WO2024101305A1 - 培養容器、微生物培養システム、及び核酸分析システム - Google Patents

培養容器、微生物培養システム、及び核酸分析システム Download PDF

Info

Publication number
WO2024101305A1
WO2024101305A1 PCT/JP2023/039864 JP2023039864W WO2024101305A1 WO 2024101305 A1 WO2024101305 A1 WO 2024101305A1 JP 2023039864 W JP2023039864 W JP 2023039864W WO 2024101305 A1 WO2024101305 A1 WO 2024101305A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture vessel
culture
vessel according
opening
container body
Prior art date
Application number
PCT/JP2023/039864
Other languages
English (en)
French (fr)
Inventor
正弘 桑田
Original Assignee
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電機株式会社 filed Critical 横河電機株式会社
Publication of WO2024101305A1 publication Critical patent/WO2024101305A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • C12M1/28Inoculator or sampler being part of container
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a culture vessel, a microbial culture system, and a nucleic acid analysis system.
  • Patent Document 1 discloses a simple culture vessel that can replace traditional petri dishes.
  • This culture vessel has a body and a lid, both made of a resin sheet; the body has a recess in which the culture medium is filled, and the lid has a protrusion that fits into the recess in the body, with an adhesive layer formed on the surface of the protrusion for sample collection; when the protrusion is fitted into the recess, the adhesive layer comes into contact with the culture medium, and the body and lid are manufactured from the same resin sheet and connected by a hinge.
  • the container body is designed to hold the object horizontally (flat), so if the medium is liquid, it is prone to spilling from the container body, making it difficult to handle.
  • the object if the object is in sheet form, at least a part of it may float on the surface of the medium, which may make it impossible to culture microorganisms attached to the object.
  • the present invention was made in consideration of the above problems, and aims to provide a culture vessel that is less likely to spill liquid, is easy to operate, and can ensure that a sheet-like object is submerged in liquid within the vessel body, as well as a microbial culture system and a nucleic acid analysis system that use the culture vessel.
  • the culture vessel according to the first aspect of the present invention has a slit-shaped opening and is equipped with a vessel body that vertically accommodates a sheet-shaped object through the opening.
  • the culture vessel according to the second aspect of the present invention is the culture vessel according to the first aspect of the present invention, in which the vessel body has a pair of side walls adjacent to each other in the short direction of the opening, and the lower parts of the pair of side walls are curved in an arc shape.
  • the culture vessel according to the third aspect of the present invention is a culture vessel according to the second aspect of the present invention, in which the upper part of the pair of side walls is formed in a rectangular shape that is continuous with the arc shape, and is formed to be longer in the vertical direction than the vertical dimension of the lower part.
  • the culture vessel according to the fourth aspect of the present invention is the culture vessel according to the second or third aspect of the present invention, in which the distance between the opposing surfaces of the pair of side walls increases from the bottom of the vessel body toward the opening.
  • the culture vessel according to the fifth aspect of the present invention is a culture vessel according to any one of the first to fourth aspects of the present invention, in which at least a portion of the opening is formed with a sloped spout.
  • the culture vessel according to the sixth aspect of the present invention is a culture vessel according to any one of the first to fifth aspects of the present invention, which has a lid that covers at least a portion of the opening.
  • the culture vessel according to the seventh aspect of the present invention is the culture vessel according to the sixth aspect of the present invention, in which the lid portion is breathable.
  • the culture vessel according to the eighth aspect of the present invention is a culture vessel according to the sixth or seventh aspect of the present invention, which has a sealing part that seals the gap between the lid part and the vessel body.
  • the culture vessel according to the ninth aspect of the present invention is the culture vessel according to the eighth aspect of the present invention, in which the lid portion is a film and the sealing portion is an adhesive that allows the film to be attached and detached.
  • the culture vessel according to the tenth aspect of the present invention is a culture vessel according to any one of the first to ninth aspects of the present invention, in which the vessel bodies are connected together via a connecting portion.
  • the culture vessel according to the eleventh aspect of the present invention is the culture vessel according to the tenth aspect of the present invention, in which the connection portion has a breakable weakened portion.
  • the culture vessel according to the twelfth aspect of the present invention is a culture vessel according to the second to fourth aspects of the present invention, in which the pair of side walls are formed with inverted cone-shaped bulges that partially widen the opening in the short direction.
  • the culture vessel according to the thirteenth aspect of the present invention is a culture vessel according to any one of the second to fourth aspects and the twelfth aspect of the present invention, in which the pair of side walls are formed with protrusions that protrude inwardly of the vessel body.
  • the microbial culture system according to the fourteenth aspect of the present invention cultures microorganisms using a culture vessel according to any one of the first to thirteenth aspects of the present invention.
  • the nucleic acid analysis system comprises the microbial culture system according to the fourteenth aspect of the present invention, and analyzes nucleic acid extracted from the microorganism.
  • the above aspects of the present invention provide a culture vessel that is less likely to spill liquid, is easy to operate, and can ensure that a sheet-like object is submerged in liquid within the vessel body, as well as a microbial culture system and a nucleic acid analysis system that use the culture vessel.
  • FIG. 1 is a schematic diagram of a nucleic acid analysis system according to a first embodiment.
  • FIG. 2 is a side view of the culture vessel according to the first embodiment. 3 is a cross-sectional view taken along the line III-III of FIG. 2.
  • FIG. 2 is a plan view of the culture vessel according to the first embodiment.
  • FIG. 11 is a partially cutaway side view of a culture vessel according to a second embodiment. 6 is a cross-sectional view taken along line VI-VI in FIG. 5.
  • FIG. 11 is a plan view of a culture vessel according to a second embodiment.
  • FIG. 13 is a plan view of a culture vessel according to a third embodiment. 9 is a cross-sectional view taken along the line IX-IX of FIG. 8.
  • FIG. 8 is a side view of the culture vessel according to the first embodiment.
  • 3 is a cross-sectional view taken along the line III-III of FIG. 2.
  • FIG. 2 is a plan view of the culture vessel according to the first
  • FIG. 11 is a partially cutaway side view of a culture vessel according to a third embodiment.
  • FIG. 13 is a side view of a culture vessel according to a fourth embodiment.
  • 12 is a cross-sectional view taken along line XII-XII of FIG. 11.
  • FIG. 13 is an exploded perspective view of a culture vessel according to a fifth embodiment.
  • FIG. 13 is a side view of a container body according to a fifth embodiment.
  • 15 is a cross-sectional view taken along the line XV-XV in FIG. 14.
  • FIG. 13 is a plan view of a container body according to a fifth embodiment.
  • Microorganisms such as bacteria may have adverse effects on the human body, and a method for testing for microbial contamination is desired.
  • testing involves culturing microorganisms on an agar medium or the like using a petri dish, and counting the number of colonies that form to test for microbial contamination and the number of microorganisms.
  • Patent Document 1 discloses a technology relating to a culture vessel that can easily perform sample collection and culture, instead of such traditionally used petri dishes.
  • One such rapid measurement method is a technique that captures microorganisms using a membrane filter and extracts nucleic acid from the liquid containing the captured microorganisms.
  • a membrane filter When extracting nucleic acid from microorganisms captured on a membrane filter, it is not possible to extract a sufficient amount of nucleic acid for measurement, which makes it impossible to detect the microorganisms. For this reason, there is a demand for a technique that can multiply the microorganisms captured on a membrane filter by culturing, and then extract and test nucleic acid from the liquid containing the multiplied microorganisms.
  • the culture vessel disclosed in Patent Document 1 above relates to culture using a solid medium such as an agar medium. Therefore, it is not possible to culture microorganisms captured by a membrane filter in liquid using this culture vessel, and it is not possible to extract and test nucleic acids from liquids containing the aforementioned microorganisms. Furthermore, when using a petri dish traditionally used for culture to culture microorganisms captured by a membrane filter in liquid, there is a problem that the opening of the petri dish is large, and when performing operations such as moving the petri dish, the liquid used for culture is likely to spill, making it difficult to handle.
  • the amount of culture medium placed in the petri dish it is necessary to increase the amount of culture medium placed in the petri dish.
  • the amount of culture medium is increased, the amount of microorganisms increased by culture is mainly determined by the culture time, and the amount of microorganisms contained in the culture medium after the same culture time has elapsed remains the same, so the concentration of microorganisms contained in the culture medium will decrease.
  • the concentration of microorganisms contained in the liquid will decrease for the same culture time, and there are cases where the concentration of microorganisms becomes so low that they cannot be detected by the above-mentioned test, causing problems with microbial testing.
  • a culture vessel, a microorganism culture system, and a nucleic acid analysis system are provided with a vessel body having a slit-shaped opening and vertically housing a sheet-like object through the opening.
  • a vessel body having a slit-shaped opening and vertically housing a sheet-like object through the opening.
  • This allows the housing space to be deepened without expanding the internal volume of the vessel body, making it difficult for liquid to spill and easier to operate.
  • the object is less likely to float on the liquid surface. This ensures that the object is submerged in the liquid even with a small amount of liquid. Therefore, efficient culture is possible in a liquid culture medium using a sheet-like object.
  • FIG. 1 is a schematic diagram of a nucleic acid analysis system 1 according to a first embodiment.
  • a nucleic acid analysis system 1 includes a microorganism recovery system 2, a microorganism culture system 3, a nucleic acid extraction system 4, a hybridization reaction system 5, and a detection system 6.
  • the microorganism collection system 2 is a system that collects microorganisms (such as viruses, bacteria, and fungi) contained in the sample 200 from the sample 200.
  • the sample 200 may be the produced beverage, the water used to produce the beverage, or a liquid in the process of producing the beverage.
  • the sample 200 may be a liquid from which microorganisms have been collected from a swab or the like used to wipe the testing environment in order to test for the presence or absence of microbial contamination in the production environment and the level of contamination.
  • the microorganisms can be collected, for example, by applying pressure or vacuum to the collected liquid and filtering through a membrane filter 100 (a sheet-like object) described below.
  • the membrane filter 100 may have a pore size of 0.22 ⁇ m to 0.45 ⁇ m.
  • the membrane filter 100 is placed in a culture vessel 10 described below and immersed in a culture liquid in which the microorganisms are cultured, and the microorganisms are cultured in a microorganism culture system 3.
  • the microorganism culture system 3 is a system for culturing microorganisms using a culture vessel 10 described below.
  • Microorganisms can be cultured, for example, by static culture, in which the culture vessel 10 is left stationary, or by shaking culture, in which the culture vessel 10 is shaken.
  • the culture liquid in which the microorganisms have been cultured is transferred to the next process (nucleic acid extraction system 4).
  • the liquid containing the membrane filter 100 may be vibrated, and the liquid in which the microorganisms are suspended may be transferred to the next process.
  • the nucleic acid extraction system 4 is a system that destroys (dissolves) the membrane structure of cells in a liquid and extracts the nucleic acid of microbial cells.
  • the sample 200 from which nucleic acids have been extracted may be mixed with a liquid containing other nucleic acids that react with the extracted nucleic acids.
  • the other nucleic acids may also be nucleic acids to which a moiety that exhibits fluorescence, luminescence, or quenching effects under specific conditions has been added in order to enable detection in the detection process (detection system 6) described below. These may be mixed with the sample 200 before processing with the nucleic acid extraction system 4, or may be mixed with the sample 200 after processing with the nucleic acid extraction system 4.
  • the hybridization reaction system 5 is a system that causes a hybridization reaction of the nucleic acid in the sample 200.
  • the sample 200 is heated, for example, to 60°C and stirred, to cause a hybridization reaction that matches the other nucleic acid described above.
  • a site that has a fluorescent, luminescent, or quenching effect under specific conditions given to the other nucleic acid described above reacts with the nucleic acid in the sample 200, thereby causing the fluorescence, luminescence, or quenching effect to be expressed.
  • the structure of the other nucleic acid described above to react with a specific nucleic acid, it is possible to make it react only with the nucleic acid contained in a specific microorganism in the sample 200, for example.
  • the fluorescence, luminescence, or quenching effect imparted to the other nucleic acid manifest only when the specific microorganism is contained in the sample 200.
  • the detection system 6 detects the presence or absence, and the degree of, fluorescence, luminescence, or quenching that occurs in the sample 200 that has been treated in the hybridization reaction system 5.
  • the detection system 6, for example, excites the fluorescence that occurs in the nucleic acid of the sample 200 with an excitation laser light, and detects the excited fluorescence with a high-sensitivity camera.
  • the detection system 6 detects the luminescence effect expressed in the nucleic acid of the sample 200 with a high-sensitivity camera.
  • the detection system 6 detects the quenching effect expressed in the nucleic acid of the sample 200 by detecting the degree to which the fluorescence or luminescence imparted near the site to which the quenching effect is imparted is quenched with a high-sensitivity camera.
  • this detection method for example, a method such as that described in JP 2020-74726 A may be adopted.
  • the nucleic acid analysis system 1 uses a series of systems as described above to determine whether a particular microorganism (such as a virus, bacteria, or fungus) is present in the sample 200 and to analyze its concentration.
  • a particular microorganism such as a virus, bacteria, or fungus
  • FIG. 2 is a side view of the culture vessel 10 according to the first embodiment.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2.
  • FIG. 4 is a plan view of the culture vessel 10 according to the first embodiment.
  • the culture vessel 10 has a slit-shaped opening 11a, and is equipped with a vessel body 11 that vertically houses a circular membrane filter 100 from the opening 11a.
  • slit-shaped includes not only rectangular shapes, but also roughly rectangular shapes. Roughly rectangular shapes include rectangles where parts (such as corners) are arc-shaped or tapered, and also include shapes that can be considered as slits overall even if they have some unevenness in some parts. Similarly, "shaped" will be used in the same broad sense as above.
  • a sloped spout 11b is formed at one end of the opening 11a in the longitudinal direction.
  • the side where the spout 11b is formed is referred to as the "front” and the side opposite the spout 11b is referred to as the "rear,” defining front, back, left, right, top, and bottom.
  • the spout 11b may be formed at both ends of the opening 11a in the longitudinal direction.
  • the side where one of the two spouts 11b is formed is referred to as the "front” and the side where the other spout 11b is formed is referred to as the "rear,” defining front, back, left, right, top, and bottom.
  • the container body 11 can be formed of resin by, for example, injection molding, vacuum forming, or pressure forming.
  • the container body 11 can also be formed of, for example, a transparent or semi-transparent resin. By making the container body 11 transparent or semi-transparent, the membrane filter 100 and the culture solution inside can be confirmed.
  • the container body 11 includes a pair of side walls 20 adjacent to each other in the short side direction (left-right direction) of the opening 11a as shown in Fig. 3.
  • the lower portions of the pair of side walls 20 are curved in an arc shape as shown in Fig. 2.
  • the membrane filter 100 is circular, the lower portions of the pair of side walls 20 are curved in a semicircular shape.
  • the upper parts of the pair of side walls 20 are formed in a rectangular shape that continues into the arc shape of the lower parts, and are longer in the vertical direction than the vertical dimension of the lower parts.
  • the vertical dimension of the upper parts of the pair of side walls 20 is equal to or greater than the radius of the membrane filter 100.
  • the upper parts of the pair of side walls 20 extend to a position higher than the top end of the membrane filter 100 when placed vertically.
  • the outer surfaces of the pair of side walls 20 are provided with liquid level markings 12. At least one liquid level marking 12 should be provided at a position higher than the top end of the membrane filter 100 when placed vertically. By pouring culture liquid up to the liquid level marking 12, the membrane filter 100 can be reliably submerged in the liquid.
  • the liquid level markings 12 may be formed by printing on the container body 11, or may be formed by providing projections and recesses on the outer surface of the container body 11.
  • the distance between the opposing surfaces of the pair of side wall portions 20 gradually increases from the bottom 11c of the container body 11 toward the opening 11a.
  • the pair of side wall portions 20 have a first opposing surface 21 and a second opposing surface 22.
  • the first opposing surface 21 extends from the bottom 11c of the container body 11 to above the membrane filter 100.
  • the first opposing surface 21 forms a narrow space capable of housing the membrane filter 100 vertically.
  • the second opposing surface 22 is connected to the upper end of the first opposing surface 21, has a gentler inclination with respect to the horizontal plane than the inclination of the first opposing surface 21, and is wider on both the left and right sides.
  • the second opposing surface 22 widens the width of the opening 11a in the short direction above the membrane filter 100, making it easier to insert the membrane filter 100 into the container body 11.
  • the peripheral portions of the pair of side walls 20, other than the opening 11a including the spout 11b, are connected by a front wall 30 and a rear wall 40.
  • the front wall 30 has a curved surface 31 and an inclined surface 32.
  • the inclined surface 32 is inclined downward from the lower end of the spout 11b.
  • the inclined surface 32 faces the rear wall 40 in the front-to-rear direction (the longitudinal direction of the opening 11a).
  • the curved surface 31 extends from the lower end of the inclined surface 32 to the lowest end inside the container body 11.
  • the curved surface 31 forms the front portion of the arc-shaped bottom 11c (see FIG. 2) of the container body 11.
  • the rear wall 40 also has a curved surface 41 and an inclined surface 42.
  • the inclined surface 42 is inclined downward from the upper end of the rear wall 40.
  • the inclined surface 42 faces the inclined surface 32 of the front wall 30 in the front-rear direction (the longitudinal direction of the opening 11a).
  • the curved surface 41 extends from the lower end of the inclined surface 42 to the bottom end inside the container body 11.
  • the curved surface 41 faces the curved surface 31 of the front wall 30 in the front-rear direction (the longitudinal direction of the opening 11a) and forms the rear portion of the arc-shaped bottom 11c (see FIG. 2) of the container body 11.
  • the culture vessel 10 of this embodiment has a slit-shaped opening 11a, and is equipped with a vessel body 11 that vertically accommodates a membrane filter 100 (sheet-like object) through the opening 11a.
  • a membrane filter 100 sheet-like object
  • the accommodation space can be deepened without expanding the internal volume of the vessel body 11, making it difficult for the culture liquid to spill and easier to operate.
  • the membrane filter 100 is less likely to float on the liquid surface. This ensures that the membrane filter 100 is submerged in the liquid even with a small amount of liquid. Therefore, efficient culture is possible in a liquid medium using the membrane filter 100.
  • the container body 11 has a pair of side wall portions 20 adjacent to each other in the short direction of the opening 11a, and the lower portions of the pair of side wall portions 20 are curved in an arc shape as shown in FIG. 2.
  • This configuration reduces the dead space in the container body 11, and allows the membrane filter 100 to be submerged in liquid even with a small amount of liquid.
  • the upper part of the pair of side wall parts 20 is formed in a rectangular shape that continues into the arc shape of the lower part, and is formed to be longer in the vertical direction than the vertical dimension of the lower part.
  • the distance between the opposing surfaces of the pair of side wall portions 20 increases from the bottom 11c of the container body 11 toward the opening 11a, as shown in FIG. 3. This configuration makes it easier to accommodate the membrane filter 100 in the container body 11.
  • the container body 11 is formed by injection molding, vacuum molding, pressure molding, or the like, it is easier to release from the mold and form the shape.
  • a slanted spout 11b is formed on at least a portion of the opening 11a. This configuration makes it possible to easily transfer the culture solution after culturing the microorganisms to another container, making it easy to proceed to the next step.
  • this embodiment can provide a culture vessel 10 that is less likely to spill liquid, is easy to operate, and can ensure that a sheet-like object is submerged in liquid within the vessel body 11, as well as a microbial culture system and a nucleic acid analysis system that use the culture vessel 10.
  • Fig. 5 is a partially cutaway side view of the culture vessel 10 according to the second embodiment.
  • Fig. 6 is a cross-sectional view taken along the line VI-VI shown in Fig. 5.
  • Fig. 7 is a plan view of the culture vessel 10 according to the second embodiment.
  • the culture vessel 10 of the second embodiment has a lid portion 50 that covers at least a portion of the opening 11a.
  • the lid 50 is formed in a cylindrical shape with a top.
  • the lid 50 has a top wall 51 and a peripheral wall 52.
  • the top wall 51 covers the entire opening 11a, including the spout 11b, of the container body 11.
  • the top wall 51 has a right-angled pentagonal shape with a convex front side (the spout 11b side).
  • the peripheral wall portion 52 is suspended downward from the peripheral edge of the top wall portion 51 and surrounds the opening 11a of the container body 11 from the side.
  • a sealing portion 60 may be further provided on the inside of the peripheral wall portion 52.
  • the sealing portion 60 seals the gap between the lid portion 50 and the container body 11.
  • the sealing portion 60 may be made of, for example, flexible rubber or elastomer.
  • the sealing structure may be such that the container body 11 and the lid portion 50 fit together to provide a seal.
  • the culture vessel 10 of the second embodiment has a lid portion 50 that covers at least a portion of the opening 11a.
  • the culture liquid in the vessel body 11 can be prevented from leaking out by the lid portion 50.
  • the opening 11a contamination caused by airborne microorganisms or foreign matter falling into the vessel body 11 can be prevented.
  • sealing part 60 that seals the gap between the lid part 50 and the container body 11. This configuration can reliably prevent leakage of culture fluid and contamination by floating matter. In the case of static culture, the sealing part 60 is not necessary because there is little possibility of leakage of culture fluid.
  • Fig. 8 is a plan view of the culture vessel 10 according to the third embodiment.
  • Fig. 9 is a cross-sectional view taken along line IX-IX of Fig. 8.
  • Fig. 10 is a partially cutaway side view of the culture vessel 10 according to the third embodiment. As shown in these figures, in the culture vessel 10 of the third embodiment, a plurality of vessel bodies 11 are connected via connection parts 70 .
  • the connecting portion 70 connects the container bodies 11 to each other in the left-right direction (short direction).
  • a flange portion 11d is formed on the opening edge of the opening 11a of the container body 11, and the connecting portion 70 connects the container bodies 11 to each other via the flange portion 11d.
  • the connecting portion 70 may be directly connected from one of the pair of side wall portions 20 to the side wall portion 20 of the other container body 11.
  • Such a connecting portion 70 can be molded integrally with the container body 11.
  • the connecting portion 70 may be configured to have a breakable weakened portion.
  • the weakened portion in this embodiment is composed of multiple thin columnar portions that connect the container bodies 11 together, as shown in FIG. 8. This allows the connecting portion 70 to be broken and separated into individual container bodies 11.
  • the weakened portion may be configured to have perforated holes in the flange portions 11d to make them less rigid than other portions, or to weaken a portion of the flange portion 11d by forming a portion that is preferably linear or curved and thinner in width in the left-right direction or thickness in the up-down direction than the other flange portions.
  • the lid portion 50 of the third embodiment is formed, for example, from a flexible film.
  • This film (lid portion 50) is detachable from the flange portion 11d of the container body 11 by a sealing portion 60 made of an adhesive.
  • the lid portion 50 may be configured to have breathability. For example, if the lid portion 50 is an oxygen-permeable film, it is possible to promote the cultivation of the microorganisms when the microorganisms to be cultivated are aerobic microorganisms.
  • the connecting portion 70 has a breakable weakened portion.
  • the lid portion 50 is a film
  • the sealing portion 60 is an adhesive that allows the film to be attached and detached.
  • the lid 50 has breathability.
  • the lid 50 may also have breathability.
  • the lid 50 is an oxygen-permeable film, it is possible to promote the culture of the microorganisms when the microorganisms to be cultured are aerobic microorganisms.
  • the lid 50 does not have to be breathable.
  • the microorganisms to be cultured are anaerobic microorganisms, it is possible to prevent the inflow of oxygen and the like from the outside of the culture vessel 10, and it is possible to promote the culture of the anaerobic microorganisms.
  • Fig. 11 is a side view of the culture vessel 10 according to the fourth embodiment.
  • Fig. 12 is a cross-sectional view taken along line XII-XII shown in Fig. 11.
  • protrusions 80 that protrude inwardly of the vessel body 11 are formed on a pair of side walls 20 .
  • the protrusions 80 are recesses formed on the outer surfaces of the pair of side walls 20.
  • a plurality of protrusions 80 are formed at intervals in the vertical direction, and form the liquid volume scale 12 described above.
  • the protrusions 80 are arranged in a row in the vertical direction, passing through the center position of the membrane filter 100.
  • the protrusions 80 become convex within the container body 11 and partially narrow the gap between the first opposing surfaces 21 of the pair of side wall portions 20. Note that the protrusions 80 on one of the pair of side wall portions 20 are aligned in the vertical direction with the protrusions 80 on the other of the pair of side wall portions 20, but their vertical positions may be staggered.
  • the pair of side wall portions 20 are formed with protrusions 80 that protrude inwardly into the vessel body 11.
  • the protrusions 80 prevent the membrane filter 100 from sticking to the first opposing surfaces 21 of the pair of side wall portions 20, making it easier to supply culture fluid to the microorganisms supported on the surface of the membrane filter 100.
  • Fig. 13 is an exploded perspective view of the culture vessel 10 according to the fifth embodiment.
  • Fig. 14 is a side view of the vessel body 11 according to the fifth embodiment.
  • Fig. 15 is a cross-sectional view taken along the arrows XV-XV shown in Fig. 14.
  • Fig. 16 is a plan view of the vessel body 11 according to the fifth embodiment.
  • a pair of side wall portions 20 are formed with inverted cone-shaped bulging portions 90 that partially widen the opening 11a in the short direction.
  • the bulging portion 90 is a convex portion formed on the outer surface of the pair of side wall portions 20.
  • the bulging portion 90 is formed from the upper ends of the pair of side wall portions 20 toward the bottom end of the container body 11.
  • the bulging portion 90 becomes a recess within the container body 11, and forms an enlarged diameter portion 11e that partially widens the longitudinal center portion of the opening 11a in the lateral direction, as shown in FIG. 16.
  • the enlarged diameter portion 11e has a circular shape in a plan view, and as shown in Figs. 15 and 16, the opening area decreases toward the bottom end of the container body 11.
  • the lid portion 50 is formed with a cylindrical housing portion 52b that houses the bulge portion 90, as shown in Fig. 13.
  • the pair of side walls 20 are formed with an inverted cone-shaped bulge 90 that partially widens the opening 11a in the short direction.
  • a pipette, a dropper, or the like can be inserted into the vessel body 11 through the enlarged diameter portion 11e formed by the bulge 90.
  • the cultured microorganisms leave the membrane filter 100 and float in the culture solution, they may accumulate thickly at the bottom of the vessel body 11 due to sedimentation caused by gravity.
  • the tip of the pipette or dropper can be inserted to the bottom of the vessel body 11 to collect the culture solution at the bottom of the vessel body 11.
  • the enlarged diameter portion 11e makes it possible to collect the culture solution from any height position of the vessel body 11 with a pipette or dropper.
  • the container body 11 and the lid 50 may be made of a material with suitable flexibility, and uneven parts may be formed on the container body 11 and the lid 50 so that they fit together, with the sealing being achieved by fitting the uneven parts together.
  • a material such as an adhesive that is different from the container body 11 and the lid 50, and it is possible to prevent leaching chemicals from foreign substances such as adhesives from flowing into the culture solution.
  • a membrane filter 100 is given as an example of a sheet-like object, but the object is not limited to this configuration, and may be any paper, plate, strip, film, sheet, or other sheet-like object that can support and cultivate microorganisms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

培養容器(10)は、スリット状に開口する開口部(11a)を有し、開口部(11a)からシート状の対象物(メンブレンフィルター(100))を縦に収容する容器本体(11)を備える。

Description

培養容器、微生物培養システム、及び核酸分析システム
 本発明は、培養容器、微生物培養システム、及び核酸分析システムに関する。
 下記特許文献1には、伝統的なシャーレに代わる簡便な培養容器が開示されている。この培養容器は、いずれも樹脂シート製の本体と蓋を備え、前記本体には培地が充填される凹部を形成し、前記蓋には前記本体の凹部に嵌合する凸部を形成するとともに、前記凸部の表面には試料採取用の粘着層を形成し、前記凹部に前記凸部を嵌合したとき、前記粘着層が前記培地に接触し、前記本体と蓋が、ヒンジ部により連結された形で同一の樹脂シートから製造されている。
特許第5103925号公報
 上記容器本体は、対象物を横置き(平置き)に収容するものであるため、培地が液体である場合、容器本体から零れやすく、操作し難いという問題があった。また、対象物がシート状であると、その少なくとも一部が、培地の液面に浮くことがあり、対象物に付着した微生物を培養できなくなる虞があった。
 本発明は、上記問題点に鑑みてなされたものであり、液体が零れ難く、操作が容易で、シート状の対象物が容器本体内で液中に沈んでいることを保証できる培養容器、及びその培養容器を用いた微生物培養システム、及び核酸分析システムの提供を目的とする。
 上記課題を解決するために、本発明の第1の態様による培養容器は、スリット状に開口する開口部を有し、前記開口部からシート状の対象物を縦に収容する容器本体を備える。
 本発明の第2の態様による培養容器は、本発明の第1の態様による培養容器において、前記容器本体は、前記開口部の短手方向に隣接する一対の側壁部を備え、前記一対の側壁部の下部は、円弧状に湾曲している。
 本発明の第3の態様による培養容器は、本発明の第2の態様による培養容器において、前記一対の側壁部の上部は、前記円弧状に連続する矩形状に形成されると共に、前記下部の上下方向の寸法よりも上下方向に長く形成されている。
 本発明の第4の態様による培養容器は、本発明の第2又は第3の態様による培養容器において、前記一対の側壁部の対向面の間隔が、前記容器本体の底部から前記開口部に向かうに従って広がっている。
 本発明の第5の態様による培養容器は、本発明の第1の態様から第4の態様のいずれかによる培養容器において、前記開口部の少なくとも一部に、傾斜を有する注ぎ口が形成されている。
 本発明の第6の態様による培養容器は、本発明の第1の態様から第5の態様のいずれかによる培養容器において、前記開口部の少なくとも一部を覆う蓋部を有する。
 本発明の第7の態様による培養容器は、本発明の第6の態様による培養容器において、前記蓋部が、通気性を有する。
 本発明の第8の態様による培養容器は、本発明の第6の態様または第7の態様による培養容器において、前記蓋部と前記容器本体との隙間を封止する封止部を有する。
 本発明の第9の態様による培養容器は、本発明の第8の態様による培養容器において、前記蓋部が、フィルムであり、前記封止部が、前記フィルムを着脱可能な粘着剤である。
 本発明の第10の態様による培養容器は、本発明の第1の態様から第9の態様のいずれかによる培養容器において、前記容器本体が、連結部を介して複数連結されている。
 本発明の第11の態様による培養容器は、本発明の第10の態様による培養容器において、前記連結部は、破断可能な弱化部を有する。
 本発明の第12の態様による培養容器は、本発明の第2の態様から第4の態様による培養容器において、前記一対の側壁部には、前記開口部を部分的に短手方向に広げる逆さ円錐状の膨出部が形成されている。
 本発明の第13の態様による培養容器は、本発明の第2の態様から第4の態様、第12の態様のいずれかによる培養容器において、前記一対の側壁部には、前記容器本体の内側に突出する突出部が形成されている。
 本発明の第14の態様による微生物培養システムは、本発明の第1の態様から第13の態様のいずれかによる培養容器を用いて、微生物の培養を行う。
 本発明の第15の態様による核酸分析システムは、本発明の第14の態様による微生物培養システムを備え、前記微生物より抽出した核酸を分析する。
 上記本発明の態様によれば、液体が零れ難く、操作が容易で、シート状の対象物が容器本体内で液中に沈んでいることを保証できる培養容器、及びその培養容器を用いた微生物培養システム、及び核酸分析システムの提供を提供できる。
第1実施形態に係る核酸分析システムの概略図である。 第1実施形態に係る培養容器の側面図である。 図2に示す矢視III-III断面図である。 第1実施形態に係る培養容器の平面図である。 第2実施形態に係る培養容器の部分破断側面図である。 図5に示す矢視VI-VI断面図である。 第2実施形態に係る培養容器の平面図である。 第3実施形態に係る培養容器の平面図である。 図8に示す矢視IX-IX断面図である。 第3実施形態に係る培養容器の部分破断側面図である。 第4実施形態に係る培養容器の側面図である。 図11に示す矢視XII-XII断面図である。 第5実施形態に係る培養容器の分解斜視図である。 第5実施形態に係る容器本体の側面図である。 図14に示す矢視XV-XV断面図である。 第5実施形態に係る容器本体の平面図である。
 以下、図面を参照して本発明の実施形態に係る培養容器、微生物培養システム、及び核酸分析システムについて詳細に説明する。以下では、まず本発明の実施形態の概要について説明し、続いて本発明の実施形態の詳細について説明する。
〔概要〕
 細菌等の微生物は、人体に悪影響をもたらす可能性があり、微生物の混入を検査する方法が望まれている。このような検査は、伝統的にはシャーレを用いて、微生物を寒天培地などの上で培養し、発生したコロニーの数を数えることで、微生物の混入や数を検査している。例えば、上記特許文献1では、このような伝統的に用いられるシャーレに変わり、試料の採取と培養を簡便に行い得る培養容器に関する技術が開示されている。
 一方で、培養により発生するコロニーによる検査では、コロニーが検査可能なサイズに成長するまでに、数日から数週間の培養時間を必要とする場合があり、より早く微生物の混入を検査する方法が望まれており、種々の迅速測定法が開発されている。例えば、微生物などの細胞を高温、高圧で処理することにより、微生物から核酸を抽出する技術や、ハイブリダイゼーションにより特定の核酸の配列を蛍光により計測する技術が開発されている。
 このような迅速測定の方法の1つとして、メンブレンフィルターにより微生物を捕集し、捕集した微生物が含まれる液体から核酸を抽出する技術がある。しかし、メンブレンフィルターに捕集された微生物からの核酸抽出では、計測に十分な量の核酸が抽出できず、微生物の検出ができない問題がある。このため、メンブレンフィルターにより捕集した微生物を培養により増やし、増えた微生物が含まれる液体から核酸を抽出して検査する技術が望まれている。
 ここで、上記特許文献1に開示されている培養容器は、寒天培地などの固体の培地を用いる培養に関するものである。そのため、この培養容器を用いてメンブレンフィルターにより捕集した微生物を液体にて培養することは出来ず、前述のような微生物が含まれる液体から核酸を抽出して検査を行うことができなかった。また、伝統的に培養に用いられるシャーレを用いて、メンブレンフィルターにより捕集した微生物を液体にて培養を行う場合、シャーレの開口が大きく、シャーレを移動させるなどの操作を行う際に、培養に用いる液体がこぼれやすく、操作しにくいという問題があった。
 また、微生物を液体にて培養を行う場合、微生物の培養状態が均一であることを保証するために、微生物が捕集されたメンブレンフィルターが液中に確実に沈んでいることを保証することが望ましい。しかしながら、伝統的に培養に用いられるシャーレを用いて、メンブレンフィルターにより捕集した微生物を液体にて培養を行う場合、メンブレンフィルターの少なくとも1部がシャーレの中で浮いてしまい、確実にメンブレンフィルターが培養液中に沈んでいることを保証することが難しかった。
 また、一方で確実にメンブレンフィルターが培養液中に沈んでいることを保証するためには、シャーレの中に入れる培養液を増やす必要がある。しかしながら培養液を増やしてしまうと、培養によって増えた微生物の量は、主として培養時間により決まり、同じ培養時間が経過した後の培養液に含まれる微生物の量は変わらないため、培養液に含まれる微生物の濃度は低下してしまうこととなる。すなわち、培養液を増やしてしまうと、同じ培養時間では液中に含まれる微生物の濃度は低くなるため、前述の検査にて微生物を検知することができない濃度の微生物量となる場合が生じ、微生物の検査に問題が生じる問題があった。また逆に検知可能な微生物の濃度まで培養を行うと、培養時間が長くなる問題があった。
 このような課題に対して、本発明の一実施形態に係る培養容器、微生物培養システム、及び核酸分析システムは、スリット状に開口する開口部を有し、当該開口部からシート状の対象物を縦に収容する容器本体を備える。これにより、容器本体の内容積を拡大することなく収容空間を深くできるため、液体が零れ難く、操作が容易になる。また、容器本体に縦にシート状の対象物を収容することで、当該対象物が液面上に浮き難くなる。これにより、少ない液量でも対象物が液中に沈んでいることを保証できる。したがって、シート状の対象物を用いた液体培地において、効率的な培養が可能となる。
〔第1実施形態〕
 図1は、第1実施形態に係る核酸分析システム1の概略図である。
 図1に示すように、核酸分析システム1は、微生物回収システム2と、微生物培養システム3と、核酸抽出システム4と、ハイブリダイズ反応システム5と、検出システム6と、を備えている。
 微生物回収システム2は、サンプル200から、サンプル200に含まれている微生物(ウィルスや細菌や真菌など)を回収するシステムである。サンプル200は、例えば、飲料を対象とした検査であれば、製造した飲料や、当該飲料を製造するための水、または、当該飲料を製造する過程の液体などである。あるいは、サンプル200は、製造環境の微生物による汚染の有無、汚染度合いを検査するために、検査環境をふき取った綿棒などから微生物を回収した液体である場合もある。
 微生物は、例えば、回収した液体に加圧あるいは減圧を加えることで、後述するメンブレンフィルター100(シート状の対象物)で濾過して回収することができる。メンブレンフィルター100は、例えば、微生物を回収する場合には、孔径が0.22μm~0.45μmであるとよい。メンブレンフィルター100で微生物を回収した後は、当該メンブレンフィルター100を後述する培養容器10に収容すると共に、微生物が培養される培養液に浸し、微生物培養システム3にて微生物の培養を行う。
 微生物培養システム3は、後述する培養容器10を用いて、微生物の培養を行うシステムである。微生物の培養では、例えば、培養容器10を静置して培養する静置培養と、培養容器10を振盪させながら培養を行う振盪培養とがある。微生物が培養された培養液は、次工程(核酸抽出システム4)に移される。メンブレンフィルター100を入れた液体を振動させ、微生物が懸濁した液を次工程に移してもよい。
 核酸抽出システム4は、液中の細胞の膜構造を破壊(溶解)し、微生物の細胞の核酸を抽出するシステムである。なお、核酸を抽出したサンプル200に、抽出した核酸と反応する他の核酸が含まれた液体を混ぜてもよい。また、当該他の核酸は、後述する検出工程(検出システム6)にて検出するために、特定の条件で蛍光や発光や消光作用を有する部位が付与された核酸であってもよい。これらは核酸抽出システム4にて処理をする前のサンプル200に混ぜても良いし、核酸抽出システム4にて処理をした後のサンプル200に対して混ぜても良い。
 ハイブリダイズ反応システム5は、サンプル200中の核酸にハイブリダイズ反応をさせるシステムである。なお、この工程にて、サンプル200は、例えば60℃に加熱されると共に撹拌されることにより、上述の他の核酸と合致するハイブリダイズ反応を行う。この反応にて、例えば、上述の他の核酸に付与した特定の条件で蛍光や発光や消光作用を有する部位が、サンプル200中の核酸と反応することで、蛍光や発光や消光作用が発現する。
 なお、上述の他の核酸の構造を、特定の核酸と反応するように設計することにより、例えば、サンプル200中の特定の微生物が持つ核酸とのみ反応させることができる。つまり、ハイブリダイズ反応システム5の処理では、当該特定の核酸と反応する他の核酸を用いることにより、サンプル200の中に特定の微生物が含まれている時のみ、他の核酸に付与した蛍光や発光や消光作用を発現するようにすることができる。
 検出システム6は、ハイブリダイズ反応システム5で処理したサンプル200において発現した蛍光や発光や消光作用の有無、その程度などを検出する。検出システム6は、例えば、サンプル200の核酸で発現した蛍光作用を、励起レーザー光にて励起し、励起後の蛍光を高感度カメラにて検出する。
 あるいは、検出システム6は、サンプル200の核酸で発現した発光作用を、高感度カメラにて検出する。あるいは、検出システム6は、サンプル200の核酸で発現した消光作用を、消光作用を付与した部位の近傍に付与した蛍光や発光が消光される程度を高感度カメラにて検出する。この検出方法に関しては、例えば、特開2020-74726号公報に記載されているような方法を採用してもよい。
 核酸分析システム1は、上述のような一連のシステムを用いることにより、サンプル200の中に特定の微生物(ウィルスや細菌や真菌など)が含まれているか、またはその濃度を分析する。
 図2は、第1実施形態に係る培養容器10の側面図である。図3は、図2に示す矢視III-III断面図である。図4は、第1実施形態に係る培養容器10の平面図である。 これらの図に示すように、培養容器10は、スリット状に開口する開口部11aを有し、開口部11aから円形のメンブレンフィルター100を縦に収容する容器本体11を備える。
 なお、「スリット状」とは、長方形のみならず、略長方形を含む。略長方形には、長方形の一部(例えば角部等)が円弧状、テーパー状等になったものを含み、また部分的に凹凸が形成されても全体としてスリットとみなせるものを含む。以下同様に、「~状」とは、上記と同じ広い意味で使用する。
 図2に示すように、開口部11aの長手方向の一端部には、傾斜を有する注ぎ口11bが形成されている。以下、培養容器10において、注ぎ口11bが形成される側を「前」、注ぎ口11bと反対側を「後」として、前後左右上下を規定する。なお、注ぎ口11bは、開口部11aの長手方向の両端部に形成されていてもよい。その場合、2つの注ぎ口11bのうち、一方の注ぎ口11bが形成される側を「前」、他方の注ぎ口11bが形成される側を「後」として、前後左右上下を規定する。
 容器本体11は、例えば、射出成形や、真空成形、圧空成形などで樹脂成形することができる。また、容器本体11は、例えば透明、半透明の樹脂で形成することができる。容器本体11を透明、半透明にすることで、内部のメンブレンフィルター100や、培養液を確認することができる。
 容器本体11は、図3に示すように、開口部11aの短手方向(左右方向)で隣接する一対の側壁部20を備える。一対の側壁部20の下部は、図2に示すように、円弧状に湾曲している。本実施形態では、メンブレンフィルター100が円形であるため、一対の側壁部20の下部が半円状に湾曲している。
 一対の側壁部20の上部は、下部の円弧状に連続する矩形状に形成されると共に、当該下部の上下方向の寸法よりも上下方向に長く形成されている。本実施形態では、一対の側壁部20の上部の上下方向の寸法は、メンブレンフィルター100の半径以上の寸法を有する。つまり、一対の側壁部20の上部は、縦置きのメンブレンフィルター100の上端より高い位置まで延在している。
 一対の側壁部20の外表面には、液量目盛12が設けられている。液量目盛12は、少なくとも縦置きのメンブレンフィルター100の上端より高い位置に1つあればよい。液量目盛12まで培養液を注ぐことで、メンブレンフィルター100を確実に液中に沈めることができる。液量目盛12は、容器本体11に印刷により形成してもよいし、容器本体11の外表面に凹凸を設けて形成してもよい。
 図3に示すように、一対の側壁部20は、互いの対向面の間隔が、容器本体11の底部11cから開口部11aに向かうに従って徐々に広がっている。一対の側壁部20は、第1対向面21と、第2対向面22と、を備えている。第1対向面21は、容器本体11の底部11cからメンブレンフィルター100より上方まで延在している。第1対向面21は、メンブレンフィルター100を縦に収容可能な狭隘空間を形成している。
 第2対向面22は、第1対向面21の上端に連設され、第1対向面21の傾斜よりも水平面に対する傾斜が緩くなり、左右方向両側に広がっている。第2対向面22は、メンブレンフィルター100より上方において、開口部11aの短手方向の幅を広げることで、メンブレンフィルター100を容器本体11内に挿入し易くしている。
 一対の側壁部20の周縁部は、図2に示すように、注ぎ口11bを含む開口部11a以外の部分が、前壁部30と後壁部40によって接続されている。前壁部30は、図4に示すように、湾曲面31と、傾斜面32と、を有する。傾斜面32は、注ぎ口11bの下端から下方に向かって傾斜している。傾斜面32は、後壁部40と前後方向(開口部11aの長手方向)で対向している。湾曲面31は、傾斜面32の下端から容器本体11内の最下端まで延在している。湾曲面31は、容器本体11の円弧状の底部11c(図2参照)の前側部分を形成している。
 後壁部40も、図4に示すように、湾曲面41と、傾斜面42と、を有する。傾斜面42は、後壁部40の上端から下方に向かって傾斜している。傾斜面42は、前壁部30の傾斜面32と前後方向(開口部11aの長手方向)で対向している。湾曲面41は、傾斜面42の下端から容器本体11内の最下端まで延在している。湾曲面41は、前壁部30の湾曲面31と前後方向(開口部11aの長手方向)で対向すると共に、容器本体11の円弧状の底部11c(図2参照)の後側部分を形成している。
 このように、本実施形態の培養容器10は、スリット状に開口する開口部11aを有し、開口部11aからメンブレンフィルター100(シート状の対象物)を縦に収容する容器本体11を備える。この構成によれば、図3に示すように、容器本体11の内容積を拡大することなく収容空間を深くできるため、培養液が零れ難く、操作が容易になる。また、容器本体11に縦にメンブレンフィルター100を収容することで、メンブレンフィルター100が液面上に浮き難くなる。これにより、少ない液量でもメンブレンフィルター100が液中に沈んでいることを保証できる。したがって、メンブレンフィルター100を用いた液体培地において、効率的な培養が可能となる。
 また、本実施形態において、容器本体11は、開口部11aの短手方向に隣接する一対の側壁部20を備え、一対の側壁部20の下部は、図2に示すように、円弧状に湾曲している。この構成によれば、容器本体11内のデッドスペースを削減し、少ない液量でもメンブレンフィルター100を液中に沈めることができる。
 また、本実施形態において、一対の側壁部20の上部は、下部の円弧状に連続する矩形状に形成されると共に、当該下部の上下方向の寸法よりも上下方向に長く形成されている。この構成によれば、メンブレンフィルター100を折るなど変形させることなく、容器本体11の開口部11aから底部11cまで挿入することができる。
 また、本実施形態において、一対の側壁部20の対向面の間隔が、図3に示すように、容器本体11の底部11cから開口部11aに向かうに従って広がっている。この構成によれば、容器本体11にメンブレンフィルター100を、より収容し易くなる。また、容器本体11を射出成形や、真空成形、圧空成形などで形成する場合、金型から離型されやすくなり形状の形成が容易となる。
 また、本実施形態において、図2及び図4に示すように、開口部11aの少なくとも一部に、傾斜を有する注ぎ口11bが形成されている。この構成によれば、微生物の培養後の培養液を容易に別の容器に移しかえることが可能となり、簡便に次の工程に進めることが可能となる。
 上述したように、本実施形態によれば、液体が零れ難く、操作が容易で、シート状の対象物が容器本体11内で液中に沈んでいることを保証できる培養容器10、及びその培養容器10を用いた微生物培養システム、及び核酸分析システムを提供できる。
〔第2実施形態〕
 次に、本発明の第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成については同一の符号を付し、その説明を簡略若しくは省略する。
 図5は、第2実施形態に係る培養容器10の部分破断側面図である。図6は、図5に示す矢視VI-VI断面図である。図7は、第2実施形態に係る培養容器10の平面図である。
 これらの図に示すように、第2実施形態の培養容器10は、開口部11aの少なくとも一部を覆う蓋部50を有する。
 蓋部50は、有頂筒状に形成されている。蓋部50は、頂壁部51と、周壁部52と、を備えている。頂壁部51は、容器本体11の注ぎ口11bを含む開口部11aの全域を覆っている。頂壁部51は、図7に示す平面視で、前側(注ぎ口11b側)が凸となった直角五角形状を有する。
 周壁部52は、図6に示すように、頂壁部51の周縁部から下方に向けて垂設され、容器本体11の開口部11aを側方から囲っている。周壁部52の内側には、封止部60をさらに設けてもよい。封止部60は、蓋部50と容器本体11との隙間を封止する。封止部60は、例えば、可撓性のゴムやエラストマー等を用いることができる。あるいは容器本体11と蓋部50との嵌め合いにより封止する構造としてもよい。
 このように、第2実施形態の培養容器10は、開口部11aの少なくとも一部を覆う蓋部50を有する。この構成によれば、例えば、振盪培養をする場合に、容器本体11内の培養液が蓋部50により外部に漏れ出ることを防止できる。また、開口部11aを閉塞していることで、空中に浮遊している微生物や異物等が容器本体11内に落下することによるコンタミネーションを防止できる。
 また、本実施形態において、蓋部50と容器本体11との隙間を封止する封止部60を有する。この構成によれば、培養液の漏れ及び浮遊物のコンタミネーションを確実に防止できる。なお、静置培養の場合には、培養液の漏れの可能性が少ないため、封止部60は無くてもよい。
〔第3実施形態〕
 次に、本発明の第3実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成については同一の符号を付し、その説明を簡略若しくは省略する。
 図8は、第3実施形態に係る培養容器10の平面図である。図9は、図8に示す矢視IX-IX断面図である。図10は、第3実施形態に係る培養容器10の部分破断側面図である。
 これらの図に示すように、第3実施形態の培養容器10は、容器本体11が、連結部70を介して複数連結されている。
 連結部70は、図8に示すように、容器本体11同士を左右方向(短手方向)に連結している。第3実施形態では、図9に示すように、容器本体11の開口部11aの開口縁にフランジ部11dが形成されており、連結部70は、フランジ部11dを介して容器本体11同士を連結させている。なお、連結部70は、一対の側壁部20のいずれか一方から、他の容器本体11の側壁部20に直接連結されていても構わない。このような連結部70は、容器本体11と一体成形することができる。
 連結部70は、破断可能な弱化部を有する構成としても良い。本実施形態の弱化部は、図8に示すように、容器本体11の間を接続する複数の細い柱状部からなる。これにより、連結部70を破断し、個々の容器本体11に分離できる。なお、弱化部としては、例えば、フランジ部11d同士が接続される場合、フランジ部11dにミシン目状に穴を設け、他の部分より剛性を弱くする構成としても良いし、また、フランジ部11dの一部を望ましくは直線あるいは曲線状に他のフランジ部より左右方向の幅ないし上下方向の厚みの薄い部分を形成することで弱くする構成としてもよい。
 第3実施形態の蓋部50は、例えば、可撓性のフィルムで形成されている。このフィルム(蓋部50)は、粘着剤からなる封止部60によって、容器本体11のフランジ部11dに対し着脱可能とされている。なお、蓋部50は、通気性を有する構成としてもよい。例えば、蓋部50が、酸素透過フィルムなどであると、培養を行う微生物が好気性の微生物である場合、微生物の培養を促進することが可能となる。
 このように、第3実施形態の培養容器10は、容器本体11が、連結部70を介して複数連結されている。この構成によれば、微生物の検査において複数の検査を同時に行う場合であっても、複数の検査を集約して行うことが可能となり、培養容器10の管理及び操作が煩雑にならずに済む。
 また、第3実施形態において、連結部70は、破断可能な弱化部を有する。この構成によれば、連結された容器本体11を目的に応じて個別に分離して、培養、検査することができるため、操作性が向上する。
 また、第3実施形態において、蓋部50が、フィルムであり、封止部60が、フィルムを着脱可能な粘着剤である。この構成によれば、蓋部50がフィルムであるため、簡便に容器本体11の開口部11aを開閉することが可能となる。また、蓋部50と連結部70との干渉を避けて、簡便に蓋部50を配置することができる。
 また、第3実施形態において、蓋部50が、通気性を有する。なお、第2実施形態及び後述する第5実施形態においても、蓋部50は、通気性を有してもよい。例えば、蓋部50が、酸素透過フィルムなどであると、培養を行う微生物が好気性の微生物である場合、微生物の培養を促進することが可能となる。
 なお、蓋部50が、通気性を有さなくてもよい。例えば、培養を行う微生物が嫌気性の微生物である場合、培養容器10外からの酸素などの流入を阻止することが可能となり、嫌気性の微生物の培養を促進することが可能となる。
〔第4実施形態〕
 次に、本発明の第4実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成については同一の符号を付し、その説明を簡略若しくは省略する。
 図11は、第4実施形態に係る培養容器10の側面図である。図12は、図11に示す矢視XII-XII断面図である。
 これらの図に示すように、第4実施形態の培養容器10は、一対の側壁部20に、容器本体11の内側に突出する突出部80が形成されている。
 突出部80は、図11に示すように、一対の側壁部20の外表面に形成された凹部である。突出部80は、上下方向に間隔をあけて複数形成されると共に、上述した液量目盛12を形成している。突出部80は、メンブレンフィルター100の中心位置を通るように、上下方向に列を成している。
 突出部80は、図12に示すように、容器本体11内では凸部となり、一対の側壁部20の第1対向面21の間隔を部分的に狭めている。なお、一対の側壁部20のうち、一方に設けられた突出部80は、他方に設けられた突出部80と上下方向の位置が一致しているが、上下方向の位置が互い違いになっていてもよい。
 このように、第4実施形態の培養容器10において、一対の側壁部20には、容器本体11の内側に突出する突出部80が形成されている。この構成によれば、突出部80によって、一対の側壁部20の第1対向面21へのメンブレンフィルター100の貼り付きを抑制し、メンブレンフィルター100の表面に支持された微生物に培養液を供給し易くなる。
〔第5実施形態〕
 次に、本発明の第5実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成については同一の符号を付し、その説明を簡略若しくは省略する。
 図13は、第5実施形態に係る培養容器10の分解斜視図である。図14は、第5実施形態に係る容器本体11の側面図である。図15は、図14に示す矢視XV-XV断面図である。図16は、第5実施形態に係る容器本体11の平面図である。
 これらの図に示すように、第5実施形態の培養容器10は、一対の側壁部20に、開口部11aを部分的に短手方向に広げる逆さ円錐状の膨出部90が形成されている。
 膨出部90は、一対の側壁部20の外表面に形成された凸部である。膨出部90は、一対の側壁部20の上端から容器本体11の最下端に向かって形成されている。膨出部90は、容器本体11内では凹部となり、図16に示すように、開口部11aの長手方向の中央部を部分的に短手方向に広げる拡径部11eを形成している。
 拡径部11eは、平面視円形状を呈し、図15及び図16に示すように、容器本体11の最下端に向かうに従ってその開口面積が小さくなっている。なお、蓋部50には、図13に示すように、膨出部90を収容する筒状の収容筒部52bが形成されている。
 このように、第5実施形態の培養容器10において、一対の側壁部20には、開口部11aを部分的に短手方向に広げる逆さ円錐状の膨出部90が形成されている。この構成によれば、一対の側壁部20の第1対向面21の間隔が狭い場合であっても、膨出部90による拡径部11eを介して、ピペットやスポイト等を容器本体11内に挿入することができる。培養後の微生物は、メンブレンフィルター100を離れ、また培養液中に浮遊する場合には、重力による沈降により、容器本体11の下部に濃く溜まる場合がある。その場合であっても、ピペットやスポイトの先端を容器本体11の下部まで挿し入れ、容器本体11の下部の培養液を捕集することができる。また、拡径部11eによって、ピペットやスポイトを、容器本体11の任意の高さ位置から培養液を捕集することが可能となる。
 以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、容器本体11及び蓋部50を適度な可撓性を有する材料で構成し、容器本体11及び蓋部50にそれぞれが嵌合するように凹凸部を形成し、凹凸の勘合により封止を行う構成としてもよい。このような構成とすることにより、粘着剤など容器本体11や蓋部50とは異なる材料を使用する必要がなくなり、粘着剤などの異物質からの溶出化学物質が培養液に流入することを防止することが可能となる。
 また、例えば、上記実施形態では、シート状の対象物として、メンブレンフィルター100を例示したが、当該構成に限定されるものではなく、微生物を支持して培養できるものであれば、紙体、板体、帯状体、フィルム体、シート体、その他のシート状の物体であればよい。
 1 核酸分析システム
 2 微生物回収システム
 3 微生物培養システム
 4 核酸抽出システム
 5 ハイブリダイズ反応システム
 6 検出システム
 10 培養容器
 11 容器本体
 11a 開口部
 11b 注ぎ口
 11c 底部
 11d フランジ部
 11e 拡径部
 12 液量目盛
 20 側壁部
 21 第1対向面
 22 第2対向面
 30 前壁部
 31 湾曲面
 32 傾斜面
 40 後壁部
 41 湾曲面
 42 傾斜面
 50 蓋部
 51 頂壁部
 52 周壁部
 52b 収容筒部
 60 封止部
 70 連結部
 80 突出部
 90 膨出部
 100 メンブレンフィルター
 200 サンプル

Claims (15)

  1.  スリット状に開口する開口部を有し、前記開口部からシート状の対象物を縦に収容する容器本体を備える、
     培養容器。
  2.  前記容器本体は、前記開口部の短手方向に隣接する一対の側壁部を備え、
     前記一対の側壁部の下部は、円弧状に湾曲している、
     請求項1に記載の培養容器。
  3.  前記一対の側壁部の上部は、前記円弧状に連続する矩形状に形成されると共に、前記下部の上下方向の寸法よりも上下方向に長く形成されている、
     請求項2に記載の培養容器。
  4.  前記一対の側壁部の対向面の間隔が、前記容器本体の底部から前記開口部に向かうに従って広がっている、
     請求項2に記載の培養容器。
  5.  前記開口部の少なくとも一部に、傾斜を有する注ぎ口が形成されている、
     請求項1に記載の培養容器。
  6.  前記開口部の少なくとも一部を覆う蓋部を有する、
     請求項1に記載の培養容器。
  7.  前記蓋部が、通気性を有する、
     請求項6に記載の培養容器。
  8.  前記蓋部と前記容器本体との隙間を封止する封止部を有する、
     請求項6に記載の培養容器。
  9.  前記蓋部が、フィルムであり、
     前記封止部が、前記フィルムを着脱可能な粘着剤である、
     請求項8に記載の培養容器。
  10.  前記容器本体が、連結部を介して複数連結されている、
     請求項1に記載の培養容器。
  11.  前記連結部は、破断可能な弱化部を有する、
     請求項10に記載の培養容器。
  12.  前記一対の側壁部には、前記開口部を部分的に短手方向に広げる逆さ円錐状の膨出部が形成されている、
     請求項2に記載の培養容器。
  13.  前記一対の側壁部には、前記容器本体の内側に突出する突出部が形成されている、
     請求項2に記載の培養容器。
  14.  請求項1~13のいずれか一項に記載の培養容器を用いて、微生物の培養を行う、
     微生物培養システム。
  15.  請求項14に記載の微生物培養システムを備え、前記微生物より抽出した核酸を分析する、
     核酸分析システム。
PCT/JP2023/039864 2022-11-07 2023-11-06 培養容器、微生物培養システム、及び核酸分析システム WO2024101305A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022178035A JP2024067730A (ja) 2022-11-07 2022-11-07 培養容器、微生物培養システム、及び核酸分析システム
JP2022-178035 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024101305A1 true WO2024101305A1 (ja) 2024-05-16

Family

ID=91032409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039864 WO2024101305A1 (ja) 2022-11-07 2023-11-06 培養容器、微生物培養システム、及び核酸分析システム

Country Status (2)

Country Link
JP (1) JP2024067730A (ja)
WO (1) WO2024101305A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198438A (ja) * 2012-03-26 2013-10-03 Terumo Corp 細胞培養装置
JP2021185814A (ja) * 2020-05-29 2021-12-13 テルモ株式会社 移植片を移送するための容器
JP2022106580A (ja) * 2021-01-07 2022-07-20 横河電機株式会社 容器、培養キット、核酸分析システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198438A (ja) * 2012-03-26 2013-10-03 Terumo Corp 細胞培養装置
JP2021185814A (ja) * 2020-05-29 2021-12-13 テルモ株式会社 移植片を移送するための容器
JP2022106580A (ja) * 2021-01-07 2022-07-20 横河電機株式会社 容器、培養キット、核酸分析システム

Also Published As

Publication number Publication date
JP2024067730A (ja) 2024-05-17

Similar Documents

Publication Publication Date Title
US20230416663A1 (en) Cassette for sterility testing
JP4002720B2 (ja) 一細胞長期培養顕微観察装置
US5554536A (en) Biological analysis device having improved contamination prevention
US20020172621A1 (en) Device having microchambers and microfluidics
KR102106589B1 (ko) 단일 세포 분리를 위한 미세유체 분취 방법
US20140106397A1 (en) Systems and methods for detecting an analyte of interest in a sample using filters and microstructured surfaces
US8658422B2 (en) Culture plate comprising a lid for lateral ventilation
US20150153257A1 (en) Sample preparation device
WO2006089354A1 (en) Culture device
US20150343439A1 (en) Single column microplate system and carrier for analysis of biological samples
JP6207815B2 (ja) フィルタリング部材及びフィルタリング方法
US20130189770A1 (en) Sample testing device
WO2024101305A1 (ja) 培養容器、微生物培養システム、及び核酸分析システム
CN102816683B (zh) 一种生化培养与检测装置及其检测方法
CN116004371B (zh) 一种扩增杂交一体化基因芯片及核酸扩增和杂交的方法
WO2013004644A1 (en) Microfluidic device with integrated sensors for cultivation of cells
CN111925907A (zh) 一种组合式核酸检测装置
CN203700358U (zh) 一次性微生物快速培养检测器皿
US20140045253A1 (en) Multi-compartment device for cell cloning and method of performing the same
CN212476703U (zh) 一种组合式核酸检测装置
JP2011135826A (ja) 浮遊細胞の培養方法及び浮遊細胞の観察方法
US20240060026A1 (en) Manufacturable co-culture module
CN218401710U (zh) 一种致病细菌荧光定量pcr检测试剂盒
US20240117406A1 (en) Centrifugal filtration cartridge and microbial test method
JP7251617B2 (ja) 細胞評価用デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888653

Country of ref document: EP

Kind code of ref document: A1