WO2024100614A1 - Dual-polarization ridged antenna - Google Patents

Dual-polarization ridged antenna Download PDF

Info

Publication number
WO2024100614A1
WO2024100614A1 PCT/IB2023/061377 IB2023061377W WO2024100614A1 WO 2024100614 A1 WO2024100614 A1 WO 2024100614A1 IB 2023061377 W IB2023061377 W IB 2023061377W WO 2024100614 A1 WO2024100614 A1 WO 2024100614A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal
polarization
port
waveguide
Prior art date
Application number
PCT/IB2023/061377
Other languages
French (fr)
Inventor
Esteban Menargues Gomez
Santiago Capdevila Cascante
Antoine CALLEAU
Original Assignee
Swissto12 Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swissto12 Sa filed Critical Swissto12 Sa
Publication of WO2024100614A1 publication Critical patent/WO2024100614A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • H01P1/173Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a conductive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0241Waveguide horns radiating a circularly polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/025Multimode horn antennas; Horns using higher mode of propagation
    • H01Q13/0258Orthomode horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0275Ridged horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0283Apparatus or processes specially provided for manufacturing horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials

Definitions

  • the present invention relates to a dual polarization antenna of the Vivaldi type, an array of such antennas as well as a satellite supporting such antennas.
  • Antennas are elements which are used to transmit electromagnetic signals into free space, or to receive such signals.
  • Simple antennas such as dipoles, have limited performance in terms of gain and directivity.
  • Parabolic antennas allow higher directivity, but are bulky and heavy, which makes their use unsuitable in applications such as satellites for example, where weight and volume must be reduced.
  • Antenna arrays are also known which bring together several radiating elements (antenna elements) out of phase in order to improve the gain and the directivity.
  • the signals received on the different radiant elements, or emitted by these elements, are amplified and phase shifted between them so as to control the shape of the reception and transmission lobes of the network.
  • dual polarization antennas capable of simultaneously transmitting or receiving signals with two polarizations.
  • the signals transmitted or received by each antenna element are combined, respectively separated, according to their polarization by means of a polarizer.
  • the polarizer can also be integrated into the antenna element.
  • a dual polarization antenna has two ports for connecting each of the two polarizations separately to or from electronic circuitry or waveguides.
  • Such antennas intended to transmit high frequencies, particularly for microwave frequencies, are difficult to design. It is in particular often desired to bring the different elementary antennas of the network as close as possible in order to reduce the overall size and to attenuate the amplitude of the secondary transmission or reception lobes, in directions other than the direction of transmission or reception which must be privileged. This reduction in the size of the elementary antennas and their spacing, however, creates problems of reflection of a portion of the transmission signal which returns to the antenna or to another port. This results in a loss of efficiency in the transfer of transmitted energy, and disturbances of each port by the signals transmitted on the other ports.
  • a goal when designing such an antenna is also to reduce its weight, particularly in applications for space or aeronautics.
  • An aim is also to provide an antenna suitable for satellite communications with LHCP and RHCP polarization.
  • An aim is also to provide an antenna whose geometry facilitates its additive printing, for example by making it possible to limit the supports necessary during printing.
  • antennas with a modular design which makes it possible to vary the number of elementary antennas according to needs, without having to review the entire design of the antenna.
  • the design is said to be modular when different types of antennas can easily be designed by adding or removing standardized antenna elements during the design of the antenna, without having to review the entire design of the antenna or the waveguide network.
  • the antenna must also of course have very high efficiency, gain and radiation pattern characteristics that are compatible with the specifications of the application.
  • the antenna must be able to be manufactured industrially and without falling within the scope of protection of existing patents.
  • a dual polarization antenna obtained by additive manufacturing comprising: a polarizer comprising: a first port intended for a first signal with a first polarization; a second port for a second signal with a second polarization; an output port for a signal with dual polarization; a septum for combining the first signal on the first port with the second signal on the second port; a polarization preserving radiant element, comprising a waveguide having a first end connected to the output port of the polarizer and a second end coupled to free space, the waveguide comprising an internal channel provided with three ridges parallel to a direction of propagation of a signal in the internal channel, characterized in that an external portion of each streak extends out of the waveguide via the second end, a height of the external portion of each streak measured radially with respect to the direction of propagation decreasing away from the second end.
  • the streaks inside the internal channel can serve as support for the external portions of the streaks, particularly when the direction of printing of the antenna coincides with the axis of propagation of the waves in the channel.
  • a section of the radiant element perpendicular to the direction of propagation can be invariant by rotation of 120° around the direction of propagation.
  • This 120° symmetry notably implies a spacing of 120° between each of the streaks.
  • this configuration of streaks makes it possible to increase the discrimination of higher order modes compared to the fundamental mode.
  • the section of the radiant element can be circular, triangular, hexagonal. Generally speaking, this section can be polygonal with a number of sides that is a multiple of 3. [0019] In one embodiment, one of the three grooves is formed by the extension of the septum along a wall of the internal canal. The septum can then also serve as a support for the streak and the external portion of the streak during additive printing.
  • the grooves can be inclined relative to the internal wall of the internal channel.
  • the grooves have a height extending radially relative to the axis of propagation, but inclinations relative to the radial direction are possible.
  • the diameter of the waveguide may be less than the wavelength at the highest operating frequency of the antenna, preferably less than half the wavelength at the highest frequency d antenna operation.
  • the antenna can be in one piece.
  • the height of each external portion of at least one streak can decrease linearly, exponentially and/or in stages.
  • Each external stripe portion may comprise at least one lateral impedance matching step arranged in the extension of a side wall of the internal channel.
  • At least one side wall of the internal channel may comprise an impedance matching slot extending from the second end of the waveguide of the radiant element.
  • an antenna array comprising a plurality of antennas as described above.
  • the plurality of antennas can be arranged in a matrix in one or two directions.
  • Figure 1 schematically illustrates a sectional view of a dual polarization antenna.
  • Figure 2 illustrates a dual polarization antenna of circular section.
  • Figure 3 illustrates a dual polarization antenna of triangular section whose angles are truncated.
  • Figure 4 illustrates a double polarization antenna of hexagonal section.
  • Figure 5a illustrates a top view of a dual polarization antenna of hexagonal section.
  • Figure 5b illustrates a sectional view of the same antenna shown in Figure 5a.
  • Figure 6 illustrates a dual polarization antenna comprising impedance matching elements.
  • Figure 7 illustrates an array of dual polarization antennas arranged in a two-dimensional matrix.
  • the present invention relates to a dual polarization antenna 1 comprising a septum polarizer 10 and a radiant element 20 provided with three grooves 202 inside the internal channel of the waveguide of the radiant element.
  • the three ridges project outward from the channel at the end of the radiant element waveguide intended to be coupled to free space.
  • free space is used in the context of the present application to designate the space outside the antenna, and in which the signals emitted by the antenna propagate. This means in particular that no device is intended to be coupled to the end of the antenna on the “free space” side.
  • free space can correspond for example to the space itself when the antenna is equipped on a satellite in orbit, but more generally, free space designates any volume of space outside of the antenna.
  • the free space has its own impedance depending on the characteristics of the space surrounding the antenna.
  • the antenna 1 comprises two main parts, a septum polarizer 10 and a radiant element 20.
  • the polarizer 10 comprises an orthomode transducer in the form of a waveguide, one end of which comprises a first port 101 and a second port 102 with simple polarization, and the other end of which comprises an output port intended to a signal with double polarization.
  • the two ports are separated by a septum 103 whose height extends along a diameter of the waveguide. In transmission, these two ports are each able to propagate a signal with linear polarization (P1,P2). These two signals are then combined into a dual polarization signal via the septum 103 which is propagated towards the radiant element 20.
  • the septum 103 makes it possible to control the phase between the two orthogonal modes so as to create for example a circular polarization, a polarization inclined at 45° or a vertical/horizontal polarization. In reception, the septum 103 separates two polarizations of a dual polarization signal received via the radiant element.
  • the septum 103 also extends longitudinally relative to the waveguide of the polarizer (that is to say relative to the direction of propagation of the waves in the polarizer) and its height decreases until it disappears completely. or until forming a longitudinal streak on an internal wall of the antenna.
  • the decrease in height is typically done in stairs (that is to say in successive steps) in the longitudinal direction but it can also be linear, exponential, or according to another decreasing profile depending on particular needs.
  • the radiant element 20 is intended to be coupled on the one hand to the output port of the polarizer 10 and on the other hand to the free space. It therefore forms the extension of the polarizer in the direction of emission of the antenna.
  • the term “coupling” does not exclude the two coupled elements from being formed and/or manufactured in one piece. It may be a theoretical coupling of two elements having a different function, but forming an object not resulting from the mechanical assembly of these two elements.
  • the radiant element 20 comprises a waveguide of which a first end is coupled to the output port of the polarizer 10 and of which a second end 201 is coupled to the free space.
  • This waveguide comprises an internal channel whose walls are provided with three grooves 202 extending parallel to the direction of propagation of the waves in the internal channel.
  • Each of the three grooves includes an external portion 203 extending out of the waveguide through its second end 201 so as to form protruding fins in the longitudinal direction.
  • the streaks 202 make it possible in particular to lower the cutoff frequency of the waveguide and thus allow the miniaturization of the antenna.
  • the streaks also make it possible to adapt the impedance of the antenna to the impedance of the free space in order to reduce the phenomenon of signal reflection at the radiating element - free space interface.
  • the height of the streaks can be constant or variable along the longitudinal direction.
  • Figure 5b illustrates an embodiment in which the height of the streaks is variable longitudinally in the waveguide.
  • the external portion 203 of each groove 202 has a height, measured in the radial direction relative to the direction of propagation, which decreases moving away from the second end 201 of the guide waves of the radiant element.
  • This decreasing profile of the external portions 203 makes it possible in particular to significantly increase the bandwidth of the antenna in the manner of a traditional Vivaldi antenna. They are also particularly suitable for questions of adaptation of the impedance of the antenna to the impedance of free space.
  • the combination of the grooves 202 inside the waveguide and the external portions 203 makes it possible to facilitate the additive printing of the antenna 1, in particular the printing of the external portions.
  • the streaks 202 can serve as support for the external portions 203 during their printing. This helps reduce the amount of necessary collateral media that must be manually removed after printing. This results in a saving in weight and cost since manufacturing time is reduced.
  • the waveguide of the polarizer and the radiant element 10 have an invariance by rotation of 120° around the direction of propagation. In other words, a section of these waveguides perpendicular to the direction of propagation in the antenna is invariant by rotation of 120° relative to the direction of propagation. This implies in particular that the streaks 202 are distributed in the internal channel of the waveguides so as to be spaced 120° apart from each other.
  • the section of the waveguide of the polarizer 10 and of the radiant element 20 is circular, triangular or hexagonal so as to respect the invariance by rotation of 120° around the direction of propagation. More generally, polygonal sections with 3n sides, where n is a positive integer, make it possible to respect symmetry at 120°.
  • the waveguides can thus form cylinders if the section is circular, or prisms with a triangular, hexagonal base, etc. The angles of the prisms can be truncated.
  • the grooves 202 can be arranged on the internal walls of the internal channel of the waveguides corresponding to the faces or angles of the prisms.
  • Figure 2 illustrates an antenna 1 whose section of the radiating element and the polarizer is circular.
  • the grooves 202, and therefore the external portions 203, are spaced 120° apart on the internal wall of the waveguides.
  • Figure 3 illustrates an antenna 1 whose section of the radiating element and the polarizer is triangular.
  • the angles of the triangular base prism formed by the polarizer and element waveguides radiant may be truncated.
  • the striations 202 can be arranged on the internal walls of the waveguides corresponding to the truncated parts of the prism or corresponding to the faces of the prism.
  • the triangles forming the waveguide section can be equilateral, which implies invariance by rotation of 120° around the direction of propagation, or isosceles.
  • Figures 4 and 6 illustrate antennas 1 whose sections of the radiating element and of the polarizer are hexagonal.
  • the streaks 202 are arranged on the internal walls of the waveguides corresponding to the angles of the hexagonal base prism formed by the waveguides.
  • the streaks 202 are arranged on the internal walls of the waveguides corresponding to the faces of the prism.
  • one of the grooves can be formed by the extension of the septum 103 in the longitudinal direction of the antenna.
  • the septum 103, a groove 202 and the corresponding external portion 203 of the groove are aligned longitudinally.
  • one or more grooves are inclined relative to the radial direction. This means that the direction of the height of the streaks is not aligned with the radial direction relative to the propagation direction.
  • the angle between the direction of the height of the streak and the wall of the waveguide supporting the streak may be different from 90°.
  • the diameter of the waveguide of the radiant element is less than the wavelength at the highest operating frequency of the antenna, preferably less than half the wavelength at the highest operating frequency of the antenna.
  • the antenna 1 comprises a core which is preferably manufactured by an additive manufacturing process.
  • the polarizer 10 and the radiant element 20 are preferably made monolithic, their core being manufactured in a single additive printing step.
  • additive manufacturing designates any process for manufacturing the core by adding material, according to the computer data stored on the computer medium and defining the geometric shape of the core.
  • the core can for example be manufactured by an additive manufacturing process of the SLM (Selective Laser Melting) type.
  • the core can also be manufactured by other additive manufacturing methods, for example by hardening or coagulation of liquid or powder in particular, including without limitation methods based on stereolithography, ink jets (binder jetting), DED (Direct Energy Deposition), EBFF (Electron Beam Freedom Fabrication), FDM (Fused Deposition Modeling) PFF (Plastic Free Forming), aerosol, BPM (Ballistic Particle Manufacturing), SLS (Selective Laser Sintering), ALM (Additive Layer Manufacturing) ), polyjet, EBM (Electron Beam Melting, photopolymerization, etc.
  • SLM Selective Laser Melting
  • other additive manufacturing methods for example by hardening or coagulation of liquid or powder in particular, including without limitation methods based on stereolithography, ink jets (binder jetting), DED (Direct Energy Deposition), EBFF (Electron Beam Freedom Fabrication), FDM
  • the core can for example be made of photopolymer manufactured by several surface layers of liquid polymer hardened by ultraviolet radiation during an additive manufacturing process.
  • the core can also be formed from a conductive material, for example a metallic material, by an additive manufacturing process of the SLM type in which a laser or an electron beam melts or sinters several thin layers of a powdery material.
  • the metal layer is deposited in the form of a film by electrodeposition or electroplating on the internal faces of the core.
  • Metallization makes it possible to cover the internal faces of the core with a conductive layer.
  • the application of the metal layer can be preceded by a step of surface treatment of the internal faces of the core in order to promote adhesion of the metal layer.
  • Surface treatment can include an increase in surface roughness, and/or the deposition of an intermediate bonding layer.
  • the radiant element may comprise impedance matching elements.
  • the external portions 203 of the grooves 202 can comprise at least one lateral step 204 for impedance adaptation. These steps are typically arranged in the extension of the wall of the waveguide of the radiant element 20 and extend laterally on one or two sides of the external portions 203.
  • one or more walls of the waveguide of the radiant element 20 comprise slots 204 for impedance matching.
  • impedance matching elements can be combined on the same antenna. These impedance matching elements may also include protuberances arranged on one or more internal walls of the waveguide of the radiant element in addition to the streaks 202.
  • antenna array 30 As illustrated in Figure 7, several dual polarization antennas as described above can be grouped so as to form an antenna array 30.
  • the antennas of such an array are typically grouped into a one- or two-dimensional matrix, that is to say that the antennas can be arranged contiguously along one axis or two axes.
  • Figure 7 illustrates a two-dimensional matrix layout.
  • the arrangement of the antenna array i.e. the configuration of adjacent antennas, can also differ from that of an array and be, for example, triangular.
  • the antenna array is preferably miniaturized in that the periodicity of the antenna array is less than or equal to 80% of the nominal wavelength of the signals transmitted/received by each antenna.
  • the present invention also relates to a satellite comprising at least one antenna as described above or an antenna array as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Waveguide Aerials (AREA)

Abstract

The present invention relates to a dual-polarization (P1, P2) antenna (1) obtained by additive manufacturing, comprising: a polarizer (10) comprising: a first port (101) intended for a first signal with a first polarization (P1); a second port (102) intended for a second signal with a second polarization (P2); an output port intended for a signal with dual polarization; a septum (103) for combining the first signal on the first port (101) with the second signal on the second port (102); a radiating element (20) that preserves the polarizations, comprising a waveguide a first end of which is connected to the output port of the polarizer (10) and a second end (201) of which is coupled to free space, the waveguide comprising an internal channel provided with three ridges (202) parallel to a direction of propagation of a signal through the internal channel, characterized in that an external portion (203) of each ridge (202) extends out of the waveguide via the second end (201), a height of the external portion (203) of each ridge, measured radially with respect to the direction of propagation, decreasing with distance from the second end (201). The present invention also relates to an array of antennas as described above and to a satellite comprising at least one such antenna.

Description

Antenne striée à double polarisation Dual polarization ribbed antenna
Domaine technique Technical area
[0001] La présente invention concerne une antenne à double polarisation de type Vivaldi, un réseau de telles antennes ainsi qu'un satellite supportant de telles antennes. [0001] The present invention relates to a dual polarization antenna of the Vivaldi type, an array of such antennas as well as a satellite supporting such antennas.
Etat de la technique State of the art
[0002] Les antennes sont des éléments qui servent à émettre des signaux électromagnétiques dans l'espace libre, ou à recevoir de tels signaux. Les antennes simples, telles que les dipôles, ont des performances limitées en termes de gain et de directivité. Les antennes paraboliques permettent une directivité plus élevée, mais sont encombrantes et lourdes, ce qui rend leur usage peu approprié dans des applications telles que les satellites par exemple, lorsque le poids et le volume doivent être réduits. Antennas are elements which are used to transmit electromagnetic signals into free space, or to receive such signals. Simple antennas, such as dipoles, have limited performance in terms of gain and directivity. Parabolic antennas allow higher directivity, but are bulky and heavy, which makes their use unsuitable in applications such as satellites for example, where weight and volume must be reduced.
[0003] On connaît également des réseaux d'antennes qui réunissent plusieurs éléments radiants (éléments d'antennes) déphasés afin d'améliorer le gain et la directivité. Les signaux reçus sur les différents éléments radiants, ou émis par ces éléments, sont amplifiés et déphasés entre eux de manière à contrôler la forme des lobes de réception et d'émission du réseau. [0003] Antenna arrays are also known which bring together several radiating elements (antenna elements) out of phase in order to improve the gain and the directivity. The signals received on the different radiant elements, or emitted by these elements, are amplified and phase shifted between them so as to control the shape of the reception and transmission lobes of the network.
[0004] On connaît par ailleurs des antennes à double polarisation capables d'émettre respectivement de recevoir simultanément des signaux avec deux polarisations. Dans ce cas, les signaux transmis ou reçus par chaque élément d'antenne sont combinés, respectivement séparés, selon leur polarisation au moyen d'un polariseur. Le polariseur peut aussi être intégré à l'élément d'antenne. Une antenne à double polarisation comporte deux ports pour connecter chacune des deux polarisations séparément de ou vers un circuit électronique ou des guides d'onde. [0005] Il est en outre souvent nécessaire de réduire l'encombrement de l'antenne, et tout particulièrement sa largeur et sa hauteur dans le plan perpendiculaire à la direction de transmission du signal, afin de pouvoir la loger dans le volume réduit à disposition dans un satellite ou un aéronef. [0004] We also know dual polarization antennas capable of simultaneously transmitting or receiving signals with two polarizations. In this case, the signals transmitted or received by each antenna element are combined, respectively separated, according to their polarization by means of a polarizer. The polarizer can also be integrated into the antenna element. A dual polarization antenna has two ports for connecting each of the two polarizations separately to or from electronic circuitry or waveguides. [0005] It is also often necessary to reduce the size of the antenna, and particularly its width and height in the plane perpendicular to the direction of transmission of the signal, in order to be able to accommodate it in the reduced volume available. in a satellite or aircraft.
[0006] De telles antennes destinées à transmettre des fréquences élevées, notamment pour des fréquences micro-ondes, sont difficiles à concevoir. Il est en particulier souvent souhaité de rapprocher les différentes antennes élémentaires du réseau autant que possible afin de réduire l'encombrement global et d'atténuer l'amplitude des lobes d'émission ou de réception secondaires, dans des directions autres que la direction d'émission ou de réception qui doit être privilégiée. Cette réduction de la dimension des antennes élémentaires et de leur espacement créé cependant des problèmes de réflexion d'une portion du signal d'émission qui retourne vers l'antenne ou vers un autre port. Il en résulte une perte d'efficacité du transfert d'énergie émise, et des perturbations de chaque port par les signaux émis sur les autres ports. [0006] Such antennas intended to transmit high frequencies, particularly for microwave frequencies, are difficult to design. It is in particular often desired to bring the different elementary antennas of the network as close as possible in order to reduce the overall size and to attenuate the amplitude of the secondary transmission or reception lobes, in directions other than the direction of transmission or reception which must be privileged. This reduction in the size of the elementary antennas and their spacing, however, creates problems of reflection of a portion of the transmission signal which returns to the antenna or to another port. This results in a loss of efficiency in the transfer of transmitted energy, and disturbances of each port by the signals transmitted on the other ports.
[0007] Un but lors de la conception d'une telle antenne est aussi de réduire son poids, notamment dans des applications pour l'espace ou l'aéronautique. [0007] A goal when designing such an antenna is also to reduce its weight, particularly in applications for space or aeronautics.
[0008] Un but est aussi de prévoir une antenne adaptée à des communications satellites à polarisation LHCP et RHCP. [0008] An aim is also to provide an antenna suitable for satellite communications with LHCP and RHCP polarization.
[0009] Un but est aussi de prévoir une antenne dont la géométrie facilite son impression additive, par exemple en permettant de limiter les supports nécessaires durant l'impression. [0009] An aim is also to provide an antenna whose geometry facilitates its additive printing, for example by making it possible to limit the supports necessary during printing.
[0010] Enfin, il est aussi souhaitable de réaliser des antennes avec une conception modulaire qui permette de varier le nombre d'antennes élémentaires selon les besoins, sans devoir pour autant revoir toute la conception de l'antenne. La conception est dite modulaire lorsque différents types d'antennes peuvent aisément être conçus en ajoutant ou retirant des éléments d'antennes standardisés lors de la conception de l'antenne, sans devoir pour cela revoir toute la conception de l'antenne ou du réseau de guides d'ondes. [0010] Finally, it is also desirable to produce antennas with a modular design which makes it possible to vary the number of elementary antennas according to needs, without having to review the entire design of the antenna. The design is said to be modular when different types of antennas can easily be designed by adding or removing standardized antenna elements during the design of the antenna, without having to review the entire design of the antenna or the waveguide network.
[0011] L'antenne doit en outre bien entendu avoir des caractéristiques de rendement, gain, diagramme de rayonnement très élevés et compatibles avec les cahiers des charges de l'application. [0011] The antenna must also of course have very high efficiency, gain and radiation pattern characteristics that are compatible with the specifications of the application.
[0012] Enfin, l'antenne doit pouvoir être fabriquée de manière industrielle et sans tomber dans le champ de protection de brevets existants. [0012] Finally, the antenna must be able to be manufactured industrially and without falling within the scope of protection of existing patents.
Bref résumé de l'invention Brief summary of the invention
[0013] Selon l'invention, ces buts sont atteints notamment au moyen d'une antenne à double polarisation obtenue par fabrication additive comprenant : un polariseur comprenant : un premier port destiné à un premier signal avec une première polarisation ; un second port destiné à un second signal avec une seconde polarisation ; un port de sortie destiné à un signal avec une double polarisation ; un septum permettant de combiner le premier signal sur le premier port avec le second signal sur le second port ; un élément radiant préservant les polarisations, comprenant un guide d'ondes dont une première extrémité est connectée au port de sortie du polariseur et une seconde extrémité est couplée à l'espace libre, le guide d'ondes comprenant un canal interne muni de trois stries parallèles à une direction de propagation d'un signal dans le canal interne, caractérisée en ce qu'une portion externe de chaque strie s'étend hors du guide d'ondes par la seconde extrémité, une hauteur de la portion externe de chaque strie mesurée radialement par rapport à la direction de propagation décroissant en s'éloignant de la seconde extrémité. [0013] According to the invention, these goals are achieved in particular by means of a dual polarization antenna obtained by additive manufacturing comprising: a polarizer comprising: a first port intended for a first signal with a first polarization; a second port for a second signal with a second polarization; an output port for a signal with dual polarization; a septum for combining the first signal on the first port with the second signal on the second port; a polarization preserving radiant element, comprising a waveguide having a first end connected to the output port of the polarizer and a second end coupled to free space, the waveguide comprising an internal channel provided with three ridges parallel to a direction of propagation of a signal in the internal channel, characterized in that an external portion of each streak extends out of the waveguide via the second end, a height of the external portion of each streak measured radially with respect to the direction of propagation decreasing away from the second end.
[0014] Les portions externes des stries permettent d'augmenter la largeur de la bande passante sur laquelle l'impédance de l'antenne est adaptée à l'impédance de l'espace libre. [0014] The external portions of the streaks make it possible to increase the width of the bandwidth over which the impedance of the antenna is adapted to the impedance of the free space.
[0015] Comme la hauteur de ces portions externes décroit en s'éloignant de la seconde extrémité de l'élément radiant, l'apparence d'une portion externe s'apparente à celle d'une plaque de cornet d'antenne de type Vivaldi. Cependant, l'alimentation de l'élément radiant de la présente antenne diffère radicalement de l'alimentation d'une antenne Vivaldi traditionnelle puisqu'elle est effectuée via un polariseur à septum. De plus, les trois portions externes des stries ne sont pas coplanaires, à la différence d'une antenne de type Vivaldi classique. [0015] As the height of these external portions decreases moving away from the second end of the radiant element, the appearance of an external portion is similar to that of a Vivaldi type antenna horn plate. . However, the feeding of the radiating element of the present antenna differs radically from the feeding of a traditional Vivaldi antenna since it is carried out via a septum polarizer. In addition, the three external portions of the streaks are not coplanar, unlike a classic Vivaldi type antenna.
[0016] Les stries à l'intérieur du canal interne peuvent servir de support aux portions externes des stries, notamment lorsque la direction d'impression de l'antenne coïncide avec l'axe de propagation des ondes dans le canal. The streaks inside the internal channel can serve as support for the external portions of the streaks, particularly when the direction of printing of the antenna coincides with the axis of propagation of the waves in the channel.
[0017] Dans un mode de réalisation, une section de l'élément radiant perpendiculaire à la direction de propagation peut être invariant par rotation de 120° autour de la direction de propagation. Cette symétrie à 120° implique notamment une espacement de 120° entre chacune des stries. De manière surprenante, cette configuration de stries permet d'augmenter la discrimination des modes d'ordres supérieurs par rapport au mode fondamental. [0017] In one embodiment, a section of the radiant element perpendicular to the direction of propagation can be invariant by rotation of 120° around the direction of propagation. This 120° symmetry notably implies a spacing of 120° between each of the streaks. Surprisingly, this configuration of streaks makes it possible to increase the discrimination of higher order modes compared to the fundamental mode.
[0018] Afin de préserver l'invariance par rotation de 120°, la section de l'élément radiant peut être circulaire, triangulaire, hexagonale. De manière générale cette section peut être polygonale avec un nombre de côtés multiple de 3. [0019] Dans un mode de réalisation, l'une des trois stries est formée par le prolongement du septum le long d'une paroi du canal interne. Le septum peut alors aussi servir de support pour la strie et la portion externe de la strie durant une impression additive. [0018] In order to preserve invariance by rotation of 120°, the section of the radiant element can be circular, triangular, hexagonal. Generally speaking, this section can be polygonal with a number of sides that is a multiple of 3. [0019] In one embodiment, one of the three grooves is formed by the extension of the septum along a wall of the internal canal. The septum can then also serve as a support for the streak and the external portion of the streak during additive printing.
[0020] Les stries peuvent être inclinées par rapport à la paroi interne du canal interne. Dans un mode de réalisation préférentiel, les stries ont une hauteur s'étendant radialement par rapport à l'axe de propagation, mais des inclinaisons par rapport à la direction radiale sont possibles. The grooves can be inclined relative to the internal wall of the internal channel. In a preferred embodiment, the grooves have a height extending radially relative to the axis of propagation, but inclinations relative to the radial direction are possible.
[0021] Le diamètre du guide d'ondes peut être inférieur à la longueur d'onde à la plus haute fréquence d'opération de l'antenne, de préférence inférieur à la moitié de la longueur d'onde à la plus haute fréquence d'opération de l'antenne. [0021] The diameter of the waveguide may be less than the wavelength at the highest operating frequency of the antenna, preferably less than half the wavelength at the highest frequency d antenna operation.
[0022] L'antenne peut être monobloc. The antenna can be in one piece.
[0023] La hauteur de chaque portion externe d'au moins une strie peut décroître de manière linéaire, exponentielle et/ou par paliers. The height of each external portion of at least one streak can decrease linearly, exponentially and/or in stages.
[0024] Chaque portion externe de strie peut comprendre au moins une marche latérale d'adaptation d'impédance disposée dans le prolongement d'une paroi latérale du canal interne. [0024] Each external stripe portion may comprise at least one lateral impedance matching step arranged in the extension of a side wall of the internal channel.
[0025] Au moins une paroi latérale du canal interne peut comprendre une fente d'adaptation d'impédance s'étendant à partir de la seconde extrémité du guide d'ondes de l'élément radiant. At least one side wall of the internal channel may comprise an impedance matching slot extending from the second end of the waveguide of the radiant element.
[0026] Selon l'invention, ces buts sont aussi atteints au moyen d'un réseau d'antennes comprenant une pluralité d'antennes telles que décrites ci-dessus. [0027] La pluralité d'antennes peut être arrangée en matrice selon une ou deux directions. [0026] According to the invention, these goals are also achieved by means of an antenna array comprising a plurality of antennas as described above. The plurality of antennas can be arranged in a matrix in one or two directions.
[0028] Selon l'invention, ces buts sont aussi atteints au moyen d'un satellite comprenant au moins une antenne ou un réseau d'antenne tels que décrits ci-dessus. [0028] According to the invention, these goals are also achieved by means of a satellite comprising at least one antenna or an antenna network as described above.
Brève description des figures Brief description of the figures
[0029] Des exemples de mise en œuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles : Examples of implementation of the invention are indicated in the description illustrated by the appended figures in which:
[0030] La figure 1 illustre schématiquement une vue en coupe d'une antenne à double polarisation. [0030] Figure 1 schematically illustrates a sectional view of a dual polarization antenna.
[0031] La figure 2 illustre une antenne à double polarisation de section circulaire. [0031] Figure 2 illustrates a dual polarization antenna of circular section.
[0032] La figure 3 illustre une antenne à double polarisation de section triangulaire dont les angles sont tronqués. [0032] Figure 3 illustrates a dual polarization antenna of triangular section whose angles are truncated.
[0033] La figure 4 illustre une antenne à double polarisation de section hexagonale. [0033] Figure 4 illustrates a double polarization antenna of hexagonal section.
[0034] La figure 5a illustre une vue de dessus d'une antenne à double polarisation de section hexagonale. [0034] Figure 5a illustrates a top view of a dual polarization antenna of hexagonal section.
[0035] La figure 5b illustre une vue en coupe de la même antenne figurant sur la figure 5a. Figure 5b illustrates a sectional view of the same antenna shown in Figure 5a.
[0036] La figure 6 illustre une antenne à double polarisation comprenant des éléments d'adaptation d'impédance. [0037] La figure 7 illustre un réseau d'antennes à double polarisation agencées en matrice bi-dimensionnelle. [0036] Figure 6 illustrates a dual polarization antenna comprising impedance matching elements. [0037] Figure 7 illustrates an array of dual polarization antennas arranged in a two-dimensional matrix.
Exemple(s) de mode de réalisation de l'invention Example(s) of embodiment of the invention
[0038] La présente invention concerne une antenne à double polarisation 1 comprenant un polariseur 10 à septum et un élément radiant 20 pourvu de trois stries 202 à l'intérieur du canal interne du guide d'ondes de l'élément radiant. Les trois stries se projettent vers l'extérieur du canal à l'extrémité du guide d'ondes de l'élément radiant destinée à être couplée à l'espace libre. The present invention relates to a dual polarization antenna 1 comprising a septum polarizer 10 and a radiant element 20 provided with three grooves 202 inside the internal channel of the waveguide of the radiant element. The three ridges project outward from the channel at the end of the radiant element waveguide intended to be coupled to free space.
[0039] Le terme « espace libre » est employé dans le cadre de la présente demande pour désigner l'espace à l'extérieur de l'antenne, et dans lequel les signaux émis par l'antenne se propagent. Cela signifie en particulier qu'aucun dispositif n'est destiné à être couplé à l'extrémité de l'antenne du côté « espace libre ». Ainsi l'espace libre peut correspondre par exemple à l'espace lui-même lorsque l'antenne est équipée sur un satellite en orbite, mais plus généralement, l'espace libre désigne n'importe quel volume d'espace à l'extérieur de l'antenne. L'espace libre possède une impédance propre dépendant des caractéristiques de l'espace environnant l'antenne. The term “free space” is used in the context of the present application to designate the space outside the antenna, and in which the signals emitted by the antenna propagate. This means in particular that no device is intended to be coupled to the end of the antenna on the “free space” side. Thus free space can correspond for example to the space itself when the antenna is equipped on a satellite in orbit, but more generally, free space designates any volume of space outside of the antenna. The free space has its own impedance depending on the characteristics of the space surrounding the antenna.
[0040] Comme illustré schématiquement sur la figure 1, l'antenne 1 comprend deux parties principales, un polariseur 10 à septum et un élément radiant 20. As illustrated schematically in Figure 1, the antenna 1 comprises two main parts, a septum polarizer 10 and a radiant element 20.
[0041] Le polariseur 10 comprend un transducteur orthomode sous la forme d'un guide d'ondes dont une extrémité comprend un premier port 101 et un second port 102 à polarisation simple, et dont l'autre extrémité comprend un port de sortie destiné à un signal avec double polarisation. Les deux ports sont séparés par un septum 103 dont la hauteur s'étend selon un diamètre du guide d'ondes. En émission, ces deux ports sont aptes à propager chacun un signal à polarisation linéaire (P1,P2). Ces deux signaux sont ensuite combinés en un signal à double polarisation via le septum 103 qui est propagé vers l'élément radiant 20. Le septum 103 permet de contrôler la phase entre les deux modes orthogonaux de manière à créer par exemple une polarisation circulaire, une polarisation inclinée à 45° ou une polarisation verticale/horizontale. En réception, le septum 103 sépare deux polarisations d'un signal à double polarisation reçu via l'élément radiant. The polarizer 10 comprises an orthomode transducer in the form of a waveguide, one end of which comprises a first port 101 and a second port 102 with simple polarization, and the other end of which comprises an output port intended to a signal with double polarization. The two ports are separated by a septum 103 whose height extends along a diameter of the waveguide. In transmission, these two ports are each able to propagate a signal with linear polarization (P1,P2). These two signals are then combined into a dual polarization signal via the septum 103 which is propagated towards the radiant element 20. The septum 103 makes it possible to control the phase between the two orthogonal modes so as to create for example a circular polarization, a polarization inclined at 45° or a vertical/horizontal polarization. In reception, the septum 103 separates two polarizations of a dual polarization signal received via the radiant element.
[0042] Le septum 103 s'étend également longitudinalement par rapport au guide d'ondes du polariseur (c'est-à-dire par rapport à la direction de propagation des ondes dans le polariseur) et sa hauteur décroît jusqu'à disparaître complètement ou jusqu'à former une strie longitudinale sur une paroi interne de l'antenne. La décroissance de la hauteur se fait typiquement en escaliers (c'est-à-dire par paliers successifs) selon la direction longitudinale mais elle peut être également linéaire, exponentielle, ou selon un autre profil décroissant selon les besoins particuliers. The septum 103 also extends longitudinally relative to the waveguide of the polarizer (that is to say relative to the direction of propagation of the waves in the polarizer) and its height decreases until it disappears completely. or until forming a longitudinal streak on an internal wall of the antenna. The decrease in height is typically done in stairs (that is to say in successive steps) in the longitudinal direction but it can also be linear, exponential, or according to another decreasing profile depending on particular needs.
[0043] L'élément radiant 20 est destiné à être couplé d'une part au port de sortie du polariseur 10 et d'autre part à l'espace libre. Il forme donc le prolongement du polariseur dans la direction d'émission de l'antenne. The radiant element 20 is intended to be coupled on the one hand to the output port of the polarizer 10 and on the other hand to the free space. It therefore forms the extension of the polarizer in the direction of emission of the antenna.
[0044] Dans la présente, le terme « couplage » n'exclut pas que les deux éléments couplés ne soient formés et/ou fabriqués d'un seul tenant. Il peut s'agir d'un couplage théorique de deux éléments ayant une fonction différente, mais formant un objet ne résultant pas de l'assemblage mécanique de ces deux éléments. [0044] Herein, the term “coupling” does not exclude the two coupled elements from being formed and/or manufactured in one piece. It may be a theoretical coupling of two elements having a different function, but forming an object not resulting from the mechanical assembly of these two elements.
[0045] Comme illustré schématiquement sur la figure 1, l'élément radiant 20 comprend un guide d'ondes dont une première extrémité est couplée au port de sortie du polariseur 10 et dont une seconde extrémité 201 est couplée à l'espace libre. Ce guide d'ondes comprend un canal interne dont les parois sont pourvues de trois stries 202 s'étendant parallèlement à la direction de propagation des ondes dans le canal interne. Chacune des trois stries comprend une portion externe 203 s'étendant hors du guide d'ondes par sa seconde extrémité 201 de manière à former des ailerons saillants dans la direction longitudinale. As illustrated schematically in Figure 1, the radiant element 20 comprises a waveguide of which a first end is coupled to the output port of the polarizer 10 and of which a second end 201 is coupled to the free space. This waveguide comprises an internal channel whose walls are provided with three grooves 202 extending parallel to the direction of propagation of the waves in the internal channel. Each of the three grooves includes an external portion 203 extending out of the waveguide through its second end 201 so as to form protruding fins in the longitudinal direction.
[0046] Les stries 202 permettent notamment d'abaisser la fréquence de coupure du guide d'ondes et ainsi de permettre la miniaturisation de l'antenne. De plus, les stries permettent également d'adapter l'impédance de l'antenne à l'impédance de l'espace libre afin de réduire le phénomène de réflexion des signaux à l'interface élément radiant - espace libre. [0046] The streaks 202 make it possible in particular to lower the cutoff frequency of the waveguide and thus allow the miniaturization of the antenna. In addition, the streaks also make it possible to adapt the impedance of the antenna to the impedance of the free space in order to reduce the phenomenon of signal reflection at the radiating element - free space interface.
[0047] La hauteur des stries peut être constante ou variable le long de la direction longitudinale. La figure 5b illustre un mode de réalisation dans lequel la hauteur des stries est variable longitudinalement dans le guide d'ondes. The height of the streaks can be constant or variable along the longitudinal direction. Figure 5b illustrates an embodiment in which the height of the streaks is variable longitudinally in the waveguide.
[0048] Comme illustré sur les figures 1 à 4, la portion externe 203 de chaque strie 202 possède une hauteur, mesurée selon la direction radiale par rapport à la direction de propagation, qui décroît en s'éloignant de la seconde extrémité 201 du guide d'ondes de l'élément radiant. Ce profil décroissant des portions externes 203 permet notamment d'augmenter significativement la bande passante de l'antenne à la manière d'une antenne Vivaldi traditionnelle. Elles sont également particulièrement indiquées pour des questions d'adaptation de l'impédance de l'antenne à l'impédance de l'espace libre. [0048] As illustrated in Figures 1 to 4, the external portion 203 of each groove 202 has a height, measured in the radial direction relative to the direction of propagation, which decreases moving away from the second end 201 of the guide waves of the radiant element. This decreasing profile of the external portions 203 makes it possible in particular to significantly increase the bandwidth of the antenna in the manner of a traditional Vivaldi antenna. They are also particularly suitable for questions of adaptation of the impedance of the antenna to the impedance of free space.
[0049] De manière surprenante, la combinaison des stries 202 à l'intérieur du guide d'ondes et des portions externes 203 permet de faciliter l'impression additive de l'antenne 1, notamment l'impression des portions externes. En effet, les stries 202 peuvent servir de support aux portions externes 203 pendant leur impression. Cela permet de réduire la quantité de supports annexes nécessaires qui doivent être manuellement supprimés après l'impression. Il en résulte un gain de poids et de coût puisque le temps de manufacture est réduit. [0050] Dans un mode de réalisation préférentiel, le guide d'ondes du polariseur et l'élément radiant 10 possèdent une invariance par rotation de 120° autour de la direction de propagation. En d'autres termes, une section de ces guides d'ondes perpendiculaire à la direction de propagation dans l'antenne est invariante par rotation de 120° par rapport à la direction de propagation. Cela implique notamment que les stries 202 sont distribuées dans le canal interne des guides d'ondes de manière à être espacées de 120° les unes par rapport aux autres. [0049] Surprisingly, the combination of the grooves 202 inside the waveguide and the external portions 203 makes it possible to facilitate the additive printing of the antenna 1, in particular the printing of the external portions. Indeed, the streaks 202 can serve as support for the external portions 203 during their printing. This helps reduce the amount of necessary collateral media that must be manually removed after printing. This results in a saving in weight and cost since manufacturing time is reduced. [0050] In a preferred embodiment, the waveguide of the polarizer and the radiant element 10 have an invariance by rotation of 120° around the direction of propagation. In other words, a section of these waveguides perpendicular to the direction of propagation in the antenna is invariant by rotation of 120° relative to the direction of propagation. This implies in particular that the streaks 202 are distributed in the internal channel of the waveguides so as to be spaced 120° apart from each other.
[0051] De manière surprenante, cette répartition des stries à 120° permet d'augmenter la discrimination entre le mode fondamental et les modes d'ordres supérieurs limitant ainsi le risque de superposition de ces modes supérieurs. [0051] Surprisingly, this distribution of the streaks at 120° makes it possible to increase the discrimination between the fundamental mode and the higher order modes, thus limiting the risk of superposition of these higher modes.
[0052] De manière préférentielle, la section du guide d'ondes du polariseur 10 et de l'élément radiant 20 est circulaire, triangulaire ou hexagonale de manière à respecter l'invariance par rotation de 120° autour de la direction de propagation. Plus généralement, des sections polygonales à 3n côtés, où n est un entier positif, permettent de respecter la symétrie à 120°. Les guides d'ondes peuvent ainsi former des cylindres si la section est circulaire, ou des prismes à base triangulaire, hexagonale, etc. Les angles des prismes peuvent être tronqués. [0052] Preferably, the section of the waveguide of the polarizer 10 and of the radiant element 20 is circular, triangular or hexagonal so as to respect the invariance by rotation of 120° around the direction of propagation. More generally, polygonal sections with 3n sides, where n is a positive integer, make it possible to respect symmetry at 120°. The waveguides can thus form cylinders if the section is circular, or prisms with a triangular, hexagonal base, etc. The angles of the prisms can be truncated.
[0053] Les stries 202 peuvent être disposées sur les parois internes du canal interne des guides d'ondes correspondant aux faces ou aux angles des prismes. The grooves 202 can be arranged on the internal walls of the internal channel of the waveguides corresponding to the faces or angles of the prisms.
[0054] La figure 2 illustre une antenne 1 dont la section de l'élément radiant et du polariseur est circulaire. Les stries 202, et donc les portions externes 203, sont espacées de 120° sur la paroi interne des guides d'ondes. [0054] Figure 2 illustrates an antenna 1 whose section of the radiating element and the polarizer is circular. The grooves 202, and therefore the external portions 203, are spaced 120° apart on the internal wall of the waveguides.
[0055] La figure 3 illustre une antenne 1 dont la section de l'élément radiant et du polariseur est triangulaire. Les angles du prisme à base triangulaire formé par les guides d'ondes du polariseur et de l'élément radiant peuvent être tronqués. Les stries 202 peuvent être agencées sur les parois internes des guides d'ondes correspondant aux parties tronquées du prisme ou correspondant aux faces du prisme. Les triangles formant la section des guides d'ondes peuvent être équilatéraux, ce qui implique une invariance par rotation de 120° autour de la direction de propagation, ou isocèles. [0055] Figure 3 illustrates an antenna 1 whose section of the radiating element and the polarizer is triangular. The angles of the triangular base prism formed by the polarizer and element waveguides radiant may be truncated. The striations 202 can be arranged on the internal walls of the waveguides corresponding to the truncated parts of the prism or corresponding to the faces of the prism. The triangles forming the waveguide section can be equilateral, which implies invariance by rotation of 120° around the direction of propagation, or isosceles.
[0056] Les figures 4 et 6 illustrent des antennes 1 dont les sections de l'élément radiant et du polariseur sont hexagonales. Sur la figure 4, les stries 202 sont disposées sur les parois internes des guides d'ondes correspondant aux angles du prisme à base hexagonale formé par les guides d'ondes. Sur la figure 6 en revanche, les stries 202 sont disposées sur les parois internes des guides d'ondes correspondant aux faces du prisme. [0056] Figures 4 and 6 illustrate antennas 1 whose sections of the radiating element and of the polarizer are hexagonal. In Figure 4, the streaks 202 are arranged on the internal walls of the waveguides corresponding to the angles of the hexagonal base prism formed by the waveguides. In Figure 6, on the other hand, the streaks 202 are arranged on the internal walls of the waveguides corresponding to the faces of the prism.
[0057] De manière avantageuse, l'une des stries peut être formée par le prolongement du septum 103 dans la direction longitudinale de l'antenne. Ainsi, le septum 103, une strie 202 et la portion externe 203 correspondante de la strie sont alignés longitudinalement. [0057] Advantageously, one of the grooves can be formed by the extension of the septum 103 in the longitudinal direction of the antenna. Thus, the septum 103, a groove 202 and the corresponding external portion 203 of the groove are aligned longitudinally.
[0058] Dans un mode de réalisation, une ou plusieurs stries sont inclinées par rapport à la direction radiale. Cela signifie que la direction de la hauteur des stries n'est pas alignée avec la direction radiale par rapport à la direction de propagation. En particulier, l'angle entre la direction de la hauteur de la strie et la paroi du guide d'ondes supportant la strie peut être différent de 90°. [0058] In one embodiment, one or more grooves are inclined relative to the radial direction. This means that the direction of the height of the streaks is not aligned with the radial direction relative to the propagation direction. In particular, the angle between the direction of the height of the streak and the wall of the waveguide supporting the streak may be different from 90°.
[0059] Dans un mode de réalisation, le diamètre du guide d'ondes de l'élément radiant est inférieur à la longueur d'onde à la plus haute fréquence d'opération de l'antenne, de préférence inférieur à la moitié de la longueur d'onde à la plus haute fréquence d'opération de l'antenne. [0059] In one embodiment, the diameter of the waveguide of the radiant element is less than the wavelength at the highest operating frequency of the antenna, preferably less than half the wavelength at the highest operating frequency of the antenna.
[0060] L'antenne 1 comporte une âme qui est de préférence fabriquée par un procédé de fabrication additive. Le polariseur 10 et l'élément radiant 20 sont de préférence réalisés de manière monolithique, leur âme étant fabriquée en une seule étape d'impression additive. Dans la présente demande, l'expression « fabrication additive » désigne tout procédé de fabrication de l'âme par ajout de matière, selon les données informatiques stockées sur le support informatique et définissant la forme géométrique de l'âme. The antenna 1 comprises a core which is preferably manufactured by an additive manufacturing process. The polarizer 10 and the radiant element 20 are preferably made monolithic, their core being manufactured in a single additive printing step. In the present application, the expression “additive manufacturing” designates any process for manufacturing the core by adding material, according to the computer data stored on the computer medium and defining the geometric shape of the core.
[0061] L'âme peut par exemple être fabriquée par un procédé de fabrication additive du type SLM (Selective Laser Melting). L'âme peut aussi être fabriquée par d'autres méthodes de fabrication additives, par exemple par durcissement ou coagulation de liquide ou de poudre notamment, y compris sans limitation des méthodes basées sur la stéréolithographie, les jets d'encre (binder jetting), DED (Direct Energy Deposition), EBFF (Electron Beam Freedom Fabrication), FDM (Fused Deposition Modeling) PFF (Plastic Free Forming), par aérosols, BPM (Ballistic Particle Manufacturing), SLS (Selective Laser Sintering), ALM (Additive Layer Manuafcturing), polyjet, EBM (Electron Beam Melting, photopolymérisation, etc. [0061] The core can for example be manufactured by an additive manufacturing process of the SLM (Selective Laser Melting) type. The core can also be manufactured by other additive manufacturing methods, for example by hardening or coagulation of liquid or powder in particular, including without limitation methods based on stereolithography, ink jets (binder jetting), DED (Direct Energy Deposition), EBFF (Electron Beam Freedom Fabrication), FDM (Fused Deposition Modeling) PFF (Plastic Free Forming), aerosol, BPM (Ballistic Particle Manufacturing), SLS (Selective Laser Sintering), ALM (Additive Layer Manufacturing) ), polyjet, EBM (Electron Beam Melting, photopolymerization, etc.
[0062] L'âme peut par exemple être en photopolymère fabriquée par plusieurs couches superficielles de polymère liquide durcies par un rayonnement ultraviolet au cours d'un procédé de fabrication additive. [0062] The core can for example be made of photopolymer manufactured by several surface layers of liquid polymer hardened by ultraviolet radiation during an additive manufacturing process.
[0063] L'âme peut également être formée d'un matériau conducteur, par exemple un matériau métallique, par un procédé de fabrication additive du type SLM dans lequel un laser ou un faisceau d'électrons vient fondre ou fritter plusieurs couches fines d'un matériau poudreux. [0063] The core can also be formed from a conductive material, for example a metallic material, by an additive manufacturing process of the SLM type in which a laser or an electron beam melts or sinters several thin layers of a powdery material.
[0064] Selon une forme d'exécution, la couche de métal est déposée sous forme de film par électrodéposition ou galvanoplastie sur les faces internes de l'âme. La métallisation permet de recouvrir les faces interne de l'âme par une couche conductrice. [0064] According to one embodiment, the metal layer is deposited in the form of a film by electrodeposition or electroplating on the internal faces of the core. Metallization makes it possible to cover the internal faces of the core with a conductive layer.
[0065] L'application de la couche de métal peut être précédée par une étape de traitement de surface des faces internes de l'âme afin de favoriser l'accrochage de la couche de métal. Le traitement de surface peut comporter une augmentation de la rugosité de surface, et/ou la déposition d'une couche intermédiaire d'accrochage. [0065] The application of the metal layer can be preceded by a step of surface treatment of the internal faces of the core in order to promote adhesion of the metal layer. Surface treatment can include an increase in surface roughness, and/or the deposition of an intermediate bonding layer.
[0066] La réduction de la hauteur de chaque portion externe 203 de strie 202 peut décroître de manière linéaire, exponentielle et/ou par paliers en fonction des applications [0066] The reduction in the height of each external portion 203 of streak 202 can decrease linearly, exponentially and/or in stages depending on the applications
[0067] Afin d'adapter l'impédance de l'antenne à l'impédance de l'espace libre, l'élément radiant peut comprendre des éléments d'adaptation d'impédance. [0067] In order to adapt the impedance of the antenna to the impedance of the free space, the radiant element may comprise impedance matching elements.
[0068] Dans un mode de réalisation illustré sur la figure 6, les portions externes 203 des stries 202 peuvent comprendre au moins une marche latérale 204 d'adaptation d'impédance. Ces marches sont typiquement disposées dans le prolongement de la paroi du guide d'ondes de l'élément radiant 20 et s'étendent latéralement d'un ou deux côtés des portions externes 203. [0068] In an embodiment illustrated in Figure 6, the external portions 203 of the grooves 202 can comprise at least one lateral step 204 for impedance adaptation. These steps are typically arranged in the extension of the wall of the waveguide of the radiant element 20 and extend laterally on one or two sides of the external portions 203.
[0069] Dans un mode de réalisation illustré sur la figure 6, une ou plusieurs parois du guide d'ondes de l'élément radiant 20 comprennent des fentes 204 d'adaptation d'impédance. [0069] In an embodiment illustrated in Figure 6, one or more walls of the waveguide of the radiant element 20 comprise slots 204 for impedance matching.
[0070] Plusieurs éléments d'adaptation d'impédance peuvent être combinés sur la même antenne. Ces éléments d'adaptation d'impédance peuvent aussi comprendre des protubérances disposées sur une ou plusieurs parois internes du guide d'ondes de l'élément radiant en addition des stries 202. [0070] Several impedance matching elements can be combined on the same antenna. These impedance matching elements may also include protuberances arranged on one or more internal walls of the waveguide of the radiant element in addition to the streaks 202.
[0071] Comme illustré sur la figure 7, plusieurs antennes à double polarisation telles que décrites ci-dessus peuvent être regroupées de manière à former un réseau d'antennes 30. [0072] Les antennes d'un tel réseau sont typiquement regroupées en matrice à une ou deux dimensions, c'est-à-dire que les antennes peuvent être disposées de manière contigüe selon un axe ou deux axes. La figure 7 illustre une disposition en matrice en deux dimensions. Cependant, l'agencement du réseau d'antennes, c'est-à-dire la configuration des antennes adjacentes, peut également différer de celui d'une matrice et être par exemple triangulaire. [0071] As illustrated in Figure 7, several dual polarization antennas as described above can be grouped so as to form an antenna array 30. [0072] The antennas of such an array are typically grouped into a one- or two-dimensional matrix, that is to say that the antennas can be arranged contiguously along one axis or two axes. Figure 7 illustrates a two-dimensional matrix layout. However, the arrangement of the antenna array, i.e. the configuration of adjacent antennas, can also differ from that of an array and be, for example, triangular.
[0073] Le réseau d'antennes est de préférence miniaturisé en ce que la périodicité du réseau d'antennes est inférieure ou égale à 80% de la longueur d'onde nominale des signaux émis/reçus par chaque antenne. [0073] The antenna array is preferably miniaturized in that the periodicity of the antenna array is less than or equal to 80% of the nominal wavelength of the signals transmitted/received by each antenna.
[0074] La présente invention porte aussi sur un satellite comprenant au moins une antenne telle que décrite ci-dessus ou un réseau d'antennes tel que décrit ci-dessus. The present invention also relates to a satellite comprising at least one antenna as described above or an antenna array as described above.
Numéros de référence employés sur les figures Reference numbers used in the figures
Antenne à double polarisation 1 Dual Polarization Antenna 1
Polariseur 10 Polarizer 10
Premier port 101 First port 101
Second port 102 Second port 102
Septum 103 Septum 103
Elément radiant 20 Radiant element 20
Seconde extrémité 201 Second end 201
Strie 202 Streak 202
Portion externe 203 External portion 203
Marche latérale 204 Side step 204
Fente 205 Slot 205
Réseau d'antennes 30 Antenna array 30

Claims

Revendications Claims
1. Antenne (1) à double polarisation (P1, P2) obtenue par fabrication additive comprenant : un polariseur (10) comprenant : un premier port (101) destiné à un premier signal avec une première polarisation (P1) ; un second port (102) destiné à un second signal avec une seconde polarisation (P2) ; un port de sortie destiné à un signal avec une double polarisation ; un septum (103) permettant de combiner le premier signal sur le premier port (101) avec le second signal sur le second port (102) ; un élément radiant (20) préservant les polarisations, comprenant un guide d'ondes dont une première extrémité est connectée au port de sortie du polariseur (10) et une seconde extrémité (201) est couplée à l'espace libre, le guide d'ondes comprenant un canal interne muni de trois stries (202) parallèles à une direction de propagation d'un signal dans le canal interne, caractérisée en ce qu'une portion externe (203) de chaque strie (202) s'étend hors du guide d'ondes par la seconde extrémité (201), une hauteur de la portion externe (203) de chaque strie mesurée radialement par rapport à la direction de propagation décroissant en s'éloignant de la seconde extrémité (201). 1. Antenna (1) with double polarization (P1, P2) obtained by additive manufacturing comprising: a polarizer (10) comprising: a first port (101) intended for a first signal with a first polarization (P1); a second port (102) for a second signal with a second polarization (P2); an output port for a signal with dual polarization; a septum (103) for combining the first signal on the first port (101) with the second signal on the second port (102); a radiant element (20) preserving polarizations, comprising a waveguide of which a first end is connected to the output port of the polarizer (10) and a second end (201) is coupled to the free space, the guide waves comprising an internal channel provided with three streaks (202) parallel to a direction of propagation of a signal in the internal channel, characterized in that an external portion (203) of each streak (202) extends outside the guide of waves by the second end (201), a height of the external portion (203) of each streak measured radially with respect to the direction of propagation decreasing away from the second end (201).
2. Antenne (1) selon la revendication 1, dans laquelle une section du guide d'ondes perpendiculaire à la direction de propagation est invariante par rotation de 120° autour de la direction de propagation. 2. Antenna (1) according to claim 1, in which a section of the waveguide perpendicular to the direction of propagation is invariant by rotation of 120° around the direction of propagation.
3. Antenne (1) selon l'une des revendications précédentes, dans laquelle une section du guide d'ondes perpendiculaire à la direction de propagation est circulaire, triangulaire ou hexagonale. 3. Antenna (1) according to one of the preceding claims, in which a section of the waveguide perpendicular to the direction of propagation is circular, triangular or hexagonal.
4. Antenne (1) selon l'une des revendications précédentes, dans laquelle une des trois stries (202) est formée par le prolongement du septum (103). 4. Antenna (1) according to one of the preceding claims, in which one of the three grooves (202) is formed by the extension of the septum (103).
5. Antenne (1) selon l'une des revendications précédentes, dans laquelle au moins une des trois stries (202) forme un angle avec une paroi interne du canal interne inférieur à 90°. 5. Antenna (1) according to one of the preceding claims, in which at least one of the three grooves (202) forms an angle with an internal wall of the internal channel less than 90°.
6. Antenne (1) selon l'une des revendications précédentes, dans laquelle un diamètre du guide d'ondes est inférieur à la longueur d'onde à la plus haute fréquence d'opération de l'antenne, de préférence inférieur à la moitié de la longueur d'onde à la plus haute fréquence d'opération de l'antenne. 6. Antenna (1) according to one of the preceding claims, in which a diameter of the waveguide is less than the wavelength at the highest operating frequency of the antenna, preferably less than half of the wavelength at the highest operating frequency of the antenna.
7. Antenne (1) selon l'une des revendications précédentes étant monobloc. 7. Antenna (1) according to one of the preceding claims being in one piece.
8. Antenne (1) selon l'une des revendications précédentes, dans laquelle la hauteur de chaque portion externe (203) d'au moins une strie (202) décroît de manière linéaire, exponentielle et/ou par paliers. 8. Antenna (1) according to one of the preceding claims, in which the height of each external portion (203) of at least one streak (202) decreases linearly, exponentially and/or in stages.
9. Antenne (1) selon l'une des revendications précédentes, dans laquelle chaque portion externe (203) de strie (202) comprend au moins une marche latérale (204) d'adaptation d'impédance disposée dans le prolongement d'une paroi latérale du canal interne. 9. Antenna (1) according to one of the preceding claims, in which each external portion (203) of streak (202) comprises at least one lateral step (204) for impedance adaptation arranged in the extension of a wall lateral of the internal canal.
10. Antenne (1) selon l'une des revendications précédentes, dans laquelle au moins une paroi latérale du canal interne comprend une fente (205) d'adaptation d'impédance s'étendant à partir de la seconde extrémité (201) du guide d'ondes de l'élément radiant (20). 10. Antenna (1) according to one of the preceding claims, in which at least one side wall of the internal channel comprises an impedance matching slot (205) extending from the second end (201) of the guide waves of the radiant element (20).
11. Réseau d'antennes (30) comprenant une pluralité d'antennes (1) selon l'une des revendications précédentes. 11. Antenna array (30) comprising a plurality of antennas (1) according to one of the preceding claims.
12. Réseau d'antennes (30) selon la revendication précédente, la pluralité d'antennes étant arrangée en matrice selon une ou deux directions. 12. Antenna array (30) according to the preceding claim, the plurality of antennas being arranged in a matrix in one or two directions.
13. Satellite comprenant au moins une antenne selon l'une des revendications 1 à 10. 13. Satellite comprising at least one antenna according to one of claims 1 to 10.
PCT/IB2023/061377 2022-11-11 2023-11-10 Dual-polarization ridged antenna WO2024100614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CHCH001348/2022 2022-11-11
CH001348/2022A CH720221A1 (en) 2022-11-11 2022-11-11 Dual polarization ribbed antenna

Publications (1)

Publication Number Publication Date
WO2024100614A1 true WO2024100614A1 (en) 2024-05-16

Family

ID=85283846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/061377 WO2024100614A1 (en) 2022-11-11 2023-11-10 Dual-polarization ridged antenna

Country Status (2)

Country Link
CH (1) CH720221A1 (en)
WO (1) WO2024100614A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210203076A1 (en) * 2019-12-26 2021-07-01 Thales Horn for ka dual-band circularly polarized satellite antenna
US20220029257A1 (en) * 2019-03-28 2022-01-27 Swissto12 Sa Radio-frequency component comprising several waveguide devices with ridges
US20220190477A1 (en) * 2020-12-10 2022-06-16 Thales Antenna feed for a direct radiating array antenna, radiating panel and antenna comprising several antenna feeds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220029257A1 (en) * 2019-03-28 2022-01-27 Swissto12 Sa Radio-frequency component comprising several waveguide devices with ridges
US20210203076A1 (en) * 2019-12-26 2021-07-01 Thales Horn for ka dual-band circularly polarized satellite antenna
US20220190477A1 (en) * 2020-12-10 2022-06-16 Thales Antenna feed for a direct radiating array antenna, radiating panel and antenna comprising several antenna feeds

Also Published As

Publication number Publication date
CH720221A1 (en) 2024-05-31

Similar Documents

Publication Publication Date Title
EP3057130B1 (en) Rf transmission device with built-in electromagnetic wave reflector
CA2004870C (en) Multifrequency radiating device
EP0274074B1 (en) Feeding radiator for a communications antenna
EP2564466B1 (en) Compact radiating element having resonant cavities
EP1407512B1 (en) Antenna
EP4012834B1 (en) Antenna source for an array antenna with direct radiation, radiating panel and antenna comprising a plurality of antenna sources
EP2869400B1 (en) Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor
FR2655204A1 (en) WAVEGUIDE SUPPLY NETWORK ANTENNA.
EP3179551B1 (en) Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
EP3086409B1 (en) Structural antenna module including elementary radiating sources with individual orientation, radiating panel, radiating network and multibeam antenna comprising at least one such module
EP3843202B1 (en) Horn for ka dual-band satellite antenna with circular polarisation
EP0377155B1 (en) Dual frequency radiating device
WO2021124170A1 (en) Dual-polarization antenna
WO2024100614A1 (en) Dual-polarization ridged antenna
EP3804034A1 (en) Radiofrequency module
FR3011685A1 (en) LARGE BAND COMPACT WIDE LOOP ANTENNA
WO2023067482A1 (en) Dual-polarised antenna array
EP2316149B1 (en) Low-loss compact radiating element
EP3721501B1 (en) Microwave component and associated manufacturing process
EP3264531A1 (en) Microwave antenna with dual reflector
WO2022137185A1 (en) Slot antenna array
EP3075031B1 (en) Arrangement of antenna structures for satellite telecommunications
EP3902059A1 (en) Directional broadband antenna with longitudinal transmission
WO2023073567A1 (en) Radiofrequency module comprising an array of isophasic waveguides