WO2024103294A1 - 冰箱门密封条的焊接系统及其控制方法 - Google Patents

冰箱门密封条的焊接系统及其控制方法 Download PDF

Info

Publication number
WO2024103294A1
WO2024103294A1 PCT/CN2022/132277 CN2022132277W WO2024103294A1 WO 2024103294 A1 WO2024103294 A1 WO 2024103294A1 CN 2022132277 W CN2022132277 W CN 2022132277W WO 2024103294 A1 WO2024103294 A1 WO 2024103294A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
module
transfer
positioning
rubber sleeve
Prior art date
Application number
PCT/CN2022/132277
Other languages
English (en)
French (fr)
Inventor
时乾中
张龙
秦勇
Original Assignee
安徽万朗磁塑股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽万朗磁塑股份有限公司 filed Critical 安徽万朗磁塑股份有限公司
Priority to PCT/CN2022/132277 priority Critical patent/WO2024103294A1/zh
Publication of WO2024103294A1 publication Critical patent/WO2024103294A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/72Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by combined operations or combined techniques, e.g. welding and stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus

Definitions

  • the invention relates to the technical field of refrigerator door sealing strip welding, and in particular to a refrigerator door sealing strip welding system and a control method thereof.
  • Refrigerators are essential household appliances in people's lives. Sealing strips are often used at the joints between refrigerator doors and refrigerator bodies to seal the cold inside the refrigerator to ensure the refrigeration effect inside. At the same time, the magnetic strip inside the sealing strip can also assist in the closing of the refrigerator door. In the production process of sealing strips, it is often necessary to cut injection-molded materials such as PVC into multiple rubber sleeves, and then weld multiple rubber sleeves according to the shape of the sealing strip to form a sealing strip.
  • the existing welding system for sealing strips generally transports the cut rubber sleeves to the vicinity of the robot arm in a way that some are turned and some are not turned, and the robot arm clamps the rubber sleeves in pairs to multiple positions of the welding device and puts them into the mold. After the robot arm transfers the rubber sleeves required for a sealing strip into the mold, the welding device starts and welds the multiple rubber sleeves, and finally the sealing strip is transferred to the stacking area by the robot arm.
  • the wire body of this welding system is relatively long and occupies a large area; and the robot arm can only grab two relatively rubber sleeves, which leads to a long welding cycle and low welding efficiency.
  • the purpose of the present invention is to overcome the problems of large occupied area and low welding efficiency of the welding system in the prior art, and to provide a welding system for a refrigerator door sealing strip and a control method thereof.
  • the welding system for a refrigerator door sealing strip and the control method thereof have the effect of small occupied area of the line body and high welding efficiency.
  • the present invention provides a welding system for a refrigerator door sealing strip, comprising: a conveying module for conveying a plurality of rubber sleeves of the sealing strip, the conveying module being annular; a plurality of positioning modules arranged on the inner side of the conveying module for limiting and fixing the plurality of rubber sleeves on the conveying module; a welding module arranged at the center of the annular shape, the welding module comprising a plurality of welding modules, the plurality of welding modules being distributed in a first polygon, the plurality of welding modules being respectively located at a plurality of corners of the first polygon, and the plurality of welding modules being used to cooperate in synchronously welding the diagonals of adjacent rubber sleeves; a plurality of transfer modules being respectively arranged above the plurality of positioning modules, one end of the plurality of transfer modules extending above the plurality of edges of the first polygon, the plurality of transfer modules being used to transfer the plurality of rubber sleeves from the conveying module to between the adjacent welding modules respectively and
  • the conveying module includes: a plurality of straight belt conveyor lines, which are distributed in a second polygon and are respectively located on multiple sides of the second polygon; and a plurality of arc conveyor lines, which are respectively arranged at both ends of the straight belt conveyor line located in the middle.
  • the positioning module includes: a positioning plate, which is arranged at the outer top end of the linear belt conveyor line; a positioning platform, which is arranged on the inner side of the linear belt conveyor line; two positioning rods, which are arranged above the linear belt conveyor line and perpendicular to the positioning plate, and the two positioning rods are provided with inclined surfaces matching with the two ends of the rubber sleeve on the opposite sides of one end close to the positioning plate; two positioning cylinders, which are arranged on the top of the positioning platform, and the output ends of the two positioning cylinders are connected to the other ends of the two positioning rods; a guide rod, which is arranged between the two positioning rods, and the end of the guide rod close to the positioning plate is provided with a guide groove matching with the outer protrusion of the rubber sleeve; a guide cylinder, which is arranged on the top of the positioning platform, and the output end of the guide cylinder is connected to the other end of the guide rod.
  • the positioning module also includes: two slide rails, which are arranged on the top of the positioning platform and are respectively located on both sides of the guide cylinder; two slide seats, which are respectively slidably connected to the two slide rails, and the two positioning cylinders are respectively arranged on the two slide seats; two first drive assemblies, which are arranged on the top of the positioning platform and connected to the two slide seats, and are used to drive the two slide seats to move closer to or away from each other.
  • the welding module also includes: a welding base; two base plates, which are arranged in parallel above the welding base, and two welding modules are arranged on each base plate; a second driving component, which is arranged on the top of the welding base and connected to the two base plates, and is used to drive the two base plates to move closer to or away from each other; two third driving components, which are respectively arranged on the top of the two base plates, and each of the third driving components is connected to the corresponding two welding modules, and is used to drive the corresponding two welding modules to move closer to or away from each other.
  • the welding module includes: a substrate, the third driving component is connected to the substrate; two welding molds, the two welding molds are vertically distributed, and the intersection of the extension lines of the two welding molds is toward the center of the first polygon; a heating component is arranged on the bisector of the angle between the two welding molds, and is used to extend between the two welding molds to hot-melt the rubber sleeves inside the two welding molds; a fourth driving component is arranged on the substrate, and is used to drive the angle ends of the two welding molds to approach each other and fit together to weld the rubber sleeves inside the two welding molds; two demolding components are respectively arranged on the two welding molds, and are used to open the corresponding welding molds to break away from the limitation of the welded rubber sleeves.
  • the transfer module includes: a transfer frame, which is arranged above the corresponding straight belt conveyor line, and one end extends to the top of the four sides of the first polygon; a transfer guide rail, which is arranged at the bottom of the transfer frame; a transfer cross plate, which is slidably arranged at the bottom end of the rotating guide rail and is vertically distributed with the transfer guide rail; a fifth drive assembly, which is arranged on the transfer frame and connected to the transfer cross plate, and is used to drive the transfer cross plate to move along the transfer guide rail; two transfer fixed plates, which are symmetrically arranged below the transfer cross plate; two transfer clamps, which are respectively arranged at the bottom of the two transfer fixed plates; two limit clamps, which are respectively arranged at the bottom of the two transfer fixed plates, and are respectively located at the sides of the two transfer clamps that are away from each other; two first lifting assemblies, which are arranged on the two transfer fixed plates and are connected to the two transfer clamps, and are used to drive the corresponding transfer clamps to rise and fall;
  • the unloading module includes: an unloading rack, which is arranged directly above the first polygon, and one end of the unloading module extends out of the interior of the ring; an unloading guide rail, which is arranged at the bottom of the unloading rack; an unloading cross plate, which is arranged below the unloading guide rail; a second lifting component, which is slidably connected to the unloading guide rail, and the output end of the second lifting component is connected to the top of the unloading cross plate, which is used to drive the unloading cross plate to lift and lower; a seventh driving component, which is arranged on the unloading rack and connected to the second lifting component, which is used to drive the second lifting component to slide along the unloading guide rail; two first cross bars, which are symmetrically arranged at the bottom of the unloading cross plate, each of which is provided with a plurality of clamping cylinders, and the first cross bar is perpendicular to the unloading cross plate; an eighth driving component, which is arranged
  • the present invention also provides a control method for a welding system of a refrigerator door sealing strip, comprising: obtaining position information of a rubber sleeve; judging whether the rubber sleeve has reached the vicinity of a corresponding positioning module; when judging that the rubber sleeve has reached the vicinity of the corresponding positioning module, driving the positioning module to start so as to position the rubber sleeve; starting a transfer module to transfer the rubber sleeve to a welding module, and cooperating with the welding module to mold the rubber sleeve; judging whether the rubber sleeve has been molded in place; when judging that the rubber sleeve has been molded in place, starting a welding module and welding the rubber sleeve; starting a blanking module to take out the welded sealing strip from the welding module; when judging that the rubber sleeve has not been molded in place, the transfer module and the welding module cooperate to continue to mold the rubber sleeve; when judging that
  • the present invention further provides a computer-readable storage medium, wherein the computer-readable storage medium stores instructions, wherein the instructions are used to be read by a controller so that the controller executes the control method as described above.
  • the welding system and control method of the refrigerator door sealing strip provided by the present invention can convey the multiple rubber sleeves to corresponding positions respectively by placing multiple rubber sleeves on the conveying module in sequence, and because the conveying module is annular, the cutting angle positions of the multiple rubber sleeves can be relatively set; then the multiple rubber sleeves are positioned respectively by the positioning module, and the multiple transfer modules respectively transfer the multiple rubber sleeves to the vicinity of the welding module and enter the mold synchronously, the welding module can synchronously weld the multiple rubber sleeves, and after the welding is completed, the unloading module can move the sealing strip out of the welding system and wait for the next welding; the welding module is arranged in the center of the annular conveying module, so that the welding system can be highly integrated, and the occupied area required by the welding system is greatly reduced; at the same time, the multiple transfer modules and the welding modules cooperate with the synchronous mold entry and synchronous welding method, which can effectively reduce the beat of the rubber sleeve welding, that is, improve the efficiency of the rubber sleeve welding.
  • FIG1 is a schematic structural diagram of a welding system for a refrigerator door sealing strip according to an embodiment of the present invention
  • FIG2 is a top view of a welding system for a refrigerator door sealing strip according to an embodiment of the present invention
  • FIG3 is a schematic structural diagram of a conveying module in a welding system for a refrigerator door sealing strip according to an embodiment of the present invention
  • FIG4 is a schematic structural diagram of a positioning module in a welding system of a refrigerator door sealing strip according to an embodiment of the present invention
  • FIG5 is an enlarged schematic diagram of area A in FIG4 ;
  • FIG6 is a schematic structural diagram of a transfer module in a welding system for a refrigerator door sealing strip according to an embodiment of the present invention
  • FIG7 is a schematic diagram of the position of the transfer clamp in the transfer module of the welding system of the refrigerator door sealing strip according to one embodiment of the present invention.
  • FIG8 is a schematic structural diagram of a welding module in a welding system for a refrigerator door sealing strip according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a welding module in a welding module of a welding system for a refrigerator door sealing strip according to an embodiment of the present invention.
  • FIG10 is a schematic structural diagram of a blanking module in a welding system for a refrigerator door sealing strip according to an embodiment of the present invention
  • FIG11 is an enlarged schematic diagram of area B in FIG10 ;
  • FIG. 12 is a flow chart of a control method of a welding system for a refrigerator door sealing strip according to an embodiment of the present invention.
  • Photoelectric sensor 20 First servo motor
  • FIG. 1 is a schematic structural diagram of a welding system for a refrigerator door sealing strip according to an embodiment of the present invention
  • FIG. 2 is a top view of a welding system for a refrigerator door sealing strip according to an embodiment of the present invention.
  • the welding system may include a conveying module 1, a plurality of positioning modules, a welding module, a plurality of transfer modules, and a material unloading module.
  • the welding module may include a plurality of welding modules.
  • the conveying module 1 is used to convey multiple rubber sleeves of the sealing strip, and the conveying module 1 is ring-shaped.
  • Multiple positioning modules are arranged on the inner side of the conveying module 1, and are used to fix the multiple rubber sleeves on the conveying module 1.
  • the welding module is arranged in the center of the ring, and the multiple welding modules are distributed in a first polygon.
  • the multiple welding modules are respectively located at the multiple corners of the first polygon, and the multiple welding modules are used to cooperate in synchronous welding of the diagonals of adjacent rubber sleeves.
  • Multiple transfer modules are respectively arranged above the multiple positioning modules, and one end of the multiple transfer modules extends above the multiple sides of the first polygon.
  • the multiple transfer modules are used to transfer the multiple rubber sleeves from the conveying module 1 to between the adjacent welding modules and cooperate with the adjacent welding modules to synchronously enter the mold.
  • the unloading module is arranged directly above the first polygon, and one end of the unloading module extends out of the inside of the ring.
  • the unloading module is used to remove and unload the welded sealing strip.
  • the multiple rubber sleeves When multiple rubber sleeves need to be transported and welded, the multiple rubber sleeves are placed in turn on the conveying module 1, and the conveying module 1 transports the multiple rubber sleeves to the vicinity of multiple positioning modules respectively, and the corresponding rubber sleeves are limited and fixed by the multiple positioning modules. Since the conveying module 1 is arranged in a ring shape, the conveying module 1 can synchronously reverse the multiple rubber sleeves during transportation, so that the cut angles of the multiple rubber sleeves are all facing the center of the ring, that is, the cut angles of two adjacent rubber sleeves cooperate with each other. After the positioning module fixes the rubber sleeves, the multiple transfer devices transport the corresponding rubber sleeves to the vicinity of multiple welding modules respectively.
  • the unloading module drives the sealing strip to move out, so that the welding module waits for the next welding.
  • the multiple rubber sleeves after cutting are generally transported to the vicinity of the robotic arm in a manner in which some are turned and some are not turned, and the robotic arm clamps the rubber sleeves in pairs to multiple positions of the welding device and puts them into the mold.
  • the robotic arm completes the transfer of the rubber sleeves required for a sealing strip into the mold, the welding device starts and welds the multiple rubber sleeves, and finally the sealing strip is transferred to the stacking area by the robotic arm.
  • the line of this welding system is relatively long, and the line occupies a large area, and multiple robotic arms are required to cooperate in grasping and conveying; in addition, the robotic arm can only grasp two opposite rubber sleeves at a time, so the mold entry of multiple rubber sleeves of a sealing strip needs to be carried out in multiple steps, which leads to the beat length of the rubber sleeve welding, and the welding efficiency will also be affected.
  • the welding module is arranged in the center of the annular conveying module, so that the welding system can be highly integrated, the lengthy line structure is eliminated, and the floor space of the welding system is greatly reduced.
  • the robotic arm is replaced by multiple transfer modules, which can realize the simultaneous mold entry and then synchronous welding of multiple rubber sleeves, shortening the cycle of mold entry and welding of the rubber sleeves, thereby improving the efficiency of rubber sleeve welding.
  • the conveying module 1 may include a plurality of straight belt conveyor lines 9 and a plurality of arc conveyor lines 8 .
  • the plurality of straight belt conveyor lines 9 are distributed in a second polygon, and the plurality of straight belt conveyor lines 9 are respectively located on the plurality of sides of the second polygon.
  • the plurality of arc conveyor lines 8 are respectively arranged at both ends of the straight belt conveyor line 9 located in the middle, and the number of the arc conveyor lines 8 is one less than the number of the straight belt conveyor lines 9, that is, the adjacent ends of the first straight belt conveyor line 9 and the last straight belt conveyor line 9 are arranged in an open manner.
  • Multiple rubber sleeves are placed on the first straight belt conveyor line 9 in sequence, and conveyed along the multiple straight belt conveyor lines 9 and the multiple arc conveyor lines 8 until the multiple rubber sleeves are respectively conveyed to the multiple straight belt conveyor lines 9.
  • the multiple straight belt conveyor lines 9 are independent of each other, which can facilitate multiple positioning modules to reliably position their corresponding rubber sleeves, thereby improving the reliability and accuracy of positioning multiple rubber sleeves.
  • the sealing strip is generally composed of four rubber sleeves
  • the number of the straight belt conveyor lines 9 is four
  • the number of the arc conveyor lines 8 is three.
  • the positioning module may include a positioning plate 11, a positioning platform 2, two positioning rods 15, two positioning cylinders 13, a guide cylinder 14, a guide rod 18, two slide rails 16, two slide seats, and a first drive assembly 17.
  • the positioning rod 15 may include an inclined surface 10
  • the guide rod 18 may include a guide groove 12.
  • the positioning plate 11 is arranged at the outer top end of the linear belt conveyor line 9, and the positioning platform 2 is arranged at the inner side of the linear belt conveyor line 9.
  • Two positioning rods 15 are arranged above the linear belt conveyor line 9 and are perpendicular to the positioning plate 11.
  • the two positioning rods 15 are provided with inclined surfaces 10 matching with the two ends of the rubber sleeve on the opposite sides of one end close to the positioning plate 11.
  • Two positioning cylinders 13 are arranged at the top of the positioning platform 2, and the output ends of the two positioning cylinders 13 are connected to the other ends of the two positioning rods 15.
  • a guide rod 18 is arranged between the two positioning rods 15, and the end of the guide rod 18 close to the positioning plate 11 is provided with a guide groove 12 matching with the outer protrusion of the rubber sleeve.
  • the guide cylinder 14 is arranged at the top of the positioning platform 2, and the output end of the guide cylinder 14 is connected to the other end of the guide rod 18.
  • Two slide rails 16 are arranged at the top of the positioning platform 2, and are respectively located on both sides of the guide cylinder 14.
  • Two slide seats are respectively slidably connected with the two slide rails 16, and the two positioning cylinders 13 are respectively arranged on the two slide seats.
  • the first driving components 17 are respectively disposed on the positioning platform 2 and connected to the two slides, and are used to drive the two slides to move closer to or away from each other.
  • the positioning cylinder 13 near the end of the linear belt conveyor line 9 is started, and drives the corresponding positioning rod 15 to extend and fit with the side wall of the positioning plate 11; as the rubber sleeve gradually moves, the guide cylinder 14 drives the guide rod 18 to extend and push the rubber sleeve to fit with the side wall of the positioning plate 11.
  • the guide groove 12 of the guide rod 18 can guide the rubber sleeve, and cooperate with the linear belt conveyor line 9 to drive the rubber sleeve to continue to move forward until one end of the rubber sleeve fits with the inclined surface 10 of the extended positioning rod 15.
  • the positioning cylinder 13 near the head end of the linear belt conveyor line 9 is started, and drives the corresponding positioning rod 15 to extend and make its inclined surface 10 fit with the other end of the rubber sleeve, thereby realizing the precise positioning of the rubber sleeve.
  • the use of this step-by-step positioning method makes the positioning of the rubber sleeve more reliable, simple and convenient.
  • the first driving component 17 can be controlled to start, so as to drive the two slides and the two positioning cylinders 13 to slide on the slide rails 16, thereby achieving the purpose of adjusting the distance between the two positioning rods 15. This way of adjusting the distance between the two positioning rods 15 enables the positioning module to meet the positioning of rubber sleeves of different sizes, with stronger versatility and wider applicability.
  • the specific structure of the first drive assembly 17 can be various forms referred to by those skilled in the art, such as a cylinder, a linear motor, etc.
  • the specific structure of the first drive assembly 17 can be as shown in Figures 4 and 5.
  • the first drive assembly 17 can include a servo motor and a screw rod.
  • the positioning module may further include a plurality of photoelectric sensors 19 for monitoring the position of the rubber sleeve on the linear belt conveyor line 9 .
  • a plurality of guide cylinders 14 and guide rods 18 may be provided, wherein two guide cylinders 14 and two guide rods 18 are respectively close to the two positioning rods 15 .
  • the transfer module may include a transfer frame 3, a transfer guide rail, a transfer cross plate 22, two transfer fixed plates 24, two transfer clamps 25, two limiting clamps 26, two first lifting components 23, a fifth drive component and a sixth drive component.
  • the transfer frame 3 is arranged above the corresponding straight belt conveyor line 9, and one end of the transfer frame 3 extends to the top of the four sides of the first polygon.
  • the transfer guide rail is arranged at the bottom of the transfer frame 3, and the transfer cross plate 22 is slidably arranged at the bottom end of the rotating guide rail and is vertically distributed with the transfer guide rail.
  • Two transfer fixed plates 24 are symmetrically arranged below the transfer cross plate 22, and two transfer clamps 25 are respectively arranged at the bottom of the two transfer fixed plates 24.
  • Two limit clamps 26 are respectively arranged at the bottom of the two transfer fixed plates 24, and are respectively located at the mutually away sides of the two transfer clamps 25.
  • Two first lifting assemblies 23 are arranged on the two transfer fixed plates 24, and are connected with the two transfer clamps 25, and are used to drive the corresponding transfer clamps 25 to lift.
  • the sixth drive assembly is arranged at the bottom of the transfer cross plate 22, and is used to drive the two transfer fixed plates 24 to move closer to or away from each other.
  • the fifth drive assembly is arranged on the transfer frame 3, and is connected with the transfer cross plate 22, and is used to drive the transfer cross plate 22 to move along the transfer guide rail.
  • the fifth drive assembly starts and drives the transport cross plate 22 to move above the positioning platform 2.
  • the two first lifting assemblies 23 start and drive the two transport clamps 25 to descend.
  • the two transport clamps 25 start and grab and clamp the protrusion on the top of the rubber sleeve.
  • the first lifting assembly 23 drives the transport clamps 25 to reset, and at the same time the two limit clamps 26 open and set limits on the rubber sleeve.
  • the inner wall of the output end of the limit clamp 26 cooperates with the inner wall of the rubber sleeve.
  • the two limit clamps 26 are respectively arranged on the mutually away sides of the two transport clamps 25, so that the two ends of the rubber sleeve can be reliably fixed.
  • the fifth drive assembly starts to transport the rubber sleeve between two adjacent welding modules, and cooperates with the two welding modules to enter the mold.
  • the sixth driving component is started to make the two transport fixing plates 24 approach each other, and then the rubber sleeve forms a certain arc, and then when the two ends of the rubber sleeve correspond to the two welding modules respectively, the sixth driving component is started to make the two transport fixing plates 23 move away from each other, that is, the arc-shaped rubber sleeve gradually opens, and the two ends of the rubber sleeve enter along the two welding modules respectively to achieve the rubber sleeve into the mold.
  • the sixth driving component can adjust the spacing between the two transport clamps 25 according to the size of the rubber sleeve to improve the applicability of the transport module.
  • the specific structure of the first lifting assembly 23 includes but is not limited to cylinder drive and the like.
  • the specific structure of the transport clamp 25 includes but is not limited to the coordination between the clamp cylinder and the two clamping plates.
  • the specific structure of the limiting clamping jaw 26 includes but is not limited to the matching mode of the clamping jaw cylinder and the two clamping plates.
  • the specific structure of the fifth drive assembly can be various forms known to those skilled in the art, such as a cylinder, a linear motor, etc.
  • the specific structure of the fifth drive assembly can be as shown in FIG5.
  • the fifth drive assembly can include a first servo motor 20 and a first screw 21.
  • the first servo motor 20 is connected to the end of the first screw 21.
  • the specific structure of the sixth drive assembly can be in various forms known to those skilled in the art, such as a cylinder, a linear motor, etc.
  • the specific structure of the sixth drive assembly can include a servo motor and a screw rod.
  • the welding module may further include a welding base 4, two bottom plates 32, a second drive assembly 28, and two third drive assemblies 30.
  • the welding module may include a base plate 31, two welding molds 35, a heating assembly 34, a fourth drive assembly 41, two mold removal assemblies, and two pressing assemblies 33.
  • Two bottom plates 32 are arranged in parallel above the welding base 4, and two welding modules are arranged on each bottom plate 32.
  • the second driving assembly 28 is arranged on the top of the welding base 4 and connected to the two bottom plates 32, and is used to drive the two bottom plates 32 to move closer to or away from each other.
  • Two third driving assemblies 30 are respectively arranged on the top of the two bottom plates 32, and each third driving assembly 30 is connected to the corresponding two welding modules, and is used to drive the corresponding two welding modules to move closer to or away from each other.
  • the third driving assembly 30 is connected to the base plate 31, and the two welding molds 35 are vertically distributed, and the intersection of the extension lines of the two welding molds 35 faces the center of the first polygon.
  • the heating assembly 34 is arranged on the bisector of the angle between the two welding molds 35, and is used to extend between the two welding molds 35 to heat-melt the rubber sleeves inside the two welding molds 35.
  • the fourth driving assembly 41 is arranged on the base plate 31, and is used to drive the angle ends of the two welding molds 35 to move closer to each other to weld the rubber sleeves inside the two welding molds 35.
  • Two mold removal assemblies are respectively arranged on the two welding molds 35, and are used to open the corresponding welding molds 35 to break away from the limitation of the welded rubber sleeves.
  • the two pressing components 33 are respectively disposed on the two welding molds 35 , and are used to press and limit the rubber sleeves inside the two welding molds 35 .
  • the pressing component 33 is started and the end of the rubber sleeve is pressed to limit.
  • the heating component 34 is driven to start, and the heating component 34 extends between the two welding molds 35 and heat-melts the rubber sleeves inside the two welding molds 35, and then the heating component 34 is driven to withdraw from between the two welding molds 35.
  • the fourth driving component 41 is started and drives the angles of the two welding molds 35 to approach each other and fit the opposite ends of the two rubber sleeves. Finally, the mold withdrawal component is started, and the corresponding welding mold 35 is opened, and the sealing strip can be grabbed and unloaded in cooperation with the blanking module.
  • the spacing between the two bottom plates 32 can be adjusted by the second driving component 28; the spacing between the two welding modules, that is, the longitudinal spacing, can be adjusted by the two third driving components 30.
  • the second driving component 28 and the two third driving components 30 can also cooperate to assist the rubber sleeve in entering the mold.
  • the welding module may further include two first guide rails 27 and a second guide rail 29.
  • the first guide rail 27 is disposed on the bottom plate 32 and is slidably connected to the two corresponding welding modules;
  • the second guide rail 29 is disposed on the welding base 4 and is slidably connected to the two bottom plates.
  • the specific structure of the second drive assembly 28 can be various forms known to those skilled in the art, such as a cylinder, a linear motor, etc.
  • the specific structure of the second drive assembly 28 can be as shown in FIG8.
  • the specific structure of the second drive assembly 28 can include a second servo motor and a second screw rod.
  • the specific structure of the third drive assembly 30 can be various forms known to those skilled in the art, such as a cylinder, a linear motor, etc.
  • the specific structure of the third drive assembly 30 can be as shown in FIG8.
  • the specific structure of the third drive assembly 30 can include a third servo motor and a third screw rod.
  • the specific structure of the heating assembly 34 includes but is not limited to a servo motor and a screw driving the heating plate to move.
  • the specific structure of the pressing assembly 33 includes but is not limited to the manner in which the cylinder cooperates with the pressing plate.
  • the specific structure of the fourth drive assembly can be in various forms known to those skilled in the art, such as two cylinders, two linear motors, etc.
  • the specific structure of the fourth drive assembly can include a second servo motor, two threaded rods, two first bevel gears and a second bevel gear.
  • the two threaded rods are respectively threadedly connected to the two welding molds 35, and the two first bevel gears are respectively arranged at one end of the two threaded rods close to each other.
  • the two first bevel gears are both connected to the second bevel gear, and the second servo motor is connected to the second bevel gear.
  • the specific structure of the demoulding assembly includes but is not limited to the manner in which the cylinder is connected to one of the two mold blocks that cooperate to form the mold groove.
  • the unloading module may include an unloading rack 5, an unloading guide rail 36, an unloading cross plate 37, a second lifting assembly 42, two first cross bars 38, a seventh driving assembly, a second cross bar 40 and a plurality of gripper cylinders 39.
  • the unloading rack 5 is arranged directly above the first polygon, and one end of the unloading module extends out of the inside of the ring.
  • the unloading guide rail 36 is arranged at the bottom of the unloading rack 5, and the unloading cross plate 37 is arranged below the unloading guide rail 36.
  • the second lifting assembly 42 is slidably connected to the unloading guide rail 36, and the output end of the second lifting assembly 42 is connected to the top of the unloading cross plate 37, which is used to drive the unloading cross plate 37 to rise and fall.
  • Two first cross bars 38 are symmetrically arranged at the bottom of the unloading cross plate 37, and each first cross bar 38 is provided with a plurality of clamping claw cylinders 39, and the first cross bar 38 is perpendicular to the unloading cross plate 37.
  • the eighth driving assembly is arranged at the bottom of the unloading cross plate 37, and is used to drive the two first cross bars 38 to move closer to or away from each other.
  • the second cross bar 40 is arranged at the bottom center of the unloading cross plate 37, and is located in the middle of the two first cross bars 38, and is arranged parallel to the two first cross bars 38, and the bottom of the second cross bar 40 is provided with a plurality of clamping claw cylinders 39.
  • the seventh driving assembly is disposed on the unloading rack 5 and connected to the second lifting assembly 42 , and is used to drive the second lifting assembly 42 to slide along the unloading guide rail 36 .
  • the seventh drive assembly controls the blanking cross plate 37 to move to the top of the first polygon, the second lifting assembly 42 is started, and controls the multiple clamping cylinders 39 to move down and grab the multiple sides of the sealing strip, and then drives the multiple clamping cylinders 39 to reset.
  • the seventh drive assembly controls the sealing strip to move above the blanking conveyor belt 7, and conveys the sealing strip for blanking through the blanking conveyor belt 7.
  • the eighth drive assembly can adjust the spacing between the two first cross bars in real time according to the length of the short side of the sealing strip to improve the stability of the grasping of the sealing strip.
  • the clamping cylinder 39 is detachably connected to the first cross bar 38 or the second cross bar 40, and the second cross bar 40 can grab the short side of the sealing strip, further improving the flexibility and reliability of blanking the rubber sleeve.
  • the specific structure of the seventh drive assembly can be in various forms known to those skilled in the art, such as a cylinder, a linear motor, etc.
  • the specific structure of the seventh drive assembly can include a servo motor and a screw rod.
  • the specific structure of the eighth drive assembly can be in various forms known to those skilled in the art, such as a cylinder, a linear motor, etc.
  • the specific structure of the eighth drive assembly can include a servo motor and a screw rod.
  • the specific structure of the second lifting assembly 42 includes but is not limited to cylinder drive and the like.
  • the welding system may further include a guardrail 6.
  • the guardrail 6 is arranged on the outside of the conveying module 1.
  • the present invention also provides a control method for a welding system of a refrigerator door sealing strip, and the specific steps may be as shown in FIG12.
  • the control method may include:
  • step S10 the position information of the rubber sleeve is obtained.
  • a plurality of photoelectric sensors can be set on the conveying module 1 to obtain the position information of the rubber sleeve.
  • the photoelectric sensor can be set near the positioning module so that the positioning module can act in time and position and fix the rubber sleeve.
  • step S11 determine whether the rubber sleeve has reached the vicinity of the corresponding positioning module.
  • whether the rubber sleeve has reached the vicinity of the corresponding positioning module means whether the corresponding positioning module should be actuated.
  • the conveying module 1 will transport multiple rubber sleeves in sequence. When multiple rubber sleeves are conveyed, the positioning module close to the input end will not act in advance, and will allow the rubber sleeve conveyed in front to arrive near the corresponding positioning module along with the conveying module 1.
  • the first positioning module is a positioning module close to the input end of the conveying module 1
  • the fourth positioning module is a positioning module close to the output end of the conveying module 1
  • the first rubber sleeve is the first rubber sleeve to enter the conveying module 1.
  • step S12 when it is determined that the rubber sleeve has reached the vicinity of the corresponding positioning module, the positioning module is driven to start to position the rubber sleeve.
  • the rubber sleeve reaches the vicinity of the corresponding positioning module, it means that the rubber sleeve has reached the designated position to be transferred, and the positioning module can position the rubber sleeve at this time.
  • three photoelectric sensors are arranged near a positioning module, and the three photoelectric sensors are distributed along the conveying direction of the conveying module 1.
  • the linear belt conveyor line corresponding to the positioning module slows down, and the positioning rod at the conveying end of the linear belt conveyor line extends.
  • the linear belt conveyor line corresponding to the positioning module further slows down, and the guide rod extends and pushes the rubber sleeve to fit with the positioning plate to limit the rubber sleeve to move only along the side wall of the positioning plate.
  • the linear belt conveyor line corresponding to the positioning module stops, and the positioning rod at the conveying head end of the linear belt conveyor line extends, so as to achieve reliable positioning of the rubber sleeve.
  • step S13 the transfer module is started to transfer the rubber sleeve to the welding module, and cooperates with the welding module to mold the rubber sleeve.
  • the transfer module is started to grab the rubber sleeve and move it to the vicinity of the welding module.
  • the transfer module moves the rubber sleeve between two adjacent welding modules, and the two adjacent welding molds on the two welding modules are opened through the mold removal assembly to cooperate with the transfer module to extend the two ends of the rubber sleeve along the two welding molds respectively.
  • multiple rubber sleeves of a sealing strip can be molded synchronously.
  • step S14 it is determined whether the rubber sleeve is in place.
  • Two photoelectric sensors are provided on each welding module, which are used to monitor the extension of the rubber sleeves in the two welding molds. When the rubber sleeve is in place, the photoelectric sensor detects and stops the extension of the rubber sleeve, and then the rubber sleeve is pressed and fixed by the pressing assembly to complete the insertion of the rubber sleeve.
  • step S15 when it is determined that the rubber sleeve is in place, the welding module starts and welds the rubber sleeve. If the rubber sleeve is in place, the heating component can be driven to start, and the ends of the two rubber sleeves between the two welding modules on each welding module are hot-melted. After a period of hot-melting, the heating component exits, and the fourth driving component starts and drives the ends of the two rubber sleeves to be fitted and welded, so that the welding of two adjacent rubber sleeves can be achieved. Specifically, multiple rubber sleeves of a sealing strip can be welded synchronously.
  • step S16 the blanking module is started to remove the welded sealing strip from the welding module. After the rubber sleeve is welded, a completed sealing strip is formed, the pressing assembly and the mold removal assembly are started and the welding mold is opened, and then the blanking module is cooperated to remove the welded sealing strip from the welding module so that the welding module can perform the next welding.
  • step S17 when it is determined that the rubber sleeve is not in place, the transfer module and the welding module cooperate to continue to mold the rubber sleeve. If the rubber sleeve is not in place, the transfer module will continue to push the rubber sleeve toward the welding module or the welding module will continue to approach the rubber sleeve to continue to mold the rubber sleeve.
  • step S18 when it is determined that the rubber sleeve has not reached the vicinity of the corresponding positioning module, the conveying module 1 continues to convey the rubber sleeve. If the rubber sleeve has not reached the corresponding positioning module, it means that the rubber sleeve is still being conveyed. Generally, multiple rubber sleeves of a sealing strip reach the corresponding straight belt conveyor line at about the same time, so the conveying module 1 needs to continue to drive the rubber sleeve to be conveyed.
  • step S10 to step S18 when welding multiple rubber sleeves, it is necessary to first determine the positions of the multiple rubber sleeves on the conveying module 1, and determine whether the multiple rubber sleeves are near the corresponding positioning modules. If the multiple rubber sleeves are respectively near the corresponding positioning modules, the corresponding positioning modules will position them, the transfer module will move the limited rubber sleeves to the welding module and cooperate with the synchronous mold entry, the welding device will synchronously weld the multiple rubber sleeves, and finally the unloading module will move them out of the offline line to complete the production of the sealing strip.
  • This control method is simple to operate and highly flexible, and helps to achieve accurate welding of the sealing strip.
  • the welding system and control method of the refrigerator door sealing strip provided by the present invention can convey the multiple rubber sleeves to corresponding positions respectively by placing multiple rubber sleeves on the conveying module 1 in sequence, and because the conveying module 1 is annular, the cutting angle positions of the multiple rubber sleeves can be relatively set; then the multiple rubber sleeves are positioned respectively by the positioning module, and the multiple transfer modules respectively transfer the multiple rubber sleeves to the vicinity of the welding module and synchronously enter the mold, the welding module can synchronously weld the multiple rubber sleeves, and after the welding is completed, the unloading module can move the sealing strip out of the welding system and wait for the next welding; the welding module is arranged in the center of the annular conveying module, so that the welding system can be highly integrated, and the occupied area required by the welding system is greatly reduced; at the same time, the multiple transfer modules and the welding modules cooperate with the synchronous mold entry and synchronous welding method, which can effectively reduce the rhythm of the rubber sleeve welding, that is, improve the efficiency of the rubber sleeve welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

一种冰箱门密封条的焊接系统,包括:输送模块(1),用于输送密封条的多个胶套,输送模块(1)呈环形;多个定位模块,设置在输送模块(1)的内侧,用于对输送模块(1)上的多个胶套进行限位固定;焊接模块,设置在环形的中心,包括呈第一多边形分布的多个焊接模组,多个焊接模组分别位于第一多边形的多个拐角,用于配合对相邻胶套的对角进行同步焊接;多个转运模块,分别设置在多个定位模块的上方;下料模块,设置在第一多边形的正上方。一种冰箱门密封条的焊接系统的控制方法以及一种存储有该控制方法指令的计算机可读存储介质。采用将焊接模块设置在环形的输送模块的中心的方式,能够使得焊接系统高度集成化,减小了焊接系统所需的占用面积;多个转运模块和焊接模块配合同步入模和同步焊接的方式,能够有效降低胶套焊接的节拍,提高胶套焊接的效率。

Description

冰箱门密封条的焊接系统及其控制方法 技术领域
本发明涉及冰箱门密封条焊接技术领域,具体地涉及一种冰箱门密封条的焊接系统及其控制方法。
背景技术
冰箱是人们生活中必不可少的家电产品,密封条常用在冰箱门和冰箱本体之间的连接处,以用来对冰箱内部的冷量进行密封,以保障其内部的制冷效果,同时密封条内部的磁条也能够对冰箱门的闭合进行协助配合。在对密封条的生产过程中,常需要对PVC等注塑成型的材料切割成多段胶套,再根据密封条的形状,对多个胶套进行焊接以形成密封条。
现有的对密封条的焊接系统,一般是将切割后的多个胶套按照部分转向以及部分不转向的方式,将其输送至机械手臂附近,并由机械手臂将胶套按照成对的顺序依次夹持到焊接装置的多个位置并入模,在机械手臂将一个密封条所需要的胶套转运入模完成后,焊接装置启动并对多个胶套进行焊接,最后再由机械臂密封条转运至堆放区域。但是该种焊接系统的线体比较冗长,线体占用面积大;且机械手臂仅能抓取相对两个胶套,进而导致焊接节拍长,焊接效率低。
发明内容
本发明的目的是为了克服现有技术存在的焊接系统占用面积大以及焊接效率低的问题,提供一种冰箱门密封条的焊接系统及其控制方法,该冰箱门密封条的焊接系统及其控制方法具有线体占用面积小且焊接效率高的效果。
为了实现上述目的,本发明一方面提供一种冰箱门密封条的焊接系统,包括:输送模块,用于输送密封条的多个胶套,所述输送模块呈环形;多个定位模块,设置在所述输送模块的内侧,用于对所述输送模块上的多个所述胶套进行限位固定;焊接模块,设置在所述环形的中心,所述焊接模块包括多个焊接模组,多个所述焊接模组呈第一多边形分布,多个所述焊接模组分别位于所述第一多边形的多个拐角,多个所述焊接模组用于配合对相邻所述胶套的对角进行同步焊接;多个转运模块,分别设置在多个所述定位模块的上方,多个所述转运模块的一端延伸至所述第一多边形的多个边的上方,多个 所述转运模块用于将多个所述胶套分别自所述输送模块上转运至相邻所述焊接模组之间并与相邻所述焊接模组配合进行所述胶套的同步入模;下料模块,设置在所述第一多边形的正上方,所述下料模块的一端延伸出所述环形的内部,所述下料模块用于对焊接后的所述密封条进行移出下料。
可选地,所述输送模块包括:多个直线皮带输送线,多个所述直线皮带输送线呈第二多边形分布,且多个所述直线皮带输送线分别位于所述第二多边形的多个边上;多个弧形输送线,多个所述弧形输送线分别设置在位于中间的所述直线皮带输送线的两端。
可选地,所述定位模块包括:定位板,设置在所述直线皮带输送线的外侧顶端;定位台,设置在所述直线皮带输送线的内侧;两个定位杆,设置在所述直线皮带输送线的上方,且与所述定位板垂直,两个所述定位杆靠近所述定位板的一端的相对侧开设有与所述胶套两端配合的倾斜面;两个定位气缸,设置在所述定位台的顶部,两个所述定位气缸的输出端与两个所述定位杆的另一端连接;导向杆,设置在两个所述定位杆之间,所述导向杆靠近所述定位板的一端开设有与所述胶套外侧凸起配合的导槽;导向气缸,设置在所述定位台的顶部,所述导向气缸的输出端与所述导向杆的另一端连接。
可选地,所述定位模块还包括:两个滑轨,设置在所述定位台的顶部,且分别位于所述导向气缸的两侧;两个滑座,分别与两个所述滑轨滑动连接,两个所述定位气缸分别设置在两个所述滑座上;两个第一驱动组件,设置在所述定位台的顶部,且与两个所述滑座连接,用于驱动两个所述滑座相互靠近或远离。
可选地,所述焊接模块还包括:焊接底座;两个底板,平行设置在所述焊接底座的上方,每个所述底板上设置有两个所述焊接模组;第二驱动组件,设置在所述焊接底座的顶部,且与两个所述底板连接,用于驱动两个所述底板相互靠近或远离;两个第三驱动组件,分别设置在两个所述底板的顶部,每个所述第三驱动组件与对应两个所述焊接模组连接,用于驱动对应两个所述焊接模组相互靠近或远离。
可选地,所述焊接模组包括:基板,所述第三驱动组件与所述基板连接;两个焊接模具,两个所述焊接模具垂直分布,且两个所述焊接模具延长线的交点朝向所述第一多边形的中心;加热组件,设置在两个所述焊接模具的夹角的平分线上,用于伸入至两个所述焊接模具之间以热熔两个所述焊接模具内部的胶套;第四驱动组件,设置在所述基板上,用于驱动两个所述焊接模具的夹角端相互靠近贴合以焊接两个所述焊接模具内部的胶套;两个退模组件,分别设置在两个所述焊接模具上,用于打开对应所述焊接模具以脱离对焊接好的所述胶套的限定。
可选地,所述转运模块包括:转运架,设置在对应所述直线皮带输送线的上方,一端延伸至所述第一多边形的四个边的上方;转运导轨,设置在所述转运架的底部;转运横板,滑动设置在所述转动导轨的底端,且与所述转运导轨垂直分布;第五驱动组件,设置在所述转运架上,且与所述转运横板连接,用于驱动所述转运横板沿着所述转运导轨移动;两个转运固定板,对称设置在所述转运横板的下方;两个转运夹爪,分别设置在两个所述转运固定板的底部;两个限位夹爪,分别设置在两个所述转运固定板的底部,且分别位于两个所述转运夹爪的相互远离侧;两个第一升降组件,设置在两个所述转运固定板上,且与两个所述转运夹爪连接,用于驱动对应所述转运夹爪升降;第六驱动组件,设置在所述转运横板的底部,用于驱动两个所述转运固定板相互靠近或远离。
可选地,所述下料模块包括:下料架,设置在所述第一多边形的正上方,所述下料模块的一端延伸出所述环形的内部;下料导轨,设置在所述下料架的底部;下料横板,设置在所述下料导轨的下方;第二升降组件,与所述下料导轨滑动连接,所述第二升降组件的输出端与所述下料横板的顶部连接,用于驱动所述下料横板升降;第七驱动组件,设置在所述下料架上,且与所述第二升降组件连接,用于驱动所述第二升降组件沿着所述下料导轨滑动;两个第一横杆,对称设置在所述下料横板的底部,每个所述第一横杆上设置有多个夹爪气缸,所述第一横杆与所述下料横板垂直;第八驱动组件,设置在所述下料横板的底部,用于带动两个所述第一横杆相互靠近或远离;第二横杆,设置在所述下料横板的底部中心,且位于两个所述第一横杆的中间,并与两个所述第一横杆平行设置,所述第二横杆的底部设置有多个所述夹爪气缸。
另一方面,本发明还提供一种冰箱门密封条的焊接系统的控制方法,包括:获取胶套的位置信息;判断所述胶套是否到达对应的定位模块附近;在判断所述胶套到达对应的所述定位模块附近时,驱动定位模块启动,以对所述胶套进行定位;转运模块启动,将所述胶套转运至焊接模块,并配合所述焊接模块对所述胶套进行入模;判断所述胶套是否入模到位;在判断所述胶套入模到位时,焊接模块启动并对胶套进行焊接;下料模块启动,将焊接好的密封条自所述焊接模块上取出;在判断所述胶套未入模到位时,所述转运模块和所述焊接模块配合继续对所述胶套进行入模;在判断所述胶套未到达对应的所述定位模块附近时,输送模块继续输送所述胶套。
再一方面,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质存储有指令,所述指令用于被控制器读取以使得所述控制器执行如上所述的控制方法。
通过上述技术方案,本发明提供的冰箱门密封条的焊接系统及其控制方法通过将 多个胶套依次放置在输送模块上,能够将多个胶套分别输送至对应的位置,且由于输送模块呈环形,多个胶套的切角位置能够相对设置;再通过定位模块分别对多个胶套进行定位,多个转运模块分别将多个胶套转运至焊接模块附近并进行同步入模,焊接模块能够对多个胶套进行同步焊接,焊接完成后,下料模块能够将密封条移出该焊接系统等待下一次焊接;采用将焊接模块设置在环形的输送模块的中心的方式,能够使得焊接系统高度集成化,大大减小了焊接系统所需的占用面积;同时,多个转运模块和焊接模块配合同步入模和同步焊接的方式,能够有效降低胶套焊接的节拍,即提高了胶套焊接的效率。
附图说明
图1是根据本发明的一个实施方式的冰箱门密封条的焊接系统的结构示意图;
图2是根据本发明的一个实施方式的冰箱门密封条的焊接系统的俯视图;
图3是根据本发明的一个实施方式的冰箱门密封条的焊接系统中输送模块的结构示意图;
图4是根据本发明的一个实施方式的冰箱门密封条的焊接系统中定位模块的结构示意图;
图5是图4中A区域的放大示意图;
图6是根据本发明的一个实施方式的冰箱门密封条的焊接系统中转运模块的结构示意图;
图7根据本发明的一个实施方式的冰箱门密封条的焊接系统中转运模块中转运夹爪的位置示意图;
图8是根据本发明的一个实施方式的冰箱门密封条的焊接系统中焊接模块的结构示意图;
图9是根据本发明的一个实施方式的冰箱门密封条的焊接系统中焊接模块中焊接模组的结构示意图;
图10是根据本发明的一个实施方式的冰箱门密封条的焊接系统中下料模块的结构示意图;
图11是图10中B区域的放大示意图;
图12是根据本发明的一个实施方式的冰箱门密封条的焊接系统的控制方法的流程图。
附图标记说明
1、输送模块                 2、定位台
3、转运架                   4、焊接底座
5、下料架                   6、防护栏
7、下料输送带               8、弧形输送线
9、直线皮带输送线           10、倾斜面
11、定位板                  12、导槽
13、定位气缸                14、导向气缸
15、定位杆                  16、滑轨
17、第一驱动组件            18、导向杆
19、光电传感器              20、第一伺服电机
21、第一螺杆                22、转运横板
23、第一升降组件            24、转运固定板
25、转运夹爪                26、限位夹爪
27、第一导轨                28、第二驱动组件
29、第二导轨                30、第三驱动组件
31、基板                    32、底板
33、压料组件                34、加热组件
35、焊接模具                36、下料导轨
37、下料横板                38、第一横杆
39、夹爪气缸                40、第二气缸
41、第四驱动组件            42、第二升降组件
具体实施方式
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。
图1是根据本发明的一个实施方式的冰箱门密封条的焊接系统的结构示意图;图2是根据本发明的一个实施方式的冰箱门密封条的焊接系统的俯视图。在图1和图2中,该焊接系统可以包括输送模块1、多个定位模块、焊接模块、多个转运模块以及下料模块。具体地,该焊接模块可以包括多个焊接模组。
输送模块1用于输送密封条的多个胶套,且输送模块1呈环形。多个定位模块设置在输送模块1的内侧,用于对输送模块1上的多个胶套进行喜爱为固定。焊接模块设置在环形的中心,多个焊接模组呈第一多边形分布,多个焊接模组分别位于第一多边形的多个拐角,多个焊接模组用于配合对相邻胶套的对角进行同步焊接。多个转运模块分别设置在多个定位模块的上方,多个转运模块的一端延伸至第一多边形的多个边的上方,多个转运模块用于将多个胶套分别自输送模块1上转运至相邻焊接模组之间并与相邻焊接模组配合进行同步入模、下料模块设置在第一多边形的正上方,下料模块的一端延伸出环形的内部,下料模块用于对焊接后的密封条进行移出下料。
在需要对多个胶套进行输送焊接时,将多个胶套依次放置在输送模块1,并由输送模块1将多个胶套分别输送至多个定位模块附近,并通过多个定位模块对其对应的胶套进行限位固定。由于输送模块1呈环形设置,输送模块1能将多个胶套在输送时同步换向,以使得多个胶套的切角均朝向环形的中心,即相邻的两个胶套的切角相互配合。在定位模块对胶套固定完成后,多个转运装置分别将对应的胶套转运至多个焊接模组附近。具体地,移动至多个焊接模组形成的第一多边形的多个边上,然后配合多个焊接模组进行同步入模,最后对多个胶套进行同步焊接。焊接完成后,下料模块驱动密封条移出,以使得焊接模块等待下一次焊接。
传统的密封条的焊接系统,一般是切割后的多个胶套按照部分转向以及部分不转向的方式,将其输送至机械手臂附近,并由机械手臂将胶套按照成对的顺序依次夹持到焊接装置的多个位置并入模,在机械手臂将一个密封条所需要的胶套转运入模完成后,焊接装置启动并对多个胶套进行焊接,最后再由机械臂密封条转运至堆放区域。但是该种焊接系统的线体比较冗长,且线体占用面积大,同时需要多个机械臂配合进行抓取输送;此外,机械臂一次只能抓取相对的两个胶套,因此一个密封条的多个胶套的入模需要分多步进行,进而导致胶套焊接的节拍边长,焊接的效率也会受到影响。在本发明的该实施方式中,采用将焊接模块设置在环形的输送模块的中心的方式,能够使得该焊接系统高度集成,取消了冗长的线体结构,且大大减小了焊接系统的占地面积。同时,机械臂用多个转运模块替代,能够实现对多个胶套的同步入模,进而可以同步焊接,缩短了胶套入模焊接的节拍,进而提高了胶套焊接的效率。
在本发明的该实施方式中,如图3所示,该输送模块1可以包括多个直线皮带输送线9以及多个弧形输送线8。
多个直线皮带输送线9呈第二多边形分布,且多个直线皮带输送线9分别位于第 二多边形的多个边上。多个弧形输送线8分别设置在位于中间的直线皮带输送线9的两端,且弧形输送线8的数量相比于直线皮带输送线9的数量少一,即第一个直线皮带输送线9和最后一个直线皮带输送线9的相邻端呈开口设置。
将多个胶套依次放置在第一个直线皮带输送线9上,并沿着多个直线皮带输送线9以及多个弧形输送线8输送,直至多个胶套分别输送至多个直线皮带输送线9上。采用多个直线皮带输送线9相互独立的方式,能够便于多个定位模块分别对其对应的胶套进行可靠定位,提高了对多个胶套定位的可靠性和精度。
在本发明的该实施方式中,考虑到实际中密封条一般有四个胶套组成,进而直线皮带输送线9的数量为4个,弧形输送线8的数量为3个。
在本发明的该实施方式中,如图4和图5所示,该定位模块可以包括定位板11、定位台2、两个定位杆15、两个定位气缸13、导向气缸14、导向杆18、两个滑轨16、两个滑座以及第一驱动组件17。具体地,该定位杆15可以包括倾斜面10,该导向杆18可以包括导槽12。
定位板11设置在直线皮带输送线9的外侧顶端,定位台2设置在直线皮带输送线9的内侧。两个定位杆15设置在直线皮带输送线9的上方,且与定位板11垂直,两个定位杆15靠近定位板11的一端的相对侧开设有与胶套两端配合的倾斜面10。两个定位气缸13设置在定位台2的顶部,两个定位气缸13的输出端与两个定位杆15的另一端连接。导向杆18设置在两个定位杆15之间,导向杆18靠近定位板11的一端开设有与胶套外侧凸起配合的导槽12。导向气缸14设置在定位台2的顶部,导向气缸14的输出端与导向杆18的另一端连接。两个滑轨16设置在定位台2的顶部,且分别位于导向气缸14的两侧。两个滑座分别与两个滑轨16滑动连接,两个定位气缸13分别设置在两个滑座上。第一驱动组件17分别设置在定位台2的,且与两个所述滑座连接,用于驱动两个所述滑座相互靠近或远离。
在需要对直线皮带输送线9上的胶套进行限位固定时,靠近直线皮带输送线9末端的定位气缸13启动,并带动对应的定位杆15伸出并与定位板11的侧壁贴合;随着胶套的逐渐移动,导向气缸14驱动导向杆18伸出并推动胶套与定位板11的侧壁贴合。同时导向杆18的导槽12能够对胶套进行导向,配合直线皮带输送线9驱动胶套继续前进,直至胶套的一端与已伸出定位杆15的倾斜面10贴合。组合,靠近直线皮带输送线9首端的定位气缸13启动,并带动对应的定位杆15伸出并使得其倾斜面10与胶套的另一端贴合,进而可实现对胶套的精准定位。采用该种逐步定位的方式,使得对胶套的定 位更加地可靠,且简单方便。在遇到尺寸不同的胶套的定位时,可通过控制第一驱动组件17启动,以带动两个滑座以及两个定位气缸13在滑轨16上滑动,进而可实现调节两个定位杆15间距的目的。该种对两个定位杆15间距调节的方式,使得该定位模块能够满足不同尺寸胶套的定位,通用性更强,适用性更广。
在本发明的该实施方式中,对于第一驱动组件17的具体结构,可以是本领域人员所指的多种形式,例如气缸、直线电机等。但是在本发明的一个优选示例中,考虑到对两个定位杆15间距调节的精度,该第一驱动组件17的具体结构可以如图4和图5所示。具体地,在图4和图5中,该第一驱动组件17可以包括伺服电机和螺杆配合的方式。
在本发明的该实施方式中,该定位模块还可以包括多个光电传感器19,用于监测胶套在直线皮带输送线9上的位置。
在本发明的该实施方式中,考虑到胶套两端易弯曲变形,该导向气缸14、导向杆18可以设置有多个,其中两个导向气缸14、导向杆18分别靠近两个定位杆15。
在本发明的该实施方式中,如图6和图7所示,该转运模块可以包括转运架3、转运导轨、转运横板22、两个转运固定板24、两个转运夹爪25、两个限位夹爪26、两个第一升降组件23、第五驱动组件以及第六驱动组件。
转运架3设置在对应直线皮带输送线9的上方,转运架3的一端延伸至第一多边形的四个边的上方。转运导轨设置在转运架3的底部,转运横板22滑动设置在转动导轨的底端,且与转运导轨垂直分布。两个转运固定板24对称设置在转运横板22的下方,两个转运夹爪25分别设置在两个转运固定板24的底部。两个限位夹爪26分别设置在两个转运固定板24的底部,且分别位于两个转运夹爪25的相互远离侧。两个第一升降组件23设置在两个转运固定板24上,且与两个转运夹爪25连接,用于驱动对应转运夹爪25升降。第六驱动组件设置在转运横板22的底部,用于驱动两个转运固定板24相互靠近或远离。第五驱动组件设置在转运架3上,且与转运横板22连接,用于驱动转运横板22沿着转运导轨移动。
在需要对胶套进行转运时,第五驱动组件启动,并驱动转运横板22移动至定位台2的上方。两个第一升降组件23启动,并带动两个转运夹爪25下降,两个转运夹爪25启动并对胶套顶部的凸起进行抓取夹持。第一升降组件23带动转运夹爪25复位,同时两个限位夹爪26打开并对胶套进行套设限位。具体地,限位夹爪26的输出端的内壁与胶套的内壁相配合。且两个限位夹爪26分别设置在两个转运夹爪25的相互远离侧,进而能够对胶套的两个端部附近进行可靠地固定。最后第五驱动组件启动,将胶套转运至 相邻的两个焊接模组之间,并与两个焊接模组配合进行入模。具体地,第六驱动组件启动,以使得两个转运固定板24相互靠近,进而胶套形成一定的弧度,再胶套的两端分别与两个焊接模组对应时,第六驱动组件启动,以使得两个转运固定板23相互远离,即弧形的胶套逐渐张开,并使得胶套的两端分别沿着两个焊接模组进入,以实现对胶套的入模。此外,第六驱动组件可以根据胶套的尺寸大小,来调节两个转运夹爪25的间距,以提高该转运模块的适用性。
在本发明的该实施方式中,对于第一升降组件的23的具体结构包括但不限于气缸驱动等。
在本发明的该实施方式中,对于转运夹爪25的具体结构,包括但不限于夹爪气缸和两个夹板配合的方式等。
在本发明的该实施方式中,对于限位夹爪26的具体结构,包括但不限于夹爪气缸和两个夹板配合的方式等。
在本发明的该实施方式中,对于第五驱动组件的具体结构,可以是本领域人员所知的多种形式,例如气缸、直线电机等。但是在本发明的一个优选示例中,考虑到对胶套输送的准确性,该五驱动组件的具体结构可以如图5所示。具体地,在图5中,该第五驱动组件可以包括第一伺服电机20和第一螺杆21配合的方式。具体地,第一伺服电机20与第一螺杆21的端部连接。
在发明的该实施方式中,对于第六驱动组件的具体结构,可以是本领域人员所知的多种形式,例如气缸、直线电机等。但是在本发明的一个优选示例中,考虑到对两个转运夹爪25间距调节的精度,该第六驱动组件的具体结构可以包括伺服电机和螺杆配合的方式。
在本发明的该实施方式中,如图8和图9所示,该焊接模块还可以包括焊接底座4、两个底板32、第二驱动组件28、两个第三驱动组件30。具体地,该焊接模组可以包括基板31、两个焊接模具35、加热组件34、第四驱动组件41、两个退模组件以及两个压料组件33。
两个底板32平行设置在焊接底座4的上方,每个底板32上设置有两个焊接模组。第二驱动组件28设置在焊接底座4的顶部,且与两个底板32连接,用于驱动两个底板32相互靠近或远离。两个第三驱动组件30分别设置在两个底板32的顶部,每个第三驱动组件30与对应两个焊接模组连接,用于驱动对应两个焊接模组相互靠近或远离。第三驱动组件30与基板31连接,两个焊接模具35垂直分布,且两个焊接模具35延长线 的交点朝向第一多边形的中心。加热组件34设置在两个焊接模具35的夹角的平分线上,用于伸入至两个焊接模具35之间以热熔两个焊接模具35内部的胶套。第四驱动组件41设置在基板31上,用于驱动两个焊接模具35的夹角端相互靠近贴合以焊接两个焊接模具35内部的胶套。两个退模组件分别设置在两个焊接模具35上,用于打开对应焊接模具35以脱离对焊接好的胶套的限定。两个压料组件33分别设置在两个焊接模具35上,用于对两个焊接模具35内部的胶套进行按压限位。
在需要对胶套进行入模后,压料组件33启动,并对胶套的端部进行按压限定。驱动加热组件34启动,加热组件34伸入至两个焊接模具35之间并热熔两个焊接模具35内部的胶套,再驱动加热组件34退出两个焊接模具35之间,第四驱动组件41启动并带动两个焊接模具35的夹角相互靠近并贴合焊接两个胶套的相对端。最后退模组件启动,打开对应的焊接模具35,即可配合下料模块对密封条进行抓取下料。在需要根据胶套的尺寸调节相邻两个焊接模组上的相对的两个焊接模具35的间距时,可以通过第二驱动组件28调节两个底板32的间距,即横向间距;可通过两个第三驱动组件30调节两个焊接模组的间距,即纵向间距。此外,也可通过第二驱动组件28和两个第三驱动组件30配合辅助胶套入模。
在本发明的该实施方式中,为了进一步提高底板32以及焊接模组移动的稳定性和可靠性,该焊接模块还可以包括两个第一导轨27以及第二导轨29。具体地,第一导轨27设置在底板32上,且与两个对应焊接模组滑动连接;第二导轨29设置在焊接底座4上,且与两个底板滑动连接。
在本发明的该实施方式中,对于第二驱动组件28的具体结构,可以是本领域人员所知的多种形式,例如气缸、直线电机等。但是在本发明的一个优选示例中,考虑到对两个底板32间距调节的精度,该第二驱动组件28的具体结构可以如图8所示。具体地,在图8中,该第二驱动组件28的具体结构可以包括第二伺服电机和第二螺杆配合的方式。
在本发明的该实施方式中,对于第三驱动组件30的具体结构,可以是本领域人员所知的多种形式,例如气缸、直线电机等。但是在本发明的一个优选示例中,考虑到对两个焊接模组间距调节的精度,该第三驱动组件30的具体结构可以如图8所示。具体地,在图8中,该第三驱动组件30的具体结构可以包括第三伺服电机和第三螺杆配合的方式。
在本发明的该实施方式中,对于加热组件34的具体结构包括但不限于伺服电机配 合螺杆驱动加热板移动的方式等。
在本发明的该实施方式中,对于压料组件33的具体结构包括但不限于气缸配合压板的方式等。
在本发明的该实施方式中,对于第四驱动组件的具体结构,可以是本领域人员所知的多种形式,例如两个气缸、两个直线电机等。但是在本发明的一个优选示例中,考虑到对同一个基板31上两个焊接模具35贴合焊接的精度,该第四驱动组件的具体结构可以包括第二伺服电机、两个螺纹杆、两个第一锥齿轮以及第二锥齿轮。具体地,两个螺纹杆分别与两个焊接模具35螺纹连接,两个第一锥齿轮分别设置在两个螺纹杆的相互靠近的一端。两个第一锥齿轮均与第二锥齿轮连接,第二伺服电机与第二锥齿轮连接。
在本发明的该实施方式中,对于退模组件的具体结构包括但不限于气缸与两个配合形成模具槽的模具块的其中一个连接的方式等。
在本发明的一个实施方式中,如图10和图11所示,该下料模块可以包括下料架5、下料导轨36、下料横板37、第二升降组件42、两个第一横杆38、第七驱动组件、第二横杆40以及多个夹爪气缸39。
下料架5设置在第一多边形的正上方,下料模块的一端延伸出环形的内部。下料导轨36设置在下料架5的底部,下料横板37设置在下料导轨36的下方。第二升降组件42与下料导轨36滑动连接,第二升降组件42的输出端与下料横板37的顶部连接,用于驱动下料横板37升降。两个第一横杆38对称设置在下料横板37的底部,每个第一横杆38上设置有多个夹爪气缸39,第一横杆38与下料横板37垂直。第八驱动组件设置在下料横板37的底部,用于带动两个第一横杆38相互靠近或远离。第二横杆40设置在下料横板37的底部中心,且位于两个第一横杆38的中间,并与两个第一横杆38平行设置,第二横杆40的底部设置有多个夹爪气缸39。第七驱动组件设置在下料架5上,且与第二升降组件42连接,用于驱动第二升降组件42沿着下料导轨36滑动。
在密封条焊接完成后,第七驱动组件控制下料横板37移动至第一多边形的正上方,第二升降组件42启动,并控制多个夹爪气缸39下移并抓取密封条的多个边,再驱动多个夹爪气缸39复位。第七驱动组件控制密封条移动至下料输送带7的上方,并通过下料输送带7将该密封条输送下料。第八驱动组件能够根据密封条短边的长度实时调节两个第一横杆的间距,以提高对密封条抓取的稳定性。具体地,夹爪气缸39与第一横杆38或者第二横杆40为可拆卸连接,且第二横杆40能够对密封条的短边进行抓取,进一步提高了对胶套下料的灵活性以及可靠性。
在发明的该实施方式中,对于第七驱动组件的具体结构,可以是本领域人员所知的多种形式,例如气缸、直线电机等。但是在本发明的一个优选示例中,考虑到对下料的调节的精度,该第七驱动组件的具体结构可以包括伺服电机和螺杆配合的方式。
在发明的该实施方式中,对于第八驱动组件的具体结构,可以是本领域人员所知的多种形式,例如气缸、直线电机等。但是在本发明的一个优选示例中,考虑到对两个第一横杆38间距的调节的精度,该第八驱动组件的具体结构可以包括伺服电机和螺杆配合的方式。
在本发明的该实施方式中,对于第二升降组件的42的具体结构包括但不限于气缸驱动等。
在本发明的该实施方式中,该焊接系统还可以包括防护栏6。具体地,该防护栏6设置在输送模块1的外侧。
另一方面,本发明还提供一种冰箱门密封条的焊接系统的控制方法,具体地步骤可以如图12所示。在图12中,该控制方法可以包括:
在步骤S10中,获取胶套的位置信息。其中,对于胶套位置信息的获取,可以在输送模块1上设置多个光电传感器,以此来胶套的位置信息。具体地,光电传感器的设置位置可以设置在定位模块的附近,以便于定位模块及时动作并对胶套进行定位固定。
在步骤S11中,判断胶套是否到达对应的定位模块附近。其中,对于胶套是否到达对应的定位模块附近,即意味着该对应的定位模块是否应该动作。具体地,由于一个密封条上有多个胶套,输送模块1会对多个胶套依次进行运输时。在多个胶套输送时,靠近输入端的定位模块不会提前动作,会让位于前面输送的胶套随着输送模块1到达对应的定位模块附近。具体地,以四个胶套和四个定位模块为例,第一个胶套在经过前三个定位模块,前三个定位模块均不动作,直至第一个胶套到达第四个定位模块附近,第四个定位模块动作并对其进行定位。具体地,第一定位模块为靠近输送模块1输入端的定位模块,第四定位模块为靠近输送模块1输出端的定位模块;第一个胶套即为第一个进入输送模块1上的胶套。
在步骤S12中,在判断胶套到达对应的定位模块附近时,驱动定位模块启动,以对胶套进行定位。其中,若胶套到达对应的定位模块的附近,则说明该胶套到达指定待转运位置,此时定位模块即可对该胶套进行定位。具体地,一个定位模块附近设置有三个光电传感器,且三个光电传感器沿着输送模块1的输送方向分布。在胶套到达对应的定位模块的第一个光电传感器时,该定位模块对应的直线皮带输送线减速,位于该直线 皮带输送线输送末端的定位杆伸出。在胶套到达对应的定位模块的第二个光电传感器时,该定位模块对应的直线皮带输送线进一步减速,导向杆伸出并推动胶套与定位板贴合,以限定胶套仅能沿着与定位板侧壁移动。在胶套到达对应的定位模块的第三个光电传感器时,该定位模块对应的直线皮带输送线停止,位于该直线皮带输送线输送首端的定位杆伸出,即可实现对胶套的可靠定位。
在步骤S13中,转运模块启动,将胶套转运至焊接模块,并配合焊接模块对胶套进行入模。其中,在对胶套进行定位后,转运模块启动并对胶套进行抓取,并将其移动至焊接模块的附近。具体地,转运模块将该胶套移动至相邻两个焊接模组之间,两个焊接模组上相邻的两个焊接模具通过退模组件打开,以配合转运模块将胶套的两端分别沿着两个焊接模具伸入。具体地,可对一个密封条的多个胶套进行同步入模。
在步骤S14中,判断胶套是否入模到位。其中,每个焊接模组上设置有两个光电传感器,分别用于监测两个焊接模具内部胶套的伸入量,在胶套入模到位时,光电传感器监测到并停止胶套的伸入,再通过压料组件对胶套进行按压固定,即可完成对胶套的入模。
在步骤S15中,在判断胶套入模到位时,焊接模块启动并对胶套进行焊接。其中,若胶套入模到位,则可以驱动加热组件启动,并对每个焊接模组上的两个焊接模组之间的两个胶套的端部进行热熔。热熔一段时间后,加热组件退出,第四驱动组件启动并带动两个胶套的端部进行贴合焊接,即可实现对相邻两个胶套的焊接。具体地,可以对一个密封条的多个胶套进行同步焊接。
在步骤S16中,下料模块启动,将焊接好的密封条自焊接模块上取出。其中,在胶套焊接完成后,形成了一个完成的密封条,压料组件以及退模组件启动并打开焊接模具,再配合下料模块,能够将焊接好的密封条移出焊接模块,以便于焊接模块能够进行下一次地焊接。
在步骤S17中,在判断胶套未入模到位时,转运模块和焊接模块配合继续对胶套进行入模。其中,若胶套未入模到位,转运模块则会继续向焊接模块推进胶套或者焊接模块继续向胶套靠近,以继续对胶套进行入模。
在步骤S18中,在判断胶套未到达对应的定位模块附近时,输送模块1继续输送胶套。其中,若胶套没有达到对应的定位模块,则说明,胶套还在输送中,一般一个密封条的多个胶套是在差不多时间达到对应的直线皮带输送线上,因此输送模块1需要继续带动胶套输送。
在步骤S10至步骤S18中,在对多个胶套进行焊接时,需要先确定输送模块1上多个胶套的位置,并对多个胶套是否在对应的定位模块附近进行判断。若多个胶套分别在对应的定位模块附近,则对应的定位模块对其进行定位,转运模块将被限定的胶套移动至焊接模块并配合同步入模,焊接装置对多个胶套进行同步焊接,最后有下料模块将其移出下线,即可完成对密封条的生产。该种控制方法操作简单,灵活性高,有助于实现对密封条的精确焊接。
通过上述技术方案,本发明提供的冰箱门密封条的焊接系统及其控制方法通过将多个胶套依次放置在输送模块1上,能够将多个胶套分别输送至对应的位置,且由于输送模块1呈环形,多个胶套的切角位置能够相对设置;再通过定位模块分别对多个胶套进行定位,多个转运模块分别将多个胶套转运至焊接模块附近并进行同步入模,焊接模块能够对多个胶套进行同步焊接,焊接完成后,下料模块能够将密封条移出该焊接系统等待下一次焊接;采用将焊接模块设置在环形的输送模块的中心的方式,能够使得焊接系统高度集成化,大大减小了焊接系统所需的占用面积;同时,多个转运模块和焊接模块配合同步入模和同步焊接的方式,能够有效降低胶套焊接的节拍,即提高了胶套焊接的效率。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种冰箱门密封条的焊接系统,其特征在于,包括:
    输送模块(1),用于输送密封条的多个胶套,所述输送模块(1)呈环形;
    多个定位模块,设置在所述输送模块(1)的内侧,用于对所述输送模块(1)上的多个所述胶套进行限位固定;
    焊接模块,设置在所述环形的中心,所述焊接模块包括多个焊接模组,多个所述焊接模组呈第一多边形分布,多个所述焊接模组分别位于所述第一多边形的多个拐角,多个所述焊接模组用于配合对相邻所述胶套的对角进行同步焊接;
    多个转运模块,分别设置在多个所述定位模块的上方,多个所述转运模块的一端延伸至所述第一多边形的多个边的上方,多个所述转运模块用于将多个所述胶套分别自所述输送模块(1)上转运至相邻所述焊接模组之间并与相邻所述焊接模组配合进行所述胶套的同步入模;
    下料模块,设置在所述第一多边形的正上方,所述下料模块的一端延伸出所述环形的内部,所述下料模块用于对焊接后的所述密封条进行移出下料。
  2. 根据权利要求1所述的焊接系统,其特征在于,所述输送模块(1)包括:
    多个直线皮带输送线(9),多个所述直线皮带输送线(9)呈第二多边形分布,且多个所述直线皮带输送线(9)分别位于所述第二多边形的多个边上;
    多个弧形输送线(8),多个所述弧形输送线(8)分别设置在位于中间的所述直线皮带输送线(9)的两端。
  3. 根据权利要求2所述的焊接系统,其特征在于,所述定位模块包括:
    定位板(11),设置在所述直线皮带输送线(9)的外侧顶端;
    定位台(2),设置在所述直线皮带输送线(9)的内侧;
    两个定位杆(15),设置在所述直线皮带输送线(9)的上方,且与所述定位板(11)垂直,两个所述定位杆(15)靠近所述定位板(11)的一端的相对侧开设有与所述胶套两端配合的倾斜面(10);
    两个定位气缸(13),设置在所述定位台(2)的顶部,两个所述定位气缸(13)的输出端与两个所述定位杆(15)的另一端连接;
    导向杆(18),设置在两个所述定位杆(15)之间,所述导向杆(18)靠近所述定 位板(11)的一端开设有与所述胶套外侧凸起配合的导槽(12);
    导向气缸(14),设置在所述定位台(2)的顶部,所述导向气缸(14)的输出端与所述导向杆(18)的另一端连接。
  4. 根据权利要求3所述的焊接系统,其特征在于,所述定位模块还包括:
    两个滑轨(16),设置在所述定位台(2)的顶部,且分别位于所述导向气缸(14)的两侧;
    两个滑座,分别与两个所述滑轨(16)滑动连接,两个所述定位气缸(13)分别设置在两个所述滑座上;
    两个第一驱动组件(17),设置在所述定位台(2)的顶部,且与两个所述滑座连接,用于驱动两个所述滑座相互靠近或远离。
  5. 根据权利要求1所述的焊接系统,其特征在于,所述焊接模块还包括:
    焊接底座(4);
    两个底板(32),平行设置在所述焊接底座(4)的上方,每个所述底板(32)上设置有两个所述焊接模组;
    第二驱动组件(28),设置在所述焊接底座(4)的顶部,且与两个所述底板(32)连接,用于驱动两个所述底板(32)相互靠近或远离;
    两个第三驱动组件(30),分别设置在两个所述底板(32)的顶部,每个所述第三驱动组件(30)与对应两个所述焊接模组连接,用于驱动对应两个所述焊接模组相互靠近或远离。
  6. 根据权利要求5所述的焊接系统,其特征在于,所述焊接模组包括:
    基板(31),所述第三驱动组件(30)与所述基板(31)连接;
    两个焊接模具(35),两个所述焊接模具(35)垂直分布,且两个所述焊接模具(35)延长线的交点朝向所述第一多边形的中心;
    加热组件(34),设置在两个所述焊接模具(35)的夹角的平分线上,用于伸入至两个所述焊接模具(35)之间以热熔两个所述焊接模具(35)内部的胶套;
    第四驱动组件(41),设置在所述基板(31)上,用于驱动两个所述焊接模具(35)的夹角端相互靠近贴合以焊接两个所述焊接模具(35)内部的胶套;
    两个退模组件,分别设置在两个所述焊接模具(35)上,用于打开对应所述焊接模具(35)以脱离对焊接好的所述胶套的限定。
  7. 根据权利要求2所述的焊接系统,其特征在于,所述转运模块包括:
    转运架(3),设置在对应所述直线皮带输送线(9)的上方,一端延伸至所述第一多边形的四个边的上方;
    转运导轨,设置在所述转运架(3)的底部;
    转运横板(22),滑动设置在所述转动导轨的底端,且与所述转运导轨垂直分布;
    第五驱动组件,设置在所述转运架(3)上,且与所述转运横板(22)连接,用于驱动所述转运横板(22)沿着所述转运导轨移动;
    两个转运固定板(24),对称设置在所述转运横板(22)的下方;
    两个转运夹爪(25),分别设置在两个所述转运固定板(24)的底部;
    两个限位夹爪(26),分别设置在两个所述转运固定板(24)的底部,且分别位于两个所述转运夹爪(25)的相互远离侧;
    两个第一升降组件(23),设置在两个所述转运固定板(24)上,且与两个所述转运夹爪(25)连接,用于驱动对应所述转运夹爪(25)升降;
    第六驱动组件,设置在所述转运横板(22)的底部,用于驱动两个所述转运固定板(24)相互靠近或远离。
  8. 根据权利要求1所述的焊接系统,其特征在于,所述下料模块包括:
    下料架(5),设置在所述第一多边形的正上方,所述下料模块的一端延伸出所述环形的内部;
    下料导轨(36),设置在所述下料架(5)的底部;
    下料横板(37),设置在所述下料导轨(36)的下方;
    第二升降组件(42),与所述下料导轨(36)滑动连接,所述第二升降组件(42)的输出端与所述下料横板(37)的顶部连接,用于驱动所述下料横板(37)升降;
    第七驱动组件,设置在所述下料架(5)上,且与所述第二升降组件(42)连接,用于驱动所述第二升降组件(42)沿着所述下料导轨(36)滑动;
    两个第一横杆(38),对称设置在所述下料横板(37)的底部,每个所述第一横杆(38)上设置有多个夹爪气缸(39),所述第一横杆(38)与所述下料横板(37)垂直;
    第八驱动组件,设置在所述下料横板(37)的底部,用于带动两个所述第一横杆(38)相互靠近或远离;
    第二横杆(40),设置在所述下料横板(37)的底部中心,且位于两个所述第一横杆(38)的中间,并与两个所述第一横杆(38)平行设置,所述第二横杆(40)的底部设置有多个所述夹爪气缸(39)。
  9. 一种冰箱门密封条的焊接系统的控制方法,其特征在于,包括:
    获取胶套的位置信息;
    判断所述胶套是否到达对应的定位模块附近;
    在判断所述胶套到达对应的所述定位模块附近时,驱动定位模块启动,以对所述胶套进行定位;
    转运模块启动,将所述胶套转运至焊接模块,并配合所述焊接模块对多个所述胶套进行入模;
    判断所述胶套是否入模到位;
    在判断所述胶套入模到位时,焊接模块启动并对胶套进行焊接;
    下料模块启动,将焊接好的密封条自所述焊接模块上取出;
    在判断所述胶套未入模到位时,所述转运模块和所述焊接模块配合继续对所述胶套进行入模;
    在判断所述胶套未到达对应的所述定位模块附近时,输送模块继续输送所述胶套。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,所述指令用于被控制器读取以使得所述控制器执行如权利要求9所述的控制方法。
PCT/CN2022/132277 2022-11-16 2022-11-16 冰箱门密封条的焊接系统及其控制方法 WO2024103294A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/132277 WO2024103294A1 (zh) 2022-11-16 2022-11-16 冰箱门密封条的焊接系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/132277 WO2024103294A1 (zh) 2022-11-16 2022-11-16 冰箱门密封条的焊接系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2024103294A1 true WO2024103294A1 (zh) 2024-05-23

Family

ID=91083665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132277 WO2024103294A1 (zh) 2022-11-16 2022-11-16 冰箱门密封条的焊接系统及其控制方法

Country Status (1)

Country Link
WO (1) WO2024103294A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202200552U (zh) * 2011-08-24 2012-04-25 安徽粤信网络通信技术有限公司 一种用于pvc门封条加工的机器人自动搬运焊接装置
CN104708808A (zh) * 2015-01-26 2015-06-17 上海新帆实业股份有限公司 一种塑料封条自动焊接打码装置及其控制方法
CN104772901A (zh) * 2015-04-02 2015-07-15 青岛海尔股份有限公司 门封焊接方法及焊接定位装置
CN106238943A (zh) * 2016-08-27 2016-12-21 安徽万朗磁塑股份有限公司 一种全自动门封四角焊接控制系统
CN207359662U (zh) * 2017-10-16 2018-05-15 宁波音元汽车零部件有限公司 一种密封条熔接机
DE202020101533U1 (de) * 2020-03-20 2020-04-22 GLAMAtronic Schweiß- und Anlagentechnik GmbH Vorrichtung und deren Verwendung zur Herstellung von Dichtungsringen
CN111515585A (zh) * 2020-04-29 2020-08-11 安徽万朗磁塑股份有限公司 一种冰箱门密封条的全自动焊接机
CN111531899A (zh) * 2020-04-29 2020-08-14 安徽万朗磁塑股份有限公司 一种冰箱门密封条的全自动焊接生产线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202200552U (zh) * 2011-08-24 2012-04-25 安徽粤信网络通信技术有限公司 一种用于pvc门封条加工的机器人自动搬运焊接装置
CN104708808A (zh) * 2015-01-26 2015-06-17 上海新帆实业股份有限公司 一种塑料封条自动焊接打码装置及其控制方法
CN104772901A (zh) * 2015-04-02 2015-07-15 青岛海尔股份有限公司 门封焊接方法及焊接定位装置
CN106238943A (zh) * 2016-08-27 2016-12-21 安徽万朗磁塑股份有限公司 一种全自动门封四角焊接控制系统
CN207359662U (zh) * 2017-10-16 2018-05-15 宁波音元汽车零部件有限公司 一种密封条熔接机
DE202020101533U1 (de) * 2020-03-20 2020-04-22 GLAMAtronic Schweiß- und Anlagentechnik GmbH Vorrichtung und deren Verwendung zur Herstellung von Dichtungsringen
CN111515585A (zh) * 2020-04-29 2020-08-11 安徽万朗磁塑股份有限公司 一种冰箱门密封条的全自动焊接机
CN111531899A (zh) * 2020-04-29 2020-08-14 安徽万朗磁塑股份有限公司 一种冰箱门密封条的全自动焊接生产线

Similar Documents

Publication Publication Date Title
US9914601B2 (en) Method and tool for palletizing mixed load products
US6658816B1 (en) Bulk palletizer system
EP2331300B1 (en) System and methods for forming stacks
CN105437451A (zh) 数据线端口全自动注塑流水线
JPH0825632B2 (ja) パッケージを積重体に形成する機械
CN114152068B (zh) 电芯用烘烤线
CN109571144B (zh) Cnc自动线
US10144539B2 (en) Packaging machine and method with loose object carrier
WO2024103294A1 (zh) 冰箱门密封条的焊接系统及其控制方法
CN104554843B (zh) 一种带有全方位搬运机器人的自动装盘系统
US11286072B2 (en) Device and method for packaging products in pre-made packages
CN109175358B (zh) 一种配合粉末成型机使用的自动供料收料设备
KR20220119384A (ko) 두부 패킹 장치
CN210285987U (zh) 一种自动码垛设备
JP5926574B2 (ja) パレタイズシステム
WO2024103295A1 (zh) 密封条胶套的输送装置以及输送方法
CN214518159U (zh) 一种贯流风叶成型焊接系统
CN116100812A (zh) 冰箱门密封条的焊接系统及其控制方法
CN214518151U (zh) 一种拆垛递送系统及贯流风叶成型焊接系统
CN213862880U (zh) 一种穿刺针输送生产线
JP4236793B2 (ja) 収納装置及び収納方法
CN216174377U (zh) 一种自动下料分拣机
CN212502432U (zh) 一种输送装置及可立袋自动装卸盘机
CN110228937B (zh) 一种热弯生产线及其上下料设备
JPH0536802Y2 (zh)