减率和相对血液粘度之间的非线性关系,能 更好精确地检测获得血栓弹力结果。
本发明检测装置包括装置壳体、温度控制模块、微细金属管、磁致伸缩组件、激励接收模块、数据处理模块和显示模块。
壳体外接温度控制模块实现内部恒温,内部安装可更换的微细金属管;在管外一端设有永磁体和线圈组成的磁致伸缩组件;
磁致伸缩组件与激励接收模块连接,激励接收模块与数据处理模块、显示模块连接。
本发明由于在微细金属管上激励L(0,1)纵向模态导波,当管内液体粘度变化时,沿管传播的导波能量衰减不同,通过多次回波峰值衰减率定义导波能量衰减,即可反映血液粘度变化。
本发明克服了传统血栓弹力测量装置实时性差、采集量大且便携性差的缺陷,能够实现血栓弹力的实时准确测量,血液取样量少,检测方法操作简便。
本发明有益效果是:
本发明能利用L(0,1)纵向模态导波回波峰值衰减率与血液粘度变化的相关性检测血液粘度,数据采集与处理简便,检测过程中以微细金属管为载体,所需血量少且整体测量时间短,有效克服传统血栓弹力装置实时性差且采集量大的问题。
本发明提出的检测装置集成度高、体积较小,具有便携性,且能在上位机显示模块实时更新测量过程中的血液粘度变化,能够在现场使用并帮助医护人员及时、便捷的了解患者情况。
附图说明
图1为血栓弹力测量装置的组成结构图;
图2为空管检测信号;
图3为充液检测信号图;
图4为充液检测信号包络;
图5为设定门限示意图;
图6为血栓弹力测量效果图。
具体实施方式
下面结合附图和具体实施对本发明作进一步说明。
如图1所示,包括装置壳体1、微细金属管2和磁致伸缩组件;
微细金属管2,安装在装置壳体1内部,作为待测液体容器和导波传播载体, 装置壳体1和微细金属管2之间接触连接,内容置有离体的血液样本;
磁致伸缩组件,设置在微细金属管2的一端,包括永磁体3和空心线圈4,永磁体3用于提供纵向恒定磁场,空心线圈4用于通电提供动态纵向磁场并接收回波信号;
永磁体3,布置在微细金属管2的端部,用于提供纵向恒定磁场;
空心线圈4,布置在靠近微细金属管2的端部处,可空套在微细金属管2之外,用于通电提供动态纵向磁场并接收回波信号。
还包括激励接收模块8,空心线圈3与激励接收模块8电连接。
还包括数据处理模块9与显示模块10,激励接收模块8与数据处理模块9连接,数据处理模块9与显示模块10连接。
激励接收模块8激励产生多个周期性的脉冲信号,施加于磁致伸缩组件的激励接收模块8上,经激励接收模块8对空心线圈4通电产生动态纵向磁场,而永磁体3固定产生纵向恒定磁场。
永磁体3产生的纵向恒定磁场与空心线圈4通电产生的动态纵向磁场共同作用下,基于磁致伸缩效应使微细金属管2产生形变,从而产生L(0,1)模态导波受微细金属管2中的血液样本影响在微细金属管2上传播;
空心线圈4基于磁致伸缩逆效应接收传播之后的回波信号,经激励接收模块8采集,传入数据处理模块9进行滤波、放大和采样等数据处理,最终上传至显示模块10进行显示。
还包括安装于装置壳体1的温度控制模块5,温度控制模块5包括相电连接的温度检测模块6和加热模块7,温度检测模块6连接到装置壳体1或者微细金属管2上,加热模块7也连接到装置壳体1或者微细金属管2上,实现内部恒温37℃以模拟血液在人体内部环境。
温度检测模块6通过自身内部的温度传感器实时检测微细金属管2上的温度,当温度发生变化时驱动加热模块7工作加热实现人体血液恒温。
磁致伸缩组件安装在微细金属管2一端,永磁体3通过磁性直接与微细金属管2端面连接,空心线圈4套接在微细金属管2外,线圈内壁不与金属管外壁接触,线圈内径与金属管外径相差小于1.0mm。微细金属管2通过插拔的方式直接拆卸更换。
微细金属管2采用磁性材料,永磁体3磁性吸附在微细金属管2端部上。
具体实施中,微细金属管2的材质为镍、铁、铁镍合金、铁铝合金和铁钴合金等导磁性材料。微细金属管2的内径是微细的,长度不超过200mm,内径不大于1.5mm。
按照本发明上述发明内容完整方法实施的实施例如下:
具体实施例中,微细金属管2选择微细碳钢管,长200mm,外径3mm,内径1mm;线圈4长15mm,内径4mm,匝数1500匝,线径0.1mm;永磁体3选择厚度方向充磁的圆形磁铁,直径10mm,高5mm。
另外,加热模块7选择功率0.02W的加热片贴与装置壳体1内壁;激励接收模块8激发L(0,1)纵向模态导波。
1)根据选取微细金属管2的内外径,铁的密度、弹性模量、泊松比,计算L(0,1)频散曲线,寻找最佳激励频率在87kHz附近。
2)在空管状态下,采集距离长度为5米的往复反射的回波信号如图2所示。
3)通过医用注射针管将待测血液样本从水平放置的微细金属管2一端推入,直至另一端有血液流出即可认为管内已充满。然后将微细金属管2一端吸附上圆形磁铁堵住,另一端通过硅胶塞密封。
对于所选长200mm,外径3mm,内径1mm的微细金属管2,充满情况下理论仅需约157ul,远少于传统血栓弹力检测所需的血量。
4)充液完成后再次采集回波信号,通过数据处理得到充液检测信号如图3所示,该信号取包络如图4所示。
5)根据信号设定门限并取10个区间内的回波峰值,如图5所示,计算获得衰减率,并计算相对血液粘度。连续采样500次,采样间隔5s。
获得测量结果如图6所示,相对血液粘度随时间变化先升高后降低,符合血液在体外先凝血再纤溶的全过程,因此可作为血栓弹力测量的结果图像。根据图像进一步计算的参数如粘度下降、上升总时间、斜率,粘度转升高拐点时间等,可帮助医护人员了解患者凝血功能具体情况。根据图6结果,相对血液粘度经过约900s后到达最低点,即测量整个凝血过程约15分钟,相较于传统血栓弹力测量装置明显缩短,具有更好的实时性。
对比例1
相较于现存方法,本发明所提出方法测量精度更高。以粘度为4.8cp,21.2cp,48.2cp,98.5cp,198cp,476cp的六种粘度液进行验证实验。取其中4.8cp,48.2cp,98.5cp和476cp粘度液按本发明所述方法计算获得衰减率为0.9946,0.9331,0.8967和0.8122。通过幂函数拟合获得粘度与衰减率相关函数如下式:
y=-0.0534*x0.2591+1.075
其中y代表衰减率,x代表液体粘度值。取剩下21.2cp和198cp两种粘度液,按本发明所述方法计算获得衰减率为0.9559和0.8667,根据拟合公式反推液体粘度为22.0973cp和191.3934cp,测量误差为4.23%和3.34%,小于5%。
而依照现存专利号为CN202110378292.2的发明专利所提出的基于微细金属管超声导波血液粘度快速检测装置和方法,预测两种待测液体粘度,所得结果为23.9043cp和209.0347cp,测量误差为12.76%和5.57%,均大于本发明方法测量所得误差。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改和改变,都落入本发明的保护范围。

Claims (10)

  1. 一种基于L(0,1)纵向模态导波的微细金属管血栓弹力检测装置,其特征在于:
    包括装置壳体(1)、微细金属管(2)和磁致伸缩组件;
    微细金属管(2),安装在装置壳体(1)内部,内容置有血液样本;
    磁致伸缩组件,设置在微细金属管(2)的一端,包括永磁体(3)和空心线圈(4),
    永磁体(3),布置在微细金属管(2)的端部;
    空心线圈(4),布置在靠近微细金属管(2)的端部处。
  2. 根据权利要求1所述的一种基于L(0,1)纵向模态导波的微细金属管血栓弹力检测装置,其特征在于:还包括激励接收模块(8),空心线圈(3)与激励接收模块(8)电连接。
  3. 根据权利要求2所述的一种基于L(0,1)纵向模态导波的微细金属管血栓弹力检测装置,其特征在于:还包括数据处理模块(9)与显示模块(10),激励接收模块(8)与数据处理模块(9)连接,数据处理模块(9)与显示模块(10)连接。
  4. 根据权利要求1所述的一种基于L(0,1)纵向模态导波的微细金属管血栓弹力检测装置,其特征在于:还包括安装于装置壳体(1)的温度控制模块(5),温度控制模块(5)包括相电连接的温度检测模块(6)和加热模块(7),温度检测模块(6)连接到装置壳体(1)或者微细金属管(2)上,加热模块(7)也连接到装置壳体(1)或者微细金属管(2)上。
  5. 根据权利要求1所述的一种基于L(0,1)纵向模态导波的微细金属管血栓弹力检测装置,其特征在于:所述的磁致伸缩组件安装在微细金属管(2)一端,永磁体(3)通过磁性直接与微细金属管(2)端面连接,空心线圈(4)套接在微细金属管(2)外,线圈内壁不与金属管外壁接触,线圈内径与金属管外径相差小于1.0mm。微细金属管(2)通过插拔的方式直接拆卸更换。
  6. 根据权利要求1所述的一种基于L(0,1)纵向模态导波的微细金属管血栓弹力检测装置,其特征在于:所述的微细金属管(2)采用磁性材料,永磁体(3)磁性吸附在微细金属管(2)端部上。
  7. 根据权利要求1或6所述的一种基于L(0,1)纵向模态导波的微细金属管血栓弹力检测装置,其特征在于:所述的微细金属管(2)的材质为镍、铁、铁镍合金、铁铝合金和铁钴合金等导磁性材料。
  8. 应用于权利要求1-7任一所述装置的一种基于L(0,1)纵向模态导波的微细金属管血栓弹力检测方法,其特征在于:方法步骤如下:
    1)根据微细金属管(2)的结构几何参数与材料力学特征,计算微细金属管(2)的导波频散曲线,根据导波频散曲线选取频散程度小的频率点作为激励频率;
    2)当微细金属管(2)为空管时,对微细金属管(2)上的空心线圈(4)进行激励产生L(0,1)模态导波在微细金属管(2)的两端面之间往复传播直至能量耗尽,管长为d米,通过空心线圈(4)采集前k个往复过程,合计将k*2d米的回波信号作为空管基准信号w0
    3)在微细金属管(2)内充入血液样本,按照步骤2)相同方式获得回波信号作为充液检测信号,第i次充液检测信号为wi
    4)对空管基准信号w0和每次充液检测信号wi取包络获得各自的包络信号,从包络信号中取n个回波峰值进行拟合获得各自的衰减率b0和bi,根据衰减率b0和bi结合预先标定获得的血液样本的相对血液粘度和衰减率的关系获得每次充液检测信号wi对应的相对血液粘度;
    5)设定检测的采样次数m与采样间隔Δt,在微细金属管(2)内充入血液样本后连续不断重复步骤3)和4)进行采样并获得每次检测的相对血液粘度,从而绘制获得时间m*Δt内血液样本的相对血液粘度随时间变化曲线作为血栓弹力图,实现血栓弹力测量。
  9. 根据权利要求7所述的一种基于L(0,1)纵向模态导波的微细金属管血栓弹力检测方法,其特征在于:
    所述步骤4)中,从包络信号中取n个回波峰值的具体方法为:根据包络信号选择第一门限l1和第二门限l2,两者间隔l=l1-l2,从包络信号上选择的起点x0处,即第一门限l1所在位置,开始建立连续n个长度为l的区间,即区间[x0,x0+l],[x0+l,x0+2l]……[x0+(n-1)l,x0+nl],使得每个区间内仅包含一个峰值,提取每个区间内的峰值作为回波峰值,提取n个区间内的所有峰值作为最终选取的n个回波峰值。
  10. 根据权利要求7所述的一种基于L(0,1)纵向模态导波的微细金属管血栓弹力检测方法,其特征在于:
    所述步骤4)中,所述衰减率按照以下公式拟合获得:
    y=a*bx
    其中,x代表回波峰值的序号,y为回波峰值的值,b为回波峰值的衰减率,a表示幅值归一化系数。
PCT/CN2023/118340 2022-11-14 2023-09-12 基于l(0,1)纵向模态导波的微细金属管血栓弹力检测装置和方法 WO2024103941A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211431352.3 2022-11-14
CN202211431352.3A CN115711938A (zh) 2022-11-14 2022-11-14 基于l(0,1)纵向模态导波的微细金属管血栓弹力检测装置和方法

Publications (1)

Publication Number Publication Date
WO2024103941A1 true WO2024103941A1 (zh) 2024-05-23

Family

ID=85233304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118340 WO2024103941A1 (zh) 2022-11-14 2023-09-12 基于l(0,1)纵向模态导波的微细金属管血栓弹力检测装置和方法

Country Status (2)

Country Link
CN (1) CN115711938A (zh)
WO (1) WO2024103941A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115711938A (zh) * 2022-11-14 2023-02-24 浙江大学 基于l(0,1)纵向模态导波的微细金属管血栓弹力检测装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854090A (zh) * 2012-07-18 2013-01-02 北京工业大学 基于超声导波的液体粘滞系数检测装置及方法
US20150018638A1 (en) * 2012-02-08 2015-01-15 Anatech Advanced Nmr Alorithms Technologies Ltd. Apparatus and method for non-invasive measurement of blood parameters
CN113203661A (zh) * 2021-04-08 2021-08-03 浙江大学 基于微细金属管超声导波血液粘度快速检测装置和方法
CN114624148A (zh) * 2022-03-24 2022-06-14 驻马店市中心医院 一种基于深度学习的凝血功能检测预警系统及方法
CN115711938A (zh) * 2022-11-14 2023-02-24 浙江大学 基于l(0,1)纵向模态导波的微细金属管血栓弹力检测装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150018638A1 (en) * 2012-02-08 2015-01-15 Anatech Advanced Nmr Alorithms Technologies Ltd. Apparatus and method for non-invasive measurement of blood parameters
CN102854090A (zh) * 2012-07-18 2013-01-02 北京工业大学 基于超声导波的液体粘滞系数检测装置及方法
CN113203661A (zh) * 2021-04-08 2021-08-03 浙江大学 基于微细金属管超声导波血液粘度快速检测装置和方法
CN114624148A (zh) * 2022-03-24 2022-06-14 驻马店市中心医院 一种基于深度学习的凝血功能检测预警系统及方法
CN115711938A (zh) * 2022-11-14 2023-02-24 浙江大学 基于l(0,1)纵向模态导波的微细金属管血栓弹力检测装置和方法

Also Published As

Publication number Publication date
CN115711938A (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
US7912661B2 (en) Impedance analysis technique for frequency domain characterization of magnetoelastic sensor element by measuring steady-state vibration of element while undergoing constant sine-wave excitation
WO2024103941A1 (zh) 基于l(0,1)纵向模态导波的微细金属管血栓弹力检测装置和方法
WO2022213645A1 (zh) 基于微细金属管超声导波血液粘度快速检测装置和方法
CN203799002U (zh) 一种用于局部放电超声波检测仪校验试验的数据采集装置
Chang et al. Real-time measurement of lithium-ion batteries’ state-of-charge based on air-coupled ultrasound
WO2024103940A1 (zh) 基于扭转模态导波的毛细金属管血栓弹力测量装置和方法
CN115876888B (zh) 一种适用于脉冲强磁场下的超声回波测量装置
JPH0312691B2 (zh)
CN102175130A (zh) 一种界面波动含气液膜厚度实时测量装置及测量方法
Lynnworth et al. Nuclear reactor applications of new ultrasonic transducers
CN107290561B (zh) 取样针和包括该取样针的全自动化学发光免疫仪
CN206095360U (zh) 一种测量液氮罐中液面高度的装置
CN101947116A (zh) 骨密度的测量装置及检测方法
CN115047077B (zh) 一种适用于变温、变磁场下的超声共振谱测量装置
CN201600312U (zh) 利用粮堆中机械波传播过程检测粮堆密度的装置
CN109470774A (zh) 基于铝板缺陷检测的超声导波聚焦换能器
JP2006504931A (ja) 材料分析用音響セル
Boyle et al. Non-contact thermoacoustic imaging of tissue with airborne ultrasound detection
WO2006098404A1 (ja) 部材中の水素濃度測定方法と水素濃度測定装置
Mastromarino et al. An ultrasonic shear wave viscometer for low viscosity Newtonian liquids
CN201847707U (zh) 骨密度的测量装置
Tu et al. A new magnetic configuration for a fast electromagnetic acoustic transducer applied to online steel pipe wall thickness measurements
CN114485896B (zh) 基于聚偏氟乙烯压电薄膜的波导管声速测量装置及方法
CN115950916B (zh) 一种物体表面热流密度检测方法、装置以及设备
CN116678948B (zh) 一种玻璃纤维模量和泊松比的测量装置和测量方法