WO2024101338A1 - Elastic wave resonator and communication device - Google Patents

Elastic wave resonator and communication device Download PDF

Info

Publication number
WO2024101338A1
WO2024101338A1 PCT/JP2023/039987 JP2023039987W WO2024101338A1 WO 2024101338 A1 WO2024101338 A1 WO 2024101338A1 JP 2023039987 W JP2023039987 W JP 2023039987W WO 2024101338 A1 WO2024101338 A1 WO 2024101338A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
wave resonator
piezoelectric layer
electrode fingers
layer
Prior art date
Application number
PCT/JP2023/039987
Other languages
French (fr)
Japanese (ja)
Inventor
惣一朗 野添
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024101338A1 publication Critical patent/WO2024101338A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave resonator, which is an electronic component that utilizes elastic waves, and a communication device that includes the elastic wave resonator.
  • Patent Document 1 discloses an elastic wave device that includes a support substrate, an acoustic reflection layer formed on the support substrate, a piezoelectric layer formed on the acoustic reflection layer, and an IDT (interdigital transducer) electrode formed on the upper or lower surface of the piezoelectric layer.
  • the acoustic reflection layer has a low acoustic impedance layer and a high acoustic impedance layer that has a higher acoustic impedance than the low acoustic impedance layer.
  • An elastic wave resonator comprises a piezoelectric layer, an IDT electrode, and an acoustic reflection layer.
  • the piezoelectric layer has piezoelectricity and has a first surface and a second surface opposite to the first surface.
  • the IDT electrode is located on the first surface and has a plurality of electrode fingers.
  • the acoustic reflection layer is located on the second surface side and includes a low acoustic impedance layer having a lower acoustic impedance than the piezoelectric layer.
  • the arithmetic mean roughness of at least a portion of the surface of the plurality of electrode fingers in a planar view is Ra1
  • the thickness of the plurality of electrode fingers is T, both of which have the same units.
  • the elastic wave resonator satisfies the relationship 0.14 ⁇ (Ra1/T) ⁇ 100.
  • Ra1 may be 0.20 nm or more.
  • a communication device has an antenna, an acoustic wave filter connected to the antenna, and an IC connected to the acoustic wave filter.
  • the acoustic wave filter includes the acoustic wave resonator described above.
  • 1 is a schematic cross-sectional view of an elastic wave resonator according to one embodiment of the present invention.
  • 1 is a schematic plan view of an elastic wave resonator according to a preferred embodiment of the present invention; 1 is a schematic cross-sectional view of an elastic wave resonator according to one embodiment of the present invention.
  • 4A, 4B, 4C, 4D, and 4E are diagrams showing simulation results of resonance characteristics of an elastic wave resonator according to one embodiment of the present invention and a comparative example.
  • 13 is a diagram showing a change in average
  • FIG. 13 is a diagram showing changes in the phase of spurious signals located on the higher frequency side than the main resonance when the arithmetic mean roughness of the electrode finger surfaces is changed relative to the thickness of the electrode fingers.
  • 7A and 7B are schematic cross-sectional views of an elastic wave resonator according to another preferred embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of an elastic wave resonator according to another embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of an elastic wave resonator according to another embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of an elastic wave resonator according to another embodiment of the present invention.
  • 11A and 11B are schematic plan views of an elastic wave resonator according to another preferred embodiment of the present invention.
  • 1 is a diagram illustrating a duplexer as an example of a use of an elastic wave resonator according to an embodiment of the present invention.
  • 1 is a block diagram showing a configuration of a main part of a communication device as an example of a use of an elastic wave resonator according to an embodiment of the present invention.
  • the drawings may be accompanied by an orthogonal coordinate system consisting of an X-axis, a Y-axis, and a Z-axis.
  • either direction may be considered to be upward or downward.
  • the terms upper surface and lower surface may be used with the Z-axis direction being the up-down direction.
  • the X-axis is defined to be parallel to the arrangement direction of the electrode fingers 412 described below (which in the embodiment is also the propagation direction of the elastic wave used as the main resonance among the elastic waves propagating through the piezoelectric layer 2 described below), the Y-axis is defined to be parallel to the top surface of the piezoelectric layer 2 and perpendicular to the X-axis, and the Z-axis is defined to be perpendicular to the top surface of the piezoelectric layer 2.
  • FIG. 1 is a schematic cross-sectional view of an elastic wave resonator 1 according to one embodiment of the present invention.
  • the elastic wave resonator 1 according to one embodiment of the present invention has a piezoelectric layer 2, an acoustic reflection layer 5, a support substrate 3, and an IDT electrode 4.
  • the piezoelectric layer 2 has an upper surface 2a and a lower surface 2b perpendicular to the Z axis, with the Z axis being the up-down direction.
  • An acoustic reflection layer 5 and a support substrate 3, which will be described later, are located on the lower surface 2b side of the piezoelectric layer 2.
  • piezoelectric layer 2 Various materials having piezoelectricity can be used for the piezoelectric layer 2.
  • materials having piezoelectricity include single crystals of lithium tantalate (LiTaO 3 ; hereinafter referred to as LT) and single crystals of lithium niobate (LiNbO 3 ; hereinafter referred to as LN).
  • the piezoelectric layer 2 is made of single crystals of LT.
  • the piezoelectric layer 2 has piezoelectric properties, and when a high-frequency signal is applied to the IDT electrode 4 described later, an elastic wave propagating through the piezoelectric layer 2 is excited.
  • the type of elastic wave to be used as the main resonance among the excited elastic waves may be set according to the desired frequency characteristics, etc.
  • the elastic wave used as the main resonance may be a plate wave or a bulk wave. Examples of plate waves include Lamb waves and SH waves. Examples of bulk waves include thickness shear waves.
  • the elastic wave used as the main resonance may be a mixture of multiple types of elastic waves.
  • the elastic wave used as the main resonance includes a Lamb wave. In the description of the embodiment, for convenience, the description may be given on the assumption that the elastic wave is a plate wave (or even a Lamb wave) without any particular notice.
  • the Lamb wave mainly has a component (P component) in the arrangement direction (X direction, propagation direction) of the electrode fingers 412 described later and/or a component (SV component) in the thickness direction of the piezoelectric layer 2.
  • the A1 mode described later refers to a first-order asymmetric mode (A mode) (one node in the thickness direction).
  • the SH wave mainly has a component (SH component) perpendicular to the arrangement direction (propagation direction) of the electrode fingers 412 and parallel to the surface of the piezoelectric layer 2.
  • the thickness shear wave slides different parts (e.g., the upper and lower surfaces) in the thickness direction of the piezoelectric layer 2 in a direction along the upper and lower surfaces of the piezoelectric layer 2, and also propagates in the thickness direction of the piezoelectric layer 2.
  • the order of the thickness shear wave is arbitrary, and is, for example, first-order (one node in the thickness direction).
  • the primary resonance refers to the resonance with the smallest minimum impedance value (or, from another point of view, the impedance at the resonant frequency) among multiple resonances that occur in the elastic wave resonator 1 and have different resonant frequencies.
  • the elastic wave (its main component) that causes the primary resonance or the frequency of the primary resonance may be abbreviated to primary resonance.
  • using a plate wave as the main component of the elastic wave that causes the primary resonance (for example, a component that accounts for 50% or more or 80% or more of the energy of the elastic wave at the resonant frequency) may be referred to as using a plate wave as the primary resonance.
  • the thickness of the piezoelectric layer 2 may be designed appropriately depending on the required frequency characteristics and the type of elastic wave used as the main resonance. Specifically, in this embodiment, the thickness of the piezoelectric layer 2 is 2 ⁇ or less, expressed using the wavelength ⁇ described below. By setting the thickness of the piezoelectric layer 2 to 2 ⁇ or less, for example, Lamb waves can be effectively used as the main resonance. Furthermore, the thickness of the piezoelectric layer 2 may be 1 ⁇ or less or 0.5 ⁇ or less. The lower limit of the piezoelectric layer 2 is not particularly limited, but may be, for example, 0.01 ⁇ or 0.1 ⁇ .
  • the thickness of the piezoelectric layer 2 in the area overlapping with the IDT electrode 4 described later may be constant.
  • the thickness of the piezoelectric layer 2 in the area overlapping with the IDT electrode 4 described later may be constant.
  • the thickness of the piezoelectric layer 2 being constant does not necessarily mean that it is strictly constant, but rather allows some variation within a range that does not significantly affect the characteristics of the elastic waves propagating through the piezoelectric layer 2.
  • the difference between the thinnest part and the thickest part may be smaller (or larger) than the arithmetic mean roughness Ra1 of the IDT electrode 4 described later.
  • the propagation mode of the elastic wave used in the elastic wave resonator 1 is not particularly limited and may be set according to the desired frequency characteristics.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric single crystal used as the piezoelectric layer 2 may be appropriately designed according to the type and propagation mode of the elastic wave used as the main resonance. For example, if the piezoelectric layer 2 is LT, the A1 mode of the Lamb wave can be effectively used as the main resonance by setting the Euler angles ( ⁇ , ⁇ , ⁇ ) to (0° ⁇ 10°, 0° to 55°, 0° ⁇ 10°).
  • the A1 mode of the Lamb wave can be effectively used as the main resonance by setting the Euler angles ( ⁇ , ⁇ , ⁇ ) to (0° ⁇ 10°, 0° to 55°, 0° ⁇ 10°).
  • the piezoelectric layer 2 is Z-cut LN or LT
  • the thickness shear wave can be effectively used as the main resonance.
  • the propagation mode of the Lamb wave used as the main resonance is the A1 mode
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of LT are (0°, 24°, 0°).
  • the support substrate 3 is located on the underside of the piezoelectric layer 2 and the acoustic reflection layer 5 described below, and supports the piezoelectric layer 2 and the acoustic reflection layer 5.
  • the thickness of the support substrate 3 is not particularly limited, and for example, the thickness of the support substrate 3 may be thicker than the thickness of the piezoelectric layer 2.
  • the material of the support substrate 3 is not particularly limited.
  • the material of the support substrate 3 may be a material having a smaller linear expansion coefficient than that of the piezoelectric layer 2.
  • a material for the support substrate 3 it is possible to reduce deformation of the piezoelectric layer 2 due to temperature changes and reduce changes in the resonance characteristics of the elastic wave resonator 1 due to temperature changes.
  • materials for such a support substrate 3 include sapphire (Al 2 O 3 ), silicon carbide (SiC), and silicon (Si).
  • the support substrate 3 is Si.
  • the acoustic reflection layer 5 is located between the piezoelectric layer 2 and the support substrate 3.
  • the acoustic reflection layer 5 has at least a low acoustic impedance layer 51.
  • the acoustic impedance of the low acoustic impedance layer 51 is lower than the acoustic impedance of the piezoelectric layer 2.
  • the low acoustic impedance layer 51 is located on the lower surface 2b side of the piezoelectric layer 2, so that the elastic waves propagating through the piezoelectric layer 2 are reflected by the low acoustic impedance layer 51 and are confined in the piezoelectric layer 2, thereby reducing leakage of the elastic waves from the lower surface 2b side.
  • a low acoustic impedance layer 51 for example, silicon oxide (SiO 2 ) can be exemplified.
  • the low acoustic impedance layer 51 is SiO 2 .
  • the thickness of the acoustic reflection layer 5 is not particularly limited.
  • the acoustic reflection layer 5 may be thinner, the same thickness as, or thicker than the piezoelectric layer 2.
  • the acoustic reflection layer 5 may be thick enough to prevent most (e.g., 95% or more or 100%) of the energy of the elastic wave used as the main resonance from leaking to the support substrate 3, or may be thick enough to allow a certain amount of the energy to leak to the support substrate 3.
  • the thickness of the acoustic reflection layer 5 may be 0.01 ⁇ or more and 4 ⁇ or less.
  • the IDT electrode 4 is located on the upper surface 2a of the piezoelectric layer 2.
  • the IDT electrode 4 is made of a conductive material.
  • the IDT electrode 4 may be made of various conductive materials such as aluminum (Al), copper (Cu), platinum (Pt), molybdenum (Mo), gold (Au), or alloys thereof.
  • the IDT electrode 4 may also be made by laminating multiple layers of the various conductive materials described above. When the IDT electrode 4 is made by laminating multiple layers, a base layer may be interposed at the interface between the layers. In this embodiment, specifically, the IDT electrode 4 is made of Al.
  • FIG. 2 shows a schematic diagram of the shape of the IDT electrode 4 when the elastic wave resonator 1 according to this embodiment is viewed in a plan view from the Z-axis direction.
  • the IDT electrode 4 includes a pair of comb-shaped electrodes 41 (41a and 41b).
  • the comb-shaped electrode 41 includes, for example, a pair of bus bars 411 and a number of electrode fingers 412 extending from the bus bars 411.
  • the electrode fingers 412 are arranged such that the electrode finger 412a connected to one bus bar 411a and the electrode finger 412b connected to the other bus bar 411b interdigitate with each other.
  • the comb-shaped electrode 41 may also include a number of dummy electrode fingers 413 (413a and 413b). The dummy electrode finger 413 protrudes from one bus bar 411 between each of the electrode fingers 412 and faces the electrode finger 412 extending from the other bus bar 411.
  • the length of the electrode fingers 412 in the Y-axis direction may be set appropriately depending on the required electrical characteristics, etc. For example, the lengths of the electrode fingers 412 in the Y-axis direction are equal to each other.
  • the IDT electrode 4 may be apodized, in which the length of the electrode fingers 412 in the Y-axis direction (or, from another perspective, the cross width) changes depending on the position in the X-axis direction.
  • the repetition interval of the electrode fingers 412 is defined as pitch P, and the width of the electrode fingers 412 is defined as width W.
  • the pitch P and width W are designed as appropriate according to the desired frequency characteristics.
  • the repetition interval of the electrode fingers 412 is constant, but is not limited to this example.
  • the repetition interval of the electrode fingers 412 may be designed to gradually increase, or may be designed to have multiple types of repetition intervals in stages.
  • the average value may be defined as pitch P, or the largest pitch may be defined as pitch P.
  • the pitch P may be 0.5 ⁇ m or more and 8.0 ⁇ m or less, or 0.5 ⁇ m or more and 2.0 ⁇ m or less.
  • W/P may be 0.2 or more and 0.6 or less, or 0.3 or more and 0.6 or less.
  • the thickness T described below may be 0.005 ⁇ or more and 0.3 ⁇ or less, 0.03 ⁇ or more and 0.3 ⁇ or less, or 0.05 ⁇ or more and 0.15 ⁇ or less.
  • the thickness T may be 50 nm or more and 600 nm or less, or 100 nm or more and 300 nm or less. Note that these ranges include the conditions of the simulation described below.
  • an elastic wave having a wavelength roughly equivalent to the wavelength ⁇ defined as twice the pitch P of the electrode fingers 412 is excited and propagates through the piezoelectric layer 2.
  • the resonant frequency fr of the elastic wave resonator 1 is roughly equivalent to the frequency of the elastic wave used as the main resonance among the excited elastic waves.
  • the anti-resonant frequency fa is determined by the resonant frequency fr and the capacitance ratio, and the capacitance ratio is determined mainly by the piezoelectric layer 2 and is adjusted by the number of electrode fingers 412, the crossing width, or the film thickness, etc.
  • the elastic wave used as the main resonance is a Lamb wave (more generally, an elastic wave propagating in the arrangement direction of the electrode fingers 412)
  • the actual wavelength of the Lamb wave and the resonant frequency fr of the elastic wave resonator 1 are relatively highly dependent on the pitch P.
  • the actual wavelength of the Lamb wave is relatively close to ⁇ defined as 2P as described above
  • the elastic wave used as the primary resonance is a thickness shear wave
  • the actual wavelength of the thickness shear wave and the resonant frequency fr of the elastic wave resonator 1 are relatively less dependent on the pitch P and relatively more dependent on the thickness of the piezoelectric layer 2.
  • the thickness of the multiple electrode fingers 412 is defined as thickness T.
  • the thickness of the electrode fingers 412 refers to the distance from the end of the electrode fingers 412 on the piezoelectric layer 2 side in the Z-axis direction to the surface 71 described below.
  • the thickness of the electrode fingers 412 does not need to be strictly constant; for example, the thickness may be measured at several points near the center of the electrode fingers 412 in the X-axis direction, and the average of these values may be defined as thickness T.
  • the elastic wave resonator 1 in this embodiment may further include (or may not include) a pair of reflectors 42 on the upper surface 2a of the piezoelectric layer 2.
  • the pair of reflectors 42 are located on both sides of the comb-shaped electrode 41 in the X-axis direction.
  • the reflector 42 includes a pair of reflector bus bars 421 facing each other, and a plurality of strip electrodes 422 extending between the pair of reflector bus bars 421.
  • FIG. 3 is a schematic diagram showing a cross section of an elastic wave resonator 1 according to this embodiment.
  • the arithmetic mean roughness of a surface 71 of the multiple electrode fingers 412 of the IDT electrode 4 is defined as Ra1
  • Ra1 has a value greater than 0 nm.
  • the surface 71 of the electrode fingers 412 has a predetermined roughness.
  • the arithmetic mean roughness refers to the arithmetic mean roughness (Ra) defined in JIS (Japanese Industrial Standards) B 0601:2013.
  • the surface 71 refers to the surface of the electrode fingers 412 located opposite the piezoelectric layer 2.
  • the low acoustic impedance layer 51 located on the lower surface 2b side of the piezoelectric layer 2 confines not only the elastic waves used as the main resonance but also unwanted elastic waves that cause spurious signals in the piezoelectric layer 2. Therefore, in the elastic wave resonator 1 of this embodiment, the surface 71 of the electrode fingers 412 has a predetermined roughness, so that, for example, unwanted waves trapped in the piezoelectric layer 2 propagate through the electrode fingers 412 and are scattered when reflected by the surface 71, thereby reducing spurious signals. Note that the effects of the elastic wave resonator 1 of this embodiment are not limited to those described above.
  • the surface 71 of the electrode fingers 412 has a predetermined roughness, and for example, the weight of the electrode fingers varies depending on the part of the electrode fingers 412, which causes the frequency of the excited unwanted waves to shift, thereby reducing spurious emissions.
  • the resonance characteristics of Lamb waves depend on the thickness of the piezoelectric layer 2, they are less affected by the design of the electrode fingers 412. Therefore, for example, when the elastic wave resonator 1 according to this embodiment uses Lamb waves as the main resonance, spurious emissions can be reduced even more effectively. Note that the effects of the elastic wave resonator 1 according to this embodiment are not limited to those described above.
  • Figure 4A shows the simulated resonance characteristics at 4100 MHz to 5700 MHz of elastic wave resonators in Example 1, in which the Ra1 value is 0.8 nm, Example 2, in which the Ra1 value is 1.4 nm, and Example 3, in which the Ra1 value is 6.8 nm.
  • Figure 4A also shows, as a comparative example, the simulated resonance characteristics of an elastic wave resonator in Comparative Example 1, in which the Ra1 value is 0 nm.
  • Figs. 4B to 4D show enlarged views of the resonance characteristics shown in Fig. 4A, particularly the resonance characteristics of the main resonance.
  • Fig. 4B is a diagram comparing the resonance characteristics of the main resonance of Example 1 and Comparative Example 1.
  • Fig. 4C is a diagram comparing the resonance characteristics of the main resonance of Example 2 and Comparative Example 1.
  • Fig. 4D is a diagram comparing the resonance characteristics of the main resonance of Example 3 and Comparative Example 1.
  • Examples 1 to 3 in which Ra1 is greater than 0 nm, are able to reduce spurious emissions within the band of the main resonance, compared to Comparative Example 1, in which Ra1 is 0 nm. Also, Examples 1 to 3 are able to reduce spurious emissions located at higher frequencies than the main resonance (its resonant frequency), compared to Comparative Example 1.
  • FIG. 4E shows the resonance characteristics of Example 2 and Comparative Example 1 using a Smith chart.
  • the two intersections of the graph with the first center line extending horizontally of the circle indicate the resonance characteristics at the resonance frequency (fr) and the anti-resonance frequency (fa), respectively.
  • the graph portion located above the first center line of the circle indicates the resonance characteristics within the band.
  • the resonance characteristics can be evaluated by finding the average
  • the resonance characteristics are evaluated by finding the average
  • the range of (fr-40MHz) to (fa+40MHz) is the range of fr to fa extended by approximately (fa-fr)/4 on both sides. If spurious emissions are reduced in this range, advantageous characteristics can be obtained in many devices. For example, in a ladder filter, the center frequency of the passband roughly coincides with fr or fa. Spurious emissions in the range of fr to fa are likely to affect the characteristics of the passband. Spurious emissions in a range adjacent to the range of fr to fa (here, the 40MHz range) are likely to affect the passband or a band adjacent to the passband.
  • the arithmetic mean roughness Ra1 of the surface 71 of the electrode finger 412 has a value greater than 0 nm, but may be, for example, 0.20 nm or more.
  • FIG. 5 is a diagram showing the change in average
  • the horizontal axis shows the value of Ra1 in logarithmic notation, and for example, the larger the value on the horizontal axis, the rougher the surface 71 of the electrode finger 412 becomes.
  • the vertical axis shows the average
  • the thickness T of the electrode finger 412 is 140 nm, so when the value of Ra1 (0.20 nm) is expressed as a percentage of the thickness T of the electrode finger 412, it is 0.14%. Therefore, the elastic wave resonator 1 according to this embodiment can reduce spurious and obtain good frequency characteristics when Ra1 and the thickness T satisfy the relationship shown in the following formula (1).
  • the lower limit of Ra1 may be even greater than the above.
  • 0.20 nm (0.14%) 0.50 nm (0.36%) or 1.0 nm (0.71%) may be used.
  • 0.50 nm (0.36%) or 1.0 nm (0.71%) may be used.
  • Ra1 may be 12 nm or less. As shown in FIG. 5, when the value of Ra1 exceeds 12 nm, the average value of
  • the thickness T of the electrode finger 412 is 140 nm, so when the value of Ra1 (12 nm) is expressed as a percentage of the thickness T of the electrode finger 412, it is 8.6%. Therefore, the elastic wave resonator 1 according to this embodiment can reduce spurious and obtain good frequency characteristics when Ra1 and the thickness T satisfy the relationship shown in the following formula (2).
  • Fig. 6 is a diagram showing the change in the phase of the spurious emission located on the higher frequency side than the main resonance (its resonant frequency; the same applies below) when the value of Ra1 is changed with respect to the thickness T.
  • the horizontal axis shows the value of Ra1 in logarithmic notation.
  • the vertical axis shows the phase of the spurious emission located on the higher frequency side than the main resonance, and the larger the value on the vertical axis, the greater the intensity of the spurious emission.
  • the higher up the vertical axis in Fig. 6 the greater the intensity of the spurious emission, and the worse the frequency characteristics become.
  • the thickness T of the electrode fingers 412 is 140 nm, so that the value of Ra1 (2.0 nm) is 1.4% when expressed as a percentage of the thickness T of the electrode fingers 412. Therefore, in the elastic wave resonator 1 according to this embodiment, when Ra1 and the thickness T satisfy the relationship shown in the following formula (3), the phase of the spurious emission located on the high frequency side can be reduced, and even better frequency characteristics can be obtained.
  • Ra1 may be equal to or less than 1.3 nm.
  • the phase of the spurious component located on the higher frequency side than the main resonance can be further reduced, as shown in FIG. 6, thereby achieving better frequency characteristics.
  • the thickness T of the electrode fingers 412 is 140 nm, so that the value of Ra1 (1.3 nm) is 0.93% when expressed as a percentage of the thickness T of the electrode fingers 412. Therefore, the elastic wave resonator 1 according to this embodiment can further reduce spurious and obtain better frequency characteristics when Ra1 and the thickness T satisfy the relationship shown in the following formula (4).
  • 0.20 nm (0.14%) or more and 12 nm (8.6%) or less, 0.20 nm (0.14%) or more and 2.0 nm (1.4%) or less, or 1.0 nm (0.71%) or more and 1.3 nm (0.93%) or less may be satisfied.
  • the surface 71 of the electrode fingers 412 reduces spurious emissions by, for example, scattering unwanted waves or shifting the frequency of the unwanted waves due to its unevenness.
  • the material, pitch P, width W and thickness T of the electrode fingers 412, the material and thickness of the piezoelectric layer 2, and the material and thickness of the acoustic reflection layer 5 in obtaining the effect of reducing spurious emissions by setting Ra1.
  • the pitch P is 1.20232 ⁇ m.
  • the duty (W/P) is 0.4.
  • the thickness of the piezoelectric layer 2 is 0.448 ⁇ m.
  • the thickness of the acoustic reflection layer 5 is 0.448 ⁇ m.
  • the piezoelectric layer 2 and the acoustic reflection layer 5 are in direct contact with each other, but this is not limiting.
  • the lower surface 2b of the piezoelectric layer 2 and the acoustic reflection layer 5 may be indirectly in contact with each other via an intermediate layer, an adhesive layer, or the like.
  • intermediate layers include insulating materials such as silicon nitride ( Si3N4 ) and aluminum oxide ( Al2O3 ). By providing an insulating intermediate layer, it is possible to reduce the generation of unnecessary potential and unnecessary capacitance, thereby improving the electrical characteristics of the elastic wave resonator 1.
  • adhesive layers include amorphous silicon. Both the adhesive layer and the intermediate layer may be present, or only one of them may be present.
  • the acoustic reflection layer 5 has only one low acoustic impedance layer 51, but is not limited to this example.
  • the acoustic reflection layer 5 may be configured by alternately stacking a plurality of low acoustic impedance layers 51 and a plurality of high acoustic impedance layers 52 having a higher acoustic impedance than the low acoustic impedance layers 51.
  • the acoustic reflection layer 5 By configuring the acoustic reflection layer 5 in this way, the elastic waves leaking from the lower surface 2b side of the piezoelectric layer 2 are reflected toward the piezoelectric layer 2 at the interface between the low acoustic impedance layer 51 and the high acoustic impedance layer 52, so that the leakage of the elastic waves can be more effectively reduced.
  • a high acoustic impedance layer 52 include hafnium oxide (HfO 2 ), tantalum oxide (Ta 2 O 5 ), and zirconium oxide (ZrO 2 ).
  • the number of layers of the two types of layers is arbitrary, and may be, for example, 4 layers or more and 12 layers or less in total.
  • the thickness of the high acoustic impedance layer 52 may be thinner, equal to, or thicker than the thickness of the low acoustic impedance layer 51.
  • the above-mentioned explanation of the thickness of the low acoustic impedance layer 51 may be applied to the high acoustic impedance layer 52.
  • three or more layers may be stacked, or the total number of layers of the two types of layers may be two or three.
  • the low acoustic impedance layer 51 of the acoustic reflection layer 5 is a solid layer, but this is not limiting.
  • the low acoustic impedance layer 51 may be a gas present in a gap 8 provided in the support substrate 3.
  • the gap 8 is on the piezoelectric layer 2 side of the support substrate 3 and is present at a position overlapping with the multiple electrode fingers 412 when viewed in a plan view.
  • the gap 8 is covered by the piezoelectric layer 2 leaving an internal space, and a gas is present in the internal space.
  • the gas may be normal air or an inert gas such as nitrogen or argon.
  • the gas present in the gap 8 acts as an acoustic reflection layer, effectively reducing the leakage of elastic waves from the lower surface 2b of the piezoelectric layer 2.
  • the size and depth of the gap 8 may be set as appropriate.
  • the thickness of the piezoelectric layer 2 is constant.
  • the thickness of the piezoelectric layer 2 may vary.
  • the thickness L1 of the first region 21 of the piezoelectric layer 2 may be greater than the thickness L2 of the second region 22 of the piezoelectric layer 2.
  • the first region refers to the region of the piezoelectric layer 2 that overlaps with the electrode fingers 412 in a planar view.
  • the second region refers to the region of the piezoelectric layer 2 that does not overlap with the electrode fingers 412 in a planar view. Note that the thickness of the piezoelectric layer 2 may be gradually changed at the boundary between the first region 21 and the second region 22.
  • the arithmetic mean roughness of the upper surface 2a of the piezoelectric layer 2 may be set as appropriate.
  • the arithmetic mean roughness Ra2 of the upper surface 2a of the second region 22 of the piezoelectric layer 2 may be rougher than the arithmetic mean roughness Ra1 of the surface 71 of the electrode finger 412.
  • Ra2 is not particularly limited, but may be, for example, 1 nm or more, 10 nm or more, 20 nm or more, or 50 nm or more, provided that (or without) Ra1 ⁇ Ra2 is satisfied. Furthermore, when Ra1 ⁇ Ra2 is satisfied, the difference between the two may be 1 nm or more, 10 nm or more, 20 nm or more, or 50 nm or more.
  • L1 and L2 may be determined, for example, based on the average line.
  • the average line may be used as the reference not only for the upper surface 2a but also for the lower surface 2b.
  • the difference between L1 and L2 is arbitrary, and may be, for example, larger than Ra2 (but does not have to be), and may be two or more times or five or more times Ra2.
  • the difference between L1 and L2 may be 1 nm or more, 10 nm or more, 20 nm or more, or 50 nm or more, regardless of whether FIG. 8 and FIG. 9 are combined or not, and/or may be 0.5% or more, 1% or more, 2% or more, 5% or more, or 10% or more of the thickness of the piezoelectric layer 2.
  • the side surface 72 of the electrode finger 412 is perpendicular to the upper surface 2a of the piezoelectric layer 2, but this is not limiting.
  • the side surface 72 of the electrode finger 412 may be inclined in the X-axis direction, as shown in FIG. 10.
  • the cross section of the electrode finger 412 perpendicular to the Y-axis has a trapezoidal shape.
  • the side surface 72 refers to the surface that connects the surface of the electrode finger 412 facing the piezoelectric layer 2 to the surface 71.
  • the roughness of the side surface 72 is omitted, but the arithmetic mean roughness Ra3 of the side surface 72 may be set appropriately.
  • the arithmetic mean roughness Ra3 of the side surface 72 may be the same as the arithmetic mean roughness Ra1 of the surface 71.
  • the surface 71 of all the electrode fingers 412 has a predetermined roughness.
  • the surface 71 of only some of the electrode fingers 412 may have a predetermined roughness.
  • the surface 71 of only the electrode fingers 412 (hatched portion) located near both ends in the arrangement direction (X-axis direction) may have a predetermined roughness.
  • the arithmetic mean roughness of the surface 71 of the electrode fingers 412 located near the center in the X-axis direction among the electrode fingers 412 is different from the arithmetic mean roughness of the surface 71 of the electrode fingers 412 located near both ends.
  • the surface 71 of one electrode finger 412 has a predetermined roughness over the entirety, but this is not limiting. Only a portion of the surface 71 of the electrode finger 412 may have a predetermined roughness.
  • the surface 71 near both ends (hatched portions) in the extension direction (Y-axis direction) may have a predetermined roughness.
  • the arithmetic mean roughness of the surface 71 near the center in the Y-axis direction is different from the arithmetic mean roughness of the surface 71 near both ends.
  • the example range of Ra1 according to the embodiment is derived by simulation.
  • the example range of Ra1 described so far is not influenced by the measurement method of Ra1, and the example lower limit value and example upper limit value do not include any error (however, percentages are rounded off).
  • Ra1 may be measured with the required accuracy, taking into account the significant figures shown in the example lower limit value and example upper limit value.
  • Ra1 when determining whether Ra1 is 0.20 nm or more (valid to two decimal places), Ra1 may be measured using a measuring device with a resolution of 0.01 nm or less (e.g., an atomic force microscope). When it is clear that Ra1 is 0.20 nm or more, and when it is determined whether Ra1 is 2.0 nm or less or 1.2 nm or less (both valid to one decimal place), Ra1 may be measured using a measuring device with a resolution of 0.1 nm or less (e.g., a white light interferometer or a laser microscope).
  • Ra1 When it is clear that Ra1 is 0.20 nm or more, and when it is determined whether Ra1 is 12 nm or less (valid to one integer place), Ra1 may be measured using a measuring device with a resolution of 1 nm or less (e.g., a stylus measuring device). When determining whether Ra1/T x 100 is 0.14% or more, 8.6% or less, 1.4% or less, or 0.93% or less, Ra1 (and T) may be measured to two significant figures.
  • the measuring instrument may be either a contact or non-contact type.
  • the measuring instrument may conform to the JIS mentioned above and/or ISO (International Organization for Standardization) 25178 (it does not have to conform to these standards as long as accuracy is guaranteed). While Ra1 has been mentioned, the same applies to Ra2, Ra3, T, L1, L2, etc.
  • the method of forming the electrode fingers 412 having a certain degree of Ra1 is arbitrary.
  • the desired Ra1 may be obtained by roughening the surface of the electrode fingers 412 using an etching solution, an etching gas (plasma), a laser beam, or a blast.
  • an etching solution, an etching gas, or a laser beam is used, the Ra1 can be adjusted by the time the surface of the electrode fingers 412 is exposed to them.
  • blasting which controls the surface roughness with an accuracy of less than 1 nm, has been put to practical use.
  • a resist mask may be formed in the area that is not desired to be roughened.
  • the desired Ra1 may be obtained by smoothing the roughened surface or a surface that has been formed from the beginning to have a large Ra1.
  • the smoothing may be performed, for example, by polishing.
  • a technology for polishing the wafer so that the Ra is 0.2 nm or less has been put to practical use, and this may be applied.
  • Ra1 has been described, the same may be applied to Ra2, Ra3, etc.
  • (Example of use of elastic wave resonator 1: duplexer) 12 is a circuit diagram showing a schematic configuration of a duplexer 101 as an example of the use of the elastic wave resonator 1.
  • the comb-shaped electrode 41 is shown typically in the shape of a two-pronged fork, and the reflector 42 is represented by a single line bent at both ends.
  • the splitter 101 has, for example, a transmit filter 105 that filters the transmit signal from the transmit terminal 103 and outputs it to the antenna terminal 102, and a receive filter 106 that filters the receive signal from the antenna terminal 102 and outputs it to the receive terminal 104.
  • the elastic wave resonator 1 may be used in at least one of the transmit filter 105 and the receive filter 106.
  • the elastic wave resonator 1 may also be used in both the transmit filter 105 and the receive filter 106.
  • the transmit filter 105 and the receive filter 106 are configured, for example, as ladder-type filters in which multiple resonators are connected in a ladder configuration. That is, the transmit filter 105 has multiple (or just one) resonators connected in series between the transmit terminal 103 and the antenna terminal 102, and multiple (or just one) resonators (parallel arms) that connect the series line (series arm) to a reference potential.
  • FIG. 12 is merely one example of the configuration of the splitter 101, and the splitter 101 is not limited to the configuration in FIG. 12.
  • the transmit filter 105 may be configured as a multimode filter.
  • both the transmit filter 105 and the receive filter 106 are elastic wave filters, but this configuration is not limiting.
  • either the transmit filter 105 or the receive filter 106 may be an elastic wave filter that uses an elastic wave resonator 1, and the other may be an LC filter that includes one or more inductors and one or more capacitors.
  • splitter 101 is not limited to this configuration.
  • splitter 101 may be a diplexer or a multiplexer including three or more filters.
  • Example of use of elastic wave resonator 1 communication device 13 is a block diagram showing a main part of a communication device 111 as an example of a use of the acoustic wave resonator 1 (the duplexer 101).
  • the communication device 111 includes the duplexer 101 and performs wireless communication using radio waves.
  • the transmission information signal TIS containing the information to be transmitted is modulated and frequency-raised (converted to a high-frequency signal of the carrier frequency) by the RF-IC (Radio Frequency Integrated Circuit) 113 to produce the transmission signal TS.
  • Unnecessary components outside the transmission passband are removed from the transmission signal TS by the bandpass filter 115a, amplified by the amplifier 114a, and input to the splitter 101 (transmission terminal 103).
  • the splitter 101 (transmission filter 105) then removes unnecessary components outside the transmission passband from the input transmission signal TS, and outputs the removed transmission signal TS from the antenna terminal 102 to the antenna 112.
  • the antenna 112 converts the input electrical signal (transmission signal TS) into a wireless signal (radio wave) and transmits it.
  • a radio signal (radio waves) received by the antenna 112 is converted by the antenna 112 into an electrical signal (received signal RS) and input to the splitter 101 (antenna terminal 102).
  • the splitter 101 (receiving filter 106) removes unnecessary components outside the receiving passband from the inputted received signal RS and outputs it from the receiving terminal 104 to the amplifier 114b.
  • the outputted received signal RS is amplified by the amplifier 114b, and the unnecessary components outside the receiving passband are removed by the bandpass filter 115b.
  • the received signal RS is then frequency-downshifted and demodulated by the RF-IC 113 to become the received information signal RIS.
  • the transmission information signal TIS and the reception information signal RIS may be low-frequency signals (baseband signals) containing appropriate information, such as analog audio signals or digitized audio signals.
  • the passband of the wireless signal may be set appropriately, and in this embodiment, a relatively high-frequency passband (for example, 5 GHz or higher) is also possible.
  • the modulation method may be phase modulation, amplitude modulation, frequency modulation, or a combination of two or more of these.
  • the direct conversion method is exemplified in FIG. 13 as the circuit method, this is not limited to this example, and may be, for example, a double superheterodyne method.
  • FIG. 13 shows only the main parts in a schematic manner, and a low-pass filter or an isolator may be added at an appropriate position, and the position of the amplifier may be changed.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

In the present invention, an elastic wave resonator comprises a piezoelectric layer, an IDT electrode, and an acoustic reflection layer. The piezoelectric layer has piezoelectric properties, and has a first surface as well as a second surface that is on the opposite side from the first surface. The IDT electrode is positioned on the first surface, and has a plurality of electrode fingers. The acoustic reflection layer is positioned on the second surface, and includes a low-acoustic-impedance layer that has a lower acoustic impedance than the piezoelectric layer. The elastic wave resonator is such that 0.14≤(Ra1/T)×100, where Ra1 is the arithmetic mean roughness of at least a portion of the surfaces of the plurality of electrode fingers as seen in plan view is represented, and T is the thickness of the plurality of electrode fingers.

Description

弾性波共振子および通信装置Elastic wave resonator and communication device
 本発明は、弾性波を利用する電子部品である弾性波共振子および当該弾性波共振子を含む通信装置に関する。 The present invention relates to an elastic wave resonator, which is an electronic component that utilizes elastic waves, and a communication device that includes the elastic wave resonator.
 下記特許文献1では、支持基板と、支持基板上に形成されている音響反射層と、音響反射層上に形成されている圧電体層と、圧電体層の上面または下面に形成されたIDT(interdigital transducer)電極とを備える弾性波装置が開示されている。音響反射層は、低音響インピーダンス層と、低音響インピーダンス層よりも音響インピーダンスが高い高音響インピーダンス層とを有している。このような構成とすることにより、圧電体層において伝搬する板波が音響反射層により反射され、弾性波エネルギーが圧電体層に閉じ込められることで、板波が圧電体層を高いエネルギー強度を持って伝搬することができる。 Patent Document 1 below discloses an elastic wave device that includes a support substrate, an acoustic reflection layer formed on the support substrate, a piezoelectric layer formed on the acoustic reflection layer, and an IDT (interdigital transducer) electrode formed on the upper or lower surface of the piezoelectric layer. The acoustic reflection layer has a low acoustic impedance layer and a high acoustic impedance layer that has a higher acoustic impedance than the low acoustic impedance layer. With this configuration, plate waves propagating in the piezoelectric layer are reflected by the acoustic reflection layer, and the elastic wave energy is trapped in the piezoelectric layer, allowing the plate waves to propagate through the piezoelectric layer with high energy intensity.
特許第5648695号公報Patent No. 5648695
 本発明の一実施形態に係る弾性波共振子は、圧電体層と、IDT電極と、音響反射層と、を備える。圧電体層は、圧電性を有し、第1面と第1面とは反対側の第2面を有する。IDT電極は、第1面上に位置し、複数の電極指を有する。音響反射層は、第2面側に位置し、圧電体層よりも音響インピーダンスが低い低音響インピーダンス層を含む。平面視における複数の電極指の表面の少なくとも一部における算術平均粗さをRa1とし、複数の電極指の厚みをTとし、両者の単位が同じであるとする。このとき、弾性波共振子は、 0.14≦(Ra1/T)×100 の関係を満たす。 An elastic wave resonator according to one embodiment of the present invention comprises a piezoelectric layer, an IDT electrode, and an acoustic reflection layer. The piezoelectric layer has piezoelectricity and has a first surface and a second surface opposite to the first surface. The IDT electrode is located on the first surface and has a plurality of electrode fingers. The acoustic reflection layer is located on the second surface side and includes a low acoustic impedance layer having a lower acoustic impedance than the piezoelectric layer. The arithmetic mean roughness of at least a portion of the surface of the plurality of electrode fingers in a planar view is Ra1, and the thickness of the plurality of electrode fingers is T, both of which have the same units. In this case, the elastic wave resonator satisfies the relationship 0.14≦(Ra1/T)×100.
 0.14≦(Ra1/T)×100に代えて、または加えて、Ra1は0.20nm以上であってよい。 Instead of or in addition to 0.14≦(Ra1/T)×100, Ra1 may be 0.20 nm or more.
 本発明の一実施形態に係る通信装置は、アンテナと、アンテナに接続されている弾性波フィルタと、弾性波フィルタに接続されているICと、を有している。弾性波フィルタは、上記弾性波共振子を含む。 A communication device according to one embodiment of the present invention has an antenna, an acoustic wave filter connected to the antenna, and an IC connected to the acoustic wave filter. The acoustic wave filter includes the acoustic wave resonator described above.
本発明の一実施形態に係る弾性波共振子の模式的な断面図である。1 is a schematic cross-sectional view of an elastic wave resonator according to one embodiment of the present invention. 本発明の一実施形態に係る弾性波共振子の模式的な平面図である。1 is a schematic plan view of an elastic wave resonator according to a preferred embodiment of the present invention; 本発明の一実施形態に係る弾性波共振子の模式的な断面図である。1 is a schematic cross-sectional view of an elastic wave resonator according to one embodiment of the present invention. 図4A、図4B、図4C、図4Dおよび図4Eは、本発明の一実施形態に係る弾性波共振子および比較例における共振特性のシミュレーション結果を示す図である。4A, 4B, 4C, 4D, and 4E are diagrams showing simulation results of resonance characteristics of an elastic wave resonator according to one embodiment of the present invention and a comparative example. 電極指の表面の算術平均粗さを変化させたときの平均|S|の変化を示した図である。13 is a diagram showing a change in average |S| when the arithmetic mean roughness of the surface of the electrode finger is changed. FIG. 電極指の厚みに対する電極指の表面の算術平均粗さの値を変化させたときの主共振よりも高周波側に位置するスプリアスの位相の変化を示した図である。13 is a diagram showing changes in the phase of spurious signals located on the higher frequency side than the main resonance when the arithmetic mean roughness of the electrode finger surfaces is changed relative to the thickness of the electrode fingers. 図7Aおよび図7Bは、本発明の他の実施形態に係る弾性波共振子の模式的な断面図である。7A and 7B are schematic cross-sectional views of an elastic wave resonator according to another preferred embodiment of the present invention. 本発明の他の実施形態に係る弾性波共振子の模式的な断面図である。FIG. 11 is a schematic cross-sectional view of an elastic wave resonator according to another embodiment of the present invention. 本発明の他の実施形態に係る弾性波共振子の模式的な断面図である。FIG. 11 is a schematic cross-sectional view of an elastic wave resonator according to another embodiment of the present invention. 本発明の他の実施形態に係る弾性波共振子の模式的な断面図である。FIG. 11 is a schematic cross-sectional view of an elastic wave resonator according to another embodiment of the present invention. 図11Aおよび図11Bは、本発明の他の実施形態に係る弾性波共振子の模式的な平面図である。11A and 11B are schematic plan views of an elastic wave resonator according to another preferred embodiment of the present invention. 本発明の一実施形態に係る弾性波共振子の利用例としての分波器を模式的に示す図である。1 is a diagram illustrating a duplexer as an example of a use of an elastic wave resonator according to an embodiment of the present invention. 本発明の一実施形態に係る弾性波共振子の利用例としての通信装置の要部の構成を示すブロック図である。1 is a block diagram showing a configuration of a main part of a communication device as an example of a use of an elastic wave resonator according to an embodiment of the present invention.
 以下、本発明の一実施形態に係る弾性波共振子および通信装置について、図面を参照して説明する。なお、以下の説明で用いられる図は模式的な図であり、図面上の寸法比率等は現実の弾性波共振子および通信装置とは必ずしも一致していない。 Below, an elastic wave resonator and a communication device according to one embodiment of the present invention will be described with reference to the drawings. Note that the figures used in the following description are schematic diagrams, and the dimensional ratios and the like in the drawings do not necessarily match those of the actual elastic wave resonator and communication device.
 図面には、便宜上、X軸、Y軸およびZ軸からなる直交座標系を付すことがある。本発明の一実施形態に係る弾性波共振子1は、いずれの方向が上方または下方とされてもよい。ただし、便宜上、Z軸方向を上下方向として上面または下面の語を用いることがある。なお、X軸は、後述する電極指412の配列方向(実施形態では後述する圧電体層2を伝搬する弾性波のうち主共振として利用する弾性波の伝搬方向でもある。)と平行になるように定義され、Y軸は、圧電体層2の上面に平行かつX軸に直交するように定義され、Z軸は、圧電体層2の上面に直交するように定義されている。 For convenience, the drawings may be accompanied by an orthogonal coordinate system consisting of an X-axis, a Y-axis, and a Z-axis. In the elastic wave resonator 1 according to one embodiment of the present invention, either direction may be considered to be upward or downward. However, for convenience, the terms upper surface and lower surface may be used with the Z-axis direction being the up-down direction. Note that the X-axis is defined to be parallel to the arrangement direction of the electrode fingers 412 described below (which in the embodiment is also the propagation direction of the elastic wave used as the main resonance among the elastic waves propagating through the piezoelectric layer 2 described below), the Y-axis is defined to be parallel to the top surface of the piezoelectric layer 2 and perpendicular to the X-axis, and the Z-axis is defined to be perpendicular to the top surface of the piezoelectric layer 2.
 なお、本明細書に記載する各実施形態は例示的なものであり、異なる実施形態間において部分的に置換してもよい。また、異なる実施形態を部分的に組み合わせてもよい。 Note that each embodiment described in this specification is merely illustrative, and different embodiments may be partially substituted with each other. Different embodiments may also be partially combined.
 図1は本発明の一実施形態に係る弾性波共振子1の模式的な断面図である。本発明の一実施形態に係る弾性波共振子1は、図1に示すように、圧電体層2、音響反射層5、支持基板3およびIDT電極4を有している。 FIG. 1 is a schematic cross-sectional view of an elastic wave resonator 1 according to one embodiment of the present invention. As shown in FIG. 1, the elastic wave resonator 1 according to one embodiment of the present invention has a piezoelectric layer 2, an acoustic reflection layer 5, a support substrate 3, and an IDT electrode 4.
 圧電体層2は、Z軸を上下方向として、Z軸に垂直な上面2aと下面2bを備える。圧電体層2の下面2b側には、後述する音響反射層5および支持基板3が位置している。圧電体層2の上面2a側には、後述するIDT電極4が位置している。 The piezoelectric layer 2 has an upper surface 2a and a lower surface 2b perpendicular to the Z axis, with the Z axis being the up-down direction. An acoustic reflection layer 5 and a support substrate 3, which will be described later, are located on the lower surface 2b side of the piezoelectric layer 2. An IDT electrode 4, which will be described later, is located on the upper surface 2a side of the piezoelectric layer 2.
 圧電体層2には、圧電性を有する種々の材料を使用することができる。圧電性を有する材料として、例えばタンタル酸リチウム(LiTaO;以下LTという)の単結晶および、ニオブ酸リチウム(LiNbO;以下LNという)の単結晶等が挙げられる。本実施形態においては、具体的には、圧電体層2はLTの単結晶によって構成されている。 Various materials having piezoelectricity can be used for the piezoelectric layer 2. Examples of materials having piezoelectricity include single crystals of lithium tantalate (LiTaO 3 ; hereinafter referred to as LT) and single crystals of lithium niobate (LiNbO 3 ; hereinafter referred to as LN). Specifically, in this embodiment, the piezoelectric layer 2 is made of single crystals of LT.
 圧電体層2は圧電性を有しており、後述するIDT電極4に高周波信号が印加されると、圧電体層2を伝搬する弾性波が励振される。励振される弾性波のうち、どの種類の弾性波を主共振として利用するかは、求められる周波数特性等に応じて設定されてもよい。例えば主共振として利用される弾性波は板波またはバルク波であってもよい。板波として、例えばLamb波およびSH波等が例示できる。バルク波として、例えば厚みすべり波を例示できる。また主共振として利用される弾性波には複数種類の弾性波が混合されていてもよい。具体的に、実施形態の弾性波共振子1において、主共振として利用される弾性波にはLamb波が含まれる。実施形態の説明では、便宜上、特に断りなく、弾性波が板波(さらにはLamb波)であることを前提として説明を行うことがある。 The piezoelectric layer 2 has piezoelectric properties, and when a high-frequency signal is applied to the IDT electrode 4 described later, an elastic wave propagating through the piezoelectric layer 2 is excited. The type of elastic wave to be used as the main resonance among the excited elastic waves may be set according to the desired frequency characteristics, etc. For example, the elastic wave used as the main resonance may be a plate wave or a bulk wave. Examples of plate waves include Lamb waves and SH waves. Examples of bulk waves include thickness shear waves. The elastic wave used as the main resonance may be a mixture of multiple types of elastic waves. Specifically, in the elastic wave resonator 1 of the embodiment, the elastic wave used as the main resonance includes a Lamb wave. In the description of the embodiment, for convenience, the description may be given on the assumption that the elastic wave is a plate wave (or even a Lamb wave) without any particular notice.
 念のために記載すると、Lamb波は、後述する電極指412の配列方向(X方向、伝搬方向)の成分(P成分)および/または圧電体層2の厚み方向の成分(SV成分)を主とする。後述するA1モードは、非対称モード(Aモード)のうち、1次のもの(厚み方向における節の数が1つであるもの)を指す。SH波は、電極指412の配列方向(伝搬方向)に垂直で圧電体層2の表面に平行な方向の成分(SH成分)を主とする。厚みすべり波は、圧電体層2の厚み方向の互いに異なる部位(例えば上面および下面)を圧電体層2の上面および下面に沿う方向にスライドさせ、また、圧電体層2の厚み方向に伝搬する。厚みすべり波の次数は任意であり、例えば、1次(厚み方向における節の数が1つ)である。 Just to be clear, the Lamb wave mainly has a component (P component) in the arrangement direction (X direction, propagation direction) of the electrode fingers 412 described later and/or a component (SV component) in the thickness direction of the piezoelectric layer 2. The A1 mode described later refers to a first-order asymmetric mode (A mode) (one node in the thickness direction). The SH wave mainly has a component (SH component) perpendicular to the arrangement direction (propagation direction) of the electrode fingers 412 and parallel to the surface of the piezoelectric layer 2. The thickness shear wave slides different parts (e.g., the upper and lower surfaces) in the thickness direction of the piezoelectric layer 2 in a direction along the upper and lower surfaces of the piezoelectric layer 2, and also propagates in the thickness direction of the piezoelectric layer 2. The order of the thickness shear wave is arbitrary, and is, for example, first-order (one node in the thickness direction).
 主共振は、弾性波共振子1において生じる互いに共振周波数が異なる複数の共振のうち、インピーダンスの極小値(別の観点では共振周波数におけるインピーダンス)が最も小さいものを指す。また、便宜上、主共振を生じる弾性波(その主たる成分)または主共振の周波数を主共振と略すことがある。例えば、主共振を生じている弾性波の主たる成分(例えば共振周波数における弾性波のエネルギーの50%以上または80%以上を占める成分)として板波を利用することを、主共振として板波を利用するということがある。 The primary resonance refers to the resonance with the smallest minimum impedance value (or, from another point of view, the impedance at the resonant frequency) among multiple resonances that occur in the elastic wave resonator 1 and have different resonant frequencies. For convenience, the elastic wave (its main component) that causes the primary resonance or the frequency of the primary resonance may be abbreviated to primary resonance. For example, using a plate wave as the main component of the elastic wave that causes the primary resonance (for example, a component that accounts for 50% or more or 80% or more of the energy of the elastic wave at the resonant frequency) may be referred to as using a plate wave as the primary resonance.
 圧電体層2の厚みは、求められる周波数特性および主共振として利用する弾性波の種類等に応じて適宜設計されてもよい。具体的に、本実施形態においては、圧電体層2の厚みは、後述する波長λを用いて表すと、2λ以下である。圧電体層2の厚みを、2λ以下に設定することで、例えば、Lamb波を主共振として効果的に利用することができる。さらに、圧電体層2の厚みは、1λ以下または0.5λ以下とされてもよい。圧電体層2の下限は、特に限定されないが、例えば、0.01λまたは0.1λとされてよい。 The thickness of the piezoelectric layer 2 may be designed appropriately depending on the required frequency characteristics and the type of elastic wave used as the main resonance. Specifically, in this embodiment, the thickness of the piezoelectric layer 2 is 2λ or less, expressed using the wavelength λ described below. By setting the thickness of the piezoelectric layer 2 to 2λ or less, for example, Lamb waves can be effectively used as the main resonance. Furthermore, the thickness of the piezoelectric layer 2 may be 1λ or less or 0.5λ or less. The lower limit of the piezoelectric layer 2 is not particularly limited, but may be, for example, 0.01λ or 0.1λ.
 また、平面視において、後述するIDT電極4と重なる領域における圧電体層2の厚みは一定であってもよい。このような構成とすることで、例えばLamb波を主共振として利用する場合、Lamb波の共振のロスが低減され、良好な周波数特性を有する弾性波共振子1を提供することができる。なお、圧電体層2の厚みが一定であるとは、必ずしも厳密に一定であることを指さず、圧電体層2を伝搬する弾性波の特性に著しい影響を与えない範囲において多少の変動を許容する。例えば、圧電体層2の厚みが一定であるというとき、最も薄い部分と最も厚い部分との差は、IDT電極4の後述する算術平均粗さRa1よりも小さくてよい(大きくても構わない。)。 In addition, in a plan view, the thickness of the piezoelectric layer 2 in the area overlapping with the IDT electrode 4 described later may be constant. With this configuration, for example, when Lamb waves are used as the main resonance, the loss of Lamb wave resonance is reduced, and an elastic wave resonator 1 having good frequency characteristics can be provided. Note that the thickness of the piezoelectric layer 2 being constant does not necessarily mean that it is strictly constant, but rather allows some variation within a range that does not significantly affect the characteristics of the elastic waves propagating through the piezoelectric layer 2. For example, when the thickness of the piezoelectric layer 2 is constant, the difference between the thinnest part and the thickest part may be smaller (or larger) than the arithmetic mean roughness Ra1 of the IDT electrode 4 described later.
 本発明の一実施形態に係る弾性波共振子1において利用される弾性波の伝搬モードは特に限定されず、求められる周波数特性に応じて設定されてもよい。圧電体層2として使用される圧電性単結晶のオイラー角(φ,θ,ψ)は主共振として利用する弾性波の種類および伝搬モード等に応じて適宜設計されてもよい。例えば、圧電体層2がLTであれば、オイラー角(φ,θ,ψ)を(0°±10°,0°以上55°以下,0°±10°)に設定することで、主共振としてLamb波のA1モードを効果的に利用することができる。また、圧電体層2がLNであれば、オイラー角(φ,θ,ψ)を(0°±10°,0°以上55°以下,0°±10°)に設定することで、主共振としてLamb波のA1モードを効果的に利用することができる。また、圧電体層2がZカットのLNまたはLTであれば、主共振として厚みすべり波を効果的に利用することができる。具体的に、本実施形態において、主共振として利用されるLamb波の伝搬モードはA1モードであり、LTのオイラー角(φ,θ,ψ)は(0°,24°,0°)である。 The propagation mode of the elastic wave used in the elastic wave resonator 1 according to one embodiment of the present invention is not particularly limited and may be set according to the desired frequency characteristics. The Euler angles (φ, θ, ψ) of the piezoelectric single crystal used as the piezoelectric layer 2 may be appropriately designed according to the type and propagation mode of the elastic wave used as the main resonance. For example, if the piezoelectric layer 2 is LT, the A1 mode of the Lamb wave can be effectively used as the main resonance by setting the Euler angles (φ, θ, ψ) to (0°±10°, 0° to 55°, 0°±10°). If the piezoelectric layer 2 is LN, the A1 mode of the Lamb wave can be effectively used as the main resonance by setting the Euler angles (φ, θ, ψ) to (0°±10°, 0° to 55°, 0°±10°). If the piezoelectric layer 2 is Z-cut LN or LT, the thickness shear wave can be effectively used as the main resonance. Specifically, in this embodiment, the propagation mode of the Lamb wave used as the main resonance is the A1 mode, and the Euler angles (φ, θ, ψ) of LT are (0°, 24°, 0°).
 支持基板3は、圧電体層2および後述する音響反射層5の下面側に位置し、圧電体層2および音響反射層5を支持する。支持基板3の厚みは特に限定されず、例えば支持基板3の厚みは、圧電体層2の厚みよりも厚くてもよい。 The support substrate 3 is located on the underside of the piezoelectric layer 2 and the acoustic reflection layer 5 described below, and supports the piezoelectric layer 2 and the acoustic reflection layer 5. The thickness of the support substrate 3 is not particularly limited, and for example, the thickness of the support substrate 3 may be thicker than the thickness of the piezoelectric layer 2.
 また支持基板3の材料は特に限定されない。例えば、支持基板3の材料を、圧電体層2に比べて線膨張係数の小さい材料としてもよい。支持基板3をこのような材料とすることで、温度変化による圧電体層2の変形を低減し、温度変化による弾性波共振子1の共振特性の変化を低減することができる。このような支持基板3の材料として、例えば、サファイア(Al)、炭化ケイ素(SiC)およびシリコン(Si)等を例示できる。本実施形態において、具体的には、支持基板3はSiである。 The material of the support substrate 3 is not particularly limited. For example, the material of the support substrate 3 may be a material having a smaller linear expansion coefficient than that of the piezoelectric layer 2. By using such a material for the support substrate 3, it is possible to reduce deformation of the piezoelectric layer 2 due to temperature changes and reduce changes in the resonance characteristics of the elastic wave resonator 1 due to temperature changes. Examples of materials for such a support substrate 3 include sapphire (Al 2 O 3 ), silicon carbide (SiC), and silicon (Si). In this embodiment, specifically, the support substrate 3 is Si.
 音響反射層5は、圧電体層2と支持基板3との間に位置する。音響反射層5は、少なくとも低音響インピーダンス層51を有している。低音響インピーダンス層51の音響インピーダンスは、圧電体層2の音響インピーダンスよりも低い。このように、圧電体層2の下面2b側に低音響インピーダンス層51が位置することで、圧電体層2を伝搬する弾性波が低音響インピーダンス層51により反射され、圧電体層2に閉じ込められることにより、下面2b側からの弾性波の漏洩を低減することができる。このような低音響インピーダンス層51として、例えば酸化ケイ素(SiO)等を例示できる。本実施形態においては、具体的には、低音響インピーダンス層51はSiOである。 The acoustic reflection layer 5 is located between the piezoelectric layer 2 and the support substrate 3. The acoustic reflection layer 5 has at least a low acoustic impedance layer 51. The acoustic impedance of the low acoustic impedance layer 51 is lower than the acoustic impedance of the piezoelectric layer 2. In this way, the low acoustic impedance layer 51 is located on the lower surface 2b side of the piezoelectric layer 2, so that the elastic waves propagating through the piezoelectric layer 2 are reflected by the low acoustic impedance layer 51 and are confined in the piezoelectric layer 2, thereby reducing leakage of the elastic waves from the lower surface 2b side. As such a low acoustic impedance layer 51, for example, silicon oxide (SiO 2 ) can be exemplified. In this embodiment, specifically, the low acoustic impedance layer 51 is SiO 2 .
 音響反射層5の厚みは、特に限定されない。例えば、音響反射層5は、圧電体層2に対して、薄くてもよいし、同等でもよいし、厚くてもよい。また、例えば、音響反射層5は、主共振として利用される弾性波のエネルギーの殆ど(例えば95%以上または100%)が支持基板3に漏洩しない厚みとされてもよいし、上記エネルギーのうちの一定程度の量が支持基板3に漏洩する厚みとされてもよい。例えば、音響反射層5の厚さは、0.01λ以上4λ以下とされてよい。 The thickness of the acoustic reflection layer 5 is not particularly limited. For example, the acoustic reflection layer 5 may be thinner, the same thickness as, or thicker than the piezoelectric layer 2. Also, for example, the acoustic reflection layer 5 may be thick enough to prevent most (e.g., 95% or more or 100%) of the energy of the elastic wave used as the main resonance from leaking to the support substrate 3, or may be thick enough to allow a certain amount of the energy to leak to the support substrate 3. For example, the thickness of the acoustic reflection layer 5 may be 0.01λ or more and 4λ or less.
 IDT電極4は、圧電体層2の上面2aに位置している。IDT電極4は、導電性を有する材料で構成されている。IDT電極4の材料には、例えばアルミニウム(Al)、銅(Cu)、白金(Pt)、モリブデン(Mo)、金(Au)もしくはこれらの合金等種々の導電性材料を採用することができる。またIDT電極4は、上記のような種々の導電性材料による複数の層を積層させて構成してもよい。また、IDT電極4が、複数の層を積層させて構成される場合には、積層界面に下地層が介在してもよい。本実施形態において、具体的に、IDT電極4はAlである。 The IDT electrode 4 is located on the upper surface 2a of the piezoelectric layer 2. The IDT electrode 4 is made of a conductive material. The IDT electrode 4 may be made of various conductive materials such as aluminum (Al), copper (Cu), platinum (Pt), molybdenum (Mo), gold (Au), or alloys thereof. The IDT electrode 4 may also be made by laminating multiple layers of the various conductive materials described above. When the IDT electrode 4 is made by laminating multiple layers, a base layer may be interposed at the interface between the layers. In this embodiment, specifically, the IDT electrode 4 is made of Al.
 図2に、本実施形態に係る弾性波共振子1をZ軸方向から平面視した時の、IDT電極4の形状を模式的に示す。図2に示すように、IDT電極4は、一対の櫛歯状電極41(41aおよび41b)を含む。 FIG. 2 shows a schematic diagram of the shape of the IDT electrode 4 when the elastic wave resonator 1 according to this embodiment is viewed in a plan view from the Z-axis direction. As shown in FIG. 2, the IDT electrode 4 includes a pair of comb-shaped electrodes 41 (41a and 41b).
 櫛歯状電極41は、例えば、一対のバスバー411と、該バスバー411から伸びる複数の電極指412を含んでいる。複数の電極指412は、一方のバスバー411aに接続される電極指412aと、他方のバスバー411bに接続される電極指412bとが互いにかみ合うように配置されている。また、櫛歯状電極41は、複数のダミー電極指413(413aおよび413b)を含んでいてもよい。ダミー電極指413は、複数の電極指412のそれぞれの間において、一方のバスバー411から突出し、他方のバスバー411から延びる電極指412と対向する。 The comb-shaped electrode 41 includes, for example, a pair of bus bars 411 and a number of electrode fingers 412 extending from the bus bars 411. The electrode fingers 412 are arranged such that the electrode finger 412a connected to one bus bar 411a and the electrode finger 412b connected to the other bus bar 411b interdigitate with each other. The comb-shaped electrode 41 may also include a number of dummy electrode fingers 413 (413a and 413b). The dummy electrode finger 413 protrudes from one bus bar 411 between each of the electrode fingers 412 and faces the electrode finger 412 extending from the other bus bar 411.
 複数の電極指412のY軸方向の長さは、要求される電気特性等に応じて適宜に設定されてよい。例えば、複数の電極指412のY軸方向の長さは、互いに同等である。なお、IDT電極4は、X軸方向の位置に応じて複数の電極指412のY軸方向の長さ(別の観点では交差幅)が変化する、いわゆるアポダイズが施されていてもよい。 The length of the electrode fingers 412 in the Y-axis direction may be set appropriately depending on the required electrical characteristics, etc. For example, the lengths of the electrode fingers 412 in the Y-axis direction are equal to each other. The IDT electrode 4 may be apodized, in which the length of the electrode fingers 412 in the Y-axis direction (or, from another perspective, the cross width) changes depending on the position in the X-axis direction.
 電極指412の繰り返し間隔をピッチPとし、電極指412の幅を幅Wとする。ピッチPおよび幅Wは、所望する周波数特性に応じて、適宜設計される。図2において、電極指412の繰り返し間隔は一定であるが、この例に限定されない。例えば、電極指412の繰り返し間隔は、次第に大きくなるように設計されてもよいし、段階的に複数種類の繰り返し間隔を有するように設計されてもよい。電極指412の繰り返し間隔が複数ある場合、その平均値をピッチPと定義してもよいし、最も大きいピッチをピッチPと定義してもよい。 The repetition interval of the electrode fingers 412 is defined as pitch P, and the width of the electrode fingers 412 is defined as width W. The pitch P and width W are designed as appropriate according to the desired frequency characteristics. In FIG. 2, the repetition interval of the electrode fingers 412 is constant, but is not limited to this example. For example, the repetition interval of the electrode fingers 412 may be designed to gradually increase, or may be designed to have multiple types of repetition intervals in stages. When there are multiple repetition intervals of the electrode fingers 412, the average value may be defined as pitch P, or the largest pitch may be defined as pitch P.
 これらの寸法の具体的な値は限定されない。例を挙げる。ピッチPは、0.5μm以上8.0μm以下、または0.5μm以上2.0μm以下とされてよい。W/Pは、0.2以上0.6以下、または0.3以上0.6以下とされてよい。後述する厚みTは、0.005λ以上0.3λ以下、0.03λ以上0.3λ以下、または0.05λ以上0.15λ以下とされてよい。および/または、厚みTは、50nm以上600nm以下もしくは100nm以上300nm以下とされてよい。なお、これらの範囲は、後述するシミュレーションの条件を含んでいる。 The specific values of these dimensions are not limited. For example, the pitch P may be 0.5 μm or more and 8.0 μm or less, or 0.5 μm or more and 2.0 μm or less. W/P may be 0.2 or more and 0.6 or less, or 0.3 or more and 0.6 or less. The thickness T described below may be 0.005λ or more and 0.3λ or less, 0.03λ or more and 0.3λ or less, or 0.05λ or more and 0.15λ or less. And/or the thickness T may be 50 nm or more and 600 nm or less, or 100 nm or more and 300 nm or less. Note that these ranges include the conditions of the simulation described below.
 IDT電極4に高周波信号が印加されると、電極指412のピッチPの2倍で定義される波長λと概ね同等の波長を有する弾性波が励振され、圧電体層2を伝搬する。弾性波共振子1の共振周波数frは、励振される弾性波のうち、主共振として利用される弾性波の周波数と概ね同等となる。反共振周波数faは、共振周波数frと容量比とによって決定され、容量比は、主として圧電体層2によって規定され、電極指412の本数、交差幅または膜厚等によって調整される。 When a high-frequency signal is applied to the IDT electrode 4, an elastic wave having a wavelength roughly equivalent to the wavelength λ defined as twice the pitch P of the electrode fingers 412 is excited and propagates through the piezoelectric layer 2. The resonant frequency fr of the elastic wave resonator 1 is roughly equivalent to the frequency of the elastic wave used as the main resonance among the excited elastic waves. The anti-resonant frequency fa is determined by the resonant frequency fr and the capacitance ratio, and the capacitance ratio is determined mainly by the piezoelectric layer 2 and is adjusted by the number of electrode fingers 412, the crossing width, or the film thickness, etc.
 なお、主共振として利用される弾性波がLamb波(上位概念では電極指412の配列方向に伝搬する弾性波)である態様において、当該Lamb波の実際の波長および弾性波共振子1の共振周波数frは、ピッチPに対する依存性が相対的に高い。例えば、Lamb波の実際の波長は、上記のように2Pで定義されるλに比較的近く、また、共振周波数frは、実際の波長が上記λ(=2P)であるLamb波の周波数に比較的近い。 In addition, in a case where the elastic wave used as the main resonance is a Lamb wave (more generally, an elastic wave propagating in the arrangement direction of the electrode fingers 412), the actual wavelength of the Lamb wave and the resonant frequency fr of the elastic wave resonator 1 are relatively highly dependent on the pitch P. For example, the actual wavelength of the Lamb wave is relatively close to λ defined as 2P as described above, and the resonant frequency fr is relatively close to the frequency of the Lamb wave whose actual wavelength is the above λ (= 2P).
 一方、主共振として利用される弾性波が厚みすべり波である態様において、厚みすべり波の実際の波長および弾性波共振子1の共振周波数frは、ピッチPに対する依存性が相対的に低く、圧電体層2の厚みに対する依存性が相対的に高い。ただし、波長λ(=2P)を用いた寸法の説明(例えば圧電体層2の既述の厚みの説明)は、特に断りがない限り、また、矛盾等が生じない限り、弾性波が厚みすべり波である態様に対しても、そのまま援用されて構わない。 On the other hand, in a configuration in which the elastic wave used as the primary resonance is a thickness shear wave, the actual wavelength of the thickness shear wave and the resonant frequency fr of the elastic wave resonator 1 are relatively less dependent on the pitch P and relatively more dependent on the thickness of the piezoelectric layer 2. However, unless otherwise specified and unless a contradiction arises, the explanation of dimensions using the wavelength λ (= 2P) (for example, the explanation of the thickness of the piezoelectric layer 2 described above) may be directly applied to the configuration in which the elastic wave is a thickness shear wave.
 本実施形態における弾性波共振子1において、複数の電極指412の厚みは厚みTと定義される。なお電極指412の厚みとは、電極指412のZ軸方向における圧電体層2側の端から、後述する表面71までの距離を言う。電極指412の厚みは厳密に一定である必要はなく、例えば電極指412におけるX軸方向の中央付近で数か所の厚みを測定し、それらの値の平均を厚みTと定義してもよい。 In the elastic wave resonator 1 of this embodiment, the thickness of the multiple electrode fingers 412 is defined as thickness T. The thickness of the electrode fingers 412 refers to the distance from the end of the electrode fingers 412 on the piezoelectric layer 2 side in the Z-axis direction to the surface 71 described below. The thickness of the electrode fingers 412 does not need to be strictly constant; for example, the thickness may be measured at several points near the center of the electrode fingers 412 in the X-axis direction, and the average of these values may be defined as thickness T.
 本実施形態における弾性波共振子1は、さらに、圧電体層2の上面2aに1対の反射器42を有していてもよい(有していなくてもよい。)。1対の反射器42は、X軸方向において、櫛歯状電極41の両側に位置している。反射器42は、互いに対向する1対の反射器バスバー421と、1対の反射器バスバー421間において延びる複数のストリップ電極422と、を含んでいる。 The elastic wave resonator 1 in this embodiment may further include (or may not include) a pair of reflectors 42 on the upper surface 2a of the piezoelectric layer 2. The pair of reflectors 42 are located on both sides of the comb-shaped electrode 41 in the X-axis direction. The reflector 42 includes a pair of reflector bus bars 421 facing each other, and a plurality of strip electrodes 422 extending between the pair of reflector bus bars 421.
 図3は、本実施形態に係る弾性波共振子1の断面を模式的に表した図である。本実施形態において、IDT電極4が有する複数の電極指412の表面71における算術平均粗さを、Ra1と定義すると、Ra1は0nmよりも大きい値を取る。換言すると、電極指412の表面71は所定の粗さを有している。なお本明細書において、算術平均粗さとは、JIS(Japanese Industrial Standards) B 0601:2013にて規定される算術平均粗さ(Ra)のことを表す。なお表面71とは、電極指412の圧電体層2とは反対側に位置する面を言う。 FIG. 3 is a schematic diagram showing a cross section of an elastic wave resonator 1 according to this embodiment. In this embodiment, if the arithmetic mean roughness of a surface 71 of the multiple electrode fingers 412 of the IDT electrode 4 is defined as Ra1, Ra1 has a value greater than 0 nm. In other words, the surface 71 of the electrode fingers 412 has a predetermined roughness. In this specification, the arithmetic mean roughness refers to the arithmetic mean roughness (Ra) defined in JIS (Japanese Industrial Standards) B 0601:2013. The surface 71 refers to the surface of the electrode fingers 412 located opposite the piezoelectric layer 2.
 本実施形態の弾性波共振子1では、圧電体層2の下面2b側に位置する低音響インピーダンス層51によって、主共振として利用される弾性波とともにスプリアスの原因となる不要な弾性波も圧電体層2に閉じ込められる。そこで本実施形態に係る弾性波共振子1は、電極指412の表面71が所定の粗さを有することにより、例えば、圧電体層2に閉じ込められた不要波が、電極指412の中を伝搬し、表面71で反射する際に散乱されることで、スプリアスを低減することができる。なお、本実施形態に係る弾性波共振子1の効果は上述した効果に限定されない。 In the elastic wave resonator 1 of this embodiment, the low acoustic impedance layer 51 located on the lower surface 2b side of the piezoelectric layer 2 confines not only the elastic waves used as the main resonance but also unwanted elastic waves that cause spurious signals in the piezoelectric layer 2. Therefore, in the elastic wave resonator 1 of this embodiment, the surface 71 of the electrode fingers 412 has a predetermined roughness, so that, for example, unwanted waves trapped in the piezoelectric layer 2 propagate through the electrode fingers 412 and are scattered when reflected by the surface 71, thereby reducing spurious signals. Note that the effects of the elastic wave resonator 1 of this embodiment are not limited to those described above.
 また、本実施形態に係る弾性波共振子1は、電極指412の表面71が所定の粗さを有することにより、例えば、電極指412の部分ごとに電極指の重さが異なることにより、励振される不要波の周波数がずれることで、スプリアスを低減することができる。Lamb波の共振特性は圧電体層2の厚みに依存する一方で、電極指412の設計による影響を受けにくいため、例えば本実施形態に係る弾性波共振子1が主共振としてLamb波を利用する場合には、さらに効果的にスプリアスを低減することができる。なお、本実施形態に係る弾性波共振子1の効果は上述した効果に限定されない。 In addition, in the elastic wave resonator 1 according to this embodiment, the surface 71 of the electrode fingers 412 has a predetermined roughness, and for example, the weight of the electrode fingers varies depending on the part of the electrode fingers 412, which causes the frequency of the excited unwanted waves to shift, thereby reducing spurious emissions. While the resonance characteristics of Lamb waves depend on the thickness of the piezoelectric layer 2, they are less affected by the design of the electrode fingers 412. Therefore, for example, when the elastic wave resonator 1 according to this embodiment uses Lamb waves as the main resonance, spurious emissions can be reduced even more effectively. Note that the effects of the elastic wave resonator 1 according to this embodiment are not limited to those described above.
 図4Aは、Ra1の値が0.8nmである実施例1、Ra1の値が1.4nmである実施例2およびRa1の値が6.8nmである実施例3における弾性波共振子の4100MHz~5700MHzにおけるシミュレーションによる共振特性を示す図である。また図4Aには、Ra1が0nmである比較例1の弾性波共振子のシミュレーションによる共振特性を比較例として示している。 Figure 4A shows the simulated resonance characteristics at 4100 MHz to 5700 MHz of elastic wave resonators in Example 1, in which the Ra1 value is 0.8 nm, Example 2, in which the Ra1 value is 1.4 nm, and Example 3, in which the Ra1 value is 6.8 nm. Figure 4A also shows, as a comparative example, the simulated resonance characteristics of an elastic wave resonator in Comparative Example 1, in which the Ra1 value is 0 nm.
 また、図4B~図4Dは、図4Aで示す共振特性のうち、特に主共振の共振特性を拡大して示している。図4Bは、実施例1と比較例1の主共振の共振特性の比較した図である。図4Cは、実施例2と比較例1の主共振の共振特性を比較した図である。図4Dは、実施例3と比較例1の主共振の共振特性を比較した図である。 Furthermore, Figs. 4B to 4D show enlarged views of the resonance characteristics shown in Fig. 4A, particularly the resonance characteristics of the main resonance. Fig. 4B is a diagram comparing the resonance characteristics of the main resonance of Example 1 and Comparative Example 1. Fig. 4C is a diagram comparing the resonance characteristics of the main resonance of Example 2 and Comparative Example 1. Fig. 4D is a diagram comparing the resonance characteristics of the main resonance of Example 3 and Comparative Example 1.
 図4B~図4Dに示すように、Ra1が0nmよりも大きい値をとる実施例1~3は、Ra1が0nmである比較例1に比べて、主共振の帯域内におけるスプリアスを低減することができる。また、実施例1~3は比較例1に比べて、主共振(その共振周波数)よりも高周波側に位置するスプリアスを低減することができる。 As shown in Figures 4B to 4D, Examples 1 to 3, in which Ra1 is greater than 0 nm, are able to reduce spurious emissions within the band of the main resonance, compared to Comparative Example 1, in which Ra1 is 0 nm. Also, Examples 1 to 3 are able to reduce spurious emissions located at higher frequencies than the main resonance (its resonant frequency), compared to Comparative Example 1.
 図4Eは、実施例2と比較例1の共振特性をスミスチャートによって表した図である。スミスチャートにおいて、円の横方向に延びる第1中心線とグラフが交わる2つの交点は、それぞれ共振周波数(fr)および反共振周波数(fa)における共振特性を示している。また、スミスチャートにおいて、円の第1中心線よりも上側に位置するグラフ部分が帯域内の共振特性を示している。 FIG. 4E shows the resonance characteristics of Example 2 and Comparative Example 1 using a Smith chart. In the Smith chart, the two intersections of the graph with the first center line extending horizontally of the circle indicate the resonance characteristics at the resonance frequency (fr) and the anti-resonance frequency (fa), respectively. In addition, in the Smith chart, the graph portion located above the first center line of the circle indicates the resonance characteristics within the band.
 スミスチャートにおいて、円の中心からグラフまでの距離を|S|と定義すると、共振特性が良好であるほど、|S|は円の半径に近くなる。換言すると共振特性が良好であるほど、|S|の値は1に近くなる。一方で、スプリアスが発生すると|S|は0に近づく。したがってスミスチャートにおいて、帯域内の|S|の平均値である平均|S|を求めることで共振特性を評価することができる。例えば、平均|S|が1に近い値であるほど、スプリアスによる影響が小さく、共振特性が良好であると言える。本実施形態に係る弾性波共振子1において、(fr-40MHz)~(fa+40MHz)の範囲における平均|S|を求めることで、共振特性を評価する。 In the Smith chart, if the distance from the center of the circle to the graph is defined as |S|, then the better the resonance characteristics, the closer |S| is to the radius of the circle. In other words, the better the resonance characteristics, the closer the value of |S| is to 1. On the other hand, when spurious signals occur, |S| approaches 0. Therefore, in the Smith chart, the resonance characteristics can be evaluated by finding the average |S|, which is the average value of |S| within a band. For example, the closer the average |S| is to 1, the smaller the effect of spurious signals is, and the better the resonance characteristics are. In the elastic wave resonator 1 according to this embodiment, the resonance characteristics are evaluated by finding the average |S| in the range of (fr-40 MHz) to (fa+40 MHz).
 なお、(fr-40MHz)~(fa+40MHz)の範囲は、fr~faの範囲を概ね(fa-fr)/4ずつ両側へ拡張した範囲である。この範囲でスプリアスが低減されれば、多くのデバイスにおいて有利な特性が得られる。例えば、ラダー型フィルタでは、通過帯域の中心周波数がfrまたはfaと概ね一致する。そして、fr~faの範囲におけるスプリアスは、通過帯域の特性に影響する蓋然性が高い。また、fr~faの範囲に隣接する範囲(ここでは40MHzの範囲)におけるスプリアスは、通過帯域または通過帯域に隣接する帯域に影響を及ぼす蓋然性が高い。 The range of (fr-40MHz) to (fa+40MHz) is the range of fr to fa extended by approximately (fa-fr)/4 on both sides. If spurious emissions are reduced in this range, advantageous characteristics can be obtained in many devices. For example, in a ladder filter, the center frequency of the passband roughly coincides with fr or fa. Spurious emissions in the range of fr to fa are likely to affect the characteristics of the passband. Spurious emissions in a range adjacent to the range of fr to fa (here, the 40MHz range) are likely to affect the passband or a band adjacent to the passband.
 本実施形態に係る弾性波共振子1では、電極指412の表面71の算術平均粗さであるRa1は0nmよりも大きい値を取るが、例えばRa1は0.20nm以上であってもよい。図5は、本実施形態に係る弾性波共振子1において、電極指412の厚みTを140nmとし、電極指412の表面71の算術平均粗さであるRa1を0.010nm~15nmまで変化させたときの平均|S|の変化を示した図である。横軸はRa1の値を対数表記で示しており、例えば、横軸の数値が大きくなるほど電極指412の表面71の粗さは粗くなる。また、縦軸は(fr-40MHz)~(fa+40MHz)の範囲における平均|S|を示しており、例えば、縦軸の数値が大きくなるほど共振特性は良好となる。 In the elastic wave resonator 1 according to this embodiment, the arithmetic mean roughness Ra1 of the surface 71 of the electrode finger 412 has a value greater than 0 nm, but may be, for example, 0.20 nm or more. FIG. 5 is a diagram showing the change in average |S| when the thickness T of the electrode finger 412 is set to 140 nm and the arithmetic mean roughness Ra1 of the surface 71 of the electrode finger 412 is changed from 0.010 nm to 15 nm in the elastic wave resonator 1 according to this embodiment. The horizontal axis shows the value of Ra1 in logarithmic notation, and for example, the larger the value on the horizontal axis, the rougher the surface 71 of the electrode finger 412 becomes. The vertical axis shows the average |S| in the range of (fr-40 MHz) to (fa+40 MHz), and for example, the larger the value on the vertical axis, the better the resonance characteristics become.
 図5に示されるように、Ra1の値が0.20nm以上である場合、平均|S|の値は大きくなり、共振特性は良好となる。したがって、本実施形態に係る弾性波共振子1において、Ra1を0.20以上とすることで、スプリアスを低減し、良好な周波数特性を得ることができる。 As shown in FIG. 5, when the value of Ra1 is 0.20 nm or more, the average |S| value is large and the resonance characteristics are good. Therefore, in the elastic wave resonator 1 according to this embodiment, by setting Ra1 to 0.20 or more, it is possible to reduce spurious and obtain good frequency characteristics.
 なお図5の例において、電極指412の厚みTは140nmであるため、Ra1の値(0.20nm)を電極指412の厚みTに対する割合として表す場合、0.14%となる。したがって、本実施形態に係る弾性波共振子1は、Ra1と厚みTが下記の式(1)のような関係を満たす場合に、スプリアスを低減し、良好な周波数特性を得ることができる。 In the example of FIG. 5, the thickness T of the electrode finger 412 is 140 nm, so when the value of Ra1 (0.20 nm) is expressed as a percentage of the thickness T of the electrode finger 412, it is 0.14%. Therefore, the elastic wave resonator 1 according to this embodiment can reduce spurious and obtain good frequency characteristics when Ra1 and the thickness T satisfy the relationship shown in the following formula (1).
  0.14≦(Ra1/T)×100  ・・・(1)
 Ra1の下限は、上記よりもさらに大きくされてもよい。例えば、0.20nm(0.14%)に代えて、0.50nm(0.36%)または1.0nm(0.71%)が用いられてもよい。図5の例では、上記のように下限が大きくなるほどスプリアスが低減される。
0.14≦(Ra1/T)×100 (1)
The lower limit of Ra1 may be even greater than the above. For example, instead of 0.20 nm (0.14%), 0.50 nm (0.36%) or 1.0 nm (0.71%) may be used. In the example of FIG. 5, the larger the lower limit is, the more spurious is reduced.
 また、本実施形態に係る弾性波共振子1において、Ra1は、12nm以下であってもよい。図5に示されるように、Ra1の値が12nmを超える場合、平均|S|の値は急激に小さくなり、共振特性が悪化する。一方でRa1の値が12nm以下の場合、平均|S|の値は高く維持される。したがって、本実施形態に係る弾性波共振子1において、Ra1を12nm以下とすることで、スプリアスを低減し、良好な周波数特性を得ることができる。 In addition, in the elastic wave resonator 1 according to this embodiment, Ra1 may be 12 nm or less. As shown in FIG. 5, when the value of Ra1 exceeds 12 nm, the average value of |S| decreases rapidly, and the resonance characteristics deteriorate. On the other hand, when the value of Ra1 is 12 nm or less, the average value of |S| remains high. Therefore, in the elastic wave resonator 1 according to this embodiment, by setting Ra1 to 12 nm or less, it is possible to reduce spurious and obtain good frequency characteristics.
 なお図5の例において、電極指412の厚みTは140nmであるため、Ra1の値(12nm)を電極指412の厚みTに対する割合として表す場合、8.6%となる。したがって、本実施形態に係る弾性波共振子1は、Ra1と厚みTが下記の式(2)のような関係を満たす場合に、スプリアスを低減し、良好な周波数特性を得ることができる。 In the example of FIG. 5, the thickness T of the electrode finger 412 is 140 nm, so when the value of Ra1 (12 nm) is expressed as a percentage of the thickness T of the electrode finger 412, it is 8.6%. Therefore, the elastic wave resonator 1 according to this embodiment can reduce spurious and obtain good frequency characteristics when Ra1 and the thickness T satisfy the relationship shown in the following formula (2).
  (Ra1/T)×100≦8.6  ・・・(2)
 また、本実施形態に係る弾性波共振子1において、Ra1は2.0nm以下であってもよい。図6は、厚みTに対するRa1の値を変化させたときの主共振(その共振周波数。以下、同様。)よりも高周波側に位置するスプリアスの位相の変化を示した図である。横軸はRa1の値を対数表記で示している。また、縦軸は主共振よりも高周波側に位置するスプリアスの位相を示しており、縦軸の数値が大きくなるほどスプリアスの強度が大きくなる。換言すると、図6において縦軸の上に行くほどスプリアスの強度が大きくなり、周波数特性が悪化する。
(Ra1/T)×100≦8.6 (2)
In addition, in the elastic wave resonator 1 according to this embodiment, Ra1 may be 2.0 nm or less. Fig. 6 is a diagram showing the change in the phase of the spurious emission located on the higher frequency side than the main resonance (its resonant frequency; the same applies below) when the value of Ra1 is changed with respect to the thickness T. The horizontal axis shows the value of Ra1 in logarithmic notation. The vertical axis shows the phase of the spurious emission located on the higher frequency side than the main resonance, and the larger the value on the vertical axis, the greater the intensity of the spurious emission. In other words, the higher up the vertical axis in Fig. 6, the greater the intensity of the spurious emission, and the worse the frequency characteristics become.
 図6に示されるように、Ra1の値が0.20nm以上である場合、主共振よりも高周波側に位置するスプリアスの位相は小さくなる。またRa1の値が2.0nmを超える場合、主共振よりも高周波側に位置するスプリアスの位相は大きくなる。したがって、本実施形態に係る弾性波共振子1において、Ra1を2.0nm以下とすることで、高周波側に位置するスプリアスの位相を小さくでき、さらに良好な周波数特性を得ることができる。 As shown in FIG. 6, when the value of Ra1 is 0.20 nm or more, the phase of the spurious emission located on the higher frequency side than the main resonance becomes small. When the value of Ra1 exceeds 2.0 nm, the phase of the spurious emission located on the higher frequency side than the main resonance becomes large. Therefore, in the elastic wave resonator 1 according to this embodiment, by setting Ra1 to 2.0 nm or less, the phase of the spurious emission located on the higher frequency side can be made small, and even better frequency characteristics can be obtained.
 なお図6の例において、電極指412の厚みTは140nmであるため、Ra1の値(2.0nm)を電極指412の厚みTに対する割合として表す場合、1.4%となる。したがって、本実施形態に係る弾性波共振子1は、Ra1と厚みTが下記の式(3)のような関係を満たす場合に、高周波側に位置するスプリアスの位相を小さくでき、さらに良好な周波数特性を得ることができる。 6, the thickness T of the electrode fingers 412 is 140 nm, so that the value of Ra1 (2.0 nm) is 1.4% when expressed as a percentage of the thickness T of the electrode fingers 412. Therefore, in the elastic wave resonator 1 according to this embodiment, when Ra1 and the thickness T satisfy the relationship shown in the following formula (3), the phase of the spurious emission located on the high frequency side can be reduced, and even better frequency characteristics can be obtained.
  (Ra1/T)×100≦1.4  ・・・(3)
 また、本実施形態に係る弾性波共振子1において、Ra1は1.3nm以下であってもよい。図6に示されるように、Ra1の値が1.3nm以下である場合、主共振よりも高周波側に位置するスプリアスの位相をさらに小さくでき、より良好な周波数特性を得ることができる。
(Ra1/T)×100≦1.4 (3)
In addition, in the elastic wave resonator 1 according to this embodiment, Ra1 may be equal to or less than 1.3 nm. When the value of Ra1 is equal to or less than 1.3 nm, the phase of the spurious component located on the higher frequency side than the main resonance can be further reduced, as shown in FIG. 6, thereby achieving better frequency characteristics.
 なお図6の例において、電極指412の厚みTは140nmであるため、Ra1の値(1.3nm)を電極指412の厚みTに対する割合として表す場合、0.93%となる。したがって、本実施形態に係る弾性波共振子1は、Ra1と厚みTが下記の式(4)のような関係を満たす場合に、スプリアスをさらに低減し、より良好な周波数特性を得ることができる。 In the example of FIG. 6, the thickness T of the electrode fingers 412 is 140 nm, so that the value of Ra1 (1.3 nm) is 0.93% when expressed as a percentage of the thickness T of the electrode fingers 412. Therefore, the elastic wave resonator 1 according to this embodiment can further reduce spurious and obtain better frequency characteristics when Ra1 and the thickness T satisfy the relationship shown in the following formula (4).
  (Ra1/T)×100≦0.93  ・・・(4)
 下限の複数の例(0.20nm(0.14%)、0.50nm(0.36%)および1.0nm(0.71%))と、上限の複数の例(12nm(8.6%)、2.0nm(1.4%)および1.3nm(0.93%))とは、任意のもの同士で組み合わされてもよい(組み合わされなくてもよい。)。すなわち、下限の3例と上限の3例との組み合わせは9通りあり、そのいずれかが満たされるようにRa1が設定されてもよい。例を挙げると、0.20nm(0.14%)以上12nm(8.6%)以下、0.20nm(0.14%)以上2.0nm(1.4%)以下、または1.0nm(0.71%)以上1.3nm(0.93%)以下が満たされてもよい。
(Ra1/T)×100≦0.93 (4)
The multiple examples of the lower limit (0.20 nm (0.14%), 0.50 nm (0.36%), and 1.0 nm (0.71%)) and the multiple examples of the upper limit (12 nm (8.6%), 2.0 nm (1.4%), and 1.3 nm (0.93%)) may be combined in any combination (or may not be combined). That is, there are nine combinations of the three examples of the lower limit and the three examples of the upper limit, and Ra1 may be set so that any one of these combinations is satisfied. For example, 0.20 nm (0.14%) or more and 12 nm (8.6%) or less, 0.20 nm (0.14%) or more and 2.0 nm (1.4%) or less, or 1.0 nm (0.71%) or more and 1.3 nm (0.93%) or less may be satisfied.
 既述のとおり、電極指412の表面71は、例えば、その凹凸によって、不要波を散乱させたり、不要波の周波数をずらしたりし、スプリアスを低減する。この原理から理解されるように、Ra1の設定によってスプリアスの低減の効果を得るにあたり、電極指412の材料、ピッチP、幅Wおよび厚みT、圧電体層2の材料および厚み、ならびに音響反射層5の材料および厚みは特に限定されない。 As described above, the surface 71 of the electrode fingers 412 reduces spurious emissions by, for example, scattering unwanted waves or shifting the frequency of the unwanted waves due to its unevenness. As can be understood from this principle, there are no particular limitations on the material, pitch P, width W and thickness T of the electrode fingers 412, the material and thickness of the piezoelectric layer 2, and the material and thickness of the acoustic reflection layer 5 in obtaining the effect of reducing spurious emissions by setting Ra1.
 ただし、参考までに、図4A~図6に係るシミュレーションの条件のうち、これまでに範囲でのみ言及した寸法の具体的な値を以下に示す。ピッチPは1.20232μmである。Duty(W/P)は0.4である。圧電体層2の厚みは0.448μmである。音響反射層5の厚みは0.448μmである。 However, for reference, specific values of the dimensions mentioned only within the scope of the simulation conditions related to Figures 4A to 6 are shown below. The pitch P is 1.20232 μm. The duty (W/P) is 0.4. The thickness of the piezoelectric layer 2 is 0.448 μm. The thickness of the acoustic reflection layer 5 is 0.448 μm.
 図1に記載の本発明の一実施形態に係る弾性波共振子1において、圧電体層2と音響反射層5は直接的に接する例を示したが、この例に限定されない。例えば本発明の他の実施形態として、圧電体層2の下面2bと音響反射層5は、中間層および接着層等を介して間接的に接していてもよい。 In the elastic wave resonator 1 according to one embodiment of the present invention shown in FIG. 1, the piezoelectric layer 2 and the acoustic reflection layer 5 are in direct contact with each other, but this is not limiting. For example, in another embodiment of the present invention, the lower surface 2b of the piezoelectric layer 2 and the acoustic reflection layer 5 may be indirectly in contact with each other via an intermediate layer, an adhesive layer, or the like.
 このような中間層として、窒化ケイ素(Si)および酸化アルミニウム(Al)等の絶縁性材料が例示できる。絶縁性の中間層を設けることにより、不要の電位が形成されたり不要の容量が形成されたりすることを低減することができ、弾性波共振子1の電気特性を向上させることができる。また、接着層としてアモルファスシリコン等が例示できる。接着層と中間層は両方存在していてもよいし、いずれか一方のみが存在していてもよい。 Examples of such intermediate layers include insulating materials such as silicon nitride ( Si3N4 ) and aluminum oxide ( Al2O3 ). By providing an insulating intermediate layer, it is possible to reduce the generation of unnecessary potential and unnecessary capacitance, thereby improving the electrical characteristics of the elastic wave resonator 1. Examples of adhesive layers include amorphous silicon. Both the adhesive layer and the intermediate layer may be present, or only one of them may be present.
 図1に記載の本発明の一実施形態に係る弾性波共振子1において、音響反射層5は一層の低音響インピーダンス層51のみを有する例を示したが、この例に限定されない。例えば本発明の他の実施形態として、図7Aに示すように、音響反射層5は、複数の低音響インピーダンス層51と、低音響インピーダンス層51よりも音響インピーダンスが高い複数の高音響インピーダンス層52と、が交互に積層されて構成されていてもよい。 In the elastic wave resonator 1 according to one embodiment of the present invention shown in FIG. 1, the acoustic reflection layer 5 has only one low acoustic impedance layer 51, but is not limited to this example. For example, as another embodiment of the present invention, as shown in FIG. 7A, the acoustic reflection layer 5 may be configured by alternately stacking a plurality of low acoustic impedance layers 51 and a plurality of high acoustic impedance layers 52 having a higher acoustic impedance than the low acoustic impedance layers 51.
 音響反射層5をこのような構成とすることで、圧電体層2の下面2b側から漏洩した弾性波が、低音響インピーダンス層51と高音響インピーダンス層52との界面で圧電体層2側へ反射されるため、弾性波の漏洩をより効果的に低減することができる。このような高音響インピーダンス層52として、酸化ハフニウム(HfO)、酸化タンタル(Ta)および酸化ジルコニウム(ZrO)等が例示できる。2種の層の積層数は任意であり、例えば、2種の層の合計で、4層以上12層以下とされてよい。高音響インピーダンス層52の厚さは、低音響インピーダンス層51の厚さに対して、薄くてもよいし、同等でもよいし、厚くてもよい。いずれにせよ、低音響インピーダンス層51の厚さについての既述の説明は、高音響インピーダンス層52に援用されてよい。なお、上記の説明とは異なり、3種以上の層が積層されていたり、2種の層の合計が2層または3層とされていたりしても構わない。 By configuring the acoustic reflection layer 5 in this way, the elastic waves leaking from the lower surface 2b side of the piezoelectric layer 2 are reflected toward the piezoelectric layer 2 at the interface between the low acoustic impedance layer 51 and the high acoustic impedance layer 52, so that the leakage of the elastic waves can be more effectively reduced. Examples of such a high acoustic impedance layer 52 include hafnium oxide (HfO 2 ), tantalum oxide (Ta 2 O 5 ), and zirconium oxide (ZrO 2 ). The number of layers of the two types of layers is arbitrary, and may be, for example, 4 layers or more and 12 layers or less in total. The thickness of the high acoustic impedance layer 52 may be thinner, equal to, or thicker than the thickness of the low acoustic impedance layer 51. In any case, the above-mentioned explanation of the thickness of the low acoustic impedance layer 51 may be applied to the high acoustic impedance layer 52. Unlike the above explanation, three or more layers may be stacked, or the total number of layers of the two types of layers may be two or three.
 また、図1に記載の本発明の一実施形態に係る弾性波共振子1において、音響反射層5の低音響インピーダンス層51は固体の層である例を示したが、この例に限られない。例えば本発明の他の実施形態として、図7Bに示すように、低音響インピーダンス層51は、支持基板3に設けられた空隙8に存在する気体であってもよい。空隙8は、支持基板3の圧電体層2側であって、平面視した時に複数の電極指412と重なる位置に存在している。また空隙8は、圧電体層2によって内部空間を空けて覆われており、内部空間には、気体が存在する。なお気体とは、通常の空気であってもよいし、例えば窒素またはアルゴンなどの不活性ガスであってもよい。 In the elastic wave resonator 1 according to one embodiment of the present invention shown in FIG. 1, the low acoustic impedance layer 51 of the acoustic reflection layer 5 is a solid layer, but this is not limiting. For example, as another embodiment of the present invention, as shown in FIG. 7B, the low acoustic impedance layer 51 may be a gas present in a gap 8 provided in the support substrate 3. The gap 8 is on the piezoelectric layer 2 side of the support substrate 3 and is present at a position overlapping with the multiple electrode fingers 412 when viewed in a plan view. The gap 8 is covered by the piezoelectric layer 2 leaving an internal space, and a gas is present in the internal space. The gas may be normal air or an inert gas such as nitrogen or argon.
 低音響インピーダンス層51をこのような構成とすることで、空隙8に存在する気体が音響反射層として働き、圧電体層2の下面2b側からの弾性波の漏洩を効果的に低減することができる。なお、空隙8の大きさおよび深さ等は、適宜に設定されてもよい。 By configuring the low acoustic impedance layer 51 in this way, the gas present in the gap 8 acts as an acoustic reflection layer, effectively reducing the leakage of elastic waves from the lower surface 2b of the piezoelectric layer 2. The size and depth of the gap 8 may be set as appropriate.
 図3に記載の本発明の一実施形態に係る弾性波共振子1において、圧電体層2の厚みは一定である例を示したが、この例に限定されない。圧電体層2の厚みは異なっていてもよい。例えば本発明の他の実施形態として、図8に示すように、圧電体層2の第1領域21の厚みL1は、圧電体層2の第2領域22の厚みL2よりも大きくてもよい。第1領域とは、平面視で電極指412と重なる圧電体層2の領域を示す。第2領域とは、平面視で電極指412と重ならない圧電体層2の領域を示す。なお、第1領域21と第2領域22の境界では、圧電体層2の厚みが徐々に変化する構成であってもよい。 In the elastic wave resonator 1 according to one embodiment of the present invention shown in FIG. 3, the thickness of the piezoelectric layer 2 is constant. However, the present invention is not limited to this example. The thickness of the piezoelectric layer 2 may vary. For example, as another embodiment of the present invention, as shown in FIG. 8, the thickness L1 of the first region 21 of the piezoelectric layer 2 may be greater than the thickness L2 of the second region 22 of the piezoelectric layer 2. The first region refers to the region of the piezoelectric layer 2 that overlaps with the electrode fingers 412 in a planar view. The second region refers to the region of the piezoelectric layer 2 that does not overlap with the electrode fingers 412 in a planar view. Note that the thickness of the piezoelectric layer 2 may be gradually changed at the boundary between the first region 21 and the second region 22.
 本発明の一実施形態に係る弾性波共振子1において、圧電体層2の上面2aの算術平均粗さは適宜設定されてもよい。例えば本発明の他の実施形態として、図9に示すように、圧電体層2の第2領域22における上面2aの算術平均粗さRa2は、電極指412の表面71の算術平均粗さRa1よりも荒くてもよい。このような構成とすることで、圧電体層2に閉じ込められた不要波が、第2領域22における上面2aで反射する際に散乱されることで、スプリアスを低減することができる。Ra2の具体的な値は特に限定されないが、例えば、Ra1<Ra2を満たすことを条件として(または条件とせずに)、1nm以上、10nm以上、20nm以上もしくは50nm以上とされてよい。また、Ra1<Ra2を満たす場合において、両者の差は、1nm以上、10nm以上、20nm以上もしくは50nm以上とされてよい。 In the elastic wave resonator 1 according to one embodiment of the present invention, the arithmetic mean roughness of the upper surface 2a of the piezoelectric layer 2 may be set as appropriate. For example, as another embodiment of the present invention, as shown in FIG. 9, the arithmetic mean roughness Ra2 of the upper surface 2a of the second region 22 of the piezoelectric layer 2 may be rougher than the arithmetic mean roughness Ra1 of the surface 71 of the electrode finger 412. With this configuration, spurious waves trapped in the piezoelectric layer 2 are scattered when reflected by the upper surface 2a of the second region 22, thereby reducing spurious. The specific value of Ra2 is not particularly limited, but may be, for example, 1 nm or more, 10 nm or more, 20 nm or more, or 50 nm or more, provided that (or without) Ra1<Ra2 is satisfied. Furthermore, when Ra1<Ra2 is satisfied, the difference between the two may be 1 nm or more, 10 nm or more, 20 nm or more, or 50 nm or more.
 なお、例えば、図8と図9とが組み合わされており、かつRa2がL1およびL2の比較に影響するときは、L1およびL2は、例えば、平均線を基準として特定されてよい。上面2aだけでなく、下面2bも同様に、平均線が基準とされてよい。L1とL2との差は任意であるが、例えば、Ra2よりも大きくされてよく(されなくてもよい。)、さらに、Ra2の2倍以上または5倍以上とされてもよい。また、例えば、L1とL2との差は、図8と図9とが組み合わされるか否かに関わらず、1nm以上、10nm以上、20nm以上もしくは50nm以上とされてよく、および/または圧電体層2の厚さの0.5%以上、1%以上、2%以上、5%以上もしくは10%以上とされてよい。 Note that, for example, when FIG. 8 and FIG. 9 are combined and Ra2 affects the comparison of L1 and L2, L1 and L2 may be determined, for example, based on the average line. The average line may be used as the reference not only for the upper surface 2a but also for the lower surface 2b. The difference between L1 and L2 is arbitrary, and may be, for example, larger than Ra2 (but does not have to be), and may be two or more times or five or more times Ra2. Also, for example, the difference between L1 and L2 may be 1 nm or more, 10 nm or more, 20 nm or more, or 50 nm or more, regardless of whether FIG. 8 and FIG. 9 are combined or not, and/or may be 0.5% or more, 1% or more, 2% or more, 5% or more, or 10% or more of the thickness of the piezoelectric layer 2.
 図3に記載の本発明の一実施形態に係る弾性波共振子1において、電極指412の側面72は、圧電体層2の上面2aに対して垂直である例を示したが、この例に限定されない。例えば本発明の他の実施形態として、図10に示すように、電極指412の側面72はX軸方向に傾斜していてもよい。この場合、電極指412のY軸に垂直な断面は、台形のような形状となる。なお側面72とは、電極指412の圧電体層2側の面と表面71とをつなぐ面のことを言う。 In the elastic wave resonator 1 according to one embodiment of the present invention shown in FIG. 3, the side surface 72 of the electrode finger 412 is perpendicular to the upper surface 2a of the piezoelectric layer 2, but this is not limiting. For example, in another embodiment of the present invention, the side surface 72 of the electrode finger 412 may be inclined in the X-axis direction, as shown in FIG. 10. In this case, the cross section of the electrode finger 412 perpendicular to the Y-axis has a trapezoidal shape. The side surface 72 refers to the surface that connects the surface of the electrode finger 412 facing the piezoelectric layer 2 to the surface 71.
 また図10においては、側面72の粗さについては省略して示しているが、側面72の算術平均粗さRa3は適宜設定されてもよい。例えば、側面72の算術平均粗さRa3は、表面71の算術平均粗さRa1と同じであってもよい。 In addition, in FIG. 10, the roughness of the side surface 72 is omitted, but the arithmetic mean roughness Ra3 of the side surface 72 may be set appropriately. For example, the arithmetic mean roughness Ra3 of the side surface 72 may be the same as the arithmetic mean roughness Ra1 of the surface 71.
 本発明の一実施形態に係る弾性波共振子1において、複数の電極指412のすべてにおいて表面71が所定の粗さを有している例を示したが、この例に限定されない。複数の電極指412のうち、一部の電極指412においてのみ表面71が所定の粗さを有していてもよい。例えば本発明の他の実施形態として、図11Aに示すように、複数の電極指412のうち、配列方向(X軸方向)の両端付近に位置する電極指412(ハッチング部分)のみにおいて、表面71が所定の粗さを有していてもよい。この場合、複数の電極指412のうちX軸方向の中央付近に位置する電極指412の表面71の算術平均粗さは、両端付近に位置する電極指412の表面71の算術平均粗さとは異なる。このような構成とすることで、主共振の特性劣化を低減しつつ、スプリアスを効果的に低減することができる。 In the elastic wave resonator 1 according to one embodiment of the present invention, the surface 71 of all the electrode fingers 412 has a predetermined roughness. However, the present invention is not limited to this example. The surface 71 of only some of the electrode fingers 412 may have a predetermined roughness. For example, as another embodiment of the present invention, as shown in FIG. 11A, the surface 71 of only the electrode fingers 412 (hatched portion) located near both ends in the arrangement direction (X-axis direction) may have a predetermined roughness. In this case, the arithmetic mean roughness of the surface 71 of the electrode fingers 412 located near the center in the X-axis direction among the electrode fingers 412 is different from the arithmetic mean roughness of the surface 71 of the electrode fingers 412 located near both ends. With this configuration, it is possible to effectively reduce spurious while reducing deterioration of the main resonance characteristics.
 また、本発明の一実施形態に係る弾性波共振子1において、一つの電極指412の全体において表面71が所定の粗さを有している例を示したが、この例に限定されない。電極指412のうち、一部の表面71においてのみ所定の粗さを有していてもよい。例えば本発明の他の実施形態として、図11Bに示すように、電極指412が隣の電極指412と交差する交差領域9において、延出方向(Y軸方向)の両端付近(ハッチング部分)の表面71が所定の粗さを有していてもよい。この場合、交差領域9において、Y軸方向の中央付近の表面71の算術平均粗さは、両端付近の表面71の算術平均粗さとは異なる。このような構成とすることで、主共振の特性劣化を低減しつつ、スプリアスを効果的に低減することができる。 In addition, in the elastic wave resonator 1 according to one embodiment of the present invention, an example has been shown in which the surface 71 of one electrode finger 412 has a predetermined roughness over the entirety, but this is not limiting. Only a portion of the surface 71 of the electrode finger 412 may have a predetermined roughness. For example, as another embodiment of the present invention, as shown in FIG. 11B, in an intersection region 9 where an electrode finger 412 intersects with an adjacent electrode finger 412, the surface 71 near both ends (hatched portions) in the extension direction (Y-axis direction) may have a predetermined roughness. In this case, in the intersection region 9, the arithmetic mean roughness of the surface 71 near the center in the Y-axis direction is different from the arithmetic mean roughness of the surface 71 near both ends. With this configuration, it is possible to effectively reduce spurious while reducing deterioration of the main resonance characteristics.
 実施形態に係るRa1の範囲の例は、シミュレーションによって導かれている。換言すれば、これまでに述べたRa1の範囲の例は、Ra1の測定方法に影響されておらず、また、下限値の例および上限値の例は誤差を含んでいない(ただし、%は四捨五入している。)。実在する弾性波共振子1のRa1の値が実施形態に係るRa1の範囲に含まれているか否かを判定するときは、下限値の例および上限値の例で示した有効数字等を考慮して、必要な精度でRa1の測定がなされてよい。 The example range of Ra1 according to the embodiment is derived by simulation. In other words, the example range of Ra1 described so far is not influenced by the measurement method of Ra1, and the example lower limit value and example upper limit value do not include any error (however, percentages are rounded off). When determining whether the Ra1 value of an actual elastic wave resonator 1 is within the range of Ra1 according to the embodiment, Ra1 may be measured with the required accuracy, taking into account the significant figures shown in the example lower limit value and example upper limit value.
 例えば、Ra1が0.20nm以上(小数第2位まで有効)であるか否かを判定するときは、Ra1は、分解能が0.01nm以下の測定器(例えば原子間力顕微鏡)を用いて測定されてよい。Ra1が0.20nm以上であることが明らかな場合において、Ra1が2.0nm以下または1.2nm以下(いずれも小数第1位まで有効)であるか否かを判定するときは、Ra1は、分解能が0.1nm以下の測定器(例えば白色干渉計またはレーザ顕微鏡)を用いて測定されてよい。Ra1が0.20nm以上であることが明らかな場合において、Ra1が12nm以下(整数第1位まで有効)であるか否かを判定するときは、Ra1は、分解能が1nm以下の測定器(例えば触針式測定器)を用いて測定されてよい。Ra1/T×100が、0.14%以上、8.6%以下、1.4%以下または0.93%以下であるか否かを判定するときは、Ra1(およびT)は、有効数字が2桁になるように測定がなされてよい。 For example, when determining whether Ra1 is 0.20 nm or more (valid to two decimal places), Ra1 may be measured using a measuring device with a resolution of 0.01 nm or less (e.g., an atomic force microscope). When it is clear that Ra1 is 0.20 nm or more, and when it is determined whether Ra1 is 2.0 nm or less or 1.2 nm or less (both valid to one decimal place), Ra1 may be measured using a measuring device with a resolution of 0.1 nm or less (e.g., a white light interferometer or a laser microscope). When it is clear that Ra1 is 0.20 nm or more, and when it is determined whether Ra1 is 12 nm or less (valid to one integer place), Ra1 may be measured using a measuring device with a resolution of 1 nm or less (e.g., a stylus measuring device). When determining whether Ra1/T x 100 is 0.14% or more, 8.6% or less, 1.4% or less, or 0.93% or less, Ra1 (and T) may be measured to two significant figures.
 なお、精度と測定原理との関係は、測定器(別の観点ではメーカー)によって異なる。また、上記の測定器の例示から理解されるように、測定器は、接触式および非接触式のいずれであってもよい。測定器は、既述のJISに従っていてよく、および/またはISO(International Organization for Standardization)25178に従っていてよい(精度が保証されていれば、これらの規格に従っていなくてもよい。)。Ra1について述べたが、Ra2、Ra3、T、L1およびL2等についても同様である。 The relationship between accuracy and measurement principle varies depending on the measuring instrument (or manufacturer, from another perspective). As can be seen from the above examples of measuring instruments, the measuring instrument may be either a contact or non-contact type. The measuring instrument may conform to the JIS mentioned above and/or ISO (International Organization for Standardization) 25178 (it does not have to conform to these standards as long as accuracy is guaranteed). While Ra1 has been mentioned, the same applies to Ra2, Ra3, T, L1, L2, etc.
 一定程度の大きさのRa1を有する電極指412の形成方法は任意である。例えば、エッチング液、エッチングガス(プラズマ)、レーザー光またはブラストを用いて電極指412の表面を荒らすことによって所望のRa1を得てよい。エッチング液、エッチングガスまたはレーザー光を用いる場合は、これらに電極指412の表面を晒す時間によってRa1を調整できる。また、1nm未満の精度で表面粗さを制御するブラストは実用化されている。荒らされたくない領域にはレジストマスクを形成してもよい。荒らされた表面または当初からRa1が大きくなるように形成された表面を平滑化することによって所望のRa1を得てもよい。平滑化は、例えば、研磨によって行われてよい。ウェハのRaを0.2nm以下になるように研磨する技術は実用化されており、これが応用されてもよい。Ra1について述べたが、Ra2およびRa3等についても同様とされてよい。 The method of forming the electrode fingers 412 having a certain degree of Ra1 is arbitrary. For example, the desired Ra1 may be obtained by roughening the surface of the electrode fingers 412 using an etching solution, an etching gas (plasma), a laser beam, or a blast. When an etching solution, an etching gas, or a laser beam is used, the Ra1 can be adjusted by the time the surface of the electrode fingers 412 is exposed to them. In addition, blasting, which controls the surface roughness with an accuracy of less than 1 nm, has been put to practical use. A resist mask may be formed in the area that is not desired to be roughened. The desired Ra1 may be obtained by smoothing the roughened surface or a surface that has been formed from the beginning to have a large Ra1. The smoothing may be performed, for example, by polishing. A technology for polishing the wafer so that the Ra is 0.2 nm or less has been put to practical use, and this may be applied. Although Ra1 has been described, the same may be applied to Ra2, Ra3, etc.
 (弾性波共振子1の利用例:分波器)
 図12は、弾性波共振子1の利用例としての分波器101の構成を模式的に示す回路図である。この図の紙面左上に示された符号から理解されるように、この図では、櫛歯状電極41が二叉のフォーク形状によって模式的に示され、反射器42は両端が屈曲した1本の線で表わされている。
(Example of use of elastic wave resonator 1: duplexer)
12 is a circuit diagram showing a schematic configuration of a duplexer 101 as an example of the use of the elastic wave resonator 1. As can be seen from the reference numerals shown in the upper left corner of the figure, in this figure, the comb-shaped electrode 41 is shown typically in the shape of a two-pronged fork, and the reflector 42 is represented by a single line bent at both ends.
 分波器101は、例えば、送信端子103からの送信信号をフィルタリングしてアンテナ端子102へ出力する送信フィルタ105と、アンテナ端子102からの受信信号をフィルタリングして受信端子104に出力する受信フィルタ106とを有している。 The splitter 101 has, for example, a transmit filter 105 that filters the transmit signal from the transmit terminal 103 and outputs it to the antenna terminal 102, and a receive filter 106 that filters the receive signal from the antenna terminal 102 and outputs it to the receive terminal 104.
 例えば、本開示の一実施形態における弾性波共振子1を、少なくとも送信フィルタ105と受信フィルタ106のいずれかに用いてもよい。また、弾性波共振子1を、送信フィルタ105と受信フィルタ106の両方に用いてもよい。 For example, the elastic wave resonator 1 according to an embodiment of the present disclosure may be used in at least one of the transmit filter 105 and the receive filter 106. The elastic wave resonator 1 may also be used in both the transmit filter 105 and the receive filter 106.
 また、送信フィルタ105と受信フィルタ106は、例えば、複数の共振子がラダー型に接続されて構成された、ラダー型フィルタによって構成されている。すなわち、送信フィルタ105は、送信端子103とアンテナ端子102との間に直列に接続された複数(1つでも可)の共振子と、その直列のライン(直列腕)と基準電位とを接続する複数(1つでも可)の共振子(並列腕)とを有している。 Furthermore, the transmit filter 105 and the receive filter 106 are configured, for example, as ladder-type filters in which multiple resonators are connected in a ladder configuration. That is, the transmit filter 105 has multiple (or just one) resonators connected in series between the transmit terminal 103 and the antenna terminal 102, and multiple (or just one) resonators (parallel arms) that connect the series line (series arm) to a reference potential.
 図12は、あくまで分波器101の構成の一例であり、分波器101は、図12の構成に限定されない。例えば、送信フィルタ105が多重モード型フィルタによって構成されるなどしてもよい。また、図12では、送信フィルタ105と受信フィルタ106はいずれも弾性波フィルタとされているが、この構成に限定されない。例えば、送信フィルタ105および受信フィルタ106のいずれか一方は弾性波共振子1を用いる弾性波フィルタであって、他方は、1以上のインダクタおよび1以上のキャパシタを含むLCフィルタであってもよい。 FIG. 12 is merely one example of the configuration of the splitter 101, and the splitter 101 is not limited to the configuration in FIG. 12. For example, the transmit filter 105 may be configured as a multimode filter. Also, in FIG. 12, both the transmit filter 105 and the receive filter 106 are elastic wave filters, but this configuration is not limiting. For example, either the transmit filter 105 or the receive filter 106 may be an elastic wave filter that uses an elastic wave resonator 1, and the other may be an LC filter that includes one or more inductors and one or more capacitors.
 なお、分波器101が、送信フィルタ105と受信フィルタ106とを備えるデュプレクサである場合について説明したが、分波器101は、この構成に限定されない。例えば、分波器101は、ダイプレクサでもよいし、三つ以上のフィルタを含んだマルチプレクサであってもよい。 Note that although the above description has been given of a case in which splitter 101 is a duplexer equipped with transmit filter 105 and receive filter 106, splitter 101 is not limited to this configuration. For example, splitter 101 may be a diplexer or a multiplexer including three or more filters.
 (弾性波共振子1の利用例:通信装置)
 図13は、弾性波共振子1(分波器101)の利用例としての通信装置111の要部を示すブロック図である。通信装置111は、分波器101を含んでおり、電波を利用した無線通信を行う。
(Example of use of elastic wave resonator 1: communication device)
13 is a block diagram showing a main part of a communication device 111 as an example of a use of the acoustic wave resonator 1 (the duplexer 101). The communication device 111 includes the duplexer 101 and performs wireless communication using radio waves.
 通信装置111において、送信すべき情報を含む送信情報信号TISは、RF-IC(Radio Frequency Integrated Circuit)113によって変調および周波数の引き上げ(搬送波周波数の高周波信号への変換)がなされて送信信号TSとされる。送信信号TSは、バンドパスフィルタ115aによって送信用の通過帯以外の不要成分が除去され、増幅器114aによって増幅されて分波器101(送信端子103)に入力される。そして、分波器101(送信フィルタ105)は、入力された送信信号TSから送信用の通過帯以外の不要成分を除去し、その除去後の送信信号TSをアンテナ端子102からアンテナ112に出力する。アンテナ112は、入力された電気信号(送信信号TS)を無線信号(電波)に変換して送信する。 In the communication device 111, the transmission information signal TIS containing the information to be transmitted is modulated and frequency-raised (converted to a high-frequency signal of the carrier frequency) by the RF-IC (Radio Frequency Integrated Circuit) 113 to produce the transmission signal TS. Unnecessary components outside the transmission passband are removed from the transmission signal TS by the bandpass filter 115a, amplified by the amplifier 114a, and input to the splitter 101 (transmission terminal 103). The splitter 101 (transmission filter 105) then removes unnecessary components outside the transmission passband from the input transmission signal TS, and outputs the removed transmission signal TS from the antenna terminal 102 to the antenna 112. The antenna 112 converts the input electrical signal (transmission signal TS) into a wireless signal (radio wave) and transmits it.
 また、通信装置111において、アンテナ112によって受信された無線信号(電波)は、アンテナ112によって電気信号(受信信号RS)に変換されて分波器101(アンテナ端子102)に入力される。分波器101(受信フィルタ106)は、入力された受信信号RSから受信用の通過帯以外の不要成分を除去して受信端子104から増幅器114bへ出力する。出力された受信信号RSは、増幅器114bによって増幅され、バンドパスフィルタ115bによって受信用の通過帯以外の不要成分が除去される。そして、受信信号RSは、RF-IC113によって周波数の引き下げおよび復調がなされて受信情報信号RISとされる。 In addition, in the communication device 111, a radio signal (radio waves) received by the antenna 112 is converted by the antenna 112 into an electrical signal (received signal RS) and input to the splitter 101 (antenna terminal 102). The splitter 101 (receiving filter 106) removes unnecessary components outside the receiving passband from the inputted received signal RS and outputs it from the receiving terminal 104 to the amplifier 114b. The outputted received signal RS is amplified by the amplifier 114b, and the unnecessary components outside the receiving passband are removed by the bandpass filter 115b. The received signal RS is then frequency-downshifted and demodulated by the RF-IC 113 to become the received information signal RIS.
 なお、送信情報信号TISおよび受信情報信号RISは、適宜な情報を含む低周波信号(ベースバンド信号)でよく、例えば、アナログの音声信号もしくはデジタル化された音声信号である。無線信号の通過帯は、適宜に設定されてよく、本実施形態では、比較的高周波の通過帯(例えば5GHz以上)も可能である。変調方式は、位相変調、振幅変調、周波数変調もしくはこれらのいずれか2つ以上の組み合わせのいずれであってもよい。回路方式は、図13では、ダイレクトコンバージョン方式を例示したが、この例に限定されず、例えば、ダブルスーパーヘテロダイン方式であってもよい。また、図13は、要部のみを模式的に示しており、適宜な位置にローパスフィルタまたはアイソレータ等が追加されてもよいし、また、増幅器等の位置が変更されてもよい。 The transmission information signal TIS and the reception information signal RIS may be low-frequency signals (baseband signals) containing appropriate information, such as analog audio signals or digitized audio signals. The passband of the wireless signal may be set appropriately, and in this embodiment, a relatively high-frequency passband (for example, 5 GHz or higher) is also possible. The modulation method may be phase modulation, amplitude modulation, frequency modulation, or a combination of two or more of these. Although the direct conversion method is exemplified in FIG. 13 as the circuit method, this is not limited to this example, and may be, for example, a double superheterodyne method. Also, FIG. 13 shows only the main parts in a schematic manner, and a low-pass filter or an isolator may be added at an appropriate position, and the position of the amplifier may be changed.
1:弾性波共振子
2:圧電体層
2a:上面
2b:下面
21:第1領域
22:第2領域
3:支持基板
4:IDT電極
41:櫛歯状電極
411:バスバー
412:電極指
42:反射器
5:音響反射層
51:低音響インピーダンス層
52:高音響インピーダンス層
71:表面
72:側面
8:空隙
9:交差領域
101:分波器
102:アンテナ端子
103:送信端子
104:受信端子
111:通信装置
112:アンテナ
113:RF-IC
114a,114b:増幅器
115a,115b:バンドパスフィルタ
1: Acoustic wave resonator 2: Piezoelectric layer 2a: Upper surface 2b: Lower surface 21: First region 22: Second region 3: Support substrate 4: IDT electrode 41: Comb-shaped electrode 411: Bus bar 412: Electrode finger 42: Reflector 5: Acoustic reflection layer 51: Low acoustic impedance layer 52: High acoustic impedance layer 71: Surface 72: Side 8: Gap 9: Intersection region 101: Splitter 102: Antenna terminal 103: Transmitting terminal 104: Receiving terminal 111: Communication device 112: Antenna 113: RF-IC
114a, 114b: Amplifiers 115a, 115b: Bandpass filters

Claims (16)

  1.  圧電性を有し、第1面と該第1面とは反対側の第2面を有する圧電体層と、
     前記第1面上に位置し、複数の電極指を有する、IDT電極と、
     前記第2面側に位置し、前記圧電体層よりも音響インピーダンスが低い低音響インピーダンス層を含む、音響反射層と、
     を備え、
     平面視における前記複数の電極指の表面の少なくとも一部における算術平均粗さをRa1とし、前記複数の電極指の厚みをTとし、両者の単位が同じであるとすると、
      0.14≦(Ra1/T)×100 の関係を満たす、
     弾性波共振子。
    a piezoelectric layer having piezoelectricity and having a first surface and a second surface opposite to the first surface;
    an IDT electrode located on the first surface and having a plurality of electrode fingers;
    an acoustic reflection layer located on the second surface side and including a low acoustic impedance layer having an acoustic impedance lower than that of the piezoelectric layer;
    Equipped with
    Assuming that the arithmetic mean roughness of at least a part of the surfaces of the plurality of electrode fingers in a plan view is Ra1 and the thickness of the plurality of electrode fingers is T, both of which are expressed in the same unit, then
    The relationship of 0.14≦(Ra1/T)×100 is satisfied.
    Elastic wave resonator.
  2.  圧電性を有し、第1面と該第1面とは反対側の第2面を有する圧電体層と、
     前記第1面上に位置し、複数の電極指を有する、IDT電極と、
     前記第2面側に位置し、前記圧電体層よりも音響インピーダンスが低い低音響インピーダンス層を含む、音響反射層と、
     を備え、
     平面視における前記複数の電極指の表面の少なくとも一部における算術平均粗さをRa1とすると、Ra1は0.20nm以上である、
     弾性波共振子。
    a piezoelectric layer having piezoelectricity and having a first surface and a second surface opposite to the first surface;
    an IDT electrode located on the first surface and having a plurality of electrode fingers;
    an acoustic reflection layer located on the second surface side and including a low acoustic impedance layer having an acoustic impedance lower than that of the piezoelectric layer;
    Equipped with
    When the arithmetic mean roughness of at least a part of the surface of the plurality of electrode fingers in a plan view is Ra1, Ra1 is 0.20 nm or more.
    Elastic wave resonator.
  3.  前記音響反射層は、前記低音響インピーダンス層よりも音響インピーダンスが高い高音響インピーダンス層をさらに含み、
     前記音響反射層は、複数の前記低音響インピーダンス層と複数の前記高音響インピーダンス層が交互に積層されて構成されている、
     請求項1または2に記載の弾性波共振子。
    The acoustic reflection layer further includes a high acoustic impedance layer having an acoustic impedance higher than that of the low acoustic impedance layer,
    The acoustic reflection layer is configured by alternately stacking a plurality of the low acoustic impedance layers and a plurality of the high acoustic impedance layers.
    3. The elastic wave resonator according to claim 1 or 2.
  4.  前記低音響インピーダンス層は、気体である、
     請求項1~3のいずれか1項に記載の弾性波共振子。
    The low acoustic impedance layer is a gas.
    The elastic wave resonator according to any one of claims 1 to 3.
  5.  前記複数の電極指の厚みをTとし、前記Ra1と前記Tとで単位が同じであるとすると、
     (Ra1/T)×100≦8.6 の関係をさらに満たす、
     請求項1~4のいずれか1項に記載の弾性波共振子。
    If the thickness of the plurality of electrode fingers is T and the units of Ra1 and T are the same, then
    Further satisfying the relationship of (Ra1/T)×100≦8.6,
    The elastic wave resonator according to any one of claims 1 to 4.
  6.  (Ra1/T)×100≦1.4 の関係をさらに満たす、
     請求項5に記載の弾性波共振子。
    Further satisfying the relationship of (Ra1/T)×100≦1.4,
    6. The elastic wave resonator according to claim 5.
  7.  (Ra1/T)×100≦0.93 の関係をさらに満たす、
     請求項6に記載の弾性波共振子。
    Further satisfying the relationship of (Ra1/T)×100≦0.93,
    The elastic wave resonator according to claim 6 .
  8.  前記Ra1は、12nm以下である、
     請求項1~7のいずれか1項に記載の弾性波共振子。
    The Ra1 is 12 nm or less.
    The elastic wave resonator according to any one of claims 1 to 7.
  9.  前記Ra1は、2.0nm以下である、
     請求項8に記載の弾性波共振子。
    The Ra1 is 2.0 nm or less.
    The elastic wave resonator according to claim 8 .
  10.  前記Ra1は、1.3nm以下である、
     請求項9に記載の弾性波共振子。
    The Ra1 is 1.3 nm or less.
    The elastic wave resonator according to claim 9 .
  11.  前記IDT電極によって励振され、前記圧電体層を伝搬するLamb波を主共振として利用するように構成されており、前記Lamb波はA1モードである、
     請求項1~10のいずれか1項に記載の弾性波共振子。
    The piezoelectric transducer is configured to utilize a Lamb wave excited by the IDT electrode and propagating through the piezoelectric layer as a primary resonance, the Lamb wave being in an A1 mode.
    The elastic wave resonator according to any one of claims 1 to 10.
  12.  前記複数の電極指の繰り返しピッチの2倍をλと定義すると、前記圧電体層の厚みは、2λ以下である、
     請求項1~11のいずれか1項に記載の弾性波共振子。
    When twice the repeat pitch of the plurality of electrode fingers is defined as λ, the thickness of the piezoelectric layer is 2λ or less.
    The elastic wave resonator according to any one of claims 1 to 11.
  13.  平面視で前記複数の電極指と重なる部分における前記圧電体層の第1の厚みは、平面視で前記複数の電極指と重ならない部分における前記圧電体層の第2の厚みよりも大きい、
     請求項1~12のいずれか1項に記載の弾性波共振子。
    a first thickness of the piezoelectric layer at a portion overlapping with the plurality of electrode fingers in a plan view is greater than a second thickness of the piezoelectric layer at a portion not overlapping with the plurality of electrode fingers in a plan view;
    The elastic wave resonator according to any one of claims 1 to 12.
  14.  平面視で前記複数の電極指と重ならない部分における前記圧電体層の前記第1面の算術平均粗さをRa2とすると、該Ra2は前記Ra1よりも大きい、
     請求項1~13のいずれか1項に記載の弾性波共振子。
    When an arithmetic mean roughness of the first surface of the piezoelectric layer in a portion not overlapping with the plurality of electrode fingers in a plan view is Ra2, the Ra2 is larger than the Ra1.
    The elastic wave resonator according to any one of claims 1 to 13.
  15.  前記Ra1は、平面視における前記複数の電極指の前記表面の全体における算術平均粗さである、
     請求項1~14のいずれか1項に記載の弾性波共振子。
    The Ra1 is an arithmetic average roughness of the entire surface of the plurality of electrode fingers in a plan view.
    The elastic wave resonator according to any one of claims 1 to 14.
  16.  アンテナと、
     前記アンテナに接続されている弾性波フィルタと、
     前記弾性波フィルタに接続されているICと、を有し、
     前記弾性波フィルタは、請求項1~15のいずれか1項に記載の弾性波共振子を含む、
     通信装置。
    The antenna,
    an acoustic wave filter connected to the antenna;
    an IC connected to the acoustic wave filter;
    The acoustic wave filter includes an acoustic wave resonator according to any one of claims 1 to 15.
    Communication device.
PCT/JP2023/039987 2022-11-08 2023-11-07 Elastic wave resonator and communication device WO2024101338A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-178943 2022-11-08
JP2022178943 2022-11-08

Publications (1)

Publication Number Publication Date
WO2024101338A1 true WO2024101338A1 (en) 2024-05-16

Family

ID=91032469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039987 WO2024101338A1 (en) 2022-11-08 2023-11-07 Elastic wave resonator and communication device

Country Status (1)

Country Link
WO (1) WO2024101338A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336417A (en) * 2006-06-19 2007-12-27 Epson Toyocom Corp Surface acoustic wave element and manufacturing method thereof
US20200266796A1 (en) * 2019-02-15 2020-08-20 Skyworks Solutions, Inc. Acoustic wave device with anti-reflection layer
JP2021197685A (en) * 2020-06-17 2021-12-27 太陽誘電株式会社 Elastic wave device, filter, and multiplexer
WO2022045307A1 (en) * 2020-08-28 2022-03-03 京セラ株式会社 Elastic wave element and communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336417A (en) * 2006-06-19 2007-12-27 Epson Toyocom Corp Surface acoustic wave element and manufacturing method thereof
US20200266796A1 (en) * 2019-02-15 2020-08-20 Skyworks Solutions, Inc. Acoustic wave device with anti-reflection layer
JP2021197685A (en) * 2020-06-17 2021-12-27 太陽誘電株式会社 Elastic wave device, filter, and multiplexer
WO2022045307A1 (en) * 2020-08-28 2022-03-03 京セラ株式会社 Elastic wave element and communication device

Similar Documents

Publication Publication Date Title
JP7433268B2 (en) Elastic wave devices, duplexers and communication devices
JP6856825B2 (en) Elastic wave device, demultiplexer and communication device
WO2018168836A1 (en) Acoustic wave element, acoustic wave filter device, and multiplexer
JP6637990B2 (en) Elastic wave resonator, elastic wave filter, duplexer, communication device, and method of designing elastic wave resonator
WO2015064238A1 (en) Elastic wave element, filter element and communication device
JP7433216B2 (en) Elastic wave elements, elastic wave filters, duplexers and communication devices
KR20190056293A (en) Elastic wave device, high-frequency front-end circuit, and communication apparatus
JP6870684B2 (en) Multiplexer
JP2019102883A (en) Elastic wave device, high frequency front end circuit and communication device
JP2010011440A (en) Acoustic wave device and high-frequency filter using the same
US20240030891A1 (en) Elastic wave element and communication device
WO2020095586A1 (en) Elastic wave device, duplexer, and communication device
JP4100249B2 (en) Surface acoustic wave device, communication device
WO2018235605A1 (en) Elastic wave device, high-frequency front end circuit, and communications device
JP6530494B2 (en) Surface acoustic wave device
JP2020182130A (en) Filter and multiplexer
JP2000188521A (en) Surface acoustic wave device and two port surface acoustic wave resonator
WO2020184641A1 (en) Elastic wave filter device and multiplexer
JP4583243B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
WO2024101338A1 (en) Elastic wave resonator and communication device
US20220255527A1 (en) Acoustic wave device
JP2022176790A (en) Elastic wave device, wafer, filter and multiplexer
WO2023171715A1 (en) Elastic wave device, branching filter, communication device, and method for manufacturing elastic wave device
WO2024024778A1 (en) Elastic wave resonator, elastic wave filter, and communication device
JP2002185284A (en) Surface acoustic wave filter