WO2024101335A1 - Charging control device and control method - Google Patents

Charging control device and control method Download PDF

Info

Publication number
WO2024101335A1
WO2024101335A1 PCT/JP2023/039977 JP2023039977W WO2024101335A1 WO 2024101335 A1 WO2024101335 A1 WO 2024101335A1 JP 2023039977 W JP2023039977 W JP 2023039977W WO 2024101335 A1 WO2024101335 A1 WO 2024101335A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power
power supply
power storage
charging
Prior art date
Application number
PCT/JP2023/039977
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 近藤
Original Assignee
克彦 近藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 克彦 近藤 filed Critical 克彦 近藤
Publication of WO2024101335A1 publication Critical patent/WO2024101335A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • the present invention relates to a charging control device, etc.
  • a charging control device that charges a storage unit, which is a secondary battery, is configured assuming that a commercial power source with a specified AC voltage is used as the power supply source (see, for example, Patent Document 1).
  • the problem that this invention aims to solve is to realize a charging control device that can charge a power storage unit with any supply of power.
  • the first invention is A charge control device that is connected to a DC power supply unit and charges N (N ⁇ 2) power storage units, M (M ⁇ 2) power receiving units that can be electrically connected to the DC power supply unit; M DC/DC converters each provided for each of the power receiving units, each converting a power supplied from the DC power supply unit connected to the power receiving unit into a given charging voltage; a switching unit capable of switching a connection relationship between each of the power storage units and each of the DC/DC converters; A controller for controlling the switching unit; Equipped with The switching unit is a power supply source switching unit that switches a power supply source DC/DC converter among the M DC/DC converters; a power storage unit connection switching unit that switches a connection relationship of the power storage unit that is connected to the power supply source; having The controller controls the power supply source switching unit and the power storage unit connection switching unit based on a power receiving unit to which the DC power supply unit is connected among the M power receiving units.
  • a charging control device is a power supply source switching unit that switches a power supply source DC
  • a control method for a charge control device that is connected to a DC power supply unit and charges N (N ⁇ 2) power storage units comprising:
  • the charging control device includes: M (M ⁇ 2) power receiving units that can be electrically connected to the DC power supply unit; M DC/DC converters each provided for each of the power receiving units, each converting power supplied from the DC power supply unit connected to the power receiving unit into a given charging voltage; a switching unit capable of switching a connection relationship between each of the power storage units and each of the DC/DC converters; Equipped with The switching unit is a power supply source switching unit that switches a power supply source DC/DC converter among the M DC/DC converters; a power storage unit connection switching unit that switches a connection relationship of the power storage unit that is connected to the power supply source; It has controlling the power supply source switching unit and the power storage unit connection switching unit based on a power receiving unit to which the DC power supply unit is connected among the M power receiving units;
  • a control method may be configured.
  • the connection relationship of the power storage unit connected to the DC/DC converter that supplies power can be switched by controlling the switching unit with a controller. This makes it possible to appropriately charge the power storage unit with power supplied from any DC power supply unit connected to the power receiving unit. Also, by configuring the connection relationship of the power storage unit connected to the DC/DC converter so that the charging voltage is close to the voltage of the DC power supply unit connected to the power receiving unit, it is possible to suppress conversion loss in the DC/DC converter as much as possible, making it possible to achieve more efficient charging.
  • the second invention is the above-mentioned invention, the power storage unit connection switching unit switches between an individual connection in which the power storage units are individually connected to the power supply source, a parallel connection in which the power storage units are connected in parallel, and a series connection in which the power storage units are connected in series; A charging control device.
  • the second invention it is possible to charge the storage unit with power of various voltages and currents depending on the number of DC power supply units connected to the power receiving unit, the combination of voltages of the power supply, and the connection relationship of the storage unit, such as individual connection, parallel connection, or series connection. This makes it possible to appropriately control the charging of the storage unit in response to any DC power supply unit that supplies various voltages and currents of power.
  • the third invention is the above-mentioned invention,
  • the DC power supply unit having a different power supply voltage can be connected to the power receiving unit, a voltage acquisition unit that acquires a voltage of the DC power supply unit connected to the power receiving unit; Further comprising:
  • the controller controls the power storage unit connection switching unit based on a voltage of the DC power supply unit connected to the power receiving unit.
  • a charging control device
  • DC power supply units with various different voltages can be connected to the power receiving unit, and by controlling the switching unit based on the voltage of the DC power supply unit, it becomes possible to appropriately control the charging of the power storage unit in accordance with any DC power supply unit with various supply power voltages.
  • a fourth aspect of the present invention is the above-mentioned invention,
  • the N power storage units include power storage units having different rated voltages,
  • the controller controls the power storage unit connection switching unit based on a voltage of the DC power supply unit connected to the power receiving unit and a rated voltage of each of the N power storage units.
  • a charging control device is a fourth aspect of the present invention.
  • the fourth invention it is possible to configure the connection relationship of the power storage unit so that charging power of a voltage corresponding to the rated voltage is supplied to the power storage unit by referring to the voltage of the DC power supply unit. This makes it possible to perform appropriate charging control according to the rated voltage of the power storage unit.
  • a fifth aspect of the present invention is the above-mentioned invention, a charging status acquisition unit that acquires a charging status of each of the N power storage units; Further comprising: The controller dynamically controls the power supply source switching unit and the power storage unit connection switching unit based on a charging status of each of the N power storage units.
  • a charging control device a charging control device.
  • the DC/DC converter of the power supply source can be dynamically switched based on the charging status of each power storage unit, and the connection relationship of the power storage units connected to the DC/DC converter of the power supply source can be dynamically switched.
  • This enables more appropriate charging control of the power storage units according to the charging status. For example, when multiple power storage units are charged simultaneously, it is possible to control the switching unit so that a power storage unit that has reached a predetermined charging status (for example, full charge or a charging rate of 90%) is disconnected from the DC/DC converter of the power supply source, or to control charging so as to align the charging status of multiple power storage units.
  • a predetermined charging status for example, full charge or a charging rate of 90%
  • the controller has a charging order setting unit that sets a charging order for the N power storage units, and controls the power supply source switching unit and the power storage unit connection switching unit based on the charging order.
  • a charging control device is a charging order setting unit that sets a charging order for the N power storage units, and controls the power supply source switching unit and the power storage unit connection switching unit based on the charging order.
  • appropriate charging control of the power storage units is possible based on the charging order set for the N power storage units.
  • the charging order of the power storage units may be set, for example, according to an external input, or according to conditions related to the power storage units, such as specifications such as capacity and rated voltage, or charging conditions such as the charging rate. For example, when the conditions related to the power storage units are set, the time required to charge each power storage unit can be taken into consideration, thereby realizing more appropriate charging control.
  • FIG. 1 is a configuration diagram of a power storage system.
  • 3 shows an example of a connection relationship of a power storage unit.
  • 3 shows an example of a connection relationship of a power storage unit.
  • 4 shows an example of a connection relationship of a power storage unit.
  • Controller configuration diagram An example of power receiving unit data.
  • 13 is an example of power storage unit data.
  • 13 is an example of charging order setting data.
  • FIG. 1 is a schematic diagram of a power storage system 1 in this embodiment.
  • the power storage system 1 includes a power storage device 10, which is a secondary battery, and a charging control device 20 that is connected to a DC power supply unit 9 and charges the power storage device 10.
  • the power storage system 1 is a power supply facility in which various devices are housed in one or more housings and can be installed and moved to any position by being handled like a container and mounted on a vehicle such as a truck or a trailer.
  • the DC power supply unit 9 is a power source that supplies DC power, and is, for example, a solar power generation system.
  • the power transmission end of the DC power supply unit 9 and the power receiving unit 30 are connected one-to-one. For example, when the DC power supply unit 9 is a solar power generation system and a power transmission end is provided for each solar cell string, it is possible to connect each power transmission end to the power receiving unit 30.
  • FIG. 2 is a configuration diagram of the energy storage system 1.
  • the energy storage device 10 has N (N ⁇ 2) energy storage units 12.
  • the energy storage units 12 are secondary batteries that can be repeatedly charged and discharged.
  • the charging control device 20 is a device that connects to a DC power supply unit 9 to charge N power storage units 12, and has M (M ⁇ 2) power receiving units 30 that can be electrically connected to the DC power supply unit 9, M DC/DC converters 40 that are provided for each power receiving unit 30 and convert the power supplied from the DC power supply unit 9 connected to the power receiving unit 30 into a given charging voltage, a switching unit 50, and a controller 60.
  • the switching unit 50 has a plurality of switches (shown by circles in FIG. 2) and switches the connection between each of the power storage units 12 and each of the DC/DC converters 40.
  • the on/off (open/close) of the switches is controlled by the controller 60.
  • the switches may be configured as relay circuits or may be configured as circuits using power semiconductors.
  • the switching unit 50 has a power storage unit connection switching unit 54 and a power supply source switching unit 52.
  • the power supply source switching unit 52 switches the power supply source DC/DC converter 40 among the M DC/DC converters 40.
  • the switches of the power supply source switching unit 52 are arranged in a matrix so as to connect and disconnect the intersections of the power supply positive line L3 and the power supply negative line L4 (shown as horizontal lines in FIG. 2) connected to the positive (+) and negative (-) output terminals of the DC/DC converter 40, respectively, and the connection line L5 (shown as a vertical line in FIG. 2).
  • the power storage unit connection switching unit 54 switches the connection relationship of the power storage unit 12 that is connected to the power source DC/DC converter 40 among the M DC/DC converters 40.
  • the switches of the power storage unit connection switching unit 54 are arranged in a matrix so as to connect and disconnect the intersections of the power storage positive line L1 and the power storage negative line L2 (shown as horizontal lines in FIG. 2) that are connected to the positive (+) and negative (-) input terminals of the power storage unit 12, respectively, and the connection line L5 (shown as a vertical line in FIG. 2).
  • connection lines L5 are multiple electric wires that are wired to bridge the storage unit connection switching unit 54 and the power supply source switching unit 52.
  • Each of the connection lines L5 may be used as a positive electrode wire or a negative electrode wire.
  • the switching unit 50 constitutes a power network that can connect N storage positive lines L1 and N storage negative lines L2 to M power supply positive lines L3 and M power supply negative lines L4 in any connection form via a connection line L5.
  • the connection form refers to the type of connection, such as connecting multiple storage units 12 in series or parallel, connecting multiple DC/DC converters 40 in series or parallel, or connecting one DC/DC converter 40 to one storage unit 12.
  • the power receiving unit 30 has a power receiving terminal that can be electrically connected to the DC power supply unit 9. Note that the power receiving unit 30 may be realized by non-contact power reception (wireless power transmission) instead of contact power reception via a power receiving terminal.
  • the DC/DC converter 40 has its transformation operation controlled by the controller 60 so that it steps up or down the input voltage (the voltage on the power receiving unit 30 side) so that the output voltage (the voltage on the switching unit 50 side) becomes a given charging voltage.
  • the DC/DC converter 40 has voltage sensors at the input and output stages, and outputs the detected input voltage and output voltage (charging voltage) to the controller 60 at any time. Input and output of data between the DC/DC converter 40 and the controller 60 can be achieved by wired or wireless communication.
  • the controller 60 controls the power supply source switching unit 52 and the power storage unit connection switching unit 54 of the switching unit 50 based on the power receiving unit 30 to which the DC power supply unit 9 is connected among the M power receiving units 30. Specifically, the controller 60 controls the switching unit 50 based on the power supply voltage of the DC power supply unit 9 connected to the power receiving unit 30.
  • the power supply voltage of the DC power supply unit 9 can be obtained by an operator's operation input using an input device such as a button switch, keyboard, or touch panel integrally formed with the display provided on the controller 60.
  • a reading device that reads specification data including the power supply voltage of the DC power supply unit 9 from an IC tag provided on the DC power supply unit 9 may be provided on the power receiving unit 30, and the data read by the reading device may be output to the controller 60 (by wired communication or wireless communication).
  • the specification data of the DC power supply unit 9 is stored in advance in the IC tag. By acquiring the specification data, the controller 60 can recognize which power receiving unit 30 the DC power supply unit 9 is connected to and the power supply voltage of the connected DC power supply unit 9.
  • the detected value of the input voltage input from the DC/DC converter 40 may be determined to be the power supply voltage of the DC power supply unit 9.
  • the controller 60 also controls the switching unit 50 based on the rated voltage of each of the N storage units 12.
  • the data on the rated voltage of the storage units 12 can be obtained, for example, by an operator using an input device provided in the controller 60, in the same way as the above-mentioned acquisition of the power supply voltage of the DC power supply unit 9.
  • this can be achieved by providing a reading device that reads specification data including the rated voltage of the storage unit 12 from the BMS (Battery Management System) of the storage unit 12 or an IC tag provided in the storage unit 12, and outputting the data read by the reading device to the controller 60 (by wired or wireless communication).
  • the specification data of the storage unit 12 is stored in advance in the BMS or IC tag.
  • the controller 60 controls the on/off of the switch of the power supply source switching unit 52 so that the DC/DC converter 40 corresponding to the power receiving unit 30 to which the DC power supply unit 9 is connected is the power supply source.
  • the controller 60 also controls the on/off of the switch of the power storage unit connection switching unit 54 so that charging power according to the rated voltage of the power storage unit 12 is supplied (power is fed), thereby configuring the connection relationship of the power storage unit 12 to be connected to the DC/DC converter 40 of the power supply source.
  • the controller 60 also dynamically controls the power supply source switching unit 52 and the storage unit connection switching unit 54 of the switching unit 50 based on the charging status of each of the N storage units 12.
  • the charging status of the storage unit 12 can be obtained by the controller 60 calculating it based on the input voltage and input current of the storage unit 12 measured by a voltmeter and ammeter provided at the input end of the storage unit 12, for example.
  • the charging status may also be obtained by the BMS (Battery Management System) of the storage unit 12 outputting it to the controller 60.
  • the charging status may be, for example, the charging rate or SoC (State of Charge).
  • the controller 60 dynamically controls based on the charging status of the power storage unit 12. For example, when the power storage unit 12 reaches a predetermined charging status, such as full charge or a charging rate of 90%, the controller 60 controls the switching unit 50 to disconnect the DC/DC converter 40 to which the power storage unit 12 is connected. The controller 60 also controls the switching unit 50 to connect the disconnected DC/DC converter 40 to another power storage unit 12 that is not being charged.
  • a predetermined charging status such as full charge or a charging rate of 90%
  • the controller 60 also controls the power supply source switching unit 52 and the power storage unit connection switching unit 54 based on the charging order set for the N power storage units 12.
  • the charging order for the power storage units 12 can be set by an operator using an input device provided in the controller 60, similar to the above-mentioned acquisition of the power supply voltage of the DC power supply unit 9 and the rated voltage of the power storage units 12.
  • the charging order may be set according to conditions related to the power storage units 12, such as specifications such as capacity and rated voltage, or charging conditions such as the charging rate.
  • the order in order to shorten the total charging time, the order is set to give priority to the storage units 12 with a low charging rate (i.e., the time required to charge is long), and (b) the order is set to give priority to parallel or series connections that allow multiple storage units 12 to be charged by one DC power supply unit, and in this case, in order to suppress the conversion loss of the DC/DC converter 40, the combination of storage units 12 is set so that the power supply voltage of the DC power supply unit 9 and the charging voltage (output voltage of the DC/DC converter 40) are close, or the order is set so that the charging rates of the storage units 12 connected in parallel or series are the same.
  • connection patterns for the power storage units 12 connected to the DC/DC converter 40 of the power supply source which are realized by the control of the power storage unit connection switching unit 54.
  • the power supply source switching unit 52 may connect multiple DC/DC converters 40 in series to form one group of DC/DC converters 40 as the power supply source, and one power storage unit 12 may be connected to this group, or multiple power storage units 12 may be connected in series or in parallel to this group.
  • three patterns for forming a connection relationship for one DC/DC converter 40 are adopted. That is, in this embodiment, the power storage system 1 has M power receiving units 30 and can simultaneously supply power from a maximum of M DC power supply units 9, but one power storage unit 12 is connected and charged with a maximum of one DC/DC converter 40 (DC power supply unit 9) as the power supply source.
  • a connection relationship in which the input voltage of the DC/DC converter 40 (the voltage on the power receiving unit 30 side) is approximately equal to the optimal charging voltage according to the rated voltage of the power storage unit 12 is preferentially selected.
  • FIGS. 3 to 5 are diagrams showing an example of the connection relationship of the power storage unit 12 and an example of the on/off state of each switch of the switching unit 50 in that case.
  • a black circle in the switching unit 50 indicates an on (closed) switch
  • a white circle indicates an off (open) switch.
  • the current flow between the power receiving unit 30 and the power storage unit 12 is indicated by a thick black line. Also, to make it easier to understand, the DC/DC converter 40 and the like are not shown.
  • FIG. 3 shows an example of individual connection.
  • FIG. 3 illustrates three storage units 12A to 12C, each with a different combination of rated voltages.
  • a DC power supply unit 9A with a supply voltage of 500V and a supply current of 35A is connected to a first power receiving unit 30A.
  • one storage unit 12 that is closest to the supply voltage of the DC power supply unit 9 is connected to the power receiving unit 30 to which the DC power supply unit 9 is connected.
  • the first power receiving unit 30A to which the DC power supply unit 9A is connected is connected (separately connected) to the first power supply unit 9A.
  • the first power storage unit 12A has a rated voltage of 500V, which is closest to (in this case, coincides with) the power supply voltage of the DC power supply unit 9A. That is, the positive electrode (+) of the first power storage unit 12A is connected to the positive electrode (+) of the first power receiving unit 30A, and the negative electrode (-) of the first power storage unit 12A is connected to the negative electrode (-) of the first power receiving unit 30A.
  • the switching control of the switching unit 50 is performed by turning on (closing) the switches Q1 and Q2 of the power storage unit connection switching unit 54 to set the connection relationship of the first power storage unit 12A to an individual connection, and turning on (closing) the switches Q3 and Q4 of the power supply source switching unit 52 to connect the first power receiving unit 30A as the power supply source of the individual connection.
  • the DC/DC converter 40 corresponding to the first power receiving unit 30A has its voltage transformation operation controlled by the controller 60, and outputs the charging power to the first power storage unit 12A.
  • the voltage input to the DC/DC converter 40 (voltage on the first power receiving unit 30A side) and the voltage output from the DC/DC converter 40 (voltage on the switching unit 50 side; charging voltage) are approximately the same voltage. Therefore, the voltage transformation in the DC/DC converter 40 is realized with high efficiency.
  • first power storage unit 12A and second power storage unit 12B whose rated voltage is 500V, which is closest to (in this case, coincides with) the power supply voltage of 500V of DC power supply unit 9B, are connected in parallel (connected in parallel) to first power receiving unit 30A to which DC power supply unit 9B is connected.
  • the positive electrodes (+) of first power storage unit 12A and second power storage unit 12B are connected to the positive electrode (+) of first power receiving unit 30A
  • the negative electrodes (-) of first power storage unit 12A and second power storage unit 12B are connected to the negative electrode (-) of first power receiving unit 30A.
  • the switching control of the switching unit 50 is performed by turning on (closing) the switches Q1, Q2, Q5, and Q6 of the power storage unit connection switching unit 54 to connect the first power storage unit 12A and the second power storage unit 12B in parallel, and turning on (closing) the switches Q3 and Q4 of the power supply source switching unit 52 to make the first power receiving unit 30A the power supply source of the parallel connection.
  • the individual connection in FIG. 3 and the parallel connection in FIG. 4 have the same charging voltage of 500 V, but the charging current to the power storage unit 12 that is the charging destination is different. Since the power supply current is diverted in the parallel connection, the individual connection in FIG. 3 can obtain a larger charging current.
  • FIG. 5 shows an example of a series connection.
  • FIG. 5 illustrates three storage units 12A to 12C, which are different combinations of rated voltages among the storage units 12 of the power storage device 10.
  • a DC power supply unit 9C with a feed voltage of 1250 V and a feed current of 10 A is connected to a first power receiving unit 30A.
  • the multiple storage units 12 whose total rated voltage is closest to the feed voltage of the DC power supply unit 9 are connected in series to the power receiving unit 30 to which the DC power supply unit 9 is connected.
  • the switching control of the switching unit 50 is performed by turning on (closing) the switches Q1, Q2, Q7, and Q8 of the power storage unit connection switching unit 54 to connect the first power storage unit 12A and the third power storage unit 12C in series, and turning on (closing) the switches Q3 and Q9 of the power supply source switching unit 52 to make the first power receiving unit 30A the power supply source for the series connection.
  • Controller configuration 6 is a diagram showing an example of the configuration of the controller 60.
  • the controller 60 is realized as a type of computer system, and includes an input unit 102, a communication unit 104, a display unit 106, a sound emitting unit 108, a control unit 200, and a storage unit 300.
  • the input unit 102 is realized as an input device or an input interface such as a button switch or a keyboard that accepts operational input from an operator, or a touch panel formed integrally with a display.
  • the communication unit 104 is realized as a wireless or wired communication device for communicating with an external device, or as a communication interface thereof.
  • the display unit 106 is realized as a lamp, a display, or the like.
  • the sound emission unit 108 is realized as a speaker, or the like.
  • the control unit 200 is realized by an arithmetic circuit equipped with processors such as a CPU (Central Processing Unit), MPU (Micro-Processing Unit), and DSP (Digital Signal Processor).
  • processors such as a CPU (Central Processing Unit), MPU (Micro-Processing Unit), and DSP (Digital Signal Processor).
  • control unit 200 may be provided by an ASIC (Application Specific Integrated Circuit), a GPU (Graphics Processing Unit), etc., or may be realized by hardware circuits such as an FPGA (Field-Programmable Gate Array) or a dedicated LSI (Large Scale Integration).
  • ASIC Application Specific Integrated Circuit
  • GPU Graphics Processing Unit
  • hardware circuits such as an FPGA (Field-Programmable Gate Array) or a dedicated LSI (Large Scale Integration).
  • the control unit 200 has, as functional units, a switching control unit 202, a power supply voltage acquisition unit 204, a rated voltage acquisition unit 206, a charging status acquisition unit 208, and a charging order setting unit 210.
  • the switching control unit 202 controls the power supply source switching unit 52 and the power storage unit connection switching unit 54 based on the power receiving unit 30 to which the DC power supply unit 9 is connected among the M power receiving units 30.
  • the power storage unit connection switching unit 54 can switch between an individual connection in which the power storage units 12 are individually connected to the power supply source, a parallel connection in which the power storage units 12 are connected in parallel, and a series connection in which the power storage units 12 are connected in series (see Figures 3 to 5).
  • a DC power supply unit 9 with a different power supply voltage can be connected to the power receiving unit 30, and the switching control unit 202 controls the power storage unit connection switching unit 54 based on the voltage of the DC power supply unit 9 connected to the power receiving unit 30.
  • the switching control unit 202 controls the power storage unit connection switching unit 54 based on the voltage of the DC power supply unit 9 connected to the power receiving unit 30.
  • the voltage of the DC power supply unit 9 connected to the power receiving unit 30 is acquired by the power supply voltage acquisition unit 204.
  • the power supply voltage acquisition unit 204 can acquire the voltage (power supply voltage) of the DC power supply unit 9, for example, by an operator's operation input via the input unit 102.
  • a reading device that reads specification data including the power supply voltage of the DC power supply unit 9 from an IC tag provided in the DC power supply unit 9 and outputs the read data to the controller 60 (wired communication or wireless communication) may be provided in the power receiving unit 30, and the data output by the reading device may be acquired via the communication unit 104.
  • the specification data of the DC power supply unit 9 is stored in advance in the IC tag.
  • the power supply voltage acquisition unit 204 may acquire the detection value of a voltage sensor provided in the input stage of the DC/DC converter 40.
  • the voltage (power supply voltage) of the DC power supply unit 9 acquired by the power supply voltage acquisition unit 204 is stored as part of the power receiving unit data 302.
  • FIG. 7 is an example of the power receiving unit data 302.
  • the power receiving unit data 302 stores, for each power receiving unit 30, the voltage (power supply voltage) and current (power supply current) of the DC power supply unit 9 connected to that power receiving unit 30 in association with each other. Data relating to power receiving units 30 to which a DC power supply unit 9 is not connected is not stored. Therefore, it is also possible to determine which power receiving unit 30 the DC power supply unit 9 is connected to from the power receiving unit data 302.
  • the N storage units 12 also include storage units 12 with different rated voltages, and the switching control unit 202 controls the storage unit connection switching unit 54 based on the voltage of the DC power supply unit 9 connected to the power receiving unit 30 and the rated voltage of each of the N storage units 12.
  • the rated voltage of the storage unit 12 is acquired by the rated voltage acquisition unit 206.
  • the rated voltage acquisition unit 206 can realize the rated voltage of the storage unit 12, for example, by an operator's operational input via the input unit 102.
  • a reading device may be provided that reads specification data including the rated voltage of the storage unit 12 from the BMS (Battery Management System) of the storage unit 12 or an IC tag provided on the storage unit 12, and the data read by the reading device may be acquired via the communication unit 104.
  • the specification data of the storage unit 12 is stored in advance in the BMS or IC tag.
  • the rated voltage of the power storage unit 12 acquired by the rated voltage acquisition unit 206 is stored as part of the power storage unit data 304.
  • FIG. 8 is an example of the power storage unit data 304.
  • the power storage unit data 304 stores the rated voltage and the charging status for each power storage unit 12 in the power storage device 10 in association with each other.
  • the charging status is a value acquired by the charging status acquisition unit 208, and is updated at the time of acquisition.
  • the switching control unit 202 also dynamically controls the power supply source switching unit 52 and the storage unit connection switching unit 54 based on the charging status of each of the N storage units 12.
  • the charging status of each of the N storage units 12 is acquired by the charging status acquisition unit 208.
  • the charging status acquisition unit 208 can acquire the charging status of the storage unit 12, for example, by calculating it based on the input voltage and input current of the storage unit 12 measured by a voltmeter and ammeter provided at the input terminal of the storage unit 12.
  • the charging status output by the BMS (Battery Management System) of the storage unit 12 may be acquired via the communication unit 104.
  • the charging status is, for example, the charging rate and SoC (State of Charge).
  • the charging status of the storage unit 12 acquired by the charging status acquisition unit 208 is stored as part of the storage unit data 304.
  • the switching control unit 202 also controls the power supply source switching unit 52 and the storage unit connection switching unit 54 based on the charging order set for the N storage units 12.
  • the charging order is set by the charging order setting unit 210.
  • the charging order setting unit 210 can set the charging order of the power storage units 12, for example, by an operator's operation input via the input unit 102.
  • the charging order may be set according to conditions related to the power storage units 12, such as specifications such as capacity and rated voltage, and charging conditions such as charging rates.
  • the charging order is set to a power storage unit 12 with a low charging rate (i.e., a long charging time) first
  • a combination of power storage units 12 is set so that the power supply voltage of the DC power supply unit and the charging voltage (output voltage of the DC/DC converter 40) are close to each other, or the charging order is set so that the charging rates of the power storage units 12 connected in parallel or series are the same.
  • the charging order set by the charging order setting unit 210 is stored as charging order setting data 308.
  • FIG. 9 is an example of the charging order setting data 308.
  • the charging order setting data 308 stores, in association with the charging order, a combination of the power storage units 12 to be charged, the power receiving unit 30 that supplies power, the connection pattern of the power storage units 12, the charging voltage output by the DC/DC converter 40 that corresponds to the power receiving unit 30, and the target charging rate that is the target charging status of the power storage units 12.
  • one power storage unit 12 is charged by power supplied from a maximum of one DC power supply unit 9.
  • the connection relationship of the power storage unit 12 to the power supply source DC/DC converter 40 is set to three patterns: individual connection, parallel connection, and series connection (see Figures 3 to 5).
  • the charging order prioritizes parallel connection and series connection. Specifically, a group of connection relationships of the storage units 12 to be connected to each of the power receiving units 30 (DC power supply unit 9) of the power supply source is determined, and for each group, the charging order is set in ascending order of charging rate so that the charging rates of the storage units 12 are uniform. For example, the setting data in the upper row of the charging order setting data 308 in FIG. 9 sets the charging order of the group related to the first to second storage units 12.
  • the setting data in the lower part of the charging order setting data 308 in FIG. 9 sets the charging order of the group related to the third to fourth power storage units 12.
  • the switching control unit 202 controls the power supply source switching unit 52 and the power storage unit connection switching unit 54 (turning the switches on and off) according to the connection relationship definition table 306.
  • FIG. 10 is an example of the connection relationship definition table 306.
  • Table 306-m defines the "switch to be turned on" among the switches of the switching unit 50 for each of the connection relationships of the power storage units 12 connected to the power receiving unit 30.
  • the connection relationships of the power storage units 12 include the number of power storage units 12 to be connected, the pattern (distinguishing between individual, parallel, and series connection), and the combination of the power storage units 12 to be connected.
  • the memory unit 300 is realized by a flash memory, a ROM (Read Only Memory), a RAM (Random Access Memory), a HDD (Hard Disk Drive), a SSD (Solid State Drive), an EPROM (Erasable Programmable ROM), etc.
  • the memory unit 300 stores power receiving unit data 302, power storage unit data 304, a connection relationship definition table 306, and charging order setting data 308.
  • [Process flow] 11 is a flowchart of the charging control process executed by the controller 60.
  • the rated voltage acquisition unit 206 acquires the rated voltage of each of the power storage units 12 (step S1).
  • the charging status acquisition unit 208 starts detecting the charging status of each of the power storage units 12 (step S3). Thereafter, the charging status acquisition unit 208 periodically detects the charging status of each of the power storage units 12.
  • the power supply voltage acquisition unit 204 starts detecting the power supply voltage of the DC power supply unit 9 connected to each of the power receiving units 30 (step S5). Thereafter, the power supply voltage acquisition unit 204 periodically detects the power supply voltage of the DC power supply unit 9.
  • the charging order setting unit 210 sets the charging order of the power storage units 12 based on the rated voltage and charging status of each of the power storage units 12, the power supply voltage of each of the power receiving units 30, etc. (step S7).
  • the set charging order data is stored in the storage unit 300 as charging order setting data 308.
  • the switching control unit 202 performs switching control so that charging (supply of charging power from the power receiving unit 30, which is the power supply source, to the power storage units 12) according to the set charging order is realized (step S9).
  • the switching unit 50 switches on and off so that a connection relationship between the power receiving unit 30 and the power storage unit 12 corresponding to the charging order "1" in the charging order setting data 308 is formed.
  • control of the charging voltage output by the DC/DC converter 40 corresponding to each of the power receiving units 30 is started (step S11).
  • step S13: NO) it is determined whether the power supply voltage of the power receiving unit 30 has changed.
  • This change in power supply voltage includes not only a change in the voltage of the DC power supply unit 9 already connected, but also the connection of a new DC power supply unit 9.
  • step S15 If it is determined that the power supply voltage of the power receiving unit 30 has changed (step S15: YES), the process returns to step S7, and the charging order setting unit 210 again sets the charging order of the power storage units 12 according to the changed power supply voltage of the power receiving unit 30 and the current charging status of each of the power storage units 12 (step S7).
  • step S13 If it is determined that the charging status of the power storage units 12 has reached a predetermined target charging status (step S13: YES), it is determined whether or not to end the charging control. Specifically, if the charging status of all the power storage units 12 has reached the target charging status corresponding to the final charging order, it is determined that charging is complete and that the charging control should be ended.
  • the switching control unit 202 performs switching control according to the storage unit 12 that has reached the target charging state (step S19). That is, for example, the switching unit 50 controls the switch of the switching unit 50 to be switched on/off so that the storage unit 12 that has reached the target charging state is disconnected from the DC/DC converter 40 that supplies power and the supply of charging power to the storage unit 12 is terminated. Alternatively, when the charging states of all the storage units 12 have reached the target charging state corresponding to the current charging order, the switching unit 50 controls the switch of the switching unit 50 to be switched on/off so that the connection relationship between the receiving unit 30 and the storage unit 12 corresponding to the next charging order is configured. At the same time, the control of the charging voltage output by the DC/DC converter 40 corresponding to each receiving unit 30 is started (step S21). After that, the control returns to step SS13 and the same process is repeated.
  • step S17 If it is determined in step S17 that charging control should be terminated (step S17: YES), this process ends.
  • connection relationship of the power storage unit 12 connected to the DC/DC converter 40 so that the charging voltage is close to the voltage of the DC power supply unit 9 connected to the power receiving unit 30, it is possible to suppress the conversion loss in the DC/DC converter 40 as much as possible, and it is possible to realize more efficient charging.
  • Each switch of the switching unit 50 may be provided with a communication device, and the operation status of the switch (on/off state, execution of switching operation, etc.) may be output (by wired communication or wireless communication) to the controller 60.
  • the controller 60 determines whether each switch is normal or not based on the operation status of the switch acquired from these communication devices, and controls the switching unit 50 so as to use only the switches determined to be normal. This enables more appropriate charging control of the power storage unit 12.
  • the communication device provided in each switch can be, for example, a wireless communication device that complies with the Wi-SUN (Wireless Smart Utility Network) standard, which is a specific low-power wireless standard.
  • Wi-SUN Wireless Smart Utility Network
  • the Wi-SUN standard allows long-distance communication with very little power consumption and supports multi-hop communication, making it suitable as a communication device to be provided in a switching unit 50 that has many switches.
  • data input and output between the controller 60 and the power receiving unit 30, DC/DC converter 40, and power storage unit 12 can be realized by this Wi-SUN wireless communication device.
  • the charging control device 20 may charge the power storage unit 12 of the power storage device 10 by wireless power supply.
  • the energy storage units 12 of the energy storage device 10 may be configured to be replaceable.
  • the charge control device 20 is provided with a plurality of charging terminal units to which the energy storage units 12 can be electrically connected, and the controller 60 controls the switching unit to connect one of the charging terminal units to which the energy storage units are connected to the DC/DC converter 40 that supplies power.
  • a charge control device that is connected to a DC power supply unit and charges N (N ⁇ 2) power storage units, M (M ⁇ 2) power receiving units that can be electrically connected to the DC power supply unit; M DC/DC converters each provided for each of the power receiving units, each converting a power supplied from the DC power supply unit connected to the power receiving unit into a given charging voltage; a switching unit capable of switching a connection relationship between each of the power storage units and each of the DC/DC converters; A controller for controlling the switching unit; Equipped with The switching unit is a power supply source switching unit that switches a power supply source DC/DC converter among the M DC/DC converters; a power storage unit connection switching unit that switches a connection relationship of the power storage unit that is connected to the power supply source; having The controller controls the power supply source switching unit and the power storage unit connection switching unit based on a power receiving unit to which the DC power supply unit is connected among the M power receiving units.
  • Charging control device The switching unit is a power supply source switching unit that switches a power supply source DC/
  • the power storage unit connection switching unit switches between an individual connection in which the power storage units are individually connected to the power supply source, a parallel connection in which the power storage units are connected in parallel, and a series connection in which the power storage units are connected in series;
  • a charging control device according to a first aspect of the present invention.
  • the DC power supply unit having a different power supply voltage can be connected to the power receiving unit, a voltage acquisition unit that acquires a voltage of the DC power supply unit connected to the power receiving unit; Further comprising: The controller controls the power storage unit connection switching unit based on a voltage of the DC power supply unit connected to the power receiving unit.
  • a charging control device according to the first or second invention.
  • the N power storage units include power storage units having different rated voltages,
  • the controller controls the power storage unit connection switching unit based on a voltage of the DC power supply unit connected to the power receiving unit and a rated voltage of each of the N power storage units.
  • a charge control device according to any one of the first to third aspects of the present invention.
  • (Fifth Invention) a charging status acquisition unit that acquires a charging status of each of the N power storage units; Further comprising: The controller dynamically controls the power supply source switching unit and the power storage unit connection switching unit based on a charging status of each of the N power storage units.
  • a charge control device according to any one of the first to fourth aspects of the present invention.
  • the controller has a charging order setting unit that sets a charging order for the N power storage units, and controls the power supply source switching unit and the power storage unit connection switching unit based on the charging order.
  • a charge control device according to any one of the first to fifth aspects of the present invention.
  • a control method for a charge control device that is connected to a DC power supply unit and charges N (N ⁇ 2) power storage units comprising:
  • the charging control device includes: M (M ⁇ 2) power receiving units that can be electrically connected to the DC power supply unit; M DC/DC converters each provided for each of the power receiving units, each converting power supplied from the DC power supply unit connected to the power receiving unit into a given charging voltage; a switching unit capable of switching a connection relationship between each of the power storage units and each of the DC/DC converters; Equipped with The switching unit is a power supply source switching unit that switches a power supply source DC/DC converter among the M DC/DC converters; a power storage unit connection switching unit that switches a connection relationship of the power storage unit that is connected to the power supply source; It has controlling the power supply source switching unit and the power storage unit connection switching unit based on a power receiving unit to which the DC power supply unit is connected among the M power receiving units; Control methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A charging control device (20) is connected to a direct current power supply unit (9) in order to charge N (N ≥ 2) power storage units (12), and the charging control device comprises: M (M ≥ 2) power reception units (30) electrically connectable to the direct current power supply device (9); M DC/DC converters (40) that convert, to a prescribed charging voltage, the power supplied from the direct current power supply unit (9) connected to the power reception units (30); a switching unit (50) that is capable of switching the connection relationship between each of the power storage units (12) and each of the DC/DC converters (40); and a controller (60) that controls the switching unit (50) on the basis of the power reception unit (30) to which the direct current power supply unit (9) is connected.

Description

充電制御装置および制御方法Charging control device and control method
 本発明は、充電制御装置等に関する。 The present invention relates to a charging control device, etc.
 一般的に、二次電池である蓄電部を充電する充電制御装置は、規定の交流電圧である商用電源を電力供給源として想定して構成されている(例えば、特許文献1参照)。 Generally, a charging control device that charges a storage unit, which is a secondary battery, is configured assuming that a commercial power source with a specified AC voltage is used as the power supply source (see, for example, Patent Document 1).
特開2021-182797号公報JP 2021-182797 A
 そこで、供給電力の電圧や電流が様々な任意の電力供給源に対応した蓄電部の充電制御が実現できれば至便である。また、蓄電部についても任意として、任意の電力供給源による供給電力によって、容量や定格電圧等の仕様や数が任意の蓄電部を充電できれば更に至便である。変圧装置を介在させて電圧を大きく変換する方法も考えられるが、その場合には変換損失すなわち効率が問題となる。できるだけ変換前後の電圧は同じか或いは近似する電圧が望まれる。しかしそうすると、変換前後の種々の電圧に対応させるための数多くの変圧装置が必要となり、本末転倒である。 It would be convenient if it were possible to realize charging control for a storage unit that can be adapted to any power supply source with a variety of supply voltages and currents. It would also be even more convenient if the storage units could be arbitrary, and any number of storage units with any specifications such as capacity and rated voltage could be charged with power supplied from any power supply source. One method of significantly converting the voltage using a transformer device could be considered, but in that case conversion loss, i.e. efficiency, becomes an issue. It is desirable for the voltage before and after conversion to be the same or similar as much as possible. However, doing so would require numerous transformers to accommodate the various voltages before and after conversion, which would be counterproductive.
 本発明が解決しようとする課題は、任意の供給電力によって蓄電部を充電可能な充電制御装置を実現することである。 The problem that this invention aims to solve is to realize a charging control device that can charge a power storage unit with any supply of power.
 第1の発明は、
 直流給電部と接続してN個(N≧2)の蓄電部を充電する充電制御装置であって、
 前記直流給電部と電気的に接続可能なM個(M≧2)の受電部と、
 前記受電部毎に設けられ、当該受電部に接続された前記直流給電部からの給電電力を所与の充電用電圧に変換するM個のDC/DCコンバーターと、
 前記蓄電部それぞれと前記DC/DCコンバーターそれぞれとの接続関係を切り換え可能なスイッチング部と、
 前記スイッチング部を制御するコントローラーと、
 を備え、
 前記スイッチング部は、
  前記M個のDC/DCコンバーターのうちの給電元のDC/DCコンバーターを切り換える給電元スイッチング部と、
  前記給電元に接続する前記蓄電部の接続関係を切り換える蓄電部接続スイッチング部と、
 を有し、
 前記コントローラーは、前記M個の受電部のうちの前記直流給電部が接続された受電部に基づいて、前記給電元スイッチング部および前記蓄電部接続スイッチング部を制御する、
 充電制御装置である。
The first invention is
A charge control device that is connected to a DC power supply unit and charges N (N≧2) power storage units,
M (M≧2) power receiving units that can be electrically connected to the DC power supply unit;
M DC/DC converters each provided for each of the power receiving units, each converting a power supplied from the DC power supply unit connected to the power receiving unit into a given charging voltage;
a switching unit capable of switching a connection relationship between each of the power storage units and each of the DC/DC converters;
A controller for controlling the switching unit;
Equipped with
The switching unit is
a power supply source switching unit that switches a power supply source DC/DC converter among the M DC/DC converters;
a power storage unit connection switching unit that switches a connection relationship of the power storage unit that is connected to the power supply source;
having
The controller controls the power supply source switching unit and the power storage unit connection switching unit based on a power receiving unit to which the DC power supply unit is connected among the M power receiving units.
A charging control device.
 他の発明として、
 直流給電部と接続してN個(N≧2)の蓄電部を充電する充電制御装置の制御方法であって、
 前記充電制御装置は、
  前記直流給電部と電気的に接続可能なM個(M≧2)の受電部と、
  前記受電部毎に設けられ、当該受電部に接続された前記直流給電部からの給電電力を所与の充電用電圧に変換するM個のDC/DCコンバーターと、
  前記蓄電部それぞれと前記DC/DCコンバーターそれぞれとの接続関係を切り換え可能なスイッチング部と、
 を備え、
 前記スイッチング部は、
  前記M個のDC/DCコンバーターのうちの給電元のDC/DCコンバーターを切り換える給電元スイッチング部と、
  前記給電元に接続する前記蓄電部の接続関係を切り換える蓄電部接続スイッチング部と、
 を有しており、
 前記M個の受電部のうちの前記直流給電部が接続された受電部に基づいて、前記給電元スイッチング部および前記蓄電部接続スイッチング部を制御する、
 制御方法を構成してもよい。
Other inventions include:
A control method for a charge control device that is connected to a DC power supply unit and charges N (N≧2) power storage units, comprising:
The charging control device includes:
M (M≧2) power receiving units that can be electrically connected to the DC power supply unit;
M DC/DC converters each provided for each of the power receiving units, each converting power supplied from the DC power supply unit connected to the power receiving unit into a given charging voltage;
a switching unit capable of switching a connection relationship between each of the power storage units and each of the DC/DC converters;
Equipped with
The switching unit is
a power supply source switching unit that switches a power supply source DC/DC converter among the M DC/DC converters;
a power storage unit connection switching unit that switches a connection relationship of the power storage unit that is connected to the power supply source;
It has
controlling the power supply source switching unit and the power storage unit connection switching unit based on a power receiving unit to which the DC power supply unit is connected among the M power receiving units;
A control method may be configured.
 第1の発明等によれば、直流給電部と電気的に接続可能なM個の受電部を備えることで、M個以内の直流給電部を任意に接続可能である。そして、コントローラーによるスイッチング部の制御によって、給電元のDC/DCコンバーターに接続する蓄電部の接続関係が切り換え可能である。これにより、受電部に接続された任意の直流給電部からの給電電力によって、蓄電部を適切に充電することが可能となる。また、受電部に接続された直流給電部の電圧に近い充電用電圧となるようにDC/DCコンバーターに接続する蓄電部の接続関係を構成することで、DC/DCコンバーターでの変換損失をできるだけ抑制することが可能となり、より効率の良い充電を実現することが可能となる。 According to the first invention, by providing M power receiving units that can be electrically connected to the DC power supply unit, up to M DC power supply units can be connected arbitrarily. The connection relationship of the power storage unit connected to the DC/DC converter that supplies power can be switched by controlling the switching unit with a controller. This makes it possible to appropriately charge the power storage unit with power supplied from any DC power supply unit connected to the power receiving unit. Also, by configuring the connection relationship of the power storage unit connected to the DC/DC converter so that the charging voltage is close to the voltage of the DC power supply unit connected to the power receiving unit, it is possible to suppress conversion loss in the DC/DC converter as much as possible, making it possible to achieve more efficient charging.
 第2の発明は、上述の発明において、
 前記蓄電部接続スイッチング部は、前記給電元に前記蓄電部を個別に接続する個別接続と、前記蓄電部を並列に接続する並列接続と、前記蓄電部を直列に接続する直列接続との何れかに切り換える、
 充電制御装置である。
The second invention is the above-mentioned invention,
the power storage unit connection switching unit switches between an individual connection in which the power storage units are individually connected to the power supply source, a parallel connection in which the power storage units are connected in parallel, and a series connection in which the power storage units are connected in series;
A charging control device.
 第2の発明によれば、受電部に接続された直流給電部の個数や給電電力の電圧の組み合わせ、個別接続・並列接続・直列接続といった蓄電部の接続関係の違いによって、様々な電圧や電流の電力によって蓄電部を充電することが可能となる。これにより、供給電力の電圧や電流が様々である任意の直流給電部に対応させた適切な蓄電部の充電制御が可能となる。 According to the second invention, it is possible to charge the storage unit with power of various voltages and currents depending on the number of DC power supply units connected to the power receiving unit, the combination of voltages of the power supply, and the connection relationship of the storage unit, such as individual connection, parallel connection, or series connection. This makes it possible to appropriately control the charging of the storage unit in response to any DC power supply unit that supplies various voltages and currents of power.
 第3の発明は、上述の発明において、
 前記受電部には、給電電圧の異なる前記直流給電部が接続可能であり、
 前記受電部に接続された前記直流給電部の電圧を取得する電圧取得部、
 を更に備え、
 前記コントローラーは、前記受電部に接続された前記直流給電部の電圧に基づいて前記蓄電部接続スイッチング部を制御する、
 充電制御装置である。
The third invention is the above-mentioned invention,
The DC power supply unit having a different power supply voltage can be connected to the power receiving unit,
a voltage acquisition unit that acquires a voltage of the DC power supply unit connected to the power receiving unit;
Further comprising:
The controller controls the power storage unit connection switching unit based on a voltage of the DC power supply unit connected to the power receiving unit.
A charging control device.
 第3の発明によれば、電圧が様々に異なる直流給電部を受電部に接続することができ、その直流給電部の電圧に基づいてスイッチング部を制御することで、供給電力の電圧が様々である任意の直流給電部に対応させた適切な蓄電部の充電制御が可能となる。 According to the third invention, DC power supply units with various different voltages can be connected to the power receiving unit, and by controlling the switching unit based on the voltage of the DC power supply unit, it becomes possible to appropriately control the charging of the power storage unit in accordance with any DC power supply unit with various supply power voltages.
 第4の発明は、上述の発明において、
 前記N個の蓄電部には、定格電圧が異なる蓄電部が含まれ、
 前記コントローラーは、前記受電部に接続された前記直流給電部の電圧、および、前記N個の蓄電部それぞれの定格電圧に基づいて、前記蓄電部接続スイッチング部を制御する、
 充電制御装置である。
A fourth aspect of the present invention is the above-mentioned invention,
The N power storage units include power storage units having different rated voltages,
The controller controls the power storage unit connection switching unit based on a voltage of the DC power supply unit connected to the power receiving unit and a rated voltage of each of the N power storage units.
A charging control device.
 第4の発明によれば、直流給電部の電圧を参照して、定格電圧に応じた電圧の充電電力が蓄電部に供給されるように蓄電部の接続関係を構成することが可能となる。これにより、蓄電部の定格電圧に応じた適切な充電制御が可能となる。 According to the fourth invention, it is possible to configure the connection relationship of the power storage unit so that charging power of a voltage corresponding to the rated voltage is supplied to the power storage unit by referring to the voltage of the DC power supply unit. This makes it possible to perform appropriate charging control according to the rated voltage of the power storage unit.
 第5の発明は、上述の発明において、
 前記N個の蓄電部それぞれの充電状況を取得する充電状況取得部、
 を更に備え、
 前記コントローラーは、前記N個の蓄電部それぞれの充電状況に基づいて、前記給電元スイッチング部および前記蓄電部接続スイッチング部を動的に制御する、
 充電制御装置である。
A fifth aspect of the present invention is the above-mentioned invention,
a charging status acquisition unit that acquires a charging status of each of the N power storage units;
Further comprising:
The controller dynamically controls the power supply source switching unit and the power storage unit connection switching unit based on a charging status of each of the N power storage units.
A charging control device.
 第5の発明によれば、蓄電部それぞれの充電状況に基づき、給電元のDC/DCコンバーターを動的に切り換えるとともに、給電元のDC/DCコンバーターに接続する蓄電部の接続関係を動的に切り換えることができる。これにより、充電状況に応じたより適切な蓄電部の充電制御が可能となる。例えば、複数の蓄電部を同時に充電する際に、所定の充電状況(例えば、満充電や充電率90%)に達した蓄電部を給電元のDC/DCコンバーターから切り離すようにスイッチング部を制御するといったことや、複数の蓄電部の充電状況を揃えるような充電制御をする、といったことが可能である。 According to the fifth invention, the DC/DC converter of the power supply source can be dynamically switched based on the charging status of each power storage unit, and the connection relationship of the power storage units connected to the DC/DC converter of the power supply source can be dynamically switched. This enables more appropriate charging control of the power storage units according to the charging status. For example, when multiple power storage units are charged simultaneously, it is possible to control the switching unit so that a power storage unit that has reached a predetermined charging status (for example, full charge or a charging rate of 90%) is disconnected from the DC/DC converter of the power supply source, or to control charging so as to align the charging status of multiple power storage units.
 第6の発明は。上述の発明において、
 前記コントローラーは、前記N個の蓄電部について充電順序を設定する充電順序設定部を有し、前記充電順序に基づいて、前記給電元スイッチング部および前記蓄電部接続スイッチング部を制御する、
 充電制御装置である。
The sixth aspect of the present invention is the above-mentioned invention,
The controller has a charging order setting unit that sets a charging order for the N power storage units, and controls the power supply source switching unit and the power storage unit connection switching unit based on the charging order.
A charging control device.
 第6の発明によれば、N個の蓄電部について設定した充電順序に基づくことで、適切な蓄電部の充電制御が可能となる。蓄電部の充電順序の設定は、例えば、外部入力に従うとしてもよいし、容量や定格電圧といった仕様や、充電率といった充電状況などの蓄電部に係る条件に従うとしてもよい。例えば、蓄電部に係る条件に従う場合、蓄電部それぞれの充電に要する時間を考慮することができるので、より適切な充電制御が実現される。 According to the sixth aspect of the invention, appropriate charging control of the power storage units is possible based on the charging order set for the N power storage units. The charging order of the power storage units may be set, for example, according to an external input, or according to conditions related to the power storage units, such as specifications such as capacity and rated voltage, or charging conditions such as the charging rate. For example, when the conditions related to the power storage units are set, the time required to charge each power storage unit can be taken into consideration, thereby realizing more appropriate charging control.
蓄電システムの概要図。Schematic diagram of the energy storage system. 蓄電システムの構成図。FIG. 1 is a configuration diagram of a power storage system. 蓄電部の接続関係の一例。3 shows an example of a connection relationship of a power storage unit. 蓄電部の接続関係の一例。3 shows an example of a connection relationship of a power storage unit. 蓄電部の接続関係の一例。4 shows an example of a connection relationship of a power storage unit. コントローラーの構成図。Controller configuration diagram. 受電部データの一例。An example of power receiving unit data. 蓄電部データの一例。13 is an example of power storage unit data. 充電順序設定データの一例。13 is an example of charging order setting data. 接続関係定義テーブルの一例。13 is an example of a connection relationship definition table. 充電制御処理のフローチャート。4 is a flowchart of a charging control process.
 以下、図面を参照して本発明の好適な実施形態について説明する。なお、本発明を適用可能な形態が以下の実施形態に限定されるものではない。また、図面の記載において、同一要素には同一符号を付す。 Below, a preferred embodiment of the present invention will be described with reference to the drawings. Note that the forms to which the present invention can be applied are not limited to the following embodiments. In addition, in the description of the drawings, the same elements are given the same reference numerals.
[システム構成]
 図1は、本実施形態における蓄電システム1の概要図である。蓄電システム1は、二次電池である蓄電装置10と、直流給電部9と接続して蓄電装置10を充電する充電制御装置20とを備える。蓄電システム1は、各種機器が1つ又は複数の筐体に収容され、コンテナと同様に取り扱ってトラックやトレーラー等の車両に搭載されることで任意の位置に設置・移動が可能な電源設備である。直流給電部9は、直流電力を供給する電力源であり、例えば、太陽光発電システムである。直流給電部9が有する送電端と、受電部30とが1対1に接続される。例えば、直流給電部9が太陽光発電システムであり、太陽電池ストリング別に送電端が設けられている場合には、送電端毎に受電部30に接続することが可能である。
[System configuration]
FIG. 1 is a schematic diagram of a power storage system 1 in this embodiment. The power storage system 1 includes a power storage device 10, which is a secondary battery, and a charging control device 20 that is connected to a DC power supply unit 9 and charges the power storage device 10. The power storage system 1 is a power supply facility in which various devices are housed in one or more housings and can be installed and moved to any position by being handled like a container and mounted on a vehicle such as a truck or a trailer. The DC power supply unit 9 is a power source that supplies DC power, and is, for example, a solar power generation system. The power transmission end of the DC power supply unit 9 and the power receiving unit 30 are connected one-to-one. For example, when the DC power supply unit 9 is a solar power generation system and a power transmission end is provided for each solar cell string, it is possible to connect each power transmission end to the power receiving unit 30.
 図2は、蓄電システム1の構成図である。蓄電装置10は、N個(N≧2)の蓄電部12を有する。蓄電部12は、充放電を繰り返し行える二次電池である。 FIG. 2 is a configuration diagram of the energy storage system 1. The energy storage device 10 has N (N≧2) energy storage units 12. The energy storage units 12 are secondary batteries that can be repeatedly charged and discharged.
 充電制御装置20は、直流給電部9と接続してN個の蓄電部12を充電する装置であって、直流給電部9と電気的に接続可能なM個(M≧2)の受電部30と、受電部30毎に設けられ当該受電部30に接続された直流給電部9からの給電電力を所与の充電用電圧に変換するM個のDC/DCコンバーター40と、スイッチング部50と、コントローラー60とを有する。 The charging control device 20 is a device that connects to a DC power supply unit 9 to charge N power storage units 12, and has M (M≧2) power receiving units 30 that can be electrically connected to the DC power supply unit 9, M DC/DC converters 40 that are provided for each power receiving unit 30 and convert the power supplied from the DC power supply unit 9 connected to the power receiving unit 30 into a given charging voltage, a switching unit 50, and a controller 60.
 スイッチング部50は、複数のスイッチ(図2において、丸印で図示)を有し、蓄電部12それぞれと、DC/DCコンバーター40それぞれとの間の接続を切り換える。スイッチのオンオフ(閉開)は、コントローラー60によって制御される。スイッチは、リレー回路で構成することとしてもよいし、パワー半導体を用いた回路で構成することとしてもよい。スイッチング部50は、蓄電部接続スイッチング部54と、給電元スイッチング部52とを有する。 The switching unit 50 has a plurality of switches (shown by circles in FIG. 2) and switches the connection between each of the power storage units 12 and each of the DC/DC converters 40. The on/off (open/close) of the switches is controlled by the controller 60. The switches may be configured as relay circuits or may be configured as circuits using power semiconductors. The switching unit 50 has a power storage unit connection switching unit 54 and a power supply source switching unit 52.
 給電元スイッチング部52は、M個のDC/DCコンバーター40のうちの給電元のDC/DCコンバーター40を切り換える。給電元スイッチング部52が有するスイッチは、DC/DCコンバーター40の出力端である正極(+)および負極(-)それぞれに接続される給電正極ラインL3および給電負極ラインL4(図2において、横方向のラインで図示)と、接続ラインL5(図2において、縦方向のラインで図示)との交点を接続・遮断するように、マトリクス状に配置されている。 The power supply source switching unit 52 switches the power supply source DC/DC converter 40 among the M DC/DC converters 40. The switches of the power supply source switching unit 52 are arranged in a matrix so as to connect and disconnect the intersections of the power supply positive line L3 and the power supply negative line L4 (shown as horizontal lines in FIG. 2) connected to the positive (+) and negative (-) output terminals of the DC/DC converter 40, respectively, and the connection line L5 (shown as a vertical line in FIG. 2).
 蓄電部接続スイッチング部54は、M個のDC/DCコンバーター40のうちの給電元のDC/DCコンバーター40に接続する蓄電部12の接続関係を切り換える。蓄電部接続スイッチング部54が有するスイッチは、蓄電部12の入力端である正極(+)および負極(-)それぞれに接続される蓄電正極ラインL1および蓄電負極ラインL2(図2において、横方向のラインで図示)と、接続ラインL5(図2において、縦方向のラインで図示)との交点を接続・遮断するように、マトリクス状に配置されている。 The power storage unit connection switching unit 54 switches the connection relationship of the power storage unit 12 that is connected to the power source DC/DC converter 40 among the M DC/DC converters 40. The switches of the power storage unit connection switching unit 54 are arranged in a matrix so as to connect and disconnect the intersections of the power storage positive line L1 and the power storage negative line L2 (shown as horizontal lines in FIG. 2) that are connected to the positive (+) and negative (-) input terminals of the power storage unit 12, respectively, and the connection line L5 (shown as a vertical line in FIG. 2).
 接続ラインL5は、蓄電部接続スイッチング部54と給電元スイッチング部52とを架け渡すように配線された複数の電線である。接続ラインL5のそれぞれは、正極用の電線として使用される場合もあれば、負極用の電線として使用される場合もある。 The connection lines L5 are multiple electric wires that are wired to bridge the storage unit connection switching unit 54 and the power supply source switching unit 52. Each of the connection lines L5 may be used as a positive electrode wire or a negative electrode wire.
 スイッチング部50は、N本の蓄電正極ラインL1およびN本の蓄電負極ラインL2と、M本の給電正極ラインL3およびM本の給電負極ラインL4とを、接続ラインL5を介して任意な接続形態で接続可能な電力網を構成する。接続形態とは、複数の蓄電部12を直列或いは並列に接続したり、複数のDC/DCコンバーター40を直列或いは並列に接続したり、1つの蓄電部12に対して1つのDC/DCコンバーター40を接続したりといった、接続の種類のことである。 The switching unit 50 constitutes a power network that can connect N storage positive lines L1 and N storage negative lines L2 to M power supply positive lines L3 and M power supply negative lines L4 in any connection form via a connection line L5. The connection form refers to the type of connection, such as connecting multiple storage units 12 in series or parallel, connecting multiple DC/DC converters 40 in series or parallel, or connecting one DC/DC converter 40 to one storage unit 12.
 受電部30は、直流給電部9と電気的に接続可能な受電端子を有する。なお、受電部30は、受電端子による接触受電ではなく、非接触受電(ワイヤレス電力伝送)によって実現するとしてもよい。 The power receiving unit 30 has a power receiving terminal that can be electrically connected to the DC power supply unit 9. Note that the power receiving unit 30 may be realized by non-contact power reception (wireless power transmission) instead of contact power reception via a power receiving terminal.
 DC/DCコンバーター40は、出力電圧(スイッチング部50側の電圧)が所与の充電用電圧となるように入力電圧(受電部30側の電圧)を昇圧または降圧するように、その変圧動作がコントローラー60によって制御される。DC/DCコンバーター40は、入力段および出力段に電圧センサーを有し、入力電圧の検出値と出力電圧(充電用電圧)の検出値とを、随時、コントローラー60へ出力する。DC/DCコンバーター40とコントローラー60との間のデータの入出力は、有線通信または無線通信によって実現することができる。 The DC/DC converter 40 has its transformation operation controlled by the controller 60 so that it steps up or down the input voltage (the voltage on the power receiving unit 30 side) so that the output voltage (the voltage on the switching unit 50 side) becomes a given charging voltage. The DC/DC converter 40 has voltage sensors at the input and output stages, and outputs the detected input voltage and output voltage (charging voltage) to the controller 60 at any time. Input and output of data between the DC/DC converter 40 and the controller 60 can be achieved by wired or wireless communication.
 コントローラー60は、M個の受電部30のうちの直流給電部9が接続された受電部30に基づいて、スイッチング部50の給電元スイッチング部52および蓄電部接続スイッチング部54を制御する。具体的には、受電部30に接続された直流給電部9の給電電圧に基づいてスイッチング部50を制御する。直流給電部9の給電電圧は、例えば、コントローラー60に設けられたボタンスイッチやキーボード、ディスプレイと一体形成されたタッチパネル等の入力装置を用いた操作者の操作入力によって取得することができる。または、直流給電部9に設けられたICタグから、当該直流給電部9の給電電圧を含む仕様データを読み取る読み取り装置を受電部30に設け、当該読み取り装置が読み取ったデータをコントローラー60へ出力(有線通信または無線通信)することによって実現するとしてもよい。ICタグには、予め直流給電部9の仕様データが記憶されている。コントローラー60は、仕様データの取得によって、直流給電部9がどの受電部30に接続されているかや、接続されている直流給電部9の給電電圧を認識することができる。また、DC/DCコンバーター40から入力される入力電圧の検出値を直流給電部9の給電電圧と判断することとしてもよい。 The controller 60 controls the power supply source switching unit 52 and the power storage unit connection switching unit 54 of the switching unit 50 based on the power receiving unit 30 to which the DC power supply unit 9 is connected among the M power receiving units 30. Specifically, the controller 60 controls the switching unit 50 based on the power supply voltage of the DC power supply unit 9 connected to the power receiving unit 30. The power supply voltage of the DC power supply unit 9 can be obtained by an operator's operation input using an input device such as a button switch, keyboard, or touch panel integrally formed with the display provided on the controller 60. Alternatively, a reading device that reads specification data including the power supply voltage of the DC power supply unit 9 from an IC tag provided on the DC power supply unit 9 may be provided on the power receiving unit 30, and the data read by the reading device may be output to the controller 60 (by wired communication or wireless communication). The specification data of the DC power supply unit 9 is stored in advance in the IC tag. By acquiring the specification data, the controller 60 can recognize which power receiving unit 30 the DC power supply unit 9 is connected to and the power supply voltage of the connected DC power supply unit 9. In addition, the detected value of the input voltage input from the DC/DC converter 40 may be determined to be the power supply voltage of the DC power supply unit 9.
 また、コントローラー60は、N個の蓄電部12それぞれの定格電圧に基づいてスイッチング部50を制御する。蓄電部12の定格電圧のデータの取得は、例えば、上述の直流給電部9の給電電圧の取得と同様に、コントローラー60に設けられた入力装置を用いた操作者の操作入力によって実現することができる。または、蓄電部12のBMS(Battery Management System)や、蓄電部12に設けられたICタグから、当該蓄電部12の定格電圧を含む仕様データを読み取る読み取り装置を設け、当該読み取り装置が読み取ったデータをコントローラー60へ出力(有線通信または無線通信)することによって実現するとしてもよい。BMSやICタグには、予め蓄電部12の仕様データが記憶されている。 The controller 60 also controls the switching unit 50 based on the rated voltage of each of the N storage units 12. The data on the rated voltage of the storage units 12 can be obtained, for example, by an operator using an input device provided in the controller 60, in the same way as the above-mentioned acquisition of the power supply voltage of the DC power supply unit 9. Alternatively, this can be achieved by providing a reading device that reads specification data including the rated voltage of the storage unit 12 from the BMS (Battery Management System) of the storage unit 12 or an IC tag provided in the storage unit 12, and outputting the data read by the reading device to the controller 60 (by wired or wireless communication). The specification data of the storage unit 12 is stored in advance in the BMS or IC tag.
 コントローラー60は、直流給電部9が接続された受電部30に対応するDC/DCコンバーター40を給電元とするように、給電元スイッチング部52のスイッチのオン/オフを制御する。また、コントローラー60は、蓄電部12の定格電圧に応じた充電電力が供給(給電)されるように蓄電部接続スイッチング部54のスイッチのオン/オフを制御して、給電元のDC/DCコンバーター40に接続する蓄電部12の接続関係を構成する。 The controller 60 controls the on/off of the switch of the power supply source switching unit 52 so that the DC/DC converter 40 corresponding to the power receiving unit 30 to which the DC power supply unit 9 is connected is the power supply source. The controller 60 also controls the on/off of the switch of the power storage unit connection switching unit 54 so that charging power according to the rated voltage of the power storage unit 12 is supplied (power is fed), thereby configuring the connection relationship of the power storage unit 12 to be connected to the DC/DC converter 40 of the power supply source.
 また、コントローラー60は、N個の蓄電部12それぞれの充電状況に基づいて、スイッチング部50の給電元スイッチング部52および蓄電部接続スイッチング部54を動的に制御する。蓄電部12の充電状況は、例えば、蓄電部12の入力端に設けた電圧計や電流計によって計測される当該蓄電部12の入力電圧や入力電流に基づいてコントローラー60が算定することで取得できる。また、蓄電部12のBMS(Battery Management System)が充電状況をコントローラー60に出力することで取得することとしてもよい。充電状況は、例えば、充電率やSoC(State of Charge)等のことである。 The controller 60 also dynamically controls the power supply source switching unit 52 and the storage unit connection switching unit 54 of the switching unit 50 based on the charging status of each of the N storage units 12. The charging status of the storage unit 12 can be obtained by the controller 60 calculating it based on the input voltage and input current of the storage unit 12 measured by a voltmeter and ammeter provided at the input end of the storage unit 12, for example. The charging status may also be obtained by the BMS (Battery Management System) of the storage unit 12 outputting it to the controller 60. The charging status may be, for example, the charging rate or SoC (State of Charge).
 コントローラー60は、蓄電部12の充電状況に基づく動的な制御として、例えば、蓄電部12が満充電や充電率90%といった所定の充電状況となったならば、当該蓄電部12が接続されたDC/DCコンバーター40を切り離すようにスイッチング部50を制御する。また、当該切り離したDC/DCコンバーター40を、充電を行っていない他の蓄電部12に接続するようにスイッチング部50を制御する。 The controller 60 dynamically controls based on the charging status of the power storage unit 12. For example, when the power storage unit 12 reaches a predetermined charging status, such as full charge or a charging rate of 90%, the controller 60 controls the switching unit 50 to disconnect the DC/DC converter 40 to which the power storage unit 12 is connected. The controller 60 also controls the switching unit 50 to connect the disconnected DC/DC converter 40 to another power storage unit 12 that is not being charged.
 また、コントローラー60は、N個の蓄電部12について設定した充電順序に基づいて、給電元スイッチング部52および蓄電部接続スイッチング部54を制御する。蓄電部12の充電順序の設定は、例えば、上述の直流給電部9の給電電圧や蓄電部12の定格電圧の取得と同様に、コントローラー60に設けられた入力装置を用いた操作者の操作入力によって実現することができる。または、容量や定格電圧といった仕様や、充電率といった充電状況などの蓄電部12に係る条件に従って設定するようにしてもよい。具体的には、(a)トータルの充電時間を短縮するために、充電状況である充電率が低い(つまり、充電に要する時間が長い)蓄電部12を先とする順序に設定する、(b)1個の直流給電部で複数の蓄電部12を充電できる並列接続や直列接続を優先する順序に設定し、その際には、DC/DCコンバーター40の変換損失を抑制するために、直流給電部9の給電電圧と充電用電圧(DC/DCコンバーター40の出力電圧)とが近くなるような蓄電部12の組み合わせとしたり、並列接続や直列接続する蓄電部12の充電率を揃えるような順序に設定する、いったことが考えられる。 The controller 60 also controls the power supply source switching unit 52 and the power storage unit connection switching unit 54 based on the charging order set for the N power storage units 12. The charging order for the power storage units 12 can be set by an operator using an input device provided in the controller 60, similar to the above-mentioned acquisition of the power supply voltage of the DC power supply unit 9 and the rated voltage of the power storage units 12. Alternatively, the charging order may be set according to conditions related to the power storage units 12, such as specifications such as capacity and rated voltage, or charging conditions such as the charging rate. Specifically, (a) in order to shorten the total charging time, the order is set to give priority to the storage units 12 with a low charging rate (i.e., the time required to charge is long), and (b) the order is set to give priority to parallel or series connections that allow multiple storage units 12 to be charged by one DC power supply unit, and in this case, in order to suppress the conversion loss of the DC/DC converter 40, the combination of storage units 12 is set so that the power supply voltage of the DC power supply unit 9 and the charging voltage (output voltage of the DC/DC converter 40) are close, or the order is set so that the charging rates of the storage units 12 connected in parallel or series are the same.
[蓄電部12の接続関係]
 蓄電部接続スイッチング部54の制御によって実現される給電元のDC/DCコンバーター40に接続する蓄電部12の接続関係は、本実施形態では3パターンとする。具体的には、蓄電部12を個別に接続する個別接続と、1つのDC/DCコンバーター40に対して複数の蓄電部12を並列に接続する並列接続と、1つのDC/DCコンバーター40に対して複数の蓄電部12を直列に接続する直列接続との3パターンである。
[Connections of the power storage unit 12]
In this embodiment, there are three connection patterns for the power storage units 12 connected to the DC/DC converter 40 of the power supply source, which are realized by the control of the power storage unit connection switching unit 54. Specifically, there are three patterns: individual connection in which the power storage units 12 are individually connected, parallel connection in which a plurality of power storage units 12 are connected in parallel to one DC/DC converter 40, and series connection in which a plurality of power storage units 12 are connected in series to one DC/DC converter 40.
 本実施形態のスイッチング部50によれば、給電元として、給電元スイッチング部52が複数のDC/DCコンバーター40を直列に接続することでDC/DCコンバーター40の1つのグループを構成し、このグループに対して1つの蓄電部12を接続するように接続関係を構成するパターンや、このグループに対して複数の蓄電部12を直列或いは並列に接続するように接続関係を構成するパターンも考えられる。しかし、本実施形態では、1つのDC/DCコンバーター40に対して接続関係を構成する3つのパターンを採用することとする。すなわち、本実施形態では、蓄電システム1はM個の受電部30を有しており最大M個の直流給電部9から同時に給電が可能であるが、1個の蓄電部12は最大1個のDC/DCコンバーター40(直流給電部9)を給電元として接続・充電されるものとする。また、DC/DCコンバーター40での変換損失を抑制するため、DC/DCコンバーター40の入力電圧(受電部30側の電圧)が、蓄電部12の定格電圧に応じた最適な充電用電圧と略一致するような接続関係が優先的に選択される。 According to the switching unit 50 of this embodiment, the power supply source switching unit 52 may connect multiple DC/DC converters 40 in series to form one group of DC/DC converters 40 as the power supply source, and one power storage unit 12 may be connected to this group, or multiple power storage units 12 may be connected in series or in parallel to this group. However, in this embodiment, three patterns for forming a connection relationship for one DC/DC converter 40 are adopted. That is, in this embodiment, the power storage system 1 has M power receiving units 30 and can simultaneously supply power from a maximum of M DC power supply units 9, but one power storage unit 12 is connected and charged with a maximum of one DC/DC converter 40 (DC power supply unit 9) as the power supply source. In addition, in order to suppress conversion loss in the DC/DC converter 40, a connection relationship in which the input voltage of the DC/DC converter 40 (the voltage on the power receiving unit 30 side) is approximately equal to the optimal charging voltage according to the rated voltage of the power storage unit 12 is preferentially selected.
 図3~図5は、蓄電部12の接続関係の一例とその場合のスイッチング部50の各スイッチのオン/オフの一例を示す図である。何れの図においても、スイッチング部50における黒丸はオン(閉)されたスイッチを示し、白丸はオフ(開)されたスイッチを示している。また、受電部30と蓄電部12との間の通流を黒太線で示している。また、理解を容易にするために、DC/DCコンバーター40等の図示を省略して示す。 FIGS. 3 to 5 are diagrams showing an example of the connection relationship of the power storage unit 12 and an example of the on/off state of each switch of the switching unit 50 in that case. In each diagram, a black circle in the switching unit 50 indicates an on (closed) switch, and a white circle indicates an off (open) switch. In addition, the current flow between the power receiving unit 30 and the power storage unit 12 is indicated by a thick black line. Also, to make it easier to understand, the DC/DC converter 40 and the like are not shown.
 図3は、個別接続の一例である。図3では、蓄電装置10が有する蓄電部12のうち、定格電圧の組み合わせが異なる3個の第1蓄電部12A~第3蓄電部12Cを図示している。また、第1受電部30Aに、給電電圧が500V、給電電流が35Aの直流給電部9Aが接続されている。個別接続では、直流給電部9の給電電圧に最も近い1つの蓄電部12が、当該直流給電部9が接続された受電部30に対して接続される。 FIG. 3 shows an example of individual connection. Of the storage units 12 in the energy storage device 10, FIG. 3 illustrates three storage units 12A to 12C, each with a different combination of rated voltages. A DC power supply unit 9A with a supply voltage of 500V and a supply current of 35A is connected to a first power receiving unit 30A. In an individual connection, one storage unit 12 that is closest to the supply voltage of the DC power supply unit 9 is connected to the power receiving unit 30 to which the DC power supply unit 9 is connected.
 図3の例では、直流給電部9Aが接続された第1受電部30Aに、定格電圧が直流給電部9Aの給電電圧である500Vに最も近い(この場合、一致する)500Vである第1蓄電部12Aが接続(個別接続)されている。つまり、第1蓄電部12Aの正極(+)と第1受電部30Aの正極(+)とが接続されるとともに、第1蓄電部12Aの負極(-)と第1受電部30Aの負極(-)とが接続されている。この場合のスイッチング部50のスイッチング制御は、蓄電部接続スイッチング部54のスイッチQ1,Q2をオン(閉)して、第1蓄電部12Aの接続関係を個別接続とし、給電元スイッチング部52のスイッチQ3,Q4をオン(閉)して、第1受電部30Aを当該個別接続の給電元として接続するようになされている。第1受電部30Aに対応するDC/DCコンバーター40は、コントローラー60によって変圧動作が制御されて充電電力を第1蓄電部12Aに出力することとなる。このとき、DC/DCコンバーター40に入力される電圧(第1受電部30A側の電圧)と、DC/DCコンバーター40から出力される電圧(スイッチング部50側の電圧。充電用電圧)は、略同一の電圧となる。このため、DC/DCコンバーター40での変圧は高効率に実現される。 3, the first power receiving unit 30A to which the DC power supply unit 9A is connected is connected (separately connected) to the first power supply unit 9A. The first power storage unit 12A has a rated voltage of 500V, which is closest to (in this case, coincides with) the power supply voltage of the DC power supply unit 9A. That is, the positive electrode (+) of the first power storage unit 12A is connected to the positive electrode (+) of the first power receiving unit 30A, and the negative electrode (-) of the first power storage unit 12A is connected to the negative electrode (-) of the first power receiving unit 30A. In this case, the switching control of the switching unit 50 is performed by turning on (closing) the switches Q1 and Q2 of the power storage unit connection switching unit 54 to set the connection relationship of the first power storage unit 12A to an individual connection, and turning on (closing) the switches Q3 and Q4 of the power supply source switching unit 52 to connect the first power receiving unit 30A as the power supply source of the individual connection. The DC/DC converter 40 corresponding to the first power receiving unit 30A has its voltage transformation operation controlled by the controller 60, and outputs the charging power to the first power storage unit 12A. At this time, the voltage input to the DC/DC converter 40 (voltage on the first power receiving unit 30A side) and the voltage output from the DC/DC converter 40 (voltage on the switching unit 50 side; charging voltage) are approximately the same voltage. Therefore, the voltage transformation in the DC/DC converter 40 is realized with high efficiency.
 図4は、並列接続の一例である。図4では、図3の例と同様に、蓄電装置10が有する蓄電部12のうち、定格電圧の組み合わせが異なる3個の第1蓄電部12A~第3蓄電部12Cを図示している。また、第1受電部30Aに、給電電圧が500V、給電電流が35Aの直流給電部9Bが接続されている。並列接続では、定格電圧が直流給電部9の給電電圧に最も近い複数の蓄電部12が、当該直流給電部9が接続された受電部30に対して並列に接続される。 FIG. 4 shows an example of a parallel connection. As in the example of FIG. 3, FIG. 4 illustrates three storage units 12 of the storage device 10, a first storage unit 12A to a third storage unit 12C, each having a different combination of rated voltages. A DC power supply unit 9B with a feed voltage of 500 V and a feed current of 35 A is connected to a first power receiving unit 30A. In a parallel connection, the storage units 12 whose rated voltage is closest to the feed voltage of the DC power supply unit 9 are connected in parallel to the power receiving unit 30 to which the DC power supply unit 9 is connected.
 図4の例では、直流給電部9Bが接続された第1受電部30Aに、定格電圧が直流給電部9Bの給電電圧である500Vに最も近い(この場合、一致する)500Vである第1蓄電部12Aと第2蓄電部12Bとが並列に接続(並列接続)されている。つまり、第1蓄電部12A及び第2蓄電部12Bそれぞれの正極(+)と第1受電部30Aの正極と(+)が接続され、第1蓄電部12A及び第2蓄電部12Bそれぞれの負極(-)と第1受電部30Aの負極(-)とが接続されている。この場合のスイッチング部50のスイッチング制御は、蓄電部接続スイッチング部54のスイッチQ1,Q2,Q5,Q6をオン(閉)して、第1蓄電部12A及び第2蓄電部12Bの接続関係を並列接続とし、給電元スイッチング部52のスイッチQ3,Q4をオン(閉)して、第1受電部30Aを当該並列接続の給電元とするようになされている。図3の個別接続と、図4の並列接続とは、同じ充電電圧が500Vとなるが、充電先の蓄電部12への充電電流が異なる。並列接続では給電電流が分流されるため、図3の個別接続の方が大きな充電電流を得ることができる。 4, first power storage unit 12A and second power storage unit 12B, whose rated voltage is 500V, which is closest to (in this case, coincides with) the power supply voltage of 500V of DC power supply unit 9B, are connected in parallel (connected in parallel) to first power receiving unit 30A to which DC power supply unit 9B is connected. In other words, the positive electrodes (+) of first power storage unit 12A and second power storage unit 12B are connected to the positive electrode (+) of first power receiving unit 30A, and the negative electrodes (-) of first power storage unit 12A and second power storage unit 12B are connected to the negative electrode (-) of first power receiving unit 30A. In this case, the switching control of the switching unit 50 is performed by turning on (closing) the switches Q1, Q2, Q5, and Q6 of the power storage unit connection switching unit 54 to connect the first power storage unit 12A and the second power storage unit 12B in parallel, and turning on (closing) the switches Q3 and Q4 of the power supply source switching unit 52 to make the first power receiving unit 30A the power supply source of the parallel connection. The individual connection in FIG. 3 and the parallel connection in FIG. 4 have the same charging voltage of 500 V, but the charging current to the power storage unit 12 that is the charging destination is different. Since the power supply current is diverted in the parallel connection, the individual connection in FIG. 3 can obtain a larger charging current.
 図5は、直列接続の一例である。図5では、図3の例と同様に、蓄電装置10が有する蓄電部12のうち、定格電圧の組み合わせが異なる3個の第1蓄電部12A~第3蓄電部12Cを図示している。また、第1受電部30Aに、給電電圧が1250V、給電電流が10Aの直流給電部9Cが接続されている。直列接続では、それぞれの定格電圧の合計が直流給電部9の給電電圧に最も近くなる複数の蓄電部12が、当該直流給電部9が接続された受電部30に対して直列に接続される。 FIG. 5 shows an example of a series connection. As in the example of FIG. 3, FIG. 5 illustrates three storage units 12A to 12C, which are different combinations of rated voltages among the storage units 12 of the power storage device 10. A DC power supply unit 9C with a feed voltage of 1250 V and a feed current of 10 A is connected to a first power receiving unit 30A. In a series connection, the multiple storage units 12 whose total rated voltage is closest to the feed voltage of the DC power supply unit 9 are connected in series to the power receiving unit 30 to which the DC power supply unit 9 is connected.
 図5の例では、第1蓄電部12Aと第3蓄電部12Cとが直列に接続(直列接続)された接続関係となっている。第1蓄電部12Aの定格電圧が500Vであり、第3蓄電部12Cの定格電圧が750Vであるため、合計の1250Vが、直流給電部9Cの給電電圧に最も近い(この場合、一致する)。つまり、第1蓄電部12Aの正極(+)と第3蓄電部12Cの負極(-)とが接続され、第3蓄電部12Cの正極(+)と第1受電部30Aの正極(+)とが接続され、第1蓄電部12Aの負極(-)と第1受電部30Aの負極(-)とが接続されている。この場合のスイッチング部50のスイッチング制御は、蓄電部接続スイッチング部54のスイッチQ1,Q2、Q7,Q8をオン(閉)して、第1蓄電部12A,第3蓄電部12Cの接続関係を直列接続とし、給電元スイッチング部52のスイッチQ3,Q9をオン(閉)して、第1受電部30Aを当該直列接続の給電元とするようになされている。 In the example of FIG. 5, the first storage unit 12A and the third storage unit 12C are connected in series (series connection). Since the rated voltage of the first storage unit 12A is 500V and the rated voltage of the third storage unit 12C is 750V, the total of 1250V is closest to (matches) the power supply voltage of the DC power supply unit 9C. In other words, the positive electrode (+) of the first storage unit 12A is connected to the negative electrode (-) of the third storage unit 12C, the positive electrode (+) of the third storage unit 12C is connected to the positive electrode (+) of the first power receiving unit 30A, and the negative electrode (-) of the first storage unit 12A is connected to the negative electrode (-) of the first power receiving unit 30A. In this case, the switching control of the switching unit 50 is performed by turning on (closing) the switches Q1, Q2, Q7, and Q8 of the power storage unit connection switching unit 54 to connect the first power storage unit 12A and the third power storage unit 12C in series, and turning on (closing) the switches Q3 and Q9 of the power supply source switching unit 52 to make the first power receiving unit 30A the power supply source for the series connection.
[コントローラーの構成]
 図6は、コントローラー60の構成の一例を示す図である。コントローラー60は、一種のコンピュータシステムとして実現され、入力部102と、通信部104と、表示部106と、放音部108と、制御部200と、記憶部300とを備える。
[Controller configuration]
6 is a diagram showing an example of the configuration of the controller 60. The controller 60 is realized as a type of computer system, and includes an input unit 102, a communication unit 104, a display unit 106, a sound emitting unit 108, a control unit 200, and a storage unit 300.
 入力部102は、操作者の操作入力を受け付けるボタンスイッチやキーボード、ディスプレイと一体形成されたタッチパネルといった入力デバイスまたはその入力インターフェースとして実現される。通信部104は、外部の装置との通信を行うための無線或いは有線による通信装置や、その通信インターフェースとして実現される。表示部106は、ランプやディスプレイ等で実現される。放音部108は、スピーカー等で実現される。 The input unit 102 is realized as an input device or an input interface such as a button switch or a keyboard that accepts operational input from an operator, or a touch panel formed integrally with a display. The communication unit 104 is realized as a wireless or wired communication device for communicating with an external device, or as a communication interface thereof. The display unit 106 is realized as a lamp, a display, or the like. The sound emission unit 108 is realized as a speaker, or the like.
 制御部200は、CPU(Central processing Unit)やMPU(Micro-Processing Unit)、DSP(Digital Signal Processor)等のプロセッサーを備えた演算回路により実現される。 The control unit 200 is realized by an arithmetic circuit equipped with processors such as a CPU (Central Processing Unit), MPU (Micro-Processing Unit), and DSP (Digital Signal Processor).
 なお、制御部200が有する各種の機能部の一部または全部は、ASIC(Application Specific Integrated Circuit)、GPU(Graphics Processing Unit)等によって提供されてもよいし、FPGA(Field-Programmable Gate Array)、専用LSI(Large Scale Integration)等のハードウェア回路によって実現されてもよい。 In addition, some or all of the various functional parts of the control unit 200 may be provided by an ASIC (Application Specific Integrated Circuit), a GPU (Graphics Processing Unit), etc., or may be realized by hardware circuits such as an FPGA (Field-Programmable Gate Array) or a dedicated LSI (Large Scale Integration).
 制御部200は、機能部として、スイッチング制御部202と、給電電圧取得部204と、定格電圧取得部206と、充電状況取得部208と、充電順序設定部210とを有する。 The control unit 200 has, as functional units, a switching control unit 202, a power supply voltage acquisition unit 204, a rated voltage acquisition unit 206, a charging status acquisition unit 208, and a charging order setting unit 210.
 スイッチング制御部202は、M個の受電部30のうちの直流給電部9が接続された受電部30に基づいて、給電元スイッチング部52および蓄電部接続スイッチング部54を制御する。蓄電部接続スイッチング部54は、給電元に蓄電部12を個別に接続する個別接続と、蓄電部12を並列に接続する並列接続と、蓄電部12を直列に接続する直列接続との何れかに切り換えることができる(図3~図5参照)。 The switching control unit 202 controls the power supply source switching unit 52 and the power storage unit connection switching unit 54 based on the power receiving unit 30 to which the DC power supply unit 9 is connected among the M power receiving units 30. The power storage unit connection switching unit 54 can switch between an individual connection in which the power storage units 12 are individually connected to the power supply source, a parallel connection in which the power storage units 12 are connected in parallel, and a series connection in which the power storage units 12 are connected in series (see Figures 3 to 5).
 また、受電部30には、給電電圧の異なる直流給電部9が接続可能であり、スイッチング制御部202は、受電部30に接続された直流給電部9の電圧に基づいて蓄電部接続スイッチング部54を制御する。受電部30には、給電電圧の同じ直流給電部9を接続することも勿論可能である。 Furthermore, a DC power supply unit 9 with a different power supply voltage can be connected to the power receiving unit 30, and the switching control unit 202 controls the power storage unit connection switching unit 54 based on the voltage of the DC power supply unit 9 connected to the power receiving unit 30. Of course, it is also possible to connect a DC power supply unit 9 with the same power supply voltage to the power receiving unit 30.
 受電部30に接続された直流給電部9の電圧は、給電電圧取得部204によって取得される。給電電圧取得部204は、直流給電部9の電圧(給電電圧)を、例えば、入力部102を介した操作者の操作入力によって取得することができる。または、直流給電部9に設けられたICタグから当該直流給電部9の給電電圧を含む仕様データを読み取り、当該読み取ったデータをコントローラー60へ出力(有線通信または無線通信)する読み取り装置を受電部30に設け、当該読み取り装置が出力するデータを通信部104を介して取得するようにしてもよい。ICタグには、予め直流給電部9の仕様データが記憶されている。給電電圧取得部204は、DC/DCコンバーター40の入力段に設けられた電圧センサーの検出値を取得することとしてもよい。 The voltage of the DC power supply unit 9 connected to the power receiving unit 30 is acquired by the power supply voltage acquisition unit 204. The power supply voltage acquisition unit 204 can acquire the voltage (power supply voltage) of the DC power supply unit 9, for example, by an operator's operation input via the input unit 102. Alternatively, a reading device that reads specification data including the power supply voltage of the DC power supply unit 9 from an IC tag provided in the DC power supply unit 9 and outputs the read data to the controller 60 (wired communication or wireless communication) may be provided in the power receiving unit 30, and the data output by the reading device may be acquired via the communication unit 104. The specification data of the DC power supply unit 9 is stored in advance in the IC tag. The power supply voltage acquisition unit 204 may acquire the detection value of a voltage sensor provided in the input stage of the DC/DC converter 40.
 給電電圧取得部204が取得した直流給電部9の電圧(給電電圧)は、受電部データ302に含めて記憶される。図7は、受電部データ302の一例である。受電部データ302は、受電部30それぞれについて、当該受電部30に接続された直流給電部9の電圧(給電電圧)および電流(給電電流)を対応付けて格納している。直流給電部9が接続されていない受電部30に関するデータは格納されない。従って、受電部データ302から、どの受電部30に直流給電部9が接続されているかを判断することも可能である。 The voltage (power supply voltage) of the DC power supply unit 9 acquired by the power supply voltage acquisition unit 204 is stored as part of the power receiving unit data 302. FIG. 7 is an example of the power receiving unit data 302. The power receiving unit data 302 stores, for each power receiving unit 30, the voltage (power supply voltage) and current (power supply current) of the DC power supply unit 9 connected to that power receiving unit 30 in association with each other. Data relating to power receiving units 30 to which a DC power supply unit 9 is not connected is not stored. Therefore, it is also possible to determine which power receiving unit 30 the DC power supply unit 9 is connected to from the power receiving unit data 302.
 また、N個の蓄電部12には、定格電圧が異なる蓄電部12が含まれ、スイッチング制御部202は、受電部30に接続された直流給電部9の電圧、および、N個の蓄電部12それぞれの定格電圧に基づいて、蓄電部接続スイッチング部54を制御する。 The N storage units 12 also include storage units 12 with different rated voltages, and the switching control unit 202 controls the storage unit connection switching unit 54 based on the voltage of the DC power supply unit 9 connected to the power receiving unit 30 and the rated voltage of each of the N storage units 12.
 蓄電部12の定格電圧は、定格電圧取得部206によって取得される。定格電圧取得部206は、蓄電部12の定格電圧を、例えば、入力部102を介した操作者の操作入力によって実現することができる。または、蓄電部12のBMS(Battery Management System)や、蓄電部12に設けられたICタグから、当該蓄電部12の定格電圧を含む仕様データを読み取る読み取り装置を設け、当該読み取り装置が読み取ったデータを、通信部104を介して取得するようにしてもよい。BMSやICタグには、予め蓄電部12の仕様データが記憶されている。 The rated voltage of the storage unit 12 is acquired by the rated voltage acquisition unit 206. The rated voltage acquisition unit 206 can realize the rated voltage of the storage unit 12, for example, by an operator's operational input via the input unit 102. Alternatively, a reading device may be provided that reads specification data including the rated voltage of the storage unit 12 from the BMS (Battery Management System) of the storage unit 12 or an IC tag provided on the storage unit 12, and the data read by the reading device may be acquired via the communication unit 104. The specification data of the storage unit 12 is stored in advance in the BMS or IC tag.
 定格電圧取得部206が取得した蓄電部12の定格電圧は、蓄電部データ304に含めて記憶される。図8は、蓄電部データ304の一例である。蓄電部データ304は、蓄電装置10が有する蓄電部12それぞれについて、定格電圧と、充電状況とを対応付けて格納している。充電状況は充電状況取得部208によって取得される値であり、当該取得のタイミングで更新される。 The rated voltage of the power storage unit 12 acquired by the rated voltage acquisition unit 206 is stored as part of the power storage unit data 304. FIG. 8 is an example of the power storage unit data 304. The power storage unit data 304 stores the rated voltage and the charging status for each power storage unit 12 in the power storage device 10 in association with each other. The charging status is a value acquired by the charging status acquisition unit 208, and is updated at the time of acquisition.
 また、スイッチング制御部202は、N個の蓄電部12それぞれの充電状況に基づいて、給電元スイッチング部52および蓄電部接続スイッチング部54を動的に制御する。 The switching control unit 202 also dynamically controls the power supply source switching unit 52 and the storage unit connection switching unit 54 based on the charging status of each of the N storage units 12.
 N個の蓄電部12それぞれの充電状況は、充電状況取得部208によって取得される。充電状況取得部208は、蓄電部12の充電状況を、例えば、蓄電部12の入力端に設けた電圧計や電流計によって計測される当該蓄電部12の入力電圧や入力電流に基づいて算定することで取得できる。また、蓄電部12のBMS(Battery Management System)が出力する充電状況を、通信部104を介して取得するようにしてもよい。充電状況は、例えば、充電率やSoC(State of Charge)等のことである。充電状況取得部208が取得した蓄電部12の充電状況は、蓄電部データ304に含めて記憶される。 The charging status of each of the N storage units 12 is acquired by the charging status acquisition unit 208. The charging status acquisition unit 208 can acquire the charging status of the storage unit 12, for example, by calculating it based on the input voltage and input current of the storage unit 12 measured by a voltmeter and ammeter provided at the input terminal of the storage unit 12. In addition, the charging status output by the BMS (Battery Management System) of the storage unit 12 may be acquired via the communication unit 104. The charging status is, for example, the charging rate and SoC (State of Charge). The charging status of the storage unit 12 acquired by the charging status acquisition unit 208 is stored as part of the storage unit data 304.
 また、スイッチング制御部202は、前記N個の蓄電部12について設定された充電順序に基づいて、給電元スイッチング部52および蓄電部接続スイッチング部54を制御する。 The switching control unit 202 also controls the power supply source switching unit 52 and the storage unit connection switching unit 54 based on the charging order set for the N storage units 12.
 充電順序は、充電順序設定部210によって設定される。充電順序設定部210は、蓄電部12の充電順序を、例えば、入力部102を介した操作者の操作入力によって設定することができる。または、容量や定格電圧といった仕様や、充電率といった充電状況などの蓄電部12に係る条件に従って設定するようにしてもよい。具体的には、(a)トータルの充電時間を短縮するために、充電状況である充電率が低い(つまり、充電に要する時間が長い)蓄電部12を先とする順序に設定する、(b)1個の直流給電部で複数の蓄電部を充電できる並列接続や直列接続を優先する順序に設定し、その際には、DC/DCコンバーター40の変換損失を抑制するために、直流給電部の給電電圧と充電用電圧(DC/DCコンバーター40の出力電圧)とが近くなるような蓄電部12の組み合わせとしたり、並列接続や直列接続する蓄電部12の充電率を揃えるような順序に設定する、いったことが考えられる。 The charging order is set by the charging order setting unit 210. The charging order setting unit 210 can set the charging order of the power storage units 12, for example, by an operator's operation input via the input unit 102. Alternatively, the charging order may be set according to conditions related to the power storage units 12, such as specifications such as capacity and rated voltage, and charging conditions such as charging rates. Specifically, (a) in order to shorten the total charging time, the charging order is set to a power storage unit 12 with a low charging rate (i.e., a long charging time) first, (b) in order to prioritize parallel or series connections that allow multiple power storage units to be charged by one DC power supply unit, and in this case, in order to suppress the conversion loss of the DC/DC converter 40, a combination of power storage units 12 is set so that the power supply voltage of the DC power supply unit and the charging voltage (output voltage of the DC/DC converter 40) are close to each other, or the charging order is set so that the charging rates of the power storage units 12 connected in parallel or series are the same.
 充電順序設定部210が設定した充電順序は、充電順序設定データ308として記憶される。図9は、充電順序設定データ308の一例である。充電順序設定データ308は、充電順序に対応付けて、充電する蓄電部12の組み合わせと、給電元の受電部30と、蓄電部12の接続関係のパターンと、受電部30に対応するDC/DCコンバーター40の出力する充電用電圧と、蓄電部12の目標充電状況となる目標充電率とを格納している。 The charging order set by the charging order setting unit 210 is stored as charging order setting data 308. FIG. 9 is an example of the charging order setting data 308. The charging order setting data 308 stores, in association with the charging order, a combination of the power storage units 12 to be charged, the power receiving unit 30 that supplies power, the connection pattern of the power storage units 12, the charging voltage output by the DC/DC converter 40 that corresponds to the power receiving unit 30, and the target charging rate that is the target charging status of the power storage units 12.
 本実施形態では、1個の蓄電部12は最大1個の直流給電部9の供給電力によって充電されるものとしている。つまり、1つの蓄電部12が複数のDC/DCコンバーター40(受電部30)に接続されない(給電元としない)よう、給電元のDC/DCコンバーター40に接続する蓄電部12の接続関係を、個別接続・並列接続・直列接続の3パターンとしている(図3~図5参照)。 In this embodiment, one power storage unit 12 is charged by power supplied from a maximum of one DC power supply unit 9. In other words, to prevent one power storage unit 12 from being connected to multiple DC/DC converters 40 (power receiving units 30) (from serving as a power supply source), the connection relationship of the power storage unit 12 to the power supply source DC/DC converter 40 is set to three patterns: individual connection, parallel connection, and series connection (see Figures 3 to 5).
 図9の例では、1個の直流給電部9の供給電力でできるだけ多くの蓄電部12を同時に充電するため、並列接続・直列接続を優先させる充電順序としている。具体的には、給電元の受電部30(直流給電部9)それぞれに接続する蓄電部12の接続関係のグループを決定し、それぞれのグループについて、蓄電部12それぞれの充電率を揃えるように充電率が低い順に充電順序を設定している。例えば、図9の充電順序設定データ308内の上段の設定データには、第1~第2蓄電部12に係るグループの充電順序が設定されている。このグループは、最終的に“第1受電部に第1蓄電部および第2蓄電部を並列接続”することとなる接続関係のグループである。充電率が低いほうの“第1蓄電部を第1受電部に個別接続して充電率が50%まで充電(順序=1)”した後、“第1受電部に第1蓄電部および第2蓄電部を並列接続して充電率が90%まで充電(順序=2)”するように設定されている。また、図9の充電順序設定データ308内の下段の設定データには、第3~第4蓄電部12に係るグループの充電順序が設定されている。このグループは、最終的に“第3受電部に第3蓄電部および第4蓄電部を直列接続”することとなる接続関係のグループである。充電率が低いほうの“第3蓄電部を第2受電部に個別接続して充電率が60%まで充電(順序=1)”した後、“第3受電部に第3蓄電部および第4蓄電部を直列接続して充電率が90%まで充電(順序=2)”するように設定されている。 In the example of FIG. 9, in order to charge as many storage units 12 as possible simultaneously with the power supplied from one DC power supply unit 9, the charging order prioritizes parallel connection and series connection. Specifically, a group of connection relationships of the storage units 12 to be connected to each of the power receiving units 30 (DC power supply unit 9) of the power supply source is determined, and for each group, the charging order is set in ascending order of charging rate so that the charging rates of the storage units 12 are uniform. For example, the setting data in the upper row of the charging order setting data 308 in FIG. 9 sets the charging order of the group related to the first to second storage units 12. This group is a group of connections that will ultimately result in "the first storage unit and the second storage unit being connected in parallel to the first power receiving unit." It is set so that "the first storage unit is individually connected to the first power receiving unit and charged to a charging rate of 50% (order = 1)" with the lower charging rate, and then "the first storage unit and the second storage unit are connected in parallel to the first power receiving unit and charged to a charging rate of 90% (order = 2)". The setting data in the lower part of the charging order setting data 308 in FIG. 9 sets the charging order of the group related to the third to fourth power storage units 12. This group is a group with a connection relationship that will ultimately result in "connecting the third and fourth power storage units in series to the third power receiving unit." It is set so that "the third power storage unit is individually connected to the second power receiving unit and charged to a charging rate of 60% (order = 1)" which has the lower charging rate, and then "the third and fourth power storage units are connected in series to the third power receiving unit and charged to a charging rate of 90% (order = 2)."
 スイッチング制御部202は、給電元スイッチング部52および蓄電部接続スイッチング部54の制御(スイッチのオン/オフ)を、接続関係定義テーブル306に従って行う。 The switching control unit 202 controls the power supply source switching unit 52 and the power storage unit connection switching unit 54 (turning the switches on and off) according to the connection relationship definition table 306.
 図10は、接続関係定義テーブル306の一例である。接続関係定義テーブル306は、M個(m=1,2,・・,M)の受電部30ごとにテーブル306-m(m=1,2,・・,M)として用意される。これは、1個の蓄電部12に対して最大1個の直流給電部9が給電元として接続されるからである。テーブル306-mには、当該受電部30に接続する蓄電部12の接続関係それぞれに、スイッチング部50のスイッチのうちの“オンするスイッチ”を対応付けて定めている。蓄電部12の接続関係は、接続する蓄電部12の数と、パターン(個別・並列・直列接続の区別)と、接続する蓄電部12の組み合わせとを含む。 FIG. 10 is an example of the connection relationship definition table 306. The connection relationship definition table 306 is prepared as table 306-m (m = 1, 2, ..., M) for each of M (m = 1, 2, ..., M) power receiving units 30. This is because a maximum of one DC power supply unit 9 is connected to one power storage unit 12 as a power supply source. Table 306-m defines the "switch to be turned on" among the switches of the switching unit 50 for each of the connection relationships of the power storage units 12 connected to the power receiving unit 30. The connection relationships of the power storage units 12 include the number of power storage units 12 to be connected, the pattern (distinguishing between individual, parallel, and series connection), and the combination of the power storage units 12 to be connected.
 記憶部300は、フラッシュメモリやROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、EPROM(Erasable Programmable ROM)等により実現される。記憶部300には、太陽光発電システムを統括的に制御するための制御プログラムのほか、受電部データ302と、蓄電部データ304と、接続関係定義テーブル306と、充電順序設定データ308とが記憶される。 The memory unit 300 is realized by a flash memory, a ROM (Read Only Memory), a RAM (Random Access Memory), a HDD (Hard Disk Drive), a SSD (Solid State Drive), an EPROM (Erasable Programmable ROM), etc. In addition to a control program for comprehensively controlling the solar power generation system, the memory unit 300 stores power receiving unit data 302, power storage unit data 304, a connection relationship definition table 306, and charging order setting data 308.
[処理の流れ]
 図11は、コントローラー60が実行する充電制御処理のフローチャートである。先ず、定格電圧取得部206が、蓄電部12それぞれの定格電圧を取得する(ステップS1)。また、充電状況取得部208が、蓄電部12それぞれの充電状況の検出を開始する(ステップS3)。以降は充電状況取得部208が、周期的に蓄電部12それぞれの充電状況を検出する。また、給電電圧取得部204が、受電部30それぞれに接続された直流給電部9の給電電圧の検出を開始する(ステップS5)。以降は給電電圧取得部204が、周期的に直流給電部9の給電電圧を検出する。
[Process flow]
11 is a flowchart of the charging control process executed by the controller 60. First, the rated voltage acquisition unit 206 acquires the rated voltage of each of the power storage units 12 (step S1). The charging status acquisition unit 208 starts detecting the charging status of each of the power storage units 12 (step S3). Thereafter, the charging status acquisition unit 208 periodically detects the charging status of each of the power storage units 12. The power supply voltage acquisition unit 204 starts detecting the power supply voltage of the DC power supply unit 9 connected to each of the power receiving units 30 (step S5). Thereafter, the power supply voltage acquisition unit 204 periodically detects the power supply voltage of the DC power supply unit 9.
 続いて、充電順序設定部210が、蓄電部12それぞれの定格電圧や充電状況、受電部30それぞれの給電電圧などに基づいて、蓄電部12の充電順序を設定する(ステップS7)。設定した充電順序のデータは、充電順序設定データ308として記憶部300に記憶する。そして、スイッチング制御部202が、設定された充電順序に従った充電(給電元の受電部30から蓄電部12への充電電力の供給)が実現されるようなスイッチング切換制御を行う(ステップS9)。例えば、充電順序が設定された後の初回のスイッチング切換制御であれば、充電順序設定データ308の充電順序が“1”に対応する受電部30と蓄電部12との接続関係が構成されるようにスイッチング部50のスイッチング部50のスイッチのオン/オフを切り換える制御を行う。それとともに、受電部30それぞれに対応するDC/DCコンバーター40の出力する充電用電圧の制御を開始する(ステップS11)。 Then, the charging order setting unit 210 sets the charging order of the power storage units 12 based on the rated voltage and charging status of each of the power storage units 12, the power supply voltage of each of the power receiving units 30, etc. (step S7). The set charging order data is stored in the storage unit 300 as charging order setting data 308. Then, the switching control unit 202 performs switching control so that charging (supply of charging power from the power receiving unit 30, which is the power supply source, to the power storage units 12) according to the set charging order is realized (step S9). For example, if it is the first switching control after the charging order is set, the switching unit 50 switches on and off so that a connection relationship between the power receiving unit 30 and the power storage unit 12 corresponding to the charging order "1" in the charging order setting data 308 is formed. At the same time, control of the charging voltage output by the DC/DC converter 40 corresponding to each of the power receiving units 30 is started (step S11).
 次いで、充電状況取得部208により取得された充電状況から、蓄電部12の充電状況が、充電順序で定められた所定の目標充電状況となったか否かを判断する。目標充電状況となっていないと判断したならば(ステップS13:NO)、続いて、給電電圧取得部204により取得された給電電圧から、受電部30の給電電圧が変化したか否かを判断する。この給電電圧の変化には、既に接続されている直流給電部9の電圧の変化のほか、新たな直流給電部9が接続されたことも含む。受電部30の給電電圧が変化したと判断したならば(ステップS15:YES)、ステップS7に戻り、再度、充電順序設定部210が、変化後の受電部30の給電電圧や、現時点での蓄電部12それぞれの充電状況に応じて、蓄電部12の充電順序の設定を行う(ステップS7)。 Then, from the charging status acquired by the charging status acquisition unit 208, it is determined whether the charging status of the power storage unit 12 has reached a predetermined target charging status determined by the charging order. If it is determined that the target charging status has not been reached (step S13: NO), then, from the power supply voltage acquired by the power supply voltage acquisition unit 204, it is determined whether the power supply voltage of the power receiving unit 30 has changed. This change in power supply voltage includes not only a change in the voltage of the DC power supply unit 9 already connected, but also the connection of a new DC power supply unit 9. If it is determined that the power supply voltage of the power receiving unit 30 has changed (step S15: YES), the process returns to step S7, and the charging order setting unit 210 again sets the charging order of the power storage units 12 according to the changed power supply voltage of the power receiving unit 30 and the current charging status of each of the power storage units 12 (step S7).
 蓄電部12の充電状況が所定の目標充電状況となったと判断したならば(ステップS13:YES)、充電制御を終了するか否かを判断する。具体的には、全ての蓄電部12の充電状況が最後の充電順序に対応する目標充電状況となったならば、充電が完了したとして充電制御を終了すると判断する。 If it is determined that the charging status of the power storage units 12 has reached a predetermined target charging status (step S13: YES), it is determined whether or not to end the charging control. Specifically, if the charging status of all the power storage units 12 has reached the target charging status corresponding to the final charging order, it is determined that charging is complete and that the charging control should be ended.
 充電制御を終了しないと判断したならば(ステップS17:NO)、スイッチング制御部202は、目標充電状況となった蓄電部12に応じたスイッチング切換制御を行う(ステップS19)。つまり、例えば、目標充電状況となった蓄電部12を給電元のDC/DCコンバーター40から切り離して当該蓄電部12の充電電力の供給を終了するように、スイッチング部50のスイッチング部50のスイッチのオン/オフを切り換える制御を行う。或いは、全ての蓄電部12の充電状況が、現在の充電順序に対応する目標充電状況となった場合には、次の充電順序に対応する受電部30と蓄電部12との接続関係が構成されるようにスイッチング部50のスイッチング部50のスイッチのオン/オフを切り換える制御を行う。それとともに、受電部30それぞれに対応するDC/DCコンバーター40の出力する充電用電圧の制御を開始する(ステップS21)。その後、ステップSS13に戻り、同様の処理を繰り返す。 If it is determined that the charging control is not to be terminated (step S17: NO), the switching control unit 202 performs switching control according to the storage unit 12 that has reached the target charging state (step S19). That is, for example, the switching unit 50 controls the switch of the switching unit 50 to be switched on/off so that the storage unit 12 that has reached the target charging state is disconnected from the DC/DC converter 40 that supplies power and the supply of charging power to the storage unit 12 is terminated. Alternatively, when the charging states of all the storage units 12 have reached the target charging state corresponding to the current charging order, the switching unit 50 controls the switch of the switching unit 50 to be switched on/off so that the connection relationship between the receiving unit 30 and the storage unit 12 corresponding to the next charging order is configured. At the same time, the control of the charging voltage output by the DC/DC converter 40 corresponding to each receiving unit 30 is started (step S21). After that, the control returns to step SS13 and the same process is repeated.
 そして、ステップS17において、充電制御を終了すると判断したならば(ステップS17:YES)、本処理は終了となる。 If it is determined in step S17 that charging control should be terminated (step S17: YES), this process ends.
[作用効果]
 本実施形態によれば、直流給電部9と電気的に接続可能なM個の受電部30を備えることで、M個以内の直流給電部9を任意に接続可能である。そして、コントローラー60によるスイッチング部50の制御によって、給電元のDC/DCコンバーター40に接続する蓄電部12の接続関係が切り換え可能である。これにより、受電部30に接続された任意の直流給電部9からの給電電力によって、蓄電部12を適切に充電することが可能となる。また、受電部30に接続された直流給電部9の電圧に近い充電用電圧となるようにDC/DCコンバーター40に接続する蓄電部12の接続関係を構成することで、DC/DCコンバーター40での変換損失をできるだけ抑制することが可能となり、より効率の良い充電を実現することが可能となる。
[Action and Effect]
According to this embodiment, by providing M power receiving units 30 that can be electrically connected to the DC power supply unit 9, it is possible to arbitrarily connect up to M DC power supply units 9. Then, the connection relationship of the power storage unit 12 connected to the DC/DC converter 40 that is the power supply source can be switched by controlling the switching unit 50 by the controller 60. This makes it possible to appropriately charge the power storage unit 12 with the power supplied from any DC power supply unit 9 connected to the power receiving unit 30. In addition, by configuring the connection relationship of the power storage unit 12 connected to the DC/DC converter 40 so that the charging voltage is close to the voltage of the DC power supply unit 9 connected to the power receiving unit 30, it is possible to suppress the conversion loss in the DC/DC converter 40 as much as possible, and it is possible to realize more efficient charging.
[変形例]
 なお、本発明の適用可能な実施形態は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能なのは勿論である。
[Modification]
Incidentally, the applicable embodiments of the present invention are not limited to the above-described embodiments, and can of course be modified as appropriate without departing from the spirit of the present invention.
(1)スイッチの動作状態
 スイッチング部50の各スイッチに通信装置を設け、スイッチの動作状態(オンオフの状態やその切換動作の実行など)を、コントローラー60に出力(有線通信または無線通信)するようにしてもよい。コントローラー60は、これらの通信装置から取得したスイッチの動作状態に基づき、各スイッチが正常か否かを判断し、正常と判断したスイッチのみを使用するように、スイッチング部50を制御する。これにより、より適切な蓄電部12の充電制御が可能となる。
(1) Switch Operation Status Each switch of the switching unit 50 may be provided with a communication device, and the operation status of the switch (on/off state, execution of switching operation, etc.) may be output (by wired communication or wireless communication) to the controller 60. The controller 60 determines whether each switch is normal or not based on the operation status of the switch acquired from these communication devices, and controls the switching unit 50 so as to use only the switches determined to be normal. This enables more appropriate charging control of the power storage unit 12.
 各スイッチに設ける通信装置は、例えば、特定小電力無線規格であるWi-SUN(Wireless Smart Utility Network)規格の無線通信装置とすることができる。Wi-SUN規格は、非常に少ない消費電力で長距離の通信を行うことができるとともにマルチホップ通信に対応していることから、多数のスイッチを有するスイッチング部50に設ける通信装置として好適である。さらには、コントローラー60と、受電部30やDC/DCコンバーター40、蓄電部12との間のデータの入出力を、このWi-SUN規格の無線通信装置によって実現するようにしてもよい。 The communication device provided in each switch can be, for example, a wireless communication device that complies with the Wi-SUN (Wireless Smart Utility Network) standard, which is a specific low-power wireless standard. The Wi-SUN standard allows long-distance communication with very little power consumption and supports multi-hop communication, making it suitable as a communication device to be provided in a switching unit 50 that has many switches. Furthermore, data input and output between the controller 60 and the power receiving unit 30, DC/DC converter 40, and power storage unit 12 can be realized by this Wi-SUN wireless communication device.
(2)蓄電装置の充電
 充電制御装置20による蓄電装置10の蓄電部12の充電を無線給電により実現するようにしてもよい。
(2) Charging of the Power Storage Device The charging control device 20 may charge the power storage unit 12 of the power storage device 10 by wireless power supply.
(3)蓄電装置
 蓄電装置10が有する蓄電部12それぞれを交換可能に構成してもよい。具体的には、充電制御装置20に蓄電部12を電気的に接続可能な複数の充電端子部を設け、コントローラー60は、これらの充電端子部のうちの蓄電部が接続された充電端子部を給電元のDC/DCコンバーター40に接続するようにスイッチング部を制御する。
(3) Energy Storage Device The energy storage units 12 of the energy storage device 10 may be configured to be replaceable. Specifically, the charge control device 20 is provided with a plurality of charging terminal units to which the energy storage units 12 can be electrically connected, and the controller 60 controls the switching unit to connect one of the charging terminal units to which the energy storage units are connected to the DC/DC converter 40 that supplies power.
[概括]
 本明細書で開示されている内容は、次のように概括することができる。
[Summary]
The contents disclosed in this specification can be summarized as follows.
 (第1の発明)
 直流給電部と接続してN個(N≧2)の蓄電部を充電する充電制御装置であって、
 前記直流給電部と電気的に接続可能なM個(M≧2)の受電部と、
 前記受電部毎に設けられ、当該受電部に接続された前記直流給電部からの給電電力を所与の充電用電圧に変換するM個のDC/DCコンバーターと、
 前記蓄電部それぞれと前記DC/DCコンバーターそれぞれとの接続関係を切り換え可能なスイッチング部と、
 前記スイッチング部を制御するコントローラーと、
 を備え、
 前記スイッチング部は、
  前記M個のDC/DCコンバーターのうちの給電元のDC/DCコンバーターを切り換える給電元スイッチング部と、
  前記給電元に接続する前記蓄電部の接続関係を切り換える蓄電部接続スイッチング部と、
 を有し、
 前記コントローラーは、前記M個の受電部のうちの前記直流給電部が接続された受電部に基づいて、前記給電元スイッチング部および前記蓄電部接続スイッチング部を制御する、
 充電制御装置。
(First Invention)
A charge control device that is connected to a DC power supply unit and charges N (N≧2) power storage units,
M (M≧2) power receiving units that can be electrically connected to the DC power supply unit;
M DC/DC converters each provided for each of the power receiving units, each converting a power supplied from the DC power supply unit connected to the power receiving unit into a given charging voltage;
a switching unit capable of switching a connection relationship between each of the power storage units and each of the DC/DC converters;
A controller for controlling the switching unit;
Equipped with
The switching unit is
a power supply source switching unit that switches a power supply source DC/DC converter among the M DC/DC converters;
a power storage unit connection switching unit that switches a connection relationship of the power storage unit that is connected to the power supply source;
having
The controller controls the power supply source switching unit and the power storage unit connection switching unit based on a power receiving unit to which the DC power supply unit is connected among the M power receiving units.
Charging control device.
 (第2の発明)
 前記蓄電部接続スイッチング部は、前記給電元に前記蓄電部を個別に接続する個別接続と、前記蓄電部を並列に接続する並列接続と、前記蓄電部を直列に接続する直列接続との何れかに切り換える、
 第1の発明の充電制御装置。
(Second Invention)
the power storage unit connection switching unit switches between an individual connection in which the power storage units are individually connected to the power supply source, a parallel connection in which the power storage units are connected in parallel, and a series connection in which the power storage units are connected in series;
A charging control device according to a first aspect of the present invention.
 (第3の発明)
 前記受電部には、給電電圧の異なる前記直流給電部が接続可能であり、
 前記受電部に接続された前記直流給電部の電圧を取得する電圧取得部、
 を更に備え、
 前記コントローラーは、前記受電部に接続された前記直流給電部の電圧に基づいて前記蓄電部接続スイッチング部を制御する、
 第1又は第2の発明の充電制御装置。
(Third Invention)
The DC power supply unit having a different power supply voltage can be connected to the power receiving unit,
a voltage acquisition unit that acquires a voltage of the DC power supply unit connected to the power receiving unit;
Further comprising:
The controller controls the power storage unit connection switching unit based on a voltage of the DC power supply unit connected to the power receiving unit.
A charging control device according to the first or second invention.
 (第4の発明)
 前記N個の蓄電部には、定格電圧が異なる蓄電部が含まれ、
 前記コントローラーは、前記受電部に接続された前記直流給電部の電圧、および、前記N個の蓄電部それぞれの定格電圧に基づいて、前記蓄電部接続スイッチング部を制御する、
 第1~第3の何れかの発明の充電制御装置。
(Fourth Invention)
The N power storage units include power storage units having different rated voltages,
The controller controls the power storage unit connection switching unit based on a voltage of the DC power supply unit connected to the power receiving unit and a rated voltage of each of the N power storage units.
A charge control device according to any one of the first to third aspects of the present invention.
 (第5の発明)
 前記N個の蓄電部それぞれの充電状況を取得する充電状況取得部、
 を更に備え、
 前記コントローラーは、前記N個の蓄電部それぞれの充電状況に基づいて、前記給電元スイッチング部および前記蓄電部接続スイッチング部を動的に制御する、
 第1~第4の何れかの発明の充電制御装置。
(Fifth Invention)
a charging status acquisition unit that acquires a charging status of each of the N power storage units;
Further comprising:
The controller dynamically controls the power supply source switching unit and the power storage unit connection switching unit based on a charging status of each of the N power storage units.
A charge control device according to any one of the first to fourth aspects of the present invention.
 (第6の発明)
 前記コントローラーは、前記N個の蓄電部について充電順序を設定する充電順序設定部を有し、前記充電順序に基づいて、前記給電元スイッチング部および前記蓄電部接続スイッチング部を制御する、
 第1~第5の何れかの発明の充電制御装置。
(Sixth Invention)
The controller has a charging order setting unit that sets a charging order for the N power storage units, and controls the power supply source switching unit and the power storage unit connection switching unit based on the charging order.
A charge control device according to any one of the first to fifth aspects of the present invention.
 (第7の発明)
 直流給電部と接続してN個(N≧2)の蓄電部を充電する充電制御装置の制御方法であって、
 前記充電制御装置は、
  前記直流給電部と電気的に接続可能なM個(M≧2)の受電部と、
  前記受電部毎に設けられ、当該受電部に接続された前記直流給電部からの給電電力を所与の充電用電圧に変換するM個のDC/DCコンバーターと、
  前記蓄電部それぞれと前記DC/DCコンバーターそれぞれとの接続関係を切り換え可能なスイッチング部と、
 を備え、
 前記スイッチング部は、
  前記M個のDC/DCコンバーターのうちの給電元のDC/DCコンバーターを切り換える給電元スイッチング部と、
  前記給電元に接続する前記蓄電部の接続関係を切り換える蓄電部接続スイッチング部と、
 を有しており、
 前記M個の受電部のうちの前記直流給電部が接続された受電部に基づいて、前記給電元スイッチング部および前記蓄電部接続スイッチング部を制御する、
 制御方法。
(Seventh Invention)
A control method for a charge control device that is connected to a DC power supply unit and charges N (N≧2) power storage units, comprising:
The charging control device includes:
M (M≧2) power receiving units that can be electrically connected to the DC power supply unit;
M DC/DC converters each provided for each of the power receiving units, each converting power supplied from the DC power supply unit connected to the power receiving unit into a given charging voltage;
a switching unit capable of switching a connection relationship between each of the power storage units and each of the DC/DC converters;
Equipped with
The switching unit is
a power supply source switching unit that switches a power supply source DC/DC converter among the M DC/DC converters;
a power storage unit connection switching unit that switches a connection relationship of the power storage unit that is connected to the power supply source;
It has
controlling the power supply source switching unit and the power storage unit connection switching unit based on a power receiving unit to which the DC power supply unit is connected among the M power receiving units;
Control methods.
1…蓄電システム
 10…蓄電装置
  12…蓄電部
 20…充電制御装置
  30…受電部
  40…DC/DCコンバーター
  50…スイッチング部
   52…給電元スイッチング部
   54…蓄電部接続スイッチング部
  60…コントローラー
   200…制御部
    202…スイッチング制御部
    204…定格電圧取得部
    206…給電電圧取得部
    208…充電状況取得部
    210…充電順序設定部
   300…記憶部
    302…受電部データ
    304…蓄電部データ
    306…接続関係定義テーブル
    308…充電順序設定データ
9…直流給電部
LIST OF SYMBOLS 1...Power storage system 10...Power storage device 12...Power storage unit 20...Charging control device 30...Power receiving unit 40...DC/DC converter 50...Switching unit 52...Power supply source switching unit 54...Power storage unit connection switching unit 60...Controller 200...Control unit 202...Switching control unit 204...Rated voltage acquisition unit 206...Power supply voltage acquisition unit 208...Charging status acquisition unit 210...Charging order setting unit 300...Memory unit 302...Power receiving unit data 304...Power storage unit data 306...Connection relationship definition table 308...Charging order setting data 9...DC power supply unit

Claims (7)

  1.  直流給電部と接続してN個(N≧2)の蓄電部を充電する充電制御装置であって、
     前記直流給電部と電気的に接続可能なM個(M≧2)の受電部と、
     前記受電部毎に設けられ、当該受電部に接続された前記直流給電部からの給電電力を所与の充電用電圧に変換するM個のDC/DCコンバーターと、
     前記蓄電部それぞれと前記DC/DCコンバーターそれぞれとの接続関係を切り換え可能なスイッチング部と、
     前記スイッチング部を制御するコントローラーと、
     を備え、
     前記スイッチング部は、
      前記M個のDC/DCコンバーターのうちの給電元のDC/DCコンバーターを切り換える給電元スイッチング部と、
      前記給電元に接続する前記蓄電部の接続関係を切り換える蓄電部接続スイッチング部と、
     を有し、
     前記コントローラーは、前記M個の受電部のうちの前記直流給電部が接続された受電部に基づいて、前記給電元スイッチング部および前記蓄電部接続スイッチング部を制御する、
     充電制御装置。
    A charge control device that is connected to a DC power supply unit and charges N (N≧2) power storage units,
    M (M≧2) power receiving units that can be electrically connected to the DC power supply unit;
    M DC/DC converters each provided for each of the power receiving units, each converting a power supplied from the DC power supply unit connected to the power receiving unit into a given charging voltage;
    a switching unit capable of switching a connection relationship between each of the power storage units and each of the DC/DC converters;
    A controller for controlling the switching unit;
    Equipped with
    The switching unit is
    a power supply source switching unit that switches a power supply source DC/DC converter among the M DC/DC converters;
    a power storage unit connection switching unit that switches a connection relationship of the power storage unit that is connected to the power supply source;
    having
    The controller controls the power supply source switching unit and the power storage unit connection switching unit based on a power receiving unit to which the DC power supply unit is connected among the M power receiving units.
    Charging control device.
  2.  前記蓄電部接続スイッチング部は、前記給電元に前記蓄電部を個別に接続する個別接続と、前記蓄電部を並列に接続する並列接続と、前記蓄電部を直列に接続する直列接続との何れかに切り換える、
     請求項1に記載の充電制御装置。
    the power storage unit connection switching unit switches between an individual connection in which the power storage units are individually connected to the power supply source, a parallel connection in which the power storage units are connected in parallel, and a series connection in which the power storage units are connected in series;
    The charge control device according to claim 1 .
  3.  前記受電部には、給電電圧の異なる前記直流給電部が接続可能であり、
     前記受電部に接続された前記直流給電部の電圧を取得する電圧取得部、
     を更に備え、
     前記コントローラーは、前記受電部に接続された前記直流給電部の電圧に基づいて前記蓄電部接続スイッチング部を制御する、
     請求項1又は2に記載の充電制御装置。
    The DC power supply unit having a different power supply voltage can be connected to the power receiving unit,
    a voltage acquisition unit that acquires a voltage of the DC power supply unit connected to the power receiving unit;
    Further comprising:
    The controller controls the power storage unit connection switching unit based on a voltage of the DC power supply unit connected to the power receiving unit.
    The charge control device according to claim 1 or 2.
  4.  前記N個の蓄電部には、定格電圧が異なる蓄電部が含まれ、
     前記コントローラーは、前記受電部に接続された前記直流給電部の電圧、および、前記N個の蓄電部それぞれの定格電圧に基づいて、前記蓄電部接続スイッチング部を制御する、
     請求項1~3の何れか一項に記載の充電制御装置。
    The N power storage units include power storage units having different rated voltages,
    The controller controls the power storage unit connection switching unit based on a voltage of the DC power supply unit connected to the power receiving unit and a rated voltage of each of the N power storage units.
    The charge control device according to any one of claims 1 to 3.
  5.  前記N個の蓄電部それぞれの充電状況を取得する充電状況取得部、
     を更に備え、
     前記コントローラーは、前記N個の蓄電部それぞれの充電状況に基づいて、前記給電元スイッチング部および前記蓄電部接続スイッチング部を動的に制御する、
     請求項1~4の何れか一項に記載の充電制御装置。
    a charging status acquisition unit that acquires a charging status of each of the N power storage units;
    Further comprising:
    The controller dynamically controls the power supply source switching unit and the power storage unit connection switching unit based on a charging status of each of the N power storage units.
    The charge control device according to any one of claims 1 to 4.
  6.  前記コントローラーは、前記N個の蓄電部について充電順序を設定する充電順序設定部を有し、前記充電順序に基づいて、前記給電元スイッチング部および前記蓄電部接続スイッチング部を制御する、
     請求項1~5の何れか一項に記載の充電制御装置。
    The controller has a charging order setting unit that sets a charging order for the N power storage units, and controls the power supply source switching unit and the power storage unit connection switching unit based on the charging order.
    The charge control device according to any one of claims 1 to 5.
  7.  直流給電部と接続してN個(N≧2)の蓄電部を充電する充電制御装置の制御方法であって、
     前記充電制御装置は、
      前記直流給電部と電気的に接続可能なM個(M≧2)の受電部と、
      前記受電部毎に設けられ、当該受電部に接続された前記直流給電部からの給電電力を所与の充電用電圧に変換するM個のDC/DCコンバーターと、
      前記蓄電部それぞれと前記DC/DCコンバーターそれぞれとの接続関係を切り換え可能なスイッチング部と、
     を備え、
     前記スイッチング部は、
      前記M個のDC/DCコンバーターのうちの給電元のDC/DCコンバーターを切り換える給電元スイッチング部と、
      前記給電元に接続する前記蓄電部の接続関係を切り換える蓄電部接続スイッチング部と、
     を有しており、
     前記M個の受電部のうちの前記直流給電部が接続された受電部に基づいて、前記給電元スイッチング部および前記蓄電部接続スイッチング部を制御する、
     制御方法。
    A control method for a charge control device that is connected to a DC power supply unit and charges N (N≧2) power storage units, comprising:
    The charging control device includes:
    M (M≧2) power receiving units electrically connectable to the DC power supply unit;
    M DC/DC converters each provided for each of the power receiving units, each converting a power supplied from the DC power supply unit connected to the power receiving unit into a given charging voltage;
    a switching unit capable of switching a connection relationship between each of the power storage units and each of the DC/DC converters;
    Equipped with
    The switching unit is
    a power supply source switching unit that switches a power supply source DC/DC converter among the M DC/DC converters;
    a power storage unit connection switching unit that switches a connection relationship of the power storage unit that is connected to the power supply source;
    It has
    controlling the power supply source switching unit and the power storage unit connection switching unit based on a power receiving unit to which the DC power supply unit is connected among the M power receiving units;
    Control methods.
PCT/JP2023/039977 2022-11-10 2023-11-07 Charging control device and control method WO2024101335A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022180152 2022-11-10
JP2022-180152 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024101335A1 true WO2024101335A1 (en) 2024-05-16

Family

ID=91032444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039977 WO2024101335A1 (en) 2022-11-10 2023-11-07 Charging control device and control method

Country Status (1)

Country Link
WO (1) WO2024101335A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788449A (en) * 1987-04-24 1988-11-29 The Foxboro Company Redundant power distribution
WO2011052407A1 (en) * 2009-10-29 2011-05-05 三洋電機株式会社 Switching circuit, control apparatus, and power generating system
JP2012070492A (en) * 2010-09-21 2012-04-05 Panasonic Electric Works Co Ltd Charging and discharging system
JP2013529052A (en) * 2010-05-19 2013-07-11 エービービー・ビー.ブイ. Charging system for electric vehicles
WO2015015796A1 (en) * 2013-07-29 2015-02-05 京セラ株式会社 Power conversion apparatus, method for controlling power conversion apparatus, and power conversion system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788449A (en) * 1987-04-24 1988-11-29 The Foxboro Company Redundant power distribution
WO2011052407A1 (en) * 2009-10-29 2011-05-05 三洋電機株式会社 Switching circuit, control apparatus, and power generating system
JP2013529052A (en) * 2010-05-19 2013-07-11 エービービー・ビー.ブイ. Charging system for electric vehicles
JP2012070492A (en) * 2010-09-21 2012-04-05 Panasonic Electric Works Co Ltd Charging and discharging system
WO2015015796A1 (en) * 2013-07-29 2015-02-05 京セラ株式会社 Power conversion apparatus, method for controlling power conversion apparatus, and power conversion system

Similar Documents

Publication Publication Date Title
CN101438479B (en) Power supply system
CN102064356B (en) Battery management system
US8354825B2 (en) Two-stage charge equalization method and apparatus for series-connected battery string
US8129995B2 (en) Apparatus and method for sensing battery cell voltage using isolation capacitor
CN105122581B (en) System and method for distributing from communication ID to more BMS
US20110254373A1 (en) Apparatus for inverting dc voltage to ac voltage
US20140320083A1 (en) Power converter
US20100277115A1 (en) Solar energy storing system and method
CN102904324A (en) Storage system
CN104901354A (en) Battery system and power device provided with battery system
CN102427260A (en) Charging management system and charging holder using same
JP2012510070A (en) Battery cell voltage measuring apparatus and measuring method
US11876189B2 (en) Battery system, battery module and battery control circuit thereof
WO2024101335A1 (en) Charging control device and control method
CN107958581B (en) Electromechanical adapter, energy storage system and method for operating an energy storage system
CN211905521U (en) Insulation impedance detection circuit and application device thereof
KR20190100594A (en) Device and method for electrical vehicle charging
JP2001258166A (en) Charging apparatus
CN209055600U (en) Charging pile energy-saving aging device and charging system
US20210046830A1 (en) Charging systems for charging electrical energy storage devices of electric vehicles and associated methods
JP2011055592A (en) Secondary cell and method for charging and discharging the same
JP2015042013A (en) Charging device
WO2024101334A1 (en) Solar power generation system and control method
JP2009038948A (en) Power supply device in industrial vehicle
US11491886B2 (en) DC voltage charging post for charging an electric vehicle