WO2024101330A1 - 蛍光体、および発光装置 - Google Patents

蛍光体、および発光装置 Download PDF

Info

Publication number
WO2024101330A1
WO2024101330A1 PCT/JP2023/039968 JP2023039968W WO2024101330A1 WO 2024101330 A1 WO2024101330 A1 WO 2024101330A1 JP 2023039968 W JP2023039968 W JP 2023039968W WO 2024101330 A1 WO2024101330 A1 WO 2024101330A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
measured
less
heating
Prior art date
Application number
PCT/JP2023/039968
Other languages
English (en)
French (fr)
Inventor
秀幸 江本
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2024101330A1 publication Critical patent/WO2024101330A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a phosphor and a light-emitting device.
  • a phosphor is usually used as a wavelength conversion material for obtaining white light from blue light emitted from a blue LED.
  • white LEDs Light Emitting Diode
  • phosphors capable of converting blue light into light with a longer wavelength is ongoing.
  • Patent Document 1 describes a phosphor represented by the general formula M x (Si,Al) 2 (N,O) 3 ⁇ y (wherein M is Li and one or more alkaline earth metal elements, 0.52 ⁇ x ⁇ 0.9, 0.06 ⁇ y ⁇ 0.23), in which M is partly substituted with Ce element, the Si/Al atomic ratio is 1.5 or more and 6 or less, the O/N atomic ratio is 0 or more and 0.1 or less, 5 to 50 mol % of M is Li, and 0.5 to 10 mol % of M is Ce.
  • M is Li and one or more alkaline earth metal elements, 0.52 ⁇ x ⁇ 0.9, 0.06 ⁇ y ⁇ 0.23
  • M is partly substituted with Ce element
  • the Si/Al atomic ratio is 1.5 or more and 6 or less
  • the O/N atomic ratio is 0 or more and 0.1 or less
  • 5 to 50 mol % of M is Li
  • 0.5 to 10 mol % of M is Ce.
  • the inventors conducted this study with the aim of providing a phosphor that can suppress the deterioration of its fluorescent properties when used in a high-temperature environment.
  • the phosphor is filled in a quartz petri dish and set on a cooling and heating stage for a microscope that allows irradiation with excitation light and measurement of the emission intensity of the phosphor.
  • the phosphor is held in air at 30° C. for 5 minutes, then irradiated with excitation light having a wavelength of 455 nm, and the integrated emission intensity of the phosphor is measured.
  • the temperature is increased at a rate of 100° C./min, held at 300° C. for 10 minutes, the emission intensity is measured, heating is turned off, the phosphor is cooled to 30° C., held for 15 minutes, and the emission intensity is measured again.
  • the rate of change in fluorescence intensity before and after heating and cooling is calculated using the formula (100% - EI 30 ).
  • the phosphor according to 1. A phosphor, wherein when the luminescence intensity (%) of the phosphor measured at 300°C after heating and before cooling according to the above procedure is taken as the fluorescence intensity maintenance rate, the fluorescence intensity maintenance rate at 300°C is 69.0% or more. 3.
  • the phosphor according to 1 or 2 A phosphor in which, when the diffuse reflectance spectrum of the phosphor is measured in the wavelength range of 500 to 850 nm, the difference X1-X2 between the diffuse reflectance X1 for light with a wavelength of 700 nm and the diffuse reflectance X2 for light with a fluorescence peak wavelength when irradiated with excitation light of 455 nm is 3.0% or less. 4.
  • the phosphor according to any one of 1. to 5. A phosphor having a half-width of a fluorescence peak of 130 nm or more and 142 nm or less when irradiated with an excitation light of 455 nm. 7.
  • a light emitting device comprising the phosphor according to any one of 1. to 8. and a light source.
  • the present invention provides a phosphor that can suppress the deterioration of its fluorescent properties when used in a high-temperature environment, and a light-emitting device that uses the phosphor.
  • FIG. 1 is a schematic cross-sectional view showing an example of the structure of a light-emitting device.
  • X to Y in the explanation of a numerical range means from X to Y, unless otherwise specified.
  • X to Y in the explanation of a numerical range means from X to Y, unless otherwise specified.
  • 1 to 5% by mass means "1% by mass to 5% by mass.”
  • M is Li and one or more alkaline earth metal elements, 0.52 ⁇ x ⁇ 0.90, 0 ⁇ y ⁇ 0.36, a part of M is substituted with Ce element, and 2 mol % or more and 5 mol % or less of M is Ce.
  • the phosphor of this embodiment is also configured so that the rate of change in fluorescence intensity before and after heating and cooling, measured according to the following procedure, satisfies 3.9% or less.
  • the phosphor is filled in a quartz petri dish and set on a cooling and heating stage for a microscope that allows irradiation with excitation light and measurement of the emission intensity of the phosphor. First, the phosphor is held in air at 30° C. for 5 minutes, then irradiated with excitation light having a wavelength of 455 nm, and the integrated emission intensity of the phosphor is measured. Then, the temperature is increased at a rate of 100° C./min, held at 300° C.
  • the emission intensity is measured, heating is turned off, the phosphor is cooled to 30° C., held for 15 minutes, and the emission intensity is measured again.
  • the initial integrated luminescence intensity measured at 30°C before heating and cooling is taken as 100%, and the luminescence intensity (%) measured at 30°C after heating and cooling is taken as EI 30 , the rate of change in fluorescence intensity before and after heating and cooling is calculated using the formula (100% - EI 30 ).
  • the phosphor of this embodiment differs from the phosphor described in Patent Document 1 at least in that the rate of change in fluorescence intensity before and after heating and cooling is 3.9% or less.
  • the phosphor of this embodiment is superior to the phosphor described in Patent Document 1 in terms of, for example, internal quantum efficiency when used in a high-temperature environment, and therefore efficiently converts blue light into long-wavelength light.
  • the phosphor of this embodiment can be manufactured by using appropriate materials and by selecting appropriate manufacturing methods and conditions.
  • An example of an "appropriate manufacturing method and conditions” is subjecting the phosphor to an annealing treatment. Details of the manufacturing method and conditions will be described later.
  • the skeletal structure of the phosphor crystal of this embodiment is composed of (Si,Al)-(N,O) 4 regular tetrahedrons bonded together, with the M element located in the gap.
  • the composition of the above general formula is valid in a wide range in which electrical neutrality is maintained by the overall parameters of the valence and amount of the M element, the Si/Al ratio, and the N/O ratio.
  • the crystal structure of the phosphor of this embodiment is usually based on CaAlSiN 3 crystals.
  • M element is a combination of Li element and alkaline earth metal element, and a part of it is replaced with Ce element which is the luminescence center.
  • Li element the average valence of M element can be widely controlled by combination with divalent alkaline earth element and trivalent Ce element.
  • the ionic radius of Li + is very small, and the crystal size can be changed greatly depending on the amount, and various fluorescent emission can be obtained.
  • the coefficient x of the M element in the above general formula is 0.52 to 0.90, preferably 0.60 to 0.90, more preferably 0.70 to 0.90.
  • the coefficient x exceeds 0.90, that is, when it approaches CaAlSiN3 crystal, the fluorescence intensity tends to decrease, and when the coefficient x is smaller than 0.52, a large amount of a different phase other than the target crystal phase is generated, so that the fluorescence intensity tends to decrease significantly.
  • the coefficient y of (N, O) in the above general formula is preferably 0 or more and 0.36 or less, more preferably 0 or more and 0.30 or less, and even more preferably 0 or more and 0.23 or less. This increases the fluorescence intensity.
  • the O/N atomic ratio (molar ratio) is 0 or more and 0.1 or less, preferably 0.01 or more and 0.08 or less, and more preferably 0.02 or more and 0.07 or less. If the O/N atomic ratio is too large, the amount of heterophase generated increases, the luminous efficiency decreases, and the covalent bonding of the crystal decreases, which tends to cause deterioration of temperature characteristics (decreased brightness at high temperatures).
  • the Si/Al atomic ratio (molar ratio) is usually determined by the average valence and amount of the M element and the O/N atomic ratio being within a certain range.
  • the Si/Al atomic ratio is 1.5 to 6, preferably 2 to 4, and more preferably 2.5 to 4.
  • the Li content in the phosphor is 5 to 50 mol %, preferably 15 to 49 mol %, and more preferably 25 to 48 mol % of the element M.
  • the effect of Li is easily exhibited at 5 mol % or more, but if it exceeds 50 mol %, the intended crystal structure of the phosphor cannot be maintained and a different phase is generated, which tends to reduce the luminous efficiency.
  • the "Li content” refers to the Li content in the final phosphor, not the amount based on the raw material blend.
  • the Li compounds used as raw materials have high vapor pressure and are easily volatilized, and when attempting to synthesize nitrides and oxynitrides at high temperatures, a considerable amount of them volatilize. In other words, the Li content based on the raw material blend is significantly different from the content in the final product, so it does not refer to the Li content in the phosphor.
  • the content of Ce which is the luminescent center of the phosphor, is too low, its contribution to luminescence tends to be small, and if it is too high, concentration quenching of the phosphor due to energy transfer between Ce 3+ tends to occur. Therefore, the content of Ce is 2 to 5 mol %, preferably 2.5 to 5 mol %, of the M element.
  • the alkaline earth metal element used as the M element in the above general formula may be any element, but when Ca is used, high fluorescence intensity is obtained and the crystal structure is stabilized over a wide composition range. Therefore, it is preferable that the M element is Ca. It may also be a combination of multiple alkaline earth metal elements, for example, some of the Ca elements may be replaced with Sr elements.
  • the crystal structure of the phosphor is an orthorhombic system, and may be the same structure as the CaAlSiN3 crystal described above.
  • the crystal phase present in the phosphor is preferably the above-mentioned single crystal phase.
  • the phosphor may contain a different phase as long as it does not significantly affect the fluorescent properties.
  • Examples of different phases that have a low effect on the fluorescent properties when excited by blue light include ⁇ -sialon, AlN, LiSi 2 N 3 , and LiAlSi 2 N 4 .
  • the amount of different phase is preferably such that the diffraction intensity of the other crystal phase is 40% or less of the strongest diffraction intensity of the above-mentioned crystal phase when evaluated by powder X-ray diffraction method.
  • the phosphor of this embodiment is excited by light in a wide wavelength range from ultraviolet to visible light. For example, when irradiated with blue light having a wavelength of 455 nm, it may emit orange fluorescent light with a peak wavelength of 580 to 610 nm and a broad fluorescence spectrum with a half-width of 130 to 142 nm. Such a phosphor is suitable for use in a wide range of light emitting devices.
  • the phosphor of this embodiment has excellent heat resistance and chemical stability, and exhibits little decrease in luminance due to temperature rise, similar to conventional nitride/oxynitride phosphors such as CaAlSiN3 . Such characteristics are particularly suitable for applications requiring durability.
  • the fluorescent intensity change rate of the phosphor powder of this embodiment before and after heating and cooling is 3.9% or less, preferably 0.1% to 3.5%, more preferably 0.1% to 3.0%. This makes it possible to suppress the deterioration of fluorescent properties (e.g., internal quantum efficiency) when used in a high-temperature environment. In addition, the external quantum efficiency can be improved while increasing the Ce concentration in the phosphor.
  • the fluorescent intensity maintenance rate of the phosphor of this embodiment at 300° C. relative to that at 30° C. is preferably 69.0% or more, more preferably 69.5% to 95%, and particularly preferably 70.0% to 85%. This makes it possible to suppress the deterioration of fluorescent properties when used in a high-temperature environment.
  • the fluorescence intensity maintenance rate at 300° C. is defined as the emission intensity (%) of the phosphor measured at 300° C. after heating and before cooling according to the above procedure.
  • the fluorescence intensity maintenance rate at 300° C. can also be used as an index of high-temperature fluorescence properties.
  • the diffuse reflectance X1 of the phosphor of this embodiment for light with a wavelength of 700 nm is preferably 89% or more and 98% or less, more preferably 91% or more and 98% or less, and particularly preferably 92% or more and 98% or less.
  • X1 is within such a numerical range, the luminous intensity tends to be increased.
  • the diffuse reflectance X2 of the phosphor of this embodiment for light of the fluorescent peak wavelength is preferably 88% or more and 97% or less, more preferably 90% or more and 97% or less, and particularly preferably 91% or more and 97% or less.
  • X2 is within such a numerical range, the luminous intensity tends to be increased.
  • the difference between X2 and X1 is preferably 3.0% or less, more preferably 2.0% or less, and particularly preferably 0.1% to 1.8%. This further improves the properties of the phosphor.
  • the difference between X3 and X1 is preferably 0.1% to 1.4%, more preferably 0.1% to 1.0%, and particularly preferably 0.1% to 0.8%. This further improves the properties of the phosphor.
  • the volume-based cumulative 50% diameter D50 (so-called median diameter) of the phosphor of this embodiment measured by a laser diffraction scattering method is preferably 8 ⁇ m or more and 25 ⁇ m or less, more preferably 10 ⁇ m or more and 20 ⁇ m or less, and even more preferably 12 ⁇ m or more and 20 ⁇ m or less.
  • the volume-based cumulative 10% diameter D10 of the phosphor of this embodiment measured by a laser diffraction scattering method is preferably 2 ⁇ m or more and 15 ⁇ m or less, more preferably 5 ⁇ m or more and 12 ⁇ m or less.
  • a relatively large value of D10 corresponds to a relatively small amount of fine powder (too fine phosphor particles that tend to reduce the blue light conversion efficiency) in the phosphor. Therefore, a relatively large value of D10 tends to increase the blue light conversion efficiency.
  • the volume-based cumulative 90% diameter D90 of the phosphor of this embodiment measured by a laser diffraction scattering method is preferably 15 ⁇ m or more and 50 ⁇ m or less, more preferably 18 ⁇ m or more and 40 ⁇ m or less.
  • a D90 that is not too large corresponds to a small amount of coarse particles in the phosphor.
  • a phosphor with a D90 that is not too large is effective in reducing chromaticity variation of a light-emitting device.
  • the light absorptance A 700 of the phosphor of this embodiment at a wavelength of 700 nm is preferably 1% or more and 10% or less, more preferably 2% or more and 9% or less, and particularly preferably 3% or more and 9% or less, thereby improving the internal quantum efficiency.
  • the light absorptance A 600 of the phosphor of this embodiment at a wavelength of 600 nm is preferably 1% or more and 13% or less, more preferably 2% or more and 12% or less, and even more preferably 3% or more and 11% or less. It is considered that the fluorescent properties are further improved when A 600 is not too large.
  • the internal quantum efficiency value of the phosphor of this embodiment with respect to excitation light of 455 nm is preferably 80% or more.
  • the external quantum efficiency value of the phosphor of this embodiment with respect to excitation light of 455 nm is preferably 70% or more.
  • the phosphor of this embodiment can be manufactured, for example, by a series of steps including the following (1) to (4).
  • the manufacturing process of the phosphor preferably includes an annealing treatment step (4).
  • Step of Preparing Raw Material Mixture Powder In the step of preparing the raw material mixture powder, usually, appropriate raw material powders are mixed to obtain the raw material mixture powder.
  • the raw material powder nitrides of the constituent elements, i.e., silicon nitride, aluminum nitride, lithium nitride, cerium nitride, and nitrides of alkaline earth elements (e.g., calcium nitride) are preferably used.
  • nitride powders are unstable in air, and the particle surfaces are covered with an oxide layer, so that even when a nitride raw material is used, a certain amount of oxide is ultimately contained in the raw material.
  • a part of the nitride may be made into an oxide (including a compound that becomes an oxide by heat treatment).
  • An example of an oxide is cerium oxide.
  • lithium compounds tend to volatilize significantly when heated, and depending on the sintering conditions, most of the compound may volatilize. Therefore, it is preferable to determine the amount of lithium compound to be mixed in accordance with the sintering conditions, taking into account the amount of volatilization during the sintering process.
  • nitride raw material powders lithium nitride, cerium nitride, and nitrides of alkaline earth elements react violently with moisture in the air, so it is preferable to handle these in a glove box substituted with an inert atmosphere. From the viewpoint of operational efficiency, it is preferable to (i) first weigh out predetermined amounts of silicon nitride, aluminum nitride and various oxide raw material powders that can be handled in air, and thoroughly mix them in advance in air to prepare a premixed powder, and (ii) then mix the premixed powder with a substance that easily reacts with moisture, such as lithium nitride, in a glove box to prepare the raw material mixed powder.
  • Raw Material Mixture Preparation Step is filled into an appropriate container and heated using a firing furnace or the like.
  • the firing temperature is preferably 1600 to 2000° C., more preferably 1700 to 1900° C., from the viewpoints of sufficiently promoting the reaction and suppressing the volatilization of lithium.
  • the baking time is preferably from 2 to 24 hours, more preferably from 4 to 16 hours, from the viewpoint of sufficiently promoting the reaction and suppressing the volatilization of lithium.
  • the firing step is preferably carried out under a nitrogen atmosphere. It is also preferable to appropriately adjust the pressure of the firing atmosphere. Specifically, the pressure of the firing atmosphere is preferably 0.5 MPa ⁇ G or more. When the firing temperature is particularly 1800° C. or more, the phosphor tends to decompose, but by increasing the pressure of the firing atmosphere, the decomposition of the phosphor can be suppressed. In consideration of industrial productivity, the pressure of the firing atmosphere is preferably less than 1 MPa ⁇ G.
  • the container for filling the raw material mixture powder is preferably made of a material that is stable in a high-temperature nitrogen atmosphere and does not react with the raw material mixture powder or its reaction products.
  • the material of the container is preferably boron nitride.
  • annealing treatment a predetermined amount of phosphor is placed in a crucible, and the phosphor is heated in a baking furnace in an atmosphere of reducing gas containing hydrogen gas at a predetermined temperature for a predetermined time.
  • the annealing temperature is lower than the above-mentioned firing temperature, and is preferably about 700 to 1200° C.
  • the annealing time is appropriately set according to the annealing temperature.
  • the atmosphere during annealing is preferably one having reducing properties, for example, one containing about 4 volume % of hydrogen gas (reducing gas) in nitrogen gas (inert gas).
  • an open crucible and to have a low loading of phosphor in the crucible, which allows for sufficient contact between the reducing gas atmosphere and the phosphor surface during the annealing process. It is preferable to use a dense crucible made of alumina, which can prevent the components contained in the furnace from reacting with the crucible, thereby preventing unintended changes in the atmospheric environment. Although the detailed mechanism is unclear, it is believed that the surface of such a phosphor can be appropriately modified by an annealing treatment in which the phosphor is heated in an open system at a relatively low temperature in a reducing gas atmosphere.
  • a light emitting device can be obtained by combining the phosphor of this embodiment with a light source.
  • the luminescent light source typically emits ultraviolet or visible light.
  • the luminescent light source is a blue LED
  • the blue light emitted from the luminescent light source hits the phosphor, and the blue light is converted into light with a longer wavelength. That is, the phosphor of the present embodiment can be used as a wavelength conversion material that converts blue light into light with a longer wavelength.
  • the light emitting device 100 includes a light emitting element 120 (light emitting source), a heat sink 130, a case 140, a first lead frame 150, a second lead frame 160, a bonding wire 170, a bonding wire 172, and a composite body 40.
  • the light-emitting element 120 is a semiconductor element that emits excitation light.
  • the semiconductor element can be either a light-emitting diode (LED) or a light-emitting element (LD) equipped with a resonator.
  • LED light-emitting diode
  • LD light-emitting element
  • As the light-emitting element 120 for example, an LED chip that emits light with a wavelength of 300 nm or more and 500 nm or less, which corresponds to near-ultraviolet to blue light, can be used.
  • the light emitting element 120 is mounted in a predetermined region on the upper surface of the heat sink 130. By mounting the light emitting element 120 on the heat sink 130, it is possible to improve the heat dissipation properties of the light emitting element 120. Note that a packaging substrate may be used instead of the heat sink 130.
  • One electrode (not shown) disposed on the upper surface side of the light emitting element 120 is connected to the surface of the first lead frame 150 via a bonding wire 170 such as a gold wire.
  • the other electrode (not shown) formed on the upper surface of the light emitting element 120 is connected to the surface of the second lead frame 160 via a bonding wire 172 such as a gold wire.
  • the case 140 has a generally funnel-shaped recess whose diameter gradually increases from the bottom surface upward.
  • the light-emitting element 120 is provided on the bottom surface of the recess.
  • the wall surface of the recess surrounding the light-emitting element 120 acts as a reflector.
  • the composite 40 is filled in the recess whose wall is formed by the case 140.
  • the composite 40 is a wavelength conversion member that converts the excitation light emitted from the light emitting element 120 into light with a longer wavelength.
  • the composite 40 is obtained by dispersing at least the phosphor of this embodiment in an encapsulant 30 such as a resin. In order to obtain white light of higher quality, the encapsulant 30 may contain not only the phosphor of this embodiment but also other phosphors.
  • the light emitting device 100 emits a mixed color of light from the light emitting element 120 and light emitted from the phosphor particles 1 that are excited by absorbing the light emitted from the light emitting element 120. It is preferable that the light emitting device 100 emits white light by mixing the light from the light emitting element 120 and the light generated from the phosphor particles 1.
  • FIG. 1 shows a surface-mounted light-emitting device as an example
  • the light-emitting device is not limited to the surface-mounted type, and may be a bullet type, a COB (chip-on-board) type, or a CSP (chip-scale package) type.
  • the light-emitting device can be used in image display devices such as displays, and lighting devices.
  • a liquid crystal display can be manufactured using the light-emitting device 100 as a backlight.
  • a lighting device can also be manufactured using one or more light-emitting devices 100 with appropriate wiring.
  • the raw material mixed powder was filled into a boron nitride container.
  • the container was placed in a furnace, and the raw material mixed powder was sintered at 1800°C for 8 hours under a N2 atmosphere of 0.72 MPa ⁇ G.
  • Examples 1 and 2 and Comparative Example 2 The phosphor powder obtained in Comparative Example 1 was subjected to an annealing treatment under the conditions shown in Table 1 to obtain a phosphor powder.
  • the annealing treatment was carried out by filling a predetermined sample amount of phosphor powder into an alumina crucible (without a lid) according to the conditions shown in Table 1, and heating the phosphor powder filled in the crucible at a predetermined maximum temperature (wherein the temperature was increased from room temperature to the maximum temperature at a rate of 3°C/min) for a predetermined time in a predetermined firing furnace under a predetermined atmosphere shown in Table 1.
  • the phosphor powder was cooled from the maximum temperature to 500°C at about 1.3°C/min, cooled from 500°C to 300°C at about 1.1/°Cmin, and cooled in the furnace after 300°C.
  • the amount of sample was increased and the heating temperature was set higher than in Example 1.
  • an atmosphere filled with N2 gas without containing H2 gas was used.
  • a mixed gas of N2 gas and a predetermined amount of H2 gas was introduced at atmospheric pressure flow to fill the atmosphere.
  • Example 3 The phosphor powder obtained in Comparative Example 4 was subjected to an annealing treatment under the conditions shown in Table 1 to obtain a phosphor powder.
  • composition of some of the phosphor powders was analyzed as follows. Amounts of Ca, Li, Ce, Si and Al: The phosphor powder was dissolved by an alkali fusion method, and then the amounts were measured using an ICP emission spectrometer (5110VDV manufactured by Agilent). Amounts of O and N: Measured with an oxygen/nitrogen analyzer (HORIBA, EMGA-920). Based on the measurement results, x, y, the Si/Al atomic ratio, the O/N atomic ratio, the Li ratio of M, and the Ce ratio of M in the general formula Mx (Si,Al) 2 ( N,O)3 ⁇ y were determined.
  • XRD powder X-ray diffraction
  • the diffuse reflectance was measured using an ultraviolet-visible spectrophotometer (V-550) manufactured by JASCO Corporation equipped with an integrating sphere device (ISV-469). During the measurement, baseline correction was performed using a standard reflector (Spectralon). The solid sample holder filled with the phosphor powder was attached to a predetermined position in the apparatus, and the diffuse reflectance spectrum was measured in the wavelength range of 500 to 850 nm, and the diffuse reflectance was determined for light with wavelengths of 600 nm, 700 nm, and 800 nm, as well as for light with the fluorescent peak wavelength of the phosphor powder (described below).
  • the particle size distribution was measured by a laser diffraction scattering method in accordance with JIS R 1629: 1997 using an LS13 320 (manufactured by Beckman Coulter, Inc.) Water was used as the measurement solvent. Specifically, a small amount of phosphor powder was added to an aqueous solution containing 0.05% by mass of sodium hexametaphosphate as a dispersant. A dispersion was then prepared by dispersing the powder using a horn-type ultrasonic homogenizer (output: 300 W, horn diameter: 26 mm). An appropriate amount of this dispersion was added to a measurement solvent to measure the particle size distribution. From the obtained cumulative volume frequency distribution curve, the 10% volume diameter (D 10 ), 50% volume diameter (D 50 ), and 90% volume diameter (D 90 ) were obtained.
  • the fluorescence spectrum of the phosphor powder was measured using a spectrofluorophotometer (Hitachi High-Tech Science Corporation, F-7000) corrected with Rhodamine B and a secondary standard light source. Specifically, the spectrum of the fluorescence emitted by exciting the phosphor powder with monochromatic light of a wavelength of 455 nm was measured, and the fluorescence peak wavelength (nm) and the half-width (nm) at the fluorescence peak were obtained.
  • the internal quantum efficiency and external quantum efficiency of each phosphor powder were determined using a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.) according to the following procedure.
  • MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.
  • the phosphor powder was filled into the recess of the concave cell so that the surface was smooth.
  • This concave cell was attached to a predetermined position (sample part) in the integrating sphere.
  • Monochromatic light which was split into a wavelength of 455 nm from a light emission source (Xe lamp), was introduced into the integrating sphere using an optical fiber.
  • This monochromatic light (excitation light) was irradiated onto the phosphor powder filled in the recess of the concave cell, and the fluorescence spectrum was measured. From the obtained spectral data, the number of excitation reflected light photons (Qref) and the number of fluorescent photons (Qem) were calculated. The number of excitation reflected light photons was calculated in the wavelength range of 450 nm to 465 nm, and the number of fluorescent photons was calculated in the wavelength range of 465 nm to 800 nm.
  • the obtained phosphor powder was filled in a quartz petri dish and set on a cooling and heating stage for a microscope installed in a dark box where the excitation light irradiation and the emission intensity of the phosphor powder can be measured.
  • the excitation light was irradiated from above using an optical fiber, and the emission spectrum at a position 45° to the excitation light was measured using a spectrophotometer (MCPD-7000) via the optical fiber.
  • MCPD-7000 spectrophotometer
  • the phosphor powder was irradiated with excitation light having a wavelength of 455 nm, and the integrated emission intensity (wavelength range 465 to 800 nm) of the phosphor powder was measured.
  • the temperature was increased at 100°C/min, held at 300°C for 10 minutes, the emission intensity was measured, heating was turned off, and the material was cooled to 30°C and held for 15 minutes, after which the emission intensity was measured again.
  • the initial integrated luminescence intensity measured at 30°C before heating and cooling was taken as 100%
  • the luminescence intensity (%) measured at 30°C after heating and cooling was taken as EI 30
  • the rate of change in fluorescence intensity before and after heating and cooling was calculated by the formula (100% - EI 30 ).
  • the emission intensity (%) of the phosphor powder measured at 300°C after heating and before cooling was taken as the fluorescence intensity maintenance rate at 300°C.
  • the number of photons (Qex) of the excitation light was calculated in the wavelength range of 595 to 610 nm.
  • the number of excited reflected photons (Qref) of the sample was calculated in the same manner as in (1) except that the standard reflector was replaced with a measurement sample.
  • the measurement sample was a phosphor powder filled in the recess of a concave cell so that the surface was smooth.
  • the light absorptance A 600 at a wavelength of 600 nm was calculated using the formula (Qex-Qref)/Qex (3).
  • the number of photons (Qex) of the excitation light was calculated in the wavelength range of 695 to 710 nm.
  • the number of excited reflected photons (Qref) of the sample was calculated in the same manner as in (1) except that the standard reflector was replaced with a measurement sample.
  • the measurement sample was a phosphor powder filled in the recess of a concave cell so that the surface was smooth.
  • the light absorptance A 700 at a wavelength of 700 nm was calculated using the formula (Qex-Qref)/Qex (3).
  • the phosphors of Examples 1 to 3 represented by the general formula M x (Si,Al) 2 (N,O) 3 ⁇ y showed superior luminescence characteristics (internal quantum efficiency) after the heating test (accelerated test) compared to Comparative Examples 1, 2, and 4.
  • the internal quantum efficiency and the diffuse reflectance at 600 nm were significantly decreased compared to before the annealing treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本発明の蛍光体は、一般式Mx(Si,Al)2(N,O)3±y(ただし、MはLi及び一種以上のアルカリ土類金属元素であり、0.52≦x≦0.90、0≦y≦0.36)で示され、Mの一部がCe元素で置換されている蛍光体であって、Mの2mol%以上5mol%以下がCeであり、所定手順に従って測定される、加熱冷却前後における蛍光強度変化率が3.9%以下を満たすものである。

Description

蛍光体、および発光装置
 本発明は、蛍光体、および発光装置に関する。
 白色LED(Light Emitting Diode)を製造するために、通常、蛍光体が用いられる。すなわち、青色LEDから発せられる青色光から白色光を得るための波長変換材料として、蛍光体が用いられる。
 照明用途での白色LEDの普及や、画像表示装置への白色LEDの適用検討などに伴い、青色光をより長波長の光に変換可能な蛍光体の開発が継続されている。
 このような蛍光体の1つとして、例えば、特許文献1には、一般式M(Si,Al)(N,O)3±y(ただし、MはLi及び一種以上のアルカリ土類金属元素であり、0.52≦x≦0.9、0.06≦y≦0.23)で示され、Mの一部がCe元素で置換されている蛍光体であって、Si/Al原子比が1.5以上6以下であり、かつO/N原子比が0以上0.1以下であり、Mの5~50mol%がLiであり、Mの0.5~10mol%がCeである蛍光体が記載されている。
特許第5969391号公報
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の蛍光体において、高温環境使用時における蛍光特性の低下の点で改善の余地があることが判明した。
 本発明者は、高温環境使用時における蛍光特性の低下を抑制できる蛍光体を提供することを目的の1つとして、今回、検討を行った。
 本発明者らは、検討の結果、以下に提供される発明を完成させた。
 本発明の一態様によれば、以下の蛍光体、および発光装置が提供される。
1. 一般式M(Si,Al)(N,O)3±y(ただし、MはLi及び一種以上のアルカリ土類金属元素であり、0.52≦x≦0.90、0≦y≦0.36)で示され、Mの一部がCe元素で置換されている蛍光体であって、
 Mの2mol%以上5mol%以下がCeであり、
 下記の手順に従って測定される、加熱冷却前後における蛍光強度変化率が3.9%以下である、蛍光体。
(手順)
 石英製シャーレに当該蛍光体を充填し、励起光照射と当該蛍光体の発光強度とが測定可能な顕微鏡用冷却加熱ステージにセットする。
 まず大気中、30℃で5分保持した後、波長455nmの励起光を照射し、当該蛍光体の積分発光強度を測定する。その後、100℃/分で昇温し、300℃で10分保持し、発光強度を測定し、加熱をOFFにして、30℃まで冷却し、15分保持した後、再び発光強度を測定する。
 加熱冷却前に30℃で測定した最初の積分発光強度を100%とした時に、加熱冷却後に30℃で測定した発光強度(%)をEI30としたとき、式(100%-EI30)により加熱冷却前後における蛍光強度変化率を算出する。
2. 1.に記載の蛍光体であって、
 前記手順に従って測定される、加熱後冷却前に300℃で測定したときの当該蛍光体の発光強度(%)を蛍光強度維持率としたとき、300℃における前記蛍光強度維持率が69.0%以上である、蛍光体。
3. 1.又は2.に記載の蛍光体であって、
 500~850nmの波長範囲で当該蛍光体の拡散反射率スペクトルを測定したとき、波長700nmの光に対する拡散反射率X1と、455nmの励起光を照射したときの蛍光ピーク波長の光に対する拡散反射率X2と、の差分X1-X2が、3.0%以下である蛍光体。
4. 1.~3.のいずれか一つに記載の蛍光体であって、
 455nmの励起光を照射したときの蛍光ピーク波長の光に対する拡散反射率X2が、88%以上97%以下である蛍光体。
5. 1.~4.のいずれか一つに記載の蛍光体であって、
 455nmの励起光を照射したときの蛍光ピークの波長が、580nm以上610nm以下である、蛍光体。
6. 1.~5.のいずれか一つに記載の蛍光体であって、
 455nmの励起光を照射したときの蛍光ピークの半値幅が、130nm以上142nm以下である、蛍光体。
7. 1.~6.のいずれか一つに記載の蛍光体であって、
 455nmの励起光に対する外部量子効率が70%以上である、蛍光体。
8. 1.~7.のいずれか一つに記載の蛍光体であって、
 455nmの励起光に対する内部量子効率が80%以上である、蛍光体。
9. 1.~8.のいずれか一つに記載の蛍光体と発光光源とを備える発光装置。
 本発明によれば、高温環境使用時における蛍光特性の低下を抑制できる蛍光体、それを用いた発光装置が提供される。
発光装置の構造の一例を示す概略断面図である。
 以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。
 本明細書中、数値範囲の説明における「X~Y」との表記は、特に断らない限り、X以上Y以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。
<蛍光体>
 本実施形態の、一般式M(Si,Al)(N,O)3±yで表される蛍光体は、一般式中、MはLi及び一種以上のアルカリ土類金属元素、0.52≦x≦0.90、0≦y≦0.36でり、Mの一部はCe元素で置換されており、Mの2mol%以上5mol%以下がCeである。
 また本実施形態の蛍光体は、下記の手順に従って測定される、加熱冷却前後における蛍光強度変化率が3.9%以下を満たすように構成される。
(手順)
 石英製シャーレに当該蛍光体を充填し、励起光照射と当該蛍光体の発光強度とが測定可能な顕微鏡用冷却加熱ステージにセットする。
 まず大気中、30℃で5分保持した後、波長455nmの励起光を照射し、当該蛍光体の積分発光強度を測定する。その後、100℃/分で昇温し、300℃で10分保持し、発光強度を測定し、加熱をOFFにして、30℃まで冷却し、15分保持した後、再び発光強度を測定する。
 加熱冷却前に30℃で測定した最初の積分発光強度を100%とした時に、加熱冷却後に30℃で測定した発光強度(%)をEI30としたとき、式(100%-EI30)により加熱冷却前後における蛍光強度変化率を算出する。
 本実施形態の蛍光体は、少なくとも、加熱冷却前後における蛍光強度変化率が3.9%以下である点において、特許文献1に記載された蛍光体と相違する。本実施形態の蛍光体は、特許文献1に記載された蛍光体に比べて、例えば、高温環境使用時における内部量子効率の点で優れているので、青色光を効率よく長波長の光に変換する。
 近年、発光装置の高出力化・低背化が進められており、蛍光体が実装される発光装置中の動作環境は、ますます高温となる傾向にある。
 本発明者らの知見によれば、一般式M(Si,Al)(N,O)3±yで表される蛍光体を、還元ガスを含む大気雰囲気下、焼成よりも低い温度でアニール処理することにより、かかる蛍光体の高温蛍光特性(加熱中あるいは加熱冷却後の蛍光体における蛍光特性)を改善でき、実プロセスを模した高温環境使用時における蛍光特性の低下を抑制できることが見出された。
 さらに鋭意検討した結果、高温蛍光特性として、上記の加熱冷却前後における蛍光強度変化率を指標とすることで、蛍光特性の熱劣化抑制能について安定的に評価できることが判明した。
 かかる知見に基づいて、熱冷却前後における蛍光強度変化率を上記上限値以下とすることにより、高温環境使用時における蛍光特性の低下を抑制できることが判明し、本発明が完成するに至った。
 本実施形態の蛍光体は、適切な素材を用いることに加え、適切な製造方法・製造条件を選択することにより製造することができる。「適切な製造方法・製造条件」としては、例えば、蛍光体に対してアニール処理を施すこと、などである。製造方法・製造条件の詳細については追って詳述する。
 本実施形態の蛍光体に関する説明を続ける。
(結晶構造、化学組成など)
 本実施形態の蛍光体結晶の骨格構造は、(Si,Al)-(N,O)正四面体が結合することにより構成されており、その間隙にM元素が位置するものである。上記一般式の組成は、M元素の価数と量、Si/Al比、N/O比のパラメータの全体により電気的中性が保たれる幅広い範囲で成立する。上記一般式で示される代表的な蛍光体として、M元素がCaでx=1、更にSi/Al=1、O/N=0となるCaAlSiNがある。CaAlSiNのCaの一部がEuで置換された場合には赤色蛍光体に、Ceで置換された場合には黄~橙色蛍光体になる。
 本実施形態の蛍光体の結晶構造は、通常、CaAlSiN結晶をベースとしたものである。この蛍光体の特徴の1つは、Ce付活でも非常に高い発光効率が得られるように構成元素、組成を大きく変えた点にある。
 上記一般式において、M元素はLi元素とアルカリ土類金属元素の組み合わせであり、その一部が発光中心となるCe元素で置換されている。Li元素を用いることにより、二価のアルカリ土類元素及び三価のCe元素との組み合わせにより、M元素の平均価数を幅広く制御できる。また、Liのイオン半径は非常に小さく、その量により結晶サイズを大きく変化させることができ、多様な蛍光発光が得られる。
 上記一般式におけるM元素の係数xは、0.52以上0.90以下、好ましくは0.60以上0.90以下、より好ましくは0.70以上0.90以下である。係数xが0.90を越える、つまりCaAlSiN結晶に近づくと蛍光強度が低下する傾向にあり、係数xが0.52よりも小さいと、目的とする結晶相以外の異相が多量に生成するために蛍光強度が著しく低下する傾向がある。
 上記一般式における(N,O)の係数yは、0以上0.36以下が好ましく、0以上0.30以下がより好ましく、0以上0.23以下がさらに好ましい。これにより、蛍光強度を高められる。
 本実施形態において、O/N原子比(モル比)は、0以上0.1以下、好ましくは0.01以上0.08以下、さらに好ましくは0.02以上0.07以下である。O/N原子比があまりに大きいと異相生成量が増大し、発光効率が低下するとともに、結晶の共有結合性が低下し、温度特性の悪化(高温での輝度低下)を引き起こす傾向にある。
 Si/Al原子比(モル比)に関しては、通常、M元素の平均価数や量、および、O/N原子比を所定の範囲とすると必然的に決められる。Si/Al原子比は1.5以上6以下、好ましくは2以上4以下、より好ましくは2.5以上4以下である。
 蛍光体中のLi含有量は、M元素の5~50mol%、好ましくは15~49mol%、さらに好ましくは25~48mol%である。Liの効果は5mol%以上で発揮されやすいが、50mol%を越えると目的とする蛍光体の結晶構造が維持できず異相を生成してしまい、発光効率が低下しやすい。
 念のため述べておくと、「Li含有量」とは、最終的に得られる蛍光体中のLi含有量であり、原料配合ベースの量ではない。原料に使用するLi化合物は蒸気圧が高く揮発しやすく、高温で窒化物・酸窒化物を合成しようとした場合、相当な量が揮発する。つまり、原料配合ベースのLi量は最終生成物中の含有量とは大きく乖離しているので、蛍光体中のLi含有量を意味しない。
 蛍光体の発光中心であるCeの含有量は、あまりに少ないと発光への寄与が小さくなる傾向にあり、あまりに多いとCe3+間のエネルギー伝達による蛍光体の濃度消光が起こる傾向にある。よって、Ceの含有量は、M元素の2~5mol%、好ましくは2.5~5mol%である。
 上記一般式におけるM元素として用いられるアルカリ土類金属元素は、いずれの元素でも構わないが、Caを用いた場合に、高い蛍光強度が得られ、幅広い組成範囲で結晶構造が安定化する。よって、M元素はCaであることが好ましい。複数のアルカリ土類金属元素の組み合わせであってもよく、例えばCa元素の一部がSr元素に置き換わってもよい。
 蛍光体の結晶構造は、斜方晶系であり、前述したCaAlSiN結晶と同一の構造であってよい。CaAlSiN結晶の格子定数は、一例として、a=0.98007nm、b=0.56497nm、c=0.50627nmである。本実施形態において、格子定数は、通常、a=0.93500~0.96500nm、b=0.55000~0.57000nm、c=0.48000~0.50000nmであり、CaAlSiN結晶に比べ、いずれも小さい値となる。この格子定数の範囲は、前述した構成元素及び組成を反映したものである。
 蛍光体中に存在する結晶相は、上記の結晶単相が好ましい。ただし、蛍光特性に大きい影響がない限り、蛍光体は異相を含んでいても構わない。青色光励起の場合に蛍光特性への影響が低い異相としては、αサイアロン、AlN、LiSi、LiAlSiなどが挙げられる。異相の量は、粉末X線回折法で評価した際の上記結晶相の最強回折線強度に対する他の結晶相の回折線強度が40%以下であるような量であることが好ましい。
 本実施形態の蛍光体は、紫外~可視光の幅広い波長域の光で励起される。例えば波長455nmの青色光が照射された場合に、ピーク波長が580~610nmの橙色で、蛍光スペクトルの半値幅が130~142nmのブロードな蛍光発光を示すことがある。
 このような蛍光体は、幅広い発光装置用蛍光体として好適である。また、本実施形態の蛍光体は、CaAlSiNを代表とする従来の窒化物・酸窒化物系蛍光体と同様に、耐熱性、耐化学的安定性に優れ、また温度上昇による輝度低下が小さい特性を有する。このような特性は、特に耐久性が要求される用途に好適である。
(高温蛍光特性)
 既に述べたように、本実施形態の蛍光体粉末の、加熱冷却前後における蛍光強度変化率の値は、3.9%以下、好ましくは0.1%以上3.5%以下、より好ましくは0.1%以上3.0%以下である。これにより、高温環境使用時における蛍光特性(たとえば内部量子効率)の低下を抑制できる。また、蛍光体中のCe濃度を高くしつつも、外部量子効率を向上できる。
 別観点として、本実施形態の蛍光体の、30℃に対する300℃における蛍光強度維持率の値は、好ましくは69.0%以上、より好ましくは69.5%以上95%以下、特に好ましくは70.0%以上85%以下である。これにより、高温環境使用時における蛍光特性の低下を抑制できる。
 300℃における蛍光強度維持率とは、上記手順に従って測定される、加熱後冷却前に300℃で測定したときの蛍光体の発光強度(%)であると定義する。300℃における蛍光強度維持率も、高温蛍光特性の指標として活用できる。
(拡散反射率)
 別観点として、本実施形態の蛍光体の、波長700nmの光に対する拡散反射率X1は、好ましくは89%以上98%以下、より好ましくは91%以上98%以下、特に好ましくは92%以上98%以下である。X1がこのような数値範囲内にあることで、発光強度がより高まる傾向がある。
 さらに別観点として、本実施形態の蛍光体の、蛍光ピーク波長の光に対する拡散反射率X2は、好ましくは88%以上97%以下、より好ましくは90%以上97%以下、特に好ましくは91%以上97%以下である。X2がこのような数値範囲内にあることで、発光強度がより高まる傾向がある。
 さらに別観点として、X2とX1の差(X2-X1)は、好ましくは3.0%以下、さらに好ましくは2.0%以下、特に好ましくは0.1%以上1.8%以下である。これにより、蛍光体の特性がさらに向上する。
 さらに別観点として、波長800nmの光に対する拡散反射率をX3としたとき、X3とX1の差(X3-X1)は、好ましくは0.1%以上1.4%、さらに好ましくは0.1%以上1.0%以下、特に好ましくは0.1%以上0.8%以下である。これにより、蛍光体の特性がさらに向上する。
(粒径分布)
 本実施形態の蛍光体に含まれる粒子(蛍光体粒子)の粒径分布を適切に設計することで、量子効率をより高めたり、諸性能のバランスを高めたりすることができる場合がある。
 具体的には、本実施形態の蛍光体の、レーザー回折散乱法で測定される体積基準累積50%径D50(いわゆるメジアン径)は、好ましくは8μm以上25μm以下、より好ましくは10μm以上20μm以下、さらに好ましくは12μm以上20μm以下である。
 別観点として、本実施形態の蛍光体の、レーザー回折散乱法で測定される体積基準累積10%径D10は、好ましくは2μm以上15μm以下、より好ましくは5μm以上12μm以下である。D10が比較的大きな値であることは、蛍光体中の微粉(青色光の変換効率を下げる傾向がある、微細すぎる蛍光体粒子)の量が比較的少ないことに対応する。よって、D10がある程度大きな値であることにより、青色光の変換効率がより高まる傾向がある。
 さらに別観点として、本実施形態の蛍光体の、レーザー回折散乱法で測定される体積基準累積90%径D90は、好ましくは15μm以上50μm以下、より好ましくは18μm以上40μm以下である。D90が大きすぎないということは、蛍光体中の粗大粒子の量が少ないことに対応する。D90が大きすぎない蛍光体は、発光装置の色度バラツキの低減に有効である。
(光吸収率)
 別観点として、本実施形態の蛍光体の、波長700nmにおける光吸収率A700は、好ましくは1%以上10%以下、さらに好ましくは2%以上9%以下、特に好ましくは3%以上9%以下である。これにより、内部量子効率を高められる。
 さらに別観点として、本実施形態の蛍光体の、波長600nmにおける光吸収率A600の値は、好ましくは1%以上13%以下、より好ましくは2%以上12%以下、さらに好ましくは3%以上11%以下である。A600が大きすぎないことで、蛍光特性がより一層向上すると考えられる。
 別観点として、本実施形態の蛍光体の、455nmの励起光に対する内部量子効率の値は、好ましくは80%以上である。
 さらに別観点として、本実施形態の蛍光体の、455nmの励起光に対する外部量子効率の値は、好ましくは70%以上である。
(製造方法)
 本実施形態の蛍光体は、例えば、以下の(1)~(4)を含む一連の工程により製造可能である。蛍光体の高温蛍光特性を適切に調整する観点で、蛍光体の製造工程は、(4)アニール処理工程を含むことが好ましい。
(1)原料混合粉の調製工程
(2)焼成工程
(3)焼成物の粉砕工程
(4)アニール処理工程
 以下、(1)~(4)について具体的に説明する。
(1)原料混合粉の調製工程
 原料混合粉の調製工程においては、通常、適当な原料粉末を混合して、原料混合粉を得る。
 原料粉末としては、構成元素の窒化物、即ち窒化ケイ素、窒化アルミニウム、窒化リチウム、窒化セリウム、アルカリ土類元素の窒化物(例えば窒化カルシウム)などが好適に使用される。一般的に、窒化物粉末は空気中では不安定であり、粒子表面が酸化物層で覆われており、窒化物原料を使用した場合でも、結果的に、ある程度の酸化物が原料に含まれている。蛍光体のO/N比を制御する場合、これらを考慮するとともに、酸素が不足する場合は、窒化物の一部を酸化物(加熱処理により酸化物になる化合物を含む)としてもよい。酸化物の例としては、酸化セリウムなどを挙げることができる。
 原料粉末のうち、リチウム化合物は加熱による揮発が顕著であり、焼成条件によってはほとんどが揮発してしまうことがある。そこで、リチウム化合物の配合量は、焼成条件に応じて、焼成過程の揮発量を考慮して決めることが好ましい。
 窒化物原料粉末のうち、窒化リチウム、窒化セリウム、アルカリ土類元素の窒化物は、空気中の水分と激しく反応する。よって、これらの取り扱いは不活性雰囲気で置換されたグローブボックス内で行うことが好ましい。
 作業の効率性の観点から、(i)まず、空気中で取り扱い可能な窒化ケイ素、窒化アルミニウム及び各種酸化物原料粉末を所定量秤量し、予め空気中で十分に混合して予備混合粉を調製し、(ii)その後、グローブボックス内で、予備混合粉と、窒化リチウム等の水分と反応しやすい物質とを混合して、原料混合粉を調製することが好ましい。
(2)焼成工程
 焼成工程では、(1)原料混合粉の調製工程で調製した原料混合粉を、適当な容器に充填して、焼成炉などを用いて加熱する。
 焼成の温度は、反応を十分に進める観点と、リチウムの揮発を抑える観点から、1600~2000℃が好ましく、1700~1900℃がより好ましい。
 焼成時間は、反応を十分に進める観点と、リチウムの揮発を抑える観点から、2~24時間が好ましく、4~16時間がより好ましい。
 焼成工程は、窒素雰囲気下で行われることが好ましい。また、焼成雰囲気の圧力を適切に調整することが好ましい。具体的には、焼成雰囲気の圧力は、0.5MPa・G以上が好ましい。焼成温度が特に1800℃以上である場合、蛍光体が分解しやすい傾向があるが、焼成雰囲気の圧力が高いことで、蛍光体の分解を抑制することができる。
 ちなみに、工業的生産性を考慮すると、焼成雰囲気の圧力は1MPa・G未満が好ましい。
 原料混合粉を充填する容器は、高温の窒素雰囲気下において安定で、原料混合粉やその反応生成物と反応しない材質で構成されることが好ましい。容器の材質は、好ましくは窒化ホウ素である。
(3)焼成物の粉砕工程
 (2)で得られる焼成物は、通常、塊状であるため、機械的に力を加えることである程度小さいサイズに粉砕することが好ましい。
 粉砕には、クラッシャー、乳鉢、ボールミル、振動ミル、ジェットミル、スタンプミル等の各種装置を用いることができる。これら装置のうち2つ以上を組み合わせて粉砕してもよい。後掲の実施例においては、まずスタンプミルを用いて焼成物の粗粉砕物を得、その後、その粗粉砕物を、ジェットミルを用いてより細かく粉砕している。詳細は不明であるが、このような粉砕を行うことにより、拡散反射率X1が88%以上99.9%以下である蛍光体を得やすい。
(4)アニール処理
 アニール処理では、所定量の蛍光体を坩堝に充填し、水素ガスを含む還元性ガス雰囲気下、焼成炉内で、所定温度で所定時間、蛍光体を加熱する。
 具体的には、アニール温度は、上記の焼成温度よりも低く、700~1200℃程度が好ましい。アニール時間は、アニール温度に応じて適宜設定する。
 アニール時の雰囲気は、還元性を有するものであり、例えば、窒素ガス(不活性ガス)中に4体積%程度の水素ガス(還元性ガス)を含むものが好ましい。
 蓋なしの坩堝を使用し、坩堝中の蛍光体の充填量が少ないことが好ましい。アニール処理中、還元性ガス雰囲気と蛍光体の表面とを十分に接触させることが可能となる。
 アルミナ製の緻密質な坩堝を使用することが好ましい。炉内に含まれる成分と坩堝とが反応し、雰囲気環境が意図せずに変化することを抑制できる。
 詳細なメカニズムは定かではないが、還元性ガス雰囲気中、比較的低温にて、開放系にある蛍光体を加熱するというアニール処理により、かかる蛍光体の表面を適切に改質できると考えられる。
<発光装置、画像表示装置および照明装置>
 本実施形態の蛍光体と、発光光源とを組み合わせることで、発光装置を得ることができる。
 発光光源は、典型的には紫外線又は可視光を発光する。例えば、発光光源が青色LEDである場合、発光光源から発せられる青色光が蛍光体に当たり、そして青色光はより長波長の光に変換される。すなわち、本実施形態の蛍光体は、青色光をより長波長の光に変換する波長変換材料として使用可能である。
 発光装置の具体的構成の一例を、図1を参照しつつ説明する。
 図1は、発光装置の構造の一例を示す概略断面図である。図1に示されるように、発光装置100は、発光素子120(発光光源)、ヒートシンク130、ケース140、第1リードフレーム150、第2リードフレーム160、ボンディングワイヤ170、ボンディングワイヤ172および複合体40を備える。
 発光素子120は、励起光を発する半導体素子である。半導体素子には、発光ダイオード(LED)および、共振器を備える発光素子(LD)のいずれも使用できる。発光素子120としては、たとえば、近紫外から青色光に相当する300nm以上500nm以下の波長の光を発生するLEDチップを使用することができる。
 発光素子120はヒートシンク130上面の所定領域に実装されている。ヒートシンク130上に発光素子120を実装することにより、発光素子120の放熱性を高めることができる。なお、ヒートシンク130に代えて、パッケージ用基板を用いてもよい。
 発光素子120の上面側に配設された一方の電極(図示せず)が、金線などのボンディングワイヤ170を介して第1リードフレーム150の表面と接続されている。また、発光素子120の上面に形成されている他方の電極(図示せず)は、金線などのボンディングワイヤ172を介して第2リードフレーム160の表面と接続されている。
 ケース140には、底面から上方に向かって孔径が徐々に拡大する略漏斗形状の凹部が形成されている。発光素子120は、上記凹部の底面に設けられている。発光素子120を取り囲む凹部の壁面は反射板の役目を担う。
 複合体40は、ケース140によって壁面が形成される上記凹部に充填されている。複合体40は、発光素子120から発せられる励起光をより長波長の光に変換する波長変換部材である。
 複合体40は、樹脂などの封止材30中に、少なくとも本実施形態の蛍光体が分散したものである。より品質の高い白色光を得るため、封止材30は、本実施形態の蛍光体だけでなく、その他の蛍光体を含んでもよい。
 発光装置100は、発光素子120の光と、発光素子120から発せられる光を吸収して励起される蛍光体粒子1から発せられる光との混合色を発する。発光装置100は、発光素子120の光と蛍光体粒子1から発生する光との混色により白色を発光することが好ましい。
 ちなみに、図1では、表面実装型の発光装置が例示されているが、発光装置は表面実装型に限定されず、砲弾型やCOB(チップオンボード)型、CSP(チップスケールパッケージ)型であってもよい。
 発光装置の使い道としては、ディスプレイなどの画像表示装置や、照明装置が挙げられる。例えば、発光装置100をバックライトとして用いて、液晶ディスプレイを製造することができる。また、発光装置100を1つまたは複数個用いて、適切な配線を施すなどすることで、照明装置を製造することもできる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
<蛍光体粉末の製造>
(比較例1および比較例4)
(1)原料混合粉の調製
 まず、予備混合を行った。具体的には、表1に記載の原料のうち、Si(宇部興産社製、E10グレード)、AlN(トクヤマ社製、Eグレード)およびCeO(信越化学工業社製、Cグレード)を、小型V型混合機を用いて30分間混合(ドライブレンド)し、その後、目開き150μmのナイロン製の篩で通篩した。これにより予備混合粉を得た。
 次に、窒素雰囲気のグローブボックス内で、予備混合粉に、表1に記載の原料の残り(Ca(太平洋セメント社製のCa)およびLiN(Materion社製のLiN))を加え、十分にドライブレンドし、その後、目開き500μmの篩で通篩した。これにより原料混合粉を得た。
(2)焼成
 原料混合粉を窒化ホウ素製の容器に充填した。この容器を炉に入れ、原料混合粉を、0.72MPa・GのN雰囲気下、1800℃で8時間焼成した。
(3)焼成物の粉砕
 (2)で得られた焼成物を、スタンプミルを用いて粉砕した。スタンプミルによる粉砕は、目開き250μmの振動篩の通過率が90%を超えるまで繰り返した。
 スタンプミルによる粉砕を経た焼成物を、さらに、ジェットミル(日本ニューマチック工業製、PJM-80SP)を用いて粉砕した。粉砕条件は、試料供給速度:50g/min、粉砕エア圧:0.3MPaとした。
 以上により、蛍光体粉末を得た。
(実施例1、2および比較例2)
 比較例1で得られた蛍光体粉末に、表1に記載の条件のアニール処理を施して、蛍光体粉末を得た。
 かかるアニール処理は、表1に記載の条件に従って、所定サンプル量の蛍光体粉末をアルミナ製坩堝(蓋なし)に充填し、表1に記載の所定雰囲気下、所定焼成炉内で、所定の最大温度(ただし、室温から最大温度まで昇温速度3℃/minで昇温)で所定時間、坩堝に充填した蛍光体粉末を加熱した。加熱後、最大温度から500℃まで約1.3℃/minで冷却、500℃から300℃まで約1.1/℃minで冷却、300℃以降は炉内で冷却した。
 なお、実施例2のアニール処理には、実施例1と比べて、サンプル量を増大させ、加熱温度を高く設定した。比較例2のアニール処理には、Hガスを含まず、Nガスが充填した雰囲気を採用した。実施例1~3では、Nガスに対して所定量のHガスを混合した混合ガスを大気圧フローにて導入し、雰囲気に充填させた。
(実施例3)
 比較例4で得られた蛍光体粉末に、表1に記載の条件のアニール処理を施して、蛍光体粉末を得た。
(比較例3)
 β型サイアロン蛍光体粉末(デンカ社製、グレード名:GR-MW540K8SD)に、表1に記載の条件のアニール処理を施して、β型サイアロンの蛍光体粉末(アニール処理後)を得た。
<化学組成/結晶構造の確認>
 一部の蛍光体粉末ついて、以下のように組成を分析した。
 Ca、Li、Ce、SiおよびAlの量:アルカリ融解法により蛍光体粉末を溶解させ、その後、ICP発光分光分析装置(Agilent社製5110VDV)により測定した。
 OおよびNの量:酸素窒素分析装置(HORIBA社製、EMGA-920)により測定した。
 測定結果に基づき、一般式M(Si,Al)(N,O)3±yにおけるx、y、Si/Al原子比、O/N原子比、MのLi比率、および、MのCe比率を求めた。
 実施例1~3の蛍光体に対しては、X線回折装置(株式会社リガク社製UltimaIV-N)を用い、Cu-Kα線による粉末X線回折(XRD)測定を行った。得られたXRDパターンの解析から、斜方晶系で格子定数a=0.9486nm、b=0.5586nm、c=0.4933nmの結晶を主相の存在が確認された。
<拡散反射率の測定>
 拡散反射率は、日本分光社製紫外可視分光光度計(V-550)に積分球装置(ISV-469)を取り付けた装置を用いて測定した。測定に際しては、標準反射板(スペクトラロン)でベースライン補正を行った。
 蛍光体粉末を充填した固体試料ホルダーを装置内の所定の位置に取り付けて、500~850nmの波長範囲で拡散反射スペクトルを測定し、波長600nmの光、波長700nmの光、波長800nmの光、および、蛍光体粉末の蛍光ピーク波長の光(後述)に対する拡散反射率を求めた。
<粒径分布の測定>
 粒径分布は、LS13 320(ベックマン・コールター株式会社製)を用い、JIS R 1629:1997に準拠したレーザー回折散乱法により測定した。測定溶媒には水を使用した。
 具体的な手順として、まず、分散剤としてヘキサメタリン酸ナトリウムを0.05質量%加えた水溶液に少量の蛍光体粉末を投入した。次に、ホーン式の超音波ホモジナイザー(出力300W、ホーン径26mm)で分散処理を行って分散液を作製した。この分散液を測定溶媒に適量添加して粒径分布を測定した。得られた累積体積頻度分布曲線から、10%体積径(D10)、50%体積径(D50)および90%体積径(D90)を求めた。
<蛍光スペクトルの測定>
 ローダミンBと副標準光源で補正を行った分光蛍光光度計(日立ハイテクサイエンス社製、F-7000)を用いて、蛍光体粉末の蛍光スペクトルを測定した。具体的には、波長455nmの単色光で蛍光体粉末を励起させることにより発せられる蛍光のスペクトルを測定し、蛍光ピーク波長(nm)および蛍光ピークにおける半値幅(nm)を求めた。
<内部量子効率および外部量子効率の測定>
 分光光度計(大塚電子株式会社製MCPD-7000)を用い、各蛍光体粉末の内部量子効率および外部量子効率を、以下の手順で求めた。
(1)蛍光体粉末を、凹型セルの窪み部分に、表面が平滑になるように充填した。この凹型セルを、積分球内の所定の位置(試料部)に取り付けた。この積分球に、発光光源(Xeランプ)から455nmの波長に分光した単色光を、光ファイバーを用いて導入した。この単色光(励起光)を、凹型セルの窪み部分に充填された蛍光体粉末に照射し、蛍光スペクトルを測定した。得られたスペクトルデータから、励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出した。励起反射光フォトン数は450nm以上465nm以下の波長範囲で蛍光フォトン数は、465nm以上800nm以下の範囲で算出した。
(2)また、試料部に、凹型セルの代わりに、反射率が99%の標準反射板(Labsphere社製スペクトラロン)を取り付けて、波長455nmの励起光のスペクトルを測定した。そして、450nm以上465nm以下の波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。
(3)上記(1)および(2)で求めたQref、QemおよびQexから、以下式に基づき内部量子効率および外部量子効率を算出した。
内部量子効率=(Qem/(Qex-Qref))×100
外部量子効率=(Qem/Qex)×100
<高温蛍光特性の測定>
 石英製シャーレに得られた蛍光体粉末を充填し、励起光照射と蛍光体粉末の発光強度とが測定可能な暗箱内に設置した顕微鏡用冷却加熱ステージにセットした。励起光は光ファイバーで上部より照射し、励起光に対して45°の位置の発光スペクトルを光ファイバーを通じて、分光光度計(MCPD-7000)で計測した。
 大気中、30℃で5分保持した後、波長455nmの励起光を照射し、蛍光体粉末の積分発光強度(波長範囲465~800nm)を測定した。その後、100℃/分で昇温し、300℃で10分保持し、発光強度を測定し、加熱をOFFにして、30℃まで冷却し、15分保持した後、再び発光強度を測定した。
 加熱冷却前に30℃で測定した最初の積分発光強度を100%とした時に、加熱冷却後に30℃で測定した発光強度(%)をEI30としたとき、式(100%-EI30)により加熱冷却前後における蛍光強度変化率を算出した。
 また、加熱後冷却前に300℃で測定したときの蛍光体粉末の発光強度(%)を、300℃における蛍光強度維持率とした。
<波長600nmにおける光吸収率の測定>
 積分球を備える分光光度計(大塚電子株式会社製MCPD-7000)を用い、各蛍光体粉末の波長600nmにおける光吸収率を、以下の手順で求めた。
(1)積分球内の所定の位置(試料部)に、反射率が99%の標準反射板(Labsphere社製スペクトラロン)を取り付けて、発光光源(Xeランプ)から600nmの波長に分光した単色光を標準反射板に照射した。そして、波長595~610nmの範囲で励起光のフォトン数(Qex)を算出した。
(2)標準反射板を測定サンプルに替えた以外は(1)と同様にして、サンプルの励起反射フォトン数(Qref)を算出した。測定サンプルとしては、蛍光体粉末を、凹型セルの窪み部分に、表面が平滑になるように充填したものを用いた。
(3)式(Qex-Qref)/Qexにより、波長600nmにおける光吸収率A600を算出した。
<波長700nmにおける光吸収率の測定>
 積分球を備える分光光度計(大塚電子株式会社製MCPD-7000)を用い、各蛍光体粉末の波長700nmにおける光吸収率を、以下の手順で求めた。
(1)積分球内の所定の位置(試料部)に、反射率が99%の標準反射板(Labsphere社製スペクトラロン)を取り付けて、発光光源(Xeランプ)から700nmの波長に分光した単色光を標準反射板に照射した。そして、波長695~710nmの範囲で励起光のフォトン数(Qex)を算出した。
(2)標準反射板を測定サンプルに替えた以外は(1)と同様にして、サンプルの励起反射フォトン数(Qref)を算出した。測定サンプルとしては、蛍光体粉末を、凹型セルの窪み部分に、表面が平滑になるように充填したものを用いた。
(3)式(Qex-Qref)/Qexにより、波長700nmにおける光吸収率A700を算出した。
<加熱試験>
 得られた蛍光体粉末について、200℃で300hの加熱を施した後(加速試験)、上記<内部量子効率および外部量子効率の測定>および上記<拡散反射率の測定>に従って、内部量子効率および波長600nmにおける拡散反射率をそれぞれ測定した。
 各種情報をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるとおり、実施例1~3の一般式M(Si,Al)(N,O)3±yで表される蛍光体は、比較例1、2、4と比べて、加熱試験(加速試験)後における発光特性(内部量子効率)が優れる結果を示した。
 なお、比較例3のβ型サイアロンの蛍光体は、実施例1と同様のアニール処理を施すと、アニール処理前と比べて、内部量子効率や600nmにおける拡散反射率が大きく低下する結果を示した。
 この出願は、2022年11月11日に出願された日本出願特願2022-181259号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 蛍光体粒子
30 封止材
40 複合体
100 発光装置
120 発光素子
130 ヒートシンク
140 ケース
150 第1リードフレーム
160 第2リードフレーム
170 ボンディングワイヤ
172 ボンディングワイヤ 

Claims (9)

  1.  一般式M(Si,Al)(N,O)3±y(ただし、MはLi及び一種以上のアルカリ土類金属元素であり、0.52≦x≦0.90、0≦y≦0.36)で示され、Mの一部がCe元素で置換されている蛍光体であって、
     Mの2mol%以上5mol%以下がCeであり、
     下記の手順に従って測定される、加熱冷却前後における蛍光強度変化率が3.9%以下である、蛍光体。
    (手順)
     石英製シャーレに当該蛍光体を充填し、励起光照射と当該蛍光体の発光強度とが測定可能な顕微鏡用冷却加熱ステージにセットする。
     まず大気中、30℃で5分保持した後、波長455nmの励起光を照射し、当該蛍光体の積分発光強度を測定する。その後、100℃/分で昇温し、300℃で10分保持し、発光強度を測定し、加熱をOFFにして、30℃まで冷却し、15分保持した後、再び発光強度を測定する。
     加熱冷却前に30℃で測定した最初の積分発光強度を100%とした時に、加熱冷却後に30℃で測定した発光強度(%)をEI30としたとき、式(100%-EI30)により加熱冷却前後における蛍光強度変化率を算出する。
  2.  請求項1に記載の蛍光体であって、
     前記手順に従って測定される、加熱後冷却前に300℃で測定したときの当該蛍光体の発光強度(%)を蛍光強度維持率としたとき、300℃における前記蛍光強度維持率が69.0%以上である、蛍光体。
  3.  請求項1又は2に記載の蛍光体であって、
     500~850nmの波長範囲で当該蛍光体の拡散反射率スペクトルを測定したとき、波長700nmの光に対する拡散反射率X1と、455nmの励起光を照射したときの蛍光ピーク波長の光に対する拡散反射率X2と、の差分X1-X2が、3.0%以下である蛍光体。
  4.  請求項1又は2に記載の蛍光体であって、
     455nmの励起光を照射したときの蛍光ピーク波長の光に対する拡散反射率X2が、88%以上97%以下である蛍光体。
  5.  請求項1又は2に記載の蛍光体であって、
     455nmの励起光を照射したときの蛍光ピークの波長が、580nm以上610nm以下である、蛍光体。
  6.  請求項1又は2に記載の蛍光体であって、
     455nmの励起光を照射したときの蛍光ピークの半値幅が、130nm以上142nm以下である、蛍光体。
  7.  請求項1又は2に記載の蛍光体であって、
     455nmの励起光に対する外部量子効率が70%以上である、蛍光体。
  8.  請求項1又は2に記載の蛍光体であって、
     455nmの励起光に対する内部量子効率が80%以上である、蛍光体。
  9.  請求項1又は2に記載の蛍光体と発光光源とを備える発光装置。
PCT/JP2023/039968 2022-11-11 2023-11-07 蛍光体、および発光装置 WO2024101330A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-181259 2022-11-11
JP2022181259 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024101330A1 true WO2024101330A1 (ja) 2024-05-16

Family

ID=91032403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039968 WO2024101330A1 (ja) 2022-11-11 2023-11-07 蛍光体、および発光装置

Country Status (1)

Country Link
WO (1) WO2024101330A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067130A1 (ja) * 2010-11-16 2012-05-24 電気化学工業株式会社 蛍光体、発光装置及びその用途
JP2013539490A (ja) * 2010-12-28 2013-10-24 北京宇極科技発展有限公司 酸窒化物発光材料及びその調製方法並びにそれによって製造された照明光源
WO2014003076A1 (ja) * 2012-06-27 2014-01-03 独立行政法人物質・材料研究機構 蛍光体、その製造方法、発光装置および画像表示装置
JP2022047259A (ja) * 2020-09-11 2022-03-24 デンカ株式会社 ユウロピウム賦活β型サイアロン蛍光体の製造方法
JP2022047262A (ja) * 2020-09-11 2022-03-24 デンカ株式会社 ユウロピウム賦活β型サイアロン蛍光体の製造方法
WO2022123997A1 (ja) * 2020-12-07 2022-06-16 デンカ株式会社 蛍光体粉末、発光装置、画像表示装置および照明装置
JP2022148407A (ja) * 2021-03-24 2022-10-06 デンカ株式会社 β型サイアロン蛍光体粉末の製造方法
JP2022148419A (ja) * 2021-03-24 2022-10-06 デンカ株式会社 β型サイアロン蛍光体粉末および発光装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067130A1 (ja) * 2010-11-16 2012-05-24 電気化学工業株式会社 蛍光体、発光装置及びその用途
JP2013539490A (ja) * 2010-12-28 2013-10-24 北京宇極科技発展有限公司 酸窒化物発光材料及びその調製方法並びにそれによって製造された照明光源
WO2014003076A1 (ja) * 2012-06-27 2014-01-03 独立行政法人物質・材料研究機構 蛍光体、その製造方法、発光装置および画像表示装置
JP2022047259A (ja) * 2020-09-11 2022-03-24 デンカ株式会社 ユウロピウム賦活β型サイアロン蛍光体の製造方法
JP2022047262A (ja) * 2020-09-11 2022-03-24 デンカ株式会社 ユウロピウム賦活β型サイアロン蛍光体の製造方法
WO2022123997A1 (ja) * 2020-12-07 2022-06-16 デンカ株式会社 蛍光体粉末、発光装置、画像表示装置および照明装置
JP2022148407A (ja) * 2021-03-24 2022-10-06 デンカ株式会社 β型サイアロン蛍光体粉末の製造方法
JP2022148419A (ja) * 2021-03-24 2022-10-06 デンカ株式会社 β型サイアロン蛍光体粉末および発光装置

Similar Documents

Publication Publication Date Title
JP5643424B2 (ja) 炭窒化物系蛍光体およびこれを使用する発光素子
EP3438229B1 (en) Fluorescent body, light-emitting device, illuminating apparatus, and image display apparatus
TWI404792B (zh) A phosphor and a method for manufacturing the same, and a light-emitting device using the same
JP7312187B2 (ja) 蛍光体及び発光装置
WO2010110457A1 (ja) 蛍光体、その製造方法、発光器具および画像表示装置
US20060049414A1 (en) Novel oxynitride phosphors
JP6684412B1 (ja) 蛍光体、その製造方法および発光装置
WO2022102512A1 (ja) 蛍光体粉末、発光装置、画像表示装置および照明装置
JP2023166644A (ja) 蛍光体、及び発光装置
US20240002721A1 (en) Phosphor powder, light-emitting device, image display device, and illumination device
WO2022102511A1 (ja) 蛍光体粉末、発光装置、画像表示装置および照明装置
JP7217709B2 (ja) 赤色蛍光体及び発光装置
US20230407171A1 (en) Phosphor powder, light-emitting device, image display device, and illumination device
WO2024101330A1 (ja) 蛍光体、および発光装置
WO2024101352A1 (ja) 蛍光体、および発光装置
WO2020235297A1 (ja) α型サイアロン蛍光体、発光部材、および発光装置
US11434422B2 (en) Phosphor powder, composite, and light-emitting device
JP7453377B2 (ja) 蛍光体、波長変換体、及び発光装置
TW202434704A (zh) 螢光體及發光裝置
TW202436591A (zh) 螢光體及發光裝置
TW202432795A (zh) 螢光體、發光裝置、照明裝置、圖像顯示裝置及車輛用顯示燈
CN116997634A (zh) 荧光体粉末、复合体和发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888677

Country of ref document: EP

Kind code of ref document: A1