WO2024103444A1 - 用于核电厂气溶胶去除的非能动喷淋系统及安全壳系统 - Google Patents

用于核电厂气溶胶去除的非能动喷淋系统及安全壳系统 Download PDF

Info

Publication number
WO2024103444A1
WO2024103444A1 PCT/CN2022/135366 CN2022135366W WO2024103444A1 WO 2024103444 A1 WO2024103444 A1 WO 2024103444A1 CN 2022135366 W CN2022135366 W CN 2022135366W WO 2024103444 A1 WO2024103444 A1 WO 2024103444A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
valve
spray
pressure
containment
Prior art date
Application number
PCT/CN2022/135366
Other languages
English (en)
French (fr)
Inventor
孙晓晖
孙婧
王辉
石雪垚
李精精
陈巧艳
周喆
黄政
蔡盟利
常愿
王贺南
李汉辰
雷宁博
林盛盛
Original Assignee
中国核电工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国核电工程有限公司 filed Critical 中国核电工程有限公司
Publication of WO2024103444A1 publication Critical patent/WO2024103444A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/10Means for preventing contamination in the event of leakage, e.g. double wall
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present disclosure relates to, but is not limited to, the technical field of nuclear power plant safety design.
  • the containment Under severe accident conditions in nuclear power plants, the containment, as the last barrier to contain radioactivity, will produce a large amount of radioactive fission product aerosols inside. In order to prevent the release and spread of radioactivity from the containment to the environment, controlling the amount of suspended aerosols in the containment is an effective means.
  • spray removal there are two main methods for controlling the amount of aerosol suspension in the containment: spray removal and natural removal.
  • the characteristics of these two methods are as follows: (1) The advantage of the spray method is high removal efficiency, and the disadvantage is high cost. In addition, the traditional spray system is driven by a pump and requires a power supply. Under accident conditions, there is a risk of failure to start successfully; (2) The advantage of the natural removal method is that the removal process relies on a naturally occurring process and has high reliability. The disadvantage is that the aerosol removal efficiency is low and the safety margin provided is low.
  • the present invention provides a passive spray system and a containment system for aerosol removal in a nuclear power plant.
  • the present disclosure provides a passive spray system for aerosol removal in a nuclear power plant, comprising: a condensate collector, a flow guide pipe, a spray water tank, a spray pipe, a burst valve, and a spray head.
  • the condensate collector is connected to the spray water tank through the flow guide pipe, and the condensate collector is used to collect condensate in the containment.
  • the spray water tank is connected to the spray head through the spray pipe, and the burst valve is arranged on the spray pipe.
  • the burst valve opens, and the water in the spray water tank flows into the spray head through the spray pipe, and the aerosol in the containment is removed by spraying water through the spray head.
  • the passive spray system in the present disclosure is arranged in the containment.
  • the present disclosure also provides a containment system, including a containment shell, wherein the containment shell system further includes the above-mentioned passive spray system disposed in the containment shell.
  • FIG1 is a schematic structural diagram of a passive spray system for aerosol removal in a nuclear power plant in Example 2 of the present disclosure
  • FIG. 2 is a schematic diagram of the structure of the bursting valve in Embodiment 2 of the present disclosure.
  • An embodiment of the present disclosure provides a passive spray system for removing aerosols in a nuclear power plant, comprising: a condensate collector, a guide pipe, a spray water tank, a spray pipe, a bursting valve, and a spray head.
  • the condensate collector is connected to the spray water tank through the guide pipe, and the condensate collector is used to collect condensate in the containment.
  • the spray water tank is connected to the spray head through the spray pipe.
  • the bursting valve is arranged on the spray pipe. When the pressure in the containment reaches the starting trigger pressure of the bursting valve, the bursting valve opens, and the water in the spray water tank flows into the spray head through the spray pipe, and the aerosol in the containment is removed by spraying water through the spray head.
  • An embodiment of the present disclosure further provides a containment system, including a containment shell, wherein the containment shell system further includes the above-mentioned passive spray system disposed in the containment shell.
  • this system can provide more efficient removal of suspended aerosols in the containment.
  • this system does not require equipment such as pumps and power supplies, and has higher reliability under accident conditions.
  • This system can collect condensate near the wall of the heat exchanger and provide a more lasting water source for the spray system.
  • an embodiment of the present disclosure provides a passive spray system for aerosol removal in a nuclear power plant, comprising: a condensate collector, a flow guide pipe 4, a spray water tank 5, a spray pipe 19, a burst valve 6, and a nozzle 7.
  • the condensate collector is connected to the spray water tank 5 through the flow guide pipe 4, and the condensate collector is used to collect condensate in the containment 1.
  • the spray water tank 5 is connected to the nozzle 7 through the spray pipe 19.
  • the burst valve 6 is arranged on the spray pipe 19.
  • the burst valve 6 opens, and the water in the spray water tank 5 flows into the nozzle 7 through the spray pipe 19, and the aerosol in the containment 1 is removed by spraying water through the nozzle 7.
  • the passive spray system in this embodiment is arranged in the containment 1.
  • the condensate collector is disposed below the heat exchanger 2 in the containment vessel 1 , and the condensate collector is configured to collect condensate obtained by condensation of the heat exchanger 2 .
  • the condensate collector includes at least one condensate collecting tray 3, which is annular.
  • the condensate collecting tray 3 is located below the heat exchanger 2 of the passive residual heat removal system in the containment 1, and can collect condensed water near the heat exchanger 2.
  • the heat exchanger 2 is arranged in the containment 1.
  • the flow guide pipe 4 connects the condensate collecting tray 3 and the spray water tank 5.
  • the flow guide pipe 4 has no bends, ensuring that the condensate can smoothly flow to the spray water tank 5.
  • the flow guide pipe 4 is in an inclined downward direction.
  • the condensate collector includes at least two condensate collecting trays 3, and the condensate collecting trays 3 are evenly distributed below the heat exchanger 2.
  • the heat exchanger 2 is a heat exchanger 2 of a passive residual heat removal system in the containment 1.
  • the spray water tank 5 is disposed at a central position in the containment vessel 1 , and the height of the spray water tank 5 is lower than the height of the condensate collector.
  • the height of the spray water tank 5 is slightly lower than that of the condensate collecting tray 3, which is convenient for the automatic collection of condensed water and can ensure that the condensate in the condensate collecting tray 3 automatically flows in by gravity.
  • the spray water tank 5 is filled with water to provide an initial spray water source for the passive spray system.
  • a burst valve 6 is provided below the spray water tank 5. When the pressure of the containment vessel 1 reaches the start triggering pressure, the burst valve 6 opens and the spray system starts to work.
  • the bursting valve 6 includes: a valve body, a valve inlet 10 disposed on the valve body, a valve outlet 12 disposed on the valve body, a valve disc disposed in the valve body, and a trigger assembly, wherein the valve inlet 10 is connected to the spray water tank 5, the valve outlet 12 is connected to the spray head 7, the trigger assembly is connected to the valve disc, the trigger assembly is subjected to the pressure in the containment shell 1, and when the pressure in the containment shell 1 reaches the starting trigger pressure of the bursting valve 6, the trigger assembly triggers the valve disc to open, and the valve inlet 10 is connected to the valve outlet 12.
  • the bursting valve 6 is located below the spray water tank 5.
  • the valve disc is a piston 9, and the burst valve 6 further includes: a valve seat arranged in the valve body, and the trigger assembly includes: a contact piece cavity 15 arranged in the valve body, a compression spring end plug 14, a compression spring 13, and a pressure contact piece 8, one end of the compression spring 13 is connected to the compression spring end plug 14, and the other end of the compression spring 13 is connected to the first end of the piston 9, the pressure contact piece 8 is arranged in the contact piece cavity 15, one end of the pressure contact piece 8 is connected to the second end of the piston 9, and the other end of the pressure contact piece 8 is connected to the contact piece cavity 15, a pressure channel 17 is opened on the valve seat, one end of the pressure channel 17 is connected to the gas pressure end 11 of the containment, the compression spring end plug 14 is slidably connected to the pressure channel 17, the piston 9 is slidably connected to the pressure channel 17, the contact piece cavity 15 is opened with a piston channel 18, the piston 9 is slidably connected to the piston channel 18, and
  • the pressure contact piece 8 bends after reaching the pressure limit. After the pressure contact piece 8 bends, the piston 9 can move upward.
  • the power source for the upward movement includes the elastic force of the compression spring 13 and the pressure in the contact piece cavity 15 where the pressure contact piece 8 is located. In one embodiment of the present disclosure, the pressure in the contact piece cavity 15 is negative pressure.
  • the valve inlet 10 is connected to the spray water tank 5 .
  • the burst valve 6 is opened, that is, the piston 9 moves upward, the spray water can flow from the valve inlet 10 to the valve outlet 12 .
  • the pressure at the containment gas pressure end 11 acts on the compression spring end plug 14, pushing it to move upward.
  • the valve outlet 12 is connected to a spray pipe 19 , and when the bursting valve 6 is opened, spray water flows into the spray pipe 19 .
  • the compression spring 13 is located between the piston 9 and the compression spring end plug 14. When the pressure of the containment 1 increases but does not reach the starting pressure of the spray system, the compression spring 13 contracts to provide partial power for the upward movement of the piston 9 after the pressure contact piece 8 is bent.
  • the pressure contact piece 8 when the burst valve 6 is in a closed state, the pressure contact piece 8 is in a straightened state, and the pressure contact piece 8 receives the pulling force of the piston 9.
  • the upper end surface of the compression spring end plug 14 is connected to the compression spring 13, and the lower end surface of the compression spring end plug 14 is in contact with the atmosphere of the containment shell 1. After the pressure of the containment shell 1 increases, the compression spring end plug 14 moves upward, the piston 9 moves upward, the pressure contact piece 8 is bent, and the pulling force of the piston 9 previously received by the pressure contact piece 8 disappears, and the pressure contact piece 8 receives the pressure of the piston 9.
  • the contact cavity 15 is in a state of vacuum to atmospheric pressure, which is negative pressure compared with the pressure in the containment vessel 1. After the pressure contact 8 is bent, it provides partial power for the upward movement of the piston 9.
  • the spray heads 7 are dispersedly arranged in the radial direction of the containment shell 1 through the spray pipes 19 to ensure that the spray water fully covers the radial direction of the containment shell 1 for spraying.
  • the passive spray system for aerosol removal in nuclear power plants further includes a first seal, which is disposed between the compression spring end plug 14 and the pressure channel 17.
  • the first seal is disposed on the periphery of the compression spring end plug 14 or the inner wall of the pressure channel 17.
  • the first seal is configured to seal the gap between the compression spring end plug 14 and the pressure channel 17.
  • the first seal is a first O-ring.
  • the first O-ring is disposed in a groove provided on the periphery of the compression spring end plug 14, or in a groove provided on the inner wall of the pressure channel 17.
  • the passive spray system for aerosol removal in nuclear power plants further includes a second seal, which is disposed between the periphery of the piston 9 and the piston channel 18.
  • the second seal is disposed on the periphery of the piston 9 or on the inner wall of the piston channel 18.
  • the second seal is configured to seal the gap between the periphery of the piston 9 and the piston channel 18.
  • the second seal is a second O-ring.
  • the second O-ring is disposed in a groove provided on the periphery of the piston 9 or in a groove provided on the inner wall of the piston channel 18.
  • the passive spray system for aerosol removal in nuclear power plants further includes a limiting portion 16 disposed in the pressure channel 17, and the compression spring end plug 14 is closer to the interior of the valve body relative to the limiting portion 16.
  • the limiting portion 16 is configured to limit the compression spring end plug 14 so that the compression spring end plug 14 is in the pressure channel 17.
  • the piston 9 includes: a piston body 91, a piston protrusion 92 disposed on the piston body 91, the piston body 91 is slidably connected to the piston channel 18, and the piston protrusion 92 is slidably connected to the pressure channel 17.
  • the piston protrusion 92 limits the movement of the piston body 91 to prevent the piston body 91 and the compression spring 13 from moving together into the contact piece cavity 15. After the pressure of the containment shell 1 increases, the compression spring end plug 14 moves upward, the piston 9 moves upward, the piston protrusion 92 leaves the pressure channel 17, and the valve inlet 10 is connected to the valve outlet 12.
  • the pressure contact piece 8 is in a "V" shape or a "U” shape. In one embodiment of the present disclosure, the pressure contact piece 8 is in a "V" shape.
  • the pressure in the contact cavity 15 is 0 to 1 atmosphere.
  • the passive spraying system for aerosol removal in a nuclear power plant in this embodiment is automatically opened for spraying by a burst valve 6, and can collect condensed water generated by the passive residual heat removal system of the containment, providing a long-term spraying water source for the spraying system.
  • An embodiment of the present disclosure further provides a containment system, including a containment 1 , wherein the containment system further includes the above-mentioned passive spray system disposed in the containment 1 .
  • the main function of the spray pipe 19 and the spray head 7 is to spray the original water in the spray water tank 5 and the collected condensed water evenly and fully in the containment 1.
  • this system can provide more efficient removal of suspended aerosols in the containment vessel 1.
  • this system does not require equipment such as pumps and power supplies, and has higher reliability under accident conditions.
  • This system can collect condensate near the wall of heat exchanger 2 and provide a more durable water source for the spray system.
  • An embodiment of the present disclosure provides a passive spray system for aerosol removal in a nuclear power plant, which is different from the spray system in Embodiment 2 in that:
  • the pressure contact piece is in a "U" shape.
  • An embodiment of the present disclosure further provides a containment system, including a containment shell, wherein the containment shell system further includes the above-mentioned passive spray system disposed in the containment shell.
  • this system can provide more efficient removal of suspended aerosols in the containment.
  • this system does not require equipment such as pumps and power supplies, and has higher reliability under accident conditions.
  • This system can collect condensate near the wall of the heat exchanger and provide a more lasting water source for the spray system.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

一种用于核电厂气溶胶去除的非能动喷淋系统及安全壳系统,包括:凝液收集器(3)、导流管(4)、喷淋水箱(5)、喷淋管(19)、爆破阀(6)、喷头(7),凝液收集器(3)通过导流管(4)与喷淋水箱(5)连接,凝液收集器(3)用于收集安全壳(1)内的冷凝液,喷淋水箱(5)通过喷淋管(19)与喷头(7)连接,爆破阀(6)设置于喷淋管(19)上,当安全壳(1)内的压力到达爆破阀(6)的启动触发压力时,爆破阀(6)开启,喷淋水箱(5)内的水通过喷淋管(19)流入喷头(7),通过喷头(7)喷水去除安全壳(1)内气溶胶。

Description

用于核电厂气溶胶去除的非能动喷淋系统及安全壳系统
本公开要求申请日为2022年11月17日、申请号为CN 202211441737.8、名称为“用于核电厂气溶胶去除的非能动喷淋系统”的中国公开申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开涉及但不限于核电厂安全设计技术领域。
背景技术
核电厂严重事故工况下,安全壳作为放射性包容的最后一道屏障,其内部会产生大量的放射性裂变产物气溶胶。为防止放射性由安全壳内向环境的释放及扩散,控制安全壳内悬浮气溶胶的量是一种有效的手段。
目前控制安全壳内气溶胶悬浮量的方法主要有喷淋去除和自然去除两种方法,这两种方法的特点如下:(1)喷淋方法的优点是去除效率高,缺点是成本高。此外,传统的喷淋系统由泵驱动,需要配备电源,事故工况下,存在不能成功启动的风险;(2)自然去除方法优点是去除过程依靠自然发生的过程完成,其可靠性高,缺点气溶胶去除效率低,所提供的安全裕量较低。
发明内容
本公开提供一种用于核电厂气溶胶去除的非能动喷淋系统及安全壳系统。
本公开提供一种用于核电厂气溶胶去除的非能动喷淋系统,包括:凝液收集器、导流管、喷淋水箱、喷淋管、爆破阀、喷头,凝液收集器通过导流管与喷淋水箱连接,凝液收集器用于收集安全壳内的冷凝液,喷淋水箱通过喷淋管与喷头连接,爆破阀设置于喷淋管上,当安全壳内的压力到达爆破阀的启动触发压力时,爆破阀开 启,喷淋水箱内的水通过喷淋管流入喷头,通过喷头喷水去除安全壳内气溶胶。本公开中的非能动喷淋系统设置于安全壳内。
本公开还提供一种安全壳系统,包括安全壳,安全壳系统还包括设置于安全壳内的上述的非能动喷淋系统。
附图说明
图1是本公开实施例2中的用于核电厂气溶胶去除的非能动喷淋系统的结构示意图;
图2是本公开实施例2中的爆破阀的结构示意图。
图中:1-安全壳;2-换热器;3-凝液收集盘;4-导流管;5-喷淋水箱;6-爆破阀;7-喷头;8-压力触片;9-活塞;91-活塞本体;92-活塞凸起部;10-阀门入口;11-安全壳气压端;12-阀门出口;13-压紧弹簧;14-压紧弹簧端塞;15-触片腔体;16-限位部;17-压力通道;18-活塞通道;19-喷淋管。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
下面详细描述本专利的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本专利,而不能理解为对本专利的限制。
实施例1
本公开一实施例提供一种用于核电厂气溶胶去除的非能动喷淋系统,包括:凝液收集器、导流管、喷淋水箱、喷淋管、爆破阀、喷头,凝液收集器通过导流管与喷淋水箱连接,凝液收集器用于收集安全壳内的冷凝液,喷淋水箱通过喷淋管与喷头连接,爆破阀设置于喷淋管上,当安全壳内的压力到达爆破阀的启动触发压力时,爆破阀开启,喷淋水箱内的水通过喷淋管流入喷头,通过喷头喷水 去除安全壳内气溶胶。
本公开一实施例还提供一种安全壳系统,包括安全壳,安全壳系统还包括设置于安全壳内的上述的非能动喷淋系统。
本公开一实施例中的用于核电厂气溶胶去除的非能动喷淋系统的有益效果如下:
(1)与自然去除方式相比,本系统可提供更为高效的安全壳内悬浮气溶胶的去除。
(2)与能动喷淋系统相比,本系统不需要配有泵及电源等设备,事故工况下具有更高的可靠性。
(3)本系统可将换热器壁面附近的凝液收集,可为喷淋系统提供更持久的水源。
实施例2
如图1所示,本公开一实施例提供一种用于核电厂气溶胶去除的非能动喷淋系统,包括:凝液收集器、导流管4、喷淋水箱5、喷淋管19、爆破阀6、喷头7,凝液收集器通过导流管4与喷淋水箱5连接,凝液收集器用于收集安全壳1内的冷凝液,喷淋水箱5通过喷淋管19与喷头7连接,爆破阀6设置于喷淋管19上,当安全壳1内的压力到达爆破阀6的启动触发压力时,爆破阀6开启,喷淋水箱5内的水通过喷淋管19流入喷头7,通过喷头7喷水去除安全壳1内气溶胶。本实施例中的非能动喷淋系统设置于安全壳1内。
在一些实施例中,凝液收集器设置于安全壳1内的换热器2下方,凝液收集器配置为收集通过换热器2冷凝得到的冷凝液。
在一些实施例中,凝液收集器包括至少一个凝液收集盘3,凝液收集盘3为环形。凝液收集盘3位于安全壳1内非能动余热排出系统的换热器2的下方,可收集换热器2附近的冷凝水。换热器2设置于安全壳1内。
导流管4连接凝液收集盘3与喷淋水箱5,导流管4无弯曲,保证凝液可顺利流至喷淋水箱5。导流管4为倾斜向下的方向。
在一些实施例中,凝液收集器包括至少两个凝液收集盘3,凝液收集盘3在换热器2下方均匀分布。换热器2为安全壳1内非能动余热排出系统的换热器2。
在一些实施例中,喷淋水箱5设置于安全壳1内的中心位置,喷淋水箱5的高度低于凝液收集器的高度。
本公开一实施例中喷淋水箱5的高度略低于凝液收集盘3的高度,便于冷凝水的自动收集,可保证凝液收集盘3中的凝液通过重力自动流入。
此喷淋水箱5装有水,为非能动喷淋系统提供前期的喷淋水源。喷淋水箱5下方设有爆破阀6,当安全壳1压力达到启动触发压力时,爆破阀6开启,喷淋系统开始工作。
在一些实施例中,喷头7至少为两个,喷头7在安全壳1径向方向分散布置。
在一些实施例中,爆破阀6包括:阀体、设置于阀体上的阀门入口10、设置于阀体上的阀门出口12、设置于阀体内的阀瓣、触发组件,阀门入口10与喷淋水箱5联通,阀门出口12与喷头7联通,触发组件与阀瓣连接,触发组件受到安全壳1内的压力,当安全壳1内的压力到达爆破阀6的启动触发压力时,触发组件触发阀瓣开启,阀门入口10与阀门出口12联通。爆破阀6位于喷淋水箱5的下方。
如图2所示,在一些实施例中,阀瓣为活塞9,爆破阀6还包括:设置于阀体内的阀座,触发组件包括:设置于阀体内的触片腔体15、压紧弹簧端塞14、压紧弹簧13、压力触片8,压紧弹簧13的一端与压紧弹簧端塞14连接,压紧弹簧13的另外一端与活塞9的第一端连接,压力触片8设置于触片腔体15内,压力触片8的一端与活塞9的第二端连接,压力触片8的另外一端与触片腔体15连接,阀座上开设有压力通道17,压力通道17的一端与安全壳气压端11联通,压紧弹簧端塞14与压力通道17滑动连接,活塞9与压力通道17滑动连接,触片腔体15开设有活塞通道18,活塞9与活塞通道18滑动连接,触片腔体15内的压力小于安全壳1内的 压力,活塞9在压力通道17、活塞通道18内时,阀门入口10与阀门出口12隔绝,活塞9离开压力通道17后,阀门入口10与阀门出口12联通。
压力触片8达到压力极限后发生弯折。活塞9在压力触片8发生弯折后,可以向上移动。向上移动的动力来源包括压紧弹簧13的弹力、压力触片8所在的触片腔体15内的压力。本公开一实施例中触片腔体15内的压力为负压。
阀门入口10与喷淋水箱5相连,在爆破阀6打开,即活塞9上移的情况下,喷淋水可由阀门入口10流向阀门出口12。
安全壳气压端11压力作用于压紧弹簧端塞14上,推动其向上移动。
阀门出口12与喷淋管19相连,在爆破阀6打开的情况下,喷淋水由此流入喷淋管19。
压紧弹簧13位于活塞9和压紧弹簧端塞14之间,在安全壳1压力升高但未达到喷淋系统启动压力之前,压紧弹簧13收缩,为压力触片8发生弯折后,活塞9的上移提供部分动力。
本公开一实施例中,在爆破阀6处于关闭状态时,压力触片8为拉直状态,压力触片8收到活塞9的拉力。本实施例中压紧弹簧端塞14的上端面与压紧弹簧13相连,压紧弹簧端塞14的下端面与安全壳1大气接触,安全壳1压力升高后,压紧弹簧端塞14向上移动,活塞9向上移动,压力触片8发生弯折,压力触片8之前受到的活塞9的拉力消失,压力触片8受到活塞9的压力。
触片腔体15内处于真空至一个大气压的状态,与安全壳1内压力相比,处于负压,在压力触片8发生弯折后,为活塞9的上移提供部门动力。
喷头7通过喷淋管19在安全壳1径向方向分散布置,保证喷淋水全面覆盖安全壳1的径向进行喷洒。
在一些实施例中,所述的用于核电厂气溶胶去除的非能动喷淋系统,还包括第一密封件,设置于压紧弹簧端塞14与压力通道17之间,第一密封件设置于压紧弹簧端塞14外围或压力通道17内壁, 第一密封件配置为对压紧弹簧端塞14与压力通道17之间的空隙密封。本公开一实施例中,第一密封件为第一O型密封圈。第一O型密封圈设置于压紧弹簧端塞14外围上开设的凹槽内,或者设置于压力通道17内壁开设的凹槽内。
在一些实施例中,所述的用于核电厂气溶胶去除的非能动喷淋系统,还包括第二密封件,设置于活塞9外围与活塞通道18之间,第二密封件设置于活塞9外围或活塞通道18内壁,第二密封件配置为对活塞9外围与活塞通道18之间的空隙密封。本公开一实施例中,第二密封件为第二O型密封圈。第二O型密封圈设置于活塞9外围上开设的凹槽内,或活塞通道18内壁上开设的凹槽内。
在一些实施例中,所述的用于核电厂气溶胶去除的非能动喷淋系统,还包括设置于压力通道17内的限位部16,压紧弹簧端塞14相对于限位部16更靠近阀体内部,限位部16配置为对压紧弹簧端塞14进行限位,使得压紧弹簧端塞14在压力通道17内。
在一些实施例中,活塞9包括:活塞本体91、设置于活塞本体91上的活塞凸起部92,活塞本体91与活塞通道18滑动连接,活塞凸起部92与压力通道17滑动连接。通过活塞凸起部92对活塞本体91运动进行限位,防止活塞本体91和压紧弹簧13一起运动进入到触片腔体15内。安全壳1压力升高后,压紧弹簧端塞14向上移动,活塞9向上移动,活塞凸起部92离开压力通道17,阀门入口10与阀门出口12联通。
在一些实施例中,压力触片8形状为“V”型或“U”型。本公开一实施例中,压力触片8形状为“V”型。
在一些实施例中,触片腔体15内的压力为0~1个大气压。
本实施例中的用于核电厂气溶胶去除的非能动喷淋系统,由爆破阀6自动开启喷淋,且可收集安全壳非能动余热排出系统产生的冷凝水,为喷淋系统提供长期的喷淋水源。
本公开一实施例还提供一种安全壳系统,包括安全壳1,安全壳系统还包括设置于安全壳1内的上述的非能动喷淋系统。
核电厂事故工况下,安全壳1内会持续的产生高温高压蒸汽, 在安全壳1非能动余热排出系统的换热器2附近持续的产生冷凝水。在换热器2下方设凝液收集盘3会有效的收集凝液。凝液收集盘3中的冷凝水通过导流管4流到喷淋水箱5中。由于安全壳1内不断的产生水蒸汽,此凝液收集器可为喷淋系统提供长期的喷淋水。
喷淋管19和喷头7主要功能是将喷淋水箱5中原有的水及收集的冷凝水在安全壳1内均匀且全覆盖的喷洒。
本实施例中的用于核电厂气溶胶去除的非能动喷淋系统的有益效果如下:
(1)与自然去除方式相比,本系统可提供更为高效的安全壳1内悬浮气溶胶的去除。
(2)与能动喷淋系统相比,本系统不需要配有泵及电源等设备,事故工况下具有更高的可靠性。
(3)本系统可将换热器2壁面附近的凝液收集,可为喷淋系统提供更持久的水源。
实施例3
本公开一实施例提供一种用于核电厂气溶胶去除的非能动喷淋系统,与实施例2中的喷淋系统的区别为:
压力触片形状为“U”型。
本公开一实施例还提供一种安全壳系统,包括安全壳,安全壳系统还包括设置于安全壳内的上述的非能动喷淋系统。
本实施例中的用于核电厂气溶胶去除的非能动喷淋系统的有益效果如下:
(1)与自然去除方式相比,本系统可提供更为高效的安全壳内悬浮气溶胶的去除。
(2)与能动喷淋系统相比,本系统不需要配有泵及电源等设备,事故工况下具有更高的可靠性。
(3)本系统可将换热器壁面附近的凝液收集,可为喷淋系统提供更持久的水源。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (15)

  1. 一种用于核电厂气溶胶去除的非能动喷淋系统,其中,包括:凝液收集器、导流管、喷淋水箱、喷淋管、爆破阀、喷头,凝液收集器通过导流管与喷淋水箱连接,凝液收集器用于收集安全壳内的冷凝液,喷淋水箱通过喷淋管与喷头连接,爆破阀设置于喷淋管上,当安全壳内的压力到达爆破阀的启动触发压力时,爆破阀开启,喷淋水箱内的水通过喷淋管流入喷头,通过喷头喷水去除安全壳内气溶胶。
  2. 根据权利要求1所述的用于核电厂气溶胶去除的非能动喷淋系统,其中,凝液收集器设置于安全壳内的换热器下方,凝液收集器配置为收集通过换热器冷凝得到的冷凝液。
  3. 根据权利要求2所述的用于核电厂气溶胶去除的非能动喷淋系统,其中,凝液收集器包括至少一个凝液收集盘,凝液收集盘为环形。
  4. 根据权利要求3所述的用于核电厂气溶胶去除的非能动喷淋系统,其中,凝液收集器包括至少两个凝液收集盘,凝液收集盘在换热器下方均匀分布。
  5. 根据权利要求1所述的用于核电厂气溶胶去除的非能动喷淋系统,其中,喷淋水箱设置于安全壳内的中心位置,喷淋水箱的高度低于凝液收集器的高度。
  6. 根据权利要求1所述的用于核电厂气溶胶去除的非能动喷淋系统,其中,喷头至少为两个,喷头在在安全壳径向方向分散布置。
  7. 根据权利要求1~6任意一项所述的用于核电厂气溶胶去除的非能动喷淋系统,其中,爆破阀包括:阀体、设置于阀体上的阀门入口、设置于阀体上的阀门出口、设置于阀体内的阀瓣、触发组件,阀门入口与喷淋水箱联通,阀门出口与喷头联通,触发组件与阀瓣连接,触发组件受到安全壳内的压力,当安全壳内的压力到达爆破阀的启动触发压力时,触发组件触发阀瓣开启,阀门入口与阀门出口联通。
  8. 根据权利要求7所述的用于核电厂气溶胶去除的非能动喷淋系统,其中,阀瓣为活塞,爆破阀还包括:设置于阀体内的阀座,触发组件包括:设置于阀体内的触片腔体、压紧弹簧端塞、压紧弹簧、压力触片,压紧弹簧的一端与压紧弹簧端塞连接,压紧弹簧的另外一端与活塞的第一端连接,压力触片设置于触片腔体内,压力触片的一端与活塞的第二端连接,压力触片的另外一端与触片腔体连接,阀座上开设有压力通道,压力通道的一端与安全壳气压端联通,压紧弹簧端塞与压力通道滑动连接,活塞与压力通道滑动连接,触片腔体开设有活塞通道,活塞与活塞通道滑动连接,触片腔体内的压力小于安全壳内的压力,活塞在压力通道、活塞通道内时,阀门入口与阀门出口隔绝,活塞离开压力通道后,阀门入口与阀门出口联通。
  9. 根据权利要求8所述的用于核电厂气溶胶去除的非能动喷淋系统,其中,还包括第一密封件,设置于压紧弹簧端塞与压力通道之间,第一密封件设置于压紧弹簧端塞外围或压力通道内壁,第一密封件配置为对压紧弹簧端塞与压力通道之间的空隙密封。
  10. 根据权利要求8所述的用于核电厂气溶胶去除的非能动喷淋系统,其中,还包括第二密封件,设置于活塞外围与活塞通道之间,第二密封件设置于活塞外围或活塞通道内壁,第二密封件配置为对活塞外围与活塞通道之间的空隙密封。
  11. 根据权利要求8所述的用于核电厂气溶胶去除的非能动喷淋系统,其中,还包括设置于压力通道内的限位部,压紧弹簧端塞相对于限位部更靠近阀体内部,限位部配置为对压紧弹簧端塞进行限位,使得压紧弹簧端塞在压力通道内。
  12. 根据权利要求8所述的用于核电厂气溶胶去除的非能动喷淋系统,其中,活塞包括:活塞本体、设置于活塞本体上的活塞凸起部,活塞本体与活塞通道滑动连接,活塞凸起部与压力通道滑动连接。
  13. 根据权利要求8所述的用于核电厂气溶胶去除的非能动喷淋系统,其中,压力触片形状为“V”型或“U”型。
  14. 根据权利要求8所述的用于核电厂气溶胶去除的非能动喷淋系统,其中,触片腔体内的压力为0~1个大气压。
  15. 一种安全壳系统,包括安全壳,其中,安全壳系统还包括设置于安全壳内的权利要求1~14任意一项所述的非能动喷淋系统。
PCT/CN2022/135366 2022-11-17 2022-11-30 用于核电厂气溶胶去除的非能动喷淋系统及安全壳系统 WO2024103444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211441737.8 2022-11-17
CN202211441737.8A CN115762821A (zh) 2022-11-17 2022-11-17 用于核电厂气溶胶去除的非能动喷淋系统

Publications (1)

Publication Number Publication Date
WO2024103444A1 true WO2024103444A1 (zh) 2024-05-23

Family

ID=85373849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135366 WO2024103444A1 (zh) 2022-11-17 2022-11-30 用于核电厂气溶胶去除的非能动喷淋系统及安全壳系统

Country Status (2)

Country Link
CN (1) CN115762821A (zh)
WO (1) WO2024103444A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148890A (ja) * 1985-12-24 1987-07-02 株式会社東芝 原子炉格納容器冷却スプレイ系
CN104021822A (zh) * 2014-05-13 2014-09-03 中国核电工程有限公司 一种非能动安全壳喷淋与排热系统
CN203882628U (zh) * 2014-03-31 2014-10-15 中国核电工程有限公司 一种能动与非能动相结合的安全壳热量导出系统
CN113856937A (zh) * 2021-08-17 2021-12-31 中国核电工程有限公司 一种压力控制装置及安全壳非能动自动喷淋控制装置
US20220098057A1 (en) * 2020-09-30 2022-03-31 Dan Bolton Arrangement for Treating Wastewater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148890A (ja) * 1985-12-24 1987-07-02 株式会社東芝 原子炉格納容器冷却スプレイ系
CN203882628U (zh) * 2014-03-31 2014-10-15 中国核电工程有限公司 一种能动与非能动相结合的安全壳热量导出系统
CN104021822A (zh) * 2014-05-13 2014-09-03 中国核电工程有限公司 一种非能动安全壳喷淋与排热系统
US20220098057A1 (en) * 2020-09-30 2022-03-31 Dan Bolton Arrangement for Treating Wastewater
CN113856937A (zh) * 2021-08-17 2021-12-31 中国核电工程有限公司 一种压力控制装置及安全壳非能动自动喷淋控制装置

Also Published As

Publication number Publication date
CN115762821A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
UA121845C2 (uk) Фільтр для системи вентиляції захисної оболонки атомного реактора
US9881704B2 (en) Containment vessel drain system
CA2060094C (en) Method and apparatus for maintaining a required temperature differential in vacuum deaerators
WO2024103444A1 (zh) 用于核电厂气溶胶去除的非能动喷淋系统及安全壳系统
JP3507547B2 (ja) 圧力抑制式格納容器系
KR20080074100A (ko) 리튬 브로마이드 기계의 무진공 펌프 자동 배기장치 및방법
CA1216481A (en) Steam generator
RU2408097C1 (ru) Устройство для очистки межоболочечного пространства
KR101692974B1 (ko) 집진시설에 사용되는 카트리지 필터
CN113198278B (zh) 一种水蒸气除尘系统及其工作方法
CN210319043U (zh) 一种新型管道排气装置
WO2022002355A1 (en) Nuclear power plant
CN211450882U (zh) 一种热力除氧器
CN213913068U (zh) 一种碳捕捉用具有分节散发组件的碳解吸装置
CN214182496U (zh) 一种用于排污系统的水汽分离装置
JPH07117596B2 (ja) 自然放熱型格納容器
CN213514435U (zh) 一种环保性冷凝锅炉
CN2104324U (zh) 压缩空气除油水装置
CN219160673U (zh) 一种高效散热蒸发式冷凝器
CN210311791U (zh) 一种用于乙烯基乙醚制备的储罐
CN113035393B (zh) 一种自驱动抽气式非能动安全壳排热系统
CN209865328U (zh) 一种甲醛生产用多功能蒸发器
CN214120825U (zh) 一种蒸汽闪蒸消除装置
KR102592765B1 (ko) 원자력발전소 계통 유체기기의 기포저감장치
CN208574416U (zh) 一种蓄热式挥发性有机物净化设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965622

Country of ref document: EP

Kind code of ref document: A1