WO2024101034A1 - オートフォーカス制御装置、撮像装置、オートフォーカス制御方法、およびプログラム - Google Patents
オートフォーカス制御装置、撮像装置、オートフォーカス制御方法、およびプログラム Download PDFInfo
- Publication number
- WO2024101034A1 WO2024101034A1 PCT/JP2023/035930 JP2023035930W WO2024101034A1 WO 2024101034 A1 WO2024101034 A1 WO 2024101034A1 JP 2023035930 W JP2023035930 W JP 2023035930W WO 2024101034 A1 WO2024101034 A1 WO 2024101034A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- exposure
- control device
- autofocus control
- focus
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims description 9
- 230000003287 optical effect Effects 0.000 claims abstract description 31
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 230000000694 effects Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 7
- 238000007796 conventional method Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 238000010791 quenching Methods 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/28—Systems for automatic generation of focusing signals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/28—Systems for automatic generation of focusing signals
- G02B7/36—Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B13/00—Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
- G03B13/32—Means for focusing
- G03B13/34—Power focusing
- G03B13/36—Autofocus systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/67—Focus control based on electronic image sensor signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
- H04N25/772—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
- H04N25/773—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters comprising photon counting circuits, e.g. single photon detection [SPD] or single photon avalanche diodes [SPAD]
Definitions
- the present invention relates to an autofocus control device.
- the focus lens group When performing autofocus using contrast information, the focus lens group is driven back and forth within a small range to determine the direction in which to move the focus lens group. Unlike active methods that shine auxiliary light on the subject, this contrast detection method has the advantage that it allows focusing to be achieved without the subject, such as an animal, not noticing. However, because it uses image contrast, the focusing speed is slower than methods that use triangulation. Also, with cameras equipped with conventional CMOS or CCD, it is difficult to obtain contrast differences in dark places, and focusing accuracy is not high.
- APD avalanche photodiode
- Patent document 1 discloses an autofocus control device that aims to increase the focus control speed by changing the frame rate of a photoelectric conversion means according to the brightness of the subject.
- the autofocus control device in Patent Document 1 assumes a conventional CMOS or CCD sensor. For this reason, the focusing accuracy in dark places is not high. Also, in order to acquire multiple autofocus images, it is necessary to perform exposure, A/D conversion, read out the data, and calculate the brightness value. Therefore, even if the frame rate is changed, autofocus operation cannot be performed in a time shorter than the exposure time and readout time. Also, since this is a method of extracting the charge accumulated in each pixel when exposing and reading out the data, a new exposure must be started in order to acquire the next autofocus image, which creates a time lag before the next autofocus image is acquired.
- the present invention provides an autofocus control device that enables faster and more accurate focus detection than conventional methods when performing autofocus using a contrast detection method.
- An autofocus control device is an autofocus control device that controls a focus drive unit that drives a focus lens group, which is at least a part of the imaging optical system, based on contrast information obtained from an imaging element arranged in a two-dimensional plane, and that has a light receiving unit that converts light incident from an imaging optical system into a voltage pulse and a counting unit that counts the number of pulses of the voltage pulse.
- the autofocus control device is characterized in that it has a control unit that causes the focus drive unit to drive the focus lens group back and forth while continuing the exposure of the imaging element, and controls the focus drive unit based on the contrast information for each of a plurality of images generated from the number of pulses of the voltage pulse generated within the exposure period of the exposure.
- the present invention provides an autofocus control device that enables faster and more accurate focus detection than conventional methods when performing autofocus using a contrast detection method.
- FIG. 1 is a block diagram showing a configuration of an imaging device in which a conventional autofocus control device is used.
- 1 is a block diagram showing a configuration of an imaging device in which an autofocus control device according to each embodiment is used.
- FIG. 2A is a circuit diagram showing a configuration of an imaging pixel in each embodiment, and
- FIG. 2B is a diagram explaining the operating principle of an imaging element.
- 11 is a flowchart showing the operation of a conventional imaging apparatus.
- 4 is a flowchart showing the operation of the imaging device according to each embodiment.
- 10 is a timing chart showing an operation of a conventional contrast AF. 4 is a timing chart showing an operation of contrast AF according to the first embodiment.
- 10 is a timing chart showing an operation of contrast AF according to the second embodiment.
- FIG. 1 is a block diagram showing the configuration of a conventional imaging device 1.
- the imaging device 1 has an imaging optical system 100, an imaging element 101, an A/D conversion unit 102, an image processing unit 103, a memory 104, a focus driving unit 106, a control unit 107, a contrast determination unit 108, a recording medium 109, an operation unit 110, and a display unit 111.
- the image processing unit 103, the memory 104, the control unit 107, and the contrast determination unit 108 constitute an autofocus control device 10.
- the focus driving unit 106 adjusts the focus of the imaging optical system 100 by driving the focus lens group, which is at least a part of the imaging optical system 100, in the optical axis direction.
- the imaging element 101 acquires an optical image of a subject formed by the imaging optical system 100.
- the imaging element 101 in the conventional example is, for example, a CMOS sensor or a CCD sensor.
- the A/D conversion unit 102 converts the optical image acquired by the imaging element 101 into digital data.
- the converted digital data is processed in the image processing unit 103 and stored in the memory 104.
- the contrast determination unit 108 determines the drive direction of the focus lens group using the digital data processed by the image processing unit 103 and stored in the memory 104.
- the control unit 107 controls the focus driving unit 106 based on the result of the contrast determination unit 108 to move the focus lens group.
- the control unit 107 provides overall control over the operation of the imaging device 1.
- the control unit 107 includes a CPU, and executes programs for controlling each unit of the imaging device 1.
- the control unit 107 also uses the results of correlation calculations output from the image processing unit 103 to control the focus driving unit 106 and adjust the focus of the imaging optical system 100.
- the operation unit 110 is an operation member for the shutter operation and exposure control operation of the imaging device 1.
- the display unit 111 displays captured still images and moving images.
- the display unit 111 also displays menu screens and the like.
- the recording medium 109 is a removable recording medium for recording still image data and moving image data.
- FIG. 2 is a block diagram showing the configuration of the imaging device 2 according to each embodiment.
- the imaging device 2 has an imaging optical system 200, an imaging element 201, a photon counting unit 202, and a storage unit 203.
- the imaging device 2 further has an image generating unit 204, an imaging element control unit 205, a focus driving unit 206, a control unit 207, a contrast determining unit 208, a recording medium 209, an operation unit 210, and a display unit 211.
- the photon counting unit 202, the storage unit 203, the image generating unit 204, the control unit 207, and the contrast determining unit 208 constitute the autofocus control device 20.
- the focus driving unit 206 adjusts the focus of the imaging optical system 200 by driving a focus lens group, which is at least a part of the imaging optical system 200, in the optical axis direction.
- the memory unit 203 and the photon counting unit 202 may be provided inside the imaging element 201.
- the imaging device 2 in each embodiment is an imaging device in which a lens device equipped with an imaging optical system 200 and a camera body are integrated, but each embodiment is not limited to this.
- the imaging device 2 may be configured so that a lens device (interchangeable lens) can be detachably attached.
- the focus drive unit 206 may be provided on the lens device side.
- the image sensor 201 acquires an optical image of a subject formed by the imaging optical system 200.
- the photon counting unit 202 counts the voltage pulses output from each pixel of the image sensor 201 each time a photon (photon) is incident on the pixel (hereinafter, this is called photon counting). The number of counted photons is recorded in the memory unit 203 together with the time when the photon was counted.
- the image generating unit 204 generates an image using the voltage pulses output from the image sensor 201.
- the image sensor 202 is controlled by the image sensor control unit 205. Note that the image sensor 202 in each embodiment is a so-called photon-counting type image sensor having pixels using the avalanche effect (multiplication).
- each pixel is a SPAD (Single Photon Avalanche Diode) having an avalanche photodiode driven in Geiger mode.
- the image sensor 201 also has a pixel array in which multiple pixels are arranged in a matrix (a two-dimensional plane in the row and column directions), and outputs image data from the pixels by sequentially scanning each row.
- the control unit 207 provides overall control over the operation of the imaging device 2.
- the control unit 207 includes a CPU, and executes programs for controlling each unit of the imaging device 2.
- the contrast determination unit 208 calculates the contrast value (contrast information) of each image based on the image output from the image generation unit 204.
- the control unit 207 controls the focus drive unit 206 based on the contrast value results of each image, and adjusts the focus of the imaging optical system 200.
- the recording medium 209 is a removable recording medium that records still image data and video data.
- the operation unit 210 is an operation member for the shutter operation and exposure control operation of the imaging device 2.
- the display unit 211 displays captured still images and videos. The display unit 211 also displays menu screens and the like.
- FIG. 3A is a circuit diagram showing the configuration of an image sensor pixel of the image sensor 201.
- the image sensor pixel circuit (photoelectric conversion unit) 300 of each pixel of the image sensor 201 is composed of an avalanche photodiode (hereinafter, APD) 301, a quench resistor 302, a waveform shaping circuit 303, and a counter 304.
- the APD 301 can amplify the amount of signal charge excited by photons by several to a million times by using the avalanche multiplication phenomenon that occurs due to a strong electric field induced in the pn junction of a semiconductor.
- the APD 301 can greatly amplify a weak light signal, improve the signal-to-noise ratio relative to the readout noise generated in the readout circuit, and achieve a luminance resolution at the single photon level.
- APD301 is connected to the reverse bias voltage VAPD via quench resistor 302, and generates charge through avalanche multiplication when photons are incident.
- the generated charge is discharged via quench resistor 302.
- the generation of charge through avalanche multiplication and the discharge of charge through quench resistor 302 are repeated depending on the number of photons incident on APD301. Looking at the voltage on the cathode side of APD301 as a reference, when no photons are incident, it is approximately the same voltage value as the reverse bias voltage VAPD, and the voltage drops due to the charge generated when photons are incident on APD301.
- the waveform shaping circuit 303 generates a voltage pulse by amplifying and detecting edges of the change in voltage on the cathode side of the APD 301 caused by the generation and discharge of electric charges in response to the incidence of photons.
- the APD 301 corresponds to a light receiving unit that converts the light (light flux) incident from the exit pupil of the imaging optical system 200 into a voltage pulse based on the avalanche effect.
- the counter 304 which serves as a counter unit, counts the number of voltage pulses (number of pulses) output by the waveform shaping circuit 303 for a predetermined period of time, and outputs the count result as a digital value to the photon count unit 202 outside the pixel. Note that in each embodiment, the counter 304 corresponds to a count unit that counts the number of voltage pulses that occur within the exposure time.
- the digital value which is the count result, is stored in the external storage unit 203 via the photon count unit 202.
- the digital value is stored in the external storage unit 203 via the photon count unit 202.
- the photon count number (pulse number) obtained from the image sensor 201 and the photon count information (count information) including the acquisition time of the count number, which is time information associated with the count number are stored in the storage unit 203.
- an image for autofocus determination at any timing during the exposure period For example, by taking the difference between the count number at time t1 and the count number at time t2 (>t1), it is possible to acquire an image for autofocus determination at a time corresponding to time t2.
- An image for autofocus determination at a time corresponding to time t3 (>t2) may be obtained by taking the difference between the count number at time t2 and the count number at time t3.
- an image for autofocus determination at a time corresponding to time t3 may be obtained by adding or subtracting the count number at time t2 to the difference between the count number at time t1 and the count number at time t3.
- the time required for A/D conversion and the time required for re-acquiring an image for autofocus determination are not required, and each embodiment can achieve high-speed autofocus. Furthermore, by using a SPAD, highly accurate autofocus can be achieved even in dark places without irradiating active light.
- FIG. 3B is a diagram for explaining the operating principle of the image sensor 201 according to this embodiment.
- the horizontal axis is time, and the relationship between the pulse waveform of the output voltage due to avalanche multiplication output from the APD 301 when a photon is incident and the threshold value Vth for determining the incidence of a photon is shown.
- FIG. 3B shows a case where a potential capable of applying a reverse bias voltage exceeding the breakdown voltage to the APD 301 is supplied.
- avalanche multiplication occurs to the extent that a pulse waveform that changes beyond the counter threshold Vth is output, and each pulse is time-resolved. Therefore, it is possible to count the incident photons over time.
- FIG. 4 shows a flow chart showing the operation from image acquisition to determining contrast and driving the focus lens group in the conventional imaging device 1.
- the control unit 107 starts exposure of the image sensor 102 to acquire an image for autofocus determination.
- the control unit 107 temporarily stops exposure of the image sensor 102 and drives the focus lens group slightly to acquire the next image.
- the control unit 107 causes the A/D conversion unit 103 to read analog data from the image sensor 102.
- the control unit 107 causes the A/D conversion unit 103 to convert the analog data into digital data.
- the control unit 107 causes the image processing unit 103 to generate an image.
- step S406 the control unit 107 causes the generated image to be stored in the memory 104.
- step S407 the control unit 107 causes the contrast determination unit 108 to calculate a contrast value from the image stored in the memory 104.
- the operations from step S401 to step S407 are performed multiple times, and in step S408, the control unit 107 causes the contrast determination unit 108 to compare contrast values from multiple images.
- step S409 the control unit 107 controls the focus drive unit 106 to drive the focus lens group in a direction that increases the contrast value.
- FIG. 6 is a timing chart of the conventional imaging device 1.
- exposure is started to obtain an image for autofocus determination.
- analog data is read from the imaging element, an image for autofocus determination is generated by A/D conversion, and the contrast value of the image is calculated.
- the focus lens group is slightly driven, and when the first analog data reading starts, exposure is started again to obtain the next image for autofocus determination. This operation is repeated multiple times to calculate the contrast values of multiple images. By comparing the contrast values, the focus lens group is driven in the direction of the higher contrast value. For live view display on the screen and for shooting unit frames of video and still images, exposure is performed for a specified exposure time after the focus lens group is moved, and the final focused image is output.
- step S501 the control unit 207 starts the exposure of the imaging element 201.
- step S502 the control unit 207 causes the photon count unit 202 to count the number of photons incident on each pixel, and causes the counted number of photons to be recorded in the storage unit 203 together with the time.
- step S503 the control unit 207 causes the image generation unit 204 to generate an image for autofocus determination from the photon count information stored in the storage unit 203, including the count number of photons and the acquisition time of the count number.
- the image generation unit 204 can generate an image for autofocus determination at any timing during the exposure period by appropriately adding and subtracting the photon count information at any timing.
- the control unit 207 causes the contrast determination unit 208 to calculate a contrast value from the generated image for autofocus determination.
- the control unit 207 controls the focus driving unit 206 to drive the focus lens group in the direction of a higher contrast value.
- the control unit 207 determines whether the time is within the exposure time of the unit frame, and if it is within the exposure time of the unit frame, the processing of steps S501 to S505 is repeated.
- step S507 the control unit 207 ends the exposure of the image sensor 201. (Embodiment 1) FIG.
- the premise is that video shooting is performed by continuously driving the focus lens group back and forth in the optical axis direction while keeping the focus on a specific subject.
- Exposure is started to acquire an image of one frame of the video.
- photon counting is started to count the number of photons, and the photon count number is recorded in the storage unit 203.
- driving the focus lens group back and forth reciprocating drive
- an image for autofocus determination is created at any timing based on the photon count number, and the contrast value of the image is calculated.
- the focus lens group is driven in the direction with a higher contrast value. Exposure continues during the operation of one frame.
- FIG. 8 is a timing chart when a still image is captured by the imaging device 2 according to the second embodiment.
- the assumption is that autofocus control is started when the shutter button of the imaging device 2 is half-pressed (S1) by the user, and then the shutter button is further pressed down to the full-press state (S2) to obtain a still image.
- exposure is started at the same time as the shutter button of the imaging device 2 is half-pressed, photon counting is started to count the number of photons, and the photon count number is recorded in the storage unit 203.
- driving the focus lens group back and forth in the optical axis direction reciprocating drive
- an image for autofocus determination is created at any timing based on the photon count number, and the contrast value of the image is calculated.
- the focus lens group is driven in the direction of a higher contrast value, and finally, the focus lens group is driven to a position where the contrast value is maximum.
- a still image is generated using the number of voltage pulses (photon counts) generated during a still image exposure period excluding the exposure period during which an image for autofocus determination is generated.
- a still image may be generated by adding or subtracting an image created based on the photon counts acquired during the still image capture exposure period. Exposure continues during this series of operations.
- m is the average number of incident photons per pixel of the image sensor 201.
- fT is the clock number of the image sensor 201.
- Conditional formula (1) defines the average number of incident photons m per pixel with respect to the clock number fT.
- the number of counts per pixel n is defined by the following formula using the average number of incident photons m and the clock count fT.
- n fT x (1 - Exp(-m/fT))
- the average number m of incident photons per pixel is defined by the following formula.
- conditional formula (1) If the upper limit of conditional formula (1) is exceeded, the relationship between the number of incident photons m and the counted value will no longer be linear, which is undesirable. If the lower limit of conditional formula (1) is exceeded, the measurement error will increase due to the influence of noise components, which is undesirable. Note that the judgment of linearity is not limited to counting the number of photons, and judgment criteria may be set based on the subject illuminance and the brightness value of the image.
- conditional formula (1) is within the range of conditional formula (1a) below.
- conditional expression (3a) 0.01 ⁇ m/fT ⁇ 0.80 (1a) It is even more preferable that the numerical range of conditional expression (3a) be within the range of the following conditional expression (3b).
- the present invention can also be realized by a process in which a program for implementing one or more of the functions of the above-described embodiments is supplied to a system or device via a network or a storage medium, and one or more processors in a computer of the system or device read and execute the program.
- the present invention can also be realized by a circuit (e.g., ASIC) that implements one or more of the functions.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Studio Devices (AREA)
- Automatic Focus Adjustment (AREA)
- Focusing (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
【課題】コントラスト検出方式を用いてオートフォーカスを行う際に、従来よりも高速で高精度な焦点検出を行うことを可能にしたオートフォーカス制御装置を提供する。 【解決手段】撮像光学系から入射する光を電圧パルスに変換する受光部と、電圧パルスのパルス数をカウントするカウント部とを備える複数の光電変換部が2次元平面に配置された撮像素子より得られるコントラスト情報に基づいて、撮像光学系の少なくとも一部であるフォーカスレンズ群を駆動するフォーカス駆動部を制御するオートフォーカス制御装置は、撮像素子の露光を継続したままフォーカス駆動部にフォーカスレンズ群を往復駆動させ、露光の露光期間内に発生する電圧パルスのパルス数から生成される複数の画像それぞれのコントラスト情報に基づいてフォーカス駆動部を制御する制御部を有する。
Description
本発明は、オートフォーカス制御装置に関する。
コントラスト情報を用いてオートフォーカスを行う際、フォーカスレンズ群を微小範囲で往復駆動させて、フォーカスレンズ群を移動させる方向を判断する。このコントラスト検出方式の場合、被写体に補助光を照射するアクティブ方式と違って、動物などの被写体に気づかれずにフォーカスができる利点がある。しかしながら、画像のコントラストを用いるため、三角測量を用いる方式に比べて、フォーカス速度が遅い。また、従来のCMOSやCCDを搭載したカメラにおいて暗所ではコントラスト差が得られにくく、合焦精度が高くない。
近年、単一光子レベルの微弱光を検出可能な光検出素子が注目されている。その一例として、アバランシェフォトダイオード(以下、APD)が挙げられる。
特許文献1には、被写体輝度に応じて光電変換手段のフレームレートを変更することでフォーカス制御速度の高速化を図るオートフォーカス制御装置が開示されている。
しかしながら、特許文献1のオートフォーカス制御装置は、従来のCMOSやCCDセンサを想定している。このため、暗所での合焦精度が高くない。また、複数のオートフォーカス用画像を取得するために、露光してからA/D変換し、データを読み出し、輝度値を算出する必要がある。よって、フレームレートを変えても、露光時間および読み出し時間以下の時間でオートフォーカス動作はできない。また、露光してデータを読み出す際に各画素に蓄積された電荷を取り出す方式であるため、次のオートフォーカス用画像の取得のために、再度新たに露光を開始しなければならず、次のオートフォーカス用画像の取得までの間にタイムラグが生じる。
本発明は、コントラスト検出方式を用いてオートフォーカスを行う際に、従来よりも高速で高精度な焦点検出を行うことを可能にしたオートフォーカス制御装置を提供する。
本発明の一側面としてのオートフォーカス制御装置は、撮像光学系から入射する光を電圧パルスに変換する受光部と、前記電圧パルスのパルス数をカウントするカウント部とを備える複数の光電変換部が2次元平面に配置された撮像素子より得られるコントラスト情報に基づいて、前記撮像光学系の少なくとも一部であるフォーカスレンズ群を駆動するフォーカス駆動部を制御するオートフォーカス制御装置であって、前記撮像素子の露光を継続したまま前記フォーカス駆動部に前記フォーカスレンズ群を往復駆動させ、前記露光の露光期間内に発生する前記電圧パルスのパルス数から生成される複数の画像それぞれの前記コントラスト情報に基づいて前記フォーカス駆動部を制御する制御部を有することを特徴とする。
本発明の他の目的及び特徴は、以下の実施形態において説明される。
本発明によれば、コントラスト検出方式を用いてオートフォーカスを行う際に、従来よりも高速で高精度な焦点検出を行うことを可能にしたオートフォーカス制御装置を提供することができる。
以下、本発明の実施形態によるオートフォーカス装置が用いられた撮像装置について図面を参照しながら詳細に説明する。各図において、同一の部材については同一の参照符号を付し、重複する説明は省略する。
図1は、従来例の撮像装置1の構成を示すブロック図である。撮像装置1は、撮像光学系100、撮像素子101、A/D変換部102、画像処理部103、メモリ104、フォーカス駆動部106、制御部107、コントラスト判定部108、記録媒体109、操作部110、表示部111を有する。画像処理部103、メモリ104、制御部107、コントラスト判定部108がオートフォーカス制御装置10を構成する。
フォーカス駆動部106は、撮像光学系100の少なくとも一部であるフォーカスレンズ群を光軸方向に駆動することにより、撮像光学系100の焦点を調節する。撮像素子101は、撮像光学系100で形成された被写体の光学像を取得する。従来例の撮像素子101は、例えば、CMOSセンサやCCDセンサである。A/D変換部102は、撮像素子101が取得した光学像をデジタルデータに変換する。変換されたデジタルデータは、画像処理部103において処理され、メモリ104に記憶される。コントラスト判定部108は、画像処理部103で処理されメモリ104に記憶されたデジタルデータを用いて、フォーカスレンズ群の駆動方向を判定する。制御部107は、コントラスト判定部108の結果に基づき、フォーカス駆動部106を制御し、フォーカスレンズ群を移動させる。
従来例では、オートフォーカス判定用の複数枚の画像が取得され、コントラスト判定部108でコントラストの判定が行われる。しかしながら、フォーカス判定用の画像は、撮像素子101からアナログデータが読み出された後、A/D変換部102がアナログデータをデジタルデータに変換することで取得される。この際、撮像素子101は露光をいったん終了する。このため、次のフォーカス判定用の画像を取得するために、撮像素子101は再度露光を開始する必要がある。よって、コントラスト値(コントラスト情報)を比較することでコントラストの判定を行い、フォーカスレンズ群を駆動するためには、複数枚のデータのA/D変換および再露光分の時間が必要になる。
制御部107は、撮像装置1の動作を統括的に制御する。制御部107は、CPUを含み、撮像装置1の各部を制御するためのプログラムを実行する。また、制御部107は、画像処理部103から出力される相関演算の結果を用いて、フォーカス駆動部106を制御し、撮像光学系100の焦点を調節する。操作部110は、撮像装置1のシャッター動作や露出制御動作のための操作部材である。表示部111は、撮像した静止画像や動画像の表示を行う。また表示部111は、メニュー画面等の表示を行う。記録媒体109は、静止画データ及び動画データを記録する着脱可能な記録媒体である。
図2は、各実施形態に係る撮像装置2の構成を示すブロック図である。撮像装置2は、撮像光学系200、撮像素子201、フォトンカウント部202、記憶部203を有する。さらに、撮像装置2は、画像生成部204、撮像素子制御部205、フォーカス駆動部206、制御部207、コントラスト判定部208、記録媒体209、操作部210、表示部211を有する。各実施形態では、フォトンカウント部202、記憶部203、画像生成部204、制御部207、コントラスト判定部208がオートフォーカス制御装置20を構成する。
フォーカス駆動部206は、撮像光学系200の少なくとも一部であるフォーカスレンズ群を光軸方向に駆動することにより、撮像光学系200の焦点を調節する。記憶部203、フォトンカウント部202は、撮像素子201の内部に設けられていてもよい。
各実施形態の撮像装置2は、撮像光学系200を備えるレンズ装置とカメラ本体とが一体的に構成された撮像装置であるが、各実施形態はこれに限定されるものではない。撮像装置2が、レンズ装置(交換レンズ)を着脱可能に構成されていてもよい。このとき、フォーカス駆動部206はレンズ装置側に設けられていてもよい。
撮像素子201は、撮像光学系200で形成された被写体の光学像を取得する。フォトンカウント部202は、1つのフォトン(光子)が撮像素子201の各画素に入射するごとに各画素から出力される電圧パルスをカウントする(以下、これをフォトンカウントと呼ぶ)。カウントされたフォトンの数は、フォトンがカウントされたときの時刻と合わせて記憶部203に記録される。画像生成部204は、撮像素子201から出力された電圧パルスを用いて画像を生成する。撮像素子202は、撮像素子制御部205によって制御される。なお、各実施形態における撮像素子202は、アバランシェ効果(増倍)を用いた画素を備えるいわゆるフォトンカウンティング型の撮像素子である。例えば各画素がガイガーモードで駆動されるアバランシェフォトダイオードを有するSPAD(Single Photon Avalanche Diode)である。また、撮像素子201は、複数の画素を行列方向(行方向と列方向の2次元平面)に配列した画素アレイを備え、行ごとに順次走査することによって画素からの画像データを出力する。
制御部207は、撮像装置2の動作を統括的に制御する。制御部207は、CPUを含み、撮像装置2の各部を制御するためのプログラムを実行する。コントラスト判定部208は、画像生成部204から出力された画像に基づき各画像のコントラスト値(コントラスト情報)を算出する。制御部207は、各画像のコントラスト値の結果に基づき、フォーカス駆動部206を制御し、撮像光学系200の焦点を調節する。記録媒体209は、静止画データ及び動画データを記録する着脱可能な記録媒体である。操作部210は、撮像装置2のシャッター動作や露出制御動作のための操作部材である。表示部211は、撮像した静止画像や動画像の表示を行う。また表示部211は、メニュー画面等の表示を行う。
次に、図3(A)を用いて、撮像素子201の構成について詳細に説明する。図3(A)は、撮像素子201の撮像用画素の構成を示す回路図である。撮像素子201の各画素の撮像用画素回路(光電変換部)300は、アバランシェフォトダイオード(以下、APD)301、クエンチ抵抗302、波形整形回路303、カウンタ304により構成される。APD301は、半導体のpn接合部に誘起された強電界により発生するアバランシェ増倍現象を用いることで、フォトンにより励起された信号電荷量を数倍~百万倍程度に増幅することができる。APD301は、このアバランシェ増倍現象の高ゲイン性を利用することで、微弱光の信号を大きく増幅し、読み出し回路で生じる読み出しノイズに対するSN比を向上させることができ、単一光子レベルの輝度分解能を実現することができる。
APD301は、クエンチ抵抗302を介して逆バイアス電圧VAPDと接続されており、フォトンが入射するとアバランシェ増倍による電荷を発生させる。発生した電荷は、クエンチ抵抗302を介して排出される。つまり、APD301に入射したフォトンの数に応じてアバランシェ増倍による電荷の発生とクエンチ抵抗302を介しての電荷の排出が繰り返されることになる。APD301のカソード側の電圧を基準に見れば、フォトンの入射がない場合には逆バイアス電圧VAPDと略同一の電圧値であり、APD301に対するフォトンの入射に伴って発生する電荷によってその電圧は低下することとなる。
波形整形回路303は、フォトンの入射に応じた電荷の生成・排出によるAPD301のカソード側の電圧の変化に対し増幅・エッジ検出を行うことにより、電圧パルスを生成する。なお、各実施形態においてAPD301は、撮像光学系200の射出瞳から入射する光(光束)をアバランシェ効果に基づいて電圧パルスに変換する受光部に相当する。
カウンタ部としてのカウンタ304は、波形整形回路303により出力される電圧パルスの数(パルス数)を所定時間の間カウントし、画素の外部のフォトンカウント部202へデジタル値としてカウント結果を出力する。なお、各実施形態において、カウンタ304は、露光時間内に発生する電圧パルスの発生数をカウントするカウント部に相当する。
カウント結果であるデジタル値は、フォトンカウント部202を介して外部に設けられた記憶部203に記憶される。画素アレイ上の所定の領域の複数の撮像用画素回路300からカウント数を取得することによって、オートフォーカス判定用の画像や、1フレーム分の画像、または最終的な画像を生成することが可能となる。各実施形態では、オートフォーカス判定用の画像の取得時にA/D変換が不要である。複数枚のフォーカス判定用の画像を取得する際に、撮像素子201から得られるフォトンのカウント数(パルス数)と、そのカウント数に付随する時間情報であるカウント数の取得時間とを含むフォトンカウント情報(カウント情報)を記憶部203に記憶する。露光を継続したまま、任意のタイミングでのフォトンのカウント数を加減算することで、露光期間中の任意のタイミングでのオートフォーカス判定用の画像を取得することが可能となる。例えば、時刻t1でのカウント数と時刻t2(>t1)でのカウント数の差分をとることで、時刻t2に対応する時刻でのオートフォーカス判定用の画像を取得することができる。時刻t3(>t2)に対応する時刻のオートフォーカス判定用の画像は、時刻t2でのカウント数と時刻t3でのカウント数の差分により取得してもよい。もしくは、時刻t1でのカウント数と時刻t3でのカウント数の差分に時刻t2でのカウント数を加算もしくは減算することで、時刻t3に対応する時刻のオートフォーカス判定用の画像を取得してもよい。そのため、従来例に比べてA/D変換にかかる時間および、オートフォーカス判定用の画像の再取得の時間が不要となり、各実施形態はオートフォーカスの高速化を図ることができる。また、SPADを用いることにより、暗所でもアクティブ光を照射せずに高精度なオートフォーカスの実現することができる。
図3(B)は、本実施形態による撮像素子201の動作原理を説明する図である。図3(B)において、横軸は時間であり、フォトン入射時にAPD301から出力されるアバランシェ増倍による出力電圧のパルス波形と、フォトンの入射を判定するための閾値Vthとの関係が示されている。図3(B)では、APD301に降伏電圧を超える逆バイアス電圧を印加することのできる電位が供給された場合を示す。APD301に入射したフォトンA(時刻tA)、フォトンB(時刻tB)それぞれに対して、カウンタ閾値Vthを超えて変化するパルス波形が出力されるほどのアバランシェ増倍が発生し、それぞれのパルスは時間分解されている。よって、入射フォトンを時間ごとにカウントすることが可能となる。
図4は、従来例の撮像装置1における画像取得からコントラストを判定してフォーカスレンズ群を駆動させるまでの動作を示すフローチャートを示したものである。まず、ステップS401において、オートフォーカス判定用の画像を取得するため、制御部107は、撮像素子102の露光を開始する。その後ステップS402にて、制御部107は、撮像素子102のいったん露光を終了し、次の画像の取得のためにフォーカスレンズ群を微小に駆動する。ステップS403において、制御部107は、A/D変換部103に撮像素子102からアナログデータを読み出させる。ステップS404において、制御部107は、A/D変換部103にそのアナログデータをデジタルデータに変換させる。ステップS405において、制御部107は、画像処理部103に画像を生成させる。ステップS406において、制御部107は、生成された画像をメモリ104に保存させる。ステップS407において、制御部107は、コントラスト判定部108にメモリ104に保存された画像から、コントラスト値を算出させる。ステップS401からステップS407の動作を複数回行い、ステップS408において、制御部107は、コントラスト判定部108に複数の画像からコントラスト値の比較を行わせる。ステップS409において、制御部107は、フォーカス駆動部106を制御して、フォーカスレンズ群をコントラスト値の高くなる方向へ駆動させる。
図6は、従来例の撮像装置1のタイミングチャートである。最初にオートフォーカス判定用の画像を取得するために、露光が開始される。その後、一旦、露光が終了し、撮像素子からアナログデータが読み出され、A/D変換によりオートフォーカス判定用の画像が生成され、該画像のコントラスト値が算出される。一旦露光が終了すると、フォーカスレンズ群が微小に駆動され、最初のアナログデータの読み出しが開始されると、次のオートフォーカス判定用の画像を取得するために再度露光が開始される。この動作を複数回繰り返し、複数枚の画像のコントラスト値を算出する。コントラスト値を比較することで、コントラスト値が高い方向へフォーカスレンズ群が駆動される。画面のライブビュー表示および、動画の単位フレームや静止画の撮影のためには、フォーカスレンズ群の移動後、所定の露光時間で露光が行われ最終的なフォーカスの合った合焦画像が出力される。
図5は、本実施形態に係る撮像装置2の単位フレームの露光時間におけるコントラス値の判定およびオートフォーカス動作を示すフローチャートである。まず、ステップS501において、制御部207は、撮像素子201の露光を開始する。その後ステップS502において、制御部207は、フォトンカウント部202に画素ごとに入射したフォトンの数をカウントさせ、カウントしたフォトンの数を時刻と合わせて記憶部203に記録させる。ステップS503において、制御部207は、画像生成部204に、記憶部203に記憶された、フォトンのカウント数とそのカウント数の取得時間を含むフォトンカウント情報から、オートフォーカス判定用の画像を生成させる。ここで、画像生成部204は、任意のタイミングでのフォトンカウント情報を適切に加減算することにより、露光期間中の任意のタイミングでのオートフォーカス判定用の画像を生成することができる。ステップS504において、制御部207は、コントラスト判定部208に、生成されたオートフォーカス判定用の画像から、コントラスト値を算出させる。ステップS505において、制御部207は、フォーカス駆動部206を制御して、フォーカスレンズ群をコントラスト値が高い方向へ駆動させる。ステップS506において、制御部207は、時刻が単位フレームの露光時間内であるか否か判定し、単位フレームの露光時間内であればステップS501からステップS505の処理を繰り返す。ステップS507において、制御部207は、撮像素子201の露光を終了する。
(実施形態1)
図7は、実施形態1に係る撮像装置2で動画撮影を行う際のタイミングチャートである。実施形態1では、フォーカスレンズ群を常に光軸方向に前後に駆動させながら、所定の被写体にピント合わせ続ける動画撮影を前提としている。まず、動画の1フレームの画像を取得するための露光が開始される。同時にフォトンの数をカウントするフォトンカウントが開始され、フォトンのカウント数が記憶部203に記録される。フォーカスレンズ群を前後に駆動(往復駆動)させながら、フォトンのカウント数をもとに任意のタイミングでオートフォーカス判定用の画像が作成され、該画像のコントラスト値が算出される。フォーカスレンズ群は、コントラスト値が高い方向へ駆動される。1フレームの動作の間、露光は継続したままである。1フレームの動作が終了した後、一旦露光は終了し、フォトンカウンタがリセットされ、次のフレームの画像取得のために再度露光が開始される。図7に示すように、実施形態1では、オートフォーカス用の判定画像を連続して取得することができる。これにより、被写体に対して常に追従できるため、高精度な動画撮影を行うことが可能となる。
(実施形態2)
図8は、実施形態2に係る撮像装置2で静止画撮影を行う際のタイミングチャートである。実施形態2では、ユーザーによって撮像装置2のシャッターボタンが半押しされた状態(S1)で、オートフォーカス制御が開始され、その後、シャッターボタンがさらに押下された全押し状態(S2)にされ、静止画が取得される動作を前提としている。まず、撮像装置2のシャッターボタンが半押しされると同時に露光が開始され、フォトンの数をカウントするフォトンカウントが開始され、フォトンのカウント数が記憶部203に記録される。フォーカスレンズ群を光軸方向に前後に駆動(往復駆動)させながら、フォトンのカウント数をもとに任意のタイミングでオートフォーカス判定用の画像が作成され、該画像のコントラスト値が算出される。フォーカスレンズ群は、コントラスト値が高い方向へ駆動され、最終的に、コントラスト値が最大となる位置へフォーカスレンズ群は駆動される。そして、シャッターボタンが全押し状態S2になった際に、記憶部203に保存されたフォトンのカウント数から、所定の露光時間で露光が行われ最終的なフォーカスの合った合焦画像である静止画が生成される。静止画の生成には、露光期間のうちオートフォーカス判定用の画像を生成した露光期間を除いた静止画露光期間内に発生する電圧パルスのパルス数(フォトンのカウント数)を用いる。静止画撮影露光期間に取得されるフォトンのカウント数をもとに作成した画像を加減算することにより静止画を生成してもよい。これらの一連の動作の間、露光は継続したままである。
(実施形態1)
図7は、実施形態1に係る撮像装置2で動画撮影を行う際のタイミングチャートである。実施形態1では、フォーカスレンズ群を常に光軸方向に前後に駆動させながら、所定の被写体にピント合わせ続ける動画撮影を前提としている。まず、動画の1フレームの画像を取得するための露光が開始される。同時にフォトンの数をカウントするフォトンカウントが開始され、フォトンのカウント数が記憶部203に記録される。フォーカスレンズ群を前後に駆動(往復駆動)させながら、フォトンのカウント数をもとに任意のタイミングでオートフォーカス判定用の画像が作成され、該画像のコントラスト値が算出される。フォーカスレンズ群は、コントラスト値が高い方向へ駆動される。1フレームの動作の間、露光は継続したままである。1フレームの動作が終了した後、一旦露光は終了し、フォトンカウンタがリセットされ、次のフレームの画像取得のために再度露光が開始される。図7に示すように、実施形態1では、オートフォーカス用の判定画像を連続して取得することができる。これにより、被写体に対して常に追従できるため、高精度な動画撮影を行うことが可能となる。
(実施形態2)
図8は、実施形態2に係る撮像装置2で静止画撮影を行う際のタイミングチャートである。実施形態2では、ユーザーによって撮像装置2のシャッターボタンが半押しされた状態(S1)で、オートフォーカス制御が開始され、その後、シャッターボタンがさらに押下された全押し状態(S2)にされ、静止画が取得される動作を前提としている。まず、撮像装置2のシャッターボタンが半押しされると同時に露光が開始され、フォトンの数をカウントするフォトンカウントが開始され、フォトンのカウント数が記憶部203に記録される。フォーカスレンズ群を光軸方向に前後に駆動(往復駆動)させながら、フォトンのカウント数をもとに任意のタイミングでオートフォーカス判定用の画像が作成され、該画像のコントラスト値が算出される。フォーカスレンズ群は、コントラスト値が高い方向へ駆動され、最終的に、コントラスト値が最大となる位置へフォーカスレンズ群は駆動される。そして、シャッターボタンが全押し状態S2になった際に、記憶部203に保存されたフォトンのカウント数から、所定の露光時間で露光が行われ最終的なフォーカスの合った合焦画像である静止画が生成される。静止画の生成には、露光期間のうちオートフォーカス判定用の画像を生成した露光期間を除いた静止画露光期間内に発生する電圧パルスのパルス数(フォトンのカウント数)を用いる。静止画撮影露光期間に取得されるフォトンのカウント数をもとに作成した画像を加減算することにより静止画を生成してもよい。これらの一連の動作の間、露光は継続したままである。
各実施形態においては、次の条件式(1)を満足することが好ましい。
0.0<m/fT<1.0 ・・・(1)
ここで、mは撮像素子201の1画素あたりの平均入射光子数である。fTは撮像素子201のクロック数である。条件式(1)は、クロック数fTに対する1画素あたりの平均入射光子数mを規定している。
ここで、mは撮像素子201の1画素あたりの平均入射光子数である。fTは撮像素子201のクロック数である。条件式(1)は、クロック数fTに対する1画素あたりの平均入射光子数mを規定している。
ここで、1画素あたりのカウント数nと1画素あたりの平均入射光子数mとの関係について説明する。1画素あたりのカウント数nは、平均入射光子数m、クロック数fTを用いて以下の式で定義される。
n=fT×(1-Exp(-m/fT))
ここで、1画素あたりの平均入射光子数mは、以下の式で定義される。
ここで、1画素あたりの平均入射光子数mは、以下の式で定義される。
m=S×Lf×t
Lf=(R×T/4F^2)×Le
ここで、Sはセンサ感度、Lfはセンサ面照度、tは露光時間、Rは被写体の反射率、Tはレンズ透過率、FはレンズのFnoである。条件式(1)より、クロック数fTに対する1画素あたりの平均入射光子数mの値が小さいほど線形性を満足することができる。
Lf=(R×T/4F^2)×Le
ここで、Sはセンサ感度、Lfはセンサ面照度、tは露光時間、Rは被写体の反射率、Tはレンズ透過率、FはレンズのFnoである。条件式(1)より、クロック数fTに対する1画素あたりの平均入射光子数mの値が小さいほど線形性を満足することができる。
条件式(1)の上限値を上回ると、入射光子数mに対してカウントされる値の関係が線形ではなくなるため、好ましくない。条件式(1)の下限値を下回ると、ノイズ成分の影響により測定誤差が大きくなるため、好ましくない。なお、線形性の判断に関しては、光子数のカウントに限らず、被写体照度と画像の輝度値から判断基準を設けてもよい。
また、条件式(1)の数値範囲は以下の条件式(1a)の範囲とすることがより好ましい。
0.01<m/fT<0.80 ・・・(1a)
また、条件式(3a)の数値範囲は以下の条件式(3b)の範囲とすることが更に好ましい。
また、条件式(3a)の数値範囲は以下の条件式(3b)の範囲とすることが更に好ましい。
0.05<m/fT<0.50 ・・・(1b)
(その他の実施例)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
(その他の実施例)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で様々な変形及び変更が可能である。
Claims (19)
- 撮像光学系から入射する光を電圧パルスに変換する受光部と、前記電圧パルスのパルス数をカウントするカウント部とを備える複数の光電変換部が2次元平面に配置された撮像素子より得られるコントラスト情報に基づいて、前記撮像光学系の少なくとも一部であるフォーカスレンズ群を駆動するフォーカス駆動部を制御するオートフォーカス制御装置であって、
前記撮像素子の露光を継続したまま前記フォーカス駆動部に前記フォーカスレンズ群を往復駆動させ、前記露光の露光期間内に発生する前記電圧パルスのパルス数から生成される複数の画像それぞれの前記コントラスト情報に基づいて前記フォーカス駆動部を制御する制御部を有することを特徴とするオートフォーカス制御装置。 - 前記受光部は、前記撮像素子の各画素に設けられた、ガイガーモードで駆動されるアバランシェフォトダイオードであることを特徴とする請求項1に記載のオートフォーカス制御装置。
- 前記露光の露光期間内に発生する前記電圧パルスのパルス数を記憶する記憶部を更に有することを特徴とする請求項1または2に記載のオートフォーカス制御装置。
- 前記露光の露光期間内に発生する前記電圧パルスのパルス数を用いて、前記複数の画像を生成する画像生成部を更に有することを特徴とする請求項1から3のいずれかに記載のオートフォーカス制御装置。
- 前記画像生成部は、前記露光の露光期間内に発生する前記電圧パルスのパルス数と、該パルス数に付随する時間情報とを含むカウント情報を用いて、前記複数の画像を生成することを特徴とする請求項4に記載のオートフォーカス制御装置。
- 前記画像生成部は、前記カウント情報を加減算することで前記複数の画像を生成することを特徴とする請求項5に記載のオートフォーカス制御装置。
- 前記画像生成部は、前記露光の露光期間内に発生する前記電圧パルスのパルス数を用いて、所定の露光時間で露光を行った合焦画像を生成することを特徴とする請求項4から6のいずれかに記載のオートフォーカス制御装置。
- 前記画像生成部は、前記露光の露光期間のうち、前記複数の画像を生成した露光期間を除いた露光期間内に発生する前記電圧パルスのパルス数を用いて、前記所定の露光時間で露光を行った前記合焦画像を生成することを特徴とする請求項7に記載のオートフォーカス制御装置。
- 前記複数の画像それぞれを生成するための露光期間は、前記合焦画像を生成するための前記所定の露光時間よりも短いことを特徴とする請求項7または8に記載のオートフォーカス制御装置。
- 前記画像生成部は、前記複数の画像を連続して生成することを特徴とする請求項4から9に記載のオートフォーカス制御装置。
- 前記撮像素子の1画素あたりの平均入射光子数をm、前記撮像素子のクロック数をfTとするとき、
0.0<m/fT<1.0
なる条件式を満足することを特徴とする請求項1から10に記載のオートフォーカス制御装置。 - 前記複数の画像は、フォーカス判定用の画像であることを特徴とする請求項1から11のいずれかに記載のオートフォーカス制御装置。
- 前記制御部は、前記フォーカス駆動部を制御することで、前記撮像光学系の焦点を調節することを特徴とする請求項1から12のいずれかに記載のオートフォーカス制御装置。
- 前記複数の画像それぞれの前記コントラスト情報を算出するコントラスト判定部を更に有することを特徴とする請求項1から13のいずれかに記載のオートフォーカス制御装置。
- 前記受光部は、アバランシェ効果に基づいて、前記撮像光学系から入射する光を前記電圧パルスに変換することを特徴とする請求項1から14のいずれかに記載のオートフォーカス制御装置。
- 撮像光学系から入射する光を電圧パルスに変換する受光部と、前記電圧パルスのパルス数をカウントするカウント部とを備える複数の光電変換部が2次元平面に配置された撮像素子と、
請求項1から15のいずれか一項に記載のオートフォーカス装置と、を有することを特徴とする撮像装置。 - 前記フォーカスレンズ群を駆動するフォーカス駆動部を更に有することを特徴とする請求項16に記載の撮像装置。
- 撮像光学系から入射する光を電圧パルスに変換する受光部と、前記電圧パルスのパルス数をカウントするカウント部とを備える複数の光電変換部が2次元平面に配置された撮像素子より得られるコントラスト情報に基づいて、前記撮像光学系の少なくとも一部であるフォーカスレンズ群を駆動するフォーカス駆動部を制御するオートフォーカス制御方法であって、
前記撮像素子の露光を継続したまま前記フォーカス駆動部に前記フォーカスレンズ群を往復駆動させ、前記露光の露光期間内に発生する前記電圧パルスのパルス数から生成される複数の画像それぞれの前記コントラスト情報に基づいて前記フォーカス駆動部を制御するステップを有することを特徴とするオートフォーカス制御方法。 - 請求項18に記載のオートフォーカス制御方法をコンピュータに実行させることを特徴とするプログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022180703A JP2024070310A (ja) | 2022-11-11 | 2022-11-11 | オートフォーカス制御装置、撮像装置、オートフォーカス制御方法、およびプログラム |
JP2022-180703 | 2022-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024101034A1 true WO2024101034A1 (ja) | 2024-05-16 |
Family
ID=91032282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/035930 WO2024101034A1 (ja) | 2022-11-11 | 2023-10-02 | オートフォーカス制御装置、撮像装置、オートフォーカス制御方法、およびプログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024070310A (ja) |
WO (1) | WO2024101034A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019070737A (ja) * | 2017-10-10 | 2019-05-09 | オリンパス株式会社 | 観察装置、合焦制御方法、及び、プログラム |
JP2020120175A (ja) * | 2019-01-21 | 2020-08-06 | キヤノン株式会社 | 撮像装置およびその制御方法 |
JP2022188985A (ja) * | 2021-06-10 | 2022-12-22 | キヤノン株式会社 | 情報処理装置、情報処理方法およびプログラム |
-
2022
- 2022-11-11 JP JP2022180703A patent/JP2024070310A/ja active Pending
-
2023
- 2023-10-02 WO PCT/JP2023/035930 patent/WO2024101034A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019070737A (ja) * | 2017-10-10 | 2019-05-09 | オリンパス株式会社 | 観察装置、合焦制御方法、及び、プログラム |
JP2020120175A (ja) * | 2019-01-21 | 2020-08-06 | キヤノン株式会社 | 撮像装置およびその制御方法 |
JP2022188985A (ja) * | 2021-06-10 | 2022-12-22 | キヤノン株式会社 | 情報処理装置、情報処理方法およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
JP2024070310A (ja) | 2024-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9807331B2 (en) | Solid-state imaging device, driving method thereof, and imaging system accumulating charges generated by first and second photoelectric conversion units during first and second periods | |
US9025074B2 (en) | Image capturing apparatus and method for controlling the same | |
US9030589B2 (en) | Image sensor and image sensing apparatus | |
EP2380038B1 (en) | Cmos imager | |
US20160344920A1 (en) | Image capturing apparatus and method of controlling the same | |
US9154685B2 (en) | Driving technology of an image sensor in an image capture apparatus | |
JP7117535B2 (ja) | 固体撮像素子及び撮像システム | |
JP2007259450A (ja) | インタリーブ画像を捕捉する方法及び装置 | |
US7675559B2 (en) | Image sensing apparatus having a two step transfer operation and method of controlling same | |
JP6929027B2 (ja) | 撮像素子及び撮像装置 | |
JP2023123474A (ja) | 撮像装置 | |
JP2013235164A (ja) | 撮像装置及びその制御方法 | |
KR20160141572A (ko) | 이미지를 촬영하는 전자 장치 및 방법 | |
US20060262211A1 (en) | Image sensing apparatus | |
US7965326B2 (en) | Semiconductor element, method of driving semiconductor element and solid imaging apparatus | |
US11122213B2 (en) | Imaging apparatus | |
WO2024101034A1 (ja) | オートフォーカス制御装置、撮像装置、オートフォーカス制御方法、およびプログラム | |
JP7293002B2 (ja) | 撮像装置 | |
JP7256661B2 (ja) | 撮像デバイス、撮像手段の制御方法、プログラム及び記憶媒体 | |
JP2021090134A (ja) | 撮像装置およびその制御方法 | |
JP7361514B2 (ja) | 撮像素子および撮像装置 | |
JP6704725B2 (ja) | 撮像装置、制御方法及びそのプログラム | |
US10623642B2 (en) | Image capturing apparatus and control method thereof with change, in exposure period for generating frame, of conversion efficiency | |
JP2009188650A (ja) | 撮像装置 | |
US20180020150A1 (en) | Control apparatus, image capturing apparatus, control method, and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23888387 Country of ref document: EP Kind code of ref document: A1 |