WO2024103734A1 - 空调系统及其控制方法 - Google Patents

空调系统及其控制方法 Download PDF

Info

Publication number
WO2024103734A1
WO2024103734A1 PCT/CN2023/102890 CN2023102890W WO2024103734A1 WO 2024103734 A1 WO2024103734 A1 WO 2024103734A1 CN 2023102890 W CN2023102890 W CN 2023102890W WO 2024103734 A1 WO2024103734 A1 WO 2024103734A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
outdoor
target
valve
outdoor unit
Prior art date
Application number
PCT/CN2023/102890
Other languages
English (en)
French (fr)
Inventor
刘心怡
张恒
郭小惠
车闫瑾
井旭
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2024103734A1 publication Critical patent/WO2024103734A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to the technical field of air conditioning equipment, and in particular to an air conditioning system and a control method thereof.
  • an air conditioning system comprising a plurality of outdoor units, a plurality of indoor units and a controller.
  • the outdoor unit comprises a connected compressor, a four-way valve, an outdoor heat exchanger and an outdoor expansion valve.
  • the plurality of indoor units comprises a target indoor unit.
  • the controller is configured to recycle the refrigerant to the outdoor unit according to the refrigerant concentration in the indoor environment where the target indoor unit is located; wherein the plurality of outdoor units comprises at least one target outdoor unit, the target outdoor unit comprises a one-way valve, the one-way valve is arranged between the exhaust port of the compressor and the four-way valve, and is configured to seal the recovered refrigerant in the outdoor heat exchanger of the target outdoor unit in cooperation with the outdoor expansion valve of the target outdoor unit.
  • a control method of an air conditioning system includes a plurality of outdoor units, a plurality of indoor units, a refrigerant concentration sensor, a liquid-side refrigerant shut-off valve, and a controller.
  • the outdoor unit includes a compressor and an outdoor expansion valve.
  • the plurality of indoor units include a target indoor unit.
  • the refrigerant concentration sensor is disposed in the target indoor unit and is configured to detect the refrigerant concentration in the room where the target indoor unit is located.
  • the liquid-side refrigerant shut-off valve is disposed between the plurality of indoor units and the refrigerant liquid pipe.
  • the controller is coupled to the plurality of outdoor units, the plurality of indoor units, the refrigerant concentration sensor, and the liquid-side refrigerant shut-off valve.
  • the control method includes: obtaining the refrigerant concentration value detected by the refrigerant concentration sensor, and comparing the refrigerant concentration value with a preset concentration value; if it is determined that the first refrigerant concentration value in the indoor environment where the target indoor unit is located is greater than the preset concentration value, closing the liquid-side refrigerant shut-off valve between the plurality of indoor units and the refrigerant liquid pipe, and controlling the compressors of the plurality of outdoor units to operate so as to recover the refrigerant to the plurality of outdoor units.
  • FIG1 is a structural diagram of an air conditioning system in the related art
  • FIG2A is a structural diagram of an air conditioning system according to some embodiments.
  • FIG2B is another structural diagram of an air conditioning system according to some embodiments.
  • FIG3A is a refrigerant flow diagram of an air conditioning system according to some embodiments.
  • FIG3B is another refrigerant flow diagram of an air conditioning system according to some embodiments.
  • FIG3C is another refrigerant flow diagram of an air conditioning system according to some embodiments.
  • FIG4A is another structural diagram of an air conditioning system according to some embodiments.
  • FIG4B is another refrigerant flow diagram of an air conditioning system according to some embodiments.
  • FIG4C is another refrigerant flow diagram of an air conditioning system according to some embodiments.
  • FIG5 is another structural diagram of an air conditioning system according to some embodiments.
  • FIG6 is a flow chart of a control method of an air conditioning system according to some embodiments.
  • FIG7 is a flow chart of another control method of an air conditioning system according to some embodiments.
  • FIG8 is a flow chart of another control method of an air conditioning system according to some embodiments.
  • FIG9 is a flow chart of another control method of an air conditioning system according to some embodiments.
  • FIG. 10 is a flow chart of yet another control method of an air conditioning system according to some embodiments.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C” and both include the following combinations of A, B, and C: A only, B only, C only, the combination of A and B, the combination of A and C, the combination of B and C, and the combination of A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°;
  • perpendicular includes absolute perpendicularity and approximate perpendicularity, wherein the acceptable deviation range of approximate perpendicularity can also be, for example, a deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the acceptable deviation range of approximate equality can be, for example, the difference between the two equalities is less than or equal to 5% of either one.
  • an air conditioning system 100' includes an indoor unit 1', an outdoor unit 2', an expansion valve 3', a refrigerant concentration sensor 4', a gas-liquid separator 5', a liquid-side refrigerant stop valve 6' and a gas-side refrigerant stop valve 7'.
  • the indoor unit 1' includes an indoor heat exchanger 11'
  • the outdoor unit 2' includes a compressor 21' and an outdoor heat exchanger 23'.
  • the compressor 21 ′ is configured to compress the low-temperature and low-pressure gas-phase refrigerant and discharge the compressed high-temperature and high-pressure gas-phase refrigerant, and the high-temperature and high-pressure gas-phase refrigerant flows into the condenser.
  • the expansion valve 3 ′ is configured to expand the liquid-phase refrigerant in a high-pressure state into a gas-liquid two-phase refrigerant in a low-pressure state.
  • the indoor heat exchanger 11' exchanges heat between indoor air and the refrigerant transmitted in the indoor heat exchanger 11' to liquefy or vaporize the refrigerant.
  • the outdoor heat exchanger 23' is configured to exchange heat between outdoor air and the refrigerant transmitted in the outdoor heat exchanger 23' to liquefy or vaporize the refrigerant.
  • the compressor 21', the condenser (the indoor heat exchanger 11' or the outdoor heat exchanger 23'), the expansion valve 3' and the evaporator (the outdoor heat exchanger 23' or the indoor heat exchanger 11') perform the refrigerant cycle of the air conditioning system 100'.
  • the refrigerant cycle includes a series of processes involving compression, condensation, expansion and evaporation, and circulates the refrigerant to the conditioned side.
  • the refrigerant concentration sensor 4 ′ is disposed at one side of the indoor unit 1 ′ and is configured to detect the refrigerant concentration in the environment where the indoor unit 1 ′ is located.
  • the air conditioning system 10' when the refrigerant concentration sensor 4' detects that the refrigerant concentration in the environment of the indoor unit 2' exceeds the standard, the air conditioning system 10' operates in a cooling mode to recycle the refrigerant.
  • the refrigerant is recovered to the outdoor heat exchanger 23' and the gas-liquid separator 5' by the operation of the compressor 21', and the gas-side refrigerant stop valve 7' is closed after the refrigerant recovery is completed. At this point, the refrigerant recovery in the indoor unit 1' and the refrigerant pipeline is completed.
  • the air conditioning system 100 may be a multi-split air conditioning system.
  • the air conditioning system 100 includes: a plurality of indoor units 1, a plurality of outdoor units 2, a refrigerant gas pipe 3, a refrigerant liquid pipe 4, a gas-side refrigerant stop valve 5, and a liquid-side refrigerant stop valve 6.
  • a plurality of indoor units 1 are connected in parallel, and a plurality of outdoor units 2 are connected in parallel. In this way, the working states of the indoor units 1 and the outdoor units 2 can be independent of each other, and the working states of each other do not affect each other.
  • the air conditioning system 100 includes two, three, four or more indoor units 1. Similarly, the air conditioning system 100 includes two, three, four or more outdoor units 2.
  • the air-conditioning system 100 includes, the more refrigerant content in the air-conditioning system 100 .
  • the indoor unit 1 includes an indoor heat exchanger 11, an indoor expansion valve 12 and an indoor fan 111.
  • the outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, a gas-liquid separator 25 and an outdoor fan 231.
  • the compressor 21 includes an air intake port 211 and an air outlet 212, the air intake port 211 is connected to the gas-liquid separator 25, and the air outlet 212 is connected to the four-way valve 22.
  • the gas-liquid separator 25 is configured to adopt the principles of centrifugal separation and wire mesh filtration to filter the liquid refrigerant that has not been completely evaporated in the gas refrigerant returned to the compressor 21. In some embodiments of the present disclosure, the gas-liquid separator 25 can also temporarily store excess liquid refrigerant.
  • the four-way valve 22 is configured to realize the mutual conversion between the cooling mode and the heating mode of the air-conditioning system 100 by changing the flow direction of the refrigerant in the pipeline of the air-conditioning system 100.
  • the four-way valve 22 includes a first interface A, a second interface B, a third interface C and a fourth interface D.
  • the first interface A is connected to the refrigerant gas pipe 3
  • the second interface B is connected to the gas-liquid separator 25
  • the third interface C is connected to the outdoor heat exchanger 23
  • the fourth interface D is connected to the exhaust port 212 of the compressor 21.
  • the indoor fan 111 generates an airflow of indoor air passing through the indoor heat exchanger 11, and is configured to promote heat exchange between the refrigerant flowing in the heat transfer tube of the indoor heat exchanger 11 and the indoor air to assist in temperature regulation.
  • the outdoor fan 231 generates an airflow of outdoor air passing through the outdoor heat exchanger 23, and is configured to promote heat exchange between the refrigerant flowing in the heat transfer tube of the outdoor heat exchanger 23 and the outdoor air.
  • the refrigerant gas pipe 3 is connected to the four-way valve 22 and the indoor heat exchanger 11 of the indoor unit 1, and the refrigerant liquid pipe 4 is connected to the outdoor expansion valve 24 of the outdoor unit 2 and the indoor expansion valve 12 of the indoor unit 1.
  • the refrigerant gas pipe 3 is connected to each indoor unit 1 and each outdoor unit 2 through a pipeline
  • the refrigerant liquid pipe 4 is connected to each indoor unit 1 and each outdoor unit 2 through a pipeline. Therefore, by providing the refrigerant gas pipe 3 and the refrigerant liquid pipe 4, the refrigerant can be circulated between multiple outdoor units 1 and multiple indoor units 2, so that the cooling or heating function of the multi-split air conditioning system 100 can be realized.
  • the gas-side refrigerant stop valve 5 is arranged between the indoor heat exchanger 11 of the indoor unit 1 and the refrigerant gas pipe 3, and is configured to control the on-off of the refrigerant pipeline between the indoor heat exchanger 11 and the refrigerant gas pipe 3.
  • the liquid-side refrigerant stop valve 6 is arranged between the indoor expansion valve 12 of the indoor unit 1 and the refrigerant liquid pipe 4, and is configured to control the on-off of the refrigerant pipeline between the indoor expansion valve 12 and the refrigerant liquid pipe 4.
  • a gas-side refrigerant shut-off valve 5 controls the connection between an indoor unit 1 and the refrigerant gas pipe 3
  • a liquid-side refrigerant shut-off valve 6 controls the connection between an indoor unit 1 and the refrigerant liquid pipe 4 .
  • an air-side refrigerant stop valve 5 can control the conduction between multiple (such as two) indoor units 1 and the refrigerant air pipe 3
  • a liquid-side refrigerant stop valve 6 can control the conduction between multiple (such as two) indoor units 1 and the refrigerant liquid pipe 4.
  • every indoor unit 1 corresponds to one gas-side refrigerant stop valve 5 or one liquid-side refrigerant stop valve 6.
  • two indoor units 1 may correspond to one gas-side refrigerant stop valve 5 or one liquid-side refrigerant stop valve 6. In this way, the number of stop valves can be reduced, thereby reducing costs.
  • the operation modes of the air conditioning system 100 include a cooling mode and a heating mode.
  • the air conditioning system 100 when the air conditioning system 100 operates in cooling mode, the first port A and the second port B of the four-way valve 22 are connected, and the third port C and the fourth port D are connected.
  • the outdoor heat exchanger 23 acts as a condenser
  • the indoor heat exchanger 11 acts as an evaporator.
  • the gas phase refrigerant in a low temperature and low pressure state is compressed by the compressor 21 to become a high temperature and high pressure gas phase refrigerant, and the high temperature and high pressure gas phase refrigerant flows into the outdoor heat exchanger 23 through the four-way valve 22.
  • the outdoor heat exchanger 23 condenses the high temperature and high pressure gas phase refrigerant into a high pressure liquid phase refrigerant, and the heat is released to the surrounding environment during the condensation process.
  • the outdoor expansion valve 24 and the indoor expansion valve 12 throttle and reduce the pressure of the high pressure liquid phase refrigerant to become a low pressure gas-liquid two-phase refrigerant.
  • the indoor heat exchanger 11 absorbs heat from the surrounding environment and evaporates the low pressure gas-liquid two-phase refrigerant to form a low temperature and low pressure gas phase refrigerant.
  • the low temperature and low pressure gas phase refrigerant returns to the compressor 21 through the four-way valve 22 to form a refrigeration cycle.
  • the arrow in FIG3A points to the direction of flow of the refrigerant when the air conditioning system 100 is in the cooling mode.
  • the air conditioning system 100 when the air conditioning system 100 operates in the heating mode, the first port A and the fourth port D of the four-way valve 22 are connected, and the second port B and the third port C are connected.
  • the outdoor heat exchanger 23 acts as an evaporator
  • the indoor heat exchanger 11 acts as a condenser.
  • the gas phase refrigerant in a low temperature and low pressure state is compressed by the compressor 21 to become a high temperature and high pressure gas phase refrigerant, and the high temperature and high pressure gas phase refrigerant flows into the indoor heat exchanger 11 through the four-way valve 22.
  • the indoor heat exchanger 11 condenses the high temperature and high pressure gas phase refrigerant into a high pressure liquid phase refrigerant, and the heat is released to the surrounding environment during the condensation process.
  • the indoor expansion valve 12 and the outdoor expansion valve 24 throttle and reduce the pressure of the high pressure liquid phase refrigerant to become a low pressure gas-liquid two-phase refrigerant.
  • the outdoor heat exchanger 23 absorbs heat from the surrounding environment and evaporates the low pressure gas-liquid two-phase refrigerant to form a low temperature and low pressure gas phase refrigerant.
  • the low temperature and low pressure gas phase refrigerant returns to the compressor 21 through the four-way valve 22 to form a heating cycle.
  • the arrow in FIG3B points to the direction of flow of the refrigerant when the air conditioning system 100 is in the heating mode.
  • the operation mode of the air conditioning system 100 may also include a refrigerant recovery mode.
  • a refrigerant recovery mode As shown in FIG3C , when the air conditioning system 100 is in the refrigerant recovery mode, the liquid side refrigerant stop valve 6 is in a closed state, the first interface A and the second interface B of the four-way valve 22 are connected, and the third interface C and the fourth interface D are connected.
  • the compressor 21 operates at a high frequency, and the compressor 21 compresses the low-temperature and low-pressure gas phase refrigerant and discharges the high-temperature and high-pressure gas phase refrigerant from the exhaust port 212.
  • the high-temperature and high-pressure gas phase refrigerant flows into the outdoor heat exchanger 23 through the fourth interface D and the third interface C of the four-way valve 12, and the outdoor heat exchanger 23 condenses the high-temperature and high-pressure gas phase refrigerant into a high-pressure liquid phase refrigerant. Since the liquid side refrigerant stop valve 6 is in a closed state, the high-temperature and high-pressure gas phase refrigerant is stored in the outdoor heat exchanger 23 and cannot be discharged to the indoor heat exchanger 11.
  • the air conditioning system 100 includes a plurality of indoor units 1 and a plurality of outdoor units 2.
  • the plurality of outdoor units 2 include at least one first outdoor unit 2A (ie, the target outdoor unit 2A).
  • the first outdoor unit 2A is configured to store refrigerant when the refrigerant is recovered.
  • the plurality of outdoor units 2 include one, two or more first outdoor units 2A.
  • the first outdoor unit 2A can be the one with the smallest refrigerant capacity among the multiple outdoor units 2; when the refrigerant capacities of the multiple outdoor units 2 are the same, the multiple outdoor units 2 can be divided into a host and at least one slave, and at this time, the first slave defined in the at least one slave can be the first outdoor unit 2A.
  • the controller 40 isolates the target indoor unit 1A from other parts of the air conditioning system 100 except the target indoor unit 1A by closing the air-side refrigerant stop valve 5 between the target indoor unit 1A and the refrigerant gas pipe 3, the problem of reduced cooling or heating efficiency of the air conditioning system 100 due to the reduction of the remaining refrigerant in the air conditioning system 100 can be solved.
  • the target indoor unit 1A is an indoor unit in which a refrigerant leak occurs among the multiple indoor units 1 .
  • the air conditioning system 100 further includes: a refrigerant concentration sensor 7 and a controller 8.
  • the controller 8 is coupled to the refrigerant concentration sensor 7, and the controller 8 is configured to adjust the refrigerant concentration according to the refrigerant concentration in the indoor environment where the target indoor unit 1A is located. Recovered to the outdoor unit 1.
  • the air conditioning system 100 includes a plurality of refrigerant concentration sensors 7 , which are respectively disposed in a plurality of indoor units 1 and configured to detect the refrigerant concentration in the indoor environment where the target indoor unit 1 is located.
  • the controller 8 is a device that can generate an operation control signal according to the instruction operation code and the timing signal to instruct the air conditioning system 100 to execute the control instruction.
  • the controller 8 is coupled to each component of the air conditioning system 100 and is configured to control the operation of each component of the air conditioning system 100 so that each component of the air conditioning system 100 operates, thereby realizing each predetermined function of the air conditioning system 100.
  • the first outdoor unit 2A further includes a one-way valve 26, which is disposed between the exhaust port 212 of the compressor 21 and the four-way valve 22, and the one-way valve 26 is unidirectionally conducted in a direction from the exhaust port of the compressor 21 toward the four-way valve 22.
  • a one-way valve 26 which is not limited in the present disclosure.
  • the air conditioning system 100 includes multiple indoor units, when a refrigerant leaks in one of the multiple indoor units (e.g., the target indoor unit), the refrigerant in the indoor unit with the refrigerant leak is recovered, and the remaining indoor units and outdoor units can still operate normally.
  • the refrigerant capacity in the air conditioning system 100 will not match the standard refrigerant capacity in the air conditioning system 100, which may easily cause the air conditioning system 100 to shut down due to a high-pressure protection alarm, resulting in the indoor unit without refrigerant leakage also unable to operate normally.
  • some embodiments of the present disclosure further provide a control method of an air conditioning system 100, which is applied to a controller 8.
  • the control method includes S10-S15.
  • the controller 8 obtains the refrigerant concentration in the environment of the indoor unit 1 through the refrigerant concentration sensor 7. Furthermore, if a refrigerant leak occurs, the controller 8 can also determine the indoor unit (eg, the target indoor unit 1A) where the refrigerant leak occurs through the refrigerant concentration sensor 7.
  • the indoor unit eg, the target indoor unit 1A
  • the controller 8 obtains that the refrigerant concentration value in the indoor environment where the target indoor unit 1A is located is greater than the preset concentration value, it can be determined that a refrigerant leakage has occurred in the target indoor unit 1A.
  • the speed of refrigerant recovery by the air conditioning system 100 can be accelerated.
  • the speed of refrigerant recovery by the air conditioning system 100 is the fastest.
  • a is a constant, 30 ⁇ a ⁇ 90, for example, a may be 30, 65 or 90, etc.
  • a is a constant, 30 ⁇ a ⁇ 90, for example, a may be 30, 65 or 90, etc.
  • the indoor fan 111 and the outdoor fan 231 can be operated at the highest speed, so that the refrigerant pressure in the indoor unit 1 can be reduced faster, thereby speeding up the recovery of the refrigerant.
  • the preset frequency can be set as needed.
  • the air conditioning system 100 is in the refrigerant recovery mode. Since the liquid-side refrigerant stop valve 6 is in a closed state, the refrigerant in the multiple outdoor units 2 cannot flow into the indoor unit 1 through the refrigerant liquid pipe 4, thereby recovering the refrigerant to the multiple outdoor units 2.
  • the controller 8 closes the air-side refrigerant shut-off valve 5 between the target indoor unit 1A and the refrigerant air pipe 3 to isolate the target indoor unit 1A from other parts of the air conditioning system 100 except the target indoor unit 1A.
  • the controller 8 can also reconnect the remaining indoor units 1 except the target indoor unit 1A to the refrigerant gas pipe 3 and the refrigerant liquid pipe 4 by opening other liquid-side refrigerant shut-off valves 6 except the liquid-side refrigerant shut-off valve 6 between the target indoor unit 1A and the refrigerant liquid pipe 4 to ensure that the other indoor units 1 can operate normally.
  • the controller 8 closes the outdoor expansion valve 24 of the first outdoor unit 2A.
  • the refrigerant stored in the outdoor heat exchanger 23 of the first outdoor unit 2A cannot flow to the compressor 21, and this part of the refrigerant can be isolated in the outdoor heat exchanger 23 of the first outdoor unit 2A.
  • S15 also includes: S151 to S152.
  • the ratio between the refrigerant capacity of the target indoor unit 1A and the total refrigerant capacity of the outdoor unit 2 is a first ratio.
  • the preset ratio is d%, where d is a constant, 30 ⁇ d ⁇ 50.
  • d can be: 30, 40 or 50, etc.
  • the preset ratio is lower than 30%, then the ratio of the capacity of the remaining indoor units 1 to the capacity of the outdoor unit 2 will be greater than 140%, exceeding the usual ratio range of the air-conditioning system 100.
  • the preset ratio is higher than 50%, the ratio of the capacity of the remaining indoor units 1 to the capacity of the outdoor unit 2 will decrease, affecting the reliability of the air-conditioning system 100.
  • the first ratio is greater than or equal to the preset ratio
  • the pressure in the air-conditioning system 100 will be too high and an alarm will be triggered, affecting the normal working state of other outdoor units 2 and indoor units 1 in the air-conditioning system 100 except the target indoor unit 1A.
  • the first ratio is less than the preset ratio, after the refrigerant of the target indoor unit 1A is recovered, it will not have a significant impact on the pressure in the air-conditioning system 100, and therefore will not affect the normal working state of other outdoor units 2 and indoor units 1 in the air-conditioning system 100 except the target indoor unit 1A.
  • the controller 8 isolates the target indoor unit 1A where the refrigerant leakage occurs from other parts of the air-conditioning system 100 except the target indoor unit 1A, and prevents the refrigerant stored in the outdoor heat exchanger 23 of the first outdoor unit 2A from flowing to the compressor 21. In this way, the other outdoor units 2 and indoor units 1 except the target indoor unit 1A and the first outdoor unit 2A can enter a normal working state.
  • the other indoor units 1 and outdoor units 2 except the target indoor unit 1A and the first outdoor unit 2A can resume the cooling mode.
  • the refrigerant circulates in the other indoor units 1 and outdoor units 2 except the target indoor unit 1A and the first outdoor unit 2A, thereby meeting the user's cooling demand for the air-conditioning system 100.
  • the other indoor units 1 and outdoor units 1 except the target indoor unit 1A and the first outdoor unit 2A can restore the heating mode, and the refrigerant circulates in the other indoor units 1 and outdoor units 2 except the target indoor unit 1A and the first outdoor unit 2A, thereby meeting the user's heating demand for the air-conditioning system 100.
  • the present disclosure refers to the operation mode of the multi-split air-conditioning system 100 in FIG. 4B and FIG. 4C as a partial load operation mode.
  • the controller 8 may also turn off the first indoor unit 1A.
  • the indoor fan 111 reduces the energy consumption of the air conditioning system 100 .
  • the first outdoor unit 2A further includes a refrigerant replenishing device 210 .
  • the refrigerant replenishing device 210 includes a solenoid valve 210A and a capillary tube 210B connected in series. One end of the refrigerant replenishing device 210 close to the solenoid valve 210A is connected to the fourth interface D of the four-way valve 22, and the other end of the refrigerant replenishing device 210 close to the capillary tube 210B is connected to the second interface B of the four-way valve 22.
  • the controller 8 is coupled to the refrigerant replenishing device 210.
  • the capillary tube 210B has a small diameter, which can reduce the flow rate of the refrigerant, so that the refrigerant flowing through the refrigerant replenishing device 210 can be controlled by switching the solenoid valve 210A.
  • control method further includes S20 to S21 .
  • the time for which the exhaust temperature Td2 of the other outdoor units 2 except the first outdoor unit 2A is less than or equal to the preset exhaust temperature g, and the time for which the supercooling degree Tsc2 of the liquid side refrigerant stop valve 6 of the other outdoor units 2 except the first outdoor unit 2A is greater than the preset supercooling degree f, can represent the refrigerant content in the other outdoor units 2 and indoor units 1 except the first outdoor unit 2A. The shorter the holding time, the less the refrigerant content.
  • the refrigerant stored in the outdoor unit heat exchanger 23 of the first outdoor unit 2A can be released to the refrigerant gas pipe 3 through the refrigerant replenishing device 210 and the four-way valve 22, and the refrigerant is replenished through the outdoor expansion valve 24 of the first outdoor unit 2A or the refrigerant replenishing device 210, so that the refrigerant content in the other outdoor units 2 and indoor units 1 except the first outdoor unit 2A and the target indoor unit 1A returns to normal.
  • the outdoor unit 2 also includes an intake pressure sensor 27, which is arranged between the intake port 211 of the compressor 21 and the second interface B of the four-way valve 22, and is configured to detect the intake pressure of the compressor 21.
  • the controller 8 can also obtain a first suction pressure value of the suction pressure sensor 27, and compare the first suction pressure value with a first preset suction pressure value; when the first suction pressure value is less than or equal to the first preset suction pressure value, it is determined that the refrigerant in the target indoor unit 1A has been recovered to the outdoor unit 2.
  • the indoor unit 1 when the air conditioning system 100 operates in the refrigerant recovery mode, the indoor unit 1 is connected to the compressor 21 through the refrigerant gas pipe 3, and therefore, the first suction pressure value of the compressor 21 detected by the suction pressure sensor 27 can be regarded as the refrigerant pressure in the indoor unit 1.
  • the first preset suction pressure value is, for example, c Mpa.
  • c is a constant, c ⁇ 0.1.
  • the value of c can be 0.01, 0.05 or 0.1, etc.
  • the controller 8 can make the target indoor unit 1A send a warning signal.
  • the warning signal can be a sound or light signal, etc. In this way, the user can be notified that the indoor unit 1 has a fault, so as to accurately identify the faulty indoor unit 1 and perform maintenance.
  • the outdoor unit 2 further includes an exhaust temperature sensor 28 and a liquid-side refrigerant temperature sensor 29.
  • the exhaust temperature sensor 28 is disposed at the exhaust port of the compressor 21 and is configured to detect the exhaust temperature of the compressor 21.
  • the liquid-side refrigerant temperature sensor 29 is disposed between the outdoor expansion valve 24 and the refrigerant liquid pipe 4 and is configured to detect the temperature of the refrigerant between the outdoor expansion valve 24 and the refrigerant liquid pipe 4.
  • Some embodiments of the present disclosure are described by taking two outdoor units 2 as an example, namely a first outdoor unit 2A and a second outdoor unit 2B.
  • the first outdoor unit 2A is configured to store refrigerant
  • the second outdoor unit 2B is configured to maintain normal operation when the air conditioning system 100 operates in a partial load operation mode.
  • control method further includes steps S30 to S31 .
  • the preset exhaust temperature g is a constant, 90 ⁇ g ⁇ 110, for example, the value of g may be 90, 100 or 110, etc.
  • the controller 40 executes S31 to release the refrigerant stored in the compressor 21, thereby ensuring the normal operation of the air-conditioning system 100.
  • the first time is, for example, e minutes, where e is a constant, 10 ⁇ e ⁇ 20.
  • e is a constant, 10 ⁇ e ⁇ 20.
  • the value of e can be 10, 15, or 20.
  • the preset subcooling degree f is a parameter related to the outdoor ambient temperature Ta1, the capacity of the indoor unit 1 operating in the partial load mode, and the capacity ratio j of the outdoor unit 2.
  • f m-j + n*(Ta 1 -q), where m, n, and k are all constants, 5 ⁇ m ⁇ 15, 0.1 ⁇ n ⁇ 0.5, and 10 ⁇ q ⁇ 30.
  • the value of m can be 5, 10, or 15, the value of n can be 0.1, 0.3, or 0.5, and the value of q can be 10, 20, or 30, etc.
  • the air conditioning system 100 further includes an outdoor temperature sensor coupled to the controller 8 and configured to detect the outdoor ambient temperature.
  • the target opening can be h%, where h is a constant, 2 ⁇ h ⁇ 4, for example, the value of h can be 2, 3 or 4.
  • h is a constant, 2 ⁇ h ⁇ 4, for example, the value of h can be 2, 3 or 4.
  • the second time may be i seconds, where i is a constant, 5 ⁇ i ⁇ 20.
  • i is a constant, 5 ⁇ i ⁇ 20.
  • the value of i may be 5, 12, or 20.
  • the degree of subcooling of the liquid-side refrigerant stop valve of any outdoor unit 2 is the difference between the saturation temperature at the exhaust pressure of the outdoor unit 2 and the temperature of the liquid-side refrigerant stop valve.
  • the difference is a positive number.
  • the difference is a negative number.
  • the controller 8 may control the rotation speed of the compressor 21 to one quarter of the maximum rotation speed.
  • the outdoor unit 2 may also include an exhaust pressure sensor 30, which is arranged between the exhaust port 212 of the compressor 21 and the four-way valve 22 and is configured to detect the pressure of the refrigerant at the exhaust port 212 of the compressor 21.
  • the controller 8 can obtain the saturated temperature under the exhaust pressure of the outdoor unit 2, thereby obtaining the subcooling degree of the liquid side refrigerant stop valve of any outdoor unit 2.
  • the outdoor unit 2 includes a first outdoor unit 2A and a second outdoor unit 2B, the target opening degree is h%, the second time is i seconds, and the value of h and the value of i can be determined by the subcooling difference ⁇ Tsc and the exhaust pressure difference ⁇ P.
  • ⁇ Tsc f-Tsc
  • ⁇ Tsc1 f- Tsc1
  • ⁇ Tsc2 f- Tsc2
  • ⁇ P is the value obtained by subtracting the exhaust pressure value of the first outdoor unit 2A from the exhaust pressure value of the second outdoor unit 2B.
  • x is a constant, 0.5 ⁇ x ⁇ 2, and the value of x is, for example, 0.5, 1.2 or 2;
  • y is a constant, 0.1 ⁇ y ⁇ 1, and the value of y is, for example, 0.1, 0.5 or 1;
  • z is a constant, 10 ⁇ z ⁇ 20, and the value of z is, for example, 10, 15 or 20;
  • k is a constant, 3 ⁇ k ⁇ 10, and the value of k is, for example, 3, 7 or 10.
  • the compressor 21 of the first outdoor unit 2A does not need to be operated, and therefore, the reliability of the operation of the air-conditioning system 100 is improved.
  • control method further includes S40 .
  • the controller 8 opens the solenoid valve 210A of the refrigerant replenishing device 210.
  • the refrigerant content in other outdoor units 2 and indoor units 1 except the first outdoor unit 2A and the target indoor unit 2A is low, the refrigerant amount in other outdoor units 2 and other indoor units 1 can be replenished. This can reduce the difference between the air inlet pressure value and the exhaust pressure value of the compressor 21, thereby avoiding damage to the compressor 21 or difficulty in starting the compressor 21 due to the excessive difference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调系统(100)及其控制方法。空调系统(100)包括多个室外机(2)、多个室内机(1)和控制器(8)。室外机(2)包括相连的压缩机(21)、四通阀(22)、室外换热器(23)及室外膨胀阀(24)。多个室内机(1)包括目标室内机(1A)。控制器(8)被配置为根据目标室内机(1A)所在室内环境中的冷媒浓度将冷媒回收至所述室外机(2)中;其中,多个室外机(2)包括至少一个目标室外机(2A),目标室外机(2A)包括单向阀(26),单向阀(26)设置在压缩机(21)的排气口(212)和四通阀(22)之间,被配置为在目标室外机(2A)的室外膨胀阀(24)的配合下,以将回收后的冷媒封堵在目标室外机(2A)的室外换热器(23)中。

Description

空调系统及其控制方法
相关申请的交叉引用
本申请要求于2022年11月16日提交的、申请号为202211434038.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空气调节设备技术领域,尤其涉及一种空调系统及其控制方法。
背景技术
随着人类生活水平的提高,空调系统已经进入千家万户、办公场所和公共场所,甚至应用在各种交通工具上,成为现代日常生活的必需品,能防暑降温,提供一个舒适的休息及工作环境。
发明内容
一方面,提供一种空调系统,所述空调系统包括多个室外机、多个室内机和控制器。所述室外机包括相连的压缩机、四通阀、室外换热器及室外膨胀阀。所述多个室内机包括目标室内机。所述控制器被配置为根据所述目标室内机所在室内环境中的冷媒浓度将冷媒回收至所述室外机中;其中,所述多个室外机包括至少一个目标室外机,所述目标室外机包括单向阀,所述单向阀设置在所述压缩机的排气口和所述四通阀之间,被配置为在所述目标室外机的室外膨胀阀的配合下,以将回收后的冷媒封堵在所述目标室外机的室外换热器中。
另一方面,提供一种空调系统的控制方法,其中,所述空调系统包括多个室外机、多个室内机、冷媒浓度传感器、液侧冷媒截止阀和控制器。所述室外机包括压缩机和室外膨胀阀。所述多个室内机包括目标室内机。所述冷媒浓度传感器设置在所述目标室内机中,被配置为检测所述目标室内机所在室内的冷媒浓度。所述液侧冷媒截止阀设置在所述多个室内机和所述冷媒液管之间。所述控制器与所述多个室外机、所述多个室内机、冷媒浓度传感器和液侧冷媒截止阀耦接。所述控制方法包括:获取所述冷媒浓度传感器检测到的冷媒浓度值,并将所述冷媒浓度值与预设浓度值进行比较;若确定所述目标室内机所在室内环境中的第一冷媒浓度值大于所述预设浓度值,则关闭所述多个室内机和冷媒液管之间的液侧冷媒截止阀,并控制所述多个室外机的压缩机工作,以将冷媒回收至所述多个室外机中。
附图说明
图1为相关技术中的一种空调系统的结构图;
图2A为根据一些实施例的空调系统的一种结构图;
图2B为根据一些实施例的空调系统的另一种结构图;
图3A为根据一些实施例的空调系统的一种冷媒流向图;
图3B为根据一些实施例的空调系统的另一种冷媒流向图;
图3C为根据一些实施例的空调系统的又一种冷媒流向图;
图4A为根据一些实施例的空调系统的又一种结构图;
图4B为根据一些实施例的空调系统的又一种冷媒流向图;
图4C为根据一些实施例的空调系统的又一种冷媒流向图;
图5为根据一些实施例的空调系统的又一种结构图;
图6为根据一些实施例的空调系统的一种控制方法的流程图;
图7为根据一些实施例的空调系统的另一种控制方法的流程图;
图8为根据一些实施例的空调系统的又一种控制方法的流程图;
图9为根据一些实施例的空调系统的又一种控制方法的流程图;
图10为根据一些实施例的空调系统的又一种控制方法的流程图。
具体实施方式
下面将结合附图,对本公开的一些实施例进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与本实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
相关技术中,如图1所示,空调系统100'包括室内机1'、室外机2'、膨胀阀3'、冷媒浓度传感器4'、气液分离器5'、液侧冷媒截止阀6'和气侧冷媒截止阀7'。室内机1'包括室内换热器11',室外机2'包括压缩机21'和室外换热器23'。
压缩机21'被配置为压缩处于低温低压状态的气相冷媒并排出压缩后的高温高压的气相冷媒,高温高压的气相冷媒流入冷凝器。
膨胀阀3'被配置为将高压状态的液相冷媒膨胀为低压状态的气液两相态冷媒。
室内换热器11'通过将室内空气与在室内换热器11'中传输的冷媒进行热交换,以对冷媒进行液化或汽化中的一种。室外换热器23'被配置为通过将室外空气与在室外换热器23'中传输的冷媒进行热交换,以对冷媒进行液化或汽化中的另一种。
压缩机21'、冷凝器(室内换热器11'或室外换热器23')、膨胀阀3'和蒸发器(室外换热器23'或室内换热器11')来执行空调系统100'的冷媒循环。冷媒循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,并向被调节侧循环供应冷媒。
冷媒浓度传感器4'设置在室内机1'的一侧,被配置为检测室内机1'所处环境的冷媒浓度。
在一些实施例中,当冷媒浓度传感器4'检测到室内机2'所处环境的冷媒浓度超标时,空调系统100'运行制冷模式,以对冷媒进行回收。此时,首先关闭液侧冷媒截止阀6',通 过压缩机21'的运转将冷媒回收至室外换热器23'和气液分离器5'中,冷媒回收结束后再关闭气侧冷媒截止阀7'。至此,室内机1'和冷媒管路中的冷媒回收完成。
如图2A所示,本公开的一些实施例提供一种空调系统100。空调系统100可以为多联机空调系统。空调系统100包括:多个室内机1、多个室外机2、冷媒气管3、冷媒液管4、气侧冷媒截止阀5及液侧冷媒截止阀6。在一些实施例中,多个室内机1并联连接,多个室外机2并联连接。这样,室内机1和室外机2的工作状态可以相互独立,彼此的工作状态互不影响。
例如,空调系统100包括两个、三个、四个或更多个室内机1。类似地,空调系统100包括两个、三个、四个或更多个室外机2。
可以理解的是,空调系统100包括的室内机1和室外机2的数量越多,空调系统100中冷媒的含量就越多。
在本公开一些实施例中,室内机1包括室内换热器11、室内膨胀阀12和室内风扇111。室外机2包括:压缩机21、四通阀22、室外换热器23、室外膨胀阀24、气液分离器25和室外风扇231。压缩机21包括吸气口211和排气口212,吸气口211与气液分离器25连通,排气口212与四通阀22连通。
气液分离器25被配置为采用离心分离、丝网过滤的原理,实现过滤返回压缩机21中的气相冷媒中未经完全蒸发的液相冷媒。在本公开一些实施例中,气液分离器25还可以暂时储存多余的液相冷媒。
四通阀22被配置为通过改变冷媒在空调系统100的管路内的流向来实现空调系统100在制冷模式和制热模式之间的相互转换。在一些实施例中,四通阀22包括第一接口A、第二接口B、第三接口C和第四接口D。第一接口A与冷媒气管3连通,第二接口B与气液分离器25连通,第三接口C与室外换热器23连通,第四接口D与压缩机21的排气口212连通。
室内风扇111产生通过室内换热器11的室内空气的气流,被配置为促进在室内换热器11的传热管中流动的冷媒与室内空气的热交换,以辅助温度调节。室外风扇231产生通过室外换热器23的室外空气的气流,被配置为促进在室外换热器23的传热管中流动的冷媒与室外空气的热交换。
冷媒气管3连通四通阀22和室内机1的室内换热器11,冷媒液管4连通室外机2的室外膨胀阀24和室内机1的室内膨胀阀12。并且,冷媒气管3与各个室内机1、各个室外机2之间通过管路相互连通,冷媒液管4与各个室内机1、各个室外机2之间通过管路相互连通。因此,通过设置冷媒气管3和冷媒液管4可以使冷媒在多个室外机1和多个室内机2之间循环,从而可以实现多联机空调系统100的制冷或制热功能。
气侧冷媒截止阀5设置在室内机1的室内换热器11和冷媒气管3之间,被配置为控制室内换热器11和冷媒气管3之间的冷媒管路的通断。液侧冷媒截止阀6设置在室内机1的室内膨胀阀12和冷媒液管4之间,被配置为控制室内膨胀阀12和冷媒液管4之间的冷媒管路的通断。
可以理解的是,当气侧冷媒截止阀5和液侧冷媒截止阀6均关闭时,室内机1与空调系统100的除室内机1之外的其他部分处于隔离状态。
在本公开一些实施例中,如图2A所示,一个气侧冷媒截止阀5控制一个室内机1与冷媒气管3的导通,一个液侧冷媒截止阀6控制一个室内机1与冷媒液管4的导通。
在本公开的另一些实施例中,如图2B所示,一个气侧冷媒截止阀5可以控制多个(如两个)室内机1与冷媒气管3的导通,一个液侧冷媒截止阀6可以控制多个(如两个)室内机1与冷媒液管4的导通。
实际应用中,并非每台室内机1对应一个气侧冷媒截止阀5或一个液侧冷媒截止阀6,例如,也可以是2台室内机1对应一个气侧冷媒截止阀5或一个液侧冷媒截止阀6。这样,可以减少截止阀的数量,降低成本。
在本公开一些实施例中,空调系统100的运行模式包括制冷模式和制热模式。
如图3A所示,当空调系统100运行在制冷模式时,四通阀22的第一接口A和第二接口B连通,第三接口C和第四接口D连通。此时,室外换热器23作为冷凝器,室内换热器11作为蒸发器。
低温低压状态的气相冷媒经压缩机21压缩后变为高温高压的气相冷媒,高温高压的气相冷媒通过四通阀22流入室外换热器23。室外换热器23将高温高压的气相冷媒冷凝成高压状态的液相冷媒,热量随着冷凝过程释放到周围环境。室外膨胀阀24和室内膨胀阀12将高压状态的液相冷媒节流降压之后变成低压状态的气液两相态冷媒,室内换热器11从周围环境中吸取热量并将低压状态的气液两相态冷媒蒸发形成低温低压的气相冷媒,低温低压状态的气相冷媒经四通阀22返回到压缩机21中,形成制冷循环。图3A中的箭头指向代表空调系统100处于制冷模式下冷媒的流动方向。
如图3B所示,当空调系统100运行在制热模式时,四通阀22的第一接口A和第四接口D连通,第二接口B和第三接口C连通。此时,室外换热器23作为蒸发器,室内换热器11作为冷凝器。
低温低压状态的气相冷媒经压缩机21压缩后变为高温高压的气相冷媒,高温高压的气相冷媒通过四通阀22流入室内换热器11。室内换热器11将高温高压的气相冷媒冷凝成高压状态的液相冷媒,热量随着冷凝过程释放到周围环境。室内膨胀阀12和室外膨胀阀24将高压状态的液相冷媒节流降压之后变成低压状态的气液两相态冷媒,室外换热器23从周围环境中吸取热量并将低压状态的气液两相态冷媒蒸发形成低温低压的气相冷媒,低温低压状态的气相冷媒经四通阀22返回到压缩机21中,形成制热循环。图3B中的箭头指向代表空调系统100处于制热模式下冷媒的流动方向。
在本公开一些实施例中,空调系统100的运行模式还可以包括冷媒回收模式。如图3C所示,在空调系统100处于冷媒回收模式的情况下,液侧冷媒截止阀6处于关闭状态,四通阀22的第一接口A和第二接口B连通,第三接口C和第四接口D连通。压缩机21高频运转,压缩机21对低温低压的气相冷媒进行压缩并从排气口212排出高温高压的气相冷媒,高温高压的气相冷媒经过四通阀12的第四接口D和第三接口C流入室外换热器23,室外换热器23将高温高压的气相冷媒冷凝成高压状态的液相冷媒。由于液侧冷媒截止阀6处于关闭状态,因此高温高压的气相冷媒储存在室外换热器23中,不能排出至室内换热器11。在本公开的一些实施例中,空调系统100包括多个室内机1和多个室外机2。
多个室外机2包括至少一个第一室外机2A(即目标室外机2A)。第一室外机2A被配置为在冷媒回收时储存冷媒。例如,多个室外机2包括一个、两个或更多个第一室外机2A。
例如,当多联机空调系统100包含的多个室外机2的冷媒容量不同时,第一室外机2A可以是多个室外机2中冷媒容量最小的一个;当多个室外机2的冷媒容量相同时,可以将多个室外机2划分为一个主机和至少一个从机,此时,至少一个从机中被定义的第一个从机可以为第一室外机2A。这样,在控制器40通过关闭目标室内机1A和冷媒气管3之间的气侧冷媒截止阀5,将目标室内机1A和空调系统100中除目标室内机1A之外的其他部分隔离之后,可以解决由于空调系统100中剩余的冷媒量减少,而导致空调系统100的制冷或制热效率降低的问题。
为了说明方便,本公开的一些实施例主要以空调系统100包括两个室外机2为例进行说明。
在本公开一些实施例中,如图2A所示,以多个室内机1包括目标室内机1A为例,目标室内机1A是多个室内机1中发生冷媒泄露的室内机。
此时,空调系统100还包括:冷媒浓度传感器7和控制器8。控制器8与冷媒浓度传感器7耦接,控制器8被配置为根据目标室内机1A所在室内环境中的冷媒浓度,将冷媒 回收至室外机1中。
例如,空调系统100包括多个冷媒浓度传感器7,多个冷媒浓度传感器7分别设置在多个室内机1内,被配置为检测目标室内机1所在的室内环境中的冷媒浓度。
控制器8是指可以根据指令操作码和时序信号,产生操作控制信号,指示空调系统100执行控制指令的器件。控制器8与空调系统100的各部件耦接,被配置为控制空调系统100的各部件工作,使空调系统100各部件运行,从而实现空调系统100的各预定功能。
在本公开一些实施例中,第一室外机2A还包括单向阀26,单向阀26设置在压缩机21的排气口212和四通阀22之间,且单向阀26在压缩机21的排气口朝向四通阀22的方向上单向导通。需要说明的是,多个室外机2中除第一室外机2A之外的其他室外机也可以包括单向阀26,本公开对此不做限定。
由于空调系统100包括多台室内机,在多台室内机中的一台室内机(例如目标室内机)发生冷媒泄漏时,将发生冷媒泄露的该台室内机中的冷媒回收完成后,其余的室内机和室外机仍可正常运转。此时,如果被抽空冷媒的室内机在正常运行时的冷媒含量过多,就会造成空调系统100内冷媒容量与空调系统100内冷媒标准容量不匹配,容易造成空调系统100高压保护报警停机,导致未发生冷媒泄露的室内机也无法正常运行。
为解决上述问题,如图6所示,本公开的一些实施例还提供一种空调系统100的控制方法,应用于控制器8上。该控制方法包括S10~S15。
S10、获取冷媒浓度传感器7检测到的冷媒浓度值。
控制器8通过冷媒浓度传感器7获取室内机1所在的环境中的冷媒浓度。并且,若发生冷媒泄露,控制器8还可以通过冷媒浓度传感器7确定发生冷媒泄露的室内机(例如目标室内机1A)。
S11、确定冷媒浓度值大于预设浓度值。
可以理解的是,当室内机1未发生冷媒泄露时,室内机1所在的室内环境的冷媒浓度趋近于0,因此,当控制器8获取到目标室内机1A所在的室内环境中的冷媒浓度值大于预设浓度值时,即可判断目标室内机1A发生了冷媒泄露。
S12、判断在空调系统100是否运行在制冷模式,若是,则执行S13,若否,则执行S121。
S121、将空调系统100的运行模式调整为制冷模式并运行预设时长(如a秒),并控制室内风扇111和室外风扇231运行在预设转速。
需要说明的是,当室内风扇111和室外风扇231运行在预设转速时,可以加快空调系统100回收冷媒的速度。例如,当室内风扇111和室外风扇231运行在最高转速时,空调系统100回收冷媒的速度最快。
在本公开一些实施例中,a为常数,30≤a≤90,例如,a可以为:30、65或90等。a的值增加,压缩机22可靠性增加,但是冷媒泄漏量随之增加。实际应用中需要参照压缩机22的可靠性,选取a的值。
控制器8将空调系统100的运行模式调整为制冷模式的同时,可以使室内风扇111和室外风扇231运行在最高转速,这样,可以加快室内机1内的冷媒压力的下降速度,从而加快对冷媒的回收速度。
S13、关闭液侧冷媒截止阀6,并控制多个室外机2的压缩机21以预设频率运转。
需要说明的是,当压缩机21以预设频率运转时,有利于加快空调系统100回收冷媒的速度。该预设频率可以根据需要设置。
此时,如图3C所示,空调系统100处于冷媒回收模式。由于液侧冷媒截止阀6处于关闭状态,因此多个室外机2中的冷媒无法经冷媒液管4流入室内机1中,实现了将冷媒回收至多个室外机2中。
S14、在将冷媒回收至室外机2中后,关闭目标室内机1A和冷媒气管3之间的气侧冷 媒截止阀5,打开除目标室内机2A之外的各室内机2和冷媒液管4之间的液侧冷媒截止阀6。
如图4A所示,在将冷媒回收完成后,控制器8通过关闭目标室内机1A和冷媒气管3之间的气侧冷媒截止阀5,以将目标室内机1A和空调系统100除目标室内机1A之外的其他部分隔离。
控制器8通过打开除目标室内机1A和冷媒液管4之间的液侧冷媒截止阀6之外的其他液侧冷媒截止阀6,还可以将除目标室内机1A之外的其余室内机1重新与冷媒气管3、冷媒液管4连通,以确保其他的室内机1可以正常运行。
S15、关闭第一室外机2A的室外膨胀阀24。
如图4A所示,控制器8关闭第一室外机2A的室外膨胀阀24,此时因为单向阀22的存在,储存在第一室外机2A的室外换热器23中的冷媒不能流向压缩机21,可以将该部分冷媒隔离在第一室外机2A的室外换热器23中。这样,可以避免该部分冷媒对空调系统100中其余室外机2和室内机1的压力产生影响,造成其余室内机2和室外机1中的冷媒容量与空调系统100的标准容量不匹配,导致空调系统100高压保护报警停机,从而可以使其余室内机1和室外机2恢复正常运行模式。
在本公开一些实施例中,如图7所示,S15还包括:S151至S152。
S151、获取目标室内机1A的冷媒容量和室外机2的冷媒总容量之间的第一比值。
在本公开一些实施例中,目标室内机1A的冷媒容量和室外机2的冷媒总容量之间的比值为第一比值。
S152、确定第一比值大于或等于预设比值。
在本公开一些实施例中,预设比值为d%,其中d为常数,30≤d≤50。例如,d可以为:30、40或50等。假设多台室外机2的容量相同,如果预设比值低于30%,那么其余室内机1的容量与室外机2的容量比就会大于140%,超出通常的空调系统100配比范围。类似的,如果预设比值高于50%,其余的室内机1的容量与室外机2的容量比就会减小,影响空调系统100的使用可靠性。
可以理解的是,当第一比值大于或等于预设比值时,在将目标室内机1A的冷媒回收后,将会导致空调系统100内的压力过大而报警,影响空调系统100中除目标室内机1A之外其他室外机2和室内机1的正常工作状态。
当第一比值小于预设比值时,在将目标室内机1A的冷媒回收后,不会对空调系统100内的压力造成较大影响,因此不会影响空调系统100中除目标室内机1A之外其他室外机2和室内机1的正常工作状态。
在步骤S10至S15之后,控制器8将发生冷媒泄露的目标室内机1A与空调系统100除目标室内机1A之外的其他部分进行隔离,并使储存在第一室外机2A的室外换热器23中的冷媒不能流向压缩机21,这样,可以使除目标室内机1A和第一室外机2A之外的其他室外机2和室内机1进入正常工作状态。
例如,若空调系统100在进入冷媒回收模式前运行在制冷模式,如图4B所示,除目标室内机1A和第一室外机2A之外的其他室内机1和室外机2可以恢复制冷模式,此时冷媒在除目标室内机1A和第一室外机2A之外的其他室内机1和室外机2内循环,满足了用户对空调系统100的制冷需求。
再例如,若空调系统100在进入冷媒回收模式前运行在制热模式,如图4C所示,除目标室内机1A和第一室外机2A之外的其他室内机1和室外机1可以恢复制热模式,冷媒在除目标室内机1A和第一室外机2A之外的其他室内机1和室外机2内循环,满足了用户对空调系统100的制热需求。
为了描述方便,本公开将上述图4B和图4C中多联机空调系统100的运行模式称为部分负荷运行模式。
在本公开一些实施例中,在执行S14的同时,控制器8还可以关闭第一室内机1A的 室内风扇111,从而降低空调系统100的能耗。
在本公开另一些实施例中,如图5所示,第一室外机2A还包括冷媒补充装置210。
冷媒补充装置210包括串联的电磁阀210A和毛细管道210B。冷媒补充装置210靠近电磁阀210A的一端与四通阀22的第四接口D连接,且冷媒补充装置210靠近毛细管道210B的另一端与四通阀22的第二接口B连接。控制器8与冷媒补充装置210耦接。需要说明的是,毛细管道210B的管径较小,可以减小冷媒的流速,从而可以通过对电磁阀210A的开关实现对流经冷媒补充装置210的冷媒的控制。
在本公开一些实施例中,如图8所示,在S15之后,控制方法还包括S20至S21。
S20、获取除第一室外机2A之外的其他室外机2的排气温度Td2和液侧冷媒截止阀过冷度Tsc2
S21、当除第一室外机2A之外的其他室外机2的排气温度Td2小于或等于预设排气温度g且保持时间小于第一时间、和除第一室外机2A之外的其他室外机2的液侧冷媒截止阀6的过冷度Tsc2大于预设过冷度f,且保持时间小于第一时间之一,将第一室外机2A的室外膨胀阀24的开度值调整为目标开度并保持第二时间、或打开冷媒补充装置210并保持第三时间。
需要说明的是,除第一室外机2A之外的其他室外机2的排气温度Td2小于或等于预设排气温度g的保持时间、和除第一室外机2A之外的其他室外机2的液侧冷媒截止阀6的过冷度Tsc2大于预设过冷度f的保持时间之一,可以表征除第一室外机2A之外的其他室外机2和室内机1中的冷媒含量,保持时间越短,冷媒含量越少。因此,在冷媒含量较低的情况下,储存在第一室外机2A的室外机换热器23中的冷媒即可通过冷媒补充装置210、四通阀22释放至冷媒气管3,通过第一室外机2A的室外膨胀阀24或冷媒补充装置210对冷媒进行补充,使除第一室外机2A和目标室内机1A之外的其他室外机2和室内机1中的冷媒含量恢复正常。
在本公开一些实施例中,如图5所示,室外机2还包括吸气压力传感器27,吸气压力传感器27设置在压缩机21的吸气口211和四通阀22的第二接口B之间,被配置为检测压缩机21的吸气压力。
在本公开一些实施例中,在空调系统100将冷媒回收至室外机2的过程中,控制器8还可以获取吸气压力传感器27的第一吸气压力值,并将第一吸气压力值与第一预设吸气压力值进行比较;在第一吸气压力值小于或等于第一预设吸气压力值的情况下,判定目标室内机1A中的冷媒已回收至室外机2中。
可以理解的是,如图3C所示,在空调系统100运行在冷媒回收模式的情况下,室内机1通过冷媒气管3和压缩机21连通,因此,吸气压力传感器27检测得到的压缩机21的第一吸气压力值可以视为室内机1内的冷媒压力。第一吸气压力值越小,室内机1内的冷媒压力越小,则表示室内机1内的冷媒含量越低。
第一预设吸气压力值例如为c Mpa。其中,c为常数,c≤0.1。例如,c的值可以为0.01、0.05或0.1等。
在本公开一些实施例中,在判定目标室内机1A中冷媒回收完成后,控制器8可以使目标室内机1A发出警示信号。例如,警示信号可以为声音或光信号等。这样可以通知用户室内机1出现故障,以便于准确识别出现故障的室内机1并进行维修。
在一些实施例中,如图2A所示,室外机2还包括排气温度传感器28和液侧冷媒温度传感器29。排气温度传感器28设置在压缩机21的排气口处、被配置为检测压缩机21的排气温度。液侧冷媒温度传感器29设置在室外膨胀阀24与冷媒液管4之间,被配置为检测室外膨胀阀24与冷媒液管4之间的冷媒的温度。
本公开一些实施例以两个室外机2分别为第一室外机2A和第二室外机2B为例进行说明。第一室外机2A被配置为储存冷媒,第二室外机2B被配置为在空调系统100运行在部分负荷运行模式时保持正常运行。
此时,如图9所示,在步骤S15之后,控制方法还包括S30至S31。
S30、获取除第一室外机2A之外的其他室外机2的排气温度Td2和液侧冷媒截止阀过冷度Tsc2
S31、若确定第二室外机2B的排气温度Td2大于预设排气温度g且保持时间小于第一时间、和第二室外机2B的液侧冷媒截止阀过冷度Tsc2小于或等于预设过冷度f且保持时间小于第一时间之一,则打开第一室外机2A的压缩机21并保持第二时间,将第一室外机2A的室外膨胀阀24的开度值调整为目标开度并保持第二时间。
其中,预设排气温度g为常数,90≤g≤110,例如,g的值可以为90、100或110等。在空调系统100中冷媒量较少时,会出现压缩机21的排气温度过高的情况,当90≤g≤110时,控制器40执行S31,将压缩机21内储存的冷媒释放,可以保证空调系统100正常运行。
第一时间例如为e分钟,e为常数,10≤e≤20,例如,e的值可以为10、15或20等。
预设过冷度f是与室外环境温度Ta1、运行在部分负荷模式下的室内机1的容量和室外机2的容量配比j相关的参数。例如,f=m-j+n*(Ta1-q),其中,m、n、k均为常数,5≤m≤15,0.1≤n≤0.5,10≤q≤30。例如,m的值可以为5、10或15等,n的值可以为0.1、0.3或0.5等,q的值可以为10、20或30等。
相应的,空调系统100还包括与控制器8耦接的室外温度传感器,被配置为检测室外环境温度。
目标开度可以为h%,h为常数,2≤h≤4,例如,h的值可以为2、3或4等。通过减小目标开度,可以减缓冷媒的释放速度。需要说明的是,通常,电子膨胀阀开度大于或等于2%时可以理解为电子膨胀阀处于开启状态,电子膨胀阀开度小于2%时可以理解为电子膨胀阀处于关闭状态。
第二时间可以为i秒,i为常数,5≤i≤20,例如,i的值可以为5、12或20等。
需要说明的是,任一室外机2的液侧冷媒截止阀过冷度为该室外机2的排气压力下的饱和温度与液侧冷媒截止阀温度之间的差值。
在本公开一些实施例中,该差值为正数。
在本公开另一些实施例中,在冷媒泄漏量过多,空调系统100中冷媒含量过少,导致液侧冷媒截止阀6部分的冷媒不是纯液相冷媒的情况下,该差值为负数。
在本公开一些实施例中,打开第一室外机2A的压缩机21后,控制器8可以将压缩机21的转速控制在最高转速的四分之一。
在本公开一些实施例中,如图2A所示,室外机2还可以包括排气压力传感器30,排气压力传感器30设置在压缩机21的排气口212与四通阀22之间,被配置为检测压缩机21的排气口212处的冷媒的压力。
可以理解的是,任一室外机2的排气压力下的饱和温度与排气压力传感器30检测到的压力值存在对应关系,控制器8在获取排气压力传感器30检测到的压力值后,即可对应得到室外机2的排气压力下的饱和温度,从而得到任一室外机2的液侧冷媒截止阀过冷度。
在本公开另一些实施例中,如图5所示,室外机2包括第一室外机2A和第二室外机2B,目标开度为h%,第二时间为i秒,h的值和i的值可以通过过冷度差值ΔTsc、以及排气压力差ΔP确定。
其中,ΔTsc=f-Tsc,则第一室外机2A的过冷度差值ΔTsc1=f-Tsc1,第二室外机2B的过冷度差值ΔTsc2=f-Tsc2。ΔP为第二室外机2B的排气压力值减去第一室外机2A的排气压力值的值。此时,h=xΔTsc2+y(ΔTsc2-ΔTsc1),i=z×ΔP+k。
其中,x为常数,0.5≤x≤2,x的值例如为0.5、1.2或2等;y为常数,0.1≤y≤1,y的值例如为0.1、0.5或1等;z为常数,10≤z≤20,z的值例如为10、15或20等;k为常数,3≤k≤10,k的值例如为3、7或10等。
图5中所示实施例由于是通过冷媒补充装置210补充冷媒,不需要第一室外机2A的压缩机21运行,因此,有利于提高空调系统100运行的可靠性。
在本公开另一些实施例中,如图10所示,在步骤S15之后,控制方法还包括S40。
S40、若确定压缩机21的排气压力与吸气压力的差值大于预设压力差值,和,压缩机21停止运转之一,则打开冷媒补充装置210。
控制器8打开冷媒补充装置210的电磁阀210A,除第一室外机2A和目标室内机2A之外的其他室外机2和室内机1中的冷媒含量较低时,可以对补充其他室外机2和其他室内机1中的冷媒量,这样可以减小压缩机21的进气口压力值和排气口压力值之间的差值,避免由于该差值过大损坏压缩机21或导致压缩机21启动困难。
本领域的技术人员将会理解,本申请的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (16)

  1. 一种空调系统,包括:
    多个室外机,所述室外机包括相连的压缩机、四通阀、室外换热器及室外膨胀阀;
    多个室内机,包括目标室内机;
    控制器,被配置为根据所述目标室内机所在室内环境中的冷媒浓度将冷媒回收至所述室外机中;
    其中,所述多个室外机包括至少一个目标室外机,所述目标室外机包括单向阀,所述单向阀设置在所述压缩机的排气口和所述四通阀之间,被配置为在所述目标室外机的室外膨胀阀的配合下,以将回收后的冷媒封堵在所述目标室外机的室外换热器中。
  2. 根据权利要求1所述的空调系统,还包括:
    冷媒浓度传感器,设置在所述目标室内机中,被配置为检测所述目标室内机所在室内环境中的冷媒浓度;
    液侧冷媒截止阀,设置在所述多个室内机和冷媒液管之间;
    所述控制器还被配置为:
    获取所述冷媒浓度传感器检测到的冷媒浓度值,并将所述冷媒浓度值与预设浓度值进行比较;
    若确定所述目标室内机所在的室内环境中的冷媒浓度值大于所述预设浓度值,则关闭所述液侧冷媒截止阀,并控制所述多个室外机的压缩机高频运行,以将冷媒回收至所述多个室外机中。
  3. 根据权利要求2所述的空调系统,其中,所述室内机包括室内风扇,所述室外机还包括室外风扇;
    在所述若确定所述目标室内机所在的室内的冷媒浓度值大于所述预设浓度值,则关闭所述液侧冷媒截止阀之前,所述控制器还被配置为:
    判断所述空调系统的运行模式;
    若确定所述空调系统的运行模式为除制冷模式外的模式,则将所述空调系统的运行模式调整为制冷模式并运行预设时长,并控制所述室内风扇和所述室外风扇运行在最高转速。
  4. 根据权利要求2或3所述的空调系统,还包括:
    冷媒气管,被配置为连通所述四通阀和所述多个室内机;
    冷媒液管,被配置为连通所述室外膨胀阀和所述多个室内机;
    气侧冷媒截止阀,设置在所述多个室内机和所述冷媒气管之间;
    所述控制器还被配置为:
    在将冷媒回收至所述多个室外机中后,关闭所述目标室内机和所述冷媒气管之间的气侧冷媒截止阀,并打开除所述目标室内机之外的各室内机和所述冷媒液管之间的液侧冷媒截止阀;获取所述目标室内机的容量和所述多个室外机的总容量之间的比值,将所述比值与预设比值进行比较;
    若确定所述比值大于或等于所述预设比值,则关闭所述目标室外机的室外膨胀阀。
  5. 根据权利要求4所述的空调系统,其中,所述四通阀包括:
    第一接口,与所述冷媒气管连通的;
    第二接口,与所述压缩机的吸气口连通;
    第三接口,与所述室外换热器连通;以及
    第四接口,与所述压缩机的排气口连通;
    所述室外机还包括:吸气压力传感器,所述吸气压力传感器设置在所述压缩机的吸气口和所述第二接口之间,被配置为检测所述压缩机的吸气压力。
  6. 根据权利要求4所述的空调系统,其中,所述室外机还包括:
    排气温度传感器,设置在所述压缩机的排气口处,被配置为检测所述压缩机的排气温度;
    液侧冷媒温度传感器,设置在所述室外膨胀阀与所述冷媒液管之间,被配置为检测所述室外膨胀阀与所述冷媒液管之间的冷媒的温度。
  7. 根据权利要求6所述的空调系统,其中,所述控制器还被配置为:
    在关闭所述目标室外机的室外膨胀阀后,获取除所述目标室外机之外的其他室外机的排气温度和液侧冷媒截止阀过冷度;
    若确定除所述目标室外机之外的其他室外机的排气温度大于预设排气温度,且保持时间小于第一时间、和除所述目标室外机之外的其他室外机的液侧冷媒截止阀过冷度小于或等于预设过冷度,且保持时间小于第一时间之一,则打开所述目标室外机的压缩机并保持第二时间,将所述目标室外机的室外膨胀阀的开度值调整为目标开度并保持所述第二时间;
    其中,所述多个室外机中的任一室外机的液侧冷媒截止阀过冷度为所述室外机的排气压力下的饱和温度与液侧冷媒截止阀温度之差。
  8. 根据权利要求6所述的空调系统,其中,
    所述目标室外机还包括冷媒补充装置,所述冷媒补充装置的一端与所述四通阀的第四接口连接,且所述冷媒补充装置的另一端与所述四通阀的第二接口连接;
    所述控制器还被配置为:
    在关闭所述第目标室外机的室外膨胀阀后,获取除所述目标室外机之外的其他室外机的排气温度和液侧冷媒截止阀过冷度;
    若确定除所述目标室外机之外的其他室外机的排气温度大于预设排气温度,且保持时间小于第一时间、和除所述目标室外机之外的其他室外机的液侧冷媒截止阀过冷度小于或等于预设过冷度,且保持时间小于第一时间之一,则打开所述目标室外机的压缩机并保持第三时间,打开所述冷媒补充装置并保持所述第三时间;
    其中,所述多个室外机中的任一室外机的液侧冷媒截止阀过冷度为所述室外机的排气压力下的饱和温度与液侧冷媒截止阀温度之差。
  9. 根据权利要求8所述的空调系统,其中,
    所述冷媒补充装置包括:相互串联的电磁阀和毛细管道;
    所述控制器还被配置为:
    若确定需要打开所述冷媒补充装置,则打开所述电磁阀。
  10. 一种空调系统的控制方法,其中,所述空调系统包括:
    多个室外机,所述室外机包括压缩机和室外膨胀阀;
    多个室内机,包括目标室内机;
    冷媒浓度传感器,设置在所述目标室内机中,被配置为检测所述目标室内机所在室内的冷媒浓度;
    液侧冷媒截止阀,设置在所述多个室内机和所述冷媒液管之间;
    控制器,与所述多个室外机、所述多个室内机、所述冷媒浓度传感器和所述液侧冷 媒截止阀耦接;
    所述控制方法包括:
    获取所述冷媒浓度传感器检测到的冷媒浓度值,并将所述冷媒浓度值与预设浓度值进行比较;
    若确定所述目标室内机所在室内环境中的第一冷媒浓度值大于所述预设浓度值,则关闭所述多个室内机和冷媒液管之间的液侧冷媒截止阀,并控制所述多个室外机的压缩机工作,以将冷媒回收至所述多个室外机中。
  11. 根据权利要求10所述的控制方法,其中,所述室内机包括室内风扇,所述室外机还包括室外风扇;
    在所述若确定所述目标室内机所在的室内的冷媒浓度值大于所述预设浓度值,则关闭所述液侧冷媒截止阀之前,所述控制方法还包括:
    判断所述空调系统的运行模式;
    若确定所述空调系统的运行模式为除制冷模式外的模式,则将所述空调系统的运行模式调整为制冷模式并运行预设时长,并控制所述室内风扇和所述室外风扇运行在最高转速。
  12. 根据权利要求10或11所述的控制方法,其中,
    所述室外机还包括四通阀,所述四通阀包括:
    第一接口,与所述冷媒气管连通的;
    第二接口,与所述压缩机的吸气口连通;
    第三接口,与所述室外换热器连通;以及
    第四接口,与所述压缩机的排气口连通;
    所述空调系统还包括:
    冷媒气管,被配置为连通所述四通阀和所述多个室内机;
    冷媒液管,被配置为连通所述室外膨胀阀和所述多个室内机;
    气侧冷媒截止阀,设置在所述多个室内机和所述冷媒气管之间;
    在所述将冷媒回收至所述多个室外机中后,所述控制方法还包括:
    关闭所述目标室内机和所述冷媒气管之间的气侧冷媒截止阀,打开除所述目标室内机之外的各室内机和所述冷媒液管之间的液侧冷媒截止阀;
    关闭所述目标室外机的室外膨胀阀。
  13. 根据权利要求12所述的控制方法,其中,
    所述关闭所述目标室外机的室外膨胀阀,包括:
    获取所述目标室内机的容量和所述多个室外机的总容量之间的比值,将所述比值与预设比值进行比较;
    若确定所述比值大于或等于所述预设比值,则关闭所述目标室外机的室外膨胀阀。
  14. 根据权利要求12或13所述的控制方法,其中,
    所述室外机还包括:
    排气温度传感器,设置在所述压缩机的排气口处,被配置为检测所述压缩机的排气温度;
    液侧冷媒温度传感器,设置在所述室外膨胀阀与所述冷媒液管之间,被配置为检测所述室外膨胀阀与所述冷媒液管之间的冷媒的温度;
    在所述关闭所述目标室外机的室外膨胀阀之后,所述控制方法还包括:
    获取除所述目标室外机之外的其他室外机的排气温度和液侧冷媒截止阀过冷度;
    若确定除所述目标室外机之外的其他室外机的排气温度大于预设排气温度,且保持时间小于第一时间、和除所述目标室外机之外的其他室外机的液侧冷媒截止阀过冷度小于或等于预设过冷度,且保持时间小于第一时间之一,则打开所述目标室外机的压缩机并保持第二时间,将所述目标室外机的室外膨胀阀的开度值调整为目标开度并保持所述第二时间;
    其中,所述多个室外机中的任一室外机的液侧冷媒截止阀过冷度为所述室外机的排气压力下的饱和温度与液侧冷媒截止阀温度之差。
  15. 根据权利要求12或13所述的控制方法,其中,
    所述室外机还包括冷媒补充装置,所述冷媒补充装置的一端与所述四通阀的第四接口连接,且所述冷媒补充装置的另一端与所述四通阀的第二接口连接;
    在所述关闭所述目标室外机的室外膨胀阀之后,所述控制方法还包括:
    获取除所述目标室外机之外的其他室外机的排气温度和液侧冷媒截止阀过冷度;
    若确定除所述目标室外机之外的其他室外机的排气温度小于或等于预设排气温度,且保持时间小于第一时间、和除所述目标室外机之外的其他室外机的液侧冷媒截止阀过冷度大于预设过冷度,且保持时间小于第一时间之一,则打开所述目标室外机1压缩机并保持第三时间,打开所述冷媒补充装置并保持所述第三时间;
    其中,所述多个室外机中的任一室外机的液侧冷媒截止阀过冷度为所述室外机的排气压力下的饱和温度与液侧冷媒截止阀温度之差。
  16. 根据权利要求15所述的控制方法,其中,
    所述冷媒补充装置包括:相互串联的电磁阀和毛细管道;
    所述控制方法还包括:
    若确定需要打开所述冷媒补充装置,则打开所述电磁阀。
PCT/CN2023/102890 2022-11-16 2023-06-27 空调系统及其控制方法 WO2024103734A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211434038.0 2022-11-16
CN202211434038.0A CN115711466A (zh) 2022-11-16 2022-11-16 多联机空调系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2024103734A1 true WO2024103734A1 (zh) 2024-05-23

Family

ID=85233362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102890 WO2024103734A1 (zh) 2022-11-16 2023-06-27 空调系统及其控制方法

Country Status (2)

Country Link
CN (1) CN115711466A (zh)
WO (1) WO2024103734A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115711466A (zh) * 2022-11-16 2023-02-24 青岛海信日立空调系统有限公司 多联机空调系统及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090053486A (ko) * 2007-11-23 2009-05-27 엘지전자 주식회사 공기조화기의 냉매이송방법
CN102829582A (zh) * 2012-08-17 2012-12-19 广东美的暖通设备有限公司 空调冷媒回收系统和方法
CN104566637A (zh) * 2013-10-29 2015-04-29 广东美的暖通设备有限公司 多联机系统及其室内机和室外机的控制方法
CN111121156A (zh) * 2020-01-20 2020-05-08 青岛海信日立空调系统有限公司 一种多联空调机
CN210951997U (zh) * 2019-10-08 2020-07-07 青岛海尔中央空调有限公司 多联机空调系统
JP2021162232A (ja) * 2020-03-31 2021-10-11 株式会社富士通ゼネラル 空気調和装置
CN115164349A (zh) * 2022-06-30 2022-10-11 海信空调有限公司 空调
CN115711466A (zh) * 2022-11-16 2023-02-24 青岛海信日立空调系统有限公司 多联机空调系统及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090053486A (ko) * 2007-11-23 2009-05-27 엘지전자 주식회사 공기조화기의 냉매이송방법
CN102829582A (zh) * 2012-08-17 2012-12-19 广东美的暖通设备有限公司 空调冷媒回收系统和方法
CN104566637A (zh) * 2013-10-29 2015-04-29 广东美的暖通设备有限公司 多联机系统及其室内机和室外机的控制方法
CN210951997U (zh) * 2019-10-08 2020-07-07 青岛海尔中央空调有限公司 多联机空调系统
CN111121156A (zh) * 2020-01-20 2020-05-08 青岛海信日立空调系统有限公司 一种多联空调机
JP2021162232A (ja) * 2020-03-31 2021-10-11 株式会社富士通ゼネラル 空気調和装置
CN115164349A (zh) * 2022-06-30 2022-10-11 海信空调有限公司 空调
CN115711466A (zh) * 2022-11-16 2023-02-24 青岛海信日立空调系统有限公司 多联机空调系统及其控制方法

Also Published As

Publication number Publication date
CN115711466A (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
US11231199B2 (en) Air-conditioning apparatus with leak detection control
US7918097B2 (en) Air conditioning system
WO2021233343A1 (zh) 多联机空调系统的回油控制方法
KR101479458B1 (ko) 냉동 장치
US20240085044A1 (en) Air-conditioning apparatus
US10508845B2 (en) Refrigeration cycle system
US11149999B2 (en) Refrigeration cycle apparatus having foreign substance release control
US11274864B2 (en) Air-conditioning apparatus
US12013139B2 (en) Air conditioning apparatus, management device, and connection pipe
WO2024103734A1 (zh) 空调系统及其控制方法
WO2022194218A1 (zh) 一拖多空调器的压缩机频率的控制方法及一拖多空调器
JP2008298335A (ja) 冷凍装置および同冷凍装置に用いられる冷媒追加充填キット並びに冷凍装置の冷媒追加充填方法
CN114623558A (zh) 空调机及其控制方法
US20190299132A1 (en) A method for controlling a vapour compression system during gas bypass valve malfunction
US11892209B2 (en) Multi-air conditioner for heating and cooling including a shut-off valve between indoor and outdoor units and control method thereof
JP6732862B2 (ja) 冷凍装置
JP2020091080A (ja) 冷凍サイクル装置
JP2002147819A (ja) 冷凍装置
KR20090068972A (ko) 공기조화 시스템
JP6449979B2 (ja) 冷凍装置
WO2017094172A1 (ja) 空気調和装置
CN112797580A (zh) 一拖多空调器的控制方法及一拖多空调器
WO2021124499A1 (ja) 空気調和装置
KR100502308B1 (ko) 멀티 에어컨의 바이패스 장치 및 그 제어방법
JP2002188874A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890176

Country of ref document: EP

Kind code of ref document: A1