WO2024100833A1 - Heat exchange-type ventilation device - Google Patents

Heat exchange-type ventilation device Download PDF

Info

Publication number
WO2024100833A1
WO2024100833A1 PCT/JP2022/041881 JP2022041881W WO2024100833A1 WO 2024100833 A1 WO2024100833 A1 WO 2024100833A1 JP 2022041881 W JP2022041881 W JP 2022041881W WO 2024100833 A1 WO2024100833 A1 WO 2024100833A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchange
circulation
exhaust
air duct
Prior art date
Application number
PCT/JP2022/041881
Other languages
French (fr)
Japanese (ja)
Inventor
真也 加藤
庸充 松原
晃治 岩田
嘉範 藤井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/041881 priority Critical patent/WO2024100833A1/en
Publication of WO2024100833A1 publication Critical patent/WO2024100833A1/en

Links

Images

Definitions

  • This disclosure relates to a heat exchange ventilation device.
  • a heat exchange type ventilation device that has an intake air duct that supplies fresh air from the outside with an intake fan and an exhaust air duct that exhausts dirty air from the inside with an exhaust fan, and exchanges heat between the intake air and the exhaust air while performing so-called first-class ventilation that simultaneously supplies and exhausts air.
  • a heat exchange type ventilation device that has a circulation air duct opening that connects a part of the intake air duct and a part of the exhaust air duct, and a filter for air purification is installed in the circulation air duct opening. Air sucked from inside the room is passed through the circulation air duct opening, purified by the filter, and returned to the room.
  • the heat exchange type ventilation device shown in Patent Document 1 is provided with an opening/closing damper that opens and closes the bypass opening, which is the circulation air duct opening, and when the opening/closing damper is opened, the air sucked from inside the room is divided into an airflow that flows through the exhaust air duct and an airflow that flows through the bypass opening.
  • a circulating air volume is generated, and the air volume discharged from the exhaust outlet decreases.
  • the filter installed in the bypass opening cannot remove all pollutants from the air passing through, and can only efficiently remove certain substances. Therefore, for substances that cannot be removed by the filter, there is an issue that the room cannot be cleaned by the amount of the reduced air volume discharged from the exhaust outlet. Furthermore, if the substance continues to be generated indoors, its concentration will increase over time. For example, a normal dust removal filter can remove dust, but not gas components. Therefore, carbon dioxide emitted with human activity, or volatile organic compound (VOC) gases generated from walls, etc. cannot be removed by the filter, so the indoor concentration of gas components as pollutants increases as the exhaust air volume decreases.
  • VOC volatile organic compound
  • the present disclosure therefore aims to provide a heat exchange ventilation device that ensures an appropriate volume of air exhausted to the outside, even when performing so-called circulation air purification, in which a portion of the air exhausted from the room is purified and then led back into the room.
  • the heat exchange type ventilation device disclosed herein exchanges heat between air passing through an exhaust air duct and air passing through an intake air duct using a heat exchange element, and includes a housing having a circulation air duct opening that connects a portion of the intake air duct downstream of the heat exchange element and a portion of the exhaust air duct upstream of the heat exchange element, a circulation air duct damper that opens and closes the circulation air duct opening, an air purifying unit that purifies the air passing through the circulation air duct opening, and a control unit that controls the exhaust blower to increase the output of the exhaust blower when the circulation air duct damper opens the circulation air duct opening.
  • the heat exchange ventilation device disclosed herein can ensure an appropriate volume of air to be exhausted to the outside, even when air purification is performed through circulation.
  • FIG. 1 is a schematic diagram showing the configuration of a heat exchange type ventilation device 100 according to a first embodiment.
  • FIG. 1 is a schematic diagram showing the configuration of a heat exchange type ventilation device 100 in a circulating operation state.
  • 1 is a flowchart showing a method for controlling the operation of a heat exchange ventilation device 100.
  • FIG. 11 is a configuration diagram showing a specific example of a table for controlling the exhaust fan 8 according to a second modification of the first embodiment;
  • FIG. 11 is a configuration diagram showing a specific example of a table for controlling the exhaust fan 8 according to a third modification of the first embodiment;
  • FIG. 11 is a block diagram showing a specific example of a table for controlling the supply air blower 7 according to a fourth modification of the first embodiment
  • FIG. 13 is a configuration diagram showing a specific example of a table for controlling the intake air blower 7 and the exhaust air blower 8 according to a fifth modification of the first embodiment.
  • FIG. 13 is a schematic diagram showing the configuration of a heat exchange type ventilation device 100a according to a 9th modification of the first embodiment.
  • FIG. 13 is a schematic diagram showing the configuration of a heat exchange type ventilation device 100b according to a tenth modification of the first embodiment.
  • FIG. 13 is a schematic diagram showing the configuration of a heat exchange type ventilation device 200 according to a second embodiment.
  • FIG. 11 is a configuration diagram showing a specific example of a table for controlling the circulating-air-path damper 10 according to a modification of the second embodiment;
  • FIG. 1 is a schematic diagram of a heat exchange type ventilation device 100 according to a first embodiment of the present disclosure.
  • the heat exchange type ventilation device 100 includes a housing 1 having an outdoor intake port 3a, an indoor exhaust port 4a, an indoor intake port 5a, and an outdoor exhaust port 6a.
  • the housing 1 has two cylindrical connectors 3 and 6 protruding outward from one side thereof, and the openings at the tips of the connectors are the outdoor intake port 3a and the outdoor exhaust port 6a, respectively.
  • the housing 1 has two cylindrical connectors 5 and 4 protruding outward from the opposite side thereof, and the openings at the tips of the connectors are the indoor intake port 5a and the indoor exhaust port 4a, respectively.
  • the connectors 3 and 6 are connected to ducts leading to the outside of the room, and the connectors 5 and 4 are connected to ducts leading to the inside of the room.
  • the heat exchange type ventilation device 100 further includes a heat exchange element 2, an intake air blower 7, an exhaust air blower 8, a circulation air duct damper 10, an intake air shutter 11, an air purifier 12, and a controller 15.
  • the heat exchange element 2 is provided in the housing 1, and exchanges heat between the air passing through the intake air duct 101 and the air passing through the exhaust air duct 102.
  • the intake air blower 7 is provided in the intake air duct 101, and generates an air flow from the outdoor inlet 3a to the indoor outlet 4a.
  • the intake air blower 7 is specifically provided in the intake air duct 101 between the heat exchange element 2 and the indoor outlet 4a, for example, near the indoor outlet 4a.
  • the intake air blower 7 has a motor and a fan that is driven by the motor to rotate, and generates an air flow in the intake air duct 101 by the rotation of the fan.
  • the exhaust fan 8 is provided in the exhaust duct 102 and generates an air flow from the indoor inlet 5a to the outdoor outlet 6a. Specifically, the exhaust fan 8 is provided in the exhaust duct 102 between the heat exchange element 2 and the outdoor outlet 6a, for example, near the outdoor outlet 6a.
  • the exhaust fan 8 has a motor and a fan that is driven by the motor to rotate, and generates an air flow in the exhaust duct 102 by the rotation of the fan.
  • a circulation air duct opening 9 is formed inside the housing 1, connecting the portion of the intake air duct 101 downstream of the heat exchange element 2 with the portion of the exhaust air duct 102 upstream of the heat exchange element 2.
  • the circulation air duct opening 9 is formed in a partition wall that separates the intake air duct 101 downstream of the heat exchange element 2 from the intake air duct 101 upstream of the heat exchange element 2.
  • the circulation air duct damper 10 opens and closes the circulation air duct opening 9.
  • the circulation air duct damper 10 is attached to the circulation air duct opening 9 so as to be rotatable about its axis, and is arranged to face the exhaust air duct 102. When the circulation air duct damper 10 is in a closed state, it blocks the circulation air duct opening 9.
  • the circulation air duct damper 10 When the circulation air duct damper 10 is axially rotated toward the exhaust air duct 102, the circulation air duct damper 10 is in an open state, opening the circulation air duct opening 9. Therefore, when the circulation air duct damper 10 is open, air flows through the circulation air duct opening 9, and when the circulation air duct damper 10 is closed, the air flow through the circulation air duct opening 9 is blocked.
  • the air purifier 12 is provided at the air circulation duct opening 9 and purifies the air flowing through the air circulation duct opening 9.
  • the intake air shutter 11 is provided in the intake air duct 101 upstream of the circulation air duct opening 9, and opens and closes the intake air duct 101.
  • the intake air shutter 11 is attached inside the housing 1 so that it can rotate on its axis. When the intake air shutter 11 is in the closed state, it blocks the air duct inside the connection part 3, blocking the air flow in the intake air duct 101. When the intake air shutter 11 rotates on its axis toward the inside of the housing 1, the intake air shutter 11 opens, allowing air to flow in the intake air duct 101.
  • the control unit 15 controls the operation of the intake air blower 7 and the exhaust air blower 8, and controls the opening and closing of the circulating air duct damper 10 and the intake air shutter 11.
  • the control unit 15 comprises a control box attached to the outer surface of the housing 1, and a control board housed within the control box and equipped with a control circuit 15a.
  • This control circuit 15a is responsible for the control performed by the control unit 15.
  • This control circuit 15a may be referred to as the "control unit".
  • the control unit 15 is connected to an operation switch (not shown) by wire or wirelessly, and receives a command to start operation from the operation switch. In response to the command, the heat exchange type ventilation device 100 performs heat exchange operation.
  • the heat exchange operation is an operation state in which heat exchange is performed between the airflows flowing through the supply air duct 101 and the exhaust air duct 102 with the circulation air duct opening 9 closed.
  • the control unit 15 operates the supply air blower 7 and the exhaust air blower 8 with the circulation air duct damper 10 in a closed state and the supply air shutter 11 in an open state. Therefore, as shown in FIG.
  • the heat exchange type ventilation device 100 also performs circulation operation.
  • Circulation operation is an operating state in which the circulation air duct opening 9 is open and generates an airflow in the circulation air duct 103.
  • the circulation air duct 103 is an air duct that connects the indoor intake port 5a and the indoor exhaust port 4a through the circulation air duct opening 9.
  • the control unit 15 operates the intake air blower 7 and the exhaust air blower 8 with the circulation air duct damper 10 in an open state and the intake air shutter 11 in a closed state.
  • the circulation air duct damper 10 is in an open state and opens the circulation air duct opening 9. Even when the circulation air duct damper 10 is in an open state, it does not block the exhaust air duct 102. Therefore, as shown in FIG.
  • the control unit 15 switches between heat exchange operation and circulation operation. Specifically, the control unit 15 switches the operation state from heat exchange operation to circulation operation when the indoor air is polluted to a certain standard amount or more. For this reason, the heat exchange type ventilation device 100 is equipped with an air pollution level detection unit 13.
  • the air pollution level detection unit 13 detects the pollution level of the air taken in from the indoor air inlet 5a. The amount of a specific pollutant contained in the air, for example, the concentration of the substance in the air, is detected as the pollution level of the air.
  • An example of the air pollution level detection unit 13 is an air quality sensor.
  • the air pollution level detection unit 13 is provided in the exhaust air duct 102 upstream of the circulation air duct opening 9, for example, inside the connection unit 5. The results detected by the air pollution level detection unit 13 are sent to the control unit 15.
  • the substance detected by the air pollution level detection unit 13 will be referred to as the "detected substance.”
  • the control unit 15 controls the circulating air duct damper 10 and the intake air shutter 11 based on the detection results sent from the air pollution level detection unit 13. Specifically, the control unit 15 judges whether the detected substance in the indoor air is contained in a certain standard amount or more from the detection results of the air pollution level detection unit 13. The control unit 15 pre-stores a threshold value (threshold value A' described below) indicating the standard amount within the control unit 15, and compares the amount of detected substance detected by the air pollution level detection unit 13 with the threshold value. If it is determined that the amount of detected substance is equal to or more than the threshold value, the control unit 15 opens the circulating air duct damper 10 and closes the intake air shutter 11.
  • a threshold value threshold value A' described below
  • the air purifier 12 removes detected substances detected by the air pollution level detector 13. Some of the detected substances in the air sucked in from the indoor air inlet 5a are removed by the air purifier 12, and the remaining part is discharged to the outside from the outdoor discharge outlet 6a via the exhaust air duct 102.
  • the detection substance detected by the air pollution level detection unit 13 is set to at least one of carbon monoxide, carbon dioxide, volatile organic compounds, fine particulate matter (so-called PM2.5), dust, pollen, viruses, and odorous substances.
  • the air purifying unit 12 has a function of removing at least the set detection substance.
  • the air purifying unit 12 is, for example, a filter made of a net, nonwoven fabric, etc., an electric dust collecting device that applies a high voltage to two electrodes and passes air between them to collect the viruses at the electrodes, etc. If the set detection substance is fine particulate matter, the air purifying unit 12 is, for example, a HEPA (High Efficiency Particle Air) filter, etc. If the set detection substance is a virus, the air purifying unit 12 is, for example, a HEPA filter, an electric virus inactivation device that applies a high voltage to two electrodes and passes air between them to inactivate the viruses, etc.
  • a HEPA High Efficiency Particle Air
  • the air purifying unit 12 is, for example, an activated carbon filter, a filter containing a chemical substance specialized for adsorbing each gas, etc. Furthermore, if the set detection substance is odor, the air purifying unit 12 is, for example, an activated carbon filter, a photocatalyst filter, etc. However, these are merely examples, and the air purifying unit 12 is not limited to these.
  • the heat exchange type ventilation device 100 further includes an air volume detection unit 14a and an air volume detection unit 14b.
  • the air volume detection unit 14a is provided in the exhaust air duct 102 downstream of the exhaust fan 8, and detects the volume of air discharged to the outside from the outdoor discharge port 6a.
  • the air volume detection unit 14a is, for example, a differential pressure sensor, and is provided inside the connection unit 6.
  • the air volume detection unit 14a transmits a value indicating the volume of air discharged from the outdoor discharge port 6a as the detection result to the control unit 15.
  • the air volume is the volume of air flowing per unit time.
  • the control unit 15 adjusts the output of the exhaust fan 8 based on the detection result transmitted from the air volume detection unit 14a.
  • the air volume of air discharged to the outside from the outdoor discharge port 6a will be referred to as the "exhaust air volume.”
  • the air volume detection unit 14b is provided in the supply air duct 101 downstream of the supply air blower 7, and detects the volume of air supplied from the indoor discharge port 4a to the room.
  • the air volume detection unit 14b is, for example, a differential pressure sensor, and is provided inside the connection unit 4.
  • the air volume detection unit 14b outputs a value indicating the volume of air supplied from the indoor discharge port 4a as the detection result to the control unit 15.
  • the control unit 15 adjusts the output of the supply air blower 7 based on the detection result sent from the air volume detection unit 14b.
  • the volume of air supplied from the indoor discharge port 4a to the room in heat exchange operation is referred to as the "supply air volume”
  • the volume of air supplied from the indoor discharge port 4a to the room in circulation operation is referred to as the "circulation air volume”.
  • the control unit 15 controls the supply air blower 7 to also increase its output when the operating state is switched from heat exchange operation to circulation operation.
  • the output of each of the intake air blower 7 and exhaust air blower 8 refers to the output of each motor, and is expressed as the product of the motor torque and the motor rotation speed.
  • the control unit 15 sets an operation command value for each blower, and adjusts the output of each blower by appropriately changing this operation command value.
  • the operation command value is expressed, for example, as a command voltage corresponding to the drive voltage supplied to the motor.
  • the control unit 15 transmits an operation control signal corresponding to the operation command value to the drive circuit of each blower.
  • the intake air blower 7 and exhaust air blower 8 operate according to their respective operation command values.
  • the heat exchange type ventilation device 100 starts heat exchange operation in step S01.
  • the control unit 15 opens the supply air shutter 11 and operates the supply air blower 7 and the exhaust blower 8 with the circulation air duct damper 10 closed.
  • the supply air blower 7 and the exhaust blower 8 are operated, for example, so that the exhaust air volume and the supply air volume are approximately the same.
  • step S02 the control unit 15 reads the air pollution level detection value A from the air pollution level detection unit 13.
  • the control unit 15 also reads the supply air volume detection value B and the exhaust air volume detection value C from the air volume detection units 14b and 14a, respectively.
  • the air pollution level detection value A, the supply air volume detection value B, and the exhaust air volume detection value C are values that indicate the amount of detected substance, the supply air volume, and the exhaust air volume, respectively, during heat exchange operation.
  • step S03 the control unit 15 compares the air pollution level detection value A with the threshold value A' stored in the control unit 15. If it is determined that the air pollution level detection value A is smaller than the threshold value A', the process returns to step S01 and the heat exchange operation continues. If it is determined that the air pollution level detection value A is equal to or greater than the threshold value A', the process passes through step S04 and circulation operation is performed in step S05. In other words, air pollution level detection value A being equal to or greater than the threshold value A' means that the air is polluted above the standard value.
  • step S04 the control unit 15 stores the supply air flow rate detection value B and exhaust air flow rate detection value C read in step S02 in the control unit 15.
  • step S05 the operating state of the heat exchange type ventilation device 100 switches from heat exchange operation to circulation operation.
  • the control unit 15 closes the intake air shutter 11 and opens the circulation air duct damper 10. At this point, the output of the intake air blower 7 and the exhaust air blower 8 continues to be output in heat exchange operation.
  • step S06 the control unit 15 reads the circulation air volume detection value B' and the exhaust air volume detection value C' from the air volume detection units 14b and 14a, respectively.
  • the circulation air volume detection value B' and the exhaust air volume detection value C' are values that indicate the circulation air volume and exhaust air volume, respectively, in circulation operation.
  • step S07 the control unit 15 compares the exhaust airflow detection value C' with the exhaust airflow detection value C stored in the control unit 15. If the exhaust airflow detection value C' is smaller than the exhaust airflow detection value C, the control unit 15 increases the output of the exhaust blower 8 in step S09. Thus, the exhaust airflow increases. Then, the process of step S06 is performed again. On the other hand, if the exhaust airflow detection value C' is larger than the exhaust airflow detection value C, the control unit 15 decreases the output of the exhaust blower 8 in step S08. Thus, the exhaust airflow decreases. Then, the process of step S06 is performed again.
  • the respective increase/decrease amounts of the output of the exhaust blower 8 in steps S08 and S09 correspond to the difference value between the exhaust airflow detection value C' and the exhaust airflow detection value C.
  • the relationship between the difference value and the increase/decrease amount of the output of the exhaust blower 8 is determined in advance.
  • step S07 Immediately after the operating state switches from heat exchange operation to circulation operation, the exhaust air volume decreases, so in the first step S07 after circulation operation starts, it is determined that exhaust air volume detection value C' is smaller than exhaust air volume detection value C, and the output of exhaust blower 8 is increased in step S09. If the increased exhaust air volume falls below exhaust air volume detection value C, the output of exhaust blower 8 is further increased, and if the increased exhaust air volume exceeds exhaust air volume detection value C, the output of exhaust blower 8 is decreased. By repeating this operation, exhaust air volume detection value C' is brought closer to exhaust air volume detection value C.
  • step S10 the control unit 15 compares the circulation airflow detection value B' with the supply airflow detection value B stored in the control unit 15. If the circulation airflow detection value B' is smaller than the supply airflow detection value B, the control unit 15 increases the output of the supply air blower 7 in step S12. Thus, the circulation airflow increases. Then, the process of step S06 is performed again. If the circulation airflow detection value B' is larger than the supply airflow detection value B, the control unit 15 decreases the output of the supply air blower 7 in step S11. Thus, the circulation airflow decreases. Then, the process of step S06 is performed again.
  • the increase or decrease in the output of the supply air blower 7 in steps S11 and S12 is an amount corresponding to the difference between the circulation airflow detection value B' and the supply airflow detection value B.
  • the relationship between the difference and the increase or decrease in the output of the supply air blower 7 is determined in advance.
  • the circulation air volume becomes smaller than the supply air volume, so in the first step S10 after the start of circulation operation, it is determined that the circulation air volume detection value B' is smaller than the supply air volume detection value B, and the output of the supply air blower 7 is increased in step S12. At this time, the change in the output of the supply air blower 7 may cause the exhaust air volume to deviate from the state equal to the exhaust air volume detection value C. Therefore, the control unit 15 repeats the processing of steps S07 to S09, and adjusts the output of the exhaust blower 8 again so that the exhaust air volume detection value C' becomes equal to the exhaust air volume detection value C. The control unit 15 then performs the processing of step S10 again.
  • step S10 If it is determined in step S10 that the circulating air volume detection value B' is equal to the supply air volume detection value B, the process returns to step S02.
  • step S02 for circulation operation the circulating air volume detected by the air volume detection unit 14b is read as the supply air volume detection value B. If the determination in step S03 is "No", the circulation operation continues. Since the circulation air volume detection value B' and the exhaust air volume detection value C' read in the subsequent step S06 are already equal to the supply air volume detection value B and the exhaust air volume detection value C, respectively, the output of the supply air blower 7 and the exhaust air blower 8 is not changed and the process returns to step S02 again.
  • step S03 if the answer is "Yes" in step S03 after step S02 as the circulation operation, the process returns to step S01, and the operation state is switched from the circulation operation to the heat exchange operation.
  • the control unit 15 controls the intake air blower 7 and the exhaust air blower 8 so that the outputs of the intake air blower 7 and the exhaust air blower 8 are returned to those of the heat exchange operation performed before the circulation operation.
  • the exhaust air volume in exhaust operation after the air volume adjustment period is equal to the exhaust air volume in heat exchange operation
  • the circulation air volume in circulation operation after the air volume adjustment period is equal to the supply air volume in heat exchange operation.
  • the air volume adjustment period is the period during which the air volume is adjusted after the operating state is switched from heat exchange operation to circulation operation, and in Figure 3, it corresponds to the period from the first step S06 after the start of circulation operation to returning to step S02.
  • control unit 15 may read the supply air volume detection value B and the exhaust air volume detection value C from the air volume detection units 14b and 14a in step S04 and store them in the control unit 15. Also, when the determination in step S03 is "No,” if the operating state is circulation operation, the process may return to step S02 without proceeding to step S04.
  • step S07 the control unit 15 may determine whether the exhaust airflow detection value C' is within a certain range that includes the exhaust airflow detection value C, or whether it is higher than the upper limit of the range or lower than the lower limit of the range.
  • the width of this range is sufficiently smaller than the difference between the exhaust airflow detection value C and the exhaust airflow detection value C' detected in the first step S06 after the start of exhaust operation. The same can be considered for step S10.
  • FIG. 4 is a block diagram showing an example of the hardware configuration of the control circuit 15a.
  • the control circuit 15a is a microcomputer composed of semiconductor integrated circuits, and includes a processor 21, a memory 22, a bus 23, three input circuits 24, two output circuits 25, and two output circuits 26.
  • the processor 21 performs the process shown in FIG. 3 according to a program.
  • the program is stored in the memory 22 and is provided to the processor 21 via the bus 23.
  • the processor 21 is, for example, a central processing unit (CPU), and the memory 22 is a storage device including a volatile memory such as a RAM (Random Access Memory) and a non-volatile memory such as a ROM (Read Only Memory) or a flash memory.
  • the threshold value A' used in step S03 is, for example, stored in the non-volatile memory of the memory 22, and in step S04, the supply airflow detection value B and the exhaust airflow detection value C are stored in the volatile memory of the memory 22.
  • the bus 23 is connected to the processor 21, the memory 22, three input circuits 24, two output circuits 25, and two output circuits 26.
  • the three input circuits 24 receive the detection results output from the air pollution level detection unit 13 and the air volume detection units 14a and 14b, respectively, and transfer them to the processor 21 via the bus 23.
  • the detection results are temporarily stored in the memory 22, and may also be read from the memory 22 into the processor 21.
  • the two output circuits 25 receive operation control signals output from the processor 21 and send them to the intake air blower 7 and exhaust air blower 8, respectively.
  • the two output circuits 26 receive opening/closing control signals output from the processor 21 and send them to the circulation air duct damper 10 and intake air shutter 11.
  • the circulation air duct damper 10 and intake air shutter 11 open and close in accordance with the opening/closing control signals.
  • These operation control signals and opening/closing control signals may be temporarily stored in the memory 22 from the processor 21, and then sent from the memory 22 to the respective output circuits.
  • the operation control signals and opening/closing control signals may also be processed as necessary in each output circuit and sent to the respective destinations.
  • control circuit 15a can be configured with a microcomputer that can also be used to control other electrical or electronic devices. However, this is not limited to this, and some or all of the processing shown in FIG. 3 can also be realized by a dedicated processing circuit.
  • the heat exchange ventilation device 100 configured in this manner provides the following effects:
  • the control unit 15 controls the exhaust fan 8 to increase its output. Since the reduction in exhaust air volume caused by the circulation air duct opening 9 being open can be suppressed, an appropriate amount of air can be ensured to be exhausted to the outside even when air purification is performed by circulation operation. As a result, indoor pollutants that are not removed by the air purification unit 12 can be quickly exhausted to the outside.
  • the air pollution level detection unit 13 detects the pollution level of the air taken in from the indoor air inlet 5a, and the control unit 15 controls the circulating air duct damper 10 to open based on the results detected by the air pollution level detection unit 13. Therefore, if the air in the room becomes polluted, the circulating air duct damper 10 can be opened and closed automatically.
  • the control unit 15 controls the exhaust blower 8 to increase the output of the air supply blower 7. This increases the amount of air purified by the air purification unit 12.
  • the control unit 15 controls the intake air shutter 11 to close the intake air duct 101. This makes it possible to increase the amount of air purified by the air purification unit 12 compared to when air is taken in from the outdoor intake port 3a.
  • the control unit 15 may be configured to change the output of each of the intake air blower 7 and the exhaust air blower 8 to a plurality of output levels.
  • each level will be referred to as an "air volume notch.”
  • control unit 15 When the control unit 15 switches the operating state from heat exchange operation to circulation operation, it changes the air volume notch of the exhaust blower 8, and at each change, it compares the exhaust air volume detection value C' detected by the air volume detection unit 14a with the exhaust air volume detection value C detected in the heat exchange operation.
  • the control unit 15 also changes the air volume notch of the supply air blower 7, and at each change, it compares the circulation air volume detection value B' detected by the air volume detection unit 14b with the supply air volume detection value B detected in the heat exchange operation.
  • control unit 15 adjusts the output of the exhaust blower 8 to an output level at which the exhaust air volume detection value C' is closest to the exhaust air volume detection value C among the multiple adjustable output levels of the exhaust blower 8.
  • the control unit 15 also adjusts the output of the supply air blower 7 to an output level at which the circulation air volume detection value B' is closest to the supply air volume detection value B among the multiple adjustable output levels of the supply air blower 7.
  • the air volume detection units 14a and 14b do not necessarily have to be provided in the heat exchange type ventilation device 100. Instead, data for controlling each of the exhaust blower 8 and the supply air blower 7 is stored in a memory (e.g., a non-volatile memory of the memory 22) of the control unit 15.
  • each of the exhaust blower 8 and the supply air blower 7 has multiple air volume notches set.
  • Each air volume notch has a corresponding command voltage, and when an air volume notch is selected, the control unit 15 operates the blower at a power corresponding to that air volume notch based on the command voltage corresponding to that air volume notch.
  • the data for detecting the air volume as the data for controlling the exhaust blower 8 is configured in the form of a table in which the operating parameters and the air volumes are associated, and is stored in the memory of the control unit 15.
  • the table is data obtained in advance by examining the blowing characteristics of the exhaust blower 8 through testing, etc., and is configured with corresponding data between the operating parameters of the exhaust blower 8 and the exhaust air volume for each command voltage (i.e., each air volume notch) for each specific load point, and is configured with corresponding data between the operating parameters of the exhaust blower 8 and the exhaust air volume obtained in the same manner at many different load points.
  • the operating parameters are, for example, the value of the drive current supplied to the motor of the exhaust blower 8 and the number of rotations of the motor.
  • the control unit 15 controls the output of the exhaust blower 8 by referring to this table.
  • the data for controlling the supply air blower 7 is also configured in the form of a table in which the operating parameters and the air volumes are associated, and the control unit 15 controls the output of the supply air blower 7 by referring to this table.
  • the load point of the exhaust fan 8 varies not only with the pressure loss of the exhaust air duct in the heat exchange type ventilation device, but also with the pressure loss of the duct connected to the indoor inlet 5a and the duct connected to the outdoor outlet 6a of the heat exchange type ventilation device.
  • FIG. 5 is an example of a table at one load point of the exhaust air duct 102.
  • the number of air volume notches of the exhaust fan 8 is n (n is an integer of 2 or more).
  • a table showing the exhaust air volume Ek and the operating parameters for the command voltage Dk of the exhaust fan 8 for each air volume notch is stored in memory.
  • the operating parameters for the command voltage Dk are composed of the drive current xk and the rotation speed yk. k represents an integer from 1 to n. Note that the air volume notches in the leftmost column of FIG. 5 are listed for convenience and are not necessarily data included in the table.
  • a command voltage Di corresponding to the air volume notch selected by the user is selected, and the control unit 15 controls the driving of the exhaust blower 8 in response to the command voltage Di to operate the exhaust blower 8.
  • the control unit 15 measures the drive current and rotation speed supplied to the motor of the exhaust blower 8, and based on the measured values, determines from all tables that the data having the closest points in both the measured drive current and rotation speed is the current operating point, regards the air volume of that operating point as the current exhaust air volume, and further regards the load point having that operating point as the current load point of the exhaust air duct 102 (during heat exchange operation).
  • the control unit 15 When the operating state is switched from heat exchange operation to circulation operation, the control unit 15 again measures the drive current and rotation speed supplied to the motor of the exhaust blower 8, and based on the measurement values, determines from all tables the data having the closest points in both the measured drive current and rotation speed as the current operating point, regards the air volume at that operating point as the current exhaust air volume, and further regards the load point having that operating point as the current load point of the exhaust duct 102 (during circulation operation). Next, the control unit 15 determines a command voltage that realizes an air volume closest to the air volume during heat exchange operation at the determined load point (during circulation operation), and operates the exhaust blower 8 with power based on the determined command voltage, thereby making it possible to generate an exhaust air volume during circulation operation similar to that during heat exchange operation.
  • a table for controlling the intake air blower 7 is data obtained in advance by investigating the blowing characteristics of the intake air blower 7 through testing, etc., and is composed of correspondence data between the operating parameters of the intake air blower 7 and the intake air volume for each command voltage (i.e., each air volume notch) for each specific load point, and is composed of correspondence data between the operating parameters of the intake air blower 7 and the intake air volume obtained in the same manner at a number of different load points.
  • the operating parameters are, for example, the value of the drive current supplied to the motor of the intake air blower 7 and the motor rotation speed.
  • an operating parameter corresponding to the air volume notch arbitrarily selected by the user is selected, and the control unit 15 controls the drive of the intake air blower 7 in response to that command voltage to operate the intake air blower 7.
  • the control unit 15 measures the drive current and rotation speed supplied to the motor of the supply air blower 7, and based on the measured values, determines from all tables the data having the closest point in both the measured drive current and rotation speed to be the current operating point, regards the air volume of that operating point as the current supply air volume, and further regards the load point having the operating point as the current load point of the supply air duct 101 (during heat exchange operation).
  • control unit 15 When the operating state is switched from heat exchange operation to circulation operation, the control unit 15 again measures the drive current and rotation speed supplied to the motor of the intake air blower 7, and based on the measurement values, determines from all tables the data having the closest points in both the measured drive current and rotation speed as the current operating point, regards the air volume at that operating point as the current circulation air volume, and further regards the load point having that operating point as the current load point (during circulation operation) of the circulation air duct 103.
  • control unit 15 determines a command voltage that realizes an air volume closest to the intake air volume during heat exchange operation at the determined load point (during circulation operation), and operates the intake air blower 7 with power based on the determined command voltage, thereby making it possible to generate a circulation air volume during circulation operation with an air volume similar to the intake air volume during heat exchange operation.
  • the air volume detection units 14a and 14b are no longer necessary, and the configuration of the heat exchange ventilation device 100 can be simplified.
  • data on the operation command values in the heat exchange operation and the circulation operation may be stored in a memory in the control unit 15 (e.g., a non-volatile memory in the memory 22) instead of the data in the second modification.
  • the data for controlling the exhaust blower 8 is configured in the form of a table in which the operation command value Gk of the exhaust blower 8 in the circulation operation is associated with the operation command value Fk of the exhaust blower 8 in the heat exchange operation for each air volume notch, as shown in FIG. 6.
  • the operation command value Fk and the operation command value Gk are set so that the larger the air volume notch k, the larger the operation command value Fk and the operation command value Gk are.
  • the operation command value Gk is larger than the operation command value Fk. Note that the air volume notches in the leftmost column of FIG. 6 are listed for convenience and are not necessarily data included in the table.
  • a certain operation command value Fi is selected, and the control unit 15 transmits an operation control signal corresponding to the operation command value Fi to the exhaust blower 8.
  • the control unit 15 obtains an operation command value Gi corresponding to the operation command value Fi from the table.
  • the control unit 15 then transmits an operation control signal corresponding to the operation command value Gj to the exhaust blower 8.
  • the exhaust blower 8 operates according to the operation command value Fi, and in circulation operation, it operates according to the operation command value Gi. Therefore, the output of the exhaust blower 8 in circulation operation is greater than in heat exchange operation.
  • the operation command value Gi may be determined so that the exhaust air volume during circulation operation is equal to the exhaust air volume during heat exchange operation, but this is not necessarily required. It is sufficient that the operation command value Gi is set so that the output of the exhaust fan 8 during circulation operation is greater than that during heat exchange operation.
  • the data for controlling the supply air blower 7 is configured in the form of a table in which the operation command value of the supply air blower 7 in heat exchange operation and the operation command value of the supply air blower 7 in circulation operation are associated with each air volume notch.
  • the control unit 15 switches the operation state from heat exchange operation to circulation operation, it refers to the table, selects the operation command value for circulation operation that corresponds to the operation command value selected in heat exchange operation, and sends the corresponding operation control signal to the supply air blower 7.
  • the operation command value for circulation operation that corresponds to each operation command value for heat exchange operation may be determined so that the circulation air volume is equal to the supply air volume, but this is not necessarily required. It is desirable to set the operation command value so that the output of the supply air blower 7 in circulation operation is greater than in heat exchange operation.
  • the tables for controlling the exhaust blower 8 and the intake blower 7 may hold the change amount from the operation command value in heat exchange operation, rather than the operation command value in circulation operation, in correspondence with the operation command value in heat exchange operation.
  • the control unit 15 can also refer to the table to determine the circulation operation command value for each blower in circulation operation by adding the corresponding change amount to the operation command value for the blower in heat exchange operation.
  • the circulation air volume during circulation operation may be set according to the detection result of the air pollution level detection unit 13.
  • the air volume detection unit 14b does not need to be provided.
  • the circulation air volume does not need to be the same as the supply air volume.
  • data for controlling the air supply blower 7 is stored in a memory in the control unit 15 (e.g., the non-volatile memory of the memory 22).
  • This data is in the form of a table in which thresholds A'1 to A'n relating to the amount of detected substance detected by the air pollution level detection unit 13 correspond to operation command values H1 to Hn for the air supply blower 7.
  • n is an integer of 2 or more.
  • the thresholds A'1 to A'n increase in this order, and are set so that the higher the threshold, the higher the corresponding operation command value H1 to Hn for the air supply blower 7.
  • the heat exchange type ventilation device 100 When the amount of detected substances detected by the air pollution level detection unit 13 is less than the threshold A'1, the heat exchange type ventilation device 100 operates in heat exchange operation.
  • the control unit 15 determines that the amount of detected substances is equal to or greater than the threshold A'1, it controls the operation state to be switched from heat exchange operation to circulation operation.
  • circulation operation when the control unit 15 determines that the amount of detected substances is in the range of equal to or greater than the threshold A'k and less than A'(k+1), it transmits an operation command value Hk corresponding to the threshold A'k to the supply air blower 7.
  • the fourth modification is configured to increase the amount of circulation air as the amount of detected substances in the room increases.
  • the circulation air volume does not need to be increased more than necessary, so the rotation speed of the supply air blower 7 can be suppressed, making it possible to reduce noise and power consumption.
  • the smaller of the operation command values H1 to Hn, for example, the minimum operation command value H1, may be the same as the operation command value of the supply air blower 7 during heat exchange operation.
  • Modification 4 can be applied to any of modifications 1 to 3.
  • exhaust fan 8 is controlled by the operation command value shown in the table of FIG. 5 or FIG. 6
  • intake fan 7 is controlled by the operation command value shown in the table shown in FIG. 7.
  • the table according to the fourth modification may further include operation command values J1 to Jn for the exhaust fan 8 corresponding to each threshold value.
  • the air volume detection unit 14a may not be provided.
  • the operation command values J1 to Jn are set so that the larger the threshold value, the larger the corresponding operation command values J1 to Jn.
  • the control unit 15 determines that the amount of the detected substance detected by the air pollution level detection unit 13 is in the range of the threshold value A'k or more and less than A'(k+1)
  • the control unit 15 transmits the operation command value Jk corresponding to the threshold value A'k to the exhaust fan 8.
  • the operation command values J1 to Jn are set so as to be larger than the operation command values during the heat exchange operation.
  • control unit 15 may be configured to continuously adjust the output of each blower according to the amount of detected substance detected by the air pollution level detection unit 13.
  • the air volume detection unit 14a may not be provided.
  • the control unit 15 may be simply configured to set the operation command value for the exhaust blower 8 in the circulation operation to a value obtained by adding a certain fixed value to the operation command value for the exhaust blower 8 in the heat exchange operation, and change the output of the exhaust blower 8.
  • a table for controlling the exhaust blower 8 is also not required. The output of the exhaust blower 8 in the circulation operation is greater than that in the heat exchange operation, but the exhaust air volume in the circulation operation does not need to be the same as the exhaust air volume in the heat exchange operation.
  • the operating state of the heat exchange type ventilation device 100 may be switched by the user operating an operation switch on a remote control or the like, regardless of the detection result of the air pollution level detection unit 13.
  • the control unit 15 receives a switching command from the operation switch operated by the user, and switches between heat exchange operation and circulation operation.
  • the control unit 15 may inform the user of indoor air pollution, for example by notifying the operation switch when the amount detected by the air pollution level detection unit 13 becomes equal to or greater than a certain reference value, i.e., threshold value A'.
  • the air pollution level detection unit 13 may not be provided in the heat exchange type ventilation device 100.
  • the user can recognize indoor air pollution by another means.
  • This modification 8 can be applied to any of modifications 1 to 7.
  • a heat exchange type ventilator 100a is configured by further providing an air pollution level detection unit 16 for detecting the pollution level of the outside air in the heat exchange type ventilator 100.
  • the amount of a specific pollutant contained in the air taken in from the outdoor air inlet 3a, for example, the concentration of the substance in the air, is detected as the pollution level of the outside air.
  • An example of the air pollution level detection unit 16 is an air quality sensor.
  • the air pollution level detection unit 16 is provided in the supply air duct 101 upstream of the heat exchange element 2, for example, inside the connection unit 3.
  • the control unit 15 controls the opening and closing of the intake air shutter 11 based on the detection results from the air pollution level detection unit 16. If the control unit 15 determines that the concentration of pollutants in the outside air received from the air pollution level detection unit 13 is equal to or higher than a certain reference value, it closes the intake air shutter 11 regardless of the operating state of the heat exchange type ventilation device 100a. If the control unit 15 determines that the concentration of pollutants in the outside air is lower than a certain reference value, the control unit 15 opens the intake air shutter 11 in heat exchange operation and closes it in circulation operation. In this way, it is possible to prevent outside air from being taken in if the outside air is polluted during heat exchange operation.
  • This variant 9 can be applied to any of variants 1 to 8.
  • the heat exchange type ventilation device 100b is configured by further providing filters 18 and 19 to the heat exchange type ventilation device 100.
  • the filters 18 and 19 are provided at the upstream inlets of the exhaust air duct 102 and the supply air duct 101 in the heat exchange element 2.
  • the filters 18 and 19 capture dust, pollen, fine particulate matter, etc., both indoors and outdoors, and prevent clogging of the heat exchange element 2.
  • the filter 19 also prevents these substances from entering the room.
  • the air purifying unit 12 is a filter that captures substances that are not captured by the filter 18, that is, substances that do not cause clogging of the heat exchange element 2 even if they pass through the heat exchange element 2 (for example, odorous substances or viruses in the room) from the air.
  • This modification 10 can be applied to any of the modifications 1 to 9.
  • Embodiment 2. 11 is a schematic diagram of a heat exchanger type ventilation device 200 according to embodiment 2.
  • the configuration and operation of the heat exchanger type ventilation device 200 will be described below, but those not described are assumed to be the same or substantially the same as the configuration and operation of the heat exchanger type ventilation device 100 according to embodiment 1.
  • the heat exchange type ventilation device 200 does not have the intake shutter 11 of the heat exchange type ventilation device 100. Therefore, in circulation operation as well as heat exchange operation, as shown in FIG. 11, air flows from the outdoor intake port 3a to the indoor exhaust port 4a through the intake air duct 101 by the operation of the intake air blower 7. The air flowing through the intake air duct 101 exchanges heat with the air flowing through the exhaust air duct 102 by the heat exchange element 2.
  • the heat exchange type ventilation device 200 also includes an air volume detection unit 14c instead of the air volume detection unit 14b.
  • the air volume detection unit 14c is provided in the supply air duct 101 upstream of the circulation air duct opening 9, and detects the volume of air sucked in from the outdoor air inlet port 3a.
  • the air volume detection unit 14c is, for example, a differential pressure sensor, and is provided inside the connection unit 3.
  • the air volume detection unit 14c outputs a value indicating the volume of air as a detection result to the control unit 15.
  • the control unit 15 receives the detection result from the air volume detection unit 14c, and adjusts the output of the supply air blower 7 according to the detection result.
  • the volume of air sucked in from the indoor air inlet port 5a is called the "supply air volume”
  • the volume of air flowing through the circulation air duct opening 9 is called the “circulation air volume”. Therefore, in the second embodiment, the volume of air supplied from the indoor discharge port 4a to the room is equal to the supply air volume in the heat exchange operation, and is equal to the supply air volume plus the circulation air volume in the circulation operation.
  • the method of controlling the operation of the heat exchange type ventilation device 200 is the same as that of the heat exchange type ventilation device 100 of the first embodiment.
  • supply air volume detection value B is replaced with the supply air volume detection value indicating the supply air volume detected by the air volume detection unit 14c in heat exchange operation
  • circulation air volume detection value B' is replaced with the supply air volume detection value indicating the supply air volume detected by the air volume detection unit 14c in circulation operation. Therefore, the exhaust air volume in circulation operation is equal to the exhaust air volume in heat exchange operation, and the supply air volume in circulation operation is also equal to the supply air volume in heat exchange operation.
  • the exhaust fan 8 and the supply air fan 7 are controlled to increase their output, respectively.
  • the heat exchange ventilation device 200 configured in this manner provides the following effects:
  • the control unit 15 controls the exhaust blower 8 to increase its output. Therefore, even when air purification is performed by circulation operation, an appropriate amount of air can be ensured to be exhausted to the outside. As a result, indoor pollutants that are not removed by the air purification unit 12 can be quickly discharged to the outside.
  • the heat exchange element 2 exchanges heat between the air passing through the supply air duct 101 and the air passing through the exhaust air duct 102. This reduces the loss of thermal energy inside the room.
  • control unit 15 controls the output of the exhaust blower 8 and the supply blower 7 so that the exhaust air volume is equal in the circulation operation and the heat exchange operation, and the supply air volume is also equal in the circulation operation and the heat exchange operation. Therefore, the difference between the air volume of the air sucked in from the indoor intake port 5a and the air volume of the air supplied from the indoor discharge port 4a in the circulation operation is equal to the difference between the air volume of the air sucked in from the indoor intake port 5a and the air volume of the air supplied from the indoor discharge port 4a in the heat exchange operation. Therefore, even if the operation state is switched from the heat exchange operation to the circulation operation, the change in the pressure inside the room can be suppressed. Note that, when the exhaust air volume and the supply air volume are the same in the heat exchange operation, the air volume of the air sucked in from the indoor intake port 5a and the air volume of the air supplied from the indoor discharge port 4a are the same in the circulation operation.
  • All of the modified examples 1 to 10 described in the first embodiment can be applied to the heat exchange type ventilation device 200 of the second embodiment.
  • the control unit 15 adjusts the output of the exhaust blower 8 to an output level at which the exhaust airflow detection value C' is closest to the exhaust airflow detection value C among the multiple adjustable output levels of the exhaust blower 8.
  • the control unit 15 also adjusts the output of the supply air blower 7 to an output level at which the supply airflow detection value detected by the airflow detection unit 14c is closest to the supply airflow detection value detected in the heat exchange operation among the multiple adjustable output levels of the supply air blower 7.
  • a table showing the predicted value of the supply airflow in the heat exchange operation and the predicted value of the supply airflow in the circulation operation for the operation command value of the supply air blower 7 for each airflow notch is prepared as a table for controlling the supply air blower 7.
  • the heat exchange type ventilation device 200 is provided with an intake air shutter 11.
  • the control unit 15 determines that the concentration of pollutants in the outside air received from the air pollution level detection unit 13 is equal to or higher than a certain reference value, it closes the intake air shutter 11 regardless of the operating state.
  • the control unit 15 determines that the concentration of pollutants in the outside air is lower than the reference value, it opens the intake air shutter 11 regardless of the operating state.
  • the control unit 15 may be configured to adjust the opening of the circulation air duct damper 10 in accordance with the detection result of the air pollution level detection unit 13 during circulation operation in which the circulation air duct opening 9 is open.
  • data in a table format in which threshold values A'1 to A'n relating to the amount of detected substance detected by the air pollution level detection unit 13 correspond to the opening degrees X1 to Xn of the circulation air duct damper 10 is stored in the memory of the control unit 15 (e.g., the non-volatile memory of the memory 22).
  • the threshold values A'1 to A'n increase in this order, and are set so that the opening degrees X1 to Xn increase as the threshold value increases.
  • the heat exchange type ventilation device 100 When the amount of detected substance detected by the air pollution level detection unit 13 is less than the threshold A'1, the heat exchange type ventilation device 100 operates in heat exchange operation.
  • the control unit 15 determines that the amount of detected substance is equal to or greater than the threshold A'1, it controls the operation state to be switched from heat exchange operation to circulation operation.
  • circulation operation when the control unit 15 determines that the amount of detected substance detected by the air pollution level detection unit 13 is in the range of equal to or greater than the threshold A'k and less than A'(k+1), it controls the circulation air duct damper 10 to be opened at an opening degree Xk corresponding to the threshold A'k.
  • the circulation air volume is adjusted to increase when the level of pollution in the room is higher. In other words, even in circulation operation, when the pollution in the room is not very advanced, the circulation air volume is kept from being more than necessary.
  • the control unit 15 increases the output of the exhaust blower 8 and the supply air blower 7 so that the exhaust air volume and the supply air volume are predetermined amounts. At this time, the opening of the circulation air duct damper 10 is suppressed, so the output of the exhaust blower 8 and the supply air blower 7 is also suppressed. This makes it possible to reduce noise and power consumption of the exhaust blower 8 and the supply air blower 7.
  • control unit 15 may be configured to continuously adjust the opening degree of the circulating air duct damper 10 according to the amount of detected substance detected by the air pollution level detection unit 13.

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

This heat exchange-type ventilation device, which uses a heat exchange element to perform heat exchange between air passing through an exhaust air passage and air passing through a supply air passage, comprises: a housing having formed therein a circulation air passage opening which connects a portion of the supply air passage downstream of the heat exchange element and a portion of the exhaust air passage upstream of the heat exchange element; a circulation air passage damper which opens and closes the circulation air passage opening; an air cleaning unit which cleans air passing through the circulation air passage opening; and a control unit which, when the circulation air passage damper opens the circulation air passage opening, controls an exhaust air blower to increase the output of the exhaust air blower.

Description

熱交換形換気装置Heat exchange ventilation system
 本開示は、熱交換形換気装置に関する。 This disclosure relates to a heat exchange ventilation device.
 従来、給気送風機で室外の新鮮な空気を供給する給気風路と、排気送風機で室内の汚れた空気を排気する排気風路とが形成され、給気と排気を同時に行ういわゆる第一種換気を行いながら、給気と排気との間で熱交換を行う熱交換形換気装置がある。さらに、給気風路の一部と、排気風路の一部とを繋ぐ循環風路開口が形成され、その循環風路開口に空気清浄のためのフィルターが設置された熱交換形換気装置もある。室内から吸い込んだ空気が循環風路開口に通され、フィルターによって空気清浄されて室内に戻される。例えば特許文献1で示された熱交換形換気装置では、循環風路開口であるバイパス開口を開閉する開閉ダンパが設けられており、開閉ダンパが開くと室内から吸い込まれた空気は、排気風路を流れる気流とバイパス開口を流れる気流とに分かれる。 Conventionally, there is a heat exchange type ventilation device that has an intake air duct that supplies fresh air from the outside with an intake fan and an exhaust air duct that exhausts dirty air from the inside with an exhaust fan, and exchanges heat between the intake air and the exhaust air while performing so-called first-class ventilation that simultaneously supplies and exhausts air. There is also a heat exchange type ventilation device that has a circulation air duct opening that connects a part of the intake air duct and a part of the exhaust air duct, and a filter for air purification is installed in the circulation air duct opening. Air sucked from inside the room is passed through the circulation air duct opening, purified by the filter, and returned to the room. For example, the heat exchange type ventilation device shown in Patent Document 1 is provided with an opening/closing damper that opens and closes the bypass opening, which is the circulation air duct opening, and when the opening/closing damper is opened, the air sucked from inside the room is divided into an airflow that flows through the exhaust air duct and an airflow that flows through the bypass opening.
特開2002-206778号公報JP 2002-206778 A
 開閉ダンパが閉状態から開状態に切替わると、循環される風量が発生し、排気吐出口から排出される風量が減少する。バイパス開口に設けられたフィルターでは通過する空気からすべての汚染物質を除去できるものではなく、特定の物質しか効率的に除去ができない。そのため、フィルターで除去できない物質については、排気吐出口から排出される風量の減少分だけ、室内が清浄できないという課題がある。さらにその物質の発生が室内で続く場合にはその濃度が時間とともに増加してしまう。例えば、通常の塵埃を除去するフィルターでは塵埃は除去できるがガス成分は除去できない。そのため人の活動とともに排出される二酸化炭素、又は壁等から発生する揮発性有機化合物(VOC)ガスなどはフィルターで除去できないため、排気風量が減ることで汚染物質としてのガス成分の室内濃度が増加する。 When the open/close damper switches from the closed state to the open state, a circulating air volume is generated, and the air volume discharged from the exhaust outlet decreases. The filter installed in the bypass opening cannot remove all pollutants from the air passing through, and can only efficiently remove certain substances. Therefore, for substances that cannot be removed by the filter, there is an issue that the room cannot be cleaned by the amount of the reduced air volume discharged from the exhaust outlet. Furthermore, if the substance continues to be generated indoors, its concentration will increase over time. For example, a normal dust removal filter can remove dust, but not gas components. Therefore, carbon dioxide emitted with human activity, or volatile organic compound (VOC) gases generated from walls, etc. cannot be removed by the filter, so the indoor concentration of gas components as pollutants increases as the exhaust air volume decreases.
 従って本開示は、室内から排気する空気の一部を清浄して室内へ導くいわゆる循環による空気清浄を行う場合でも室外に排気する空気の風量を適切に確保する熱交換形換気装置を提供することを目的とする。 The present disclosure therefore aims to provide a heat exchange ventilation device that ensures an appropriate volume of air exhausted to the outside, even when performing so-called circulation air purification, in which a portion of the air exhausted from the room is purified and then led back into the room.
 本開示に係る熱交換形換気装置は、熱交換素子で排気風路を通る空気と給気風路を通る空気との間で熱交換を行うものであって、給気風路における熱交換素子より下流側の部分と、排気風路における熱交換素子より上流側の部分とを繋ぐ循環風路開口が形成された筐体、循環風路開口を開閉する循環風路ダンパ、循環風路開口を通る空気の清浄を行う空気清浄部、及び、循環風路ダンパが循環風路開口を開ける場合、排気送風機の出力を上げるように排気送風機を制御する制御部を備える。 The heat exchange type ventilation device disclosed herein exchanges heat between air passing through an exhaust air duct and air passing through an intake air duct using a heat exchange element, and includes a housing having a circulation air duct opening that connects a portion of the intake air duct downstream of the heat exchange element and a portion of the exhaust air duct upstream of the heat exchange element, a circulation air duct damper that opens and closes the circulation air duct opening, an air purifying unit that purifies the air passing through the circulation air duct opening, and a control unit that controls the exhaust blower to increase the output of the exhaust blower when the circulation air duct damper opens the circulation air duct opening.
 本開示に係る熱交換形換気装置によれば、循環による空気清浄を行う場合でも室外に排気する空気の風量を適切に確保することができる。 The heat exchange ventilation device disclosed herein can ensure an appropriate volume of air to be exhausted to the outside, even when air purification is performed through circulation.
実施の形態1に係る熱交換形換気装置100の構成を示す構成概略図FIG. 1 is a schematic diagram showing the configuration of a heat exchange type ventilation device 100 according to a first embodiment. 循環運転を行う状態での熱交換形換気装置100の構成を示す構成概略図FIG. 1 is a schematic diagram showing the configuration of a heat exchange type ventilation device 100 in a circulating operation state. 熱交換形換気装置100の運転を制御する方法を示すフローチャート1 is a flowchart showing a method for controlling the operation of a heat exchange ventilation device 100. 熱交換形換気装置100に含まれる制御回路15aのハードウェア構成の一例を示すブロック図A block diagram showing an example of the hardware configuration of a control circuit 15a included in the heat exchange type ventilation device 100. 実施の形態1の変形例2に係る、排気送風機8を制御するためのテーブルの具体例を示す構成図FIG. 11 is a configuration diagram showing a specific example of a table for controlling the exhaust fan 8 according to a second modification of the first embodiment; 実施の形態1の変形例3に係る、排気送風機8を制御するためのテーブルの具体例を示す構成図FIG. 11 is a configuration diagram showing a specific example of a table for controlling the exhaust fan 8 according to a third modification of the first embodiment; 実施の形態1の変形例4に係る、給気送風機7を制御するためのテーブルの具体例を示す構成図FIG. 11 is a block diagram showing a specific example of a table for controlling the supply air blower 7 according to a fourth modification of the first embodiment; 実施の形態1の変形例5に係る、給気送風機7及び排気送風機8を制御するためのテーブルの具体例を示す構成図FIG. 13 is a configuration diagram showing a specific example of a table for controlling the intake air blower 7 and the exhaust air blower 8 according to a fifth modification of the first embodiment. 実施の形態1の変形例9に係る熱交換形換気装置100aの構成を示す概略図FIG. 13 is a schematic diagram showing the configuration of a heat exchange type ventilation device 100a according to a 9th modification of the first embodiment. 実施の形態1の変形例10に係る熱交換形換気装置100bの構成を示す概略図FIG. 13 is a schematic diagram showing the configuration of a heat exchange type ventilation device 100b according to a tenth modification of the first embodiment. 実施の形態2に係る熱交換形換気装置200の構成を示す構成概略図FIG. 13 is a schematic diagram showing the configuration of a heat exchange type ventilation device 200 according to a second embodiment. 実施の形態2の変形例に係る、循環風路ダンパ10を制御するためのテーブルの具体例を示す構成図FIG. 11 is a configuration diagram showing a specific example of a table for controlling the circulating-air-path damper 10 according to a modification of the second embodiment;
 以下、本開示の実施の形態を図面に基づいて説明する。なお、図面及び以下の説明において、同一のもの及び実質的に同一のものには同一の符号を付している。よって同一の符号を付したものの説明は繰り返さない。 Below, an embodiment of the present disclosure will be described with reference to the drawings. Note that in the drawings and the following description, identical or substantially identical parts are given the same reference numerals. Therefore, descriptions of parts given the same reference numerals will not be repeated.
実施の形態1.
 図1は本開示の実施の形態1に係る熱交換形換気装置100の概略図である。熱交換形換気装置100は、室外吸込口3aと、室内吐出口4aと、室内吸込口5aと、室外吐出口6aを有した筐体1を備える。筐体1はその一側面から外側に突出した2つの筒状の接続部3及び6を有し、その先端の開口部分がそれぞれ室外吸込口3a及び室外吐出口6aである。筐体1はその反対側の面から外側に突出した2つの筒状の接続部5及び4を有し、その先端の開口部分がそれぞれ室内吸込口5a及び室内吐出口4aである。接続部3及び6にはそれぞれ室外に通じるダクトが接続され、接続部5及び4にはそれぞれ室内に通じるダクトが接続される。筐体1の内部には、室外吸込口3aと室内吐出口4aとを繋ぐ給気風路101と、室内吸込口5aと室外吐出口6aとを繋ぐ排気風路102とが形成されている。
Embodiment 1.
FIG. 1 is a schematic diagram of a heat exchange type ventilation device 100 according to a first embodiment of the present disclosure. The heat exchange type ventilation device 100 includes a housing 1 having an outdoor intake port 3a, an indoor exhaust port 4a, an indoor intake port 5a, and an outdoor exhaust port 6a. The housing 1 has two cylindrical connectors 3 and 6 protruding outward from one side thereof, and the openings at the tips of the connectors are the outdoor intake port 3a and the outdoor exhaust port 6a, respectively. The housing 1 has two cylindrical connectors 5 and 4 protruding outward from the opposite side thereof, and the openings at the tips of the connectors are the indoor intake port 5a and the indoor exhaust port 4a, respectively. The connectors 3 and 6 are connected to ducts leading to the outside of the room, and the connectors 5 and 4 are connected to ducts leading to the inside of the room. Inside the housing 1, an intake air duct 101 connecting the outdoor intake port 3a and the indoor exhaust port 4a, and an exhaust air duct 102 connecting the indoor intake port 5a and the outdoor exhaust port 6a are formed.
熱交換形換気装置100はさらに、熱交換素子2、給気送風機7、排気送風機8、循環風路ダンパ10、給気シャッター11、空気清浄部12及び制御部15を備える。熱交換素子2は筐体1内に設けられ、給気風路101を通る空気と排気風路102を通る空気との間で熱交換を行う。給気送風機7は給気風路101に設けられ、室外吸込口3aから室内吐出口4aへの空気の流れを生成する。給気送風機7は、具体的には、熱交換素子2と室内吐出口4aとの間の給気風路101内に、例えば、室内吐出口4aの付近に設けられる。給気送風機7はモータ及びこのモータに駆動されて回転するファンを有し、ファンの回転によって給気風路101に気流を生じさせる。 The heat exchange type ventilation device 100 further includes a heat exchange element 2, an intake air blower 7, an exhaust air blower 8, a circulation air duct damper 10, an intake air shutter 11, an air purifier 12, and a controller 15. The heat exchange element 2 is provided in the housing 1, and exchanges heat between the air passing through the intake air duct 101 and the air passing through the exhaust air duct 102. The intake air blower 7 is provided in the intake air duct 101, and generates an air flow from the outdoor inlet 3a to the indoor outlet 4a. The intake air blower 7 is specifically provided in the intake air duct 101 between the heat exchange element 2 and the indoor outlet 4a, for example, near the indoor outlet 4a. The intake air blower 7 has a motor and a fan that is driven by the motor to rotate, and generates an air flow in the intake air duct 101 by the rotation of the fan.
排気送風機8は排気風路102に設けられ、室内吸込口5aから室外吐出口6aへの空気の流れを生成する。排気送風機8は、具体的には、熱交換素子2と室外吐出口6aとの間の排気風路102内に、例えば、室外吐出口6aの付近に設けられる。排気送風機8はモータ及びこのモータに駆動されて回転するファンを有し、ファンの回転によって排気風路102に気流を生じさせる。 The exhaust fan 8 is provided in the exhaust duct 102 and generates an air flow from the indoor inlet 5a to the outdoor outlet 6a. Specifically, the exhaust fan 8 is provided in the exhaust duct 102 between the heat exchange element 2 and the outdoor outlet 6a, for example, near the outdoor outlet 6a. The exhaust fan 8 has a motor and a fan that is driven by the motor to rotate, and generates an air flow in the exhaust duct 102 by the rotation of the fan.
 筐体1の内部には、給気風路101の熱交換素子2より下流側の部分と、排気風路102の熱交換素子2より上流側の部分とを繋ぐ循環風路開口9が形成される。循環風路開口9は、熱交換素子2より下流側の給気風路101と、熱交換素子2より上流側の給気風路101とを隔離する隔壁に形成される。循環風路ダンパ10は循環風路開口9を開閉する。循環風路ダンパ10は、循環風路開口9に軸回転可能に取り付けられ、排気風路102に面するように設けられる。循環風路ダンパ10が閉状態であるとき循環風路開口9を塞ぐ。循環風路ダンパ10が排気風路102に向かって軸回転することにより循環風路ダンパ10は開状態となり、循環風路開口9を開ける。従って、循環風路ダンパ10が開状態になると循環風路開口9に空気が流れ、循環風路ダンパ10が閉状態になると循環風路開口9の空気の流れは遮断される。 A circulation air duct opening 9 is formed inside the housing 1, connecting the portion of the intake air duct 101 downstream of the heat exchange element 2 with the portion of the exhaust air duct 102 upstream of the heat exchange element 2. The circulation air duct opening 9 is formed in a partition wall that separates the intake air duct 101 downstream of the heat exchange element 2 from the intake air duct 101 upstream of the heat exchange element 2. The circulation air duct damper 10 opens and closes the circulation air duct opening 9. The circulation air duct damper 10 is attached to the circulation air duct opening 9 so as to be rotatable about its axis, and is arranged to face the exhaust air duct 102. When the circulation air duct damper 10 is in a closed state, it blocks the circulation air duct opening 9. When the circulation air duct damper 10 is axially rotated toward the exhaust air duct 102, the circulation air duct damper 10 is in an open state, opening the circulation air duct opening 9. Therefore, when the circulation air duct damper 10 is open, air flows through the circulation air duct opening 9, and when the circulation air duct damper 10 is closed, the air flow through the circulation air duct opening 9 is blocked.
 空気清浄部12は循環風路開口9に設けられ、循環風路開口9に流れる空気の清浄を行う。 The air purifier 12 is provided at the air circulation duct opening 9 and purifies the air flowing through the air circulation duct opening 9.
 給気シャッター11は循環風路開口9より上流側の給気風路101に設けられ、給気風路101を開閉する。給気シャッター11は、筐体1の内部に軸回転可能に取付けられる。給気シャッター11が閉状態にあると、接続部3内の風路を塞ぎ、給気風路101の空気の流れを遮断する。給気シャッター11が筐体1の内側に向かって軸回転することにより給気シャッター11は開状態となり、給気風路101に空気が流れる。 The intake air shutter 11 is provided in the intake air duct 101 upstream of the circulation air duct opening 9, and opens and closes the intake air duct 101. The intake air shutter 11 is attached inside the housing 1 so that it can rotate on its axis. When the intake air shutter 11 is in the closed state, it blocks the air duct inside the connection part 3, blocking the air flow in the intake air duct 101. When the intake air shutter 11 rotates on its axis toward the inside of the housing 1, the intake air shutter 11 opens, allowing air to flow in the intake air duct 101.
 制御部15は給気送風機7及び排気送風機8のそれぞれ運転を制御し、循環風路ダンパ10及び給気シャッター11のそれぞれ開閉を制御する。制御部15は、筐体1の外面に取付けられ制御ボックスと、その制御ボックス内に収納され、制御回路15aを搭載した制御基板とを備える。この制御回路15aが制御部15の行う制御を担う。この制御回路15aを「制御部」と呼んでもよい。 The control unit 15 controls the operation of the intake air blower 7 and the exhaust air blower 8, and controls the opening and closing of the circulating air duct damper 10 and the intake air shutter 11. The control unit 15 comprises a control box attached to the outer surface of the housing 1, and a control board housed within the control box and equipped with a control circuit 15a. This control circuit 15a is responsible for the control performed by the control unit 15. This control circuit 15a may be referred to as the "control unit".
 制御部15は不図示の操作スイッチに有線又は無線で接続されており、操作スイッチから運転開始の指令を受ける。その指令に従い熱交換形換気装置100は熱交換運転を行う。熱交換運転は、循環風路開口9が閉じた状態で給気風路101及び排気風路102をそれぞれ流れる気流間で熱交換を行う運転状態である。熱交換運転では、制御部15は循環風路ダンパ10を閉状態、給気シャッター11を開状態として給気送風機7及び排気送風機8を運転させる。従って図1に示されるように、室内の空気が室内吸込口5aに吸い込まれ、排気風路102及び室外吐出口6aを介して室外に排気されると同時に、室外の空気が室外吸込口3aに吸い込まれ、給気風路101及び室内吐出口4aを介して室内に供給される。そして熱交換素子2が排気と給気との間で熱交換を行う。 The control unit 15 is connected to an operation switch (not shown) by wire or wirelessly, and receives a command to start operation from the operation switch. In response to the command, the heat exchange type ventilation device 100 performs heat exchange operation. The heat exchange operation is an operation state in which heat exchange is performed between the airflows flowing through the supply air duct 101 and the exhaust air duct 102 with the circulation air duct opening 9 closed. In the heat exchange operation, the control unit 15 operates the supply air blower 7 and the exhaust air blower 8 with the circulation air duct damper 10 in a closed state and the supply air shutter 11 in an open state. Therefore, as shown in FIG. 1, indoor air is sucked into the indoor intake port 5a and exhausted to the outside through the exhaust air duct 102 and the outdoor discharge port 6a, and at the same time, outdoor air is sucked into the outdoor intake port 3a and supplied to the room through the supply air duct 101 and the indoor discharge port 4a. The heat exchange element 2 then exchanges heat between the exhaust air and the supply air.
 熱交換形換気装置100は循環運転も行う。循環運転は、循環風路開口9が開いて循環風路103に気流を発生させる運転状態である。循環風路103は、循環風路開口9を介して室内吸込口5aと室内吐出口4aとを繋ぐ風路である。循環運転では制御部15は、循環風路ダンパ10を開状態、給気シャッター11を閉状態として給気送風機7及び排気送風機8を運転させる。循環風路ダンパ10が開状態となり循環風路開口9を開ける。また循環風路ダンパ10は開状態であっても排気風路102を塞がない。従って図2に示されるように、排気風路102及び循環風路103に気流が生じる。つまり、室内吸込口5aから吸い込まれた室内の空気の一部が熱交換素子2及び室外吐出口6aを介して室外に排気され、その他の空気は循環風路開口9及び室内吐出口4aを介して室内に戻される。なお給気シャッター11が閉状態であるので、室外吸込口3aからの空気の流入は生じない。 The heat exchange type ventilation device 100 also performs circulation operation. Circulation operation is an operating state in which the circulation air duct opening 9 is open and generates an airflow in the circulation air duct 103. The circulation air duct 103 is an air duct that connects the indoor intake port 5a and the indoor exhaust port 4a through the circulation air duct opening 9. In circulation operation, the control unit 15 operates the intake air blower 7 and the exhaust air blower 8 with the circulation air duct damper 10 in an open state and the intake air shutter 11 in a closed state. The circulation air duct damper 10 is in an open state and opens the circulation air duct opening 9. Even when the circulation air duct damper 10 is in an open state, it does not block the exhaust air duct 102. Therefore, as shown in FIG. 2, airflow is generated in the exhaust air duct 102 and the circulation air duct 103. In other words, a part of the indoor air sucked in from the indoor intake port 5a is exhausted to the outside through the heat exchange element 2 and the outdoor exhaust port 6a, and the other air is returned to the room through the circulation air duct opening 9 and the indoor exhaust port 4a. Furthermore, since the air intake shutter 11 is closed, no air flows in through the outdoor intake port 3a.
 制御部15は熱交換運転と循環運転との切替えを行う。制御部15は、具体的には、室内の空気がある基準量以上に汚染されたときに熱交換運転から循環運転に運転状態を切替える。そのため熱交換形換気装置100は空気汚染度検知部13を備える。空気汚染度検知部13は、室内吸込口5aから取り込まれる空気の汚染度を検出する。空気の汚染度として、空気中に含まれる特定の汚染物質の量、例えば、その物質の空気中濃度が検出される。空気汚染度検知部13の一例は空気質センサである。空気汚染度検知部13は、循環風路開口9より上流側の排気風路102に、例えば、接続部5の内部に設けられる。空気汚染度検知部13により検出された結果は制御部15に送られる。以下では、空気汚染度検知部13により検出される物質を「検出物質」と呼ぶ。 The control unit 15 switches between heat exchange operation and circulation operation. Specifically, the control unit 15 switches the operation state from heat exchange operation to circulation operation when the indoor air is polluted to a certain standard amount or more. For this reason, the heat exchange type ventilation device 100 is equipped with an air pollution level detection unit 13. The air pollution level detection unit 13 detects the pollution level of the air taken in from the indoor air inlet 5a. The amount of a specific pollutant contained in the air, for example, the concentration of the substance in the air, is detected as the pollution level of the air. An example of the air pollution level detection unit 13 is an air quality sensor. The air pollution level detection unit 13 is provided in the exhaust air duct 102 upstream of the circulation air duct opening 9, for example, inside the connection unit 5. The results detected by the air pollution level detection unit 13 are sent to the control unit 15. Hereinafter, the substance detected by the air pollution level detection unit 13 will be referred to as the "detected substance."
 制御部15は、空気汚染度検知部13から送信された検出結果に基づき、循環風路ダンパ10及び給気シャッター11を制御する。制御部15は、具体的には、空気汚染度検知部13の検出結果から室内の空気中の検出物質がある基準量以上に含まれるか否かを判断する。制御部15は、その基準量を示す閾値(後述の閾値A’)を制御部15内に予め記憶しており、空気汚染度検知部13の検出結果である検出物質の量を閾値と比較する。検出物質の量が閾値以上であると判断すると、制御部15は循環風路ダンパ10を開け、給気シャッター11を閉じる。 The control unit 15 controls the circulating air duct damper 10 and the intake air shutter 11 based on the detection results sent from the air pollution level detection unit 13. Specifically, the control unit 15 judges whether the detected substance in the indoor air is contained in a certain standard amount or more from the detection results of the air pollution level detection unit 13. The control unit 15 pre-stores a threshold value (threshold value A' described below) indicating the standard amount within the control unit 15, and compares the amount of detected substance detected by the air pollution level detection unit 13 with the threshold value. If it is determined that the amount of detected substance is equal to or more than the threshold value, the control unit 15 opens the circulating air duct damper 10 and closes the intake air shutter 11.
 循環運転では循環風路開口9に空気が流れ、空気清浄部12は空気を清浄する。空気清浄部12は、空気汚染度検知部13により検出された検出物質を除去する。室内吸込口5aから吸い込まれた空気中の検出物質の一部は空気清浄部12で除去され、他の一部は排気風路102を介して室外吐出口6aから室外へ排出される。
空気汚染度検知部13が検出する検出物質は、一酸化炭素、二酸化炭素、揮発性有機化合物、微小粒子状物質(いわゆるPM2.5)、塵埃、花粉、ウィルス及び臭気物質の少なくともいずれか一つに設定される。空気清浄部12は、その設定された検出物質を少なくとも除去できる機能を備える。設定された検出物質が塵埃及び花粉の一方又は双方であれば、空気清浄部12は、例えば、網、不織布等で構成されるフィルター、2つの電極に高電圧をかけその間に空気を通して電極に集める電気式集塵デバイス、等である。設定された検出物質が微小粒子状物質であれば、空気清浄部12は、例えば、HEPA(High Efficiency Particle Air)フィルター等である。設定された検出物質がウィルスであれば、空気清浄部12は、例えば、HEPAフィルター、2つの電極に高電圧をかけその間に空気を通してウィルスを不活化させる電気式ウィルス不活化デバイス、等である。設定された検出物質が一酸化炭素、二酸化炭素及び揮発性有機化合物の少なくとも一つであれば、空気清浄部12は、例えば、活性炭フィルター、それぞれのガスの吸着に特化した化学物質が含まれるフィルター、等である。さらに、設定された検出物質が臭気であれば、空気清浄部12は、例えば、活性炭フィルター、光触媒フィルター等である。しかしこれらは例示であり、空気清浄部12はこれらに限定されない。
In circulation operation, air flows through the circulation air duct opening 9 and is purified by the air purifier 12. The air purifier 12 removes detected substances detected by the air pollution level detector 13. Some of the detected substances in the air sucked in from the indoor air inlet 5a are removed by the air purifier 12, and the remaining part is discharged to the outside from the outdoor discharge outlet 6a via the exhaust air duct 102.
The detection substance detected by the air pollution level detection unit 13 is set to at least one of carbon monoxide, carbon dioxide, volatile organic compounds, fine particulate matter (so-called PM2.5), dust, pollen, viruses, and odorous substances. The air purifying unit 12 has a function of removing at least the set detection substance. If the set detection substance is one or both of dust and pollen, the air purifying unit 12 is, for example, a filter made of a net, nonwoven fabric, etc., an electric dust collecting device that applies a high voltage to two electrodes and passes air between them to collect the viruses at the electrodes, etc. If the set detection substance is fine particulate matter, the air purifying unit 12 is, for example, a HEPA (High Efficiency Particle Air) filter, etc. If the set detection substance is a virus, the air purifying unit 12 is, for example, a HEPA filter, an electric virus inactivation device that applies a high voltage to two electrodes and passes air between them to inactivate the viruses, etc. If the set detection substance is at least one of carbon monoxide, carbon dioxide, and volatile organic compounds, the air purifying unit 12 is, for example, an activated carbon filter, a filter containing a chemical substance specialized for adsorbing each gas, etc. Furthermore, if the set detection substance is odor, the air purifying unit 12 is, for example, an activated carbon filter, a photocatalyst filter, etc. However, these are merely examples, and the air purifying unit 12 is not limited to these.
 熱交換形換気装置100はさらに、風量検知部14a及び風量検知部14bを備える。風量検知部14aは、排気送風機8より下流側の排気風路102に設けられ、室外吐出口6aから室外に排出される空気の風量を検出する。風量検知部14aは例えば差圧センサで構成され、接続部6の内部に設けられる。風量検知部14aは検出結果として室外吐出口6aから排出される空気の風量を示す値を制御部15に送信する。風量は単位時間あたりに流れる空気の体積である。制御部15は風量検知部14aから送信された検出結果に基づき、排気送風機8の出力を調整する。以下では、室外吐出口6aから室外に排出される空気の風量を「排気風量」と呼ぶ。 The heat exchange type ventilation device 100 further includes an air volume detection unit 14a and an air volume detection unit 14b. The air volume detection unit 14a is provided in the exhaust air duct 102 downstream of the exhaust fan 8, and detects the volume of air discharged to the outside from the outdoor discharge port 6a. The air volume detection unit 14a is, for example, a differential pressure sensor, and is provided inside the connection unit 6. The air volume detection unit 14a transmits a value indicating the volume of air discharged from the outdoor discharge port 6a as the detection result to the control unit 15. The air volume is the volume of air flowing per unit time. The control unit 15 adjusts the output of the exhaust fan 8 based on the detection result transmitted from the air volume detection unit 14a. Hereinafter, the air volume of air discharged to the outside from the outdoor discharge port 6a will be referred to as the "exhaust air volume."
 風量検知部14bは、給気送風機7より下流側の給気風路101に設けられ、室内吐出口4aから室内に供給される空気の風量を検出する。風量検知部14bは例えば差圧センサで構成され、接続部4の内部に設けられる。風量検知部14bは検出結果として室内吐出口4aから供給される空気の風量を示す値を制御部15に出力する。制御部15は風量検知部14bから送信された検出結果に基づき、給気送風機7の出力を調整する。以下では、熱交換運転において室内吐出口4aから室内に供給される空気の風量を「給気風量」と呼び、循環運転において室内吐出口4aから室内に供給される空気の風量を「循環風量」と呼ぶ。 The air volume detection unit 14b is provided in the supply air duct 101 downstream of the supply air blower 7, and detects the volume of air supplied from the indoor discharge port 4a to the room. The air volume detection unit 14b is, for example, a differential pressure sensor, and is provided inside the connection unit 4. The air volume detection unit 14b outputs a value indicating the volume of air supplied from the indoor discharge port 4a as the detection result to the control unit 15. The control unit 15 adjusts the output of the supply air blower 7 based on the detection result sent from the air volume detection unit 14b. Hereinafter, the volume of air supplied from the indoor discharge port 4a to the room in heat exchange operation is referred to as the "supply air volume", and the volume of air supplied from the indoor discharge port 4a to the room in circulation operation is referred to as the "circulation air volume".
 循環運転では、給気送風機7及び排気送風機8の双方で室内の空気が熱交換形換気装置100に取り込まれるため、室内から取り込まれる空気の風量は熱交換運転の場合よりも増加する。よって空気汚染度検知部13で検出される検出物質の除去は促進される。他方、循環運転において室内吸込口5aから吸込まれた空気は筐体1内で分岐して室外吐出口6a及び室内吐出口4aから排出される。この空気の分岐によって、循環運転での排気風量は熱交換運転での排気風量より小さくなる。空気清浄部12では設定された検知物質以外の汚染物質の除去が効果的ではない又は困難であるため、循環運転では熱交換運転と比べ、その汚染物質の排出量が減る。そこで制御部15は、熱交換運転から循環運転に運転状態を切替えた場合、排気送風機8の出力を上げるように排気送風機8を制御する。 In circulation operation, indoor air is taken into the heat exchange type ventilation device 100 by both the intake air blower 7 and the exhaust air blower 8, so the volume of air taken in from the room is greater than in heat exchange operation. This promotes the removal of the detected substances detected by the air pollution level detection unit 13. On the other hand, in circulation operation, the air taken in from the indoor intake port 5a branches within the housing 1 and is discharged from the outdoor discharge port 6a and the indoor discharge port 4a. Due to this branching of the air, the exhaust air volume in circulation operation is smaller than the exhaust air volume in heat exchange operation. Since the air purification unit 12 is not effective or has difficulty in removing pollutants other than the set detected substances, in circulation operation, the amount of the pollutants discharged is reduced compared to heat exchange operation. Therefore, when the operation state is switched from heat exchange operation to circulation operation, the control unit 15 controls the exhaust air blower 8 to increase its output.
 また、一般的に空気清浄部12がフィルターで構成される場合にはフィルターでの圧力損失が大きく、循環運転における室内吸込口5aから室内吐出口4aまでの風路の圧力損失は、熱交換運転における室外吸込口3aから室内吐出口4aまでの風路の圧力損失より大きい。よって循環運転での循環風量も熱交換運転での給気風量より小さくなる。空気清浄部12での検出物質の除去量を増やすため制御部15は、熱交換運転から循環運転に運転状態を切替えた場合には給気送風機7の出力も上げるように給気送風機7を制御する。 In addition, generally, when the air purification unit 12 is composed of a filter, the pressure loss in the filter is large, and the pressure loss in the air path from the indoor intake port 5a to the indoor discharge port 4a in circulation operation is greater than the pressure loss in the air path from the outdoor intake port 3a to the indoor discharge port 4a in heat exchange operation. Therefore, the circulating air volume in circulation operation is also smaller than the supply air volume in heat exchange operation. In order to increase the amount of detected substances removed by the air purification unit 12, the control unit 15 controls the supply air blower 7 to also increase its output when the operating state is switched from heat exchange operation to circulation operation.
 給気送風機7及び排気送風機8の各出力は、各々のモータの出力を指し、モータのトルクとモータの回転数との積で示される。送風機の出力が上がるとファンの回転数も上がり、送風機により発生する気流の風量は増える。制御部15は各送風機の運転指令値を設定し、この運転指令値を適宜変更することより各送風機の出力の調整を行う。運転指令値は、例えばモータに供給される駆動電圧に対応する指令電圧で表される。制御部15は運転指令値に対応した運転制御信号を各送風機の駆動回路に送信する。給気送風機7及び排気送風機8はそれぞれの運転指令値に従った運転を行う。 The output of each of the intake air blower 7 and exhaust air blower 8 refers to the output of each motor, and is expressed as the product of the motor torque and the motor rotation speed. When the output of the blower increases, the fan rotation speed also increases, and the volume of the airflow generated by the blower increases. The control unit 15 sets an operation command value for each blower, and adjusts the output of each blower by appropriately changing this operation command value. The operation command value is expressed, for example, as a command voltage corresponding to the drive voltage supplied to the motor. The control unit 15 transmits an operation control signal corresponding to the operation command value to the drive circuit of each blower. The intake air blower 7 and exhaust air blower 8 operate according to their respective operation command values.
 次に熱交換形換気装置100の運転を制御する方法を、図3に示されるフローチャートを用いて説明する。ここでは循環運転での排気風量及び循環風量が熱交換運転での排気風量及び給気風量とそれぞれ等しくなるように排気送風機8及び給気送風機7の出力を上げる場合を説明する。操作スイッチから運転開始の指令を受けると、ステップS01で熱交換形換気装置100は熱交換運転を開始する。制御部15は給気シャッター11を開き、循環風路ダンパ10を閉じた状態で、給気送風機7及び排気送風機8を運転させる。給気送風機7及び排気送風機8は例えば、排気風量と給気風量とがほぼ同じ風量となるように運転する。 Next, a method for controlling the operation of the heat exchange type ventilation device 100 will be described using the flowchart shown in Figure 3. Here, a case will be described in which the output of the exhaust blower 8 and the supply air blower 7 is increased so that the exhaust air volume and the circulation air volume in circulation operation are equal to the exhaust air volume and the supply air volume in heat exchange operation, respectively. When a command to start operation is received from the operation switch, the heat exchange type ventilation device 100 starts heat exchange operation in step S01. The control unit 15 opens the supply air shutter 11 and operates the supply air blower 7 and the exhaust blower 8 with the circulation air duct damper 10 closed. The supply air blower 7 and the exhaust blower 8 are operated, for example, so that the exhaust air volume and the supply air volume are approximately the same.
 ステップS02で制御部15は、空気汚染度検出値Aを空気汚染度検知部13から読み込む。また制御部15は給気風量検出値B及び排気風量検出値Cをそれぞれ風量検知部14b及び14aから読み込む。空気汚染度検出値A、給気風量検出値B及び排気風量検出値Cは熱交換運転での、それぞれ、検出物質の量、給気風量及び排気風量を示す値である。 In step S02, the control unit 15 reads the air pollution level detection value A from the air pollution level detection unit 13. The control unit 15 also reads the supply air volume detection value B and the exhaust air volume detection value C from the air volume detection units 14b and 14a, respectively. The air pollution level detection value A, the supply air volume detection value B, and the exhaust air volume detection value C are values that indicate the amount of detected substance, the supply air volume, and the exhaust air volume, respectively, during heat exchange operation.
 ステップS03で制御部15は、空気汚染度検出値Aを制御部15内に記憶された閾値A’と比較する。空気汚染度検出値Aが閾値A’より小さいと判断されると、ステップS01に戻り熱交換運転が継続される。空気汚染度検出値Aが閾値A’以上であると判断されると、処理はステップS04を経てステップS05で循環運転が行われる。つまり空気汚染度検出値Aが閾値A’以上であることは空気が基準値以上に汚染されていることを意味する。ステップS04で制御部15は、ステップS02で読み込んだ給気風量検出値B及び排気風量検出値Cを制御部15内に記憶する。 In step S03, the control unit 15 compares the air pollution level detection value A with the threshold value A' stored in the control unit 15. If it is determined that the air pollution level detection value A is smaller than the threshold value A', the process returns to step S01 and the heat exchange operation continues. If it is determined that the air pollution level detection value A is equal to or greater than the threshold value A', the process passes through step S04 and circulation operation is performed in step S05. In other words, air pollution level detection value A being equal to or greater than the threshold value A' means that the air is polluted above the standard value. In step S04, the control unit 15 stores the supply air flow rate detection value B and exhaust air flow rate detection value C read in step S02 in the control unit 15.
 ステップS05で熱交換形換気装置100の運転状態が熱交換運転から循環運転に切替わる。制御部15は給気シャッター11を閉じ、循環風路ダンパ10を開ける。この時点では給気送風機7及び排気送風機8の出力は熱交換運転での出力を継続している。ステップS06で制御部15は、循環風量検出値B’及び排気風量検出値C’をそれぞれ風量検知部14b及び14aから読み込む。循環風量検出値B’及び排気風量検出値C’は循環運転でのそれぞれ循環風量及び排気風量を示す値である。 In step S05, the operating state of the heat exchange type ventilation device 100 switches from heat exchange operation to circulation operation. The control unit 15 closes the intake air shutter 11 and opens the circulation air duct damper 10. At this point, the output of the intake air blower 7 and the exhaust air blower 8 continues to be output in heat exchange operation. In step S06, the control unit 15 reads the circulation air volume detection value B' and the exhaust air volume detection value C' from the air volume detection units 14b and 14a, respectively. The circulation air volume detection value B' and the exhaust air volume detection value C' are values that indicate the circulation air volume and exhaust air volume, respectively, in circulation operation.
 ステップS07で制御部15は、排気風量検出値C’を制御部15内に記憶された排気風量検出値Cと比較する。排気風量検出値C’が排気風量検出値Cより小さい場合には、ステップS09で制御部15は排気送風機8の出力を上げる。よって排気風量が増加する。その後ステップS06の処理が再度行われる。一方、排気風量検出値C’が排気風量検出値Cより大きい場合には、ステップS08で制御部15は排気送風機8の出力を下げる。よって排気風量は低下する。その後ステップS06の処理が再度行われる。ステップS08及びステップS09での排気送風機8の出力のそれぞれ増減量は、排気風量検出値C’と排気風量検出値Cとの差分値に応じた量とする。差分値と排気送風機8の出力の増減量との関係は予め定めておく。 In step S07, the control unit 15 compares the exhaust airflow detection value C' with the exhaust airflow detection value C stored in the control unit 15. If the exhaust airflow detection value C' is smaller than the exhaust airflow detection value C, the control unit 15 increases the output of the exhaust blower 8 in step S09. Thus, the exhaust airflow increases. Then, the process of step S06 is performed again. On the other hand, if the exhaust airflow detection value C' is larger than the exhaust airflow detection value C, the control unit 15 decreases the output of the exhaust blower 8 in step S08. Thus, the exhaust airflow decreases. Then, the process of step S06 is performed again. The respective increase/decrease amounts of the output of the exhaust blower 8 in steps S08 and S09 correspond to the difference value between the exhaust airflow detection value C' and the exhaust airflow detection value C. The relationship between the difference value and the increase/decrease amount of the output of the exhaust blower 8 is determined in advance.
 運転状態が熱交換運転から循環運転に切替わった直後、排気風量は減るので、循環運転開始後の最初のステップS07では排気風量検出値C’が排気風量検出値Cより小さいと判断され、ステップS09により排気送風機8の出力は上げられる。これにより増加した排気風量が排気風量検出値Cを下回る場合には、排気送風機8の出力はさらに上げられ、増加した排気風量が排気風量検出値Cを超えた場合には、排気送風機8の出力は下げられる。この動作を繰り返すことにより排気風量検出値C’は排気風量検出値Cに近づけられる。 Immediately after the operating state switches from heat exchange operation to circulation operation, the exhaust air volume decreases, so in the first step S07 after circulation operation starts, it is determined that exhaust air volume detection value C' is smaller than exhaust air volume detection value C, and the output of exhaust blower 8 is increased in step S09. If the increased exhaust air volume falls below exhaust air volume detection value C, the output of exhaust blower 8 is further increased, and if the increased exhaust air volume exceeds exhaust air volume detection value C, the output of exhaust blower 8 is decreased. By repeating this operation, exhaust air volume detection value C' is brought closer to exhaust air volume detection value C.
 ステップS07で排気風量検出値C’が排気風量検出値Cと等しいと判断されると、処理はステップS10に移行する。ステップS10で制御部15は、循環風量検出値B’を制御部15内に記憶された給気風量検出値Bと比較する。循環風量検出値B’が給気風量検出値Bより小さい場合には、ステップS12で制御部15は給気送風機7の出力を上げる。よって循環風量が増加する。その後ステップS06の処理が再度行われる。循環風量検出値B’が給気風量検出値Bより大きい場合には、ステップS11で制御部15は給気送風機7の出力を下げる。よって循環風量は低下する。その後ステップS06の処理が再度行われる。ステップS11及びステップS12での給気送風機7の出力のそれぞれ増減量は、循環風量検出値B’と給気風量検出値Bとの差分値に応じた量とする。差分値と給気送風機7の出力の増減量との関係は予め定めておく。 If it is determined in step S07 that the exhaust airflow detection value C' is equal to the exhaust airflow detection value C, the process proceeds to step S10. In step S10, the control unit 15 compares the circulation airflow detection value B' with the supply airflow detection value B stored in the control unit 15. If the circulation airflow detection value B' is smaller than the supply airflow detection value B, the control unit 15 increases the output of the supply air blower 7 in step S12. Thus, the circulation airflow increases. Then, the process of step S06 is performed again. If the circulation airflow detection value B' is larger than the supply airflow detection value B, the control unit 15 decreases the output of the supply air blower 7 in step S11. Thus, the circulation airflow decreases. Then, the process of step S06 is performed again. The increase or decrease in the output of the supply air blower 7 in steps S11 and S12 is an amount corresponding to the difference between the circulation airflow detection value B' and the supply airflow detection value B. The relationship between the difference and the increase or decrease in the output of the supply air blower 7 is determined in advance.
 運転状態が熱交換運転から循環運転に切替わった直後、循環風量は給気風量より小さくなるので、循環運転開始後の最初のステップS10では循環風量検出値B’が給気風量検出値Bより小さいと判断され、ステップS12により給気送風機7の出力は上げられる。このとき、給気送風機7の出力が変更されたことにより、排気風量が排気風量検出値Cに等しい状態から外れることがある。そこで制御部15はステップS07~S09の処理を繰り返し、排気風量検出値C’が排気風量検出値Cと等しくなるように排気送風機8の出力を再度調整する。その後、制御部15は再びステップS10の処理を実施する。 Immediately after the operating state switches from heat exchange operation to circulation operation, the circulation air volume becomes smaller than the supply air volume, so in the first step S10 after the start of circulation operation, it is determined that the circulation air volume detection value B' is smaller than the supply air volume detection value B, and the output of the supply air blower 7 is increased in step S12. At this time, the change in the output of the supply air blower 7 may cause the exhaust air volume to deviate from the state equal to the exhaust air volume detection value C. Therefore, the control unit 15 repeats the processing of steps S07 to S09, and adjusts the output of the exhaust blower 8 again so that the exhaust air volume detection value C' becomes equal to the exhaust air volume detection value C. The control unit 15 then performs the processing of step S10 again.
 ステップS10において、循環風量検出値B’が給気風量検出値Bと等しいと判断された場合、処理はステップS02に戻る。循環運転としてのステップS02では、風量検知部14bにより検出された循環風量が給気風量検出値Bとして読み込まれる。ステップS03で「No」と判断されると循環運転が継続される。その後のステップS06で読み込まれる循環風量検出値B’及び排気風量検出値C’はすでに給気風量検出値B及び排気風量検出値Cとそれぞれ等しいので、給気送風機7及び排気送風機8の出力は変更されることなく再度ステップS02に戻る。 If it is determined in step S10 that the circulating air volume detection value B' is equal to the supply air volume detection value B, the process returns to step S02. In step S02 for circulation operation, the circulating air volume detected by the air volume detection unit 14b is read as the supply air volume detection value B. If the determination in step S03 is "No", the circulation operation continues. Since the circulation air volume detection value B' and the exhaust air volume detection value C' read in the subsequent step S06 are already equal to the supply air volume detection value B and the exhaust air volume detection value C, respectively, the output of the supply air blower 7 and the exhaust air blower 8 is not changed and the process returns to step S02 again.
 一方、循環運転としてのステップS02の後、ステップS03で「Yes」と判断された場合、ステップS01に戻り、循環運転から熱交換運転に運転状態が切替わる。このとき制御部15は、給気送風機7及び排気送風機8のそれぞれの出力が循環運転の前に行われていた熱交換運転時のものに戻されるように給気送風機7及び排気送風機8を制御する。 On the other hand, if the answer is "Yes" in step S03 after step S02 as the circulation operation, the process returns to step S01, and the operation state is switched from the circulation operation to the heat exchange operation. At this time, the control unit 15 controls the intake air blower 7 and the exhaust air blower 8 so that the outputs of the intake air blower 7 and the exhaust air blower 8 are returned to those of the heat exchange operation performed before the circulation operation.
 以上の制御により、風量調整期間後の排気運転での排気風量が熱交換運転での排気風量と等しい風量となり、風量調整期間後の循環運転における循環風量が熱交換運転での給気風量と等しい風量になる。風量調整期間は、熱交換運転から循環運転に運転状態が切替わった後、風量の調整を行う期間のことであり、図3においては、循環運転開始後の最初のステップS06からステップS02に戻るまでの期間に相当する。 By the above control, the exhaust air volume in exhaust operation after the air volume adjustment period is equal to the exhaust air volume in heat exchange operation, and the circulation air volume in circulation operation after the air volume adjustment period is equal to the supply air volume in heat exchange operation. The air volume adjustment period is the period during which the air volume is adjusted after the operating state is switched from heat exchange operation to circulation operation, and in Figure 3, it corresponds to the period from the first step S06 after the start of circulation operation to returning to step S02.
 なお制御部15は、ステップS02で給気風量検出値B及び排気風量検出値Cを読み込む代わりに、ステップS04で給気風量検出値B及び排気風量検出値Cを風量検知部14b及び14aから読み込み、制御部15内に記憶するようにしてもよい。またステップS03で「No」と判断された際、運転状態が循環運転であるときには処理はステップS04を移行せずにステップS02に戻るようにしてもよい。 In addition, instead of reading the supply air volume detection value B and the exhaust air volume detection value C in step S02, the control unit 15 may read the supply air volume detection value B and the exhaust air volume detection value C from the air volume detection units 14b and 14a in step S04 and store them in the control unit 15. Also, when the determination in step S03 is "No," if the operating state is circulation operation, the process may return to step S02 without proceeding to step S04.
 またステップS07及びS10のそれぞれ等しいことの判断においては、厳密な一致に限らず概ね一致する場合も含む。例えばステップS07において制御部15は、排気風量検出値C’が排気風量検出値Cを含むある幅をもつ範囲内にあるか、その範囲の上限より高いか又はその範囲の下限より低いかを判断してもよい。この範囲の幅は排気風量検出値Cと、排気運転開始後の最初のステップS06で検出される排気風量検出値C’との差より十分小さいものとする。ステップS10でも同様に考えることができる。 Furthermore, the determination of equality in steps S07 and S10 does not necessarily mean strict agreement, but also includes cases where the values roughly match. For example, in step S07, the control unit 15 may determine whether the exhaust airflow detection value C' is within a certain range that includes the exhaust airflow detection value C, or whether it is higher than the upper limit of the range or lower than the lower limit of the range. The width of this range is sufficiently smaller than the difference between the exhaust airflow detection value C and the exhaust airflow detection value C' detected in the first step S06 after the start of exhaust operation. The same can be considered for step S10.
 図4は、制御回路15aのハードウェア構成の一例を示すブロック図である。制御回路15aは半導体集積回路で構成されるマイクロコンピュータであり、プロセッサ21、メモリ22、バス23、3つの入力回路24、2つの出力回路25及び2つの出力回路26を備える。プロセッサ21はプログラムに従い、図3で示された処理を行う。当該プログラムはメモリ22に記憶されており、バス23を介してプロセッサ21に与えられる。プロセッサ21は例えば中央処理装置(CPU)であり、メモリ22はRAM(Randam Access Memory)等の揮発性メモリ及びROM(Read Only Memory)、フラッシュメモリ等の不揮発性メモリを含む記憶装置である。ステップS03で使用される閾値A’は例えばメモリ22の不揮発性メモリに記憶され、ステップS04において給気風量検出値B及び排気風量検出値Cはメモリ22の揮発性メモリに記憶される。 FIG. 4 is a block diagram showing an example of the hardware configuration of the control circuit 15a. The control circuit 15a is a microcomputer composed of semiconductor integrated circuits, and includes a processor 21, a memory 22, a bus 23, three input circuits 24, two output circuits 25, and two output circuits 26. The processor 21 performs the process shown in FIG. 3 according to a program. The program is stored in the memory 22 and is provided to the processor 21 via the bus 23. The processor 21 is, for example, a central processing unit (CPU), and the memory 22 is a storage device including a volatile memory such as a RAM (Random Access Memory) and a non-volatile memory such as a ROM (Read Only Memory) or a flash memory. The threshold value A' used in step S03 is, for example, stored in the non-volatile memory of the memory 22, and in step S04, the supply airflow detection value B and the exhaust airflow detection value C are stored in the volatile memory of the memory 22.
 バス23は、プロセッサ21、メモリ22、3つの入力回路24、2つの出力回路25及び2つの出力回路26に接続される。3つの入力回路24は、空気汚染度検知部13、風量検知部14a及び14bからそれぞれ出力される検出結果を受け、バス23を介してプロセッサ21に転送する。検出結果は一旦メモリ22に格納され、メモリ22からプロセッサ21に読み込まれる場合もある。 The bus 23 is connected to the processor 21, the memory 22, three input circuits 24, two output circuits 25, and two output circuits 26. The three input circuits 24 receive the detection results output from the air pollution level detection unit 13 and the air volume detection units 14a and 14b, respectively, and transfer them to the processor 21 via the bus 23. The detection results are temporarily stored in the memory 22, and may also be read from the memory 22 into the processor 21.
 2つの出力回路25は、プロセッサ21から出力される運転制御信号を受け、給気送風機7及び排気送風機8にそれぞれ送信する。2つの出力回路26は、プロセッサ21から出力される開閉制御信号を受け、循環風路ダンパ10及び給気シャッター11に送信する。循環風路ダンパ10及び給気シャッター11は開閉制御信号に従って開閉する。これらの運転制御信号及び開閉制御信号はプロセッサ21から一旦メモリ22に格納され、メモリ22からそれぞれの出力回路に送られる場合もある。また、運転制御信号及び開閉制御信号は各出力回路で必要に応じてデータ加工されてそれぞれの送信先に送信される場合もある。 The two output circuits 25 receive operation control signals output from the processor 21 and send them to the intake air blower 7 and exhaust air blower 8, respectively. The two output circuits 26 receive opening/closing control signals output from the processor 21 and send them to the circulation air duct damper 10 and intake air shutter 11. The circulation air duct damper 10 and intake air shutter 11 open and close in accordance with the opening/closing control signals. These operation control signals and opening/closing control signals may be temporarily stored in the memory 22 from the processor 21, and then sent from the memory 22 to the respective output circuits. The operation control signals and opening/closing control signals may also be processed as necessary in each output circuit and sent to the respective destinations.
 このように制御回路15aは、他の電気機器又は電子機器の制御にも使用可能なマイクロコンピュータで構成することができる。しかしこれに限らず、図3に示される処理の一部又は全部を専用の処理回路で実現することもできる。 In this way, the control circuit 15a can be configured with a microcomputer that can also be used to control other electrical or electronic devices. However, this is not limited to this, and some or all of the processing shown in FIG. 3 can also be realized by a dedicated processing circuit.
 このように構成される熱交換形換気装置100は以下の効果を奏する。 The heat exchange ventilation device 100 configured in this manner provides the following effects:
 制御部15は、循環風路ダンパ10が循環風路開口9を開けた場合、制御部15は排気送風機8の出力を上げるように排気送風機8を制御する。循環風路開口9が開いたことにより生じる排気風量の減少を抑制できるため、循環運転により空気清浄を行う場合でも室外に排気する空気の量を適切に確保することができる。その結果、空気清浄部12では除去されない室内の汚染物質を素早く室外に排出することができる。 When the circulation air duct damper 10 opens the circulation air duct opening 9, the control unit 15 controls the exhaust fan 8 to increase its output. Since the reduction in exhaust air volume caused by the circulation air duct opening 9 being open can be suppressed, an appropriate amount of air can be ensured to be exhausted to the outside even when air purification is performed by circulation operation. As a result, indoor pollutants that are not removed by the air purification unit 12 can be quickly exhausted to the outside.
 また循環運転において給気送風機7及び排気送風機8の双方で室内の空気が熱交換形換気装置100に取り込まれるため、室内から取り込まれる空気の風量は熱交換運転の場合よりも増える。循環運転で取り込まれる空気の風量と同じ風量の空気を熱交換運転で室内から取り込んで室外に排気しようとした場合、排気送風機8の出力は循環運転での出力よりも増やさなければならない。しかし給気送風機7及び排気送風機8の双方で室内の空気が取り込まれるので一台当たりの送風機の出力は抑えられる。従って熱交換形換気装置100は低騒音化が実現される。 In addition, during circulation operation, indoor air is taken in by both the intake air blower 7 and the exhaust air blower 8 into the heat exchange type ventilation device 100, so the volume of air taken in from inside the room is greater than in heat exchange operation. If an attempt is made to take in the same volume of air from inside the room during heat exchange operation as the volume of air taken in during circulation operation and exhaust it to the outside, the output of the exhaust air blower 8 must be increased more than in circulation operation. However, because indoor air is taken in by both the intake air blower 7 and the exhaust air blower 8, the output of each blower can be reduced. As a result, the heat exchange type ventilation device 100 achieves low noise levels.
 空気汚染度検知部13が室内吸込口5aから取り込まれる空気の汚染度を検出し、制御部15が空気汚染度検知部13により検出された結果に基づいて循環風路ダンパ10を開けるように制御する。よって室内の空気が汚染された場合、循環風路ダンパ10の開閉を自動で行える。 The air pollution level detection unit 13 detects the pollution level of the air taken in from the indoor air inlet 5a, and the control unit 15 controls the circulating air duct damper 10 to open based on the results detected by the air pollution level detection unit 13. Therefore, if the air in the room becomes polluted, the circulating air duct damper 10 can be opened and closed automatically.
 制御部15は、循環風路ダンパ10が循環風路開口9を開けた場合、制御部15は給気送風機7の出力を上げるように排気送風機8を制御する。よって、空気清浄部12により清浄される空気の量を増やすことができる。 When the air circulation duct damper 10 opens the air circulation duct opening 9, the control unit 15 controls the exhaust blower 8 to increase the output of the air supply blower 7. This increases the amount of air purified by the air purification unit 12.
 制御部15は、循環風路ダンパ10が循環風路開口9を開けた場合、給気風路101を閉じるように給気シャッター11を制御する。よって、室外吸込口3aから空気が取り込まれる状態にしておく場合に比べると、空気清浄部12により清浄される空気の量を増やすことができる。 When the circulation air duct damper 10 opens the circulation air duct opening 9, the control unit 15 controls the intake air shutter 11 to close the intake air duct 101. This makes it possible to increase the amount of air purified by the air purification unit 12 compared to when air is taken in from the outdoor intake port 3a.
 次に熱交換形換気装置100の変形例を説明する。 Next, we will explain modified examples of the heat exchange ventilation device 100.
(変形例1)
 制御部15は、給気送風機7及び排気送風機8とも各出力を複数段の出力レベルに変更可能としてもよい。以下では、各段を「風量ノッチ」と呼ぶ。
(Variation 1)
The control unit 15 may be configured to change the output of each of the intake air blower 7 and the exhaust air blower 8 to a plurality of output levels. Hereinafter, each level will be referred to as an "air volume notch."
 制御部15は、熱交換運転から循環運転に運転状態を切替えると、排気送風機8の風量ノッチを変更し、その変更の毎に風量検知部14aにより検出される排気風量検出値C’を熱交換運転で検知された排気風量検出値Cと比較する。また制御部15は、給気送風機7の風量ノッチを変更し、その変更の毎に風量検知部14bにより検出される循環風量検出値B’を熱交換運転で検知された給気風量検出値Bと比較する。これら風量ノッチの変更及び検出値の比較の動作が適宜繰り返され、最終的に制御部15は、排気送風機8の調整可能な複数段の出力レベルのうち、排気風量検出値C’が排気風量検出値Cに最も近くなる出力レベルに排気送風機8の出力を調整する。また制御部15は、給気送風機7の調整可能な複数段の出力レベルのうち、循環風量検出値B’が給気風量検出値Bに最も近くなる出力レベルに給気送風機7の出力を調整する。 When the control unit 15 switches the operating state from heat exchange operation to circulation operation, it changes the air volume notch of the exhaust blower 8, and at each change, it compares the exhaust air volume detection value C' detected by the air volume detection unit 14a with the exhaust air volume detection value C detected in the heat exchange operation. The control unit 15 also changes the air volume notch of the supply air blower 7, and at each change, it compares the circulation air volume detection value B' detected by the air volume detection unit 14b with the supply air volume detection value B detected in the heat exchange operation. These operations of changing the air volume notch and comparing the detection values are appropriately repeated, and finally, the control unit 15 adjusts the output of the exhaust blower 8 to an output level at which the exhaust air volume detection value C' is closest to the exhaust air volume detection value C among the multiple adjustable output levels of the exhaust blower 8. The control unit 15 also adjusts the output of the supply air blower 7 to an output level at which the circulation air volume detection value B' is closest to the supply air volume detection value B among the multiple adjustable output levels of the supply air blower 7.
 従って、出力調整期間後の循環運転での排気風量は熱交換運転での排気風量に近くなり、出力調整期間後の循環運転での循環風量は熱交換運転での給気風量に近くなる。このとき出力調整期間後の循環運転での排気送風機8及び給気送風機7の出力は熱交換運転での排気送風機8及び給気送風機7のそれぞれの出力より大きくなるように制御されている。
(変形例2)
 熱交換形換気装置100において風量検知部14a及び14bは設けなくてもよい。代わりに、排気送風機8及び給気送風機7の各々を制御するためのデータが制御部15のメモリ(例えばメモリ22の不揮発性メモリ)に保存される。なお、排気送風機8及び給気送風機7の各々は、変形例1と同様、複数段の風量ノッチが設定されている。風量ノッチごとに対応する指令電圧があり、風量ノッチが選択されるとその風量ノッチに対応した指令電圧に基づいて制御部15が送風機をその風量ノッチに対応するパワーで運転をする。
Therefore, the exhaust air volume in the circulation operation after the output adjustment period becomes close to the exhaust air volume in the heat exchange operation, and the circulation air volume in the circulation operation after the output adjustment period becomes close to the supply air volume in the heat exchange operation. At this time, the outputs of the exhaust fan 8 and the supply fan 7 in the circulation operation after the output adjustment period are controlled to be larger than the outputs of the exhaust fan 8 and the supply fan 7 in the heat exchange operation.
(Variation 2)
The air volume detection units 14a and 14b do not necessarily have to be provided in the heat exchange type ventilation device 100. Instead, data for controlling each of the exhaust blower 8 and the supply air blower 7 is stored in a memory (e.g., a non-volatile memory of the memory 22) of the control unit 15. Note that, similar to the first modified example, each of the exhaust blower 8 and the supply air blower 7 has multiple air volume notches set. Each air volume notch has a corresponding command voltage, and when an air volume notch is selected, the control unit 15 operates the blower at a power corresponding to that air volume notch based on the command voltage corresponding to that air volume notch.
 排気送風機8を制御するデータとして、風量を検知するためのデータは、運転パラメータと風量とが対応付けられたテーブルの形式で構成され、制御部15のメモリに記憶されている。テーブルは、具体的には、予め排気送風機8の送風特性を試験等で調べて得られたデータであり、特定の負荷ポイントごとに、指令電圧ごと(すなわち、風量ノッチごと)での排気送風機8の運転パラメータと排気風量との対応データで構成され、それを多数の異なる負荷ポイントにおいても同様にして得られた排気送風機8の運転パラメータと排気風量との対応データで構成される。運転パラメータは例えば、排気送風機8のモータに供給される駆動電流の値およびモータの回転数である。制御部15はこのテーブルを参照して排気送風機8の出力を制御する。給気送風機7を制御するためのデータも、運転パラメータ及び風量が対応付けられたテーブルの形式で構成され、制御部15はこのテーブルを参照して給気送風機7の出力を制御する。 The data for detecting the air volume as the data for controlling the exhaust blower 8 is configured in the form of a table in which the operating parameters and the air volumes are associated, and is stored in the memory of the control unit 15. Specifically, the table is data obtained in advance by examining the blowing characteristics of the exhaust blower 8 through testing, etc., and is configured with corresponding data between the operating parameters of the exhaust blower 8 and the exhaust air volume for each command voltage (i.e., each air volume notch) for each specific load point, and is configured with corresponding data between the operating parameters of the exhaust blower 8 and the exhaust air volume obtained in the same manner at many different load points. The operating parameters are, for example, the value of the drive current supplied to the motor of the exhaust blower 8 and the number of rotations of the motor. The control unit 15 controls the output of the exhaust blower 8 by referring to this table. The data for controlling the supply air blower 7 is also configured in the form of a table in which the operating parameters and the air volumes are associated, and the control unit 15 controls the output of the supply air blower 7 by referring to this table.
 排気送風機8の負荷ポイントは、熱交換形換気装置の中の排気風路の圧損だけでなく、熱交換形換気装置の室内吸込口5aに接続されたダクトおよび室外吐出口6aに接続されたダクトの圧損によって変化する。風量を検知するためのテーブルの具体例は図5に示されている。図5は排気風路102のある一つの負荷ポイントにおけるテーブル例である。排気送風機8の風量ノッチの数はn個とする(nは2以上の整数)。図5のように、風量ノッチ毎に排気送風機8の指令電圧Dkに対する排気風量Ek及び運転パラメータを示したテーブルがメモリに保存される。指令電圧Dkに対する運転パラメータは駆動電流xk及び回転数ykで構成される。kは1からnまでの各整数を示す。なお図5最左欄の風量ノッチは便宜上記載されたもので、必ずしもテーブルに含まれるデータではない。 The load point of the exhaust fan 8 varies not only with the pressure loss of the exhaust air duct in the heat exchange type ventilation device, but also with the pressure loss of the duct connected to the indoor inlet 5a and the duct connected to the outdoor outlet 6a of the heat exchange type ventilation device. A specific example of a table for detecting the air volume is shown in FIG. 5. FIG. 5 is an example of a table at one load point of the exhaust air duct 102. The number of air volume notches of the exhaust fan 8 is n (n is an integer of 2 or more). As shown in FIG. 5, a table showing the exhaust air volume Ek and the operating parameters for the command voltage Dk of the exhaust fan 8 for each air volume notch is stored in memory. The operating parameters for the command voltage Dk are composed of the drive current xk and the rotation speed yk. k represents an integer from 1 to n. Note that the air volume notches in the leftmost column of FIG. 5 are listed for convenience and are not necessarily data included in the table.
 熱交換運転では、ユーザによって選択された風量ノッチに対応する指令電圧Diが選択され、制御部15は指令電圧Diに対応して排気送風機8の駆動を制御し排気送風機8を運転する。指令電圧Diに対応する入力パワーで排気送風機8が運転されると、制御部15は排気送風機8のモータに供給される駆動電流及び回転数を計測し、その計測値に基づいて全てのテーブルの中から、計測した駆動電流及び回転数のどちらもが最も近いポイントを有しているデータを現在の運転ポイントと判断し、その運転ポイントの風量を現在の排気風量と見做し、さらにその運転ポイントを有している負荷ポイントを現在の排気風路102の負荷ポイント(熱交換運転時)と見做す。 In heat exchange operation, a command voltage Di corresponding to the air volume notch selected by the user is selected, and the control unit 15 controls the driving of the exhaust blower 8 in response to the command voltage Di to operate the exhaust blower 8. When the exhaust blower 8 is operated with the input power corresponding to the command voltage Di, the control unit 15 measures the drive current and rotation speed supplied to the motor of the exhaust blower 8, and based on the measured values, determines from all tables that the data having the closest points in both the measured drive current and rotation speed is the current operating point, regards the air volume of that operating point as the current exhaust air volume, and further regards the load point having that operating point as the current load point of the exhaust air duct 102 (during heat exchange operation).
 熱交換運転から循環運転に運転状態を切替えると、制御部15は排気送風機8のモータに供給される駆動電流及び回転数を再度計測し、その計測値に基づいて全てのテーブルの中から、計測した駆動電流および回転数のどちらもが最も近いポイントを有しているデータを現在の運転ポイントと判断し、その運転ポイントの風量を現在の排気風量と見做し、さらにその運転ポイントを有している負荷ポイントを現在の排気風路102の負荷ポイント(循環運転時)と見做す。次に制御部15は、求めた負荷ポイント(循環運転時)において熱交換運転時の風量に最も近い風量を実現する指令電圧を求め、その求めた指令電圧に基づいたパワーで排気送風機8を運転することで、熱交換運転時と同様の排気風量を循環運転時に発生させることができる。 When the operating state is switched from heat exchange operation to circulation operation, the control unit 15 again measures the drive current and rotation speed supplied to the motor of the exhaust blower 8, and based on the measurement values, determines from all tables the data having the closest points in both the measured drive current and rotation speed as the current operating point, regards the air volume at that operating point as the current exhaust air volume, and further regards the load point having that operating point as the current load point of the exhaust duct 102 (during circulation operation). Next, the control unit 15 determines a command voltage that realizes an air volume closest to the air volume during heat exchange operation at the determined load point (during circulation operation), and operates the exhaust blower 8 with power based on the determined command voltage, thereby making it possible to generate an exhaust air volume during circulation operation similar to that during heat exchange operation.
 給気送風機7を制御するためのテーブルの具体例は図示されないが、予め給気送風機7の送風特性を試験等で調べて得られたデータであり、特定の負荷ポイントごとに、指令電圧ごと(すなわち、風量ノッチごと)での給気送風機7の運転パラメータと給気風量との対応データで構成され、それを多数の異なる負荷ポイントにおいても同様にして得られた給気送風機7の運転パラメータと給気風量との対応データで構成される。運転パラメータは例えば、給気送風機7のモータに供給される駆動電流の値及びモータの回転数である。熱交換運転では、ユーザによって任意に選択された風量ノッチに対応する運転パラメータが選択され、制御部15はその指令電圧に対応して給気送風機7の駆動を制御し給気送風機7を運転する。指令電圧に対応する入力パワーで給気送風機7が運転されると、制御部15は給気送風機7のモータに供給される駆動電流及び回転数を計測し、その計測値に基づいて全てのテーブルの中から、計測した駆動電流及び回転数のどちらもが最も近いポイントを有しているデータを現在の運転ポイントと判断し、その運転ポイントの風量を現在の給気風量と見做し、さらに運転ポイントを有している負荷ポイントを現在の給気風路101の負荷ポイント(熱交換運転時)と見做す。 Although a specific example of a table for controlling the intake air blower 7 is not shown, it is data obtained in advance by investigating the blowing characteristics of the intake air blower 7 through testing, etc., and is composed of correspondence data between the operating parameters of the intake air blower 7 and the intake air volume for each command voltage (i.e., each air volume notch) for each specific load point, and is composed of correspondence data between the operating parameters of the intake air blower 7 and the intake air volume obtained in the same manner at a number of different load points. The operating parameters are, for example, the value of the drive current supplied to the motor of the intake air blower 7 and the motor rotation speed. In heat exchange operation, an operating parameter corresponding to the air volume notch arbitrarily selected by the user is selected, and the control unit 15 controls the drive of the intake air blower 7 in response to that command voltage to operate the intake air blower 7. When the supply air blower 7 is operated with an input power corresponding to the command voltage, the control unit 15 measures the drive current and rotation speed supplied to the motor of the supply air blower 7, and based on the measured values, determines from all tables the data having the closest point in both the measured drive current and rotation speed to be the current operating point, regards the air volume of that operating point as the current supply air volume, and further regards the load point having the operating point as the current load point of the supply air duct 101 (during heat exchange operation).
 熱交換運転から循環運転に運転状態を切替えると、制御部15は給気送風機7のモータに供給される駆動電流及び回転数を再度計測し、その計測値に基づいて全てのテーブルの中から、計測した駆動電流および回転数のどちらもが最も近いポイントを有しているデータを現在の運転ポイントと判断し、その運転ポイントの風量を現在の循環風量と見做し、さらにその運転ポイントを有している負荷ポイントを現在の循環風路103の負荷ポイント(循環運転時)と見做す。次に制御部15は、求めた負荷ポイント(循環運転時)において熱交換運転時の給気風量に最も近い風量を実現する指令電圧を求め、その求めた指令電圧に基づいたパワーで給気送風機7を運転することで、熱交換運転時の給気風量と同様の風量で循環風量を循環運転時に発生させることができる。 When the operating state is switched from heat exchange operation to circulation operation, the control unit 15 again measures the drive current and rotation speed supplied to the motor of the intake air blower 7, and based on the measurement values, determines from all tables the data having the closest points in both the measured drive current and rotation speed as the current operating point, regards the air volume at that operating point as the current circulation air volume, and further regards the load point having that operating point as the current load point (during circulation operation) of the circulation air duct 103. Next, the control unit 15 determines a command voltage that realizes an air volume closest to the intake air volume during heat exchange operation at the determined load point (during circulation operation), and operates the intake air blower 7 with power based on the determined command voltage, thereby making it possible to generate a circulation air volume during circulation operation with an air volume similar to the intake air volume during heat exchange operation.
 このように風量検知部14a及び14bが不要となるので、熱交換形換気装置100の構成が簡略化できる。 In this way, the air volume detection units 14a and 14b are no longer necessary, and the configuration of the heat exchange ventilation device 100 can be simplified.
(変形例3)
 排気送風機8及び給気送風機7の各々を制御するためのデータとして、変形例2に代え、熱交換運転及び循環運転でのそれぞれ運転指令値のデータが制御部15内のメモリ(例えばメモリ22の不揮発性メモリ)に保存されてもよい。排気送風機8を制御するためのデータは、図6に示されるように、熱交換運転における排気送風機8の運転指令値Fkに対する循環運転における排気送風機8の運転指令値Gkが風量ノッチ毎に対応付けられたテーブルの形式で構成される。風量ノッチkが大きくなるほど運転指令値Fk及び運転指令値Gkの各々も大きくなるように設定されている。各風量ノッチkにおいて運転指令値Gkは運転指令値Fkより大きい値をとる。なお図6最左欄の風量ノッチは便宜上記載されたもので、必ずしもテーブルに含まれるデータではない。
(Variation 3)
As data for controlling each of the exhaust blower 8 and the supply air blower 7, data on the operation command values in the heat exchange operation and the circulation operation may be stored in a memory in the control unit 15 (e.g., a non-volatile memory in the memory 22) instead of the data in the second modification. The data for controlling the exhaust blower 8 is configured in the form of a table in which the operation command value Gk of the exhaust blower 8 in the circulation operation is associated with the operation command value Fk of the exhaust blower 8 in the heat exchange operation for each air volume notch, as shown in FIG. 6. The operation command value Fk and the operation command value Gk are set so that the larger the air volume notch k, the larger the operation command value Fk and the operation command value Gk are. At each air volume notch k, the operation command value Gk is larger than the operation command value Fk. Note that the air volume notches in the leftmost column of FIG. 6 are listed for convenience and are not necessarily data included in the table.
 熱交換運転では、ある運転指令値Fiが選択され、制御部15は運転指令値Fiに対応する運転制御信号を排気送風機8に送信する。熱交換運転から循環運転に運転状態を切替えると、制御部15は運転指令値Fiに対する運転指令値Giをテーブルから取得する。そして制御部15は、運転指令値Gjに対する運転制御信号を排気送風機8に送信する。排気送風機8は、熱交換運転では運転指令値Fiに従った運転を行い、循環運転では運転指令値Giに従った運転を行う。よって循環運転での排気送風機8の出力は熱交換運転のときよりも大きくなる。 In heat exchange operation, a certain operation command value Fi is selected, and the control unit 15 transmits an operation control signal corresponding to the operation command value Fi to the exhaust blower 8. When the operation state is switched from heat exchange operation to circulation operation, the control unit 15 obtains an operation command value Gi corresponding to the operation command value Fi from the table. The control unit 15 then transmits an operation control signal corresponding to the operation command value Gj to the exhaust blower 8. In heat exchange operation, the exhaust blower 8 operates according to the operation command value Fi, and in circulation operation, it operates according to the operation command value Gi. Therefore, the output of the exhaust blower 8 in circulation operation is greater than in heat exchange operation.
 循環運転での排気風量が、熱交換運転での排気風量と等しくなるように運転指令値Giが決定されてもよいが、必ずしもこれに拘らない。循環運転での排気送風機8の出力が熱交換運転のときより大きくなるように運転指令値Giが設定されていればよい。 The operation command value Gi may be determined so that the exhaust air volume during circulation operation is equal to the exhaust air volume during heat exchange operation, but this is not necessarily required. It is sufficient that the operation command value Gi is set so that the output of the exhaust fan 8 during circulation operation is greater than that during heat exchange operation.
 同様に、給気送風機7を制御するためのデータは、熱交換運転における給気送風機7の運転指令値と循環運転における給気送風機7の運転指令値とが風量ノッチ毎に対応付けられたテーブルの形式で構成される。制御部15は、熱交換運転から循環運転に運転状態を切替えると、テーブルを参照して熱交換運転で選択された運転指令値に対応する循環運転での運転指令値を選択し、対応する運転制御信号を給気送風機7に送信する。熱交換運転の各運転指令値に対応する循環運転の運転指令値は、循環風量が給気風量と等しくなるように決定されてもよいが、必ずしもこれに拘らない。循環運転での給気送風機7の出力が熱交換運転のときより大きくなるように運転指令値は設定されるのが望ましい。 Similarly, the data for controlling the supply air blower 7 is configured in the form of a table in which the operation command value of the supply air blower 7 in heat exchange operation and the operation command value of the supply air blower 7 in circulation operation are associated with each air volume notch. When the control unit 15 switches the operation state from heat exchange operation to circulation operation, it refers to the table, selects the operation command value for circulation operation that corresponds to the operation command value selected in heat exchange operation, and sends the corresponding operation control signal to the supply air blower 7. The operation command value for circulation operation that corresponds to each operation command value for heat exchange operation may be determined so that the circulation air volume is equal to the supply air volume, but this is not necessarily required. It is desirable to set the operation command value so that the output of the supply air blower 7 in circulation operation is greater than in heat exchange operation.
 なお排気送風機8及び給気送風機7をそれぞれ制御するテーブルは、循環運転での運転指令値ではなく、熱交換運転での運転指令値からの変更量を、熱交換運転での運転指令値に対応させて保持してもよい。制御部15はテーブルを参照し、循環運転での各送風機の循環運転指令値を、熱交換運転での送風機の運転指令値に、その対応する変更量を加えることにより求めることもできる。 The tables for controlling the exhaust blower 8 and the intake blower 7 may hold the change amount from the operation command value in heat exchange operation, rather than the operation command value in circulation operation, in correspondence with the operation command value in heat exchange operation. The control unit 15 can also refer to the table to determine the circulation operation command value for each blower in circulation operation by adding the corresponding change amount to the operation command value for the blower in heat exchange operation.
(変形例4)
 熱交換形換気装置100において、循環運転での循環風量は空気汚染度検知部13の検出結果に応じて設定されてもよい。この場合、風量検知部14bは設けなくてもよい。また循環風量は給気風量と同一にする必要はない。
(Variation 4)
In the heat exchange type ventilation device 100, the circulation air volume during circulation operation may be set according to the detection result of the air pollution level detection unit 13. In this case, the air volume detection unit 14b does not need to be provided. Also, the circulation air volume does not need to be the same as the supply air volume.
 例えば図7に示されるように、給気送風機7を制御するためのデータが制御部15内のメモリ(例えば、メモリ22の不揮発性メモリ)に保存されている。このデータは、空気汚染度検知部13の検出する検出物質の量に関する閾値A’1~A’nと、給気送風機7の運転指令値H1~Hnとが対応付けられたテーブル形式のデータである。nは2以上の整数である。閾値A’1~A’nは、この順に大きくなり、閾値が大きくなるほど、対応する給気送風機7の運転指令値H1~Hnも大きくなるように設定されている。 For example, as shown in FIG. 7, data for controlling the air supply blower 7 is stored in a memory in the control unit 15 (e.g., the non-volatile memory of the memory 22). This data is in the form of a table in which thresholds A'1 to A'n relating to the amount of detected substance detected by the air pollution level detection unit 13 correspond to operation command values H1 to Hn for the air supply blower 7. n is an integer of 2 or more. The thresholds A'1 to A'n increase in this order, and are set so that the higher the threshold, the higher the corresponding operation command value H1 to Hn for the air supply blower 7.
 空気汚染度検知部13により検出される検出物質の量が閾値A’1より少ない場合、熱交換形換気装置100は熱交換運転で運転する。制御部15は、検出物質の量が閾値A’1以上であると判断すると、熱交換運転から循環運転に運転状態を切替えるよう制御する。循環運転において制御部15は、検出物質の量が閾値A’k以上A’(k+1)未満の範囲にあると判断したとき、閾値A’kに対応する運転指令値Hkを給気送風機7に送信する。つまり変形例4は室内の検出物質の量が増えるに従い循環風量も増加するように構成される。循環運転であっても検出物質の量が少ない場合には、循環風量は必要以上に増加させずに済むので、給気送風機7の回転数を抑制でき、低騒音及び低消費電力化が可能である。運転指令値H1~Hnのうち小さい方の値、例えば、最小の運転指令値H1は、熱交換運転時の給気送風機7の運転指令値と同じであってもよい。 When the amount of detected substances detected by the air pollution level detection unit 13 is less than the threshold A'1, the heat exchange type ventilation device 100 operates in heat exchange operation. When the control unit 15 determines that the amount of detected substances is equal to or greater than the threshold A'1, it controls the operation state to be switched from heat exchange operation to circulation operation. In circulation operation, when the control unit 15 determines that the amount of detected substances is in the range of equal to or greater than the threshold A'k and less than A'(k+1), it transmits an operation command value Hk corresponding to the threshold A'k to the supply air blower 7. In other words, the fourth modification is configured to increase the amount of circulation air as the amount of detected substances in the room increases. Even in circulation operation, when the amount of detected substances is small, the circulation air volume does not need to be increased more than necessary, so the rotation speed of the supply air blower 7 can be suppressed, making it possible to reduce noise and power consumption. The smaller of the operation command values H1 to Hn, for example, the minimum operation command value H1, may be the same as the operation command value of the supply air blower 7 during heat exchange operation.
 変形例4は変形例1~3のいずれにも適用可能である。変形例4が変形例2及び3の各々に適用された場合には、排気送風機8は図5又は図6のテーブルで示された運転指令値で制御され、給気送風機7は図7に示されたテーブルに示された運転指令値で制御される。 Modification 4 can be applied to any of modifications 1 to 3. When modification 4 is applied to each of modifications 2 and 3, exhaust fan 8 is controlled by the operation command value shown in the table of FIG. 5 or FIG. 6, and intake fan 7 is controlled by the operation command value shown in the table shown in FIG. 7.
(変形例5)
 変形例4に係るテーブルに対し、図8のように、各閾値に対応する排気送風機8の運転指令値J1~Jnがさらに追加されてもよい。この場合、風量検知部14aは設けなくてもよい。閾値が大きいほど対応する運転指令値J1~Jnも大きくなるように設定されている。循環運転において制御部15は、空気汚染度検知部13によって検知された検出物質の量が閾値A’k以上A’(k+1)未満の範囲にあると判断したとき、閾値A’kに対応する運転指令値Jkを排気送風機8に送信する。つまり室内の検出物質の量が増えるに従い排気風量も増加する。運転指令値J1~Jnは熱交換運転時の運転指令値よりも大きくなるように設定されている。
(Variation 5)
As shown in FIG. 8, the table according to the fourth modification may further include operation command values J1 to Jn for the exhaust fan 8 corresponding to each threshold value. In this case, the air volume detection unit 14a may not be provided. The operation command values J1 to Jn are set so that the larger the threshold value, the larger the corresponding operation command values J1 to Jn. In the circulation operation, when the control unit 15 determines that the amount of the detected substance detected by the air pollution level detection unit 13 is in the range of the threshold value A'k or more and less than A'(k+1), the control unit 15 transmits the operation command value Jk corresponding to the threshold value A'k to the exhaust fan 8. In other words, as the amount of the detected substance in the room increases, the exhaust air volume also increases. The operation command values J1 to Jn are set so as to be larger than the operation command values during the heat exchange operation.
 なお変形例4及び変形例5において、テーブルを参照することによって各送風機の出力を離散的に調整する他に、制御部15は空気汚染度検知部13により検出された検知物質の量に応じて各送風機の出力を連続的に調整するように構成されてもよい。 In addition to discretely adjusting the output of each blower by referring to the table in the fourth and fifth variations, the control unit 15 may be configured to continuously adjust the output of each blower according to the amount of detected substance detected by the air pollution level detection unit 13.
(変形例6)
 熱交換形換気装置100において、制御部15は熱交換運転から循環運転に運転状態を切替えたとき、給気送風機7の出力は変更せず熱交換運転時の出力を継続してもよい。従って給気風量を検出する風量検知部14bは設けなくてもよい。この変形例6は変形例1~3のいずれにも適用可能である。変形例6が変形例2及び3にそれぞれ適用される場合、給気送風機7を制御するためのテーブルは不要になる。
(Variation 6)
In the heat exchange type ventilation device 100, when the control unit 15 switches the operating state from heat exchange operation to circulation operation, the output of the supply air blower 7 may be continued without being changed. Therefore, the air volume detection unit 14b for detecting the supply air volume may not be provided. This modification 6 is applicable to any of modifications 1 to 3. When modification 6 is applied to each of modifications 2 and 3, the table for controlling the supply air blower 7 becomes unnecessary.
(変形例7)
 変形例6においてさらに風量検知部14aが設けられない構成とすることができる。制御部15は、循環運転での排気送風機8の運転指令値を、熱交換運転での排気送風機8の運転指令値にある決められた一定値を加えた値に設定し、排気送風機8の出力を変更する単純な構成としてもよい。排気送風機8を制御するためのテーブルも不要になる。循環運転での排気送風機8の出力は、熱交換運転のときよりも大きくなるが、循環運転での排気風量は熱交換運転での排気風量と同一である必要はない。
(Variation 7)
In the sixth modified example, the air volume detection unit 14a may not be provided. The control unit 15 may be simply configured to set the operation command value for the exhaust blower 8 in the circulation operation to a value obtained by adding a certain fixed value to the operation command value for the exhaust blower 8 in the heat exchange operation, and change the output of the exhaust blower 8. A table for controlling the exhaust blower 8 is also not required. The output of the exhaust blower 8 in the circulation operation is greater than that in the heat exchange operation, but the exhaust air volume in the circulation operation does not need to be the same as the exhaust air volume in the heat exchange operation.
(変形例8)
 熱交換形換気装置100の運転状態は、空気汚染度検知部13の検出結果に拘わらずユーザがリモコンなどの操作スイッチ等を操作することによって切替えられてもよい。制御部15は、ユーザの操作により操作スイッチから切替えの指令を受け、熱交換運転と循環運転とを切替える。制御部15は空気汚染度検知部13により検出された量がある基準値すなわち閾値A’以上となったときに操作スイッチに通知する等して、ユーザに室内の空気の汚染を知らせるようにしてもよい。或いは、熱交換形換気装置100に空気汚染度検知部13は設けられなくてもよい。ユーザは別の手段によって室内の空気の汚染を認識することはできる。この変形例8は変形例1~7のいずれにも適用することができる。
(変形例9)
 変形例9に係る熱交換形換気装置100aは図9に示されるように、熱交換形換気装置100に外気の汚染度を検出する空気汚染度検知部16をさらに備えた構成をなす。外気の汚染度として、室外吸込口3aから取り込まれる空気に含まれる特定の汚染物質の量、例えば、その物質の空気中の濃度が検出される。空気汚染度検知部16の一例は空気質センサである。空気汚染度検知部16は、熱交換素子2より上流側の給気風路101に、例えば、接続部3の内部に設けられる。
(Variation 8)
The operating state of the heat exchange type ventilation device 100 may be switched by the user operating an operation switch on a remote control or the like, regardless of the detection result of the air pollution level detection unit 13. The control unit 15 receives a switching command from the operation switch operated by the user, and switches between heat exchange operation and circulation operation. The control unit 15 may inform the user of indoor air pollution, for example by notifying the operation switch when the amount detected by the air pollution level detection unit 13 becomes equal to or greater than a certain reference value, i.e., threshold value A'. Alternatively, the air pollution level detection unit 13 may not be provided in the heat exchange type ventilation device 100. The user can recognize indoor air pollution by another means. This modification 8 can be applied to any of modifications 1 to 7.
(Variation 9)
As shown in Fig. 9, a heat exchange type ventilator 100a according to the ninth modification is configured by further providing an air pollution level detection unit 16 for detecting the pollution level of the outside air in the heat exchange type ventilator 100. The amount of a specific pollutant contained in the air taken in from the outdoor air inlet 3a, for example, the concentration of the substance in the air, is detected as the pollution level of the outside air. An example of the air pollution level detection unit 16 is an air quality sensor. The air pollution level detection unit 16 is provided in the supply air duct 101 upstream of the heat exchange element 2, for example, inside the connection unit 3.
 制御部15は、空気汚染度検知部16からの検出結果に基づき、給気シャッター11の開閉を制御する。制御部15は空気汚染度検知部13から受信した外気中の汚染物質の濃度がある基準値以上であると判断すると、熱交換形換気装置100aの運転状態に拘らず給気シャッター11を閉じる。外気中の汚染物質の濃度がある基準値より低いと判断する場合には、制御部15は熱交換運転では給気シャッター11を開け、循環運転では閉じる。このように熱交換運転時に外気が汚れている場合には外気を取り込まないようにすることが可能となる。この変形例9は変形例1~8のいずれにも適用可能である。 The control unit 15 controls the opening and closing of the intake air shutter 11 based on the detection results from the air pollution level detection unit 16. If the control unit 15 determines that the concentration of pollutants in the outside air received from the air pollution level detection unit 13 is equal to or higher than a certain reference value, it closes the intake air shutter 11 regardless of the operating state of the heat exchange type ventilation device 100a. If the control unit 15 determines that the concentration of pollutants in the outside air is lower than a certain reference value, the control unit 15 opens the intake air shutter 11 in heat exchange operation and closes it in circulation operation. In this way, it is possible to prevent outside air from being taken in if the outside air is polluted during heat exchange operation. This variant 9 can be applied to any of variants 1 to 8.
(変形例10)
 変形例10に係る熱交換形換気装置100bは図10に示されるように、熱交換形換気装置100にフィルター18及び19をさらに備えた構成をなす。フィルター18及び19は熱交換素子2における排気風路102及び給気風路101のそれぞれ上流側入口に設けられる。フィルター18及び19はそれぞれ室内及び室外の塵埃、花粉、微小粒子状物質等を捕捉し、熱交換素子2の目詰まりを防止する。特にフィルター19はこれら物質の室内への侵入も防止する。このとき、空気清浄部12はフィルター18では捕捉されない物質、すなわち、熱交換素子2を通過しても熱交換素子2に目詰まりが起きない物質(例えば、室内の臭気物質又はウィルス)を空気から捕捉するフィルターとするのがよい。この変形例10は変形例1~9のいずれにも適用可能である。
(Variation 10)
As shown in FIG. 10, the heat exchange type ventilation device 100b according to the modification 10 is configured by further providing filters 18 and 19 to the heat exchange type ventilation device 100. The filters 18 and 19 are provided at the upstream inlets of the exhaust air duct 102 and the supply air duct 101 in the heat exchange element 2. The filters 18 and 19 capture dust, pollen, fine particulate matter, etc., both indoors and outdoors, and prevent clogging of the heat exchange element 2. In particular, the filter 19 also prevents these substances from entering the room. In this case, it is preferable that the air purifying unit 12 is a filter that captures substances that are not captured by the filter 18, that is, substances that do not cause clogging of the heat exchange element 2 even if they pass through the heat exchange element 2 (for example, odorous substances or viruses in the room) from the air. This modification 10 can be applied to any of the modifications 1 to 9.
実施の形態2.
 図11は、実施の形態2に係る熱交換形換気装置200の概略図である。以下、熱交換形換気装置200の構成及び動作を説明するが、説明のないものについては実施の形態1に係る熱交換形換気装置100の構成及び動作と同一又は実質的に同一であるものとする。
Embodiment 2.
11 is a schematic diagram of a heat exchanger type ventilation device 200 according to embodiment 2. The configuration and operation of the heat exchanger type ventilation device 200 will be described below, but those not described are assumed to be the same or substantially the same as the configuration and operation of the heat exchanger type ventilation device 100 according to embodiment 1.
 熱交換形換気装置200は、熱交換形換気装置100の給気シャッター11を備えない構成をなす。よって熱交換運転だけでなく循環運転においても、図11に示すように、給気送風機7の運転によって室外吸込口3aから給気風路101を介して室内吐出口4aに空気が流れる。この給気風路101を流れる空気は、熱交換素子2によって排気風路102を流れる空気と熱交換される。 The heat exchange type ventilation device 200 does not have the intake shutter 11 of the heat exchange type ventilation device 100. Therefore, in circulation operation as well as heat exchange operation, as shown in FIG. 11, air flows from the outdoor intake port 3a to the indoor exhaust port 4a through the intake air duct 101 by the operation of the intake air blower 7. The air flowing through the intake air duct 101 exchanges heat with the air flowing through the exhaust air duct 102 by the heat exchange element 2.
 また熱交換形換気装置200は、風量検知部14bに代えて風量検知部14cを備える。風量検知部14cは、循環風路開口9よりも上流側の給気風路101に設けられ、室外吸込口3aから吸込まれる空気の風量を検出する。風量検知部14cは例えば差圧センサで構成され、接続部3の内部に設けられる。風量検知部14cは検出結果として空気の風量を示す値を制御部15に出力する。制御部15は風量検知部14cから検出結果を受け、その検出結果に応じて給気送風機7の出力を調整する。実施の形態2では、室内吸込口5aから吸い込まれる空気の風量を「給気風量」と呼び、循環風路開口9を流れる空気の風量を「循環風量」と呼ぶ。よって実施の形態2においては室内吐出口4aから室内に供給される空気の風量は、熱交換運転では給気風量と等しく、循環運転では給気風量に循環風量を加えた量と等しい。 The heat exchange type ventilation device 200 also includes an air volume detection unit 14c instead of the air volume detection unit 14b. The air volume detection unit 14c is provided in the supply air duct 101 upstream of the circulation air duct opening 9, and detects the volume of air sucked in from the outdoor air inlet port 3a. The air volume detection unit 14c is, for example, a differential pressure sensor, and is provided inside the connection unit 3. The air volume detection unit 14c outputs a value indicating the volume of air as a detection result to the control unit 15. The control unit 15 receives the detection result from the air volume detection unit 14c, and adjusts the output of the supply air blower 7 according to the detection result. In the second embodiment, the volume of air sucked in from the indoor air inlet port 5a is called the "supply air volume", and the volume of air flowing through the circulation air duct opening 9 is called the "circulation air volume". Therefore, in the second embodiment, the volume of air supplied from the indoor discharge port 4a to the room is equal to the supply air volume in the heat exchange operation, and is equal to the supply air volume plus the circulation air volume in the circulation operation.
 熱交換形換気装置200の運転を制御する方法は、実施の形態1の熱交換形換気装置100と同一である。ただし図3において「給気風量検出値B」は、熱交換運転で風量検知部14cにより検出された給気風量を示す給気風量検出値に置き換わり、「循環風量検出値B’」は循環運転で風量検知部14cにより検出された給気風量を示す給気風量検出値に置き換わる。従って循環運転での排気風量は熱交換運転での排気風量と等しくなり、循環運転での給気風量も熱交換運転での給気風量と等しくなる。このとき、熱交換運転から循環運転に運転状態が切替わったときには、それぞれ出力を上げるように排気送風機8及び給気送風機7が制御されている。 The method of controlling the operation of the heat exchange type ventilation device 200 is the same as that of the heat exchange type ventilation device 100 of the first embodiment. However, in FIG. 3, "supply air volume detection value B" is replaced with the supply air volume detection value indicating the supply air volume detected by the air volume detection unit 14c in heat exchange operation, and "circulation air volume detection value B'" is replaced with the supply air volume detection value indicating the supply air volume detected by the air volume detection unit 14c in circulation operation. Therefore, the exhaust air volume in circulation operation is equal to the exhaust air volume in heat exchange operation, and the supply air volume in circulation operation is also equal to the supply air volume in heat exchange operation. At this time, when the operating state is switched from heat exchange operation to circulation operation, the exhaust fan 8 and the supply air fan 7 are controlled to increase their output, respectively.
 このように構成される熱交換形換気装置200は以下の効果を奏する。 The heat exchange ventilation device 200 configured in this manner provides the following effects:
 熱交換運転から循環運転に運転状態が切替わった場合、熱交換形換気装置100と同様、排気送風機8及び給気送風機7のそれぞれの出力を変更しなければ排気風量は減少する。従って制御部15は、熱交換運転から循環運転に運転状態を切替えると、排気送風機8の出力を上げるように排気送風機8を制御する。従って、循環運転により空気清浄を行う場合でも室外に排気する空気の量を適切に確保することができる。その結果、空気清浄部12では除去されない室内の汚染物質を素早く室外に排出することができる。 When the operating state is switched from heat exchange operation to circulation operation, the exhaust air volume decreases unless the output of the exhaust blower 8 and the supply air blower 7 is changed, as in the heat exchange type ventilation device 100. Therefore, when the operating state is switched from heat exchange operation to circulation operation, the control unit 15 controls the exhaust blower 8 to increase its output. Therefore, even when air purification is performed by circulation operation, an appropriate amount of air can be ensured to be exhausted to the outside. As a result, indoor pollutants that are not removed by the air purification unit 12 can be quickly discharged to the outside.
 循環風路開口9が開いた状態である循環運転においても、熱交換素子2が給気風路101を通る空気と排気風路102を通る空気との間で熱交換を行う。従って室内の熱エネルギーの損失を抑えることができる。 Even during circulation operation when the circulation air duct opening 9 is open, the heat exchange element 2 exchanges heat between the air passing through the supply air duct 101 and the air passing through the exhaust air duct 102. This reduces the loss of thermal energy inside the room.
 さらに制御部15は、循環運転において、排気風量は循環運転と熱交換運転とで排気風量は等しくなり、給気風量も循環運転と熱交換運転とで等しくなるように排気送風機8及び給気送風機7の出力を制御する。よって循環運転での室内吸込口5aから吸込まれる空気の風量と室内吐出口4aから供給される空気の風量との差は、熱交換運転での室内吸込口5aから吸込まれる空気の風量と室内吐出口4aから供給される空気の風量との差と等しくなる。従って、熱交換運転から循環運転に運転状態が切替っても、室内の圧力変化を抑えることができる。なお、熱交換運転で排気風量と給気風量とが同じ量である場合、循環運転では、室内吸込口5aに吸込まれる空気の風量と室内吐出口4aから供給される空気の風量とは同一になる。 Furthermore, the control unit 15 controls the output of the exhaust blower 8 and the supply blower 7 so that the exhaust air volume is equal in the circulation operation and the heat exchange operation, and the supply air volume is also equal in the circulation operation and the heat exchange operation. Therefore, the difference between the air volume of the air sucked in from the indoor intake port 5a and the air volume of the air supplied from the indoor discharge port 4a in the circulation operation is equal to the difference between the air volume of the air sucked in from the indoor intake port 5a and the air volume of the air supplied from the indoor discharge port 4a in the heat exchange operation. Therefore, even if the operation state is switched from the heat exchange operation to the circulation operation, the change in the pressure inside the room can be suppressed. Note that, when the exhaust air volume and the supply air volume are the same in the heat exchange operation, the air volume of the air sucked in from the indoor intake port 5a and the air volume of the air supplied from the indoor discharge port 4a are the same in the circulation operation.
 次に熱交換形換気装置200の変形例を説明する。 Next, we will explain a modified example of the heat exchange ventilation device 200.
 実施の形態1で説明された変形例1~変形例10はいずれも、実施の形態2の熱交換形換気装置200に適用することができる。例えば変形例1が実施の形態2に適用された場合、循環運転では、制御部15は、排気送風機8の調整可能な複数段の出力レベルのうち、排気風量検出値C’が排気風量検出値Cに最も近くなる出力レベルに排気送風機8の出力を調整することになる。また制御部15は、給気送風機7の調整可能な複数段の出力レベルのうち、風量検知部14cにより検出された給気風量検出値が熱交換運転で検出された給気風量検出値に最も近くなる出力レベルに給気送風機7の出力を調整することになる。また変形例2が実施の形態2に適用された場合、給気送風機7を制御するためのテーブルとして、風量ノッチ毎に給気送風機7の運転指令値に対する熱交換運転での給気風量の予測値及び循環運転での給気風量の予測値を示したテーブルが準備される。 All of the modified examples 1 to 10 described in the first embodiment can be applied to the heat exchange type ventilation device 200 of the second embodiment. For example, when the modified example 1 is applied to the second embodiment, in the circulation operation, the control unit 15 adjusts the output of the exhaust blower 8 to an output level at which the exhaust airflow detection value C' is closest to the exhaust airflow detection value C among the multiple adjustable output levels of the exhaust blower 8. The control unit 15 also adjusts the output of the supply air blower 7 to an output level at which the supply airflow detection value detected by the airflow detection unit 14c is closest to the supply airflow detection value detected in the heat exchange operation among the multiple adjustable output levels of the supply air blower 7. When the modified example 2 is applied to the second embodiment, a table showing the predicted value of the supply airflow in the heat exchange operation and the predicted value of the supply airflow in the circulation operation for the operation command value of the supply air blower 7 for each airflow notch is prepared as a table for controlling the supply air blower 7.
 変形例9が実施の形態2に適用される場合、給気シャッター11が熱交換形換気装置200に備えられることになる。制御部15は、空気汚染度検知部13から受信した外気中の汚染物質の濃度がある基準値以上であると判断すると、運転状態に拘らず給気シャッター11を閉じる。外気中の汚染物質の濃度がその基準値より低いと判断すると、制御部15は運転状態に拘らず給気シャッター11を開ける。 When variant 9 is applied to embodiment 2, the heat exchange type ventilation device 200 is provided with an intake air shutter 11. When the control unit 15 determines that the concentration of pollutants in the outside air received from the air pollution level detection unit 13 is equal to or higher than a certain reference value, it closes the intake air shutter 11 regardless of the operating state. When the control unit 15 determines that the concentration of pollutants in the outside air is lower than the reference value, it opens the intake air shutter 11 regardless of the operating state.
 変形例1~10の適用の他、熱交換形換気装置200において制御部15は、循環風路開口9が開いた状態である循環運転では、空気汚染度検知部13の検出結果に応じて循環風路ダンパ10の開度を調整可能に構成されてもよい。例えば図12のように、空気汚染度検知部13の検出する検出物質の量に関する閾値A’1~A’nと、循環風路ダンパ10の開度X1~Xnとが対応付けれられたテーブル形式のデータが制御部15のメモリ(例えばメモリ22の不揮発性メモリ)に保存される。閾値A’1~A’nはこの順に大きくなり、閾値が大きくなるほど開度X1~Xnが大きくなるように設定されている。 In addition to applying the modifications 1 to 10, in the heat exchange type ventilation device 200, the control unit 15 may be configured to adjust the opening of the circulation air duct damper 10 in accordance with the detection result of the air pollution level detection unit 13 during circulation operation in which the circulation air duct opening 9 is open. For example, as shown in FIG. 12, data in a table format in which threshold values A'1 to A'n relating to the amount of detected substance detected by the air pollution level detection unit 13 correspond to the opening degrees X1 to Xn of the circulation air duct damper 10 is stored in the memory of the control unit 15 (e.g., the non-volatile memory of the memory 22). The threshold values A'1 to A'n increase in this order, and are set so that the opening degrees X1 to Xn increase as the threshold value increases.
 空気汚染度検知部13により検出される検出物質の量が閾値A’1より少ない場合には、熱交換形換気装置100は熱交換運転で運転する。制御部15は、検出物質の量が閾値A’1以上であると判断すると、熱交換運転から循環運転に運転状態を切替えるよう制御する。循環運転において制御部15は、空気汚染度検知部13によって検知された検出物質の量が閾値A’k以上A’(k+1)未満の範囲にあると判断したとき、閾値A’kに対応する開度Xkで循環風路ダンパ10を開けるように制御する。 When the amount of detected substance detected by the air pollution level detection unit 13 is less than the threshold A'1, the heat exchange type ventilation device 100 operates in heat exchange operation. When the control unit 15 determines that the amount of detected substance is equal to or greater than the threshold A'1, it controls the operation state to be switched from heat exchange operation to circulation operation. In circulation operation, when the control unit 15 determines that the amount of detected substance detected by the air pollution level detection unit 13 is in the range of equal to or greater than the threshold A'k and less than A'(k+1), it controls the circulation air duct damper 10 to be opened at an opening degree Xk corresponding to the threshold A'k.
 よって循環運運転において室内の汚染度がより高いと循環風量が増えるように調整される。言い換えれば、循環運転であっても室内の汚染がそれほど進んでないときには循環風量が必要以上の量にならないよう抑えられる。熱交換運転から循環運転に運転状態を切替える際、制御部15は、排気風量及び給気風量が所定量になるように排気送風機8及び給気送風機7の出力を上げている。このとき循環風路ダンパ10の開度が抑えられることにより排気送風機8及び給気送風機7の出力も抑えられる。従って、排気送風機8及び給気送風機7の低騒音化及び低消費電力化が可能となる。 Therefore, in circulation operation, the circulation air volume is adjusted to increase when the level of pollution in the room is higher. In other words, even in circulation operation, when the pollution in the room is not very advanced, the circulation air volume is kept from being more than necessary. When switching the operating state from heat exchange operation to circulation operation, the control unit 15 increases the output of the exhaust blower 8 and the supply air blower 7 so that the exhaust air volume and the supply air volume are predetermined amounts. At this time, the opening of the circulation air duct damper 10 is suppressed, so the output of the exhaust blower 8 and the supply air blower 7 is also suppressed. This makes it possible to reduce noise and power consumption of the exhaust blower 8 and the supply air blower 7.
 テーブルを参照することによって循環風路ダンパ10の開度を離散的に調整する他に、制御部15は空気汚染度検知部13により検出された検知物質の量に応じて循環風路ダンパ10の開度を連続的に調整するように構成されてもよい。 In addition to discretely adjusting the opening degree of the circulating air duct damper 10 by referring to the table, the control unit 15 may be configured to continuously adjust the opening degree of the circulating air duct damper 10 according to the amount of detected substance detected by the air pollution level detection unit 13.
 今回開示された実施の形態は例示的なものであり、請求の範囲の記載から逸脱しない範囲で、各実施の形態において構成要素の変形、省略又は追加が可能である。 The embodiments disclosed herein are illustrative, and components may be modified, omitted, or added to each embodiment without departing from the scope of the claims.
 1 筐体、2 熱交換素子、3~6 接続部、3a 室外吸込口、4a 室内吐出口、5a 室内吸込口、6a 室外吐出口、7 給気送風機、8 排気送風機、9 循環風路開口、10 循環風路ダンパ、11 給気シャッター、12 空気清浄部、13 空気汚染度検知部、14a、14b 風量検知部、15 制御部、 15a 制御回路、100 熱交換形換気装置、101 給気風路、102 排気風路
 
Reference Signs List 1 Housing, 2 Heat exchange element, 3 to 6 Connection section, 3a Outdoor intake port, 4a Indoor exhaust port, 5a Indoor intake port, 6a Outdoor exhaust port, 7 Air supply fan, 8 Exhaust fan, 9 Circulation air duct opening, 10 Circulation air duct damper, 11 Air supply shutter, 12 Air purifier, 13 Air pollution level detector, 14a, 14b Air volume detector, 15 Control section, 15a Control circuit, 100 Heat exchange type ventilation device, 101 Air supply air duct, 102 Exhaust air duct

Claims (9)

  1.  室外吸込口と室内吐出口と室内吸込口と室外吐出口とを有し、前記室外吸込口と前記室内吐出口との間を繋ぐ給気風路と、前記室内吸込口と前記室外吐出口との間を繋ぐ排気風路とが内部に形成される筐体、
     前記筐体の内部に設けられ、前記給気風路を通る空気と前記排気風路を通る空気との間で熱交換を行う熱交換素子、
     前記給気風路に設けられ、前記室外吸込口から前記室内吐出口への空気の流れを生成する給気送風機、及び
     前記排気風路に設けられ、前記室内吸込口から前記室外吐出口への空気の流れを生成する排気送風機
    を備える熱交換形換気装置であって、
     前記給気風路における前記熱交換素子より下流側の部分と、前記排気風路における前記熱交換素子より上流側の部分とを繋ぐ循環風路開口が前記筐体の内部に形成され、
     前記熱交換形換気装置は、さらに、
     前記循環風路開口を開閉する循環風路ダンパ、
     前記循環風路開口を通る空気の清浄を行う空気清浄部、及び、
     前記循環風路ダンパが前記循環風路開口を開ける場合、前記排気送風機の出力を上げるように前記排気送風機を制御する制御部、
    を備える熱交換形換気装置。
    a housing having an outdoor suction port, an indoor discharge port, an indoor suction port, and an outdoor discharge port, and having an air supply duct connecting the outdoor suction port and the indoor discharge port, and an air exhaust duct connecting the indoor suction port and the outdoor discharge port formed therein;
    a heat exchange element provided inside the housing and performing heat exchange between air passing through the intake air passage and air passing through the exhaust air passage;
    a supply air blower provided in the supply air duct to generate an air flow from the outdoor inlet to the indoor outlet, and a exhaust air blower provided in the exhaust air duct to generate an air flow from the indoor inlet to the outdoor outlet,
    a circulation air duct opening that connects a portion of the intake air duct downstream of the heat exchange element and a portion of the exhaust air duct upstream of the heat exchange element is formed inside the housing;
    The heat exchange type ventilation device further comprises:
    a circulation air duct damper for opening and closing the circulation air duct opening;
    An air purifying unit that purifies the air passing through the circulation air duct opening; and
    a control unit that controls the exhaust fan to increase an output of the exhaust fan when the circulation air duct damper opens the circulation air duct opening;
    A heat exchange type ventilation device equipped with:
  2.  前記室内吸込口から取り込まれる空気の汚染度を検出する空気汚染度検知部を備え、
     前記制御部は、前記空気汚染度検知部により検出された結果に基づいて、前記循環風路開口を開けるように前記循環風路ダンパを制御する、請求項1記載の熱交換形換気装置。
    an air pollution level detection unit that detects the pollution level of air taken in through the indoor air inlet,
    2. The heat exchange type ventilation device according to claim 1, wherein the control unit controls the circulating air duct damper to open the circulating air duct opening based on the result detected by the air pollution level detection unit.
  3.  前記制御部は、前記循環風路ダンパが前記循環風路開口を開ける場合、前記給気送風機の出力を上げるように前記給気送風機を制御する、請求項1に記載の熱交換形換気装置。 The heat exchange type ventilation device according to claim 1, wherein the control unit controls the air supply fan to increase the output of the air supply fan when the air circulation duct damper opens the air circulation duct opening.
  4.  前記循環風路開口が繋がる部分よりも上流側の前記給気風路に設けられ、前記給気風路を開閉する給気シャッターを備え、前記制御部は、前記循環風路ダンパが前記循環風路開口を開けた場合には前記給気風路を閉じるように前記給気シャッターを制御する、請求項1~3のいずれか一項に記載の熱交換形換気装置。 The heat exchange type ventilation device according to any one of claims 1 to 3, further comprising an intake air shutter that is provided in the intake air duct upstream of the portion to which the circulation air duct opening is connected and opens and closes the intake air duct, and the control unit controls the intake air shutter to close the intake air duct when the circulation air duct damper opens the circulation air duct opening.
  5.  前記循環風路ダンパが開いているとき、前記熱交換素子が前記給気風路を通る空気と前記排気風路を通る空気との間で熱交換を行う、請求項1~3のいずれか一項に記載の熱交換形換気装置。 The heat exchange type ventilation device according to any one of claims 1 to 3, wherein when the circulating air duct damper is open, the heat exchange element exchanges heat between the air passing through the intake air duct and the air passing through the exhaust air duct.
  6.  前記循環風路ダンパが開いているとき、前記熱交換素子が前記給気風路を通る空気と前記排気風路を通る空気との間で熱交換を行い、
     前記制御部は、前記循環風路ダンパを開けた状態で、前記空気汚染度検知部により検出された汚染度に応じて前記循環風路ダンパの開度を調整可能とする、請求項2記載の熱交換形換気装置。
    When the circulating air duct damper is open, the heat exchange element exchanges heat between the air passing through the intake air duct and the air passing through the exhaust air duct,
    3. The heat exchange type ventilation device according to claim 2, wherein the control unit is capable of adjusting an opening degree of the circulating air duct damper in accordance with the degree of pollution detected by the air pollution level detection unit while the circulating air duct damper is open.
  7.  前記室外吐出口から排出される空気の風量を検出する風量検知部を備え、
     前記制御部は、前記排気送風機の出力を複数段の出力レベルに変更可能とし、
     前記制御部は、前記複数段の出力レベルのうち、前記循環風路ダンパが前記循環風路開口を開けた状態で前記風量検知部により検出された空気の風量が、前記循環風路ダンパが前記循環風路開口を閉じた状態で前記風量検知部により検出された空気の風量に最も近くなる出力レベルに前記排気送風機の出力を調整する、請求項1~6のいずれか一項に記載の熱交換形換気装置。
    An air volume detection unit is provided to detect the volume of air discharged from the outdoor discharge port,
    The control unit is capable of changing the output of the exhaust fan to a plurality of output levels,
    7. The heat exchange type ventilation device according to claim 1, wherein the control unit adjusts the output of the exhaust fan to an output level among the multiple output levels at which the air volume detected by the air volume detection unit with the circulation air duct damper opening the circulation air duct is closest to the air volume detected by the air volume detection unit with the circulation air duct damper closing the circulation air duct opening.
  8.  前記制御部は、運転パラメータと、この運転パラメータに対応付けられた風量を示す値とが対応付けられたテーブルを保存しており、
     前記運転パラメータは、前記排気送風機及び前記給気送風機のいずれかが備えるモータに供給される駆動電流の値及び前記モータの回転数を示し、
     前記風量は、前記モータを備える送風機が運転を行うことにより生じる気流の風量の予測値であり、
     前記制御部は、前記テーブルを参照して前記モータを備える送風機の出力を調整する、請求項1~6のいずれか一項に記載の熱交換形換気装置。
    The control unit stores a table in which an operating parameter is associated with a value indicating an air volume associated with the operating parameter,
    the operating parameters indicate a value of a drive current supplied to a motor included in either the exhaust fan or the intake fan and a rotation speed of the motor,
    The air volume is a predicted value of the air volume of the airflow generated by the operation of the blower including the motor,
    7. The heat exchange type ventilation device according to claim 1, wherein the control unit adjusts an output of the blower including the motor by referring to the table.
  9.  前記空気清浄部は、一酸化炭素、二酸化炭素、揮発性有機化合物、微小粒子状物質、塵埃、花粉、ウィルス及び臭気物質の少なくともいずれか一つを前記循環風路開口に流れる空気から除去する、請求項1~8のいずれか一項に記載の熱交換形換気装置。
     
    The heat exchange type ventilation device according to any one of claims 1 to 8, wherein the air purification section removes at least one of carbon monoxide, carbon dioxide, volatile organic compounds, fine particulate matter, dust, pollen, viruses, and odorous substances from the air flowing through the circulation air duct opening.
PCT/JP2022/041881 2022-11-10 2022-11-10 Heat exchange-type ventilation device WO2024100833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041881 WO2024100833A1 (en) 2022-11-10 2022-11-10 Heat exchange-type ventilation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041881 WO2024100833A1 (en) 2022-11-10 2022-11-10 Heat exchange-type ventilation device

Publications (1)

Publication Number Publication Date
WO2024100833A1 true WO2024100833A1 (en) 2024-05-16

Family

ID=91032077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041881 WO2024100833A1 (en) 2022-11-10 2022-11-10 Heat exchange-type ventilation device

Country Status (1)

Country Link
WO (1) WO2024100833A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634175A (en) * 1992-07-21 1994-02-08 Mitsubishi Electric Corp Air purification air conditioning ventilator
JP2001201134A (en) * 2000-01-21 2001-07-27 Mitsubishi Electric Corp Heat exchanger ventilator
US20060199511A1 (en) * 2005-02-22 2006-09-07 Lg Electronics Inc. Ventilating system
JP2009287861A (en) * 2008-05-30 2009-12-10 Panasonic Corp Humidification and ventilation device
WO2017017846A1 (en) * 2015-07-30 2017-02-02 三菱電機株式会社 Heat-exchange ventilation system
JP2020034223A (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Heat exchange type ventilation fan

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634175A (en) * 1992-07-21 1994-02-08 Mitsubishi Electric Corp Air purification air conditioning ventilator
JP2001201134A (en) * 2000-01-21 2001-07-27 Mitsubishi Electric Corp Heat exchanger ventilator
US20060199511A1 (en) * 2005-02-22 2006-09-07 Lg Electronics Inc. Ventilating system
JP2009287861A (en) * 2008-05-30 2009-12-10 Panasonic Corp Humidification and ventilation device
WO2017017846A1 (en) * 2015-07-30 2017-02-02 三菱電機株式会社 Heat-exchange ventilation system
JP2020034223A (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Heat exchange type ventilation fan

Similar Documents

Publication Publication Date Title
JP5413751B2 (en) Air purifier with dehumidifying function
US20220203288A1 (en) Systems and methods for optimization of occupied space comfort, air quality, and energy consumption
WO2019107162A1 (en) Air purification device and heat-exchanging ventilation device equipped with air purification device
JP2019148342A (en) Air cleaning device and heat exchange type ventilation device including the same
CN113701324A (en) Control method of air treatment device, air treatment device and air conditioner
KR20110140045A (en) Aircleaner and controll method for the same
CN114341556A (en) Air conditioning system
KR20050080287A (en) Air cleaning system with ventilator
KR20060032614A (en) Ventilating system
CN111189119A (en) Air treatment device, air conditioner indoor unit and air conditioner
WO2024100833A1 (en) Heat exchange-type ventilation device
TWI687631B (en) Air cleaner
JPH11201511A (en) Air cleaning system
US20230092341A1 (en) Air filtering unit
KR101876225B1 (en) Aircleaner
JP2020051658A (en) Heat exchange type ventilator
JPH05106883A (en) Air cleaning system variable in air supply volume
KR20180003341U (en) heat exchange ventilation unit
KR20180136627A (en) Control method of air conditioner
KR100528119B1 (en) Clean air system
JPH03195835A (en) Air conditioner
JP6090231B2 (en) Air purifier
KR100531084B1 (en) A air cleaning system and a driving method thereof
JP2013070791A (en) Air purifier
KR100587313B1 (en) air cleaning system with ventilator