WO2024101686A1 - 점접촉 채널구조를 갖는 연료전지 분리판 - Google Patents

점접촉 채널구조를 갖는 연료전지 분리판 Download PDF

Info

Publication number
WO2024101686A1
WO2024101686A1 PCT/KR2023/015830 KR2023015830W WO2024101686A1 WO 2024101686 A1 WO2024101686 A1 WO 2024101686A1 KR 2023015830 W KR2023015830 W KR 2023015830W WO 2024101686 A1 WO2024101686 A1 WO 2024101686A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
separator
electrode
fuel cell
fuel
Prior art date
Application number
PCT/KR2023/015830
Other languages
English (en)
French (fr)
Inventor
백상철
김대성
Original Assignee
테라릭스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 테라릭스 주식회사 filed Critical 테라릭스 주식회사
Publication of WO2024101686A1 publication Critical patent/WO2024101686A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell separator, and more specifically, the channel structure of the separator is formed to be inclined so that condensate can be transported and discharged smoothly, and the points where the anode separator and air electrode separator on both sides overlap are in point contact. It relates to a fuel cell separator having a point-contact channel structure that minimizes the occurrence of water accumulation and deterioration of electrode performance due to pressure on the gas diffusion layer by having the minimum area.
  • a fuel cell is an energy conversion device that electrochemically reacts the chemical energy of fuel and converts it into electrical energy. It not only supplies power for industrial, household, and vehicle use, but also supplies power to small electrical/electronic products and portable devices. It can be used.
  • the conjugate consists of a solid polymer electrolyte membrane that can move hydrogen ions, and a cathode and anode, which are electrode layers coated with a catalyst to allow hydrogen and oxygen to react on both sides of the electrolyte membrane.
  • GDL gas diffusion layer
  • MEA membrane electrode assembly
  • channel ribs are protruding from each anode separator and cathode separator as shown in the patent document below to form a plurality of passages through which hydrogen and air flow respectively.
  • the gas diffusion layer is As it is pressed by the channel ribs on both sides, it is compressed and water puddles occur. When water puddles occur, the gas supply is cut off, reducing the electrode area available for reaction, which causes a decrease in performance.
  • Patent Document Registered Patent Publication No. 10-2131702 (registered on July 2, 2020) “Separator plate for fuel cell and fuel cell stack including same”
  • the present invention was devised to solve the above problems,
  • the channel structure of the separator is inclined to ensure smooth transport and discharge of condensate, and the points where the anode separator and air electrode separator overlap on both sides are in point contact to have a minimum area, so that the gas diffusion layer is not pressed.
  • the purpose is to provide a fuel cell separator that minimizes water stagnation and degradation of electrode performance.
  • the present invention is implemented by an embodiment having the following configuration.
  • the fuel cell separator includes a fuel electrode separator and an air electrode separator formed in pairs on both sides of the membrane electrode assembly to form a passage through which fuel and air flow, respectively,
  • the anode separator protrudes toward the membrane electrode assembly and includes a plurality of first channels spaced apart from each other at regular intervals to form a plurality of passages through which fuel flows.
  • the air electrode separator protrudes toward the membrane electrode assembly and includes a first channel formed at a predetermined interval to form a plurality of passages through which fuel flows.
  • first channel and the second channel are each formed to be inclined at a certain angle along the longitudinal direction of the electrode, and are inclined at different angles. It is characterized by being formed at an angle to allow point contact.
  • the first channel is inclined to have an angle of more than 0° and less than 90° with respect to the longitudinal direction of the electrode
  • the second channel is It is characterized in that it is formed inclined to have an angle of more than 90° and less than 180° with respect to the same longitudinal direction.
  • the first channel and the second channel have the same angle and are inclined in opposite directions.
  • the area where the first channel and the second channel are in point contact is set to be in the range of 10 to 20% of the total electrode area. Do it as
  • the anode separator forms a predetermined space by dividing the first channel formed in a straight line into a plurality, and the first channel is divided into a plurality.
  • a first spatial separation portion formed at regular intervals along the line; It includes a first flow space formed between first channels formed in a plurality of rows and through which fuel and condensate flows, wherein the air electrode separator divides the second channels formed in a straight line to form a certain space; , second spatial separation portions formed at regular intervals along the second channel; It includes a second flow space formed between second channels formed of a plurality of rows through which air and condensate flow, wherein the first and second space separation parts each have first and second space separation parts in a direction perpendicular to the direction in which fuel or air flows.
  • It is characterized by being closed by 2 channels.
  • the present invention can achieve the following effects by combining the above-mentioned embodiment with the configuration, combination, and use relationship described below.
  • the channel structure of the separator is inclined to ensure smooth transport and discharge of condensate, and the points where the anode separator and air electrode separator overlap on both sides are in point contact to have a minimum area, so that the gas diffusion layer is not pressed. It has the effect of minimizing the occurrence of water stagnation and deterioration of electrode performance.
  • 1 is a reference diagram for explaining problems with the conventional fuel cell stack structure.
  • Figure 2 is a plan view showing a fuel cell separator according to an embodiment of the present invention.
  • Figure 3 is a reference diagram for explaining the point contact structure using the separator plate of Figure 2
  • Figure 4 is a reference diagram showing a state in which the anode separator and the air electrode separator intersect.
  • FIG. 5 is a reference diagram showing the detailed structure of the separator plate.
  • Figure 6 is a view showing the structure of the conventional anode separator (a) and air electrode separator (b) and the formation position of the moisture condensation portion (c).
  • Figure 7 is a diagram showing a conventional anode separator of a different structure and the resulting flooding formation process.
  • Figure 8 is a diagram showing a conventional anode separator of another structure and the flooding mitigation process accordingly.
  • Figure 9 is a diagram showing the problem of Figure 8.
  • anode separator 11 first channel
  • Air electrode separator 31 Second channel
  • a pair of fuel cell separators is formed on both sides of the membrane electrode assembly to separate fuel and air, respectively. It includes an anode separator plate (1) and an air electrode separator plate (3) that form a passage through which the electrode flows, and each of the anode separator plate (1) and the air electrode separator plate (3) has a certain inclination with respect to the longitudinal direction of the electrode.
  • the first channel 11 and the second channel 31 are formed to form a passage through which fuel and air flow.
  • fuel may mean hydrogen.
  • the first channel 11 and the second channel 31 are formed to be inclined at a certain angle with respect to the longitudinal direction (L) of the electrode to prevent condensate from accumulating and to ensure smooth transfer and discharge of condensate, especially the first channel 31.
  • the channel 11 and the second channel 31 are formed inclined at different angles so that the overlapping portion of the first channel 11 and the second channel 31 with the membrane electrode assembly between them forms a point contact. This minimizes the compression of the gas diffusion layer and prevents water stagnation and performance reduction due to compression of the gas diffusion layer.
  • the first channel 11 of the anode separator 1 and the second channel 31 of the air electrode separator 3 are formed to be inclined at different angles, as shown in FIG. 3.
  • the overlapping area (S) of the first channel 11 and the second channel 31 forms a point contact to minimize the area where the first channel 11 and the second channel 31 overlap. make it possible
  • the first channel 11 and the second channel 31 are formed at an angle with respect to the longitudinal direction of the electrode so that condensate can be transported and discharged without stagnating, and the first channel 11 and the second channel 31 in relation to this are A detailed description of the second channel 31 will be provided later.
  • first channel 11 may be formed inclined to have an angle of more than 0° and less than 90° with respect to the longitudinal direction (L) of the electrode
  • second channel 31 may be formed at an angle in the longitudinal direction (L) of the electrode. It may be formed inclined to have an angle of more than 90° and less than 180° so that the first channel 11 and the second channel 31 are formed inclined in opposite directions.
  • the fuel and air supplied by the space provided by the first channel 11 and the second channel 31 can be supplied evenly throughout the electrode, thereby enabling efficient generation of power, and at the same time, point contact. It can have the effect of reducing performance degradation due to
  • the length ( ⁇ ) and angle ( ⁇ ) of the first channel 11 and the second channel 31 are appropriately adjusted to control the first channel 11 and the second channel 31. ) can be maintained while minimizing the overlapping area.
  • the overlapping area of the first channel 11 and the second channel 31 is in the range of 10 to 20% of the total electrode area, and more preferably, the first channel 11 and The second channel 31 can be formed to be inclined at the same angle as the longitudinal direction (L) of the electrode so that it has a symmetrical shape. This can help ensure a more uniform supply of fuel and air and minimize the contact area. You can.
  • the anode separator 1 has a plurality of first channels 11 formed in a straight line as shown in FIG. 5. While being divided, a plurality of first space separation parts 12 are formed at regular intervals in the divided space, and a first flow space part 13 through which fuel and condensate flows between the first channels 11 formed in a plurality of rows. ) can be formed.
  • the air electrode separator 3 may be formed to be inclined in the opposite direction so as to have a symmetrical shape as the anode separator 1, and, like the anode separator 1, may have a second space separation portion 32 and a second spacer. It may include a second flow space portion (33).
  • the second channel 31, the second space separation part 32, and the second flow space part 33 of the air electrode separator 3 are the first channel 11, the first space separation part 12, and the first flow space part 33. Since only the direction is different from the flow space portion 13 and has the same function and effect, hereinafter only the first channel 11, the first space separation portion 12, and the second space separation portion 32 will be described. , the description of the second channel 31, the second space separation part 32, and the second flow space part 33 will be omitted.
  • the conventional anode separator 200 is formed in the form of a flat plate as shown in FIG. 6, and a moisture condensation portion where moisture is condensed is formed due to the low temperature at the air inlet side, and a flooding phenomenon occurs due to stagnation of the moisture condensation portion. do. In this case, not only is the movement of hydrogen blocked, but the increase in current density due to the decrease in the reaction electrode generates a hot spot where the temperature rises rapidly at the air outlet, damaging the electrode.
  • FIG. 7 it is conceivable to form a partition wall 201 on the anode separator 200 to form a hydrogen flow direction perpendicular to the air flow direction on the air electrode separator 100 side.
  • the flooding phenomenon can be alleviated compared to Figure 6, but as the hydrogen flow path is formed long in the direction of the electrode, there is a problem in that water easily collects in the cold zone and a flooding phenomenon occurs as shown in Figure 6.
  • the anode separator plate 200 which is formed long in the longitudinal direction of the electrode, is easily deformed due to the stacking of the structure, and condensation water may accumulate in the deformed part, which causes flooding to occur more easily.
  • the partition walls 201 can be formed at regular intervals to have a pattern shape, as shown in FIG. 8, and this allows the flow of hydrogen and water in the direction perpendicular to the electrode. By doing so, the flooding phenomenon can be alleviated.
  • the gas diffusion layer (GDL, 300) is pressed by the protrusion 101 of the air electrode separator 100, causing deformation, and condensate stagnation occurs due to the cross section. As a result, it is still In the high temperature area (air outlet area), cooling is difficult, causing a dry out phenomenon, which causes the performance of the fuel cell to deteriorate.
  • a space is formed through which condensate water can be forcibly transported along with fuel and air in the longitudinal direction and the inclined direction of the electrode, thereby minimizing stagnation of condensate and transporting condensate.
  • the dry out phenomenon can be alleviated by allowing cooling of the high temperature part (air outlet part) through .
  • the cooling effect can be maintained through cooling by transporting condensate, enabling stable operation.
  • the first channel 11 is formed by protruding from the anode separator 1 toward the anode (electrode), and serves to partition the movement path of hydrogen.
  • the first channel 11 may be formed to be inclined at an angle of more than 0° and less than 90° with the longitudinal direction (L) of the electrode, as shown in FIG. 2, and condensate water at the inlet side flows into the first channel (11). ) so that it can be transferred to the outlet side along the first flow space 13 between.
  • a plurality of the first channels 11 may be formed in a row to be spaced at a certain interval, and a first space separation portion 12 is formed between the first channels 11 formed in a row to store fuel and condensate. The flow of can be achieved.
  • the first channels 11 can be formed in a plurality of rows parallel to each other to have a fine pattern shape, thereby preventing stagnation of condensate and preventing flooding through forced transport. and dry out phenomenon.
  • the first channel 11 is formed in the form of a fine pattern spaced at regular intervals, the rigidity of the separator plate can be secured and structural damage can be prevented through this.
  • the first space separation portion 12 is a space formed by dividing the straight first channel 11, and is formed in a row along the first channel 11 at regular intervals. Therefore, fuel and condensate can be transferred between the adjacent first flow space parts 13 through the first space separation part 12, thereby minimizing stagnation in the flow of fuel and condensate and ensuring fuel smoothness. Cooling and dry out prevention can be effectively achieved through supply and transfer of condensate to high temperature areas.
  • the first space separation part 12 is closed by the first channel 11 in the direction perpendicular to the direction in which the fuel travels, that is, the direction in which the first flow space part 13 is formed, so that the high temperature part side
  • the condensed water heading toward the entire first flow space 13 between the first channels 11 flooding due to stagnation of condensate and dry out due to high temperature can be more effectively prevented.
  • the condensate passing through the first spatial separation parts 12 flows through the first spatial separation parts in the next row.
  • the condensate is not properly transferred between the first channels (11) in the fuel flow direction, causing stagnation of condensate, resulting in flooding. And if condensate is not properly transported to the high temperature part, dry out phenomenon occurs as before. Therefore, the first spatial separation portion 12 is closed by the first channel 11 in a direction perpendicular to the direction in which the fuel travels, so that the condensate passing through the first spatial separation portion 12 prevents the fuel from advancing. By allowing the space between the first channels 11 to flow along the direction, stagnation of condensate and dry out phenomenon can be effectively prevented.
  • the first flow space 13 is formed between parallel inclined first channels 11 to form a space through which fuel and condensate flow, and the first channel 11 has an angle exceeding 0° and 90°. As the angle is less than 90°, the first flow space 13 is also formed to be inclined to have the same angle of more than 0° and less than 90°. Therefore, the condensate can be transported to the high temperature part along the first flow space 13 to alleviate the stagnation phenomenon, and since it also flows through the first space separation part 12, the stagnation phenomenon can be further minimized. there is. Therefore, the first flow space 13 is formed in a plurality of rows on the entire separator plate while being inclined and parallel, and can ensure a smooth supply of fuel to the entire electrode, through which the electrode The reaction area can be maximized to increase power production efficiency.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 연료전지 분리판에 관한 것으로, 더욱 상세하게는 분리판의 채널 구조를 경사지게 형성하여 응축수의 이송 및 배출이 원활하게 이루어지도록 하면서, 양측 연료전지분리판 및 공기극분리판이 겹쳐지는 지점이 점접촉되어 최소의 면적을 갖도록 함으로써, 가스확산층이 눌려져 물고임이 발생하고 전극 성능이 저하되는 것을 최소화할 수 있도록 하는 점접촉 채널구조를 갖는 연료전지 분리판에 관한 것이다.

Description

점접촉 채널구조를 갖는 연료전지 분리판
본 발명은 연료전지 분리판에 관한 것으로, 더욱 상세하게는 분리판의 채널 구조를 경사지게 형성하여 응축수의 이송 및 배출이 원활하게 이루어지도록 하면서, 양측 연료극분리판 및 공기극분리판이 겹쳐지는 지점이 점접촉되어 최소의 면적을 갖도록 함으로써, 가스확산층이 눌려져 물고임이 발생하고 전극 성능이 저하되는 것을 최소화할 수 있도록 하는 점접촉 채널구조를 갖는 연료전지 분리판에 관한 것이다.
연료전지는 연료가 가지고 있는 화학에너지를 전기화학적으로 반응시켜 전기에너지로 변환시키는 에너지 변환장치로서, 산업용, 가정용 및 차량용 전력을 공급할 뿐만 아니라 소형의 전기/전자제품, 휴대기기의 전력을 공급하는데에도 이용될 수 있다.
연료전지는 여러 종류가 존재하나 높은 전력 밀도를 갖는 고분자 전해질막 연료전지(PEMFC, Polymer Electrolyte Membrane Fuel Cell)이 주로 사용되고 있으며, 가장 안쪽에 막전극접합체(MEA, Membrane Electrode Assembly)가 위치하고, 막전극접합체에는 수소이온을 이동시켜 줄 수 있는 고체 고분자 전해질막과, 전해질막 양면에 수소와 산소가 반응할 수 있도록 촉매가 도포된 전극층인 캐소드(Cathode) 및 애노드(Anode)로 구성된다.
또한, 막전극접합체(MEA)의 양측으로는 수소 및 산소가 전극으로 확산되도록 하는 가스확산층(GDL)이 형성되며, 가스확산층의 양측에는 도 1에 도시된 바와 같이 수소 및 공기가 공급되는 통로를 형성하는 애노드 분리판 및 캐소드 분리판이 형성된다.
이때, 각 애노드 분리판 및 캐소드 분리판에는 아래 특허문헌과 같이 채널립이 돌출 형성되어 수소, 공기가 각각 유동하는 복수의 통로를 형성하게 되는데, 도 1(b)에 도시된 바와 같이 가스확산층이 양측의 채널립에 의해 눌림에 따라 압축되어 물고임이 발생하고, 물고임이 발생할 경우 가스 공급이 차단되어 반응가능한 전극면적을 감소시키고 이에 따라 성능의 저하가 발생하는 문제가 있었다.
(특허문헌) 등록특허공보 제10-2131702호(2020.07.02. 등록)"연료전지용 분리판 및 이를 포함하는 연료전지 스택"
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로,
본 발명은 분리판의 채널 구조를 경사지게 형성하여 응축수의 이송 및 배출이 원활하게 이루어지도록 하면서, 양측 연료극분리판 및 공기극분리판이 겹쳐지는 지점이 점접촉되어 최소의 면적을 갖도록 함으로써, 가스확산층이 눌려져 물고임이 발생하고 전극 성능이 저하되는 것을 최소화할 수 있도록 하는 연료전지 분리판을 제공하는데 목적이 있다.
본 발명은 앞서 본 목적을 달성하기 위해서 다음과 같은 구성을 가진 실시예에 의해서 구현된다.
본 발명의 일 실시예에 따르면, 본 발명에 따른 연료전지 분리판은 막전극접합체의 양측에 한 쌍이 형성되어 각각 연료 및 공기가 유동하는 통로를 형성하는 연료극분리판 및 공기극분리판을 포함하고, 상기 연료극분리판은 막전극접합체 측으로 돌출되며, 일정 간격 이격되도록 복수개가 형성되어 연료가 유동하는 복수의 통로를 형성하는 제1채널을 포함하며, 상기 공기극분리판은 막전극접합체 측으로 돌출되며, 일정 간격 이격되도록 복수개가 형성되어 공기가 유동하는 복수의 통로를 형성하는 제2채널을 포함하고, 상기 제1채널 및 제2채널은 각각 전극의 길이 방향을 따라 일정 각도 경사지게 형성되며, 서로 다른 각도로 경사지게 형성되어 점접촉하도록 하는 것을 특징으로 한다.
본 발명의 다른 실시예에 따르면, 본 발명에 따른 연료전지 분리판에 있어서, 상기 제1채널은 전극의 길이 방향에 대해 0°초과 90°미만의 각도를 갖도록 경사지게 형성되며, 상기 제2채널은 동일한 길이 방향에 대해 90° 초과 180° 미만의 각도를 갖도록 경사지게 형성되는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 연료전지 분리판에 있어서, 상기 제1채널 및 제2채널은 동일한 각도를 가지며 반대 방향으로 경사지게 형성되는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 연료전지 분리판에 있어서, 상기 제1채널 및 제2채널이 점접촉되는 넓이가 전체 전극 면적의 10 ~ 20%의 범위가 되도록 하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 연료전지 분리판에 있어서, 상기 연료극분리판은 직선형태로 형성되는 상기 제1채널이 복수개로 분할되면서 일정 공간을 형성하며, 제1채널을 따라 일정 간격으로 형성되는 제1공간이격부와; 복수개의 열로 형성되는 제1채널 사이에 형성되어 연료 및 응축수가 유동하는 제1유동공간부;를 포함하고, 상기 공기극분리판은 직선형태로 형성되는 상기 제2채널을 분할하여 일정 공간을 형성하며, 제2채널을 따라 일정 간격으로 형성되는 제2공간이격부와; 복수개의 열로 형성되는 제2채널 사이에 형성되어 공기 및 응축수가 유동하는 제2유동공간부;를 포함하며, 상기 제1,2공간이격부는 연료 또는 공기가 유동하는 방향의 수직 방향으로 각각 제1,2채널에 의해 폐쇄되는 것을 특징으로 한다.
본 발명은 앞서 본 실시예와 하기에 설명할 구성과 결합, 사용관계에 의해 다음과 같은 효과를 얻을 수 있다.
본 발명은 분리판의 채널 구조를 경사지게 형성하여 응축수의 이송 및 배출이 원활하게 이루어지도록 하면서, 양측 연료극분리판 및 공기극분리판이 겹쳐지는 지점이 점접촉되어 최소의 면적을 갖도록 함으로써, 가스확산층이 눌려져 물고임이 발생하고 전극 성능이 저하되는 것을 최소화할 수 있도록 하는 효과가 있다.
도 1은 종래 연료전지 스택 구조체의 문제점을 설명하기 위한 참고도
도 2는 본 발명의 일 실시예에 따른 연료전지 분리판을 나타내는 평면도
도 3은 도 2의 분리판에 의한 점접촉 구조를 설명하기 위한 참고도
도 4는 연료극분리판 및 공기극분리판이 교차되는 상태를 나타내는 참고도
도 5는 분리판의 세부구조를 나타내는 참고도
도 6은 종래 연료극분리판(a), 공기극분리판(b)의 구조 및 수분응축부(c)의 형성 위치를 나타내는 도면
도 7은 종래 다른 구조의 연료극분리판 및 이에 따른 Flooding 형성 과정을 나타내는 도면
도 8은 종래 또 다른 구조의 연료극분리판 및 이에 따른 Flooding 완화 과정을 나타내는 도면
도 9는 도 8의 문제점을 나타내는 도면
*도면에 사용되는 부호의 설명
1: 연료극분리판 11: 제1채널
12: 제1공간이격부 13: 제1유동공간부
3: 공기극분리판 31: 제2채널
32: 제2공간이격부 33: 제2유동공간부
* 종래기술에 관한 부호의 설명
100: 공기극분리판 101: 돌출부
200: 연료극분리판 201: 격벽
300: 기체확산층
이하에서는 본 발명에 따른 점접촉 채널구조를 갖는 연료전지 분리판의 바람직한 실시예들을 첨부된 도면을 참조하여 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하도록 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명의 일 실시예에 따른 점접촉 채널구조를 갖는 연료전지 분리판을 도 2 내지 도 5를 참조하여 설명하면, 상기 연료전지 분리판은 막전극접합체의 양측에 한 쌍이 형성되어 각각 연료 및 공기가 유동하는 통로를 형성하는 연료극분리판(1) 및 공기극분리판(3)을 포함하면서, 상기 연료극분리판(1) 및 공기극분리판(3) 각각은 전극의 길이 방향에 대해 일정 경사를 갖도록 형성되는 제1채널(11), 제2채널(31)을 포함하여 연료, 공기가 유동하는 통로를 형성하도록 한다. 여기서 연료는 수소를 의미할 수 있다.
상기 제1채널(11) 및 제2채널(31)은 전극의 길이 방향(L)에 대해 일정 각도 경사지게 형성되어 응축수가 고이는 것을 방지하고 응축수의 이송 및 배출이 원활하게 이루어지도록 하면서, 특히 제1채널(11) 및 제2채널(31)은 서로 다른 각도로 경사지게 형성되도록 하여 막전극접합체를 사이에 둔 제1채널(11)과 제2채널(31)이 겹쳐지는 부분이 점접촉을 형성하도록 하여 가스확산층의 눌림을 최소화하고 가스확산층의 눌림에 따라 물고임이 발생하고 성능이 감소하는 것을 막을 수 있도록 한다.
앞서 배경기술에서 살펴본 바와 같이 막전극접합체를 사이에 둔 애노드분리판 및 캐소드분리판의 채널립이 맞닿아 가스확산층을 누르는 경우, 도 1(b)에 도시된 바와 같이 전극의 상하 방향에 걸쳐 양측 채널립에 의해 가스확산층이 눌리게 되어 물고임이 발생하고, 이에 따라 전극 면적의 손실에 따른 성능 감소가 발생하는 문제가 있었다.
따라서, 본 발명에서는 도 2에 도시된 바와 같이 연료극분리판(1)의 제1채널(11) 및 공기극분리판(3)의 제2채널(31)이 서로 다른 각도로 경사지게 형성되어 도 3에 도시된 바와 같이 제1채널(11) 및 제2채널(31)이 겹쳐지는 부분(S)이 점접촉을 형성하도록 하여 제1채널(11) 및 제2채널(31)이 겹쳐지는 면적을 최소화할 수 있도록 한다.
이때, 제1채널(11), 제2채널(31)이 전극의 길이방향에 대해 경사지게 형성되는 것을 응축수가 고이지 않고 이송 및 배출될 수 있도록 하기 위함이며, 이에 관한 제1채널(11) 및 제2채널(31)의 상세한 설명은 후술하도록 한다.
특히, 상기 제1채널(11)은 전극의 길이방향(L)에 대해 0°초과 90°미만의 각도를 갖도록 경사지게 형성될 수 있으며, 제2채널(31)은 전극의 길이방향(L)에 대해 90° 초과 180° 미만의 각도를 갖도록 경사지게 형성되어 제1채널(11) 및 제2채널(31)이 서로 반대 방향으로 경사지게 형성되도록 할 수 있다.
따라서, 상기 제1채널(11) 및 제2채널(31)에 의한 공간에 의해 공급되는 연료 및 공기가 전극 전체에 걸쳐 고르게 공급되면서 효율적인 전력의 생성이 이루어지도록 할 수 있고, 이와 동시에 점접촉에 의한 성능 저하 저감 효과를 갖도록 할 수 있다.
또한, 도 4에 도시된 바와 같이 상기 제1채널(11) 및 제2채널(31)의 길이(α), 각도(β)를 적절하게 조절하여 제1채널(11) 및 제2채널(31)의 겹쳐지는 면적을 최소화하면서 지지효과를 유지하도록 할 수 있다.
이때, 상기 제1채널(11) 및 제2채널(31)이 겹쳐지는 면적은 전체 전극 면적의 10 ~ 20%의 범위가 되도록 하는 것이 바람직하고, 더욱 바람직하게는 상기 제1채널(11) 및 제2채널(31)이 전극의 길이방향(L)과 동일한 각도로 경사지게 형성되어 서로 대칭의 형상을 갖도록 할 수 있으며, 이를 통해 더욱 균일한 연료 및 공기의 공급과 접촉면적의 최소화가 이루어지도록 할 수 있다.
상기 연료극분리판(1) 및 공기극분리판(3)에 관하여 더욱 상세하게 설명하면, 상기 연료극분리판(1)은 도 5에 도시된 바와 같이 직선 형태로 형성되는 제1채널(11)이 복수개로 분할되면서 분할되는 공간에 제1공간이격부(12)가 일정 간격으로 복수개 형성되도록 하고, 복수의 열로 형성되는 제1채널(11) 사이에는 연료 및 응축수가 유동하는 제1유동공간부(13)가 형성되도록 할 수 있다. 또한, 상기 공기극분리판(3)은 연료극분리판(1)과 대칭의 형상을 갖도록 반대 반향으로 경사지게 형성될 수 있으며, 연료극분리판(1)과 동일하게 제2공간이격부(32) 및 제2유동공간부(33)를 포함하도록 할 수 있다. 공기극분리판(3)의 제2채널(31), 제2공간이격부(32) 및 제2유동공간부(33)는 제1채널(11), 제1공간이격부(12) 및 제1유동공간부(13)와 방향만 상이할 뿐 동일한 기능과 효과를 가지므로, 이하에서는 제1채널(11), 제1공간이격부(12) 및 제2공간이격부(32)에 대해서만 설명하면, 제2채널(31), 제2공간이격부(32) 및 제2유동공간부(33)에 관한 설명은 생략하도록 한다.
종래 연료극분리판(200)은 도 6에서 보는 바와 같이 평판의 형태로 형성되었으며, 공기입구측의 낮은 온도로 인해 수분이 응축된 수분응축부가 형성되고, 수분응축부의 정체에 따른 Flooding 현상이 발생하게 된다. 이러한 경우 수소의 이동이 막힐 뿐만 아니라 반응 전극의 감소에 따른 전류 밀도의 증가로 공기출구부에 온도가 급격히 상승하는 Hot Spot이 발생되어 전극을 손상시키게 된다.
따라서, 도 7에서 보는 바와 같이 연료극분리판(200)에 격벽(201)을 형성하여 공기극분리판(100) 측에서의 공기의 유동방향과 수직으로 수소의 유동 방향을 형성하는 것을 생각해볼 수 있다. 이러한 경우 도 6에 비하여 Flooding 현상을 완화할 수는 있으나 수소 유로가 전극 방향으로 길게 형성됨에 따라 cold zone에 쉽게 물이 모여 도 6과 같이 Flooding 현상이 발생하는 문제가 있다. 또한, 전극의 길이 방향으로 길게 형성된 연료극분리판(200)은 구조물의 적층에 따른 변형이 쉽게 발생하여 변형된 부분에 응축수가 고일 수 있고, 이에 따라 Flooding 현상이 더욱 쉽게 발생하게 되는 문제가 있다.
또한, 응축수에 의한 정체현상을 완화하기 위해 도 8에서 보는 바와 같이 격벽(201)을 일정 간격 이격되도록 형성하여 패턴 형상을 갖도록 할 수 있으며, 이를 통해 전극과 수직 방향으로의 수소 및 물의 유동이 가능하도록 하여 Flooding 현상을 완화하도록 할 수 있다. 그러나 도 9에서 보는 바와 같이 공기극분리판(100)의 돌출부(101)에 의해 기체확산층(GDL,300)이 눌려 변형이 발생하고 Cross Section에 의해 응축수가 정체되는 현상이 발생하게 되며, 이에 따라 여전히 고온부(공기출구부)에서는 냉각이 어려워 Dry out 현상이 발생하고 이에 따라 연료전지의 성능이 떨어지는 문제가 있다.
따라서, 본 발명에서는 도 5에서 보는 바와 같이 전극의 길이 방향과 경사진 방향으로 연료 및 공기와 함께 응축수가 강제 이송될 수 있는 공간을 형성하도록 하여, 응축수의 정체를 최소화하도록 함과 함께 응축수의 이송을 통한 고온부(공기출구부)의 냉각이 이루어지도록 할 수 있어 Dry out 현상을 완화시킬 수 있게 된다. 또한, 외부 공기 온도가 올라가는 경우에도 응축수의 이송에 의한 냉각으로 냉각 효과를 유지하도록 하여 안정적인 운전이 가능하도록 할 수 있다.
상기 제1채널(11)은 연료극분리판(1)에서 애노드(전극) 측으로 돌출되어 형성되는 구성으로, 수소의 이동경로를 구획하도록 한다. 특히, 상기 제1채널(11)은 도 2 에 도시된 바와 같이 전극의 길이방향(L)과 0°초과 90°미만의 각도로 기울어지도록 형성될 수 있으며, 입구측에서의 응축수가 제1채널(11) 사이의 제1유동공간부(13)를 따라 출구측으로 이송될 수 있도록 한다. 또한, 상기 제1채널(11)은 복수개가 일정간격 이격되도록 일렬로 형성되도록 할 수 있으며, 일렬로 형성되는 제1채널(11) 사이에는 제1공간이격부(12)가 형성되어 연료 및 응축수의 유동이 이루어지도록 할 수 있다. 따라서, 상기 제1채널(11)은 복수개가 일렬로 형성된 상태에서 서로 평행하게 복수의 열을 형성하도록 형성되어 미세패턴 형상을 갖도록 할 수 있으며, 이를 통해 응축수의 정체를 방지하고 강제 이송을 통해 Flooding 및 Dry out 현상을 최소화할 수 있도록 한다. 또한, 상기 제1채널(11)은 일정간격 이격되는 미세패턴 형태로 형성됨에 따라 분리판의 강성을 확보하도록 할 수 있고, 이를 통해 구조 손상을 방지하도록 할 수 있다.
상기 제1공간이격부(12)는 직선형태의 제1채널(11)이 분할되어 형성되는 공간으로, 제1채널(11)을 따라 일렬로 일정 간격을 이루면서 형성되도록 한다. 따라서, 상기 제1공간이격부(12)를 통해 인접한 제1유동공간부(13) 사이에 연료 및 응축수가 이송되도록 할 수 있으며, 이를 통해 연료 및 응축수의 유동이 정체되는 것을 최소화하고 연료의원활한 공급과 응축수의 고온부 이송을 통한 냉각과 Dry out 방지가 효과적으로 이루어지도록 할 수 있다. 또한, 상기 제1공간이격부(12)는 연료의 진행 방향, 즉 제1유동공간부(13)가 형성되는 방향과 수직을 이루는 방향에서 상기 제1채널(11)에 의해 폐쇄되도록 하여 고온부측을 향하는 응축수가 제1채널(11) 사이의 제1유동공간부(13) 전체에 전달될 수 있도록 하여 응축수의 정체에 따른 Flooding 현상과 고온부에 의한 Dry out 현상을 더욱 효과적으로 차단할 수 있도록 한다. 다시 말해, 복수 열의 제1공간이격부(12)가 연료의 진행 방향과 수직을 이루는 일직선 상에서 서로 연통되도록 형성되는 경우 제1공간이격부(12)를 통과하는 응축수가 다음 열의 제1공간이격부(12)로 유통되어 빠져나갈 수 있고, 이렇게 되면 연료 진행 방향의 제1채널(11) 사이는 응축수의 이송이 제대로 이루어지지 않아 응축수의 정체가 발생하며, 이에 따른 Flooding 현상이 발생하게 된다. 그리고 고온부로의 응축수 이송이 제대로 이루어지지 않을 경우 종래와 같이 Dry out 현상이 발생하게 된다. 따라서, 상기 제1공간이격부(12)는 연료가 진행하는 방향과 수직을 이루는 방향에서 제1채널(11)에 의해 폐쇄되도록 하여 제1공간이격부(12)를 통과하는 응축수가 연료의 진행 방향을 따라 제1채널(11) 사이 공간을 유동할 수 있도록 하여 응축수의 정체와 Dry out 현상을 효과적으로 차단하도록 할 수 있다.
상기 제1유동공간부(13)는 평행을 이루는 경사진 제1채널(11) 사이에 형성되어 연료 및 응축수가 유동하는 공간을 형성하는 구성으로, 제1채널(11)이 0°초과 90°미만의 각도를 가짐에 따라 제1유동공간부(13)도 동일한 0°초과 90°미만의 각도를 갖도록 경사지게 형성된다. 따라서, 응축수는 제1유동공간부(13)를 따라 고온부 측으로 이송되면서 정체 현상이 완화되도록 할 수 있으며, 상기 제1공간이격부(12)를 통해서도 유동이 이루어지므로 정체 현상이 더욱 최소화되도록 할 수 있다. 따라서, 상기 제1유동공간부(13)는 경사진 상태로 평행을 이루면서 전체 분리판 상에 복수의 열을 이루어 형성되고, 전체 전극에 대해 연료의 원활한 공급이 이루어지도록 할 수 있으며, 이를 통해 전극의 반응 면적을 극대화하여 전력 생산 효율을 높이도록 할 수 있다.
이상에서, 출원인은 본 발명의 다양한 실시예들을 설명하였지만, 이와 같은 실시예들은 본 발명의 기술적 사상을 구현하는 일 실시예일 뿐이며, 본 발명의 기술적 사상을 구현하는 한 어떠한 변경예 또는 수정예도 본 발명의 범위에 속하는 것으로 해석되어야 한다.

Claims (5)

  1. 막전극접합체의 양측에 한 쌍이 형성되어 각각 연료 및 공기가 유동하는 통로를 형성하는 연료극분리판 및 공기극분리판을 포함하고,
    상기 연료극분리판은,
    막전극접합체 측으로 돌출되며, 일정 간격 이격되도록 복수개가 형성되어 연료가 유동하는 복수의 통로를 형성하는 제1채널을 포함하며,
    상기 공기극분리판은,
    막전극접합체 측으로 돌출되며, 일정 간격 이격되도록 복수개가 형성되어 공기가 유동하는 복수의 통로를 형성하는 제2채널을 포함하고,
    상기 제1채널 및 제2채널은 각각 전극의 길이 방향을 따라 일정 각도 경사지게 형성되며, 서로 다른 각도로 경사지게 형성되어 점접촉하도록 하는 것을 특징으로 하는 연료전지 분리판.
  2. 제 1 항에 있어서, 상기 제1채널은
    전극의 길이 방향에 대해 0°초과 90°미만의 각도를 갖도록 경사지게 형성되며,
    상기 제2채널은 동일한 길이 방향에 대해 90° 초과 180° 미만의 각도를 갖도록 경사지게 형성되는 것을 특징으로 하는 연료전지 분리판.
  3. 제 2 항에 있어서, 상기 제1채널 및 제2채널은
    동일한 각도를 가지며 반대 방향으로 경사지게 형성되는 것을 특징으로 하는 연료전지 분리판.
  4. 제 2 항에 있어서,
    상기 제1채널 및 제2채널이 점접촉되는 넓이가 전체 전극 면적의 10 ~ 20%의 범위가 되도록 하는 것을 특징으로 하는 연료전지 분리판.
  5. 제 1 항에 있어서, 상기 연료극분리판은
    직선형태로 형성되는 상기 제1채널이 복수개로 분할되면서 일정 공간을 형성하며, 제1채널을 따라 일정 간격으로 형성되는 제1공간이격부와;
    복수개의 열로 형성되는 제1채널 사이에 형성되어 연료 및 응축수가 유동하는 제1유동공간부;를 포함하고,
    상기 공기극분리판은,
    직선형태로 형성되는 상기 제2채널을 분할하여 일정 공간을 형성하며, 제2채널을 따라 일정 간격으로 형성되는 제2공간이격부와;
    복수개의 열로 형성되는 제2채널 사이에 형성되어 공기 및 응축수가 유동하는 제2유동공간부;를 포함하며,
    상기 제1,2공간이격부는,
    연료 또는 공기가 유동하는 방향의 수직 방향으로 각각 제1,2채널에 의해 폐쇄되는 것을 특징으로 하는 연료전지 분리판.
PCT/KR2023/015830 2022-11-08 2023-10-13 점접촉 채널구조를 갖는 연료전지 분리판 WO2024101686A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0147673 2022-11-08
KR1020220147673A KR20240066646A (ko) 2022-11-08 2022-11-08 점접촉 채널구조를 갖는 연료전지 분리판

Publications (1)

Publication Number Publication Date
WO2024101686A1 true WO2024101686A1 (ko) 2024-05-16

Family

ID=91032635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015830 WO2024101686A1 (ko) 2022-11-08 2023-10-13 점접촉 채널구조를 갖는 연료전지 분리판

Country Status (2)

Country Link
KR (1) KR20240066646A (ko)
WO (1) WO2024101686A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170003275A (ko) * 2015-06-30 2017-01-09 주식회사 엘지화학 분리판, 이의 제조방법 및 이를 포함하는 연료전지 스택
KR20180018009A (ko) * 2016-08-12 2018-02-21 주식회사 엘지화학 분리판, 및 이를 포함하는 연료전지 스택
KR20200029707A (ko) * 2018-09-11 2020-03-19 현대자동차주식회사 연료전지용 기체확산층 및 이를 포함하는 연료전지 단위셀
KR102147109B1 (ko) * 2019-05-27 2020-08-24 서울대학교산학협력단 고분자 전해질막 연료전지의 분리판
KR20220071651A (ko) * 2020-11-24 2022-05-31 테라릭스 주식회사 연료전지 애노드 분리판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170003275A (ko) * 2015-06-30 2017-01-09 주식회사 엘지화학 분리판, 이의 제조방법 및 이를 포함하는 연료전지 스택
KR20180018009A (ko) * 2016-08-12 2018-02-21 주식회사 엘지화학 분리판, 및 이를 포함하는 연료전지 스택
KR20200029707A (ko) * 2018-09-11 2020-03-19 현대자동차주식회사 연료전지용 기체확산층 및 이를 포함하는 연료전지 단위셀
KR102147109B1 (ko) * 2019-05-27 2020-08-24 서울대학교산학협력단 고분자 전해질막 연료전지의 분리판
KR20220071651A (ko) * 2020-11-24 2022-05-31 테라릭스 주식회사 연료전지 애노드 분리판

Also Published As

Publication number Publication date
KR20240066646A (ko) 2024-05-16

Similar Documents

Publication Publication Date Title
WO2017003116A1 (ko) 분리판, 이의 제조방법 및 이를 포함하는 연료전지 스택
RU2262160C2 (ru) Блок топливных элементов на твердом полимерном электролите, батарея топливных элементов и способ эксплуатации блока топливных элементов
RU2269842C2 (ru) Блок топливных элементов на твердом полимерном электролите, батарея топливных элементов и способ подачи химически активного газа в топливный элемент
ITMI990829A1 (it) Cella a combustibile raffreddata mediante iniezione diretta di acqua liquida
US11108059B2 (en) Bipolar plate having a variable width of the reaction gas channels in the inlet region of the active region, fuel-cell stack and fuel-cell system having bipolar plates of this type, as well as a vehicle
WO2017022978A1 (ko) 분리판, 및 이를 포함하는 연료전지 스택
WO2020027400A1 (ko) 연료전지용 분리판 및 이를 포함하는 연료전지 스택
KR20170050689A (ko) 분리판 및 이를 포함하는 연료전지 스택
US9065088B2 (en) Modification to stampable flowfields to improve flow distribution in the channels of PEM fuel cells
WO2024101686A1 (ko) 점접촉 채널구조를 갖는 연료전지 분리판
CN101286568A (zh) 质子交换膜燃料电池出口中恒定的通道横截面
WO2018030778A1 (ko) 분리판, 및 이를 포함하는 연료전지 스택
WO2011090246A1 (ko) 보조유동유로를 가지는 연료전지용 분리판
KR102147109B1 (ko) 고분자 전해질막 연료전지의 분리판
WO2021070979A1 (ko) 수소연료전지 스택용 금속분리판의 제조방법
WO2014104732A1 (ko) 연료전지용 분리판 및 이를 포함하는 연료전지
KR102516958B1 (ko) 연료전지 애노드 분리판
US7816050B2 (en) Unit cell header flow enhancement
CN102714321A (zh) 燃料电池及具有燃料电池的车辆
WO2017146359A1 (ko) 연료전지 분리판 및 이를 갖는 연료전지 스택
US6969564B2 (en) Fuel cell stack
WO2018143610A1 (ko) 연료전지 스택
WO2018021773A1 (ko) 분리판, 및 이를 포함하는 연료전지 스택
WO2018101754A1 (ko) 분리판 및 이를 포함하는 연료전지 스택
WO2023128447A1 (ko) 구조적 변형이 방지되는 고체산화물 연료전지용 집전체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888949

Country of ref document: EP

Kind code of ref document: A1