JP2011055592A - Secondary cell and method for charging and discharging the same - Google Patents

Secondary cell and method for charging and discharging the same Download PDF

Info

Publication number
JP2011055592A
JP2011055592A JP2009199937A JP2009199937A JP2011055592A JP 2011055592 A JP2011055592 A JP 2011055592A JP 2009199937 A JP2009199937 A JP 2009199937A JP 2009199937 A JP2009199937 A JP 2009199937A JP 2011055592 A JP2011055592 A JP 2011055592A
Authority
JP
Japan
Prior art keywords
unit cell
charging
discharging
charge
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009199937A
Other languages
Japanese (ja)
Inventor
Mitsuru Iwaoka
満 岩岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2009199937A priority Critical patent/JP2011055592A/en
Publication of JP2011055592A publication Critical patent/JP2011055592A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary cell which charges and discharges for reducing the variable SOC without wasting electric energy. <P>SOLUTION: A secondary cell configured by connecting a plurality of unit cells 20 and charging and discharging circuits 30 in series includes; charging and discharging circuits (a chopper circuit, a smoothing capacitor, and a control circuit) which are correspondingly provided to the unit cells 20 and output a predetermined voltage by discharging unit cells 20 or charging the unit cells 20 with a predetermined charge current; and control units (a switch 40, an operational amplifier 50, an A/D converting circuit 60, and an MPU70) which estimate the state of charge (SOC) of the unit cells 20 and operate the charging and discharging circuits 30 so that the discharge power from a unit cell 20 higher in charging rate may be larger at discharge than the discharge power from a unit cell 20 lower in charging rate and that the charge power to a unit cell 20 higher in charging rate may be smaller at discharge than the charge power to a unit cell 20 lower in charging rate based on the estimated charging rate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気自動車やハイブリッド車等に用いられる充放電可能な二次電池、及びその充放電方法に関するものである。   The present invention relates to a chargeable / dischargeable secondary battery used for an electric vehicle, a hybrid vehicle, and the like, and a charge / discharge method thereof.

従来の技術として、特許文献1に記載されたバッテリ装置が知られている。充放電可能な二次電池により構成されるバッテリ装置は、リチウムイオン電池などの単位セル(単電池)を複数個直列に接続して構成される。単位セルにはバラツキがあるため、同じ電流で充放電しても、各単位セルの充電率(SOC:State of Charge)が異なってくる。単位セルのSOCのバラツキが大きくなると、過放電あるいは過充電となる単位セルが生じ、セルの破損や容量低下などの不具合を生じる恐れがある。   As a conventional technique, a battery device described in Patent Document 1 is known. A battery device constituted by a chargeable / dischargeable secondary battery is constituted by connecting a plurality of unit cells (unit cells) such as lithium ion batteries in series. Since the unit cells vary, the charge rate (SOC: State of Charge) of each unit cell differs even when charging / discharging with the same current. When the variation in the SOC of the unit cell becomes large, a unit cell that is overdischarged or overcharged is generated, and there is a possibility that problems such as cell breakage or capacity reduction may occur.

そのため、特許文献1に示される技術では、単位セルの電圧をA/Dコンバータで測定し、SOCを推定する。そして、SOCのバラツキが大きい場合、SOCの高い単位セルに並列に接続された放電回路をONにして放電し、SOCのバラツキを補正するようにしている。   Therefore, in the technique disclosed in Patent Document 1, the voltage of the unit cell is measured by an A / D converter, and the SOC is estimated. When the SOC variation is large, the discharge circuit connected in parallel to the unit cell having a high SOC is turned on to discharge, thereby correcting the SOC variation.

なお、従来のバッテリシステムの全体は、図6に示されるように、バッテリ装置100の出力側にDC/DCコンバータ200を接続して、放電時は、このDC/DCコンバータ200により負荷80が必要とする一定の電圧に昇圧ないし降圧してバッテリ装置100より負荷80に電力を供給する。また、充電時は、DC/DCコンバータ200により負荷80側より供給される電圧を一定の電圧に昇圧ないし降圧してバッテリ装置100の充電を行う。   As shown in FIG. 6, the conventional battery system as a whole has a DC / DC converter 200 connected to the output side of the battery device 100, and a load 80 is required by the DC / DC converter 200 during discharging. The battery device 100 supplies power to the load 80 by stepping up or down to a certain voltage. At the time of charging, the voltage supplied from the load 80 side by the DC / DC converter 200 is stepped up or down to a constant voltage to charge the battery device 100.

特開2000−92732号公報JP 2000-92732 A

上述した従来の技術では、SOCの高い単位セルに蓄えられた電気エネルギを放電回路により放電することにより、SOCのバラツキを補正している。しかし、放電を行うということは、電気エネルギを熱として消費させるということであり、電気エネルギの無駄を生じ、ひいては電気エネルギの使用効率が低下するという問題が生じる。   In the above-described conventional technology, the variation in SOC is corrected by discharging electric energy stored in a unit cell having a high SOC by a discharge circuit. However, discharging means that electric energy is consumed as heat, resulting in a waste of electric energy and a problem that efficiency of using electric energy is lowered.

本発明は、電気エネルギを無駄にすることなく、SOCのバラツキを軽減して充放電を行うことができる二次電池およびその充放電方法を提供することを目的とする。   An object of the present invention is to provide a secondary battery and a charge / discharge method thereof that can charge / discharge while reducing variation in SOC without wasting electric energy.

上述した課題を解決するため、本発明の一態様は、単位セルと充放電回路からなるユニットを複数個、直列接続して構成される二次電池であって、各単位セルに対応して設けられ各単位セルから放電して所定の放電電圧を出力するか、または各単位セルに対して所定の充電電流で充電を行う充放電回路と、各単位セルの充電率を推定するとともに、該推定された充電率に基づいて、放電時は充電率の高い単位セルからの放電電力が充電率の低い単位セルからの放電電力よりも大きく、充電時は充電率の高い単位セルへの充電電力が充電率の低い単位セルへの充電電力よりも小さくなるように、前記充放電回路を動作させる制御部とを備えるものである。   In order to solve the above-described problem, one embodiment of the present invention is a secondary battery configured by connecting a plurality of units each including a unit cell and a charge / discharge circuit in series, and is provided corresponding to each unit cell. A charge / discharge circuit that discharges from each unit cell and outputs a predetermined discharge voltage or charges each unit cell with a predetermined charging current, and estimates the charging rate of each unit cell Based on the charged rate, the discharge power from the unit cell with a high charge rate is higher than the discharge power from the unit cell with a low charge rate during discharge, and the charge power to the unit cell with a high charge rate is higher during charge. And a control unit that operates the charge / discharge circuit so as to be smaller than the charge power to the unit cell having a low charge rate.

また、本発明の他の一態様は、単位セルと充放電回路からなるユニットを複数個、直列接続して構成される二次電池の充放電方法であって、各単位セルの充電率を推定するとともに、該推定された充電率に基づいて、放電時は充電率の高い単位セルからの放電電力が充電率の低い単位セルからの放電電力よりも大きくなるように放電させ、充電時は充電率の高い単位セルへの充電電力が充電率の低い単位セルへの充電電力よりも小さくなるように、各単位セルを充電させるようにしたものである。   Another aspect of the present invention is a secondary battery charge / discharge method configured by connecting a plurality of units each including a unit cell and a charge / discharge circuit in series, and estimating a charge rate of each unit cell. In addition, based on the estimated charging rate, discharging is performed such that the discharging power from the unit cell having a high charging rate is larger than the discharging power from the unit cell having a low charging rate. Each unit cell is charged so that the charging power to the unit cell with a high rate is smaller than the charging power to the unit cell with a low charging rate.

本発明によれば、電気エネルギを無駄にすることなく、SOCのバラツキを軽減して充放電を行うことができるという効果を奏する。   According to the present invention, there is an effect that charging and discharging can be performed while reducing variation in SOC without wasting electric energy.

本実施の形態におけるバッテリシステムを示すブロック図である。It is a block diagram which shows the battery system in this Embodiment. 本実施の形態における電力変換回路を示す回路図である。It is a circuit diagram which shows the power converter circuit in this Embodiment. 本実施の形態の変形例1を示すブロック図である。It is a block diagram which shows the modification 1 of this Embodiment. 本実施の形態の変形例2を示すブロック図である。It is a block diagram which shows the modification 2 of this Embodiment. 本実施の形態の変形例3を示すブロック図である。It is a block diagram which shows the modification 3 of this Embodiment. 従来のバッテリシステムを示すブロック図である。It is a block diagram which shows the conventional battery system.

以下、本発明の実施の形態を図を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態における二次電池により構成されるバッテリシステムを示すブロック図である。バッテリ装置100Aを構成する二次電池は、負荷80に対してリチウムイオン電池等の単位セル20をDC/DCコンバータである充放電回路30を介して複数(N個)直列に接続して構成される。負荷80とバッテリ装置100Aの間には、電流センサ90が導入され、電流センサ90で測定された負荷電流IGはMPU70に入力される。単位セル20の両端には電圧測定を行うために、スイッチ40を介して差動アンプ50が接続され、差動アンプ50により増幅された電圧がA/D変換回路60を介してMPU(Micro Processing Unit)70に接続されている。またMPU70は各充放電回路30と信号線SLで接続され、各充放電回路30の単位セル側の端子電流(各単位セルの充放電電流)I1、負荷側の端子間電圧V2の値が必要に応じて入力され記憶される。
(Embodiment 1)
FIG. 1 is a block diagram showing a battery system composed of secondary batteries in the embodiment of the present invention. The secondary battery constituting the battery device 100A is configured by connecting a plurality (N) of unit cells 20 such as lithium ion batteries in series to a load 80 via a charge / discharge circuit 30 that is a DC / DC converter. The A current sensor 90 is introduced between the load 80 and the battery device 100 </ b> A, and the load current IG measured by the current sensor 90 is input to the MPU 70. A differential amplifier 50 is connected to both ends of the unit cell 20 via the switch 40 in order to perform voltage measurement, and the voltage amplified by the differential amplifier 50 is supplied to the MPU (Micro Processing) via the A / D conversion circuit 60. Unit) 70. Further, the MPU 70 is connected to each charge / discharge circuit 30 through a signal line SL, and needs a value of a terminal current (charge / discharge current of each unit cell) I1 of each charge / discharge circuit 30 and a voltage V2 between terminals on the load side. Is input and stored in response to.

充放電回路30は、MPU70からの指示により、放電時は負荷側の出力電圧を定め、充電時は単位セル側の充電電流を定めるように構成されるものであればよく、その具体的構成は、例えば特開2005−295671号公報に示されているものが適用できる。   The charging / discharging circuit 30 only needs to be configured to determine the output voltage on the load side during discharging and to determine the charging current on the unit cell side during charging according to an instruction from the MPU 70. For example, what is shown by Unexamined-Japanese-Patent No. 2005-295671 is applicable.

図2は、上記公報に示される構成を適用した回路例を示している。この充放電回路30は、チョッパ回路1とその入出力端子に個別に配置された二つの平滑コンデンサC1,C2と、制御回路11とを備えている。   FIG. 2 shows a circuit example to which the configuration shown in the above publication is applied. The charge / discharge circuit 30 includes a chopper circuit 1, two smoothing capacitors C 1 and C 2 arranged individually at input / output terminals thereof, and a control circuit 11.

チョッパ回路1は、電源側ハーフブリッジ回路2と、負荷側ハーフブリッジ回路3と、
リアクトル4を備えている。
The chopper circuit 1 includes a power supply side half bridge circuit 2, a load side half bridge circuit 3,
A reactor 4 is provided.

電源側ハーフブリッジ回路2は、高電位側電極端子が単位セル20の正極端子に接続される上アームの電源側スイッチング素子6と、このスイッチング素子6に直列接続されて単位セル20の低電位側電極端子が単位セル20の負極端子に接続される下アームの電源側スイッチング素子7とを備える。   The power supply side half bridge circuit 2 includes a power supply side switching element 6 of the upper arm whose high potential side electrode terminal is connected to the positive terminal of the unit cell 20, and a low potential side of the unit cell 20 connected in series to the switching element 6. The power supply side switching element 7 of the lower arm connected to the negative electrode terminal of the unit cell 20 is provided with an electrode terminal.

負荷側ハーフブリッジ回路3は、高電位側主電極端子が負荷80の高電位側端子または直列接続される隣の単位セル20の負極端子に対応する充放電回路30の単位セル20とは反対側(負荷側)の端子である低電位側端子に接続される上アームの負荷側スイッチング素子9と、該スイッチング素子9に直列接続されて低電位側主電極端子が単位セル20の負極端子、及び負荷80の低電位側端子または直列接続される隣の単位セル20の正極端子に対応する充放電回路30の単位セル20とは反対側(負荷側)の端子である高電位側端子に接続される下アームの負荷側スイッチング素子10とを備える。   The load-side half-bridge circuit 3 has a high-potential side main electrode terminal opposite to the unit cell 20 of the charge / discharge circuit 30 corresponding to the high-potential side terminal of the load 80 or the negative terminal of the adjacent unit cell 20 connected in series. The load-side switching element 9 of the upper arm connected to the low-potential side terminal that is the terminal of the (load side), the low-potential side main electrode terminal connected in series to the switching element 9 and the negative terminal of the unit cell 20; Connected to the low potential side terminal of the load 80 or the high potential side terminal which is the terminal (load side) opposite to the unit cell 20 of the charge / discharge circuit 30 corresponding to the positive terminal of the unit cell 20 adjacent in series. Load-side switching element 10 of the lower arm.

そして、各スイッチング素子6,7,9,10は、制御回路11によりスイッチング制御される。制御回路11は、電流センサA1又は電圧センサV2からこれらの検出値を取得し、必要に応じてMPU70に送信するとともに、これらの値に応じてMPU70により演算され設定されたこれらのパラメータ値と各センサの検出値が一致するようチョッパ回路1を制御する。   Each switching element 6, 7, 9, 10 is subjected to switching control by the control circuit 11. The control circuit 11 acquires these detected values from the current sensor A1 or the voltage sensor V2, transmits them to the MPU 70 as necessary, and calculates and sets the parameter values calculated and set by the MPU 70 according to these values. The chopper circuit 1 is controlled so that the detection values of the sensors match.

ここで、チョッパ回路1、二つの平滑コンデンサC1、C2および制御回路11は、本発明の充放電回路を構成しており、MPU70は本発明の制御部を構成している。   Here, the chopper circuit 1, the two smoothing capacitors C1 and C2, and the control circuit 11 constitute a charge / discharge circuit according to the present invention, and the MPU 70 constitutes a control unit according to the present invention.

以下、本実施の形態の動作について説明する。
まず、MPU70は、A/D変換回路60を介して検出した各単位セル20の電圧から各単位セル20の充電率(SOC)を推定する。そして、負荷を二次電池で駆動する放電時(放電モード)においては、MPU70は各単位セル20のSOCから最適な充放電回路30の出力電圧(負荷側出力)を求め、充放電回路30を構成する制御回路11に設定する。そして、N個の単位セル20のうちのi番目の単位セル20の充電率をSOCi、充放電回路30の負荷側の出力電圧(放電電圧)をV2i、負荷への供給電圧をVLとしたとき、
Hereinafter, the operation of the present embodiment will be described.
First, the MPU 70 estimates the charging rate (SOC) of each unit cell 20 from the voltage of each unit cell 20 detected via the A / D conversion circuit 60. During discharge (discharge mode) in which the load is driven by the secondary battery, the MPU 70 obtains the optimum output voltage (load side output) of the charge / discharge circuit 30 from the SOC of each unit cell 20, and sets the charge / discharge circuit 30. Set to the control circuit 11 to be configured. When the charging rate of the i-th unit cell 20 among the N unit cells 20 is SOCi, the output voltage (discharge voltage) on the load side of the charge / discharge circuit 30 is V2i, and the supply voltage to the load is VL. ,

VL=ΣV2i
V2i/VL=SOCi/ΣSOCi
VL = ΣV2i
V2i / VL = SOCi / ΣSOCi

が成立するようにV2iを求め、各充放電回路30の制御回路11にその放電電圧を設定する。そして、制御回路11は、各充放電回路30の放電電圧が設定された放電電圧となるようにスイッチング素子6,7,9,10を制御する。   V2i is calculated so that the above holds, and the discharge voltage is set in the control circuit 11 of each charge / discharge circuit 30. Then, the control circuit 11 controls the switching elements 6, 7, 9, and 10 so that the discharge voltage of each charge / discharge circuit 30 becomes the set discharge voltage.

かかる構成により、SOCの高い単位セル20に接続された充放電回路30の出力電圧がSOCの低い単位セル20よりも高く設定されるため、SOCの高い単位セル20が放電する電力の方がSOCの低い単位セル20が放電する電力よりも大きくなり、SOCのバラツキを小さくする方向に放電が行われる。   With this configuration, the output voltage of the charge / discharge circuit 30 connected to the unit cell 20 having a high SOC is set higher than that of the unit cell 20 having a low SOC, so that the power discharged from the unit cell 20 having a high SOC is more SOC. The unit cell 20 having a low value becomes larger than the electric power discharged, and the discharge is performed in the direction of reducing the variation in the SOC.

一方、負荷を発電機とした充電時(充電モード)では、MPU70は電流センサ90を介して全充電電流IGを検出する。そして、N個の単位セル20の充電率をSOCi(i=1〜N)とし、外部から供給される充電電圧をVG、各充放電回路30の電池側への充電電流をI1i、各単位セル20の電圧をV1i、充放電回路30の平均変換効率をη(%)とすると、   On the other hand, at the time of charging using the load as a generator (charging mode), the MPU 70 detects the total charging current IG via the current sensor 90. The charging rate of the N unit cells 20 is SOCi (i = 1 to N), the charging voltage supplied from the outside is VG, the charging current to the battery side of each charging / discharging circuit 30 is I1i, and each unit cell When the voltage of 20 is V1i and the average conversion efficiency of the charge / discharge circuit 30 is η (%),

VG×IG×η/100=Σ(V1i×I1i)
I1i/(ΣI1i/N)=2−SOCi/Σ(SOCi/N)
VG × IG × η / 100 = Σ (V1i × I1i)
I1i / (ΣI1i / N) = 2−SOCi / Σ (SOCi / N)

が成立するようにI1iを求め、各充放電回路30の制御回路11にその充電電流(I1i)を設定する。そして、制御回路11は、各単位セルへの充電電流が設定された充電電流となるようにスイッチング素子6,7,9,10を制御する。   I1i is obtained so that the following holds, and the charging current (I1i) is set in the control circuit 11 of each charge / discharge circuit 30. Then, the control circuit 11 controls the switching elements 6, 7, 9, and 10 so that the charging current to each unit cell becomes the set charging current.

かかる構成により、SOCの高い単位セル20に接続された充放電回路30の出力電流はSOCの低い単位セル20よりも低く設定されることとなり、SOCの低い単位セル20の充電電流の方がSOCの高い単位セルよりも大きくなり、SOCのバラツキを小さくする方向で充電が行われる。   With this configuration, the output current of the charge / discharge circuit 30 connected to the unit cell 20 having a high SOC is set lower than that of the unit cell 20 having a low SOC, and the charging current of the unit cell 20 having a low SOC is more SOC. The charging is performed in the direction of reducing the variation in SOC.

なお、MPU70は単位セルの電圧を常時又は適宜測定し、充電時に電圧が所定の値を超えた場合、或いは放電時に電圧が所定の値を下回ったときは、その単位セル20をユニットの直列回路から切り離すように充放電回路30の設定を行う。これは例えば充放電回路30のスイッチング素子6,7を断状態とすると共に、スイッチング素子9,10を導通状態とすることにより行うことができる。これにより、異常電圧となった単位セル20を保護することもできる。   The MPU 70 measures the voltage of the unit cell constantly or appropriately, and when the voltage exceeds a predetermined value during charging or when the voltage falls below a predetermined value during discharging, the unit cell 20 is connected to the series circuit of the unit. The charge / discharge circuit 30 is set so as to be disconnected from the battery. This can be performed, for example, by turning off the switching elements 6 and 7 of the charge / discharge circuit 30 and turning on the switching elements 9 and 10. As a result, the unit cell 20 having an abnormal voltage can be protected.

なお、図1では、単位セル20の電圧を測定するために、切替スイッチ40、差動アンプ50、A/D変換回路60をこの順に接続したが、本実施の形態の変形例1として、図3に示すように、差動アンプ50、切替スイッチ40、A/D変換回路60の順に接続するようにしてもよい。   In FIG. 1, the changeover switch 40, the differential amplifier 50, and the A / D conversion circuit 60 are connected in this order in order to measure the voltage of the unit cell 20, but as a first modification of the present embodiment, FIG. As shown in FIG. 3, the differential amplifier 50, the changeover switch 40, and the A / D conversion circuit 60 may be connected in this order.

さらに、変形例2として、図4に示すように、単位セル20の電圧を測定するために、各単位セル20毎にA/D変換回路60を設けるようにしても良い。   Furthermore, as a second modification, as shown in FIG. 4, an A / D conversion circuit 60 may be provided for each unit cell 20 in order to measure the voltage of the unit cell 20.

また、変形例3として、図5に示すように、単位セル20の温度を検出する温度センサTHを単位セル20ごとに設け、単位セル20の電圧と温度を測定して電池容量の温度変化を考慮したSOCの推定や、単位セル20の温度に対する保護を行うようにしても良い。例えば、単位セル20の温度が所定温度を超えた場合は、その単位セル20をユニットの直列回路から切り離して保護するようにすることができる。なお、温度センサTHの検出信号はA/D変換回路61を介してディジタル値としてMPU70に取り込まれる。   Further, as a third modification, as shown in FIG. 5, a temperature sensor TH that detects the temperature of the unit cell 20 is provided for each unit cell 20, and the voltage and temperature of the unit cell 20 are measured to change the temperature of the battery capacity. You may make it perform the estimation with respect to the SOC considered, and protection with respect to the temperature of the unit cell 20. FIG. For example, when the temperature of the unit cell 20 exceeds a predetermined temperature, the unit cell 20 can be protected from being disconnected from the series circuit of the unit. Note that the detection signal of the temperature sensor TH is taken into the MPU 70 as a digital value via the A / D conversion circuit 61.

1 チョッパ回路(充放電回路)、6,7,9,10 スイッチング素子、11 制御回路(制御部)、20 単位セル、30 充放電回路、40 スイッチ、50 差動アンプ、60,61 A/D変換回路、70 MPU(制御部)、80 負荷、C1,C2 平滑コンデンサ、TH 温度センサ、A1,90 電流センサ、V2 電圧センサ。   1 chopper circuit (charge / discharge circuit), 6, 7, 9, 10 switching element, 11 control circuit (control unit), 20 unit cell, 30 charge / discharge circuit, 40 switch, 50 differential amplifier, 60, 61 A / D Conversion circuit, 70 MPU (control unit), 80 load, C1, C2 smoothing capacitor, TH temperature sensor, A1, 90 current sensor, V2 voltage sensor.

Claims (6)

単位セルと充放電回路からなるユニットを直列接続して構成される二次電池であって、
各単位セルに対応して設けられ各単位セルから放電して所定の放電電圧を出力するか、または、各単位セルに対して所定の充電電流で充電を行う充放電回路と、
各単位セルの充電率を推定するとともに、該推定された充電率に基づいて、放電時は充電率の高い単位セルからの放電電力が充電率の低い単位セルからの放電電力よりも大きく、充電時は充電率の高い単位セルへの充電電力が充電率の低い単位セルへの充電電力よりも小さくなるように、前記充放電回路を動作させる制御部と
を備える二次電池。
A secondary battery configured by connecting units consisting of a unit cell and a charge / discharge circuit in series,
A charge / discharge circuit that is provided corresponding to each unit cell and discharges from each unit cell to output a predetermined discharge voltage, or charges each unit cell with a predetermined charging current,
In addition to estimating the charging rate of each unit cell, based on the estimated charging rate, the discharging power from the unit cell having a high charging rate is larger than the discharging power from the unit cell having a low charging rate during discharging. And a control unit that operates the charge / discharge circuit so that the charging power to the unit cell having a high charging rate is smaller than the charging power to the unit cell having a low charging rate.
前記制御部は、放電時において、N個の単位セルの充電率をSOCi(i=1〜N)とし、各充放電回路からの放電電圧をV2iとしたとき、
VL=ΣV2i
V2i/VL=SOCi/ΣSOCi
が成立するようにV2iを求め、各充放電回路の放電電圧を制御することを特徴とする請求項1に記載の二次電池。
The controller is configured such that, during discharging, the charging rate of N unit cells is SOCi (i = 1 to N), and the discharging voltage from each charging / discharging circuit is V2i.
VL = ΣV2i
V2i / VL = SOCi / ΣSOCi
2. The secondary battery according to claim 1, wherein V2i is calculated so as to hold and the discharge voltage of each charge / discharge circuit is controlled.
前記制御部は、充電時において、N個の単位セルの充電率をSOCi(i=1〜N)とし、外部から供給される充電電圧をVG、外部から供給される全充電電流をIG、各充放電回路の電池側への充電電流をI1i、各単位セルの電圧をV1i、充放電回路の平均変換効率をη(%)としたとき、
VG×IG×η/100=Σ(V1i×I1i)
I1i/(ΣI1i/N)=2−SOCi/(ΣSOCi/N)
が成立するI1iを求め、各充放電回路の充電電流I1iを制御することを特徴とする請求項1又は請求項2に記載の二次電池。
At the time of charging, the control unit sets the charging rate of the N unit cells to SOCi (i = 1 to N), the charging voltage supplied from the outside is VG, the total charging current supplied from the outside is IG, When the charging current to the battery side of the charging / discharging circuit is I1i, the voltage of each unit cell is V1i, and the average conversion efficiency of the charging / discharging circuit is η (%),
VG × IG × η / 100 = Σ (V1i × I1i)
I1i / (ΣI1i / N) = 2−SOCi / (ΣSOCi / N)
3. The secondary battery according to claim 1, wherein I1i that satisfies is obtained, and the charging current I1i of each charging / discharging circuit is controlled.
前記制御部は、各単位セルの電圧を監視し、所定の電圧範囲の外となった単位セルを複数のユニットからなる直列回路から切り離すことを特徴とする請求項1乃至請求項3のいずれかに記載の二次電池。   The said control part monitors the voltage of each unit cell, and isolate | separates the unit cell which became out of the predetermined voltage range from the series circuit which consists of a some unit, The one of Claim 1 thru | or 3 characterized by the above-mentioned. Secondary battery described in 1. 単位セルと充放電回路からなるユニットを複数個直列接続して構成される二次電池の充放電方法であって、
各単位セルの充電率を推定するとともに、該推定された充電率に基づいて、放電時は充電率の高い単位セルからの放電電力が充電率の低い単位セルからの放電電力よりも大きくなるように放電させ、充電時は充電率の高い単位セルへの充電電力が充電率の低い単位セルへの充電電力よりも小さくなるように、各単位セルを充電させるようにしたことを特徴とする
二次電池の充放電方法。
A charge / discharge method of a secondary battery configured by connecting a plurality of units each composed of a unit cell and a charge / discharge circuit in series,
In addition to estimating the charging rate of each unit cell, based on the estimated charging rate, the discharging power from the unit cell having a high charging rate is larger than the discharging power from the unit cell having a low charging rate during discharging. Each unit cell is charged so that the charging power to the unit cell with a high charging rate is smaller than the charging power to the unit cell with a low charging rate during charging. Secondary battery charge / discharge method.
各単位セルの電圧を監視し、所定の電圧範囲の外となった単位セルを複数のユニットからなる直列回路から切り離すことを特徴とする請求項5に記載の二次電池の充放電方法。   6. The method for charging and discharging a secondary battery according to claim 5, wherein the voltage of each unit cell is monitored, and the unit cell outside the predetermined voltage range is separated from the series circuit composed of a plurality of units.
JP2009199937A 2009-08-31 2009-08-31 Secondary cell and method for charging and discharging the same Pending JP2011055592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199937A JP2011055592A (en) 2009-08-31 2009-08-31 Secondary cell and method for charging and discharging the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199937A JP2011055592A (en) 2009-08-31 2009-08-31 Secondary cell and method for charging and discharging the same

Publications (1)

Publication Number Publication Date
JP2011055592A true JP2011055592A (en) 2011-03-17

Family

ID=43944024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199937A Pending JP2011055592A (en) 2009-08-31 2009-08-31 Secondary cell and method for charging and discharging the same

Country Status (1)

Country Link
JP (1) JP2011055592A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099093A (en) * 2011-10-31 2013-05-20 Sumitomo Electric Ind Ltd Power supply apparatus
WO2013118271A1 (en) 2012-02-09 2013-08-15 三菱電機株式会社 Parallel accumulator system and method of control thereof
WO2018133362A1 (en) * 2017-01-17 2018-07-26 上海蔚来汽车有限公司 Method for balancing socs of multiple batteries in charging facility
US10476280B2 (en) 2016-03-31 2019-11-12 Gs Yuasa International Ltd. Energy storage management device deciding charge voltage based on difference in charge amount or voltage difference between energy storage devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099093A (en) * 2011-10-31 2013-05-20 Sumitomo Electric Ind Ltd Power supply apparatus
WO2013118271A1 (en) 2012-02-09 2013-08-15 三菱電機株式会社 Parallel accumulator system and method of control thereof
KR20140127858A (en) 2012-02-09 2014-11-04 미쓰비시덴키 가부시키가이샤 Parallel accumulator system and method of control thereof
US9543767B2 (en) 2012-02-09 2017-01-10 Mitsubishi Electric Corporation Parallel electricity-storage system and control method thereof
US10476280B2 (en) 2016-03-31 2019-11-12 Gs Yuasa International Ltd. Energy storage management device deciding charge voltage based on difference in charge amount or voltage difference between energy storage devices
WO2018133362A1 (en) * 2017-01-17 2018-07-26 上海蔚来汽车有限公司 Method for balancing socs of multiple batteries in charging facility

Similar Documents

Publication Publication Date Title
JP6571268B2 (en) Battery monitoring apparatus and method
US9128138B2 (en) Electrical storage system
EP2357714B1 (en) Voltage equalization device and method
US20120176095A1 (en) Electric power management system
KR100885291B1 (en) Electric charger
US20130187611A1 (en) Cell voltage equalizer for multi-cell battery pack
EP2717415A1 (en) Electricity storage system
JP2013078242A (en) Electric power supply device
US9705350B2 (en) Power storage system, power storage control device, and power storage control method
JP5974849B2 (en) Battery monitoring device
TWI631789B (en) Charge/discharge control circuit and battery device
JP6370137B2 (en) Charge / discharge control circuit and battery device
JP6439866B2 (en) Power storage device and connection control method
JP2008189065A (en) Electric source device for vehicle
JP2014087132A (en) Power storage system
JP2016119788A (en) Battery system
JP5314626B2 (en) Power supply system, discharge control method, and discharge control program
JP2011055592A (en) Secondary cell and method for charging and discharging the same
JP2010038592A (en) Battery pack
EP2621053A1 (en) Rechargeable electric apparatus
WO2017043109A1 (en) Storage battery device and storage battery system
JP2022145199A (en) Storage battery management device and storage battery management method
JP2008220021A (en) Charging device
JP2008054412A (en) Charge/discharge control circuit and charging-type power supply device
JP2014158345A (en) Voltage monitoring apparatus for battery pack