WO2024101553A1 - 바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템 - Google Patents

바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템 Download PDF

Info

Publication number
WO2024101553A1
WO2024101553A1 PCT/KR2023/005087 KR2023005087W WO2024101553A1 WO 2024101553 A1 WO2024101553 A1 WO 2024101553A1 KR 2023005087 W KR2023005087 W KR 2023005087W WO 2024101553 A1 WO2024101553 A1 WO 2024101553A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
redox flow
vanadium redox
anode
cathode
Prior art date
Application number
PCT/KR2023/005087
Other languages
English (en)
French (fr)
Inventor
안성배
홍성주
한기창
김형준
김태형
Original Assignee
보성파워텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 보성파워텍 주식회사 filed Critical 보성파워텍 주식회사
Publication of WO2024101553A1 publication Critical patent/WO2024101553A1/ko

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a deterioration diagnosis and management system for vanadium redox flow batteries.
  • vanadium redox flow batteries which use vanadium as an active material, are being studied as a power storage system for smooth power supply from renewable energy, load leveling, and emergency power.
  • the charge/discharge reaction of this vanadium redox-flow battery changes the tetravalent vanadium ions (VO 2+ ) into pentavalent (VO 2+ ) at the anode and the trivalent vanadium ions (V 3+ ) into 2 at the cathode during charging . It is converted to (V 2+ ) and charging proceeds, and during discharging, the valency of the vanadium ion changes and discharging proceeds.
  • the existing deterioration diagnosis and management system for vanadium redox flow batteries is related to the state of the electrolyte stored and managed internally during the operation of the vanadium redox flow battery, due to the crossover phenomenon and side reactions during overcharging.
  • There were various problems such as generation of hydrogen gas, precipitation of vanadium due to side reactions during overdischarge, and occurrence of oxidation reaction when in contact with air.
  • the existing deterioration diagnosis and management system for vanadium redox flow batteries is related to the state of the electrolyte stored and managed internally during the operation of the vanadium redox flow battery, and the efficiency and management of the system itself due to deterioration of the electrolyte.
  • the capacity may decrease and the entire system may be damaged, there is a problem of not being able to effectively monitor the condition of the electrolyte and diagnose and manage overall battery deterioration.
  • the present invention was created to solve the above problems, and the purpose of the present invention is to monitor and manage the status of the electrolyte continuously used in the normal charging and discharging process of the vanadium redox flow battery in real time, and furthermore, The goal is to provide technology that can efficiently diagnose and manage deterioration of the battery itself.
  • a deterioration diagnosis and management system for a vanadium redox flow battery includes a positive electrode electrolyte tank in which a positive electrode electrolyte is stored; A cathode electrolyte tank storing the cathode electrolyte solution; The anode electrolyte tank is connected to form a first electrolyte circulation line to enable electrolyte intake from the anode electrolyte tank and electrolyte discharge to the anode electrolyte tank, and is connected to the cathode electrolyte tank to form a second electrolyte circulation line.
  • a cathode electrolyte pump connected to one side of a first electrolyte circulation line that supplies electrolyte from the anode electrolyte tank to the stack and supplies electrolyte to the anode in the stack;
  • a cathode electrolyte pump connected to one side of the second electrolyte circulation line on the line that receives the electrolyte from the cathode electrolyte tank to the stack and supplies the electrolyte to the cathode in the stack;
  • Deterioration diagnosis of a vanadium redox flow battery including a In the management system, an open circuit voltage detection unit connected to the anode electrolyte tank and the cathode electrolyte
  • the battery management unit receives first detection information about the real-time open circuit voltage value from the open circuit voltage detection unit, and receives second detection information about the electrical conductivity value of the electrolyte in the anode electrolyte tank in real time from the electrolyte conductivity detection unit.
  • a sensing information receiving part that receives sensing information;
  • a reference information storage portion storing reference information regarding the reference value of electrical conductivity of the electrolyte according to the preset open circuit voltage value; And based on the first detection information and the second detection information received through the detection information receiving part and the reference information stored in the reference information storage part, the electrical conductivity standard value of the electrolyte according to the detected open circuit voltage value and It includes a state determination part that determines whether the error between the detected electrical conductivity values of the electrolyte falls within the normal range of -5% or more and +5% or less.
  • the status determination part is normal if the error between the standard value of the electrical conductivity of the electrolyte according to the standard information according to the detected open circuit voltage value and the detected electrical conductivity value of the electrolyte falls within the normal range of 5% or more and +5% or less. It is determined to be in a normal state, and in the remaining cases, it is judged to be in an abnormal state. If the battery management unit determines that it is in a normal state through the state determination part, it operates the anode electrolyte pump and the cathode electrolyte pump according to preset battery operation information.
  • the charging or discharging operation of the vanadium redox flow battery is controlled to operate normally, and if an abnormal state is determined through the status determination part, the operation of the anode electrolyte pump and the cathode electrolyte pump are terminated to charge the vanadium redox flow battery. Or, it further includes an operation control part that causes the discharging operation to be stopped.
  • the operation control part inputs and generates a work drive signal through an input means
  • the operating state of the anode electrolyte pump and the cathode electrolyte pump is based on the results determined through the state determination part at the time of signal reception. It determines whether to initially proceed with the charging or discharging of the vanadium redox flow battery through control, and the operation control part determines whether to initially proceed with the charging or discharging of the vanadium redox flow battery according to preset battery operation information.
  • the anode electrolyte is immediately removed. The operation of the pump and the cathode electrolyte pump is terminated so that the charging or discharging operation of the vanadium redox flow battery is stopped.
  • the battery management unit generates and outputs electrolyte abnormality status notification information when the charging or discharging operation of the vanadium redox flow battery is stopped by terminating the operation of the anode electrolyte pump and the cathode electrolyte pump through the operation control unit. It further includes a status notification portion that is output through a means or transmitted to a preset management terminal.
  • the status of the electrolyte used continuously during the normal charging and discharging process of the vanadium redox flow battery can be monitored in real time to identify and manage the status in real time.
  • Figure 1 is a block diagram showing the configuration of a deterioration diagnosis and management system for a vanadium redox flow battery according to the present invention.
  • Figure 2 is a graph showing the change in open circuit voltage and electrical conductivity of the electrolyte during normal performance of one cycle of charging and discharging according to the deterioration diagnosis and management system of the vanadium redox flow battery of the present invention.
  • Figure 3 is a graph showing changes in electrical conductivity and charging or discharging voltage during normal performance of one cycle of charging and discharging work according to the deterioration diagnosis and management system of the vanadium redox flow battery of the invention.
  • the deterioration diagnosis and management system 100 of the vanadium redox flow battery 10 of the present invention includes an open circuit voltage detection unit 110; Electrolyte conductivity detection unit 120; and a battery management unit 130.
  • the vanadium redox flow battery (10, VRFB, Vanadium Redox Flow Battery), which is subject to degradation diagnosis and management by the degradation diagnosis and management system 100 of the present invention and has an interconnected structure, is shown in Figure 1. As shown, it includes a positive electrolyte tank 11, a negative electrolyte tank 12, a stack 13, a positive electrolyte pump 14, and a negative electrolyte pump 15.
  • the positive electrolyte tank 11 corresponds to an electrolyte receiving means in which the positive electrode electrolyte is stored
  • the negative electrolyte tank 12 corresponds to an electrolyte receiving means in which the negative electrolyte is stored.
  • the stack 13 is a structure in which cells and bipolar plates including an anode, a separator, and a cathode are repeatedly stacked, and is specifically composed of a current collector (BP, bipolar plate)-electrode-diaphragm-electrode-current collector. cells are formed, and dozens of these cells are joined together to form a stack.
  • BP current collector
  • carbon felt or carbon cloth is used as the electrode, which serves to provide a site where a redox reaction can occur and a passage for generated electrons, and must have low resistance and good redox reaction efficiency.
  • the diaphragm is a cation exchange membrane or an anion exchange membrane, has low membrane resistance, and contains four types of vanadium ions (V 2+ , V 3+ , VO 2 + , VO) used as the electrolyte of the vanadium redox flow battery 10. 2+ ) must have low permeability.
  • the current collector since the current collector must allow current to flow well, it must have almost no resistance and must have high durability against positive and negative electrolytes in charge and discharge states.
  • This stack 13 is connected to the anode electrolyte tank 11 to form a first electrolyte circulation line, and the first electrolyte circulation line is such that the electrolyte can be obtained from the anode electrolyte tank 11 to the stack 13. It is configured through a provided water intake line and a water outlet line provided so that electrolyte can be discharged from the stack 13 to the anode electrolyte tank 11.
  • the stack 13 is connected to the cathode electrolyte tank 12 to form a second electrolyte circulation line, and the second electrolyte circulation line can receive electrolyte from the cathode electrolyte tank 12 to the stack 13. It is configured through an inlet line provided so that the electrolyte can be discharged from the stack 13 to the cathode electrolyte tank 12.
  • the anode electrolyte pump 14 is connected to one side of the line that supplies the electrolyte from the anode electrolyte tank 11 to the stack 13 in the first electrolyte circulation line to pump the electrolyte from the anode electrolyte tank 11 to the stack 13. ) Provides a certain output pressure to be supplied to the anode.
  • the cathode electrolyte pump 15 is connected to one side of the line that supplies the electrolyte from the cathode electrolyte tank 12 to the stack 13 in the second electrolyte circulation line to pump the electrolyte in the cathode electrolyte tank 12 into the stack 13. It provides a certain output pressure to be supplied to my cathode.
  • the vanadium redox flow battery 10 with this configuration shows changes in current and voltage as shown in FIG. 2 based on 1 cycle during charging or discharging.
  • the system 100 of the present invention which is designed to diagnose and manage the deterioration of the vanadium redox flow battery 10, includes a battery management system (BMS) and a power system (PCS) connected to the existing vanadium redox flow battery 10.
  • BMS battery management system
  • PCS power system
  • An integrated system that can be interoperable can be built through additional connections with the Conversion System and EMS (Energy Management System), and depending on implementation, it can be implemented as a detailed system that operates within the BMS (Battery Management System).
  • the open circuit voltage detection unit 110 is connected to the anode electrolyte tank 12 and the cathode electrolyte tank 12 and detects the open circuit voltage (OCV) of the vanadium redox flow battery 10.
  • the open circuit voltage detection unit 110 is connected to each of the anode electrolyte tank 12 and the cathode electrolyte tank 12 by having a piping structure, and circulates the electrolyte using a small pump provided by itself and fills the electrolyte. Measure the voltage in the no-load state.
  • the open circuit voltage detection unit 110 converts the open circuit voltage (OCV) of the vanadium redox flow battery 10 into information in real time, generates it as first detection information, and then detects the battery as described later. It is continuously transmitted to the management unit 130.
  • OCV open circuit voltage
  • the electrolyte conductivity detection unit 120 is connected to the anode electrolyte tank 11 and detects the electrical conductivity of the electrolyte stored in the anode electrolyte tank 11.
  • the electrolyte conductivity detection unit 120 calculates in real time the level of electrical conductivity of the electrolyte stored in the anode electrolyte tank 11 constituting the vanadium redox flow battery 10 and generates it as second detection information. Then, it is continuously transmitted to the battery management unit 130, which will be explained later.
  • the battery management unit 130 controls the operating status of the anode electrolyte pump 14 and the cathode electrolyte pump 15 based on the detection information detected through the open circuit voltage detection unit 110 and the electrolyte conductivity detection unit 120. Controls whether the charging or discharging operation of the vanadium redox flow battery (10) progresses.
  • the battery management unit 130 includes a detection information receiving unit 131, a standard information storage unit 132, a status determination unit 133, an operation control unit 134, and a status notification unit 135.
  • the detection information receiving unit 131 receives first detection information about the real-time open circuit voltage value of the vanadium redox flow battery 10 from the open circuit voltage detection unit 110, and the electrolyte conductivity detection unit 120 It is responsible for a communication function to receive second detection information about the electrical conductivity value of the electrolyte in the anode electrolyte tank 11 in real time.
  • the reference information storage portion 132 corresponds to a database space in which reference information regarding the reference value of the electrical conductivity of the electrolyte according to the preset open circuit voltage value is stored.
  • the standard information regarding the standard value of electrical conductivity of the electrolyte according to the preset open circuit voltage value is obtained by dissolving the conductivity standard solution (0.7456 g of 0.01M KCI solution) in water (2 ⁇ s/cm or less) at 25°C to make 1,000 ml.
  • the standard electrical conductivity value measured at 25°C corresponds to 1,409 ⁇ s/cm.
  • the state determination unit 133 determines the detected open circuit voltage based on the first and second detection information received through the detection information receiving unit 131 and the reference information stored in the reference information storage section 132. Analyze the error between the standard electrical conductivity value of the electrolyte and the detected electrical conductivity value of the electrolyte according to the standard information according to the value.
  • the state determination part 133 determines that the error between the reference value of the electrical conductivity of the electrolyte according to the detected open circuit voltage value and the detected electrical conductivity value of the electrolyte is within the normal range of -5% or more to +5% or less. If the error falls within the normal range of -5% or more to +5% or less, it is judged to be in a normal state, and in the remaining cases, it is judged to be in an abnormal state.
  • the operation control part 134 when the operation control part 134 is judged to be in a normal state through the state determination part 133 (the reference value of the electrical conductivity of the electrolyte according to the detected open circuit voltage value and the electrical conductivity value of the detected electrolyte If the error between the two is within the normal range of -5% or more to +5% or less), the anode electrolyte pump (14) and the cathode electrolyte pump (15) are operated to operate the vanadium redox flow battery (10) according to the preset battery operation information. ) Controls the charging or discharging operation to operate normally.
  • the operation control part 134 is determined to be in an abnormal state through the state determination part 133 (between the reference value of the electrical conductivity of the electrolyte according to the detected open circuit voltage value and the electrical conductivity value of the detected electrolyte) (If the error is within the abnormal range of less than -5% or more than +5%), the operation of the anode electrolyte pump (14) and the cathode electrolyte pump (15) is terminated to charge or discharge the vanadium redox flow battery (10). This must be stopped immediately.
  • the change in open circuit voltage (OCV) and electrical conductivity of the electrolyte solution of the redox flow battery 10 when the charging or discharging operation of the vanadium redox flow battery 10 is performed in a normal state is as shown in Figure 2. It shows the same pattern.
  • the blue graph in Figure 3 represents the average charging voltage that changes correspondingly to each change in electrical conductivity
  • the orange graph represents the average discharge voltage that changes to correspond to the change in electrical conductivity. means.
  • the standard information to be stored in the standard information storage portion 132 can be set.
  • the input means signal input button, keyboard, mouse, voice input device, or touch display, etc.
  • the operation control unit 134 is charging or discharging the vanadium redox flow battery through control of the operating states of the anode electrolyte pump 14 and the cathode electrolyte pump 15, based on the results determined through the state determination part 133 at the time of signal reception. Decide whether to proceed with the work initially.
  • the operation control unit 134 operates the anode electrolyte pump 14 and the cathode.
  • the electrolyte pump 15 is operated for the first time so that charging or discharging of the vanadium redox flow battery 10 can begin normally according to preset battery operation information.
  • the operation control unit 134 operates the anode electrolyte pump 14 and The operation of the cathode electrolyte pump 15 is not started in the first place, and the charging or discharging operation of the vanadium redox flow battery 10 is not started from the beginning, so that deterioration can be managed efficiently.
  • the operation control unit 134 determines whether to initially proceed with the charging or discharging operation of the vanadium redox flow battery 10 and charges or discharges the vanadium redox flow battery 10 according to preset battery operation information. Even after it is decided to control the operation to operate normally, the operation control part 134 continuously monitors the results determined through the status determination part 133 in real time.
  • the operation control part 134 continuously operates the status determination part 133 after the initial determination of whether to proceed or not is made so that the charging or discharging operation of the vanadium redox flow battery 10 operates normally.
  • the operation control section 134 determines that the results determined through the status judgment section 133 are in an abnormal state in real time. The operation of the anode electrolyte pump 14 and the cathode electrolyte pump 15 is immediately terminated so that the charging or discharging operation of the vanadium redox flow battery 10 is stopped so that deterioration can be efficiently managed.
  • the status notification part 135 terminates the operation of the anode electrolyte pump 14 and the cathode electrolyte pump 15 through the operation control part 134, so that the charging or discharging operation of the vanadium redox flow battery 10 is completed. In case of interruption, electrolyte abnormality status notification information is generated.
  • the status notification part 135 when the status notification part 135 generates notification information on abnormal electrolyte conditions, it is a component of the deterioration diagnosis and management system 100 and provides information through output means (monitor, speaker, vibration output device, warning light, etc.) provided on the other side. Actions such as outputting a specific message or image, making a specific voice or notification sound sound, or making a specific light visible are performed so that the administrator can quickly and easily recognize the occurrence of notification information and perform immediate maintenance of the electrolyte. so that it can be accomplished.
  • output means such as outputting a specific message or image, making a specific voice or notification sound sound, or making a specific light visible are performed so that the administrator can quickly and easily recognize the occurrence of notification information and perform immediate maintenance of the electrolyte. so that it can be accomplished.
  • the status notification part 135 generates electrolyte abnormality status notification information and transmits it to a preset management terminal, so that even if the manager is far away, the occurrence of notification information is easily and quickly recognized through the terminal to facilitate maintenance of the electrolyte. Make sure it can be done immediately.
  • Detection information receiving part 132 Standard information storage part

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 양극 전해액 탱크; 음극 전해액 탱크; 스택; 양극 전해액 펌프; 및 음극 전해액 펌프;를 포함하는 바나듐 레독스 흐름전지의 열화 진단 및 관리를 위해, 상기 양극 전해액 탱크 및 상기 음극 전해액 탱크와 연결되어 바나듐 레독스 흐름전지의 개방회로전압(OCV, Open Circuit Voltage)을 감지하는 개방회로전압 감지부; 상기 양극 전해액 탱크와 연결되어 상기 양극 전해액 탱크 내 저장된 전해액의 전기전도도를 감지하는 전해액 전도도 감지부; 및 상기 개방회로전압 감지부 및 전해액 전도도 감지부를 통해 감지되는 감지정보를 기반으로 상기 양극 전해액 펌프 및 상기 음극 전해액 펌프의 작동상태를 제어하여 바나듐 레독스 흐름전지의 충전 또는 방전 작업의 진행여부를 조절하는 배터리 관리부;를 포함하는 시스템에 관한 것이다.

Description

바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템
본 발명은 바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템에 관한 것이다.
최근, 태양광, 지열, 풍력 등의 재생에너지를 이용하는 발전시스템이 에너지 밀도가 낮고, 간헐적이라는 단점이 부각됨에 따라 원활한 전력의 공급 및 운전을 위해 대용량 전력 저장 기술이 요구되고 있으며, 바나듐 레독스 흐름 전지(VRFB, vanadium redox flow battery)는 그 중의 하나로 연구가 활발히 진행되고 있다.
특히, 활물질로 바나듐을 사용하는 바나듐 레독스 흐름 전지는 재생 에너지의 원활한 전력공급과 부하 평준화, 비상용 전력을 위한 전력 저장 시스템으로 연구가 진행되고 있다.
이러한 바나듐 레독스-흐름 전지의 충·방전 반응은 충전 시에는 양극에서 4가 바나듐 이온(VO2+)이 5가(VO2 +)로, 음극에서는 3가 바나듐 이온(V3+)이 2가(V2+)로 변환되어 충전이 진행되며, 방전 시에는 역으로 바나듐 이온의 가수가 변화하여 방전이 진행된다.
이 전지는 레독스 쌍의 조성이 충방전에 따라 가역적으로 변화하는 것과는 대조적으로 전극에서는 단순히 전자의 주고 받음만 행해지기 때문에 전극 자체의 변화가 거의 없고 전극과 활물질이 분리되어 있어 복잡한 전극반응이 일어나지 않으며 전지의 수명이 길고 용량 증설이 비교적 용이한 장점이 있다.
이에 따라, 바나듐 레독스 흐름전지의 사용에 따른 상태 노후화 및 이상 발생의 문제를 즉각적으로 관리하고, 해당 전지의 작동 효율을 고도하게 장기간 유지하기 위한 각종 기술적 시도가 다양한 측면에서 이루어지고 있는 실정이다.
이와 관련하여, 흐름전지 시스템의 전해조 및 스택부를 온도 변화를 관리함으로서 승온 및 냉각에 필요한 에너지를 절감하여 시스템 효율이 향상되도록 하기 위해 마련된 종래기술에 대한 선행문헌에는 대한민국 공개특허공보 제10-2017-0014550호의 "레독스 흐름전지 시스템"(이하, '종래기술'이라고 함)이 있다.
하지만, 종래기술을 비롯한 기존의 바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템은, 바나듐 레독스 흐름전지의 작동 과정에서 내부에 저장 관리되는 전해액의 상태와 관련하여 크로스오버 현상, 과충전시 부반응에 의한 수소가스 등 발생, 과방전시 부반응에 의한 바나듐 석출, 공기의 접촉 시 산화 반응 발생 등의 다양한 문제점이 있었다.
특히, 종래기술을 비롯한 기존의 바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템은, 바나듐 레독스 흐름전지의 작동 과정에서 내부에 저장 관리되는 전해액의 상태와 관련하여 전해액의 변질로 시스템 자체의 효율 및 용량이 감소하고 나아가 시스템 전체가 파손될 수 있는 위험성을 가지고 있음에도 전해액의 상태의 모니터링에서부터 전체적인 전지의 열화 진단 및 관리를 효과적으로 수행하지 못하는 문제점이 있었다.
본 발명은 상기 문제점을 해결하기 위해 창작된 것으로써, 본 발명의 목적은 바나듐 레독스 흐름전지의 정상적인 충전 및 방전 작업의 수행과정에서 지속 사용되는 전해액의 상태를 실시간으로 모니터링하여 관리하고, 더 나아가 전지 자체의 열화 진단 및 관리가 효율적으로 이루어질 수 있는 기술을 제공하는데 있다.
상기 목적을 달성하기 위하여 본 발명에 따른 바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템은, 양극 전해액이 저장된 양극 전해액 탱크; 음극 전해액이 저장된 음극 전해액 탱크; 상기 양극 전해액 탱크와 제1전해액 순환라인을 형성하도록 연결되어 상기 양극 전해액 탱크로부터의 전해액 입수 및 상기 양극 전해액 탱크로의 전해액 출수가 가능하며, 상기 음극 전해액 탱크와 제2전해액 순환라인을 형성하도록 연결되어 상기 음극 전해액 탱크로부터의 전해액 입수 및 상기 음극 전해액 탱크로의 전해액 출수가 가능하고, 양극, 분리막 및 음극을 포함하는 셀과 바이폴라 플레이트가 반복 적층되는 스택; 제1전해액 순환라인 중 상기 양극 전해액 탱크로부터 상기 스택으로 전해액을 입수시키는 라인상 일측에 연결되어 전해액을 상기 스택 내 양극에 공급하는 양극 전해액 펌프; 및 제2전해액 순환라인 중 상기 음극 전해액 탱크로부터 상기 스택으로 전해액을 입수시키는 라인상 일측에 연결되어 전해액을 상기 스택 내 음극에 공급하는 음극 전해액 펌프;를 포함하는 바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템에 있어서, 상기 양극 전해액 탱크 및 상기 음극 전해액 탱크와 연결되어 바나듐 레독스 흐름전지의 개방회로전압(OCV, Open Circuit Voltage)을 감지하는 개방회로전압 감지부; 상기 양극 전해액 탱크와 연결되어 상기 양극 전해액 탱크 내 저장된 전해액의 전기전도도를 감지하는 전해액 전도도 감지부; 및 상기 개방회로전압 감지부 및 전해액 전도도 감지부를 통해 감지되는 감지정보를 기반으로 상기 양극 전해액 펌프 및 상기 음극 전해액 펌프의 작동상태를 제어하여 바나듐 레독스 흐름전지의 충전 또는 방전 작업의 진행여부를 조절하는 배터리 관리부;를 포함한다.
여기서, 상기 배터리 관리부는, 상기 개방회로전압 감지부로부터 실시간 개방회로전압 수치에 관한 제1감지정보를 수신하고, 상기 전해액 전도도 감지부로부터 실시간 상기 양극 전해액 탱크 내 전해액의 전기전도도 수치에 관한 제2감지정보를 수신하는 감지정보 수신부분; 기 설정된 개방회로전압 수치에 따른 전해액의 전기전도도 기준수치에 관한 기준정보가 저장된 기준정보 저장부분; 및 상기 감지정보 수신부분을 통해 수신된 제1감지정보와 제2감지정보 및 상기 기준정보 저장부분에 저장된 기준정보를 기반으로, 감지된 개방회로전압 수치에 따른 기준정보상 전해액의 전기전도도 기준수치와 감지된 전해액의 전기전도도 수치간의 오차가 -5% 이상 내지 +5% 이하의 정상범위 내에 해당하는지 여부를 판단하는 상태 판단부분;을 포함한다.
또한, 상기 상태 판단부분은 감지된 개방회로전압 수치에 따른 기준정보상 전해액의 전기전도도 기준수치와 감지된 전해액의 전기전도도 수치간의 오차가 ­5% 이상 내지 +5% 이하의 정상범위 내에 해당할 경우 정상 상태로 판단하고, 나머지의 경우 비정상 상태로 판단하며, 상기 배터리 관리부는, 상기 상태 판단부분을 통해 정상 상태로 판단될 경우 상기 양극 전해액 펌프 및 상기 음극 전해액 펌프를 작동시켜 기 설정된 배터리 운용정보에 따라 바나듐 레독스 흐름전지의 충전 또는 방전 작업이 정상 작동되도록 제어하며, 상기 상태 판단부분을 통해 비정상 상태로 판단될 경우 상기 양극 전해액 펌프 및 상기 음극 전해액 펌프의 작동을 종료시켜 바나듐 레독스 흐름전지의 충전 또는 방전 작업이 중단되도록 하는 운용 제어부분;을 더 포함한다.
아울러, 상기 운용 제어부분은 입력수단을 통해 입력 생성된 작업구동 신호가 수신될 경우 신호 수신 시점에서의 상기 상태 판단부분을 통해 판단되는 결과를 기반으로 상기 양극 전해액 펌프 및 상기 음극 전해액 펌프의 작동상태 제어를 통한 바나듐 레독스 흐름전지의 충전 또는 방전 작업의 최초 진행여부를 결정하고, 상기 운용 제어부분은 바나듐 레독스 흐름전지의 충전 또는 방전 작업의 최초 진행여부의 결정이 기 설정된 배터리 운용정보에 따라 바나듐 레독스 흐름전지의 충전 또는 방전 작업이 정상 작동되도록 제어하도록 결정된 후 충전 또는 방전 작업이 완료되는 시점사이에 실시간으로 상기 상태 판단부분을 통해 판단되는 결과가 비정상 상태로 판단될 경우 즉시 상기 양극 전해액 펌프 및 상기 음극 전해액 펌프의 작동을 종료시켜 바나듐 레독스 흐름전지의 충전 또는 방전 작업이 중단되도록 한다.
그리고 상기 배터리 관리부는, 상기 운용 제어부분을 통해 상기 양극 전해액 펌프 및 상기 음극 전해액 펌프의 작동을 종료시켜 바나듐 레독스 흐름전지의 충전 또는 방전 작업이 중단될 경우, 전해액 이상상태 알림 정보를 생성하여 출력수단을 통해 출력 또는 기 설정된 관리단말에 전송하는 상태 알림부분;을 더 포함한다.
본 발명에 의하면 다음과 같은 효과가 있다.
첫째, 바나듐 레독스 흐름전지의 정상적인 충전 및 방전 작업의 수행과정에서 지속 사용되는 전해액의 상태를 실시간으로 모니터링하여 상태를 실시간을 파악하여 관리할 수 있다.
둘째, 바나듐 레독스 흐름전지의 정상적인 충전 및 방전 작업의 수행과정에서 지속 사용되는 전해액의 상태에 이상이 발생하였음을 빠르게 파악하여 전지의 작동상태를 즉각 중지시킴으로서 이로 인한 전지 자체의 열화를 최소화하고 전지의 효율적이고 효과적인 관리가 수행될 수 있다.
셋째, 바나듐 레독스 흐름전지의 정상적인 충전 및 방전 작업의 수행과정에서 지속 사용되는 전해액의 상태에 이상이 발생하였음을 빠르게 파악하여 관리자가 이를 빠르게 인지할 수 있도록 함으로써, 빠르고 효율적인 전해액 상태의 점검 및 유지보수가 가능하다.
도1은 본 발명에 따른 바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템의 구성을 도시한 블록도이다.
도2는 본 발명의 바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템에 따른 충전 및 방전 작업의 1회 싸이클 정상 수행 시의 개방회로전압과 전해액의 전기전도도 변화를 나타낸 그래프이다.
도3은 발명의 바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템에 따른 충전 및 방전 작업의 1회 싸이클 정상 수행 시의 전기전도도와 충전 또는 방전 전압의 변화를 나타낸 그래프이다.
본 발명의 바람직한 실시예에 대하여 첨부된 도면을 참조하여 더 구체적으로 설명하되, 이미 주지된 기술적 부분에 대해서는 설명의 간결함을 위해 생략하거나 압축하기로 한다.
도1을 참조하여 설명하면, 본 발명의 바나듐 레독스 흐름전지(10)의 열화 진단 및 관리 시스템(100)은 개방회로전압 감지부(110); 전해액 전도도 감지부(120); 및 배터리 관리부(130);를 포함한다.
우선, 본 발명의 열화 진단 및 관리 시스템(100)의 열화(劣化) 진단 및 관리 대상이 되어 상호 연결된 구조를 갖추게 되는 바나듐 레독스 흐름전지(10, VRFB, Vanadium Redox Flow Battery)는 도1에 도시된 바와 같이 양극 전해액 탱크(11), 음극 전해액 탱크(12), 스택(13, Stack), 양극 전해액 펌프(14) 및 음극 전해액 펌프(15)를 포함한다.
여기서, 양극 전해액 탱크(11)는 양극 전해액이 저장된 전해액 수용 수단이고, 음극 전해액 탱크(12)는 음극 전해액이 저장이 저장된 전해액 수용 수단에 해당한다.
다음으로, 스택(13)은 양극, 분리막 및 음극을 포함하는 셀과 바이폴라 플레이트가 반복 적층되는 구성으로, 구체적으로 집전체(BP, bipolar plate)-전극-격막-전극-집전체로 구성되어 하나의 셀을 형성하고, 이 셀이 수십장 체결되어 스택을 구성하게 된다.
또한, 전극은 카본펠트 또는 카본 크로스가 사용되며, 레독스 반응이 발생할 수 있는 사이트와 발생하는 전자의 통로를 제공하는 역할을 하며, 저항이 낮고, 레독스 반응 효율이 좋아야 한다.
아울러, 격막은 양이온 교환막 또는 음이온 교환막이 사용되며, 막 저항이 낮고, 바나듐 레독스 흐름전지(10)의 전해액으로 사용되는 4가지 바나듐 이온들(V2+, V3+, VO2 +, VO2+)의 투과성이 낮아야 한다.
마지막으로, 집전체는 전류를 잘 흘려주어야하기 때문에 저항이 거의 없어야 하며, 충방전 상태의 양, 음극액에 대해 높은 내구성을 가져야 한다.
이와 같은 스택(13)은 양극 전해액 탱크(11)와 제1전해액 순환라인을 형성하도록 연결되는데, 제1전해액 순환라인은 양극 전해액 탱크(11)로부터 스택(13)으로의 전해액 입수가 이루어질 수 있도록 마련된 입수 라인과 스택(13)으로부터 양극 전해액 탱크(11)로의 전해액 출수가 이루질 수 있도록 마련된 출수 라인을 통해 구성된다.
이와 동시에, 스택(13)은 음극 전해액 탱크(12)와 제2전해액 순환라인을 형성하도록 연결되는데, 제2전해액 순환라인은 음극 전해액 탱크(12)로부터 스택(13)으로의 전해액 입수가 이루어질 수 있도록 마련된 입수 라인과 스택(13)으로부터 음극 전해액 탱크(12)로의 전해액 출수가 이루질 수 있도록 마련된 출수 라인을 통해 구성된다.
다음으로, 양극 전해액 펌프(14)는 제1전해액 순환라인 중 양극 전해액 탱크(11)로부터 스택(13)으로 전해액을 입수시키는 라인상 일측에 연결되어 양극 전해액 탱크(11)로부터 전해액을 스택(13) 내 양극에 공급하기 위한 소정의 출력압을 제공한다.
또한, 음극 전해액 펌프(15)는 제2전해액 순환라인 중 음극 전해액 탱크(12)로부터 스택(13)으로 전해액을 입수시키는 라인상 일측에 연결되어 음극 전해액 탱크(12) 내 전해액을 스택(13) 내 음극에 공급하기 위한 소정의 출력압을 제공한다.
이와 같은 구성을 갖춘 바나듐 레독스 흐름전지(10)는 충전 또는 방전을 수행하는 과정에서 1Cycle을 기준으로 도2에 도시된 바와 같이 전류와 전압의 변화를 보이게 된다.
이와 같은 바나듐 레독스 흐름전지(10)의 열화 진단 및 관리를 위해 마련된 본 발명의 시스템(100)은 기존의 바나듐 레독스 흐름전지(10)와 연결되어 있는 BMS(Battery Management System), PCS(Power Conversion System), EMS(Energy Management System)와도 추가적인 연결을 통해 상호 연동 가능한 통합 시스템을 구축할 수도 있고, 실시에 따라서는 BMS(Battery Management System) 내에 포함되어 작동하는 세부 시스템으로서 구현될 수도 있다.
개방회로전압 감지부(110)는 양극 전해액 탱크(12) 및 음극 전해액 탱크(12)와 연결되어 바나듐 레독스 흐름전지(10)의 개방회로전압(OCV, Open Circuit Voltage)을 감지한다.
여기서, 개방회로전압 감지부(110)는 양극 전해액 탱크(12) 및 음극 전해액 탱크(12) 각각과 배관 구조를 갖추어 연결을 이루게 되는데, 자체적으로 구비한 소형 펌프를 이용해 전해액을 순환시키며 전해액에 충전된 무부하상태의 전압을 측정한다.
이를 통해, 개방회로전압 감지부(110)는 실시간으로 바나듐 레독스 흐름전지(10)의 개방회로전압(OCV)가 어느 정도의 수치인지를 정보화하여 제1감지정보로서 생성한 후 추후 설명될 배터리 관리부(130)에 지속 전송한다.
전해액 전도도 감지부(120)는 양극 전해액 탱크(11)와 연결되어 양극 전해액 탱크(11) 내 저장된 전해액의 전기전도도를 감지한다.
이를 통해, 전해액 전도도 감지부(120)는 실시간으로 바나듐 레독스 흐름전지(10)를 구성하는 양극 전해액 탱크(11) 내 저장된 전해액의 전기전도도 수치가 어느 정도인지 정보화하여 제2감지정보로서 생성한 후 추후 설명될 배터리 관리부(130)에 지속 전송한다.
배터리 관리부(130)는 개방회로전압 감지부(110) 및 전해액 전도도 감지부(120)를 통해 감지되는 감지정보를 기반으로 양극 전해액 펌프(14) 및 음극 전해액 펌프(15)의 작동상태를 제어하여 바나듐 레독스 흐름전지(10)의 충전 또는 방전 작업의 진행여부를 조절한다.
이를 위해, 배터리 관리부(130)는 감지정보 수신부분(131), 기준정보 저장부분(132), 상태 판단부분(133), 운용 제어부분(134) 및 상태 알림부분(135)을 포함한다.
우선, 감지정보 수신부분(131)은 개방회로전압 감지부(110)로부터 바나듐 레독스 흐름전지(10)의 실시간 개방회로전압 수치에 관한 제1감지정보를 수신하고, 전해액 전도도 감지부(120)로부터 실시간 양극 전해액 탱크(11) 내 전해액의 전기전도도 수치에 관한 제2감지정보를 수신하기 위한 통신 기능을 담당한다.
다음으로, 기준정보 저장부분(132)은 기 설정된 개방회로전압 수치에 따른 전해액의 전기전도도 기준수치에 관한 기준정보가 저장되는 데이터베이스 공간에 해당한다.
여기서, 기 설정된 개방회로전압 수치에 따른 전해액의 전기전도도 기준수치에 관한 기준정보는 전도도 표준액(0.01M KCI 용액 0.7456g)을 25℃의 물(2㎲/㎝ 이하)에 녹여 1,000㎖로 하여 전기전도도를 측정한 정보로서, 25℃에서 측정되는 기준 전기전도도 값은 1,409㎲/㎝에 해당한다.
또한, 상태 판단부분(133)은 감지정보 수신부분(131)을 통해 수신된 제1감지정보와 제2감지정보 및 기준정보 저장부분(132)에 저장된 기준정보를 기반으로, 감지된 개방회로전압 수치에 따른 기준정보상 전해액의 전기전도도 기준수치와 감지된 전해액의 전기전도도 수치간의 오차를 분석한다.
더욱 구체적으로, 상태 판단부분(133)은 감지된 개방회로전압 수치에 따른 기준정보상 전해액의 전기전도도 기준수치와 감지된 전해액의 전기전도도 수치간의 오차가 -5% 이상 내지 +5% 이하의 정상범위 내에 해당하는지 여부를 판단하여 해당 오차가 -5% 이상 내지 +5% 이하의 정상범위 내에 해당할 경우 정상 상태로 판단하고, 나머지의 경우 비정상 상태로 판단한다.
이와 연계되어, 운용 제어부분(134)은 상태 판단부분(133)을 통해 정상 상태로 판단될 경우(감지된 개방회로전압 수치에 따른 기준정보상 전해액의 전기전도도 기준수치와 감지된 전해액의 전기전도도 수치간의 오차가 -5% 이상 내지 +5% 이하의 정상범위 내에 위치할 경우) 양극 전해액 펌프(14) 및 음극 전해액 펌프(15)를 작동시켜 기 설정된 배터리 운용정보에 따라 바나듐 레독스 흐름전지(10)의 충전 또는 방전 작업이 정상 작동되도록 제어한다.
또 다르게, 운용 제어부분(134)은 상태 판단부분(133)을 통해 비정상 상태로 판단될 경우(감지된 개방회로전압 수치에 따른 기준정보상 전해액의 전기전도도 기준수치와 감지된 전해액의 전기전도도 수치간의 오차가 -5% 미만 또는 +5% 초과의 비정상범위 내에 위치할 경우) 양극 전해액 펌프(14) 및 음극 전해액 펌프(15)의 작동을 종료시켜 바나듐 레독스 흐름전지(10)의 충전 또는 방전 작업이 즉각 중단되도록 한다.
예를 들어, 바나듐 레독스 흐름전지(10)의 충전 또는 방전 작업이 정상상태에서 진행되는 레독스 흐름전지(10)의 개방회로전압(OCV)과 전해액의 전기전도도 변화는 도2에 도시된 바와 같은 양상을 보이게 된다.
이와 같은 도2에 도시된 그래프상 X축은 시간(단위:Sec)을 나타내고, 좌측 Y축은 개방회로전압(OCV)값(단위:V)을 나타내며, 우측 Y축은 전기전도도값(단위:S/cm)를 나타낸다.
또한, 도3에 도시된 바와 같이 X축은 전기전도도값(단위:S/cm)를 나타내고, Y축은 전기전도도별 충전 또는 방전 전압값(단위:V)을 그래프를 통해 전기전도도의 변화에 따라 충전 또는 방전 작업이 정상상태에서 진행되는 레독스 흐름전지(10)의 충전 또는 방전 전압이 변화되는 양상을 확인할 수 있다.
구체적으로, 도3의 파란색 그래프는 전기전도도의 변화에 따라 각각에 대응되어 변화하는 평균충전전압의 수치를 의미하고, 주황색 그래프는 전기전도도의 변화에 따라 각각에 대응되어 변화하는 평균방전전압의 수치를 의미한다.
이와 같은 도3의 양상을 기반으로 기준정보 저장부분(132)에 저장될 기준정보의 설정을 수행할 수 있다.
구체적으로, 이와 같은 운용 제어부분(134)을 통한 제어과정을 살펴보면 우선 열화 진단 및 관리 시스템(100)의 구성으로서 일측에 구비된 입력수단(신호입력버튼, 키보드, 마우스, 음성입력기 또는 터치디스프레이 등)을 통해 관리자가 바나듐 레독스 흐름전지(10)의 충전 또는 방전 작업의 시작을 위한 작업 구동신호를 입력 생성함에 따라, 해당 작업 구동신호가 배터리 관리부(130)에 수신되면 즉각 운용 제어부분(134)은 신호 수신 시점에서의 상태 판단부분(133)을 통해 판단되는 결과를 기반으로, 양극 전해액 펌프(14) 및 음극 전해액 펌프(15)의 작동상태 제어를 통한 바나듐 레독스 흐름전지의 충전 또는 방전 작업의 최초 진행여부를 결정한다.
만약, 작업 구동신호가 배터리 관리부(130)에 수신된 시점에 상태 판단부분(133)을 통해 판단되는 결과가 정상 상태로 판단될 경우, 운용 제어부분(134)은 양극 전해액 펌프(14) 및 음극 전해액 펌프(15)를 최초로 작동시켜 기 설정된 배터리 운용정보에 따라 바나듐 레독스 흐름전지(10)의 충전 또는 방전 작업이 정상적으로 시작될 수 있게 한다.
이와 달리, 작업 구동신호가 배터리 관리부(130)에 수신된 시점에 상태 판단부분(133)을 통해 판단되는 결과가 비정상 상태로 판단될 경우, 운용 제어부분(134)은 양극 전해액 펌프(14) 및 음극 전해액 펌프(15)의 작동을 애초에 시키지 않게되며, 처음부터 바나듐 레독스 흐름전지(10)의 충전 또는 방전 작업이 시작되지 않도록 하여 열화가 효율적으로 관리될 수 있도록 한다.
그 다음으로, 운용 제어부분(134)이 바나듐 레독스 흐름전지(10)의 충전 또는 방전 작업의 최초 진행여부의 결정이 기 설정된 배터리 운용정보에 따라 바나듐 레독스 흐름전지(10)의 충전 또는 방전 작업이 정상 작동되도록 제어하도록 결정된 후에도 운용 제어부분(134)은 지속적으로 상태 판단부분(133)을 통해 판단되는 결과를 실시간 모니터링하게 된다.
이와 같은 기 설정된 배터리 운용정보에 따라 바나듐 레독스 흐름전지(10)의 충전 또는 방전 작업이 정상 작동되도록 최초 진행여부의 결정이 된 후 지속적으로 운용 제어부분(134)이 상태 판단부분(133)을 통해 판단되는 결과를 실시간 모니터링하는 과정에서 충전 또는 방전 작업이 완료되는 시점 전까지 어떤 시점에서든, 운용 제어부분(134)은 실시간으로 상태 판단부분(133)을 통해 판단되는 결과가 비정상 상태로 판단될 경우 즉시 양극 전해액 펌프(14) 및 음극 전해액 펌프(15)의 작동을 종료시켜 바나듐 레독스 흐름전지(10)의 충전 또는 방전 작업이 중단되도록 하여 열화가 효율적으로 관리될 수 있도록 한다.
마지막으로, 상태 알림부분(135)은 운용 제어부분(134)을 통해 양극 전해액 펌프(14) 및 음극 전해액 펌프(15)의 작동을 종료시켜 바나듐 레독스 흐름전지(10)의 충전 또는 방전 작업이 중단될 경우, 전해액 이상상태 알림 정보를 생성한다.
이와 같이 상태 알림부분(135)은 전해액 이상상태 알림 정보를 생성할 경우, 열화 진단 및 관리 시스템(100)의 구성으로서 타측에 구비된 출력수단(모니터, 스피커, 진동출력기 또는 경고등 등)을 통해 정보를 출력시켜 특정 메시지나 이미지가 보이도록 하거나, 특정 음성 혹은 알림음이 들리도록 하거나, 특정 빛이 보이도록 하는 등의 동작이 이루어져 관리자가 알림 정보의 발생을 쉽고 빠르게 인지하여 전해액의 유지 보수가 즉각적으로 이루어질 수 있도록 한다.
또한 실시에 따라, 상태 알림부분(135)은 전해액 이상상태 알림 정보를 생성하여 기 설정된 관리단말에 전송함으로서, 관리자가 멀리 떨어져 있더라도 단말을 통해 알림 정보의 발생을 쉽고 빠르게 인지하여 전해액의 유지 보수가 즉각적으로 이루어질 수 있도록 한다.
본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의해서 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 보호범위는 아래 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.
<부호의 설명>
10 : 바나듐 레독스 흐름전지
11 : 양극 전해액 탱크 12 : 음극 전해액 탱크
13 : 스택 14 : 양극 전해액 펌프
15 : 음극 전해액 펌프
100 : 열화 진단 및 관리 시스템
110 : 개방회로전압 감지부
120 : 전해액 전도도 감지부
130 : 배터리 관리부
131 : 감지정보 수신부분 132 : 기준정보 저장부분
133 : 상태 판단부분 134 : 운용 제어부분
135 : 상태 알림부분

Claims (5)

  1. 양극 전해액이 저장된 양극 전해액 탱크; 음극 전해액이 저장된 음극 전해액 탱크; 상기 양극 전해액 탱크와 제1전해액 순환라인을 형성하도록 연결되어 상기 양극 전해액 탱크로부터의 전해액 입수 및 상기 양극 전해액 탱크로의 전해액 출수가 가능하며, 상기 음극 전해액 탱크와 제2전해액 순환라인을 형성하도록 연결되어 상기 음극 전해액 탱크로부터의 전해액 입수 및 상기 음극 전해액 탱크로의 전해액 출수가 가능하고, 양극, 분리막 및 음극을 포함하는 셀과 바이폴라 플레이트가 반복 적층되는 스택; 제1전해액 순환라인 중 상기 양극 전해액 탱크로부터 상기 스택으로 전해액을 입수시키는 라인상 일측에 연결되어 전해액을 상기 스택 내 양극에 공급하는 양극 전해액 펌프; 및 제2전해액 순환라인 중 상기 음극 전해액 탱크로부터 상기 스택으로 전해액을 입수시키는 라인상 일측에 연결되어 전해액을 상기 스택 내 음극에 공급하는 음극 전해액 펌프;를 포함하는 바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템에 있어서,
    상기 양극 전해액 탱크 및 상기 음극 전해액 탱크와 연결되어 바나듐 레독스 흐름전지의 개방회로전압(OCV, Open Circuit Voltage)을 감지하는 개방회로전압 감지부;
    상기 양극 전해액 탱크와 연결되어 상기 양극 전해액 탱크 내 저장된 전해액의 전기전도도를 감지하는 전해액 전도도 감지부; 및
    상기 개방회로전압 감지부 및 전해액 전도도 감지부를 통해 감지되는 감지정보를 기반으로 상기 양극 전해액 펌프 및 상기 음극 전해액 펌프의 작동상태를 제어하여 바나듐 레독스 흐름전지의 충전 또는 방전 작업의 진행여부를 조절하는 배터리 관리부;를 포함하는 것을 특징으로 하는
    바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템.
  2. 제1항에 있어서,
    상기 배터리 관리부는,
    상기 개방회로전압 감지부로부터 실시간 개방회로전압 수치에 관한 제1감지정보를 수신하고, 상기 전해액 전도도 감지부로부터 실시간 상기 양극 전해액 탱크 내 전해액의 전기전도도 수치에 관한 제2감지정보를 수신하는 감지정보 수신부분;
    기 설정된 개방회로전압 수치에 따른 전해액의 전기전도도 기준수치에 관한 기준정보가 저장된 기준정보 저장부분; 및
    상기 감지정보 수신부분을 통해 수신된 제1감지정보와 제2감지정보 및 상기 기준정보 저장부분에 저장된 기준정보를 기반으로, 감지된 개방회로전압 수치에 따른 기준정보상 전해액의 전기전도도 기준수치와 감지된 전해액의 전기전도도 수치간의 오차가 ­5% 이상 내지 +5% 이하의 정상범위 내에 해당하는지 여부를 판단하는 상태 판단부분;을 포함하는 것을 특징으로 하는
    바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템.
  3. 제2항에 있어서,
    상기 상태 판단부분은 감지된 개방회로전압 수치에 따른 기준정보상 전해액의 전기전도도 기준수치와 감지된 전해액의 전기전도도 수치간의 오차가 -5% 이상 내지 +5% 이하의 정상범위 내에 해당할 경우 정상 상태로 판단하고, 나머지의 경우 비정상 상태로 판단하며,
    상기 배터리 관리부는,
    상기 상태 판단부분을 통해 정상 상태로 판단될 경우 상기 양극 전해액 펌프 및 상기 음극 전해액 펌프를 작동시켜 기 설정된 배터리 운용정보에 따라 바나듐 레독스 흐름전지의 충전 또는 방전 작업이 정상 작동되도록 제어하며, 상기 상태 판단부분을 통해 비정상 상태로 판단될 경우 상기 양극 전해액 펌프 및 상기 음극 전해액 펌프의 작동을 종료시켜 바나듐 레독스 흐름전지의 충전 또는 방전 작업이 중단되도록 하는 운용 제어부분;을 더 포함하는 것을 특징으로 하는
    바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템.
  4. 제3항에 있어서,
    상기 운용 제어부분은 입력수단을 통해 입력 생성된 작업구동 신호가 수신될 경우 신호 수신 시점에서의 상기 상태 판단부분을 통해 판단되는 결과를 기반으로 상기 양극 전해액 펌프 및 상기 음극 전해액 펌프의 작동상태 제어를 통한 바나듐 레독스 흐름전지의 충전 또는 방전 작업의 최초 진행여부를 결정하고,
    상기 운용 제어부분은 바나듐 레독스 흐름전지의 충전 또는 방전 작업의 최초 진행여부의 결정이 기 설정된 배터리 운용정보에 따라 바나듐 레독스 흐름전지의 충전 또는 방전 작업이 정상 작동되도록 제어하도록 결정된 후 충전 또는 방전 작업이 완료되는 시점사이에 실시간으로 상기 상태 판단부분을 통해 판단되는 결과가 비정상 상태로 판단될 경우 즉시 상기 양극 전해액 펌프 및 상기 음극 전해액 펌프의 작동을 종료시켜 바나듐 레독스 흐름전지의 충전 또는 방전 작업이 중단되도록 하는 것을 특징으로 하는
    바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템.
  5. 제4항에 있어서,
    상기 배터리 관리부는,
    상기 운용 제어부분을 통해 상기 양극 전해액 펌프 및 상기 음극 전해액 펌프의 작동을 종료시켜 바나듐 레독스 흐름전지의 충전 또는 방전 작업이 중단될 경우, 전해액 이상상태 알림 정보를 생성하여 출력수단을 통해 출력 또는 기 설정된 관리단말에 전송하는 상태 알림부분;을 더 포함하는 것을 특징으로 하는
    바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템.
PCT/KR2023/005087 2022-11-07 2023-04-14 바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템 WO2024101553A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220147164A KR102539865B1 (ko) 2022-11-07 2022-11-07 바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템
KR10-2022-0147164 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024101553A1 true WO2024101553A1 (ko) 2024-05-16

Family

ID=86760778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005087 WO2024101553A1 (ko) 2022-11-07 2023-04-14 바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템

Country Status (2)

Country Link
KR (1) KR102539865B1 (ko)
WO (1) WO2024101553A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317963A (ja) * 1989-06-14 1991-01-25 Sumitomo Electric Ind Ltd レドックスフロー電池およびレドックスフロー電池の充放電深度を測定する方法
KR20160098591A (ko) * 2015-02-09 2016-08-19 현대중공업 주식회사 산화환원 유동 에너지 저장장치 및 그 제어방법
KR20180092896A (ko) * 2017-02-10 2018-08-20 주식회사 엘지화학 플로우 배터리의 전해액 재생방법 및 재생장치
KR20190011392A (ko) * 2017-07-25 2019-02-07 창원대학교 산학협력단 산화-환원 유동전지 및 이의 제어방법
KR102219191B1 (ko) * 2019-08-23 2021-02-23 한국에너지기술연구원 레독스 흐름전지 시스템과 레독스 흐름전지의 모니터링 방법 및 레독스 흐름전지의 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317963A (ja) * 1989-06-14 1991-01-25 Sumitomo Electric Ind Ltd レドックスフロー電池およびレドックスフロー電池の充放電深度を測定する方法
KR20160098591A (ko) * 2015-02-09 2016-08-19 현대중공업 주식회사 산화환원 유동 에너지 저장장치 및 그 제어방법
KR20180092896A (ko) * 2017-02-10 2018-08-20 주식회사 엘지화학 플로우 배터리의 전해액 재생방법 및 재생장치
KR20190011392A (ko) * 2017-07-25 2019-02-07 창원대학교 산학협력단 산화-환원 유동전지 및 이의 제어방법
KR102219191B1 (ko) * 2019-08-23 2021-02-23 한국에너지기술연구원 레독스 흐름전지 시스템과 레독스 흐름전지의 모니터링 방법 및 레독스 흐름전지의 제어방법

Also Published As

Publication number Publication date
KR102539865B1 (ko) 2023-06-07

Similar Documents

Publication Publication Date Title
CA2486364C (en) Operating method of redox flow battery and cell stack of redox flow battery
JP4372235B2 (ja) 燃料電池システムおよび電気自動車
AU2020101399A4 (en) A Full Vanadium Flow Battery Management System Based on Embedded Chip
CN104981933A (zh) 氧化还原液流电池系统及控制其的方法
CA2450849C (en) Diagnostic apparatus and diagnostic method for fuel cell
CN102401883A (zh) 检测串联燃料电池中单个异常操作的方法和信号处理算法
CN114914488B (zh) 一种燃料电池缺氢检测与诊断方法
CN101957434A (zh) 在低功率操作时使用低性能电池检测来改进可靠性的方法
CN109004706B (zh) 一种兆瓦级液流电池长待机供电与soc测量集一体控制方法
WO2024101553A1 (ko) 바나듐 레독스 흐름전지의 열화 진단 및 관리 시스템
JP5366641B2 (ja) リチウムイオン組電池管理装置およびリチウムイオン組電池システム
KR20160016967A (ko) 전기 화학 전지 스택의 건전성 모니터링
CN111384751A (zh) 一种锂电池组充放电管理系统
CN116411313A (zh) 制氢系统及其控制方法
CN116053532A (zh) 一种液流电池电堆控制装置、控制方法、液流电池电堆及储能系统
CN113871666B (zh) 一种用于钒电池的能源管理系统
CN113285130A (zh) 一种可充电分散式控制电池系统及其工作方法
CN112092681B (zh) 一种用于氢燃料电池动力系统的能量输入输出监控装置
CN220963412U (zh) 用于燃料电堆的检测系统
CN219143052U (zh) 基于快速巡查的蓄电池电性能传感器
NL2028818B3 (en) A detachable energy storage system
CN218455780U (zh) 智慧电池云管理系统
CN213782928U (zh) 一种用于锂电池储能的电池管理系统
CN216597708U (zh) 一种电池模组和储能设备
CN212627191U (zh) 一种bms钒电池管理系统