WO2024101160A1 - 通信装置及び通信方法 - Google Patents

通信装置及び通信方法 Download PDF

Info

Publication number
WO2024101160A1
WO2024101160A1 PCT/JP2023/038557 JP2023038557W WO2024101160A1 WO 2024101160 A1 WO2024101160 A1 WO 2024101160A1 JP 2023038557 W JP2023038557 W JP 2023038557W WO 2024101160 A1 WO2024101160 A1 WO 2024101160A1
Authority
WO
WIPO (PCT)
Prior art keywords
aiml
frame
sta
mlme
ndp
Prior art date
Application number
PCT/JP2023/038557
Other languages
English (en)
French (fr)
Inventor
隆之 中野
裕幸 本塚
嘉夫 浦部
敬 岩井
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Publication of WO2024101160A1 publication Critical patent/WO2024101160A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This disclosure relates to a communication device and a communication method.
  • Non-Patent Document 1 Artificial intelligence (AI) or machine learning (ML) technologies for wireless local area networks (LANs) are being studied in industry and academia (for example, Non-Patent Document 1).
  • the IEEE (Institute of Electrical and Electronics Engineers) 802.11 Committee launched a Topic Interest Group (TIG) on AI/ML (hereinafter also referred to as AIML) in July 2022 and began discussions (for example, Non-Patent Document 2).
  • TAG Topic Interest Group
  • CSI compression which aims to reduce the amount of channel state information (CSI) feedback (see, for example, Non-Patent Document 3).
  • NDP NDP Announcement
  • PLCP Physical Layer Convergence Protocol
  • a communication device has a control unit that generates a frame including information (STA Info) of each STA (also referred to as Station, Terminal, or Node), where at least one of the STA Info is sounding NDP info for AI/ML, and a communication unit that transmits the generated frame.
  • STA Info information of each STA
  • Node station, Terminal, or Node
  • NDP info sounding NDP info for AI/ML
  • STAs can specify a sounding NDP format for AI/ML for each STA. Also, a STA can specify a mixture of multiple sounding NDP formats.
  • a Node can notify each other Node (STA) by specifying a subfield (AIML sounding NDP info) that defines the sounding NDP format for AI/ML.
  • AIML sounding NDP info a subfield that defines the sounding NDP format for AI/ML.
  • Figures 1 and 2 show example sounding procedures for AI/ML.
  • the example procedure in Figure 1 shows an example of a non-trigger-based (non-TB) sounding procedure.
  • the example procedure in Figure 2 shows an example of a trigger-based (TB) sounding procedure.
  • Both example procedures consist of three phases: the AIML measurement setup phase (AIML Measurement Setup Phase), the AIML measurement phase (AIML Measurement Phase), and the AIML measurement termination phase (AIML Measurement Termination Phase).
  • the AIML measurement setup phase is a phase for configuring sounding for AI/ML.
  • the AIML measurement phase is a phase for sending NDPA (NDP Announcement) and performing measurements using NDP.
  • the AIML measurement stop phase is a phase for stopping the sounding configuration for AI/ML.
  • Figures 1 and 2 show two procedures for the AIML measurement stop phase: a procedure starting from the AIML initiating STA and a procedure starting from the AIML peer STA. Either procedure may be used for the AIML measurement stop phase.
  • SME station management entity
  • MLME MAC (Media Access Control) sublayer management entity
  • An AIML initiating STA is an STA that instructs sounding for AIML
  • an AIML peer STA is an STA that receives instructions for sounding for AIML.
  • An AIML initiating STA can perform the AI/ML sounding procedure described in Figure 1 or Figure 2 for each AIML peer STA.
  • Figures 3 to 6 show the interface names (frame names) and functions of each phase in the sounding procedure examples in Figures 1 and 2.
  • the SME of the AIML initiating STA sends an MLME-AIMLMSMTSETUP.request to the MLME of the AIML initiating STA (S100, S200).
  • the MLME-AIMLMSMTSETUP.request is a frame that requests the transmission of an AIML Measurement Setup Request frame to the peer STA.
  • the MLME of the AIML initiating STA that receives the MLME-AIMLMSMTSETUP.request sends an AIML Measurement Setup Request frame to the MLME of the AIML peer STA (S101, S201).
  • the AIML Measurement Setup Request frame is a frame that instructs the peer STA to set up sounding for AIML.
  • the MLME of the AIML peer STA that receives the AIML Measurement Setup Request frame sends an MLME-AIMLMSMTSETUP.indication to the SME of the AIML peer STA (S102, S202).
  • the MLME-AIMLMSMTSETUP.indication is a frame indicating that the AIML Measurement Setup Request frame has been received.
  • the SME of the AIML peer STA that receives the MLME-AIMLMSMTSETUP.indication sends an MLME-AIMLMSMTSETUP.response to the MLME of the AIML peer STA (S103, S203).
  • the MLME-AIMLMSMTSETUP.response is a response signal to the MLME-AIMLMSMTSETUP.indication, and is a frame that requests the transmission of an AIML Measurement Setup Response frame.
  • the MLME of the AIML peer STA that receives the MLME-AIMLMSMTSETUP.response sends an AIML Measurement Setup Response frame to the MLME of the AIML initiating STA (S104, S204).
  • the AIML Measurement Setup Response frame is a frame that responds to the AIML initiating STA as to whether or not the peer STA has accepted the sounding settings for AIML.
  • the MLME of the AIML initiating STA that receives the AIML Measurement Setup Response frame sends MLME-AIMLMSMTSETUP.confirm to the SME of the AIML initiating STA (S105, S205).
  • MLME-AIMLMSMTSETUP.confirm is a signal indicating that the AIML Measurement Setup Response frame has been received.
  • the procedure for the AIML measurement phase will be explained.
  • the procedure for the AIML measurement phase differs between the non-trigger-based AIML measurement phase shown in Figure 1 and the trigger-based AIML measurement phase shown in Figure 2.
  • First, the procedure for the non-trigger-based AIML measurement phase shown in Figure 1 will be explained.
  • the SME of the AIML initiating STA that receives MLME-AIMLMSMTSETUP.confirm in the AIML measurement setup phase sends an MLME-AIMLMSMTRQ.request to the MLME of the AIML initiating STA (S110).
  • the MLME-AIMLMSMTRQ.request is a frame that requests the transmission of sounding for non-trigger-based AIML to the peer STA. Sounding for AIML is performed, for example, by NDPA and NDP.
  • the MLME of the AIML initiating STA that receives the MLME-AIMLMSMTRQ.request sends an NDPA to the MLME of the AIML peer STA (S111).
  • the NDPA is a frame that specifies the format of the sounding NDP.
  • the MLME of the AIML initiating STA sends an NDP corresponding to the specification in the NDPA to the MLME of the AIML peer STA (S112).
  • the NDP is a sounding NDP frame.
  • the MLME of the AIML peer STA that receives the NDP sends an MLME-AIMLREPORT.indication to the SME of the AIML peer STA (S113).
  • the MLME-AIMLREPORT.indication is a frame indicating that a measurement has been performed by sounding NDP.
  • the MLME of the AIML peer STA sends an NDP to the MLME of the AIML initiating STA (S114).
  • the MLME of the AIML initiating STA that received the NDP sends an MLME-AIMLREPORT.indication to the SME of the AIML initiating STA (S115).
  • the MLME-AIMLREPORT.indication is a frame indicating that measurements have been performed using non-trigger-based sounding NDP.
  • the SME of the AIML peer STA that receives the MLME-AIMLREPORT.indication sends an MLME-AIMLREPORTRQ.request to the MLME of the AIML peer STA (S116).
  • the MLME-AIMLREPORTRQ.request is a frame that requests the transmission of an AIML Measurement Report frame.
  • the MLME of the AIML peer STA that receives the MLME-AIMLREPORTRQ.request sends an AIML Measurement Report frame to the MLME of the AIML initiating STA (S117).
  • the AIML Measurement Report frame is a frame that reports the sounding measurement results for AIML to the other STA.
  • the MLME of the AIML peer STA also sends MLME-AIMLREPORTRQ.confirm to the SME of the AIML peer STA (S119).
  • MLME-AIMLREPORTRQ.confirm is a frame that indicates that the AIML Measurement Report frame has been sent.
  • the MLME of the AIML initiating STA that receives the AIML Measurement Report frame sends MLME-AIMLMSMTRQ.confirm to the SME of the AIML initiating STA (S118).
  • the SME of the AIML initiating STA that receives the MLME-AIMLMSMT.indication sends an MLME-AIMLREPORTRQ.request to the MLME of the AIML initiating STA (S120).
  • the MLME of the AIML initiating STA that receives the MLME-AIMLREPORTRQ.request sends an AIML Measurement Report frame to the MLME of the AIML peer STA (S121).
  • the MLME of the AIML peer STA that receives the AIML Measurement Report frame sends MLME-AIMLREPORTRQ.confirm to the SME of the AIML peer STA (S122).
  • Figure 1 shows an example in which the MLME notifies the SME of the measurement result by MLME-AIMLREPORT.indication, and an example in which the MLME notifies the SME of the measurement result report received by MLME-AIMLMSMTRQ.confirm.
  • the measurement result may also be notified to an external application or higher layer.
  • Figure 1 shows an example in which the measurement results are sent to the remote STA, but the measurement results may be used for some operation without being sent, or the measurement results may be sent to the remote STA while the source STA uses the measurement results for some operation.
  • the SME or MLME may include an application that uses the measurement results.
  • the SME of the AIML initiating STA that received MLME-AIMLMSMTSETUP.confirm in the AIML measurement setup phase sends MLME-AIMLTBMSMTRQ.request to the MLME of the AIML initiating STA (S210).
  • the MLME-AIMLTBMSMTRQ.request is a frame that requests trigger-based sounding for AIML (sending NDPA and NDP) to the peer STA. Sounding for AIML is performed, for example, by NDPA and NDP.
  • the MLME of the AIML initiating STA that receives the MLME-AIMLTBMSMTRQ.request sends an AIML Poll frame to the MLME of the AIML peer STA (S211).
  • the AIML Poll frame is a frame that polls the peer STA for AIML sounding.
  • the MLME of the AIML peer STA that receives the AIML Poll frame sends a CTS-to-self to the MLME of the AIML initiating STA (S212).
  • CTS-to-self is a response frame to the AIML Poll frame.
  • the MLME of the AIML initiating STA that received the MLME-AIMLTBMSMTRQ.request receives CTS-to-self from the AIML peer MLME, it sends an AIML NDPA frame (NDPA) to the MLME of the AIML peer STA that sent CTS-to-self (S213).
  • NDPA AIML NDPA frame
  • the AIML NDPA frame is a frame that specifies the format of the sounding NDP for AIML.
  • the MLME of the AIML initiating STA that receives the MLME-AIMLTBMSMTRQ.request and CTS-to-self sends an NDP corresponding to the specification in the AIML NDPA frame to the MLME of the AIML peer STA (S214).
  • the NDP is a sounding NDP frame.
  • the MLME of the AIML initiating STA that receives the MLME-AIMLTBMSMTRQ.request and CTS-to-self sends an AIML Report Trigger frame to the MLME of the AIML peer STA (S217).
  • the AIML Report Trigger frame is a frame that requests the peer STA to send an AIML Measurement Report frame.
  • the MLME of the AIML initiating STA that received the MLME-AIMLTBMSMTRQ.request and CTS-to-self sends an AIML Trigger frame to the MLME of the AIML peer STA (S221).
  • the AIML Trigger frame is a frame that requests the transmission of an NDP.
  • NDP for AI/ML can be sent to each STA, and measurements can be performed using the NDP received by each node.
  • the MLME of the AIML peer STA that receives the NDP sends an MLME-AIMLTBREPORT.indication to the SME of the AIML peer STA (S215).
  • the MLME-AIMLTBREPORT.indication is a frame indicating that measurements have been performed using trigger-based sounding NDP.
  • the SME of the AIML peer STA that receives the MLME-AIMLTBREPORT.indication sends an MLME-AIMLTBREPORTRQ.request to the MLME of the AIML peer STA (S216).
  • the MLME-AIMLTBREPORTRQ.request is a frame that requests the transmission of an AIML Measurement Report frame.
  • the MLME of the AIML peer STA that receives the MLME-AIMLTBREPORTRQ.request and AIML Report Trigger frame transmits an AIML Measurement Report frame to the MLME of the AIML initiating STA (S218).
  • the AIML Measurement Report frame is a frame that reports the AIML sounding measurement results to the other STA.
  • the MLME of the AIML peer STA transmits MLME-AIMLTBREPORTRQ.confirm to the SME of the AIML peer STA (S220). This frame reports the results of the AIML Measurement Report frame transmission request.
  • the AIML Measurement Report frame may be transmitted when either one of the MLME-AIMLTBREPORTRQ.request and AIML Report Trigger frames is received, instead of when both are received.
  • the MLME of the AIML initiating STA that receives the AIML Measurement Report frame sends MLME-AIMLTBMSMTRQ.confirm to the SME of the AIML initiating STA (S219).
  • the MLME of the AIML peer STA that receives the AIML Trigger frame sends an NDP to the MLME of the AIML initiating STA (S222).
  • the NDP transmission at S222 in Figure 2 shows an example of an operation that uses the measurement results without sending the measurement results to the peer STA.
  • the MLME of the AIML initiating STA that receives the NDP sends an MLME-AIMLTBREPORT.indication to the SME of the AIML initiating STA (S223).
  • the measurement results are sent to the remote STA, but the measurement results may be used for some operation without being sent, or the measurement results may be sent to the remote STA while the source STA uses the measurement results for some operation.
  • the SME or MLME may include an application that uses the measurement results.
  • the measurement results are not sent to the other STA but are used to perform an operation, but the measurement results may be sent to the other STA, or the measurement results may be sent to the other STA while the source STA performs an operation using the measurement results.
  • the SME or MLME may include an application that performs an operation using the measurement results.
  • the AIML measurement stop phase shows the procedure starting from the AIML initiating STA and the procedure starting from the AIML peer STA.
  • the SME of the AIML initiating STA sends an MLME-AIMLMSMTTERMINATION.request to the MLME of the AIML initiating STA (S130, S230).
  • the MLME-AIMLMSMTTERMINATION.request is a frame that requests the transmission of an AIML Measurement Setup Termination frame.
  • the AIML Measurement Setup Termination frame is a frame that instructs the cancellation of the AIML sounding settings.
  • the MLME of the AIML peer STA that receives the AIML Measurement Setup Termination frame sends an MLME-AIMLMSMTTERMINATION.indication to the SME of the AIML peer STA (S132, S232).
  • the MLME-AIMLMSMTTERMINATION.indication is a frame indicating that the AIML Measurement Setup Termination frame has been received.
  • the MLME of the AIML peer STA that receives the AIML Measurement Setup Termination frame sends an Ack to the MLME of the AIML initiating STA (S133, S233).
  • the Ack is an acknowledgment frame.
  • the MLME of the AIML initiating STA that receives the Ack sends MLME-AIMLMSMTTERMINATION.confirm to the SME of the AIML initiating STA (S134, S234).
  • MLME-AIMLMSMTTERMINATION.confirm is a frame indicating that the AIML Measurement Setup Termination frame has been received and that the sounding setting for AIML has been cancelled.
  • the SME of the AIML peer STA sends an MLME-AIMLMSMTTERMINATION.request to the MLME of the AIML peer STA (S140, S240).
  • the MLME of the AIML peer STA that receives the MLME-AIMLMSMTTERMINATION.request sends an AIML Measurement Setup Termination frame to the MLME of the AIML initiating STA (S141, S241).
  • the MLME of the AIML initiating STA that receives the AIML Measurement Setup Termination frame sends an MLME-AIMLMSMTTERMINATION.indication to the SME of the AIML initiating STA (S142, S242). Furthermore, the MLME of the AIML initiating STA that receives the AIML Measurement Setup Termination frame sends an Ack to the MLME of the AIML peer STA (S143, S243).
  • the MLME of the AIML peer STA that receives the Ack sends MLME-AIMLMSMTTERMINATION.confirm to the SME of the AIML peer STA (S144, S244).
  • This embodiment allows a node to specify a sounding NDP format for AI/ML to each other node, and also allows a mixed specification with the conventional sounding NDP format.
  • the AIML sounding NDP subfield is included when the AID11 subfield of the STA info has a specific value. This allows each node to be notified by specifying the subfield (AIML sounding NDP subfield) that defines the sounding NDP format for AI/ML.
  • Figure 7 shows the format of an NDPA frame.
  • the NDPA frame includes a Sounding Dialog Token field and a STA Info List field.
  • Figure 8 shows the format of the Sounding Dialog Token field in Figure 7.
  • Figure 9 shows the format of the STA Info field included in the STA Info List field in Figure 7.
  • the Sounding Dialog Token field consists of a 2-bit NDP Announcement Variant subfield and a 6-bit Sounding Dialog Token Number subfield.
  • FIG 11 shows the definition of the NDP Announcement Variant subfield.
  • HE High Efficiency
  • EHT Extremely High Throughput
  • Figure 9 shows the format of the STA Info field, which is STA information, in the case of EHT.
  • STA Info field which is STA information, in the case of EHT.
  • the value of the AID11 subfield is a specific value, it is defined as an AIML sounding NDP subfield.
  • Figure 12 shows an example of the definition of an AID11 subfield.
  • the undefined (Reserved) 2042 is defined as the type of NDP Announcement frame being AIML.
  • FIG 10 shows the format of the STA Info field, which is STA information, in the case of AIML.
  • the subfields after the AID11 subfield are defined to include AIML sounding NDP info, which is sounding NDP information for AI/ML.
  • the AIML sounding NDP info may include, for example, the AIML Type subfield, which is the AIML type, or AIML Type Dependent Info, which is information dependent on the AIML Type.
  • FIG 13 shows an example of a definition of the AIML Type subfield.
  • AIML types include, for example, Index-based CSI (see, for example, Non-Patent Document 4) and Compressed CSI feedback scheme (see, for example, Non-Patent Document 5).
  • Index-based CSI see, for example, Non-Patent Document 4
  • Compressed CSI feedback scheme see, for example, Non-Patent Document 5
  • Figure 13 shows an example where the value of the AIML Type subfield is defined as 0 for Index-based CSI and as 1 for the Compressed CSI feedback scheme.
  • Index-based CSI is a form in which the collected CSI is optimized (learned) to obtain a CSI Feedback Vector that minimizes the amount of feedback information, and each STA transmits an index of that Vector.
  • a number of indexes specified by Number of Index are specified for each STA. In this example, the number is specified by Number of Index, but it may also be specified by a start index and an end index, or an index range may be specified by a start index and the number of indexes.
  • multiple indexes may be divided into multiple categories, and the indexes of the divided categories may be specified.
  • the Compressed CSI feedback scheme optimizes a neural network for CSI compression called an Autoencoder through a training phase, and then splits it into an Encoder for compression and a Decoder for decompression on the transmitting and receiving sides.
  • the compressed CSI feedback specification includes the compressed information Compressed Partial BW (Band Width) Info, Compressed Nc Index, and Compressed Feedback Type And Ng,Codebook Size.
  • the AIML sounding NDP subfield is defined when the AID11 subfield has a specific value, but if it is recognized that the Autoencoder has been deployed at the start of the AIML measurement phase, such as when it is recognized that the Autoencoder has been deployed based on the session ID or Dialog Token, it may be possible to switch to the CSI feedback specification after CSI compression without explicitly calling it an AIML NDP Announcement frame. It may also be possible to make it recognized as an AIML NDP Announcement frame by setting the session ID, Dialog Token, etc. to specific values as identifiers that are set in advance in the AIML measurement setup phase, etc.
  • Extended CSI feedback may be defined as an AIML Type subfield value of 2.
  • the measurement of sounding by NDP is described in the first embodiment, it is not limited to sounding by NDP. It may also be used for measurements using other frames, such as interference measurement of OBSS (Overlapping Basic Service Set). In that case, an AIML Measurement Request frame or an AIML Measurement Response frame may be used instead of the NDP and AIML Measurement Report.
  • AIML sounding NDP info when the AID11 subfield of the NDPA frame has a specific value, it is possible to specify the sounding NDP format for AI/ML for each node.
  • type of sounding NDP can be specified in AID11 of each STA info, it is possible to notify a mixture of sounding NDP formats for AI/ML and sounding NDP formats that are not for AI/ML in a single NDPA frame.
  • a frame is defined as an AIML sounding NDP frame when the Subtype value or Control Frame Extension value of the Frame Control field is a specific value (for example, currently undefined values such as 0001 and 1100).
  • the Subtype value or Control Frame Extension value of the Frame Control field is a specific value
  • at least one of the STA Info constituting the STA Info List includes AIML sounding NDP info.
  • Figure 16 shows an example of the format of an NDPA frame for AIML.
  • the NDPA frame for AIML includes a Frame Control field, an NDP Announcement Type List field, and a Per STA Info List field.
  • the Frame Control field includes Type value subfields and Subtype value subfields.
  • Figure 17 shows an example of the definition of the Type value subfields and Subtype value subfields of the Frame Control field in Figure 16.
  • the Subtype value of the Frame Control field is defined as an AIML sounding NDP frame when it is set to an undefined value (Reserved) of 0001.
  • Figure 17 shows an example of the Subtype value being 0001, but it may be defined to any other undefined value.
  • Figure 18 shows an example of the definition of a Control Frame Extension in the Frame Control field. As shown in Figure 17, when the Subtype value of the Frame Control field is 0110, it is a Control Frame Extension. As shown in Figure 18, when the Control Frame Extension value of the Frame Control field is the undefined value of 1100, it is defined as an AIML sounding NDP frame. Figure 18 shows an example in which the Control Frame Extension value of the AIML sounding NDP frame is defined as the undefined value of 1100, but it may be defined as any other undefined value.
  • Subtype value or Control Frame Extension value of the Frame Control field is a specific value as shown in Figure 17 or Figure 18, it can be defined as including an AIML sounding NDP frame.
  • the AIML sounding NDP frame includes an NDP Announcement Type List.
  • the NDP Announcement Type List includes the number of STAs (Number of STAs) and a list of NDP Announcement Types (NDP Announcement Type List).
  • the NDP Announcement Type List includes NDP Announcement Type fields for the number of STAs.
  • FIG 19 shows an example of an NDP Announcement Type definition.
  • NDP Announcement Type definition in addition to the NDP Announcement frame types VHT, Ranging, HE, and EHT, a definition for AIML has been added as an NDP Announcement Type.
  • Each NDP Announcement Type included in the NDP Announcement Type List indicates the type of NDP Announcement frame for each STA.
  • the type of NDP Announcement frame for each STA may be different; for example, STA1 may be EHT while STA2 is AIML.
  • the contents of the STA Info List are determined according to the NDP Announcement Type for each STA specified in the NDP Announcement Type List.
  • n is the number of STAs.
  • Per STA Info n includes the Node ID and AIML sounding NDP info.
  • the contents of the AIML sounding NDP info may include the contents described in embodiment 1.
  • the NDP Announcement Type of STA m does not have to be AIML.
  • Per STA Info and STA Info List are described, they may also be called User Info and User Info List.
  • the Subtype value or Control Frame Extension value of the Frame Control field is a specific value, it is defined as an AIML sounding NDP frame, and by providing an NDP Announcement Type List in the NDPA frame for AIML, it is possible to specify a sounding NDP format for AI/ML or a sounding NDP format not for AI/ML for each Node, in other words, a mixture of different sounding NDP formats can be notified to each Node in a single NDPA frame.
  • the Trigger frame when the Trigger Type of the Trigger frame is a specific value, for example, an undefined value such as 8, the Trigger frame is defined as a frame including AIML sounding NDP info.
  • FIG 20 shows an example of the format of a Trigger frame for AIML.
  • the Trigger frame contains a Common Info field and a STA Info List field.
  • the Common Info field contains a Trigger Type subfield and an NDP Announcement Type List subfield.
  • the Trigger Type subfield specifies the type of the Trigger frame.
  • the NDP Announcement Type List contains a Number of STA field and a list of NDP Announcement Types.
  • the contents of the NDP Announcement Type List are the same as in embodiment 2.
  • the STA Info List field includes Per STA Info 1 to n.
  • the contents of the STA Info List are the same as in embodiment 2.
  • the contents of Per STA Info 1 to n are determined corresponding to the NDP Announcement Type of each STA specified in the NDP Announcement Type List.
  • Per STA Info and STA Info List are described, they may also be called User Info or User Info List.
  • the NDP Announcement Type List or STA Info List may include multiple subfields indicating the UL/DL (uplink/downlink) of the specified NDP.
  • the Trigger Type subfield when the value of the Trigger Type subfield is an undefined value of 8, it is defined as including AIML sounding NDP info.
  • the Trigger Type subfield value is 8
  • at least one of the STAs that make up the NDP Announcement Type List includes AIML sounding NDP info.
  • Figure 20 shows an example where the undefined value for which AIML sounding NDP info is defined is 8, but it may be defined to other undefined values.
  • an AP Access Point
  • the STA that receives the NDP may send an NDP or a report frame.
  • the AP may include information in the Trigger frame indicating that another PPDU (e.g., an NDP) will be sent following the Trigger frame (e.g., a next PPDU subfield, an additional PPDU subfield, or a following PPDU subfield).
  • the Trigger Type of the Trigger frame is a specific value, it is defined as a frame that contains AIML sounding NDP info, and by providing an NDP Announcement Type List, it is possible to specify a sounding NDP format for AI/ML for each Node. In other words, it is possible to notify each Node of a mixed specification of multiple types of sounding NDP formats in a single NDPA frame.
  • an information element including AIML sounding NDP info (AIML Sounding NDP Information Element) is defined and notified in management frames.
  • FIG 21 shows an example of the configuration of an AIML Sounding NDP Information Element.
  • the AIML Sounding NDP Information Element may be defined as a specific case where the Element ID or Element ID Extension is an undefined value.
  • the AIML Sounding NDP Information Element may be configured to include an NDP Announcement Type List and an STA Info List. The contents of these lists are the same as in embodiment 2. Although Per STA Info and STA Info List are described, they may also be called User Info or User Info List.
  • AIML Sounding NDP Information Element configured in this manner in management frames such as Beacon frames, Association Request/Response frames, Probe Request/Response frames, and Action frames, information including AIML sounding NDP info can be notified to each STA.
  • AIML Sounding NDP Information Element containing AIML sounding NDP info in management frames
  • a sounding NDP format for AI/ML is specified for each node, making it possible to make notifications that mix multiple sounding NDP formats.
  • the interface names (frame names), field names, and subfield names described in the first to fourth embodiments may be other names.
  • the control unit 2201 controls the transmission unit 2202 and the reception unit 2203 based on a signal received by the reception unit 2203 or a signal input from an input unit (not shown) in the STA. Both the SME and the MLME are functions present in the control unit. In another example, the control unit 2201 may include the MLME function and part of the SME function.
  • part or all of the SME function may be executed in a communication device 2300 other than the STA2200 (e.g., another STA, another access point (AP), a wireless LAN controller, a Multi-AP coordinator, a cloud server, Software as a Service (SaaS), a virtual machine (VM), a container).
  • the transmission unit 2202 (e.g., corresponding to a transmission circuit) transmits a signal to the other STA.
  • the reception unit 2203 (e.g., corresponding to a reception circuit) receives a signal from the other STA.
  • the transmission unit 2202 and the reception unit 2203 may be integrated to form a transmission/reception unit.
  • the transmitting unit 2202, the receiving unit 2203, the transmitting unit 2202 and the receiving unit 2203, or the transmitting and receiving unit constitute a communication unit.
  • FIG. 23 shows the configuration of another communication device 2300.
  • the other communication device 2300 has a control unit 2301 and a communication circuit 2302.
  • the control unit 2301 includes the function of SME.
  • the communication circuit 2302 communicates with a partner communication device (e.g., STA2200).
  • the control unit 2301 and the communication circuit 2302 may communicate using the communication primitives (messages, signals) between SME and MLME described in each embodiment.
  • the control unit 2301 may include a CPU 2311, a memory 2312, and a storage device 2313.
  • the CPU 2311 executes the function of SME.
  • the memory 2312 is used when the CPU 2311 executes processing.
  • the storage device 2313 stores software related to the function of SME (e.g., binary, executable file, program code, container image).
  • the CPU 2311 may transfer the software stored in the storage device 2313 to the memory 2312 in order to execute the function of SME.
  • the notation "part” used for each component may be replaced with other notations such as “circuitry”, “assembly”, “device”, “unit”, or “module”.
  • Each functional block used in the description of the above embodiments may be realized, in part or in whole, as an LSI, which is an integrated circuit, and each process described in the above embodiments may be controlled, in part or in whole, by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip that contains some or all of the functional blocks.
  • the LSI may have data input and output. Depending on the degree of integration, the LSI may be called an IC, system LSI, super LSI, or ultra LSI.
  • the integrated circuit method is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor. Also, a field programmable gate array (FPGA) that can be programmed after LSI manufacturing, or a reconfigurable processor that can reconfigure the connections and settings of circuit cells inside the LSI, may be used.
  • FPGA field programmable gate array
  • the present disclosure may be realized as digital processing or analog processing.
  • the present disclosure may be implemented in any type of apparatus, device, or system (collectively referred to as a communications apparatus) having communications capabilities.
  • the communications apparatus may include a radio transceiver and processing/control circuitry.
  • the radio transceiver may include a receiver and a transmitter, or both as functions.
  • the radio transceiver (transmitter and receiver) may include an RF (Radio Frequency) module and one or more antennas.
  • the RF module may include an amplifier, an RF modulator/demodulator, or the like.
  • Non-limiting examples of communication devices include telephones (e.g., cell phones, smartphones, etc.), tablets, personal computers (PCs) (e.g., laptops, desktops, notebooks, etc.), cameras (e.g., digital still/video cameras), digital players (e.g., digital audio/video players, etc.), wearable devices (e.g., wearable cameras, smartwatches, tracking devices, etc.), game consoles, digital book readers, telehealth/telemedicine devices, communication-enabled vehicles or mobile transport (e.g., cars, planes, ships, etc.), and combinations of the above-mentioned devices.
  • telephones e.g., cell phones, smartphones, etc.
  • tablets personal computers (PCs) (e.g., laptops, desktops, notebooks, etc.)
  • cameras e.g., digital still/video cameras
  • digital players e.g., digital audio/video players, etc.
  • wearable devices e.g., wearable cameras, smartwatches, tracking
  • Communication devices are not limited to portable or mobile devices, but also include any type of equipment, device, or system that is non-portable or fixed, such as smart home devices (home appliances, lighting equipment, smart meters or measuring devices, control panels, etc.), vending machines, and any other "things” that may exist on an IoT (Internet of Things) network.
  • smart home devices home appliances, lighting equipment, smart meters or measuring devices, control panels, etc.
  • vending machines and any other “things” that may exist on an IoT (Internet of Things) network.
  • IoT Internet of Things
  • Communications include data communication via cellular systems, wireless LAN systems, communication satellite systems, etc., as well as data communication via combinations of these.
  • the communication apparatus also includes devices such as controllers and sensors that are connected or coupled to a communication device that performs the communication functions described in this disclosure.
  • a communication device that performs the communication functions described in this disclosure.
  • controllers and sensors that generate control signals and data signals used by the communication device that performs the communication functions of the communication apparatus.
  • communication equipment includes infrastructure facilities, such as base stations, access points, and any other equipment, devices, or systems that communicate with or control the various non-limiting devices listed above.
  • CPS Chip Physical Systems
  • an edge server located in physical space and a cloud server located in cyberspace can be connected via a network, and processing can be distributed and processed by processors installed in both servers.
  • each processing data generated in the edge server or cloud server is preferably generated on a standardized platform, and the use of such a standardized platform can improve the efficiency of building a system that includes a variety of sensor groups and IoT application software.
  • a communication device has a control unit that generates a frame including information (STA Info) of each STA, at least one of the STA Info being sounding NDP info for AI/ML, and a communication unit that transmits the generated frame.
  • STA Info information of each STA
  • NDP info sounding NDP info for AI/ML
  • the sounding NDP info for the AI/ML of the device of (1) is defined when the AID11 subfield of the STA Info has a specific value.
  • the sounding NDP info for AI/ML of the device of (1) is defined when the subtype value of the Frame Control field or the Control Frame Extension value is a specific value.
  • the sounding NDP info for AI/ML of the device of (1) is defined when the Trigger type of the Trigger frame has a specific value.
  • the sounding NDP info for the AI/ML of the device of (1) is defined in a management frame.
  • a communication method generates a frame including information (STA Info) of each STA, at least one of the STA Info being sounding NDP info for AI/ML, and transmits the generated frame.
  • One embodiment of the present disclosure is useful for wireless devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信装置及び通信方法が提供される。通信装置は、各STAの情報(STA Info)を含むフレームを生成する制御部であって、前記各STA Infoのうちの少なくとも1つのSTA Infoは、AI/ML用のsounding NDP infoであり、生成された前記フレームを送信する通信部と、を有する。

Description

通信装置及び通信方法
 本開示は、通信装置及び通信方法に関する。
 人工知能(Artificial Intelligence:以下、AIという。)又は機械学習(Machine Learning:以下、MLという。)の無線LAN (Local Area Network)向けの技術が産学で検討されている(例えば、非特許文献1)。
 IEEE(the Institute of Electrical and Electronics Engineers)802.11部会において、AI/ML(以下、AIMLとも記載する。)に関するTIG (Topic Interest Group)が2022年7月に立ち上げられ、検討が開始された(例えば、非特許文献2)。
 無線LAN向けに適用が検討されている技術の1つとして、チャネル状態情報(Channel State Information:以下、CSIという。)のフィードバック量削減を目的としたCSI compressionに関する検討が進められている(例えば、非特許文献3)。
S. Szott, K. Kosek-Szott, P. Gawlowicz, J. T. Gomez, B. Bellalta, A. Zubow, F. Dressler, "WiFi Meets ML: A Survey on Improving IEEE 802.11 Performance with Machine Learning" " in IEEE Communications Surveys & Tutorials, vol.24, no.3, pp.1843-1893 IEEE 802.11-22/847r3, AIML TIG July 2022 Agenda IEEE 802.11-22/950r2, Discussion on Connection between AI/ML & Wireless LAN M. Deshmukh, Z. Lin, H. Lou, M. Kamel, R. Yang, I. Guvenc, "Intelligent Feedback Overhead Reduction (iFOR) in Wi-Fi 7 and Beyond," in Proceedings of 2022 VTC-Spring P. K. Sangdeh, H. Pirayesh, A. Mobiny, H. Zeng, "LB-SciFi:Online Learning-Based Channel Feedback for MU-MIMO in Wireless LANs, " in Proceedings of 2020 IEEE 28th ICNP
 AI/ML向けの測定用のsounding NDP (Null data PPDU (PLCP (Physical. Layer Convergence Protocol) Protocol Data Unit))仕様を指定するためのNDPA (NDP Announcement) frameは検討されていない。
 本開示の一実施例に係る通信装置は、各STA (Station、端末、Nodeとも記載する)の情報(STA Info)を含むフレームを生成する制御部であって、前記各STA Infoのうちの少なくとも1つのSTA Infoは、AI/ML用のsounding NDP infoであり、生成された前記フレームを送信する通信部と、を有する。
 なお、これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータープログラム、又は、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータープログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 STAは、各STAにAI/ML用のsounding NDPフォーマットを指定することができる。また、STAは、複数のsounding NDPフォーマットが混在された指定をすることができる。
非トリガーベースのAI/ML用のsounding手順例を示す図 トリガーベースのAI/ML用のsounding手順例を示す図 AIML測定セットアップフェーズのインターフェース例を示す図 非トリガーベースのAIML測定フェーズのインターフェース例を示す図 トリガーベースのAIML測定フェーズのインターフェース例を示す図 AIML測定停止フェーズのインターフェース例を示す図 HE NDP Announcement frame formatを示す図 Sounding Dialog Tokenを示す図 STA Info field format in an EHT NDP Announcement frameを示す図 STA Info field format in an AIML NDP Announcement frameを示す図 NDP Announcement frame variant encodingを示す図 AID11 subfield encoding in an NDP Announcement frameを示す図 AIML Type subfield encodingを示す図 AIML Type = 0(Index-based CSI)の場合のAIML sounding NDP infoの例を示す図 AIML Type = 1(Compressed CSI feedback scheme)の場合のAIML sounding NDP infoの例を示す図 AIML用NDPA frameのフォーマット例を示す図 Frame ControlフィールドのType value subfields及びSubtype value subfieldsの定義例を示す図 Frame ControlフィールドのControl Frame Extensionの定義例を示す図 NDP Announcement Typeの定義例を示す図 AIML用Trigger frameのフォーマット例を示す図 AIML Sounding NDP Information Elementの構成例を示す図 STAの構成を示す図 別の通信装置の構成を示す図
 本開示の一実施例によれば、Node (STA)が、他の各Node (STA)に対してAI/ML用のsounding NDP formatを定義したsubfield (AIML sounding NDP info)を指定して通知することができる。
 図1および図2にAI/ML用のsounding手順例を示す。図1の手順例は、非トリガーベース(non-Trigger-based, non-TB)のsounding手順例を示す。図2の手順例は、トリガーベース(Trigger-based, TB)のsounding手順例を示す。いずれの手順例も、AIML測定セットアップフェーズ(AIML Measurement Setup Phase)、AIML測定フェーズ(AIML Measurement Phase)、AIML測定停止フェーズ(AIML Measurement Termination Phase)、の3つのフェーズから構成されている。
 AIML測定セットアップフェーズは、AI/ML用soundingの設定を行うためのフェーズである。AIML測定フェーズは、NDPA (NDP Announcement)の送信及びNDPによる測定を行うためのフェーズである。AIML測定停止フェーズは、AI/ML用のsounding設定を停止するためのフェーズである。図1および図2には、AIML測定停止フェーズについて、AIML initiating STAから開始する手順と、AIML peer STAから開始する手順の2つの手順が示されている。AIML測定停止フェーズでは、どちらか片方の手順が用いられればよい。
 SME (station management entity)は端末管理機能を示し、MLME (MAC (Media Access Control) sublayer management entity)はMACレイヤ管理機能を示す。
 AIML initiating STAは、AIML用soundingを指示するSTAであり、AIML peer STAはAIML用soundingの指示を受けるSTAである。AIML initiating STAは、図1又は図2に記載されるAI/ML用のsounding手順を、各AIML peer STAに対して行うことができる。
 図3~図6に、図1および図2のsounding手順例における各フェーズそれぞれのインターフェース名(フレーム名)と機能を示す。
 AIML測定セットアップフェーズの手順を説明する。
 最初に、AIML initiating STAのSMEが、AIML initiating STAのMLMEに対してMLME-AIMLMSMTSETUP.requestを送信する(S100,S200)。MLME-AIMLMSMTSETUP.requestはpeer STAへのAIML Measurement Setup Request frameの送信を要求するフレームである。
 MLME-AIMLMSMTSETUP.requestを受信したAIML initiating STAのMLMEは、AIML peer STAのMLMEにAIML Measurement Setup Request frameを送信する(S101,S201)。AIML Measurement Setup Request frameは、peer STAに対してAIML用soundingの設定を指示するフレームである。
 AIML Measurement Setup Request frameを受信したAIML peer STAのMLMEは、AIML peer STAのSMEにMLME-AIMLMSMTSETUP.indicationを送信する(S102,S202)。MLME-AIMLMSMTSETUP.indicationは、AIML Measurement Setup Request frameを受信したことを示すフレームである。
 MLME-AIMLMSMTSETUP.indicationを受信したAIML peer STAのSMEは、AIML peer STAのMLMEにMLME-AIMLMSMTSETUP.responseを送信する(S103,S203)。MLME-AIMLMSMTSETUP.responseは、MLME-AIMLMSMTSETUP.indicationに対する応答信号であり、AIML Measurement Setup Response frameの送信を要求するフレームである。
 MLME-AIMLMSMTSETUP.responseを受信したAIML peer STAのMLMEは、AIML initiating STAのMLMEにAIML Measurement Setup Response frameを送信する(S104,S204)。AIML Measurement Setup Response frameは、peer STAがAIML用sounding設定を受け入れたかどうかをAIML initiating STAに応答するフレームである。
 AIML Measurement Setup Response frameを受信したAIML initiating STAのMLMEは、AIML initiating STAのSMEにMLME-AIMLMSMTSETUP.confirmを送信する(S105,S205)。MLME-AIMLMSMTSETUP.confirmは、AIML Measurement Setup Response frameを受信したことを示す信号である。
 AIML測定フェーズの手順を説明する。AIML測定フェーズは、図1に示す非トリガーベースAIML測定フェーズと図2に示すトリガーベースAIML測定フェーズで手順が異なる。まず、図1に示す非トリガーベースのAIML測定フェーズの手順を説明する。
 最初に、AIML測定セットアップフェーズのMLME-AIMLMSMTSETUP.confirmを受信したAIML initiating STAのSMEが、AIML initiating STAのMLMEにMLME-AIMLMSMTRQ.requestを送信する(S110)。MLME-AIMLMSMTRQ.requestは、peer STAへの非トリガーベースAIML用のsoundingの送信を要求するフレームである。AIML用のsoundingは、例えばNDPA及びNDPにより行われる。
 MLME-AIMLMSMTRQ.requestを受信したAIML initiating STAのMLMEは、AIML peer STAのMLMEにNDPAを送信する(S111)。NDPAは、sounding NDPのフォーマットを指定するフレームである。さらに、AIML initiating STAのMLMEは、AIML peer STAのMLMEにNDPAによる指定に対応したNDPを送信する(S112)。NDPは、sounding NDPフレームである。NDPAにおいて、各STAに対してAI/ML用のsounding NDP formatを指定することで、AI/ML用のNDP送信を各STAに対して行い、各Nodeで受信したNDPを使用して測定を行うことができる。
 NDPを受信したAIML peer STAのMLMEは、AIML peer STAのSMEにMLME-AIMLREPORT.indicationを送信する(S113)。MLME-AIMLREPORT.indicationは、sounding NDPにより測定を行ったことを示すフレームである。さらに、AIML peer STAのMLMEは、AIML initiating STAのMLMEにNDPを送信する(S114)。
 NDPを受信したAIML initiating STAのMLMEは、AIML initiating STAのSMEにMLME-AIMLREPORT.indicationを送信する(S115)。MLME-AIMLREPORT.indicationは、非トリガーベースsounding NDPにより測定を行ったことを示すフレームである。
 MLME-AIMLREPORT.indicationを受信したAIML peer STAのSMEは、AIML peer STAのMLMEにMLME-AIMLREPORTRQ.requestを送信する(S116)。MLME-AIMLREPORTRQ.requestは、AIML Measurement Report frameの送信を要求するフレームである。
 MLME-AIMLREPORTRQ.requestを受信したAIML peer STAのMLMEは、AIML initiating STAのMLMEにAIML Measurement Report frameを送信する(S117)。AIML Measurement Report frameは、AIML用のsounding測定結果を相手のSTAに報告するフレームである。また、AIML peer STAのMLMEは、AIML peer STAのSMEにMLME-AIMLREPORTRQ.confirmを送信する(S119)。MLME-AIMLREPORTRQ.confirmは、AIML Measurement Report frameを送信したことを示すフレームである。
 AIML Measurement Report frameを受信したAIML initiating STAのMLMEは、AIML initiating STAのSMEにMLME-AIMLMSMTRQ.confirmを送信する(S118)。
 MLME-AIMLMSMT.indicationを受信したAIML initiating STAのSMEは、AIML initiating STAのMLMEにMLME-AIMLREPORTRQ.requestを送信する(S120)。
 MLME-AIMLREPORTRQ.requestを受信したAIML initiating STAのMLMEは、AIML peer STAのMLMEにAIML Measurement Report frameを送信する(S121)。
 AIML Measurement Report frameを受信したAIML peer STAのMLMEは、AIML peer STAのSMEにMLME-AIMLREPORTRQ.confirmを送信する(S122)。
 図1は、MLMEがMLME-AIMLREPORT.indicationによって測定結果をSMEに通知している例、及びMLMEがMLME-AIMLMSMTRQ.confirmによって受信した測定結果報告をSMEに通知している例を示している。しかし、測定結果は、外部アプリケーションまたはhigher layerに通知されてもよい。
 図1は、測定結果を相手のSTAに送信している例を示しているが、送信せずにその測定結果を利用した動作をしてもよいし、相手のSTAに送信しつつ送信元のSTAで測定結果を利用した動作をしてもよい。SME又はMLMEは、測定結果を利用した動作を行うアプリケーションが含まれてもよい。
 次に、図2に示すトリガーベースのAIML測定フェーズの手順を説明する。
 最初に、AIML測定セットアップフェーズのMLME-AIMLMSMTSETUP.confirmを受信したAIML initiating STAのSMEが、AIML initiating STAのMLMEにMLME-AIMLTBMSMTRQ.requestを送信する(S210)。MLME-AIMLTBMSMTRQ.requestは、peer STAへのトリガーベースAIML用sounding(NDPAやNDPの送信)を要求するフレームである。AIML用のsoundingは、例えばNDPA及びNDPにより行われる。
 MLME-AIMLTBMSMTRQ.requestを受信したAIML initiating STAのMLMEは、AIML peer STAのMLMEにAIML Poll frameを送信する(S211)。AIML Poll frameは、peer STAへのAIML用soundingのポーリングを行うフレームである。
 AIML Poll frameを受信したAIML peer STAのMLMEは、AIML initiating STAのMLMEにCTS-to-selfを送信する(S212)。CTS-to-selfは、AIML Poll frameに対する応答フレームである。
 MLME-AIMLTBMSMTRQ.requestを受信したAIML initiating STAのMLMEは、AIML peer MLMEからのCTS-to-selfを受信すると、CTS-to-selfを送信したAIML peer STAのMLMEにAIML NDPA frame (NDPA)を送信する(S213)。AIML NDPA frameは、AIML用sounding NDPのフォーマットを指定するフレームである。
 さらに、MLME-AIMLTBMSMTRQ.requestとCTS-to-selfを受信したAIML initiating STAのMLMEは、AIML peer STAのMLMEにAIML NDPA frameによる指定に対応したNDPを送信する(S214)。NDPは、sounding NDPフレームである。
 また、MLME-AIMLTBMSMTRQ.requestとCTS-to-selfを受信したAIML initiating STAのMLMEは、AIML peer STAのMLMEにAIML Report Trigger frameを送信する(S217)。AIML Report Trigger frameは、AIML Measurement Report frameの送信をpeer STAへ要求するフレームである。
 加えて、MLME-AIMLTBMSMTRQ.requestとCTS-to-selfを受信したAIML initiating STAのMLMEは、AIML peer STAのMLMEにAIML Trigger frameを送信する(S221)。AIML Trigger frameは、NDPの送信を要求するフレームである。
 NDPAにおいて、各STAに対してAI/ML用のsounding NDP formatを指定することで、AI/ML用のNDP送信を各STAに対して行い、各Nodeで受信したNDPを使用して測定を行うことができる。
 NDPを受信したAIML peer STAのMLMEは、AIML peer STAのSMEにMLME-AIMLTBREPORT.indicationを送信する(S215)。MLME-AIMLTBREPORT.indicationは、トリガーベースsounding NDPにより測定を行ったことを示すフレームである。
 MLME-AIMLTBREPORT.indicationを受信したAIML peer STAのSMEは、AIML peer STAのMLMEにMLME-AIMLTBREPORTRQ.requestを送信する(S216)。MLME-AIMLTBREPORTRQ.requestは、AIML Measurement Report frameの送信を要求するフレームである。
 MLME-AIMLTBREPORTRQ.request及びAIML Report Trigger frameを受信したAIML peer STAのMLMEは、AIML initiating STAのMLMEにAIML Measurement Report frameを送信する(S218)。AIML Measurement Report frameは、AIML用のsounding測定結果を相手のSTAに報告するフレームである。また、AIML peer STAのMLMEは、AIML peer STAのSMEにMLME-AIMLTBREPORTRQ.confirmを送信する(S220)。AIML Measurement Report frame送信要求の結果を報告するフレームである。AIML Measurement Report frameは、MLME-AIMLTBREPORTRQ.request及びAIML Report Trigger frameの両方を受信した場合に送信する代わりに、どちらか片方を受信した場合に送信してもよい。
 AIML Measurement Report frameを受信したAIML initiating STAのMLMEは、AIML initiating STAのSMEにMLME-AIMLTBMSMTRQ.confirmを送信する(S219)。
 AIML Trigger frameを受信したAIML peer STAのMLMEは、AIML initiating STAのMLMEにNDPを送信する(S222)。図2のS222のNDPの送信では、測定結果を相手のSTAに送信せずにその測定結果を利用した動作をしている例を示している。
 NDPを受信したAIML initiating STAのMLMEは、AIML initiating STAのSMEにMLME-AIMLTBREPORT.indicationを送信する(S223)。
 図2のS214のNDPの送信では、測定結果を相手のSTAに送信している例を示しているが、送信せずにその測定結果を利用した動作をしてもよいし、相手のSTAに送信しつつ送信元のSTAで測定結果を利用した動作をしてもよい。SME又はMLMEは、測定結果を利用した動作を行うアプリケーションが含まれてもよい。
 図2のS222のNDPの送信では、測定結果を相手のSTAに送信せずにその測定結果を利用した動作をしている例を示しているが、測定結果を相手のSTAに送信してもよいし、相手のSTAに送信しつつ送信元のSTAで測定結果を利用した動作をしてもよい。SME又はMLMEは、測定結果を利用した動作を行うアプリケーションが含まれてもよい。
 AIML測定停止フェーズは、AIML initiating STAから開始する手順と、AIML peer STAから開始する手順を示す。
 AIML測定停止フェーズをAIML initiating STAから開始する場合は、最初に、AIML initiating STAのSMEが、AIML initiating STAのMLMEにMLME-AIMLMSMTTERMINATION.requestを送信する(S130,S230)。MLME-AIMLMSMTTERMINATION.requestは、AIML Measurement Setup Termination frameの送信を要求するフレームである。
 MLME-AIMLMSMTTERMINATION.requestを受信したAIML initiating STAのMLMEは、AIML peer STAのMLMEにAIML Measurement Setup Termination frameを送信する(S131,S231)。AIML Measurement Setup Termination frameは、AIML用soundingの設定解除を指示するフレームである。
 AIML Measurement Setup Termination frameを受信したAIML peer STAのMLMEは、AIML peer STAのSMEにMLME-AIMLMSMTTERMINATION.indicationを送信する(S132,S232)。MLME-AIMLMSMTTERMINATION.indicationは、AIML Measurement Setup Termination frameを受信したことを示すフレームである。さらに、AIML Measurement Setup Termination frameを受信したAIML peer STAのMLMEは、AIML initiating STAのMLMEにAckを送信する(S133,S233)。Ackは応答(acknowledgment)フレームである。
 Ackを受信したAIML initiating STAのMLMEは、AIML initiating STAのSMEにMLME-AIMLMSMTTERMINATION.confirmを送信する(S134,S234)。MLME-AIMLMSMTTERMINATION.confirmは、AIML Measurement Setup Termination frame受信され、AIML用soundingの設定が解除されたことを示すフレームである。
 AIML測定停止フェーズをAIML peer STAから開始する場合は、最初に、AIML peer STAのSMEがAIML peer STAのMLMEにMLME-AIMLMSMTTERMINATION.requestを送信する(S140,S240)。
 MLME-AIMLMSMTTERMINATION.requestを受信したAIML peer STAのMLMEは、AIML initiating STAのMLMEにAIML Measurement Setup Termination frameを送信する(S141,S241)。
 AIML Measurement Setup Termination frameを受信したAIML initiating STAのMLMEは、AIML initiating STAのSMEにMLME-AIMLMSMTTERMINATION.indicationを送信する(S142,S242)。さらに、AIML Measurement Setup Termination frameを受信したAIML initiating STAのMLMEは、AIML peer STAのMLMEにAckを送信する(S143,S243)。
 Ackを受信したAIML peer STAのMLMEは、AIML peer STAのSMEにMLME-AIMLMSMTTERMINATION.confirmを送信する(S144,S244)。
 この実施形態により、Nodeは、他の各Nodeに対してAI/ML用のsounding NDPフォーマットを指定することができ、従来のsounding NDPフォーマットと混在した指定をすることもできる。
 AI/ML用のsounding NDPフォーマットを指定するための、NDPA frameについて、4つの実施の形態を説明する。
<実施の形態1>
 実施の形態1は、NDPA frameフォーマットに含まれるSTA info Listを構成する各STA infoについて、STA infoのAID11 subfieldが特定の値の場合にAIML sounding NDP subfieldが含まれる、と定義される。これにより、各Nodeに対してAI/ML用のsounding NDP formatを定義したsubfield (AIML sounding NDP subfield)を指定して通知することができる。
 図7に、NDPA frameのフォーマットを示す。NDPA frameは、Sounding Dialog TokenフィールドとSTA Info Listフィールドを含む。図8に、図7のSounding Dialog Tokenフィールドのフォーマットを示す。図9に、図7のSTA Info Listフィールドに含まれるSTA Infoフィールドのフォーマットを示す。
 図8に示すように、Sounding Dialog Tokenフィールドは、2ビットのNDP Announcement Variantサブフィールドと6ビットのSounding Dialog Token Numberサブフィールドから構成される。
 図11に、NDP Announcement Variantサブフィールドの定義を示す。2ビットのNDP Announcement Variantサブフィールドに対して、NDP Announcement frameの種類は、VHT (Very High Throughput)(NDP Announcement Variant = 00)、Ranging (NDP Announcement Variant = 01)、HE (High Efficiency)(NDP Announcement Variant = 10)、EHT (Extremely High Throughput)(NDP Announcement Variant = 11)の4種類が既に定義されている。つまり、NDP Announcement VariantサブフィールドにはReservedが存在しない。そこで、図11に示す例では、NDP Announcement Variant = 11は、EHTとAIMLとの兼用(EHT/AIML)と定義される。したがって、EHTであるかAIMLであるかは、他の情報により認識されることが必要である。NDP Announcement Variant = 11は、フレームに少なくとも1つのETH/AIMLのNDP Announcementが含まれることを意味している。
 図9にEHTの場合の、STAの情報であるSTA Infoフィールドのフォーマットを示す。図9に示すように、STA infoの先頭に11ビットのAID11サブフィールドが存在する。AID11サブフィールドの値が特定の値の場合にAIML sounding NDP subfieldと定義される。図12にAID11サブフィールドの定義例を示す。図12に示す例では、未定義(Reserved)である2042がNDP Announcement frameの種類がAIMLであると定義される。
 図10にAIMLの場合の、STAの情報であるSTA Infoフィールドのフォーマットを示す。例えば、AID11サブフィールドの値が2042の場合、図10に示すSTA Infoフィールドのフォーマット例のように、AID11サブフィールド以降のサブフィールドは、AI/ML用のsounding NDP情報である、AIML sounding NDP infoを含むと定義される。AIML sounding NDP infoには、例えば、AIMLのタイプであるAIML Typeサブフィールド、又はAIML Typeに依存した情報であるAIML Type Dependent Infoが含まれても良い。
 図13にAIML Typeサブフィールドの定義例を示す。図13に示すように、AIMLのタイプには、例えば、Index-based CSI(例えば、非特許文献4を参照。)と、Compressed CSI feedback scheme(例えば、非特許文献5を参照。)が存在する。AIMLのタイプは3つ以上でもよい。図13は、Index-based CSIの場合はAIML Typeサブフィールドの値が0に、Compressed CSI feedback schemeの場合はAIML Typeサブフィールドの値が1に、それぞれ定義された例を示している。
 図14にAIML Type = 0(Index-based CSI)の場合のAIML sounding NDP infoの例を示す。Index-based CSIは、収集したCSIを最適化(学習)され、最もフィードバック情報量が少なくなるようなCSI Feedback Vectorが求められ、各STAから該Vectorのインデックス(Index)を送信する形態である。図14に示すAIML sounding NDP infoの例は、Number of Indexで指定された個数のインデックスがそれぞれのSTAに対して指定されている。この例では、Number of Indexで個数が指定されているが、開始のインデックスと終了のインデックスにより指定されてもよいし、開始のインデクスとインデックスの個数によりインデックスの範囲が指定されてもよい。また、複数のインデックスが複数のカテゴリに分割され、その分割されたカテゴリのインデックスが指定されても良い。
 図15にAIML Type = 1(Compressed CSI feedback scheme)の場合のAIML sounding NDP infoの例を示す。Compressed CSI feedback schemeは、Autoencoderと呼ばれるCSI圧縮のためのニューラルネットワークをトレーニングフェーズにより最適化し、その後、送信側と受信側にCompression用のEncoderとDecompression用のDecoderとして分割して配置して動作させるスキームである。図15に示すAIML sounding NDP infoの例では、圧縮後のCSIフィードバック仕様には、圧縮された情報である、Compressed Partial BW(Band Width) Info、Compressed Nc Index、及びCompressed Feedback Type And Ng,Codebook Sizeが含まれている。
 図9の例では、AID11サブフィールドが特定の値の場合にAIML sounding NDP subfieldが定義されるとしているが、セッションIDやDialog Token等によりAutoencoderが配置済みと認識できた場合など、AIML測定フェーズの開始時にAutoencoderが配置済みと認識できている場合は、AIML NDP Announcement frameと明示せずにCSI圧縮後のCSIフィードバック仕様に切り替えられるようにしてもよい。AIML測定セットアップフェーズなどで事前に設定する識別子として、セッションIDやDialog Token等を特定の値に設定することによってAIML NDP Announcement frameと認識されるようにしてもよい。
 また、AIMLによるCSIフィードバック量削減のためのフォーマットに限らず、広帯域化や高精度化に対応した拡張CSIフィードバック仕様を指定するようにしてもよい。拡張CSIフィードバックは、AIML Typeサブフィールドの値が2に定義されてもよい。実施の形態1ではNDPによるsoundingの測定について記載したが、NDPによるsoundingに限るものではない。他のframeを用いた測定、例えば、OBSS(Overlapping Basic Service Set)の干渉測定などに用いても良い。その場合はNDPとAIML Measurement Reportの代わりにAIML Measurement Request frameやAIML Measurement Response frameが使用されてもよい。
 このように、NDPA frameのAID11 subfieldが特定の値の場合にAIML sounding NDP infoを定義することで、Node毎にAI/ML用のsounding NDPフォーマットを指定することができる。また、各STA infoのAID11でsounding NDPの種類を指定できるから、AI/ML用のsounding NDPフォーマット及びAI/ML用でないsounding NDPフォーマットが混在した指定が、1つのNDPA frameで通知されることが可能である。
<実施の形態2>
 実施の形態2は、Frame Control fieldのSubtype value又はControl Frame Extension valueが特定の値(例えば現在未定義値である0001,1100など)の場合にAIML sounding NDP frameと定義される。Frame Control fieldのSubtype value又はControl Frame Extension valueが特定の値の場合には、STA Info Listを構成する各STA Infoの少なくとも1つにAIML sounding NDP infoが含まれる。
 図16にAIML用NDPA frameのフォーマット例を示す。AIML用NDPA frameは、Frame Controlフィールド、NDP Announcement Type Listフィールド、及びPer STA Info Listフィールドを含む。Frame Controlフィールドは、Type value subfields及びSubtype value subfieldsを含む。
 図17に、図16におけるFrame ControlフィールドのType value subfields及びSubtype value subfieldsの定義例を示す。図17に示すようにFrame Control fieldのSubtype valueが未定義値(Reserved)である0001がAIML sounding NDP frameであると定義される。図17ではSubtype valueが0001の例を示したが、その他の未定義値に定義されてもよい。
 図18にFrame ControlフィールドのControl Frame Extensionの定義例を示す。図17に示すようにFrame Control fieldのSubtype valueが0110の場合がControl Frame Extensionである。図18に示すようにFrame Control fieldのControl Frame Extension valueが未定義値である1100がAIML sounding NDP frameであると定義される。図18では、AIML sounding NDP frameは、Control Frame Extension valueが未定義値の1100であると定義された例を示したが、その他の未定義値に定義されてもよい。
 図17又は図18に示すようにFrame Control fieldのSubtype value又はControl Frame Extension valueが特定の値である場合は、AIML sounding NDP frameが含まれると定義されることができる。
 図16に示す例のように、AIML sounding NDP frameは、NDP Announcement Type Listを含む。NDP Announcement Type ListはSTA数(Number of STA)及びNDP Announcement Typeのリスト(NDP Announcement Type List)を含む。NDP Announcement Type Listは、STA数分のNDP Announcement Typeフィールドを含む。
 図19にNDP Announcement Typeの定義例を示す。図19に示すように、NDP Announcement Typeとして、NDP Announcement frameの種類であるVHT, Ranging, HE, EHTに加え、AIML用の定義が追加されている。NDP Announcement Type Listに含まれる各NDP Announcement Typeは、各STAのNDP Announcement frameの種類を示す。例えば、STA1はEHTであるがSTA2はAIMLである、というように、各STAのNDP Announcement frameの種類は異なってもよい。
 NDP Announcement Type Listで指定されたSTA毎のNDP Announcement Typeに対応して、Per STA Info 1~nを含むSTA Info Listの内容が決定される。ここで、nはSTA数である。例えば、STA nのNDP Announcement TypeがAIMLである場合には、Per STA Info nには、Node IDやAIML sounding NDP infoが含まれる。AIML sounding NDP infoの内容は、実施の形態1に記載の内容が含まれてもよい。例えば、STA mのNDP Announcement TypeはAIMLでなくてもよい。Per STA InfoやSTA Info Listと記載したが、User InfoやUser Info Listと呼ばれてもよい。
 このように、Frame Control fieldのSubtype value又はControl Frame Extension valueが特定の値の場合にAIML sounding NDP frameと定義され、AIML用NDPA frameにNDP Announcement Type Listが設けられることにより、各NodeにAI/ML用のsounding NDPフォーマット、又はAI/ML用でないsounding NDPフォーマットを指定する、つまり各Nodeに異なるsounding NDPフォーマットが混在した指定が、1つのNDPA frameで通知されることが可能である。
<実施の形態3>
 実施の形態3は、Trigger frameのTrigger Typeが特定の値、例えば未定義値である8などの場合にAIML sounding NDP infoを含むframeと定義される。
 図20にAIML用Trigger frameのフォーマット例を示す。Trigger frame は、Common Infoフィールド及びSTA Info Listフィールドを含む。Common InfoフィールドはTrigger Typeサブフィールド及びNDP Announcement Type Listサブフィールドを含む。Trigger Typeサブフィールドは、Trigger frameのタイプが指定されている。NDP Announcement Type Listは、Number of STAフィールドとNDP Announcement Typeのリストを含む。
 NDP Announcement Type Listの内容は実施の形態2と同様である。STA Info Listフィールドは、Per STA Info 1~nを含む。STA Info Listの内容は実施の形態2と同様である。NDP Announcement Type Listで指定された各STAのNDP Announcement Typeに対応してPer STA Info 1~nの内容が決定される。Per STA InfoやSTA Info Listと記載したが、User InfoやUser Info Listと呼ばれてもよい。また、NDP Announcement Type ListもしくはSTA Info Listに、指示するNDPのUL/DL(上り/下り)を示すsubfieldが複数含まれるようにしても良い。
 図20に示すようにTrigger Typeサブフィールドの値が未定義値である8の場合が、AIML sounding NDP infoを含むと定義される。Trigger Type subfield値が8の場合、NDP Announcement Type Listを構成する各STAの少なくとも1つにAIML sounding NDP infoが含まれる。図20ではAIML sounding NDP infoが定義される未定義値が8の例を示したが、その他の未定義値に定義されてもよい。
 図1および図2に示すAI/ML用のsounding手順例におけるNDPA又はAIML NPDA frameの代わりに、図20に示すTrigger Typeを特定の値に設定したTrigger frameを使用する。
 例えば、AP(Access Point)は、Trigger frameを含むPPDUを送信した後、例えばSIFS(Short Inter Frame Space)時間後に別のPPDU(例えば、NDP)をSTAに送信する。NDPを受信したSTAは、NDPまたはレポートフレームを送信してもよい。APは、Trigger frameに、Trigger frameに続いて別のPPDU(例えば、NDP)を送信することを示す情報(例えば、next PPDUサブフィールド、additional PPDUサブフィールド、又はfollowing PPDUサブフィールド)を含めてもよい。
 上記のように、実施の形態3によれば、Trigger frameのTrigger Typeが特定の値の場合にAIML sounding NDP infoが含むframeと定義され、NDP Announcement Type Listを設けることで、各Nodeに対してAI/ML用のsounding NDPフォーマットを指定することができる。つまり、各Nodeに対して複数種類のsounding NDPフォーマットが混在した指定が、1つのNDPA frameで通知されることが可能である。
<実施の形態4>
 実施の形態4は、AIML sounding NDP infoを含む情報要素(AIML Sounding NDP Information Element)が定義され、Management framesで通知される。
 図21に、AIML Sounding NDP Information Elementの構成例を示す。AIML Sounding NDP Information Elementは、Element ID又はElement ID Extensionが未定義値である特定の値の場合であると定義されてもよい。その場合、図21に示すように、AIML Sounding NDP Information Elementは、NDP Announcement Type ListとSTA Info Listを含む構成としてもよい。これらのListの内容は実施の形態2と同様である。Per STA InfoやSTA Info Listと記載したが、User InfoやUser Info Listと呼ばれてもよい。
 このように構成されたAIML Sounding NDP Information Elementが、Beacon frame, Association Request/Response frame, Probe Request/Response frame, Action framesなどのManagement framesに含まれて通知されることで、AIML sounding NDP infoを含む情報が各STAに通知されることができる。
 このように、AIML sounding NDP infoを含む情報要素(AIML Sounding NDP Information Element)がManagement framesで通知されることで、各Nodeに対してAI/ML用のsounding NDPフォーマットが指定されるので、複数のsounding NDPフォーマットが混在された通知を行うことができる。
 実施の形態1~4において記載したインターフェース名(フレーム名)、フィールド、又はサブフィールドの名称は、他の名称でもよい。
 図22は、各STA2200の構成を示す。制御部2201(例えば、制御回路に対応)は、受信部2203で受信した信号、あるいはSTAで図示しない入力部から入力された信号に基づいて、送信部2202と受信部2203を制御する。SME及びMLMEは、どちらも制御部に存在する機能である。また、別の例では、制御部2201はMLMEの機能を含み、SMEの機能の一部を含んでもよい。換言すると、SMEの機能の一部又は全部は、STA2200とは別の通信装置2300(例えば、他のSTA、他のアクセスポイント(AP)、無線LANコントローラ、Multi-APコーディネータ、クラウドサーバ、Software as a Service(SaaS)、仮想マシン(VM)、コンテナ)において実行されてもよい。送信部2202(例えば、送信回路に対応)は、相手STAに対して信号を送信する。受信部2203(例えば、受信回路に対応)は、相手STAからの信号を受信する。送信部2202と受信部2203は一体となって送受信部を構成してもよい。送信部2202、受信部2203、送信部2202及び受信部2203、又は送受信部は、通信部を構成している。
 図23は、別の通信装置2300の構成を示す。別の通信装置2300は、制御部2301及び通信回路2302を有している。制御部2301は、SMEの機能を含む。通信回路2302は、相手の通信装置(例えば、STA2200)と通信する。制御部2301と通信回路2302は、各実施の形態で説明したSMEとMLME間の通信プリミティブ(メッセージ、信号)を用いて通信してもよい。制御部2301はCPU2311、メモリ2312、記憶装置2313を含んでもよい。CPU2311は、SMEの機能を実行する。メモリ2312は、CPU2311が処理を実行するときに使用する。記憶装置2313は、SMEの機能に関するソフトウェア(例えば、バイナリ、実行ファイル、プログラムコード、コンテナイメージ)を記憶する。CPU2311は、SMEの機能を実行するために、記憶装置2313に記憶されているソフトウェアをメモリ2312に転送させてもよい。
 以上、図面を参照しながら実施の形態について説明したが、本開示はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例又は修正例に想到し得ることは明らかである。そのような変更例又は修正例についても、本開示の技術的範囲に属するものと了解される。また、本開示の趣旨を逸脱しない範囲において、実施の形態における各構成要素は任意に組み合わされてよい。
 上述の実施の形態においては、各構成要素に用いる「・・・部」という表記は、「・・・回路(circuitry)」、「・・・アッセンブリ」、「・・・デバイス」、「・・・ユニット」、又は、「・・・モジュール」といった他の表記に置換されてもよい。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部又は全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサー又は専用プロセッサーで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置は無線送受信機(トランシーバー)と処理/制御回路を含んでもよい。無線送受信機は受信部と送信部、又はそれらを機能として、含んでもよい。無線送受信機(送信部、受信部)は、RF(Radio Frequency)モジュールと1又は複数のアンテナを含んでもよい。RFモジュールは、増幅器、RF変調器/復調器、又はそれらに類するものを含んでもよい。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサ等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 また 、近年、IoT(Internet of Things)技術において、フィジカル空間とサイバー空間の情報連携により新たな付加価値を作りだすという新しいコンセプトであるCPS(Cyber Physical Systems)が注目されている。上記の実施の形態においても、このCPSコンセプトを採用することができる。
 すなわち、CPSの基本構成として、例えば、フィジカル空間に配置されるエッジサーバと、サイバー空間に配置されるクラウドサーバとを、ネットワークを介して接続し、双方のサーバに搭載されたプロセッサーにより、処理を分散して処理することが可能である。ここで、エッジサーバ又はクラウドサーバにおいて生成される各処理データは、標準化されたプラットフォーム上で生成されることが好ましく、このような標準化プラットフォームを用いることで、各種多様なセンサ群やIoTアプリケーションソフトウェアを含むシステムを構築する際の効率化を図ることができる。
 (1)本開示の一実施例に係る通信装置は、各STAの情報(STA Info)を含むフレームを生成する制御部であって、前記各STA Infoのうちの少なくとも1つのSTA Infoは、AI/ML用のsounding NDP infoであり、生成された前記フレームを送信する通信部と、を有する。
 (2)本開示の一実施例に係る通信装置は、(1)の装置の前記AI/ML用のsounding NDP infoは、STA InfoのAID11サブフィールドが特定の値の場合に定義されている。
 (3)本開示の一実施例に係る通信装置は、(1)の装置の前記AI/ML用のsounding NDP infoは、Frame Controlフィールドのサブタイプ値又はControl Frame Extention値が特定の値の場合に定義されている。
 (4)本開示の一実施例に係る通信装置は、(1)の装置の前記AI/ML用のsounding NDP infoは、TriggerフレームのTriggerタイプが特定の値の場合に定義されている。
 (5)本開示の一実施例に係る通信装置は、(1)の装置の前記AI/ML用のsounding NDP infoは、Managementフレームにおいて定義されている。
 (6)本開示の一実施例に係る通信方法は、各STAの情報(STA Info)を含むフレームを生成し、前記各STA Infoのうちの少なくとも1つのSTA Infoは、AI/ML用のsounding NDP infoであり、生成された前記フレームを送信する。
 2022年11月11日出願の特願2022-181083の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一実施例は、無線装置に有用である。
 2201 制御部
 2202 送信部
 2203 受信部

Claims (6)

  1.  各STA (Station)の情報(STA Info)を含むフレームを生成する制御部であって、前記各STA Infoのうちの少なくとも1つのSTA Infoは、AI (Artificial Intelligence)/ML (Machine Learning)用のsounding NDP(Null data PPDU (PLCP (Physical. Layer Convergence Protocol) Protocol Data Unit)) infoであり、
     生成された前記フレームを送信する通信部と、
     を有する通信装置。
  2.  前記フレームはsounding NDP Announcement frame(NDPA frame)であり、
     前記AI/ML用のsounding NDP infoは、STA InfoのAID11サブフィールドが特定の値の場合に定義されている、
     請求項1に記載の通信装置。
  3.  前記フレームはsounding NDPA frameであり、
     前記AI/ML用のsounding NDP infoは、Frame Controlフィールドのサブタイプ値又はControl Frame Extention値が特定の値の場合に定義されている、
     請求項1に記載の通信装置。
  4.  前記フレームはTriggerフレームであり、
     前記AI/ML用のsounding NDP infoは、前記TriggerフレームのTriggerタイプが特定の値の場合に定義されている、
     請求項1に記載の通信装置。
  5.  前記フレームはManagementフレームであり、
     前記AI/ML用のsounding NDP infoは、前記Managementフレームにおいて定義されている、
     請求項1に記載の通信装置。
  6.  各STA (Station)の情報(STA Info)を含むフレームを生成し、前記各STA Infoのうちの少なくとも1つのSTA Infoは、AI (Artificial Intelligence)/ML (Machine Learning)用のsounding NDP(Null data PPDU (PLCP (Physical. Layer Convergence Protocol) Protocol Data Unit)) infoであり、
     生成された前記フレームを送信する、
     通信方法。
PCT/JP2023/038557 2022-11-11 2023-10-25 通信装置及び通信方法 WO2024101160A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022181083 2022-11-11
JP2022-181083 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024101160A1 true WO2024101160A1 (ja) 2024-05-16

Family

ID=91032602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038557 WO2024101160A1 (ja) 2022-11-11 2023-10-25 通信装置及び通信方法

Country Status (1)

Country Link
WO (1) WO2024101160A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538723A (ja) * 2015-11-03 2018-12-27 クアルコム,インコーポレイテッド ビームフォーミング報告構造

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538723A (ja) * 2015-11-03 2018-12-27 クアルコム,インコーポレイテッド ビームフォーミング報告構造

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN, Zinan (INTERDIGITAL). AI/ML Use Case. IEEE 802.11-22/1563r1. IEEE. internet<URL: https://mentor.ieee.org/802.11/dcn/22/11-22-1563-01-aiml-ai-ml-use-case.pptx>. 13 September 2022 slide 1-19 *
ZINAN LIN (INTERDIGITAL): "Discussion on Interaction between AI/ML & Wireless LAN", IEEE DRAFT; 11-22-0950-02-AIML-DISCUSSION-ON-INTERACTION-BETWEEN-AI-ML-WIRELESS-LAN, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 AIML, no. 2, 11 July 2022 (2022-07-11), Piscataway, NJ USA, pages 1 - 11, XP068192677 *

Similar Documents

Publication Publication Date Title
RU2548159C2 (ru) Средства экономии мощности на физическом уровне со случайным смещением
US20240283575A1 (en) Transmission configuration indicator determination and acknowledgment
WO2022077387A1 (zh) 一种通信方法及通信装置
US10547359B2 (en) Calibration data
CN117204109A (zh) 通信方法及装置
WO2024101160A1 (ja) 通信装置及び通信方法
CN113938946B (zh) 通信方法及装置
US11202248B2 (en) Apparatus and method for specifying receiver enable times in UWB communication and ranging systems
JP2023532708A (ja) マルチリンクデバイスのためのaid割当て方法および関連装置
US20200177264A1 (en) Indicating beams for wireless communication
WO2022030213A1 (ja) 無線通信装置及び無線通信方法
WO2022205040A1 (en) Periodic reference signal activation and deactivation
WO2024161885A1 (ja) 無線装置及び無線通信方法
EP3402242B1 (en) Wi-fi measurement report enhancement techniques
WO2024007335A1 (zh) 无线通信方法、装置、设备及存储介质
US20240291530A1 (en) Codebook subset restriction for artificial intelligence/machine learning enabled channel state information reporting
WO2023181965A1 (ja) 通信装置及び通信方法
WO2024164638A1 (zh) 指示信息发送方法、指示信息接收方法、装置及存储介质
WO2024017218A1 (zh) 一种数据传输方法及相关装置
WO2023029000A1 (en) Codebook design for high doppler cases
WO2023087186A1 (zh) 一种信道测量方法及其装置
US20240040420A1 (en) Apparatus and method for reporting csi in wireless communication system
US20240380516A1 (en) Enhanced Ranging Techniques in 802.11
WO2024125498A1 (zh) 模型更新方法、装置、设备及存储介质
WO2024022309A1 (zh) 通信方法及装置、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888508

Country of ref document: EP

Kind code of ref document: A1