WO2024103940A1 - 基于扭转模态导波的毛细金属管血栓弹力测量装置和方法 - Google Patents

基于扭转模态导波的毛细金属管血栓弹力测量装置和方法 Download PDF

Info

Publication number
WO2024103940A1
WO2024103940A1 PCT/CN2023/118325 CN2023118325W WO2024103940A1 WO 2024103940 A1 WO2024103940 A1 WO 2024103940A1 CN 2023118325 W CN2023118325 W CN 2023118325W WO 2024103940 A1 WO2024103940 A1 WO 2024103940A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal tube
capillary metal
capillary
guided wave
signal
Prior art date
Application number
PCT/CN2023/118325
Other languages
English (en)
French (fr)
Inventor
唐志峰
张冯江
杨尔宇
伍建军
严敏
吕福在
Original Assignee
浙江大学
浙江大学湖州研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学, 浙江大学湖州研究院 filed Critical 浙江大学
Publication of WO2024103940A1 publication Critical patent/WO2024103940A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves

Definitions

  • the present invention relates to a blood measuring device and method in the field of medical instruments, and in particular to a method and device for measuring thrombus elasticity by using torsional mode ultrasonic guided waves.
  • Thromboelastometry is an important property of human blood. Its determination method is generally to use a thromboelastometry instrument to monitor, measure and analyze the viscoelastic changes from coagulation to fibrinolysis, make qualitative and quantitative predictions on the coagulation status of blood samples and obtain a thromboelastometry curve, thereby assisting doctors in accurately evaluating the coagulation function of patients.
  • the main equipment for measuring thromboelastometry at present is a thromboelastometry instrument (TEG).
  • the basic measurement principle of the thromboelastometry instrument disclosed in the utility model patent with patent number CN208188122 is mainly to evaluate the thromboelastometry by detecting the motion state of the probe in the blood sample in the measuring cup with an electromagnetic sensor. It has the following limitations: a large amount of blood sample is required, a single measurement is more than 50 minutes, and the measurement time is generally long; the blood sample is exposed to the air during the measurement, which may affect the accuracy of the measurement result; the rotation process of the probe immersed in the blood sample to be measured will affect the coagulation process of the blood sample.
  • the bias magnetic field distribution of this patent is relatively uneven, and the received signal is easily disturbed by the excitation signal, which will cause the torsional guided wave to be less pure and the waveform to be less stable.
  • the machine learning method requires a large amount of data to learn and a long training time, and the blood viscosity value measured without temperature is less accurate.
  • this patent can only obtain static blood viscosity values, does not realize dynamic thrombus elasticity measurement, and cannot analyze the correlation between blood viscosity changes and time.
  • the purpose of the present invention is to provide a capillary metal tube thrombus elasticity measurement device and method based on torsional mode waveguide, which utilizes ultrasonic guided waves to measure blood samples in a closed capillary metal tube, and can stimulate pure torsional mode waveguides to achieve the purpose of trace, rapid and non-immersive measurement of thrombus elasticity.
  • a capillary metal tube thrombus elasticity measurement device based on torsional mode guided wave :
  • It includes a shell, a capillary metal tube, a signal receiving module and a signal excitation module;
  • a capillary metal tube is installed inside the shell and contains a blood sample
  • the signal excitation module is arranged at one end of the capillary metal tube, and comprises a rectangular permanent magnet and an electrode, wherein the rectangular permanent magnet is used to provide a static bias magnetic field, and the electrode is used to conduct current and apply a dynamic induction magnetic field to the capillary metal tube;
  • the signal receiving module is arranged at the other end of the capillary metal tube, and comprises a cylindrical permanent magnet and a receiving coil.
  • the cylindrical permanent magnet is arranged at the end of the capillary metal tube, and the receiving coil is arranged near the end of the capillary metal tube.
  • It also includes a microcontroller, a waveguide excitation device, a pulse generating device, a power amplifier, an echo receiving module, a preamplifier module, a data acquisition module and a display module; the receiving coil is connected to the microcontroller via the echo receiving module, the preamplifier module and the data acquisition module in sequence, the microcontroller is connected to the electrode via the waveguide excitation device, the pulse generating device and the power amplifier in sequence, and the microcontroller is connected to the display module.
  • the shell is also provided with a heating layer, a heat-insulating layer, a temperature probe and a temperature controller;
  • the heating layer is arranged outside the capillary metal tube and is in contact with and connected to the capillary metal tube, and is electrically connected to the microcontroller;
  • the insulation layer is contacted and coated outside the heating layer
  • the temperature probe is arranged at the same end of the capillary metal tube provided with the electrode;
  • the temperature controller, the temperature probe and the microcontroller are electrically connected via the temperature probe.
  • the signal receiving module is installed at one end of the capillary metal tube, the cylindrical permanent magnet is directly connected to the end face of the capillary metal tube through magnetism, the receiving coil is sleeved outside the capillary metal tube, the inner wall of the coil does not contact the outer wall of the metal tube, and the difference between the inner diameter of the coil and the outer diameter of the metal tube is less than 1.0 mm.
  • the capillary metal tube can be directly disassembled and replaced by plugging and unplugging.
  • the capillary metal tube is made of magnetic material, and the cylindrical permanent magnet is magnetically adsorbed on the end of the capillary metal tube.
  • the material of the capillary metal tube includes but is not limited to pure nickel, carbon steel, iron-cobalt alloy, iron-aluminum alloy And iron-cobalt-nickel alloys, etc.
  • the end of the capillary metal tube is provided with a rubber plug and sealed with the rubber plug.
  • the present invention arranges a rectangular permanent magnet and a cylindrical permanent magnet to provide a static bias magnetic field in the excitation unit and the receiving unit.
  • the axial static bias magnetic field provided by the rectangular permanent magnet is more uniform, and the excited torsional mode waveguide is purer.
  • the signal acquisition method with separated transmission and reception reduces the excitation interference coupled to the received signal, and the received signal waveform is more stable and the signal-to-noise ratio is higher.
  • a method for measuring the elastic force of a capillary metal tube thrombus based on torsional mode guided waves the method steps are as follows:
  • the guided wave dispersion curve of the capillary metal tube is calculated, and the excitation frequency is selected according to the guided wave dispersion curve;
  • the number of single excitation pulses should be set to no more than 4, and the wavelength should be determined according to the length of the capillary metal tube, and then the excitation frequency is determined in combination with the wave velocity.
  • the electrodes on the capillary metal tube are excited to generate torsional mode guided waves that propagate back and forth between the two end surfaces of the capillary metal tube until the energy is exhausted.
  • the tube length is 1 meter.
  • the first k reciprocating processes are collected by the receiving coil, and the guided wave signals of a total of 2k1 meters are used as the empty tube reference signal w0 ;
  • step 3) Fill the capillary metal tube with a blood sample and obtain an echo signal as a filling detection signal in the same manner as step 2).
  • the i-th filling detection signal is w i
  • a positive correlation is established between the relative blood viscosity and the attenuation rate of the blood sample.
  • the innovation of the present invention is that a capillary metal tube is provided for measuring blood samples to obtain thrombus elasticity test results.
  • the echo signal obtained by the measurement is subjected to specific echo peak processing to obtain an accurate attenuation rate, and the relationship between the attenuation rate and the relative blood viscosity of the blood sample is discovered and established, and this relationship is used to obtain an accurate thrombus elasticity test result.
  • x represents the sequence number of the echo peak
  • y is the value of the echo peak
  • b is the attenuation rate of the echo peak
  • a represents the amplitude normalization coefficient
  • the method of the present invention obtains the echo peak attenuation rate by adopting a specific processing method. Compared with parameters such as amplitude attenuation and flight time in the prior art, it can better and more accurately reflect the thrombus elasticity parameter results; and the method of the present invention only establishes a nonlinear relationship between the echo peak attenuation rate and the relative blood viscosity, which can better and more accurately detect and obtain the thrombus elasticity results.
  • the basic principle of the present invention is that when the blood sample to be tested is injected into the capillary metal tube, an alternating current is applied to the electrode sleeved outside the capillary to form a dynamic magnetic field, which then acts on the capillary metal tube simultaneously with the bias magnetic field generated by the rectangular permanent magnet, thereby exciting a torsional mode ultrasonic guided wave under the action of the magnetostrictive effect. Due to the effect of the viscosity of the blood sample, part of the guided wave energy will leak into the blood sample during the propagation of the guided wave along the capillary, thereby causing the attenuation of the ultrasonic guided wave during the propagation process.
  • the blood will gradually coagulate in a static state, and then gradually fibrinolyze, and its viscosity will also change accordingly.
  • the thromboelastogram of the blood sample to be tested can be drawn.
  • the present invention utilizes magnetostrictive effect to excite torsional mode guided wave in a capillary metal tube filled with blood sample, the overall measurement time is short, the required blood sample is minute, and the blood sample does not contact with air during measurement, which will not affect the coagulation process of the blood sample.
  • the device is simple, easy to operate, low in cost, and more accurate in measurement, which solves the problem of long time for measuring thrombus elasticity, and is suitable for a wider range of detection scenarios such as infants and children, perioperative bedside rapid detection, daily home inspections, and field first aid.
  • FIG1 is a structural diagram of a thrombus elasticity measurement device
  • Figure 2 is a schematic diagram of a signal transceiver module
  • FIG. 3 is a schematic diagram of the temperature control module structure
  • FIG4 is a schematic diagram of the structure of the outer shell
  • FIG5 is a diagram of the original signal of a metal tube filled with blood sample
  • FIG6 is a schematic diagram of the liquid filling detection signal envelope and the setting threshold
  • FIG. 7 is a graph showing the relationship between the blood sample attenuation rate and time.
  • the device includes a housing 13 , a capillary metal tube 5 , a signal receiving module and a signal excitation module;
  • the capillary metal tube 5 is installed inside the housing 13 and serves as a container for the liquid to be tested and a carrier for wave transmission, and contains an isolated blood sample;
  • the signal excitation module is arranged at the same end of the capillary metal tube 5, and includes a rectangular permanent magnet 4 and an electrode 3.
  • the rectangular permanent magnet 4 is used to provide a static bias magnetic field, and the electrode 3 is used to conduct current and apply a dynamic induction magnetic field to the capillary metal tube 5.
  • the rectangular permanent magnet 4 may not be in contact with the capillary metal tube 5.
  • the electrode 4 is arranged to apply current to the pipeline to generate a circumferential dynamic magnetic field, while also reducing contact with the capillary metal tube to avoid affecting the propagation of guided waves in the tube.
  • the signal receiving module is arranged at the other end of the capillary metal tube 5, and includes a cylindrical permanent magnet 1 and a receiving coil 2.
  • the cylindrical permanent magnet 1 is used to provide a torsional constant magnetic field, and the receiving coil 2 is used to receive the echo signal when powered on;
  • the cylindrical permanent magnet 1 is arranged at the end of the capillary metal tube 5 to provide a torsional constant magnetic field, and the receiving coil 2 is arranged near the end of the capillary metal tube 5 and can be empty outside the capillary metal tube 5.
  • It also includes a microcontroller 16, a waveguide excitation device 17, a pulse generating device 18, a power amplifier 19, an echo receiving module 20, a preamplifier module 21, a data acquisition module 22 and a display module 23; the receiving coil 2 is connected to the microcontroller 16 via the echo receiving module 20, the preamplifier module 21 and the data acquisition module 22 in sequence, the microcontroller 16 is connected to the electrode 3 via the waveguide excitation device 17, the pulse generating device 18 and the power amplifier 19 in sequence, and the microcontroller 16 is connected to the display module 23.
  • An initial excitation pulse signal is generated by a microcontroller 16, which is converted into an analog signal by a waveguide excitation device 17 and a pulse generator 18, and then amplified by a power amplifier 19 and input to an electrode 3 to apply an alternating current to generate a dynamic magnetic field, which is combined with a bias magnetic field generated by a rectangular permanent magnet 4 to form a torsional mode waveguide, which is coupled to the capillary metal tube 5 and propagates back and forth along the capillary metal tube 5;
  • the signal receiving module composed of the receiving coil 2 and the cylindrical permanent magnet 1 receives the echo signal of the torsional mode waveguide, which is received in sequence by the echo receiving module 20, amplified by the preamplifier module 21, and collected by the data acquisition module 22 for sampling and reception, and then sent to the microcontroller 16 for data processing.
  • the attenuation rate of a single measurement is obtained by fitting the echo peak of the original signal by a power function, and the change of blood viscosity over time calculated based on the waveguide attenuation rate is displayed on the display module 23 through the above detection method.
  • the main frequency of the initial excitation pulse signal is not higher than 500kHz, and the number of cycles is not greater than 4.
  • the housing 13 is also provided with a heating layer 8, a heat-insulating layer 9, a temperature probe 6 and a temperature controller 24;
  • the heating layer 8 is disposed outside the capillary metal tube 5 and is in contact with the capillary metal tube 5 and is electrically connected to the microcontroller 16;
  • the heat-insulating layer 9 is in contact with and coated on the outside of the heating layer 8; the heat-insulating layer 9 is wrapped on the surface of the heating layer 8 to play a role of heat preservation and buffering.
  • the temperature probe 6 is arranged at the same end of the capillary metal tube 5 with the electrode 3; specifically, it can be installed at
  • the temperature controller 24 , the temperature probe 6 and the microcontroller 16 are electrically connected via the temperature probe 6 .
  • the temperature probe 6 collects the temperature on the capillary metal tube 5 in real time, and sends it to the microcontroller 16 through the temperature controller 24, so as to feedback and control the heating layer 8 to work.
  • the heating module 7 is driven to work and heat to achieve the constant temperature of human blood, so as to achieve the internal constant temperature of 37°C to simulate the internal environment of blood in the human body.
  • the signal receiving module is installed at one end of the capillary metal tube 5, the cylindrical permanent magnet 1 is directly connected to the end face of the capillary metal tube 5 through magnetism, the receiving coil 2 is sleeved outside the capillary metal tube 5, the inner wall of the coil does not contact the outer wall of the metal tube, and the difference between the inner diameter of the coil and the outer diameter of the metal tube is less than 1.0 mm.
  • the capillary metal tube 5 can be directly disassembled and replaced by plugging and unplugging.
  • the capillary metal tube 5 is made of magnetic material, and the cylindrical permanent magnet 1 is magnetically adsorbed on the end of the capillary metal tube 5.
  • the end face of the capillary metal tube 5 needs to be finely processed to ensure that the end face is perpendicular to the axis of the metal tube and has no burrs or gaps, so as to ensure the repeatability of static magnetic field loading and good reflection of guided waves.
  • the capillary metal tube 5 is made of magnetostrictive material or magnetic conductive metal material, including but not limited to pure nickel, carbon steel, iron-cobalt alloy, iron-aluminum alloy and iron-cobalt-nickel alloy.
  • the inner diameter of the capillary metal tube 5 is capillary, the length does not exceed 200 mm, and the inner diameter is not greater than 1.5 mm.
  • the cylindrical permanent magnet 1 is magnetized in the axial direction, and the rectangular permanent magnet 4 is magnetized in the thickness direction.
  • the grades of both are above N35.
  • the cylindrical permanent magnet 5 is processed with a hole, and is installed to keep the same axis as the capillary metal tube 5, so as to observe whether blood sample flows out during filling to determine whether the capillary metal tube 5 is filled with blood sample.
  • a base 14 and a cover plate 7 are provided inside the housing 13, and a front cover sheet 12 and a rear cover sheet 15 are provided outside; a heating layer 8 and a heat preservation layer 9 are provided on the base 14, and a No. 1 socket 10 and a No. 2 socket 11 for external connection are provided at both ends of the base 14, respectively. 11 are electrically connected to the receiving coil 2 and the electrode 3 respectively, the base 14 is installed in the inner cavity of the shell 13 after the cover plate 7 is installed, and the front end cover plate 12 and the rear end cover plate 15 are arranged at both ends of the shell 13.
  • the signal excitation module and the receiving module are both installed on the base, and the rectangular permanent magnet is placed in the groove of the base parallel to the pipeline; the electrode 3 is connected to the No. 2 socket 11 through a wire, sleeved on one end of the capillary metal tube 5, and located on both sides of the rectangular permanent magnet 4; the receiving coil 2 in the signal receiving module is connected to the No. 1 socket 10 through a wire, and the cylindrical permanent magnet 1 is adsorbed on the end face of the capillary metal tube 5.
  • the temperature probe 6 in the temperature control module is attached to the inner wall of the base and connected to the No. 1 socket 10 through a wire. During the installation process, it must be ensured that the disassembly and assembly and operation of the capillary metal tube 5 will not be affected.
  • the heating layer 8 is wrapped on the surface of the cover plate 7, and the insulation layer 9 is wrapped on the surface of the heating layer 8 to play a role of insulation and buffering.
  • the shell 13 is sleeved outside the insulation layer, and its end face is flush with one end of the magnet to play a fixing role.
  • the front cover sheet 12 and the rear cover sheet 14 attached with insulation rubber are installed on the front and rear faces of the shell 13.
  • the end of the capillary metal tube 5 is provided with a rubber plug 25 for sealing.
  • the size of the rubber plug 25 needs to match the inner hole size of the capillary metal tube 5.
  • the purpose of the rubber plug 25 is to ensure that the blood sample does not contact with the air after the filling is completed.
  • test experiment process of the present invention is as follows:
  • the waveguide dispersion curve is shown in Figure 2. Since the selected capillary metal tube length is 200 mm and the number of single excitation pulse cycles is 4 to ensure a certain excitation acoustic field intensity, in order to prevent wave packet overlap, the wavelength of the excitation pulse should not exceed 25 mm. Therefore, the minimum excitation frequency can be calculated to be 128 kHz from the wave velocity of the zero-order torsional wave (3250 m/s).
  • the receiving coil 2 on the capillary metal tube 5 is excited to generate a torsional mode guided wave propagating on the capillary metal tube 5, and the echo signal propagating back and forth for 10 meters on the capillary metal tube 5 is collected as an empty tube reference signal;
  • the method of the present invention has a fast transport speed. Through the method of the present invention, the relative blood viscosity collected every 5 seconds in step 4 will be updated in real time on the display module 10 without waiting until all samples are completed. Displays the test results.
  • the device is always in a horizontal state, in order to prevent the accumulation of red blood cells in the blood sample and thus affect the final result.
  • this is a single-sampled original echo signal, the amplitude of which gradually decreases with the increase of the propagation distance.
  • the attenuation rate of a single measurement is obtained by fitting the echo peak of the original signal with a power function.
  • the change of relative blood viscosity over time calculated based on the waveguide attenuation rate is displayed on the display module 23 through the above-mentioned detection method.
  • FIG. 7 basically conforms to the process of blood coagulation-fibrinolysis.
  • the first 15 minutes are the coagulation process of the blood sample, 15-20 minutes are the stabilization stage, and 20-30 minutes are the fibrinolysis stage.
  • the use of this device to measure thrombus elasticity not only takes a short time, but also the blood sample does not come into contact with the air during the whole process, and there is no probe immersed in the blood sample to rotate. In comparison, the measurement of the scheme of the present invention is more accurate.
  • the measurement method provided by the present invention is more accurate.
  • the present invention is based on torsional mode waveguide measurement, which has no dispersion within a certain frequency range and is sensitive to changes in liquid viscosity. It is not easily affected by other factors during the measurement process and can achieve the purpose of micro-, rapid and non-immersive measurement of thrombus elasticity changes.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种基于扭转模态导波的毛细金属管血栓弹力测量装置和方法。包括壳体(13)、毛细金属管(5)、信号接收模块和信号激励模块;毛细金属管(5)安装在壳体(13)内部、内置有血液样本;信号激励模块在毛细金属管(5)的一端,包括长方体永磁体(4)和电极(3);信号接收模块设置在毛细金属管(5)的另一端,包括圆柱体永磁体(1)和接收线圈(2);在毛细金属管(5)上激励扭转模态导波,当管内液体粘度变化时,沿管传播的导波能量衰减不同,通过多次回波峰值衰减率定义导波能量衰减,反映相对血液粘度。基于扭转模态导波进行测量,在一定频率范围内无频散且对于液体粘度变化敏感,测量过程中不容易受到其他因素影响,能达到微量、快速且非浸入式测量血栓弹力变化的目的。

Description

基于扭转模态导波的毛细金属管血栓弹力测量装置和方法 技术领域
本发明涉及医疗仪器领域的一种血液测量装置和方法,尤其涉及一种利用扭转模态超声导波测量血栓弹力的方法和装置。
背景技术
血栓弹力是表征人体血液的一个重要性质,其测定方法一般是用血栓弹力仪通过对凝血到纤溶期间的粘弹性变化进行监测、测量、分析,对血样凝结状况作出定性和定量的预测并获得血栓弹力曲线,从而协助医生对病人的凝血功能进行准确评估。当前测量血栓弹力的主要设备为血栓弹力图仪(TEG),专利号为CN208188122的实用型专利公开的血栓弹力图仪的基本测量原理主要是通过电磁感应器检测探针在装于测量杯中的血样的运动状态来评估血栓弹力,其成本较高,且有以下几点限制:所需血样采集量较多,单次测量在50min以上,测量时间普遍较长;测量期间血样暴露在空气中可能会影响测量结果的准确性;探针浸入待测血样中的旋转过程会对血样凝固过程造成影响。
综上所述,传统血栓弹力检测技术难以满足例如面向婴幼儿和儿童患者、围术期床旁快速检测、家庭日常检查和野外急救等更为广泛的检测场景,研发一种微量、快速且非浸入式测量血栓弹力技术需求迫切。
利用超声导波测量血栓弹力变化可以在密闭的毛细金属管内进行测量,该方法准确度更高,且由于血样采集量较小,所以测量血样凝结时间更短。《超声导波扭转模态在粘弹性包覆层管道中传播特性研究》中提出扭转模态导波相比于扭转模态导波对管道内液体粘度变化更为敏感,但激励扭转模态导波对装置有着较大的要求:传统的激励方式为在管道周围布置铁钴带材与线圈共同组成换能器,但铁钴带材具有一定韧性难以在外径极小的毛细金属管上实现装配;专利号为CN113203661A的发明专利在毛细金属管上涂覆了一层磁致伸缩粉末涂层,其所需工艺和成本较高,该专利的偏置磁场分布较不均匀、接收信号时容易受到激励信号干扰会导致扭转导波较不纯净、波形较不稳定,采用机器学习方法所需学习的数据量较大、训练时间较长,且无温度测量血液粘度值较不准确。同时该专利只能获得静态血液粘度值,并未实现动态的血栓弹力测量,且无法分析血液粘度变化和时间的相关性。
综上所述,目前尚无能够在毛细金属管上激励出纯净扭转模态导波的技术方案。
发明内容
为克服背景技术领域中测量血栓弹力存在的问题,本发明的目的在于提供一种基于扭转模态导波的毛细金属管血栓弹力测量装置和方法,利用超声导波在密闭的毛细金属管中测量血样,能激励出纯净扭转模态导波,以达到微量、快速非浸入式测量血栓弹力的目的。
本发明技术方案如下:
一、一种基于扭转模态导波的毛细金属管血栓弹力测量装置:
包括壳体、毛细金属管、信号接收模块和信号激励模块;
毛细金属管,安装在壳体内部,内置有血液样本;
信号激励模块,设置在毛细金属管的一端,包括长方体永磁体和电极,长方体永磁体用于提供静态偏置磁场,电极用于导通电流并对毛细金属管施加动态感应磁场;
信号接收模块,设置在毛细金属管的另一端,包括圆柱体永磁体和接收线圈,圆柱体永磁体布置在毛细金属管的端部,接收线圈布置在靠近毛细金属管的端部处。
还包括微控制器、导波激励装置、脉冲产生装置、功率放大装置、回波接收模块、前置放大模块、数据采集模块和显示模块;接收线圈依次经回波接收模块、前置放大模块、数据采集模块后和微控制器连接,微控制器依次经导波激励装置、脉冲产生装置、功率放大装置后和电极连接,微控制器和显示模块连接。
所述的壳体内还设有加热层、保温层、温度探头和温度控制器;
加热层,设置在毛细金属管之外且和毛细金属管接触连接,且和微控制器电连接;
保温层,接触包覆在加热层之外;
温度探头,布置在设有电极的毛细金属管的同一端;
温度控制器,温度探头经温度探头和微控制器电连接。
所述的信号接收模块安装在毛细金属管一端,圆柱体永磁体通过磁性直接与毛细金属管端面连接,接收线圈套接在毛细金属管外,线圈内壁不与金属管外壁接触,线圈内径与金属管外径相差小于1.0mm。毛细金属管通过插拔的方式直接拆卸更换。
所述的毛细金属管采用磁性材料,圆柱体永磁体磁性吸附在毛细金属管端部上。
所述的毛细金属管的材质包括但不限于纯镍、碳钢、铁钴合金、铁铝合金 和铁钴镍合金等。
所述毛细金属管的端部设置橡胶塞,用橡胶塞封堵。
本发明设置了长方体永磁体和圆柱体永磁体提供激励单元与接收单元中的静态偏置磁场,不同于现有技术在两侧布置永磁体所形成的环形磁场,长方体永磁体提供的轴向静态偏置磁场更为均匀,激发的扭转模态导波更为纯净,且相对于收发一体的磁致伸缩激励技术来说,收发分离的信号采集方式使得耦和于接收信号的激励干扰更少,接收信号波形更为稳定且信噪比更高。
二、一种基于扭转模态导波的毛细金属管血栓弹力测量方法,方法步骤如下:
1)根据毛细金属管的结构几何参数与材料力学特征,计算毛细金属管的导波频散曲线,根据导波频散曲线选取激励频率;
具体实施中,同时确保一定的激发声场强度及波包不发生重叠,单次激发脉冲数应设置为不超过4并应该根据毛细金属管长度确定波长,再结合波速确定激励频率。
2)当毛细金属管为空管时,对毛细金属管上的电极进行激励产生扭转模态导波在毛细金属管的两端面之间往复传播直至能量耗尽,管长为l米,通过接收线圈采集前k个往复过程,合计2kl米的导波信号作为空管基准信号w0
3)在毛细金属管内充入血液样本,按照步骤2)相同方式获得回波信号作为充液检测信号,第i次充液检测信号为wi
4)对空管基准信号w0和每次充液检测信号wi取包络获得各自的包络信号,从包络信号中取n个回波峰值进行拟合获得各自的衰减率b0和bi,根据衰减率b0和bi结合预先标定获得的血液样本的相对血液粘度和衰减率的关系获得每次充液检测信号wi对应的相对血液粘度;
本发明中,血液样本的相对血液粘度和衰减率是建立了正相关的关系。
5)设定检测的采样次数m与采样间隔Δt,在毛细金属管内充入血液样本后连续不断重复步骤3)和4)进行采样并获得每次检测的相对血液粘度,从而绘制获得时间m*Δt内血液样本的相对血液粘度随时间曲线作为血栓弹力图,实现血栓弹力测量。
本发明的创新在于设置了毛细金属管用于对血液样本进行测量,获得了血栓弹力检测结果。其中对测量获得的回波信号进行特定的回波峰值处理获得了准确的衰减率,还发现并建立了衰减率和血液样本的相对血液粘度之间的关系,利用这个关系获得了准确的血栓弹力检测结果。
所述步骤4)中,从包络信号中取n个回波峰值的具体方法为:根据包络信 号选择合适的第一门限l1和第二门限l2,两者间隔l=l1-l2,从包络信号的起点x0处开始建立连续n个长度为l的区间,即区间[x0,x0+l],[x0+l,x0+2l]……[x0+(n-1)l,x0+nl],使得每个区间内仅包含一个峰值,提取每个区间内的峰值作为回波峰值,提取n个区间内的所有峰值作为最终选取的n个回波峰值。
所述步骤4)中,所述衰减率按照以下公式拟合获得:
y=a*bx
其中,x代表回波峰值的序号,y为回波峰值的值,b为回波峰值的衰减率,a表示幅值归一化系数。
本发明方法通过采用特定方式处理获得了回波峰值衰减率,相比现有技术中的幅值衰减、飞行时间等参数,能够更好地准确反映血栓弹力参数结果;且本发明方法是仅建立了回波峰值衰减率和相对血液粘度之间的非线性关系,能更好精确地检测获得血栓弹力结果。
本发明的基本原理是当待测血样注入毛细金属管内,通过对套接在毛细管外的电极施加交变电流,形成动磁场,再与长方体永磁体产生的偏置磁场同时作用于毛细金属管,从而在磁致伸缩效应作用下激励出扭转模态超声导波。由于血样粘度的作用,部分导波能量在导波沿着毛细管传播过程中会泄露到血样中,从而导致超声导波在传播过程中的衰减。血液在静止状态下会逐渐凝结,然后逐渐纤溶,其粘度也会发生相应的变化。通过测量毛细管中导波衰减率随着时间的变化曲线,再结合血液粘度与导波衰减率的基本关系,即可绘制被测血样的血栓弹力图。
本发明具有的有效效益是:
本发明利用磁致伸缩效应在充满血样的毛细金属管激发扭转模态导波,整体测量时间短,所需血样微量且测量时血样不与空气接触,不会对血样凝固过程造成影响。装置简单,操作简便,成本较低,测量更加精确,解决了测量血栓弹力时间长的问题,且适用于婴幼儿和儿童患者、围术期床旁快速检测、家庭日常检查和野外急救等更为广泛的检测场景。
附图说明
图1为血栓弹力测量装置结构图;
图2为信号收发模块示意图;
图3为温控模块结构示意图;
图4为外壳部分结构示意图;
图5为充满血样金属管的原始信号图;
图6为充液检测信号包络及设定门限示意图;
图7为血样衰减率和时间的关系图。
图中:1-圆柱体永磁体;2-接收线圈;3-电极;4-长方体永磁体;5-毛细金属管;6-温度探头;7-盖板;8-加热层;9-保温层;10-一号插座;11-二号插座;12-前端盖片;13-壳体;14-基台,15-后端盖片;16-微控制器;17-导波激励装置;18-脉冲产生装置;19-功率放大装置;20-回波接收模块;21-前置放大模块;22-数据采集模块;23-显示模块;24-温度控制器;25-橡胶塞。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
如图1所示,本装置包括壳体13、毛细金属管5、信号接收模块和信号激励模块;
毛细金属管5,安装在壳体13内部,作为待测液体容器和导波传播载体,内置有离体的血液样本;
信号激励模块,设置在毛细金属管5的同一端,包括长方体永磁体4和电极3,长方体永磁体4用于提供静态偏置磁场,电极3用于导通电流并对毛细金属管5施加动态感应磁场;长方体永磁体4可和毛细金属管5不接触。设置电极4在对管道施加电流产生周向动态磁场的同时,也减少与毛细金属管之间的接触,以避免对管中导波传播造成影响。
信号接收模块,设置在毛细金属管5的另一端,包括圆柱体永磁体1和接收线圈2,圆柱体永磁体1用于提供扭转恒定磁场,接收线圈2用于通电接收回波信号;圆柱体永磁体1布置在毛细金属管5的端部,用于提供扭转恒定磁场,接收线圈2布置在靠近毛细金属管5的端部处,可空套在毛细金属管5之外。
接收线圈2内径需与毛细金属管5外径之间具有间隙,间隙不大于2mm。
还包括微控制器16、导波激励装置17、脉冲产生装置18、功率放大装置19、回波接收模块20、前置放大模块21、数据采集模块22和显示模块23;接收线圈2依次经回波接收模块20、前置放大模块21、数据采集模块22后和微控制器16连接,微控制器16依次经导波激励装置17、脉冲产生装置18、功率放大装置19后和电极3连接,微控制器16和显示模块23连接。
通过微控制器16产生初始激励脉冲信号,依次经导波激励装置17、脉冲产生装置18转换成模拟信号、功率放大装置19功率放大后输入到电极3上施加交变电流产生动磁场,结合长方体永磁体4产生的偏置磁场形成扭转模态导波,将扭转模态导波耦合至毛细金属管5,并沿毛细金属管5往复传播;
由接收线圈2和圆柱体永磁体1组成的信号接收模块接收扭转模态导波的回波信号,依次通过回波接收模块20接收、前置放大模块21放大、数据采集模块22采集后实现采样接收,然后送至微控制器16进行数据处理,通过幂函数拟合原始信号的回波峰值得到单次测量的衰减率,通过上述检测方法将基于导波衰减率换算的血液粘度随时间的变化在在显示模块23展示。
初始激励脉冲信号主频不高于500kHz,周期数不大于4。
壳体13内还设有加热层8、保温层9、温度探头6和温度控制器24;
加热层8,包围设置在毛细金属管5之外且和毛细金属管5接触连接,且和微控制器16电连接;
保温层9,接触包覆在加热层8之外;保温层9包装于加热层8表面起到保温和缓冲作用。
温度探头6,布置在设有电极3的毛细金属管5的同一端;具体可安装在
温度控制器24,温度探头6经温度探头6和微控制器16电连接。
通过温度探头6实时采集温度检测毛细金属管5上的温度,并经温度控制器24发送到微控制器16进而反馈控制加热层8进行工作。当温度发生变化时驱动加热模块7工作加热实现人体血液恒温,以实现内部恒温37℃以模拟血液在人体内部环境。
信号接收模块安装在毛细金属管5一端,圆柱体永磁体1通过磁性直接与毛细金属管5端面连接,接收线圈2套接在毛细金属管5外,线圈内壁不与金属管外壁接触,线圈内径与金属管外径相差小于1.0mm。毛细金属管5通过插拔的方式直接拆卸更换。
毛细金属管5采用磁性材料,圆柱体永磁体1磁性吸附在毛细金属管5端部上。毛细金属管5的端面需进行精加工处理,确保端面与金属管轴线垂直且无毛刺或缺口,以保证静态磁场加载的重复性和导波的良好反射。
毛细金属管5的材质为磁致伸缩材料或导磁金属材料,包括但不限于纯镍、碳钢、铁钴合金、铁铝合金和铁钴镍合金等。
毛细金属管5的内径是毛细的,长度不超过200mm,内径不大于1.5mm。
圆柱体永磁体1为轴向充磁,长方体永磁体4为沿厚度方向充磁,两者牌号在N35以上。圆柱体永磁体5经过开孔处理,安装时与毛细金属管5保持同轴心,目的是充液时观察是否有血样流出以判断血样是否充满毛细金属管5。
具体实施中,如图2-图4所示,壳体13内设置有基台14、盖板7,外设置有前端盖片12和后端盖片15;基台14上设置加热层8和保温层9,基台14的两端分别设置用于外接的一号插座10和二号插座11,一号插座10和二号插座 11分别电连接接收线圈2和电极3,基台14安装上盖板7后安装在壳体13的内腔中,壳体13的两端设置前端盖片12和后端盖片15。
信号激励模块与接收模块均安装在基台上,长方体永磁体与管道平行放置基台的凹槽内;电极3与二号插座11通过导线连接,套接在毛细金属管5一端,位于长方体永磁体4两侧;信号接收模块中接收线圈2通过导线与一号插座10相连,圆柱体永磁体1吸附于毛细金属管5的端面。
温控模块中温度探头6贴附于基台内壁,通过导线与一号插座10连接,安装过程中需保证不会影响毛细金属管5的拆装与工作,加热层8包装于盖板7表面,保温层9包装于加热层8表面起到保温和缓冲作用。
壳体13套接在保温层外,端面与磁铁一端平齐,起到固定的作用,贴附保温橡胶的前端盖片12和后端盖片14安装在壳体13的前端面和后端面。
毛细金属管5的端部设置橡胶塞25,用橡胶塞25封堵。橡胶塞25尺寸需与毛细金属管5的内孔尺寸相匹配,橡胶塞25的目的是确保充液完毕后血样不与空气接触。
抽取病人微量血液,从毛细金属管5入口端—信号激励端注射至管内直至出口端—圆柱体永磁体1有血样溢出,用橡胶塞25堵在圆柱体永磁体1表面,拔出针筒,用橡胶塞25堵住入口端,密封完毕即可开始测量。
本发明的测试实验过程如下:
以内直径1.5mm,外直径3mm,长为200mm,密度7800kg/m3,弹性模量210GPa,泊松比0.28的毛细碳钢管为例:
1)根据毛细金属管5的结构几何参数与材料力学特征,计算毛细金属管5
的导波频散曲线,由于选定的毛细金属管长度为200mm且单次激发脉冲周期数为4以确保一定的激发声场强度,为防止波包重叠,激励脉冲的波长应当不超过25mm,从而由零阶扭转波的波速(3250m/s)可计算得最小激励频率为128kHz。
2)当毛细金属管5为空管时,对毛细金属管5上的接收线圈2进行激励产生扭转模态导波在毛细金属管5上传播,采集毛细金属管5上往复传播10米的回波信号作为空管基准信号;
3)用连接好软管的针筒从毛细金属管5的激励端注入待测血样,接收端的磁铁有血样流出即可认为血样已充满管道内部,两端各堵上橡胶塞25,按照步骤2)相同方式获得回波信号作为充液检测信号。
本发明方法运输速度快,通过本发明方法使得步骤4中,每间隔5s时间采集的相对血液粘度将在显示模块10实时更新,而无需等待至全部采样完毕后再 显示检测结果。
本发明在测量过程中,均在装置水平状态下进行,目的是防止血样中红细胞堆积从而对最终结果造成影响。
如图5所示为单次采样原始的回波信号,幅值随着传播距离的增加逐渐下降,通过幂函数拟合原始信号的回波峰值得到单次测量的衰减率,通过上述检测方法将基于导波衰减率换算的相对血液粘度随时间的变化在显示模块23展示。
4)绘制该信号包络图并通过设置门限取10个区间的回波峰值,如图6所示,计算该信号衰减率及相对血液粘度,连续采样360次,采样间隔5s。
结果如图7所示,基本符合血液凝结-纤溶的过程,前15分钟为血样的凝血过程,15-20分钟为稳定阶段,20-30分钟为纤溶阶段,使用本装置测量血栓弹力不仅用时短,而且整个过程血样不与空气接触以及没有探针浸入血样旋转,相比之下本发明方案的测量更加准确。
对比例1
下面用本发明描述的方法和专利号为CN113203661A的发明专利所提供的测量方法分别测定标准粘度液的准确值并作比较:
1)通过仿真得到粘度值和相对衰减率对应的函数关系式为:
y=a*xb+c
2)测量粘度值为4.5cp,98.5cp,476cp的相对衰减率分别为:0.997,0.906,0.857,代入函数并计算相关参数得到关系式为:
y=-0.03531*x0.2766+1.052
3)测量9.2cp,346cp的相对衰减率分别为:0.987,0.876,将衰减率带入上式计算得出粘度值为:9.1cp,334.1cp。计算误差为1.38%,3.43%。
4)用专利号为CN113203661A的发明专利所提供的的测量方法测得9.2cp,346cp的粘度值分别为10.1cp,372cp误差为9.7%,7.5%。
实验测试相比之下,本发明所提供的测量方法更加准确。
由此可见,本发明基于扭转模态导波进行测量,其在一定频率范围内无频散且对于液体粘度变化敏感,测量过程中不容易受到其他因素影响,可达到微量、快速且非浸入式测量血栓弹力变化的目的。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改和改变,都落入本发明的保护范围。

Claims (10)

  1. 一种基于扭转模态导波的毛细金属管血栓弹力测量装置,其特征在于:
    包括壳体(13)、毛细金属管(5)、信号接收模块和信号激励模块;
    毛细金属管(5),安装在壳体(13)内部,内置有血液样本;
    信号激励模块,设置在毛细金属管(5)的一端,包括长方体永磁体(4)和电极(3),长方体永磁体(4)用于提供静态偏置磁场,电极(3)用于导通电流并对毛细金属管(5)施加动态感应磁场;
    信号接收模块,设置在毛细金属管(5)的另一端,包括圆柱体永磁体(1)和接收线圈(2),圆柱体永磁体(1)布置在毛细金属管(5)的端部,接收线圈(2)布置在靠近毛细金属管(5)的端部处。
  2. 根据权利要求1所述的一种基于扭转模态导波的毛细金属管血栓弹力测量装置,其特征在于:还包括微控制器(16)、导波激励装置(17)、脉冲产生装置(18)、功率放大装置(19)、回波接收模块(20)、前置放大模块(21)、数据采集模块(22)和显示模块(23);接收线圈(2)依次经回波接收模块(20)、前置放大模块(21)、数据采集模块(22)后和微控制器(16)连接,微控制器(16)依次经导波激励装置(17)、脉冲产生装置(18)、功率放大装置(19)后和电极(3)连接,微控制器(16)和显示模块(23)连接。
  3. 根据权利要求1所述的一种基于扭转模态导波的毛细金属管血栓弹力测量装置,其特征在于:
    所述的壳体(13)内还设有加热层(8)、保温层(9)、温度探头(6)和温度控制器(24);
    加热层(8),设置在毛细金属管(5)之外且和毛细金属管(5)接触连接,且和微控制器(16)电连接;
    保温层(9),接触包覆在加热层(8)之外;
    温度探头(6),布置在设有电极(3)的毛细金属管(5)的同一端;
    温度控制器(24),温度探头(6)经温度探头(6)和微控制器(16)电连接。
  4. 根据权利要求1所述的一种基于扭转模态导波的毛细金属管血栓弹力测量装置,其特征在于:所述的信号接收模块安装在毛细金属管(5)一端,圆柱体永磁体(1)通过磁性直接与毛细金属管(5)端面连接,接收线圈(2)套接在毛细金属管(5)外,线圈内壁不与金属管外壁接触,线圈内径与金属管外径相差小于1.0mm。毛细金属管(5)通过插拔的方式直接拆卸更换。
  5. 根据权利要求1所述的一种基于扭转模态导波的毛细金属管血栓弹力测量装置,其特征在于:所述的毛细金属管(5)采用磁性材料,圆柱体永磁体(1)磁性吸附在毛细金属管(5)端部上。
  6. 根据权利要求1或5所述的一种基于扭转模态导波的毛细金属管血栓弹力测量装置,其特征在于:
    所述的毛细金属管(5)的材质包括但不限于纯镍、碳钢、铁钴合金、铁铝合金和铁钴镍合金等。
  7. 根据权利要求1所述的一种基于扭转模态导波的毛细金属管血栓弹力测量装置,其特征在于:
    所述毛细金属管(5)的端部设置橡胶塞(25),用橡胶塞(25)封堵。
  8. 应用于权利要求1-7任一所述装置的一种基于扭转模态导波的毛细金属管血栓弹力测量方法,其特征在于:方法步骤如下:
    1)根据毛细金属管(5)的结构几何参数与材料力学特征,计算毛细金属管(5)的导波频散曲线,根据导波频散曲线选取激励频率;
    2)当毛细金属管(5)为空管时,对毛细金属管(5)上的电极(3)进行激励产生扭转模态导波在毛细金属管(5)的两端面之间往复传播直至能量耗尽,管长为l米,通过接收线圈(2)采集前k个往复过程,合计2kl米的导波信号作为空管基准信号w0
    3)在毛细金属管(5)内充入血液样本,按照步骤2)相同方式获得回波信号作为充液检测信号,第i次充液检测信号为wi
    4)对空管基准信号w0和每次充液检测信号wi取包络获得各自的包络信号,从包络信号中取n个回波峰值进行拟合获得各自的衰减率b0和bi,根据衰减率b0和bi结合预先标定获得的血液样本的相对血液粘度和衰减率的关系获得每次充液检测信号wi对应的相对血液粘度;
    5)设定检测的采样次数m与采样间隔Δt,在毛细金属管(5)内充入血液样本后连续不断重复步骤3)和4)进行采样并获得每次检测的相对血液粘度,从而绘制获得时间m*Δt内血液样本的相对血液粘度随时间曲线作为血栓弹力图,实现血栓弹力测量。
  9. 根据权利要求7所述的一种基于扭转模态导波的毛细金属管血栓弹力测量方法,其特征在于:所述步骤4)中,从包络信号中取n个回波峰值的具体方法为:根据包络信号选择第一门限l1和第二门限l2,两者间隔l=l1-l2,从包络信号的起点x0处开始建立连续n个长度为l的区间,即区间[x0,x0+l],[x0+l,x0+2l]……[x0+(n-1)l,x0+nl],使得每个区间内仅包含一个峰值,提取每个区间内 的峰值作为回波峰值,提取n个区间内的所有峰值作为最终选取的n个回波峰值。
  10. 根据权利要求7所述的一种基于扭转模态导波的毛细金属管血栓弹力测量方法,其特征在于:所述步骤4)中,所述衰减率按照以下公式拟合获得:
    y=a*bx
    其中,x代表回波峰值的序号,y为回波峰值的值,b为回波峰值的衰减率,a表示幅值归一化系数。
PCT/CN2023/118325 2022-11-14 2023-09-12 基于扭转模态导波的毛细金属管血栓弹力测量装置和方法 WO2024103940A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211425810.2A CN115825224A (zh) 2022-11-14 2022-11-14 基于扭转模态导波的毛细金属管血栓弹力测量装置和方法
CN202211425810.2 2022-11-14

Publications (1)

Publication Number Publication Date
WO2024103940A1 true WO2024103940A1 (zh) 2024-05-23

Family

ID=85528128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118325 WO2024103940A1 (zh) 2022-11-14 2023-09-12 基于扭转模态导波的毛细金属管血栓弹力测量装置和方法

Country Status (2)

Country Link
CN (1) CN115825224A (zh)
WO (1) WO2024103940A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825224A (zh) * 2022-11-14 2023-03-21 浙江大学 基于扭转模态导波的毛细金属管血栓弹力测量装置和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB910881A (en) * 1957-09-02 1962-11-21 Nat Res Dev Improvements in or relating to viscometers
US20090193889A1 (en) * 2007-12-22 2009-08-06 Precision Energy Services, Inc. Measurement tool and method of use
CN102854090A (zh) * 2012-07-18 2013-01-02 北京工业大学 基于超声导波的液体粘滞系数检测装置及方法
CN105445362A (zh) * 2015-11-13 2016-03-30 华中科技大学 一种基于开放磁路的磁致伸缩导波检测方法及装置
CN108508085A (zh) * 2018-02-09 2018-09-07 清华大学 一种扭转模态磁致伸缩传感器、管道检测系统及方法
CN211877879U (zh) * 2020-04-21 2020-11-06 上海市特种设备监督检验技术研究院 一种纤维全缠绕复合气瓶的扭转模态低频导波检测探头
CN113203661A (zh) * 2021-04-08 2021-08-03 浙江大学 基于微细金属管超声导波血液粘度快速检测装置和方法
CN115825224A (zh) * 2022-11-14 2023-03-21 浙江大学 基于扭转模态导波的毛细金属管血栓弹力测量装置和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB910881A (en) * 1957-09-02 1962-11-21 Nat Res Dev Improvements in or relating to viscometers
US20090193889A1 (en) * 2007-12-22 2009-08-06 Precision Energy Services, Inc. Measurement tool and method of use
CN102854090A (zh) * 2012-07-18 2013-01-02 北京工业大学 基于超声导波的液体粘滞系数检测装置及方法
CN105445362A (zh) * 2015-11-13 2016-03-30 华中科技大学 一种基于开放磁路的磁致伸缩导波检测方法及装置
CN108508085A (zh) * 2018-02-09 2018-09-07 清华大学 一种扭转模态磁致伸缩传感器、管道检测系统及方法
CN211877879U (zh) * 2020-04-21 2020-11-06 上海市特种设备监督检验技术研究院 一种纤维全缠绕复合气瓶的扭转模态低频导波检测探头
CN113203661A (zh) * 2021-04-08 2021-08-03 浙江大学 基于微细金属管超声导波血液粘度快速检测装置和方法
CN115825224A (zh) * 2022-11-14 2023-03-21 浙江大学 基于扭转模态导波的毛细金属管血栓弹力测量装置和方法

Also Published As

Publication number Publication date
CN115825224A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2024103940A1 (zh) 基于扭转模态导波的毛细金属管血栓弹力测量装置和方法
US7912661B2 (en) Impedance analysis technique for frequency domain characterization of magnetoelastic sensor element by measuring steady-state vibration of element while undergoing constant sine-wave excitation
CN203799002U (zh) 一种用于局部放电超声波检测仪校验试验的数据采集装置
US8432159B2 (en) Method and apparatus for monitoring wall thinning of a pipe using magnetostrictive transducers and variation of dispersion characteristics of broadband multimode shear horizontal (SH) waves
US4639669A (en) Pulsed electromagnetic nondestructive test method for determining volume density of graphite fibers in a graphite-epoxy composite material
KR100573736B1 (ko) 비틀림파를 발생 및 측정할 수 있는 트랜스듀서와 이를이용한 이상진단 장치 및 방법
Monnier et al. Primary calibration of acoustic emission sensors by the method of reciprocity, theoretical and experimental considerations
Chang et al. Real-time measurement of lithium-ion batteries’ state-of-charge based on air-coupled ultrasound
WO2022213645A1 (zh) 基于微细金属管超声导波血液粘度快速检测装置和方法
WO2024103941A1 (zh) 基于l(0,1)纵向模态导波的微细金属管血栓弹力检测装置和方法
CN115876888B (zh) 一种适用于脉冲强磁场下的超声回波测量装置
Gao et al. Noncontact magnetostrictive torsional guided wave sensors for small-diameter pipes
CN114295265B (zh) 一种gis盆式绝缘子法向内部热应力检测方法及系统
Urayama et al. Application of EMAT/EC dual probe to monitoring of wall thinning in high temperature environment
JPH01500460A (ja) 混成分析検査機器用の改良プローブ
Lynnworth et al. Nuclear reactor applications of new ultrasonic transducers
CN109470774A (zh) 基于铝板缺陷检测的超声导波聚焦换能器
JP3718280B2 (ja) 金属製加工物の特性の非破壊試験方法及び装置
Theobald et al. Acoustic emission transducers—development of a facility for traceable out-of-plane displacement calibration
Hauge Finite element modeling of ultrasound measurement systems for gas. Comparison with experiments in air.
CN208476863U (zh) 一种测量岩芯试样横波速度的试验装置
Cai et al. Nonlinear electromagnetic acoustic testing method for tensile damage evaluation
Shen et al. Fiber-optic ultrasonic probe based on refractive-index modulation in water
Mastromarino et al. An ultrasonic shear wave viscometer for low viscosity Newtonian liquids
Tu et al. A new magnetic configuration for a fast electromagnetic acoustic transducer applied to online steel pipe wall thickness measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890377

Country of ref document: EP

Kind code of ref document: A1