WO2024099263A1 - 用于非地面网络中的设备和方法 - Google Patents

用于非地面网络中的设备和方法 Download PDF

Info

Publication number
WO2024099263A1
WO2024099263A1 PCT/CN2023/129913 CN2023129913W WO2024099263A1 WO 2024099263 A1 WO2024099263 A1 WO 2024099263A1 CN 2023129913 W CN2023129913 W CN 2023129913W WO 2024099263 A1 WO2024099263 A1 WO 2024099263A1
Authority
WO
WIPO (PCT)
Prior art keywords
smart
path
network
satellite
user equipment
Prior art date
Application number
PCT/CN2023/129913
Other languages
English (en)
French (fr)
Inventor
周明拓
王晓雪
李浩进
Original Assignee
索尼集团公司
周明拓
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 周明拓 filed Critical 索尼集团公司
Publication of WO2024099263A1 publication Critical patent/WO2024099263A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present disclosure relates generally to devices and methods for use in non-terrestrial networks (NTNs), and particularly to techniques for path selection in non-terrestrial networks using smart metasurfaces.
  • NTNs non-terrestrial networks
  • smart metasurfaces techniques for path selection in non-terrestrial networks using smart metasurfaces.
  • Wireless communication systems can use a variety of protocols and standards for data transmission between devices. These protocols and standards have undergone a long period of development, including but not limited to the Third Generation Partnership Project (3GPP), 3GPP Long Term Evolution (LTE) (e.g., 4G communication), and 3GPP New Radio (NR) (e.g., 5G communication) and even 6G communication.
  • 3GPP Third Generation Partnership Project
  • LTE Long Term Evolution
  • NR 3GPP New Radio
  • new wireless communication systems such as 5G NR communication systems and 6G communication systems
  • High-frequency band communication technology has been introduced into new wireless communication systems. Such communications are greatly affected by obstructions such as houses, human bodies, or walls.
  • smart metasurfaces also called smart reflective surfaces/antennas
  • a smart reflective surface can be composed of a large number of low-cost micro-reflective elements, each of which can independently induce changes in the amplitude and/or phase of the signal using software programming, thereby accurately controlling the formation of the reflected beam. Therefore, the use of smart metasurfaces can significantly improve the performance of wireless communication networks at a lower cost.
  • new wireless communication systems introduce non-terrestrial network communications involving high-altitude communication stations such as satellites to supplement the performance of terrestrial network communications.
  • mobile operators can use non-terrestrial networks to provide wireless communication services to areas lacking infrastructure, and can also provide services in situations where terrestrial networks are interrupted (such as battlefields, earthquakes, etc.). Or flood, outdoor and other scenarios) to provide users with normal wireless communication services.
  • Non-terrestrial network communication and smart metasurface technology are both relatively new technologies introduced in 5G NR systems and even 6G systems. Compared with using the two technologies independently, using the two technologies together can further improve the coverage and data transmission performance of non-terrestrial network communication in the case of obstructions such as mountains or tall buildings. Therefore, it is hoped to find a system and method that can effectively use appropriate smart metasurface antennas in non-terrestrial network communication to send and receive signals to improve communication performance.
  • the present disclosure proposes a device and method for use in a non-terrestrial network. More specifically, the present disclosure proposes a method for path selection in a non-terrestrial network using a smart metasurface, wherein an appropriate smart metasurface is selected as a relay for non-terrestrial communication between devices in a variety of scenarios, thereby improving the accuracy and reliability of data transmission.
  • an electronic device for a user device in a non-terrestrial network wherein the non-terrestrial network further includes a network device, a satellite and a plurality of smart metasurfaces capable of communicating with the user device, and the electronic device includes a processing circuit, wherein the processing circuit is configured to enable the user device to perform the following operations: receiving system-related information of the non-terrestrial network from the network device, wherein the system-related information includes at least ephemeris information of the satellite, and an identifier and a position of one or more smart metasurfaces associated with the satellite among the plurality of smart metasurfaces; determining a path for the user device to communicate with the network device based at least on the received system-related information, the determined path passing through one of the one or more smart metasurfaces; and communicating with the network device via the determined path.
  • a method for a user device in a non-terrestrial network wherein the non-terrestrial network also includes a network device, a satellite and a plurality of smart metasurfaces capable of communicating with the user device, the method comprising: receiving system-related information of the non-terrestrial network from the network device, the system-related information including at least ephemeris information of the satellite, and an identifier and a position of one or more smart metasurfaces associated with the satellite among the plurality of smart metasurfaces; determining a path for the user device to communicate with the network device based at least on the received system-related information, the determined path passing through one of the one or more smart metasurfaces; and communicating with the network device via the determined path.
  • an electronic device for a network device in a non-terrestrial network wherein the non-terrestrial network further includes a user device, a satellite and a plurality of smart metasurfaces capable of communicating with the network device, and the electronic device includes a processing circuit, wherein the processing circuit is configured to enable the network device to perform the following operations: obtaining system-related information of the non-terrestrial network, wherein the system-related information includes at least ephemeris information of the satellite, and an identifier and a position of one or more smart metasurfaces associated with the satellite among the plurality of smart metasurfaces, wherein the one or more smart metasurfaces are determined by the network device based at least on the position of the satellite and the positions of the plurality of smart metasurfaces; communicating with the user device via a determined path, wherein the path is determined based at least on the system-related information, and the determined path passes through one of the one or more smart metasurfaces.
  • a method for a network device in a non-terrestrial network is also provided, wherein the non-terrestrial network also includes a user device, a satellite and a plurality of smart supersurfaces capable of communicating with the network device, the method comprising: obtaining system-related information of the non-terrestrial network, the system-related information including at least ephemeris information of the satellite, and an identifier and a position of one or more smart supersurfaces associated with the satellite among the plurality of smart supersurfaces, wherein the one or more smart supersurfaces are determined by the network device based at least on the position of the satellite and the positions of the plurality of smart supersurfaces; communicating with the user device via a determined path, wherein the path is determined based at least on the system-related information, and the determined path passes through one of the one or more smart supersurfaces.
  • a computer-readable storage medium having one or more instructions stored thereon is provided, and when the one or more instructions are executed by one or more processors of an electronic device, the electronic device performs methods according to various embodiments of the present disclosure.
  • a computer program product comprising program instructions.
  • the program instructions are executed by one or more processors of a computer, the computer executes the method according to various embodiments of the present disclosure.
  • Figure 1 is an application scenario diagram of the smart metasurface.
  • FIG. 2 shows an example scenario diagram of a non-terrestrial network using a smart metasurface according to an embodiment of the present disclosure.
  • FIG. 3 shows an exemplary electronic device for a user device according to an embodiment of the present disclosure.
  • FIG. 4 shows an exemplary electronic device for a network device according to an embodiment of the present disclosure.
  • FIG5 shows an information interaction diagram for path selection in a non-terrestrial network using a smart metasurface according to an embodiment of the present disclosure.
  • FIG6 shows a schematic diagram of a first embodiment of path selection in a non-terrestrial network using a smart metasurface according to the present disclosure.
  • FIG. 7 shows an example diagram of a system information block in a first implementation for path selection in a non-terrestrial network using a smart metasurface according to the present disclosure.
  • FIG8 shows an information interaction diagram of a first embodiment for path selection in a non-terrestrial network using a smart metasurface according to the present disclosure.
  • FIG9 shows a schematic diagram of a second embodiment of path selection in a non-terrestrial network using a smart metasurface according to the present disclosure.
  • FIGS. 10 and 11 show information interaction diagrams of a second embodiment for path selection in a non-terrestrial network using a smart metasurface according to the present disclosure.
  • FIG12 shows a schematic diagram of a third embodiment of path selection in a non-terrestrial network using a smart metasurface according to the present disclosure.
  • FIG. 13 shows a flowchart of an example method for a user equipment in a non-terrestrial network according to an embodiment of the present disclosure.
  • FIG. 14 shows a flowchart of an example method for a network device in a non-terrestrial network according to an embodiment of the disclosure.
  • 15 is a block diagram of an example structure of a personal computer as an information processing device that can be employed in an embodiment of the present disclosure
  • FIG16 is a block diagram showing a first example of a schematic configuration of a base station to which the technology of the present disclosure can be applied;
  • FIG17 is a block diagram showing a second example of a schematic configuration of a base station to which the technology of the present disclosure can be applied;
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied.
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • a wireless communication system includes at least a network device and a user device, and the network device can provide communication services for one or more user devices.
  • the term “network device” (or “base station”) has the full breadth of its usual meaning and includes at least a wireless communication station that is part of a wireless communication system or radio system to facilitate communication.
  • the network device may be, for example, an eNB of the 4G communication standard, a gNB of the 5G communication standard, a remote radio head, a wireless access point, a drone control tower, or a communication device that performs similar functions.
  • “network device” and “base station” may be used interchangeably, or a “network device” may be implemented as a part of a “base station”. The following will take the network device as an example.
  • the application examples are described in detail with reference to the accompanying drawings.
  • the term "user equipment (UE)" or “terminal device” has the full breadth of its usual meaning and includes at least a terminal device that is part of a wireless communication system or a radio system to facilitate communication.
  • the user equipment may be a terminal device or an element thereof such as a mobile phone, a laptop, a tablet computer, a vehicle-mounted communication device, a wearable device, a sensor, etc.
  • UE user equipment
  • terminal device may be used interchangeably, or “user equipment” may be implemented as a part of a “terminal device”.
  • the term “network device side”/"base station side” has the full breadth of its usual meaning, generally indicating the side that sends data in the downlink of the communication system, or indicating the side that receives data in the uplink of the communication system.
  • the term “user equipment side”/"terminal equipment side” has the full breadth of its usual meaning, and can accordingly indicate the side that receives data in the downlink of the communication system, or indicate the side that sends data in the uplink of the communication system.
  • the embodiments of the present disclosure are described below mainly based on a communication system including a network device and a user device, these descriptions can be correspondingly extended to the case of a communication system including any other type of network device side and user device side.
  • the operation on the network device side can correspond to the operation on the base station
  • the operation on the user device side can correspond to the operation on the terminal device.
  • FIG1 shows an application scenario diagram of a smart metasurface.
  • a smart metasurface can be composed of a large number of micro-reflective elements, each of which can independently adjust the change in the amplitude and/or phase of the signal, thereby accurately controlling the formation of the reflected beam.
  • a smart metasurface can be a two-dimensional plane, thereby forming a three-dimensional reflected beam.
  • examples of smart metasurfaces include large intelligent surface antennas (LISA), reconfigurable intelligent surfaces (RIS), or other smart surfaces with similar structures and functions.
  • LISA large intelligent surface antennas
  • RIS reconfigurable intelligent surfaces
  • the application scenarios of smart metasurfaces can be divided into typical scenarios and atypical scenarios.
  • a typical application scenario there is a Line-of-Sight (LOS) link connection between the network device (such as gNB) and the user equipment (UE), and the two can also be connected via a reflection link of a smart metasurface (such as LISA).
  • a smart metasurface such as LISA
  • FIG. 1(b) in an atypical application scenario, there is no LOS link connection between the network device and the user equipment due to occlusion and other reasons, and the two need to be connected via a reflection link of the smart metasurface.
  • Smart metasurfaces can be of two types: passive and active.
  • the reflective units of a passive smart metasurface have no amplification effect on the incident signal, while the reflective units of an active smart metasurface have an amplification effect on the incident signal.
  • the reflection link connection becomes the main connection, so the use of passive intelligent metasurfaces can bring about a 65% channel capacity gain, which is very effective.
  • the channel capacity gain for typical application scenarios can reach 129%, and the channel capacity gain for atypical application scenarios can even reach 1325%.
  • non-terrestrial network communications e.g., satellite communications
  • high-frequency band communications e.g., millimeter-wave band communications
  • the obstruction of large obstacles such as high-rise buildings and mountains may affect the communication quality of non-terrestrial networks.
  • deploying smart metasurfaces to provide reflective links can expand the coverage and service areas of non-terrestrial networks.
  • FIG2 shows an example scenario diagram of a non-terrestrial network using a smart metasurface according to an embodiment of the present disclosure. It should be understood that FIG2 only shows an example of a non-terrestrial communication system, and its specific implementation may have more types and possible arrangements. For example, an actual non-terrestrial communication system may have more or fewer types of devices or more or fewer numbers of devices. The features of the present disclosure may be implemented in any of the various systems as needed.
  • a non-terrestrial network may include network equipment (such as gNB), user equipment (UE), satellites (such as high orbit satellites (GEO), medium orbit satellites (MEO), or low orbit satellites (LEO)), and smart metasurfaces (such as LISA, RIS). These devices can be configured to communicate through a wireless transmission medium.
  • network equipment such as gNB
  • UE user equipment
  • satellites such as high orbit satellites (GEO), medium orbit satellites (MEO), or low orbit satellites (LEO)
  • smart metasurfaces such as LISA, RIS.
  • the network equipment in a non-terrestrial network using a transparent satellite, the network equipment is located on the ground, and the satellite can forward signals from the network equipment to the user equipment or forward signals from the user equipment to the network equipment; as shown in Figure 2(b), in a non-terrestrial network using a non-transparent satellite, the network equipment is located on the satellite and can communicate with the user equipment from the satellite.
  • Satellite communications cannot guarantee full coverage of communications services for user devices on the ground. Satellite communications often use high-frequency band communications such as millimeter wave band communications. Obstacles such as tall buildings and mountains block some user devices on the ground, destroying the visual link between these user devices and the satellite, making their connection quality unable to meet the requirements of normal communication (for example, similar to the atypical scenario shown in Figure (1) b).
  • multiple smart reflective surfaces can be deployed to enable the use of reflective links to increase the communication area covered by non-ground networks.
  • satellites are far from the ground, usually between hundreds of kilometers and tens of thousands of kilometers.
  • multiple smart supersurfaces can be deployed at locations far away from the user equipment, such as the tops of multiple high mountains, high-altitude platforms, aircraft, and even low-orbit satellites.
  • the distance between the smart supersurface and the user equipment can be several kilometers, tens of kilometers, or even hundreds of kilometers.
  • the path loss of the link is inversely proportional to the square of the link length, the distance of the reflection link of different smart supersurfaces varies greatly, and the path loss caused is also different.
  • the deployment location of some smart supersurfaces may be in the direction where the satellite is gradually moving away, and the deployment location of other smart supersurfaces may be in the direction where the satellite is gradually approaching. Therefore, based on the actual scenario of the non-terrestrial network, it is crucial to select an appropriate smart supersurface as a relay to achieve better communication quality between the user equipment and the network equipment (located on the satellite or forwarding the signal via the satellite)
  • the present invention provides a method for path selection in the non-terrestrial network.
  • the user equipment can communicate with the network equipment located on the satellite via the smart reflective surface (for example, a non-transparent satellite system), or communicate with the network equipment located on the ground via the smart reflective surface and then forwarded by the satellite (for example, a transparent satellite system), thereby improving the reliability and accuracy of data transmission.
  • the smart reflective surface for example, a non-transparent satellite system
  • the satellite for example, a transparent satellite system
  • FIG3 shows an exemplary electronic device 300 for a user device in a non-terrestrial network according to an embodiment of the present disclosure.
  • the electronic device 300 shown in FIG3 may include various units to implement the various embodiments of the present disclosure.
  • the electronic device 300 includes a communication unit 302 and a control unit 304.
  • the electronic device 300 is implemented as the user device itself or a part thereof, or is implemented as a device for controlling the user device or otherwise related to the user device or a part of the device.
  • the various operations described below in conjunction with the user device may be implemented by units 302, 304 or other possible units of the electronic device 300. It should be understood that units 302 and 304 may be included or integrated in the processing circuit of the user device.
  • the non-terrestrial network includes a user equipment and a network device that can communicate with the user equipment. Satellite, and multiple smart super surfaces.
  • the communication unit 302 may be configured to receive system relevant information (system relevant information) of a non-terrestrial network from a network device.
  • the system relevant information may include at least the ephemeris information of the satellite, and the identifier and position of one or more smart super surfaces associated with the satellite among multiple smart super surfaces.
  • the system relevant information may also include the gain of one or more smart super surfaces associated with the satellite.
  • the control unit 304 may be configured to determine a path for the user equipment to communicate with the network device based at least on the received system relevant information. The determined path passes through one of the one or more smart super surfaces mentioned above. Via the determined path, the communication unit 302 may be configured to communicate with the network device.
  • FIG4 shows an exemplary electronic device 400 for a network device in a non-terrestrial network according to an embodiment of the present disclosure.
  • the electronic device 400 shown in FIG4 may include various units to implement the various embodiments of the present disclosure.
  • the electronic device 400 includes an acquisition unit 402, a communication unit 404, and optionally a control unit 406.
  • the electronic device 400 is implemented as the network device itself or a part thereof, or is implemented as a device related to the network device or a part of the device.
  • the various operations described below in conjunction with the network device may be implemented by units 402, 404, 406 or other possible units of the electronic device 400. It should be understood that units 402, 404 and 406 may be included or integrated in the processing circuit of the network device.
  • the non-terrestrial network includes a network device and a user device, a satellite, and a plurality of smart super surfaces that can communicate with the network device.
  • the acquisition unit 402 may be configured to acquire system-related information of the non-terrestrial network.
  • the system-related information may include at least the ephemeris information of the satellite, and the identifier and position of one or more smart super surfaces associated with the satellite in the plurality of smart super surfaces.
  • the one or more smart super surfaces may be determined by the network device (e.g., by the control unit 406) at least based on the position of the satellite and the position of the plurality of smart super surfaces.
  • the system-related information may also include the gain of one or more smart super surfaces associated with the satellite.
  • the communication unit 404 may be configured to communicate with the user device via a determined path.
  • the path is determined based at least on the system-related information, and the determined path is via one of the one or more smart super surfaces. It should be understood that the above path may be determined by the user device through its control unit 304, or by the network device through its control unit 406.
  • the electronic devices 300 and 400 may be implemented at the chip level, or may be implemented at the device level by including other external components (e.g., radio links, antennas, etc.). As a complete machine, it works as a communication device.
  • the above-mentioned units are only logical modules divided according to the specific functions implemented by them, rather than being used to limit the specific implementation methods, for example, they can be implemented in software, hardware or a combination of software and hardware.
  • the above-mentioned units can be implemented as independent physical entities, or can also be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the processing circuit can refer to various implementations of a digital circuit system, an analog circuit system or a mixed signal (a combination of analog and digital) circuit system that performs functions in a computing system.
  • the processing circuit may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), parts or circuits of a separate processor core, the entire processor core, a separate processor, a programmable hardware device such as a field programmable gate array (FPGA), and/or a system including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGA field programmable gate array
  • the non-terrestrial network includes a user device, a network device, a satellite, and a plurality of smart super surfaces.
  • the user device can communicate with a network device located on a satellite via a smart super surface (e.g., a non-transparent satellite system), or can communicate with a network device located on the ground via a smart super surface and then forwarded via a satellite (e.g., a transparent satellite system).
  • a smart super surface e.g., a non-transparent satellite system
  • a satellite e.g., a transparent satellite system
  • the gain improvement provided by the smart metasurface is limited when there is a visual link connection between the user device and the satellite in the non-terrestrial network
  • the present disclosure is intended to solve the problems of poor service quality or short service time provided to users due to high building obstruction or too fast satellite movement speed between the satellite and the user device. Therefore, the embodiments of the present disclosure focus on discussing the use of the reflection link of the smart metasurface to provide improved non-terrestrial network communication service quality.
  • the link can be used directly for communication; if it is detected that there is no visual link connection between the user device and the satellite in the non-terrestrial network or the visual link connection provides poor service quality, the method of providing a reflection link using a smart metasurface proposed in the present disclosure can be combined to select a path via an appropriate smart metasurface for communication. It should also be understood that whether it is a transparent satellite system or a non-transparent satellite system, it is necessary to find an appropriate smart metasurface between the satellite and the user device as a relay to improve the quality of non-terrestrial network communication services.
  • the network device obtains system-related information of the non-terrestrial network.
  • the system-related information may include at least the ephemeris information of the satellite and the information of the multiple intelligent metasurfaces related to the satellite.
  • the ephemeris information of the satellite generally includes, for example, the position of the satellite, the number of the satellite, and the movement trajectory information of the satellite (including the moving speed and moving direction of the satellite). It should be understood that one or more smart super surfaces associated with the satellite (as shown in FIG. 5, numbered as smart super surface 1, ...
  • smart super surface N can be selected and determined by the network device based on the position of the satellite (for example, the position can be obtained from the ephemeris information of the satellite) and the position of multiple smart super surfaces. For example, a smart super surface that is far away from the satellite and in the direction where the satellite is gradually moving away is almost impossible to provide enhanced gain for non-terrestrial network communications, so the network device is likely not to select the smart super surface as a candidate relay, thereby not sending its information (included in the system-related information) to the user equipment.
  • one or more smart super surfaces associated with the satellite can change over time.
  • the system-related information may also include the gain of the above-mentioned one or more smart super surfaces.
  • the smart metasurface can report its geographical location and gain and other information to the network device in advance.
  • the smart metasurface is installed on a moving object (e.g., an airplane, a high-altitude platform, a LEO/MEO satellite)
  • the smart metasurface can periodically or non-periodically report its geographical location, gain, and corresponding timestamp and other information to the network device.
  • a timer can also be used to control the time when the smart metasurface reports the above-mentioned self-information, that is, when the timer expires, the smart metasurface can report its own information to the network device.
  • the network device can periodically or non-periodically update system-related information of the non-terrestrial network. For example, the network device can set the update period of system-related information based on the moving speed of the satellite, wherein the update period set when the satellite moving speed is large is short, and the update period set when the satellite moving speed is small is long.
  • the network device may send system-related information of the non-terrestrial network to the user equipment.
  • the network device may send a reference signal to the user equipment.
  • the network device may send a reference signal to the user equipment through each of the multiple paths of some or all of the smart super surfaces in the one or more smart super surfaces (e.g., smart super surface 1-smart super surface N) (each path passes through one smart super surface).
  • the user equipment may record the received signal quality of the reference signal corresponding to each path in the multiple paths.
  • the network device side may use an antenna array including multiple antenna elements to form a directional beam, thereby improving transmission efficiency and system throughput.
  • the user device side may use a single antenna or an antenna array including multiple antenna elements.
  • reference signals include synchronization signal blocks (SSBs), channel state information reference signals (CSI-RSs), and other reference signals sent by network devices known to those skilled in the art.
  • received signal quality includes, but is not limited to, reference signal received power (RSRP), reference signal received quality (RSRQ), signal to interference plus noise ratio (SINR), etc.
  • the user equipment may determine the path for the user equipment to communicate with the network device based at least on the received system-related information, wherein the determined path is via one of the one or more smart super surfaces. More specifically, the user equipment may select a path from multiple paths as the determined path based at least on the system-related information and the received signal quality corresponding to each of the multiple paths recorded at 504. It should be understood that the determined path may be the same as or different from the path with the highest received signal quality of the reference signal received by the user equipment at 503.
  • the user equipment does not necessarily directly select the best path in the current measurement result (i.e., the path with the highest received signal quality), but may be combined with system-related information to comprehensively judge and select a path that performs better in subsequent non-terrestrial communications.
  • the difference between the maximum received signal quality and the received signal quality corresponding to one of the multiple paths is less than a first threshold, and the time when the smart super surface in the path is covered by the satellite is greater than the time when the smart super surface in the path with the highest received signal quality is covered by the satellite and is greater than a second threshold
  • the user equipment may select the path as the determined path.
  • the time when the smart metasurface is covered by the satellite can be derived from system related information.
  • the first threshold and the second threshold can be pre-set values or values calculated based on prior measurement information.
  • the user device may communicate with the network device via the determined path.
  • the network device may set a specific time window and inform the user device of the time window, or the user device may determine the time window based on the information provided by the network device. After the time window expires, the steps in Figure 5 can be repeated to reacquire system-related information and perform path selection.
  • the value of the time window can be a fixed value (e.g., periodically updating the path selection) or a variable value (e.g., non-periodically updating the path selection).
  • the system-related information of the non-terrestrial network can be directly pre-stored in the user equipment, so the step of sending the system-related information by the network device to the user equipment at 502 can be omitted.
  • the order of 502 and 503 can be interchanged.
  • the network device can send system-related information after sending multiple reference signals to the user equipment.
  • the user equipment can report the determined path to the network device, for example, reporting the identifier of the smart super surface in the determined path to the network device.
  • the identifier of the smart super surface can be sent to the user equipment by the smart super surface when forwarding the reference signal (by information scrambling, etc.); or the user equipment can be based on the angle of arrival of the received reference signal antenna, combined with its own position and the position of the satellite in the system-related information (the position of the satellite can be included in the satellite's ephemeris information) and the identifier and position of one or more smart super surfaces, etc., to derive the identifier of the smart super surface through which the reference signal passes.
  • the steps of sending a reference signal and recording the received signal quality of the reference signal may also be omitted in FIG5.
  • the user equipment or network equipment may calculate and derive a preferred communication path based on the positions of the satellite and one or more intelligent metasurfaces (and optionally, the user equipment) and the movement information of the satellite. This process may be applicable to scenarios such as emergency recovery after communication interruption.
  • the step of determining the path in Figure 5 can also be performed by the network device. Accordingly, the step of the network device sending system-related information to the user equipment at 502 can be omitted, and the step of the user equipment reporting the received signal quality of the reference signal corresponding to each path in the multiple paths to the network device can be added between 504 and 505, so that the network device can select a path from the multiple paths as the determined path based on the system-related information and the reported received signal quality.
  • the method for path selection in a non-terrestrial network using a smart metasurface proposed in this article can be adopted in a variety of scenarios.
  • the following will introduce and describe the smart metasurface path selection method in three scenarios in detail through three embodiments (including the first embodiment, the second embodiment and the third embodiment).
  • the user equipment has not yet accessed the non-terrestrial cellular network system, and has not yet applied for time and frequency resources for the uplink and downlink after accessing the network. Therefore, the network equipment and the user equipment cannot exchange information at the predetermined time and frequency. The network equipment and the user equipment may not even know each other's geographical location.
  • FIG6 shows a schematic diagram of a first embodiment of the present disclosure.
  • FIG6 shows only two The examples of smart super surfaces (e.g., LISA-1 and LISA-2) are shown in FIG6 , and a larger or smaller number of smart super surfaces may be included in an actual non-terrestrial network.
  • FIG6 only shows an example of a non-transparent satellite system
  • the path selection method in the first embodiment is also applicable to a transparent satellite system that forwards signals to a network device (e.g., gNB) via a satellite.
  • a network device e.g., gNB
  • the network device can continuously send synchronization signal blocks (SSBs) at certain time intervals, that is, perform SSB beam scanning, in which the network device sends an SSB signal in each of multiple beam directions.
  • the user equipment selects the SSB signal in the optimal SSB direction (for example, the direction corresponding to the SSB signal with the best received signal quality) to achieve downlink synchronization.
  • the reception quality of the reference signal is related to the path loss of the signal
  • the path loss PL is proportional to the product of the squares of the distances of the two reflection links through the smart reflection surface (for example, La and Lb ). Therefore, the longer the distance, the greater the spatial loss of the link (in addition, if the smart metasurface is an active smart metasurface, the size of the gain also needs to be considered).
  • the SSB signal includes the primary synchronization signal (PSS) and the secondary synchronization signal (SSS). Therefore, by receiving the SSB signal, the user equipment can obtain the system information of the cell number (PCI), the frame start bit and the physical broadcast channel (PBCH), and then obtain the system information block SIB1 message of the system.
  • the network equipment can include the system-related information of the non-terrestrial network in the system information block SIBx and transmit it to the user equipment for the subsequent path selection of the user equipment.
  • the existing system information block SIBx may be extended to include system-related information of non-terrestrial networks.
  • the system-related information may include the ephemeris information of the satellite, and the identifier and location (and optionally, the gain of one or more smart super surfaces) of one or more smart super surfaces associated with the satellite (the one or more smart super surfaces may be determined by the network device based at least on the location of the satellite and multiple smart super surfaces in the non-terrestrial network).
  • Figure 7 shows a code segment of an existing SIB9 message, which includes the global positioning system (GPS) time and the international coordinated time (UTC).
  • GPS global positioning system
  • UTC international coordinated time
  • the existing SIB9 message may be extended to carry system-related information such as the ephemeris information of the satellite and the identifier and location of the smart super surface.
  • the user equipment After receiving the system information block SIBx including system related information, the user equipment can determine which smart metasurface path should be selected for random access based on the recorded received signal quality of the SSB and the system related information. Access.
  • the SSB signal in each direction corresponds to a separate access time-frequency resource. Therefore, the user equipment can send a random access preamble code on the access time-frequency resource via the determined path according to the access time-frequency resource of the SSB signal in the corresponding direction of the determined path, thereby accessing the non-terrestrial network and communicating with the network device.
  • FIG8 shows an information interaction diagram of a first embodiment of path selection in a non-terrestrial network using a smart super surface according to the present disclosure.
  • the network device obtains system-related information of the non-terrestrial network, which may include ephemeris information of the satellite, and identifiers and locations of one or more smart super surfaces associated with the satellite (and optionally, the gain of one or more smart super surfaces).
  • system-related information of the non-terrestrial network may include ephemeris information of the satellite, and identifiers and locations of one or more smart super surfaces associated with the satellite (and optionally, the gain of one or more smart super surfaces).
  • one or more smart super surfaces are numbered as smart super surface 1, ... smart super surface N, where N is an integer greater than or equal to 1.
  • N corresponding to FIG6 is equal to 2.
  • the network device broadcasts SSB signals in multiple directions to the user equipment, that is, performs SSB beam scanning.
  • the direction of the SSB is predetermined in advance, and there may not be a smart super surface in the direction of each SSB, and the SSB beam scanning process may not necessarily traverse all smart super surfaces in one or more smart super surfaces.
  • the user equipment can receive the SSB signal via part or all of the smart super surfaces, and record the received signal quality of the SSB signal at 803, and then receive the SIB1 signal in the direction of the SSB signal with the strongest received signal quality.
  • the user equipment may decode the SIB1 signal to obtain the time-frequency resource scheduling information of its subsequent system information block SIBx message.
  • an existing SIBx (e.g., SIB9) message may be extended or a new SIBx message may be defined to carry system-related information.
  • the user equipment may receive a system information block message including system-related information from a network device.
  • the user equipment may determine a path for accessing a non-terrestrial network based at least on the system-related information at 806.
  • the user equipment may determine, based on the received signal quality of the SSB signal in combination with the system-related information, a path through which smart metasurface to send a random access preamble.
  • the user equipment may send a random access preamble to the network device via the determined path on the time-frequency resource corresponding to the SSB signal in the direction of the path, thereby accessing the non-terrestrial network. It should be appreciated that after the user equipment accesses the non-terrestrial network, the user equipment may be instructed to preferentially perform multiple subsequent operations with the beam pointing to the smart metasurface in the determined path, such as but not limited to one or more of the following: beam scanning, data reception, beam recovery, etc.
  • the signal quality of the SSB received by the user equipment via LISA-1 and LISA-2 is better.
  • the length of the distance of the segment reflection link is related to the loss on the path of transmitting SSB via LISA-1. Therefore, the user equipment can receive the SIB1 signal in the direction of the SSB signal (i.e., the aforementioned optimal SSB direction), and receive the subsequent SIBx message (e.g., the extended SIB9 message) including system-related information according to the time-frequency resource scheduling information in SIB1.
  • the user equipment can know that although the quality of the received signal on the LISA-1 path (i.e., the path via LISA-1) is slightly better than that on the LISA-2 path (i.e., the path via LISA-2), the moving direction of the satellite is away from LISA-1 and close to LISA-2, that is, the signal transmitted on the LISA-2 path will have a longer satellite coverage time.
  • the LISA-2 path with higher comprehensive communication quality can be selected for accessing the non-terrestrial network, thereby improving the access success rate.
  • system related information may also be included in other signals that can be thought of by those skilled in the art and transmitted to the user equipment.
  • the system related information may also be transmitted from the network device to the user equipment via other wireless communication systems.
  • Second embodiment Intelligent metasurface path selection after user equipment joins the network
  • the user equipment has accessed the non-terrestrial cellular network system and can perform two-way information exchange with the network equipment.
  • the user equipment can notify the network equipment of its geographical location.
  • FIG9 shows a schematic diagram of a second embodiment according to the present disclosure. Similar to FIG6 , for ease of explanation, FIG9 only shows an example of two smart super surfaces (e.g., LISA-1 and LISA-2), and an actual non-terrestrial network may include a greater or lesser number of smart super surfaces. It should be understood that although FIG9 only shows an example of a non-transparent satellite system, the path selection method in the second embodiment is also applicable to a transparent satellite system that forwards signals to a network device (e.g., gNB) via a satellite.
  • a network device e.g., gNB
  • the network device can perform beam scanning (e.g., CSI-RS beam scanning) in the direction of each smart super surface, that is, send multiple CSI-RS beams.
  • Each smart super surface can reflect multiple beams toward the user equipment to measure the quality of the received signal on the path through the smart super surface.
  • the network device can pre-allocate the time-frequency resources for beam measurement for each smart super surface (e.g., through beam scanning predetermined information) and notify the user equipment. In this way, the user equipment can measure the receiving beam accordingly according to the predetermined time-frequency resources and record the measurement results of the received signal quality.
  • the network device has acquired the location information of one or more smart super surfaces (e.g., LISA-1 and LISA-2) associated with the satellite, and subdivided the direction of LISA-1 into multiple small directions at a predetermined first time to send CSI-RS beams in sequence.
  • LISA-1 reflects these beams toward the user equipment in sequence so that the user equipment receives the beams in each small direction and measures the quality of its received signal.
  • the network device subdivided the direction of LISA-2 into multiple small directions at a predetermined second time to send CSI-RS beams in sequence.
  • LISA-2 reflects these beams toward the user equipment in sequence so that the user equipment receives the beams in each small direction and measures the quality of its received signal. It should be understood that in this embodiment, since the network device knows the location of each smart super surface, the measured path can traverse all smart super surfaces in one or more smart super surfaces associated with the satellite. It should also be understood that, for each smart metasurface, since the network device can send reference signals to the user device via the smart metasurface in multiple small directions, it can be regarded as that the network device can send reference signals to the user device through multiple paths via the smart metasurface.
  • the reception quality of the reference signal is related to the path loss of the signal, and the path loss PL is proportional to the product of the squares of the distances of the two reflection links (e.g., La and Lb ) through the smart reflective surface. Therefore, the longer the distance, the greater the spatial loss of the link (in addition, if the smart metasurface is an active smart metasurface, the gain also needs to be considered).
  • the final communication path can be determined in two ways.
  • One way is that the user equipment determines the path
  • the other way is that the network device determines the path.
  • Figures 10 and 11 respectively show the information interaction diagrams under these two ways.
  • FIG10 shows an information interaction diagram for determining a path by a user device.
  • the network device obtains system-related information of a non-terrestrial network, which may include ephemeris information of a satellite, and an identifier and position (and optionally, gain of one or more smart super surfaces) of one or more smart super surfaces associated with the satellite (the one or more smart super surfaces may be determined by the network device based at least on the positions of multiple smart super surfaces in the satellite and the non-terrestrial network (and optionally, the position of the user device)).
  • one or more smart super surfaces are numbered as smart super surface 1, ... smart super surface N, where N is an integer greater than or equal to 1.
  • N corresponding to FIG9 is equal to 2.
  • the network device may send system-related information to the user device at 1002.
  • the system-related information may be carried and transmitted in beam scanning reservation information, which also specifies the time-frequency resources for the subsequent transmission of reference signals (e.g., CSI-RS).
  • the network device performs CSI-RS beam scanning on the corresponding time-frequency resources to the user device. Description, wherein the network device can send reference signals in multiple subdivided directions in the direction of each smart super surface.
  • the user device can record the received signal quality of the reference signal through each of the paths at 1004, and can determine the path for communication based on the system-related information and the recorded received signal quality of the CSI-RS at 1005.
  • the user device can communicate with the network device via the determined path (using the beam direction corresponding to the path). Additionally, the user device can also report the determined path to the network device (for example, reporting to the network device the identifier of the smart super surface through which the path passes and the corresponding CSI-RS beam number), so that the network device communicates with the user device via the determined path.
  • the system related information may also be included in other signals that can be thought of by those skilled in the art and transmitted to the user equipment.
  • the system related information may also be transmitted from the network device to the user equipment via other wireless communication systems.
  • FIG11 shows an information interaction diagram for determining a path by a network device.
  • the network device obtains system-related information of a non-terrestrial network, which may include ephemeris information of a satellite, and one or more smart super surfaces associated with the satellite (the one or more smart super surfaces may be determined by the network device at least based on the location of multiple smart super surfaces in the satellite and the non-terrestrial network (and optionally, the location of the user equipment)) The identifier and position (and optionally, the gain of one or more smart super surfaces).
  • one or more smart super surfaces are numbered as smart super surface 1, ... smart super surface N, where N is an integer greater than or equal to 1.
  • N corresponding to FIG9 is equal to 2.
  • the network device sends beam scanning reservation information to the user equipment at 1102, the information only specifies the time-frequency resources for the subsequent transmission of reference signals (e.g., CSI-RS), and does not need to include system-related information.
  • the network device may perform CSI-RS beam scanning on the corresponding time-frequency resources to the user equipment, wherein the network device may send reference signals of multiple subdivided directions in the direction of each smart super surface. Accordingly, the user equipment may record the received signal quality of the reference signal via each of the paths at 1104.
  • the user equipment reports the recorded measurement results (i.e., the received signal quality of the reference signal corresponding to each path) to the network device, so that the network device determines the path for communication based on the system-related information and the received reported CSI-RS received signal quality at 1106.
  • the network device may communicate with the user equipment via the determined path (using the beam direction corresponding to the path).
  • the user equipment communicates with the satellite via LISA-1 and LISA-2 receives multiple CSI-RS signals respectively. Since the path loss is related to the distance length of the two reflection links (when using a passive smart metasurface), the loss on the path of transmitting CSI-RS via LISA-2 is smaller. More specifically, the loss of the path in the direction of the fourth CSI-RS beam sent in the direction of LISA-2 (as shown by the horizontal striped beam in Figure 9 (b)) is the smallest, that is, the received signal quality measurement result obtained through this path is the largest.
  • the received signal quality on the LISA-2 path (that is, the path via LISA-2) is better than that on the LISA-1 path (that is, the path via LISA-1), and the moving direction of the satellite is away from LISA-1 and close to LISA-2, that is, the signal transmitted on the LISA-2 path will have a longer satellite coverage time. Therefore, the path selected by the user equipment or network equipment is reflected via LISA-2. More specifically, as shown in Figure 9 (b), there are multiple paths via LISA-2.
  • the difference in received signal quality between it and the path in the direction of the 5th CSI-RS beam is less than a certain threshold (for example, a first threshold), and the latter path is covered by the satellite for a longer time and is greater than a certain threshold (for example, a second threshold), so the latter path with higher subsequent comprehensive communication quality (the path via LISA-2 corresponding to the direction of the vertical stripe beam in Figure 9(b)) can be selected as the determined path for communication.
  • a certain threshold for example, a first threshold
  • a certain threshold for example, a second threshold
  • the user equipment has accessed a non-terrestrial cellular network system, and due to reasons such as the movement of the user equipment or the satellite, the user equipment needs to switch to another cell (for example, switching from communicating with the original gNB to communicating with the target gNB).
  • FIG12 shows a schematic diagram of a second embodiment according to the present disclosure. Similar to FIG6 and FIG9, for ease of explanation, FIG12 only shows an example of two smart metasurfaces (e.g., LISA-1 and LISA-2), and an actual non-terrestrial network may include a greater or lesser number of smart metasurfaces. It should be understood that, although FIG12 only shows an example of a non-transparent satellite system, the path selection method in the third embodiment is also applicable to a transparent satellite system that forwards signals to a network device via a satellite.
  • two smart metasurfaces e.g., LISA-1 and LISA-2
  • an actual non-terrestrial network may include a greater or lesser number of smart metasurfaces.
  • FIG12 only shows an example of a non-transparent satellite system
  • the path selection method in the third embodiment is also applicable to a transparent satellite system that forwards signals to a network device via a satellite.
  • the user equipment when the user equipment finds that the communication quality is poor even if the switching path is used, it can measure the received signal quality of the adjacent cell and switch to the adjacent cell that can provide better communication quality after the appropriate conditions are triggered. As shown in Figure 12, in this example, the user equipment can communicate with the original gNB in the original cell through the path via LISA-2 (which is the previous preferred path). Since LISA-1 is far away from the original gNB, the original gNB does not use LISA-1 as a candidate smart metasurface, so the information about LISA-1 may not be provided in the system-related information.
  • LISA-2 which is the previous preferred path
  • both LISA-1 and LISA-2 can be used as candidate smart super surfaces to provide a reflection link to improve the communication quality of the non-terrestrial network.
  • the user equipment may send information of the smart super surface (e.g., LISA-2) in the preferred path previously determined in the original cell to the target gNB, and the information may include at least the identifier and location of LISA-2, etc. Based at least on this information, the network device may select a switched path for communication, or instruct the user equipment to select a switched path. For the selection of the switched path, a method similar to that in the second embodiment may be performed.
  • the smart super surface e.g., LISA-2
  • the network device may select a switched path for communication, or instruct the user equipment to select a switched path. For the selection of the switched path, a method similar to that in the second embodiment may be performed.
  • each network device can determine one or more smart hypersurfaces (sometimes referred to herein as one or more smart hypersurfaces associated with a satellite) based at least on information such as the location of the satellite and multiple smart hypersurfaces, and include information about the one or more smart hypersurfaces (as a set of candidate smart hypersurfaces) in system-related information for path selection in non-terrestrial networks. Due to the different locations and environments of different network devices, the candidate smart hypersurface sets they determine are also different.
  • the smart hypersurface in the preferred path provided by the original gNB can be included in the set of candidate smart hypersurfaces determined by the target gNB, thereby increasing the path selection range in the target cell and helping the target gNB to determine the switched path more quickly and accurately.
  • the specific example descriptions in the above embodiments are merely exemplary and are not intended to be limiting. In practice, there may be a greater number of user devices and network devices.
  • the above method provided in the present disclosure may be used to select a non-terrestrial network communication path in various examples. It is understood that, in the case where the network device is a gNB and the gNB includes multiple transmit and receive points (TRPs), the above method may be used to select and determine a non-terrestrial network communication path between each user device and each TRP.
  • TRPs transmit and receive points
  • a preferred path can be determined by a user device or a network device based at least on NTN system-related information (e.g., which at least includes satellite ephemeris information, and identifiers and locations of one or more smart metasurfaces associated with the satellite, etc.).
  • NTN system-related information e.g., which at least includes satellite ephemeris information, and identifiers and locations of one or more smart metasurfaces associated with the satellite, etc.
  • the preferred path can provide NTN communication between the network device and the user device via an appropriate smart metasurface.
  • the user equipment Before the user equipment accesses the NTN cellular network, by extending the existing or defining new messages (e.g., SIB messages) to transmit NTN system-related information, the user equipment can determine the preferred path for random access, significantly improving the access success rate. After the user equipment accesses the NTN cellular network, the network equipment or the user equipment determines the preferred path based on at least the system-related information (and the reference signal measurement results), which can effectively improve the channel capacity and improve the overall transmission efficiency of the system. In the scenario where the user equipment performs a cell handover, the target network equipment can determine the preferred path after the handover more quickly and accurately based on information such as the intelligent super surface in the original preferred path provided by the original network equipment.
  • the target network equipment can determine the preferred path after the handover more quickly and accurately based on information such as the intelligent super surface in the original preferred path provided by the original network equipment.
  • FIG13 shows a flowchart of an example method 1300 for a user device (or more specifically, an electronic device 300) in a non-terrestrial network according to an embodiment of the present disclosure.
  • the method 1300 may include a user device receiving system-related information of a non-terrestrial network from a network device (box S1301).
  • the system-related information may include at least ephemeris information of a satellite, and an identifier and location of one or more smart super surfaces associated with the satellite in a plurality of smart super surfaces.
  • the user device may determine a path for the user device to communicate with the network device based at least on the received system-related information. In the method, the determined path is via one of the one or more smart super surfaces described above. Thereafter, the user device may communicate with the network device via the determined path (box 1303).
  • the detailed example operation of the method may refer to the above description of the operation of the user device (or more specifically, the electronic device 300), which will not be repeated here.
  • FIG14 shows a flowchart of an example method 1400 for a network device (or more specifically, an electronic device 400) in a non-terrestrial network according to an embodiment of the present disclosure.
  • the method 1400 may include a network device acquiring system-related information of a non-terrestrial network (box 1401).
  • the system-related information includes at least the ephemeris information of the satellite, and the identifier and position of one or more smart super surfaces associated with the satellite in multiple smart super surfaces.
  • the one or more smart super surfaces are determined by the network device at least based on the position of the satellite and the positions of the multiple smart super surfaces.
  • the network device may communicate with the user device via a determined path.
  • the above path is determined (by the network device or the user device) at least based on the system-related information, and the determined path is via one of the above one or more smart super surfaces.
  • the detailed example operation of the method can refer to the above description of the operation of the network device (or more specifically, the electronic device 400), which will not be repeated here.
  • An electronic device for a user device in a non-terrestrial network further comprising a network device capable of communicating with the user device, a satellite, and a plurality of smart metasurfaces, the electronic device comprising a processing circuit, the processing circuit being configured to cause the user device to perform the following operations:
  • system-related information of a non-terrestrial network from the network device, the system-related information including at least ephemeris information of the satellite, and an identifier and a position of one or more smart super surfaces associated with the satellite among the plurality of smart super surfaces;
  • Clause 4 The electronic device according to clause 2 or 3, wherein the processing circuit is further configured to cause the user equipment to perform the following operations:
  • the received signal quality of the reference signal corresponding to each path in the multiple paths is recorded.
  • determining the path for communication between the user device and the network device based at least on the received system-related information comprises: selecting a path from the multiple paths as the determined path based at least on the system-related information and the recorded received signal quality corresponding to each of the multiple paths.
  • the first path is selected as the determined path.
  • Clause 7 The electronic device of clause 1, wherein the system-related information is included in a system information block (SIB).
  • SIB system information block
  • Clause 8 The electronic device according to clause 1, wherein determining the path for the user equipment to communicate with the network device is performed before the user equipment accesses the non-terrestrial network, and the processing circuit is further configured to cause the user equipment to perform the following operations:
  • one or more of the following is preferentially performed with a beam directed toward the one smart metasurface: beam scanning, data reception, or beam recovery.
  • the system related information is included in the beam scanning reservation information.
  • the time-frequency resources corresponding to the reference signal are specified by beam scanning reservation information.
  • the reference signal comprises a synchronization signal block (SSB) or a channel state information reference signal (CSI-RS).
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • Clause 13 An electronic device according to clause 1, wherein the system-related information also includes: a gain of the one or more smart metasurfaces.
  • the one or more intelligent metasurfaces are configured by the network device based at least on the position of the satellite and the plurality of intelligent The position of the super surface can be determined.
  • An electronic device for a network device in a non-terrestrial network further comprising a user device capable of communicating with the network device, a satellite, and a plurality of smart metasurfaces, the electronic device comprising a processing circuit, the processing circuit being configured to cause the network device to perform the following operations:
  • Acquire system-related information of a non-terrestrial network including at least ephemeris information of the satellite, and identifiers and positions of one or more smart super surfaces associated with the satellite among the multiple smart super surfaces, wherein the one or more smart super surfaces are determined by the network device based at least on the position of the satellite and the positions of the multiple smart super surfaces;
  • Clause 16 The electronic device of clause 15, wherein the determined path is different from a path where the quality of received signals for the user equipment to receive the reference signal from the network device is the highest.
  • Clause 17 The electronic device according to clause 15, wherein the determined path is the same as a path where the quality of received signals for the user equipment to receive the reference signal from the network device is the highest.
  • Clause 18 The electronic device according to clause 16 or 17, wherein the processing circuit is further configured to cause the network device to perform the following operations:
  • a reference signal is sent to the user equipment by respectively passing through each of the multiple paths of some or all of the one or more smart metasurfaces, wherein the user equipment records the received signal quality corresponding to each of the multiple paths.
  • a path is selected from the plurality of paths as the determined path based at least on the system-related information and the reported received signal quality.
  • the first path is selected as the determined path.
  • Clause 21 The electronic device of clause 18, wherein the processing circuit is further configured to cause the network device to perform the following operations:
  • the system related information is sent to the user equipment, so that the user equipment selects one path from the multiple paths as the determined path based at least on the system related information and the recorded received signal quality corresponding to each path in the multiple paths.
  • Clause 22 The electronic device of clause 15, wherein the system-related information is included in a system information block (SIB).
  • SIB system information block
  • the system related information is included in the beam scanning reservation information.
  • the time-frequency resources corresponding to the reference signal are specified by beam scanning reservation information.
  • the reference signal comprises a synchronization signal block (SSB) or a channel state information reference signal (CSI-RS).
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • Clause 25 The electronic device according to clause 15, wherein another user device switches to the network device, and the processing circuit is further configured to cause the network device to perform the following operations:
  • the switching path is selected at least based on the information, or the other user equipment is instructed to select the switching path.
  • Clause 26 An electronic device according to clause 15, wherein the smart metasurface comprises a large smart surface antenna (LISA) or a reconfigurable smart surface (RIS).
  • LISA large smart surface antenna
  • RIS reconfigurable smart surface
  • Clause 27 An electronic device according to clause 15, wherein the system related information further includes: or multiple smart metasurfaces.
  • a method for a user device in a non-terrestrial network comprising:
  • system-related information of a non-terrestrial network from the network device, the system-related information including at least ephemeris information of the satellite, and an identifier and a position of one or more smart super surfaces associated with the satellite among the plurality of smart super surfaces;
  • a method for a network device in a non-terrestrial network comprising:
  • Acquire system-related information of a non-terrestrial network including at least ephemeris information of the satellite, and identifiers and positions of one or more smart super surfaces associated with the satellite among the multiple smart super surfaces, wherein the one or more smart super surfaces are determined by the network device based at least on the position of the satellite and the positions of the multiple smart super surfaces;
  • Clause 30 A computer-readable storage medium having one or more instructions stored thereon, the one or more instructions, when executed by one or more processors of an electronic device, cause the electronic device to perform the method of clause 28 or 29.
  • Clause 31 A computer program product comprising program instructions which, when executed by one or more processors of a computer, cause the computer to perform the method according to clause 28 or 29.
  • machine executable instructions in the machine readable storage medium or program product can be configured to perform operations corresponding to the above-mentioned device and method embodiments.
  • the embodiments of the machine readable storage medium or program product are clear to those skilled in the art, so they are not described repeatedly.
  • the machine readable storage medium and program product for carrying or including the above-mentioned machine executable instructions also fall within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • FIG. 15 is a block diagram showing an example structure of a personal computer as an information processing device that can be adopted in an embodiment of the present disclosure.
  • the personal computer can correspond to the above-mentioned exemplary terminal device according to the present disclosure.
  • a central processing unit (CPU) 1101 performs various processes according to a program stored in a read-only memory (ROM) 1102 or a program loaded from a storage section 1108 to a random access memory (RAM) 1103.
  • ROM read-only memory
  • RAM random access memory
  • the CPU 1101, the ROM 1102, and the RAM 1103 are connected to each other via a bus 1104.
  • An input/output interface 1105 is also connected to the bus 1104.
  • the following components are connected to the input/output interface 1105: an input section 1106 including a keyboard, a mouse, etc.; an output section 1107 including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage section 1108 including a hard disk, etc.; and a communication section 1109 including a network interface card such as a LAN card, a modem, etc.
  • the communication section 1109 performs communication processing via a network such as the Internet.
  • a drive 1110 is also connected to the input/output interface 1105 as needed.
  • a removable medium 1111 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc. is mounted on the drive 1110 as needed so that a computer program read therefrom is installed into the storage section 1108 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1111 .
  • the removable medium 1111 is distributed separately from the device to provide the program to the user.
  • Examples of the removable medium 1111 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including minidiscs (MD) (registered trademark)), and semiconductor memories.
  • the storage medium may be the ROM 1102, a hard disk included in the storage section 1108, or the like, in which the program is stored and distributed to the user together with the device containing them.
  • the technology of the present disclosure can be applied to various products.
  • the electronic device 400 according to the embodiment of the present disclosure may be implemented as various network devices/base stations or included in various network devices/base stations, and the method shown in FIG14 may also be implemented by various network devices/base stations.
  • the electronic device 300 according to the embodiment of the present disclosure may be implemented as various user devices/terminal devices or included in various user devices/terminal devices, and the method shown in FIG13 may also be implemented by various user devices/terminal devices.
  • the network device/base station mentioned in the present disclosure may be implemented as any type of base station, such as an evolved Node B (gNB).
  • the gNB may include one or more transmit and receive points (TRPs).
  • the user equipment may be connected to one or more TRPs within one or more gNBs.
  • the user equipment may be able to receive transmissions from multiple gNBs (and/or multiple TRPs provided by the same gNB).
  • the gNB may include a macro gNB and a small gNB.
  • the small gNB may be a gNB that covers a cell smaller than a macro cell, such as a pico gNB, a micro gNB, and a home (femto) gNB.
  • the base station may be implemented as any other type of base station, such as a NodeB and a base transceiver station (Base Transceiver Station, BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (Remote Radio Head, RRH) arranged at a place different from the main body.
  • a main body also referred to as a base station device
  • RRH Remote Radio Head
  • the various types of terminals described below may work as a base station by temporarily or semi-persistently performing base station functions.
  • the user equipment mentioned in the present disclosure is also referred to as a terminal device in some examples, and can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle-type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment can also be implemented as a terminal that performs machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment can be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above-mentioned terminals.
  • the user equipment can use multiple wireless communication technologies for communication.
  • the user equipment can be configured to use GSM, UMTS, CDMA2000, WiMAX, LTE,
  • the user equipment may be configured to communicate using two or more of LTE-A, WLAN, NR, Bluetooth, etc.
  • the user equipment may also be configured to communicate using only one wireless communication technology.
  • base station in the present disclosure has the full breadth of its usual meaning and includes at least a wireless communication station used as part of a wireless communication system or a radio system to facilitate communication.
  • base stations may be, for example, but not limited to, the following: a base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system, one or both of a radio network controller (RNC) and a Node B in a WCDMA system, an eNB in an LTE and LTE-Advanced system, or a corresponding network node in a future communication system (e.g., a gNB that may appear in a 5G communication system, an eLTE eNB, etc.).
  • Some of the functions in the base station of the present disclosure may also be implemented as an entity that has a control function for communication in D2D, M2M, and V2V communication scenarios, or as an entity that plays a role in spectrum coordination in
  • FIG16 is a block diagram showing a first example of a schematic configuration of a base station (gNB is used as an example in this figure) to which the technology of the present disclosure can be applied.
  • the gNB 1200 includes multiple antennas 1210 and a base station device 1220.
  • the base station device 1220 and each antenna 1210 can be connected to each other via an RF cable.
  • the gNB 1200 (or base station device 1220) here may correspond to the above-mentioned network device (or more specifically, the electronic device 400).
  • Each of the antennas 1210 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna) and is used for the base station device 1220 to transmit and receive wireless signals.
  • the gNB 1200 may include multiple antennas 1210.
  • the multiple antennas 1210 may be compatible with multiple frequency bands used by the gNB 1200.
  • the base station device 1220 includes a controller 1221 , a memory 1222 , a network interface 1223 , and a wireless communication interface 1225 .
  • the controller 1221 may be, for example, a CPU or a DSP, and operates various functions of the higher layers of the base station device 1220. For example, the controller 1221 generates a data packet according to the data in the signal processed by the wireless communication interface 1225, and transmits the generated packet via the network interface 1223. The controller 1221 may bundle data from a plurality of baseband processors to generate a bundled packet, and transmit the generated bundled packet. The controller 1221 may have functions for performing the following operations: Logical functions of control: The control is such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. The control can be performed in conjunction with a nearby gNB or core network node.
  • the memory 1222 includes RAM and ROM, and stores programs executed by the controller 1221 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 1223 is a communication interface for connecting the base station device 1220 to the core network 1224.
  • the controller 1221 can communicate with the core network node or another gNB via the network interface 1223.
  • the gNB 1200 and the core network node or other gNBs can be connected to each other through logical interfaces (such as S1 interfaces and X2 interfaces).
  • the network interface 1223 can also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1223 is a wireless communication interface, the network interface 1223 can use a higher frequency band for wireless communication compared to the frequency band used by the wireless communication interface 1225.
  • the wireless communication interface 1225 supports any cellular communication scheme such as long term evolution (LTE) and LTE-Advanced, and provides wireless connection to a terminal located in a cell of the gNB 1200 via the antenna 1210.
  • the wireless communication interface 1225 may generally include, for example, a baseband (BB) processor 1226 and an RF circuit 1227.
  • the BB processor 1226 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing of layers such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP).
  • the BB processor 1226 may have a part or all of the above-mentioned logical functions.
  • the BB processor 1226 may be a memory storing a communication control program, or a module including a processor configured to execute a program and related circuits. Updating the program may change the function of the BB processor 1226.
  • the module may be a card or a blade inserted into a slot of the base station device 1220. Alternatively, the module may also be a chip mounted on a card or a blade.
  • the RF circuit 1227 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1210.
  • FIG. 16 shows an example in which one RF circuit 1227 is connected to one antenna 1210, the present disclosure is not limited to this illustration, but one RF circuit 1227 may be connected to multiple antennas 1210 at the same time.
  • the wireless communication interface 1225 may include multiple BB processors 1226.
  • the multiple BB processors 1226 may be compatible with multiple frequency bands used by the gNB 1200.
  • the wireless communication interface 1225 may include multiple RF circuits 1227.
  • the multiple RF circuits 1227 may be compatible with multiple antenna elements.
  • FIG. 16 shows an example in which the wireless communication interface 1225 includes multiple BB processors 1226 and multiple RF circuits 1227, the wireless communication interface 1225 may also include a single BB processor 1226 or a single RF circuit 1227.
  • the gNB 1330 includes a plurality of antennas 1340, a base station device 1350, and an RRH 1360.
  • the RRH 1360 and each antenna 1340 can be connected to each other via an RF cable.
  • the base station device 1350 and the RRH 1360 can be connected to each other via a high-speed line such as an optical fiber cable.
  • the gNB 1330 (or base station device 1350) here may correspond to the above-mentioned network device (or more specifically, the electronic device 400).
  • Each of the antennas 1340 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for RRH 1360 to transmit and receive wireless signals.
  • gNB 1330 may include multiple antennas 1340.
  • the multiple antennas 1340 may be compatible with multiple frequency bands used by gNB 1330.
  • Base station device 1350 includes controller 1351, memory 1352, network interface 1353, wireless communication interface 1355, and connection interface 1357. Controller 1351, memory 1352, and network interface 1353 are the same as controller 1221, memory 1222, and network interface 1223 described with reference to FIG.
  • the wireless communication interface 1355 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to terminals located in a sector corresponding to the RRH 1360 via the RRH 1360 and the antenna 1340.
  • the wireless communication interface 1355 may generally include, for example, a BB processor 1356.
  • the BB processor 1356 is the same as the BB processor 1226 described with reference to FIG. 16, except that the BB processor 1356 is connected to the RF circuit 1364 of the RRH 1360 via the connection interface 1357.
  • the wireless communication interface 1355 may include a plurality of BB processors 1356.
  • the plurality of BB processors 1356 may be compatible with a plurality of frequency bands used by the gNB 1330.
  • FIG. 17 shows an example in which the wireless communication interface 1355 includes a plurality of BB processors 1356, the wireless communication interface 1355 may also include a single BB processor 1356.
  • connection interface 1357 is an interface for connecting the base station device 1350 (wireless communication interface 1355) to the RRH 1360.
  • the connection interface 1357 can also be a communication module for connecting the base station device 1350 (wireless communication interface 1355) to the communication in the above-mentioned high-speed line of the RRH 1360.
  • RRH 1360 includes a connection interface 1361 and a wireless communication interface 1363.
  • connection interface 1361 is an interface for connecting the RRH 1360 (wireless communication interface 1363) to the base station device 1350.
  • the connection interface 1361 can also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1363 transmits and receives wireless signals via the antenna 1340.
  • the wireless communication interface 1363 may generally include, for example, an RF circuit 1364.
  • the RF circuit 1364 may include, for example, a mixer, a filter, and an amplifier, and Wireless signals are transmitted and received via the antenna 1340.
  • FIG17 shows an example in which one RF circuit 1364 is connected to one antenna 1340, the present disclosure is not limited to this illustration, but one RF circuit 1364 may be connected to a plurality of antennas 1340 at the same time.
  • the wireless communication interface 1363 may include multiple RF circuits 1364.
  • the multiple RF circuits 1364 may support multiple antenna elements.
  • FIG17 shows an example in which the wireless communication interface 1363 includes multiple RF circuits 1364, the wireless communication interface 1363 may also include a single RF circuit 1364.
  • the smart phone 1400 includes a processor 1401, a memory 1402, a storage device 1403, an external connection interface 1404, a camera device 1406, a sensor 1407, a microphone 1408, an input device 1409, a display device 1410, a speaker 1411, a wireless communication interface 1412, one or more antenna switches 1415, one or more antennas 1416, a bus 1417, a battery 1418, and an auxiliary controller 1419.
  • the smart phone 1400 (or the processor 1401) here may correspond to the above-mentioned user equipment (or more specifically, the electronic device 300).
  • the processor 1401 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and other layers of the smartphone 1400.
  • the memory 1402 includes a RAM and a ROM, and stores data and programs executed by the processor 1401.
  • the storage device 1403 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1404 is an interface for connecting an external device (such as a memory card and a universal serial bus (USB) device) to the smartphone 1400.
  • the camera device 1406 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 1407 may include a group of sensors such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1408 converts the sound input to the smart phone 1400 into an audio signal.
  • the input device 1409 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1410, and receives an operation or information input from a user.
  • the display device 1410 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smart phone 1400.
  • the speaker 1411 converts an audio signal output from the smart phone 1400 into sound.
  • the wireless communication interface 1412 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • the wireless communication interface 1412 may generally include, for example, a BB processor 1413 and an RF circuit 1414.
  • the BB processor 1413 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1414 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via an antenna 1416.
  • the wireless communication interface 1412 may be a chip module on which a BB processor 1413 and an RF circuit 1414 are integrated. As shown in FIG.
  • the wireless communication interface 1412 may include multiple BB processors 1413 and multiple RF circuits 1414. Although FIG. 18 shows an example in which the wireless communication interface 1412 includes multiple BB processors 1413 and multiple RF circuits 1414, the wireless communication interface 1412 may also include a single BB processor 1413 or a single RF circuit 1414.
  • the wireless communication interface 1412 can support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1412 can include a BB processor 1413 and an RF circuit 1414 for each wireless communication scheme.
  • Each of the antenna switches 1415 switches a connection destination of the antenna 1416 between a plurality of circuits (eg, circuits for different wireless communication schemes) included in the wireless communication interface 1412 .
  • Each of the antennas 1416 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 1412 to transmit and receive wireless signals.
  • the smart phone 1400 may include multiple antennas 1416.
  • FIG18 shows an example in which the smart phone 1400 includes multiple antennas 1416, the smart phone 1400 may also include a single antenna 1416.
  • the smartphone 1400 may include an antenna 1416 for each wireless communication scheme.
  • the antenna switch 1415 may be omitted from the configuration of the smartphone 1400.
  • the bus 1417 connects the processor 1401, the memory 1402, the storage device 1403, the external connection interface 1404, the camera 1406, the sensor 1407, the microphone 1408, the input device 1409, the display device 1410, the speaker 1411, the wireless communication interface 1412, and the auxiliary controller 1419 to each other.
  • the battery 1418 supplies power to the various blocks of the smart phone 1400 shown in FIG18 via a feeder, which is partially shown as a dotted line in the figure.
  • the auxiliary controller 1419 operates the minimum necessary functions of the smart phone 1400, for example, in a sleep mode.
  • FIG. 19 is a diagram showing an example of a schematic configuration of a car navigation device 1520 to which the technology of the present disclosure can be applied.
  • the car navigation device 1520 includes a processor 1521, a memory 1522, a global positioning system (GPS) module 1524, a sensor 1525, a data interface 1526, a content player 1527, a storage medium interface 1528, an input device 1529, a display device 1530, a speaker 1531, a wireless communication interface 1533, one or more antenna switches 1536, one or more antennas 1537, and a battery 1538.
  • the car navigation device 1520 (or the processor 1521) herein may correspond to the above-mentioned user equipment (or more specifically, the electronic device 300).
  • the processor 1521 may be, for example, a CPU or a SoC, and controls a navigation function and other functions of the car navigation device 1520.
  • the memory 1522 includes a RAM and a ROM, and stores data and a program executed by the processor 1521.
  • the GPS module 1524 measures the position (such as latitude, longitude and altitude) of the car navigation device 1520 using GPS signals received from GPS satellites.
  • the sensor 1525 may include a group of sensors such as a gyro sensor, a geomagnetic sensor and an air pressure sensor.
  • the data interface 1526 is connected to, for example, the vehicle network 1541 via an unshown terminal and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1527 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 1528.
  • the input device 1529 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1530, and receives an operation or information input from a user.
  • the display device 1530 includes a screen such as an LCD or an OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1531 outputs a sound of a navigation function or reproduced content.
  • the wireless communication interface 1533 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • the wireless communication interface 1533 may generally include, for example, a BB processor 1534 and an RF circuit 1535.
  • the BB processor 1534 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1535 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via an antenna 1537.
  • the wireless communication interface 1533 may also be a chip module on which a BB processor 1534 and an RF circuit 1535 are integrated. As shown in FIG.
  • the wireless communication interface 1533 may include multiple BB processors 1534 and multiple RF circuits 1535. Although FIG. 19 shows an example in which the wireless communication interface 1533 includes multiple BB processors 1534 and multiple RF circuits 1535, the wireless communication interface 1533 may also include a single BB processor 1534 or a single RF circuit 1535.
  • the wireless communication interface 1533 can support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 1533 can include a BB processor 1534 and an RF circuit 1535.
  • Each of the antenna switches 1536 switches a connection destination of the antenna 1537 between a plurality of circuits included in the wireless communication interface 1533 , such as circuits for different wireless communication schemes.
  • Each of the antennas 1537 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 1533 to transmit and receive wireless signals.
  • the car navigation device 1520 may include multiple antennas 1537.
  • FIG. 19 shows an example in which the car navigation device 1520 includes multiple antennas 1537, the car navigation device 1520 may also include a single antenna 1537.
  • the car navigation device 1520 may include an antenna 1537 for each wireless communication scheme.
  • the antenna switch 1536 may be omitted from the configuration of the car navigation device 1520.
  • the battery 1538 supplies power to the respective blocks of the car navigation device 1520 shown in Fig. 19 via a feeder line which is partially shown as a dotted line in the figure.
  • the battery 1538 accumulates the power supplied from the vehicle.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1540 including a car navigation device 1520, an in-vehicle network 1541, and one or more blocks in a vehicle module 1542.
  • vehicle module 1542 generates vehicle data (such as vehicle speed, engine speed, and fault information), and outputs the generated data to the in-vehicle network 1541.
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only the processing performed in time series in the order described, but also the processing performed in parallel or individually rather than necessarily in time series.
  • the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)

Abstract

本公开涉及用于非地面网络中的设备和方法。描述了一种用于非地面网络中的用户设备的方法。该非地面网络包括能够与用户设备进行通信的网络设备、卫星和多个智能超表面。该方法可以包括:从网络设备接收非地面网络的系统相关信息,该系统相关信息至少包括卫星的星历信息、以及多个智能超表面中的与该卫星相关联的一个或多个智能超表面的标识符和位置;至少基于所接收的系统相关信息,确定用户设备与网络设备进行通信的路径,所确定的路径经由上述一个或多个智能超表面中的一个智能超表面;以及经由所确定的路径,与网络设备进行通信。

Description

用于非地面网络中的设备和方法
优先权声明
本申请要求于2022年11月11日递交、申请号为202211408918.0、发明名称为“用于非地面网络中的设备和方法”的中国专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本公开一般地涉及用于非地面网络(NTN)中的设备和方法,并且具体地涉及用于使用智能超表面的非地面网络中的路径选择的技术。
背景技术
无线通信系统可以使用多种协议和标准进行设备之间的数据传输。这些协议和标准经历了长期的发展,包括但不限于第三代合作伙伴计划(3GPP)、3GPP长期演进(LTE)(例如,4G通信)、以及3GPP新无线电(NR)(例如,5G通信)甚至6G通信等。新型无线通信系统(诸如5G NR通信系统、6G通信系统)与传统的无线通信系统相比,无线传输的速度、时延、容量、灵活性和可靠性方面都存在较大提升,为新的使用模式提供了更多可能性。
新型无线通信系统中引入了高频段通信(诸如毫米波通信)技术,该类通信受房屋、人体、或墙壁等遮挡影响较大。对此,可以将智能超表面(也称为智能反射面/天线)部署在设备之间充当中继节点。例如,智能反射面可以由大量低成本的微型反射元件构成,每个元件都可以使用软件编程的方式独立地诱导信号的振幅和/或相位的变化,从而精确地控制反射波束的形成。因此,使用智能超表面能够以较低的成本来显著提升无线通信网络的性能。
另一方面,新型无线通信系统引入了涉及卫星等高空通信站的非地面网络通信,用作对地面网络通信的性能的补充。作为示例,移动运营商可以利用非地面网络向缺乏基础设施的地区提供无线通信业务,并且可以在地面网络中断的情况下(诸如战场、地震 或水灾、野外等场景)正常为用户提供无线通信业务。
非地面网络通信和智能超表面技术都属于5G NR系统甚至6G系统中引入的较为新兴的技术。相比于独立地使用两种技术,将二者结合使用能够进一步提高非地面网络通信在遇到诸如高山或高楼等遮挡的情况下的覆盖范围和数据传输性能。因此,希望找到能够在非地面网络通信中有效利用适当的智能超表面天线来发送和接收信号从而提高通信性能的系统和方法。
发明内容
本公开提出了用于非地面网络中的设备和方法。更具体而言,本公开提出了用于使用智能超表面的非地面网络中的路径选择的方法,其中为多种场景中的设备之间的非地面通信选择适当的智能超表面作为中继,从而提高数据传输的准确性和可靠性。
根据本公开的第一方面,提供了一种用于非地面网络中的用户设备的电子设备,所述非地面网络还包括能够与所述用户设备进行通信的网络设备、卫星和多个智能超表面,所述电子设备包括处理电路,所述处理电路被配置为使得所述用户设备执行以下操作:从所述网络设备接收非地面网络的系统相关信息,所述系统相关信息至少包括所述卫星的星历信息、以及所述多个智能超表面中的与所述卫星相关联的一个或多个智能超表面的标识符和位置;至少基于所接收的系统相关信息,确定所述用户设备与所述网络设备进行通信的路径,所确定的路径经由所述一个或多个智能超表面中的一个智能超表面;以及经由所确定的路径,与所述网络设备进行通信。
对应地,根据本公开的第一方面,提供了一种用于非地面网络中的用户设备的方法,所述非地面网络还包括能够与所述用户设备进行通信的网络设备、卫星和多个智能超表面,所述方法包括:从所述网络设备接收非地面网络的系统相关信息,所述系统相关信息至少包括所述卫星的星历信息、以及所述多个智能超表面中的与所述卫星相关联的一个或多个智能超表面的标识符和位置;至少基于所接收的系统相关信息,确定所述用户设备与所述网络设备进行通信的路径,所确定的路径经由所述一个或多个智能超表面中的一个智能超表面;以及经由所确定的路径,与所述网络设备进行通信。
根据本公开的第二方面,提供了一种用于非地面网络中的网络设备的电子设备,所述非地面网络还包括能够与所述网络设备进行通信的用户设备、卫星和多个智能超表面,所述电子设备包括处理电路,所述处理电路被配置为使得所述网络设备执行以下操作:获取非地面网络的系统相关信息,所述系统相关信息至少包括所述卫星的星历信息、以及所述多个智能超表面中的与所述卫星相关联的一个或多个智能超表面的标识符和位置,其中所述一个或多个智能超表面由所述网络设备至少基于所述卫星的位置和所述多个智能超表面的位置确定;经由一条确定的路径,与所述用户设备进行通信,其中所述路径是至少基于所述系统相关信息来确定的,并且所确定的路径经由所述一个或多个智能超表面中的一个智能超表面。
对应地,根据本公开的第二方面,还提供了一种用于非地面网络中的网络设备的方法,所述非地面网络还包括能够与所述网络设备进行通信的用户设备、卫星和多个智能超表面,所述方法包括:获取非地面网络的系统相关信息,所述系统相关信息至少包括所述卫星的星历信息、以及所述多个智能超表面中的与所述卫星相关联的一个或多个智能超表面的标识符和位置,其中所述一个或多个智能超表面由所述网络设备至少基于所述卫星的位置和所述多个智能超表面的位置确定;经由一条确定的路径,与所述用户设备进行通信,其中所述路径是至少基于所述系统相关信息来确定的,并且所确定的路径经由所述一个或多个智能超表面中的一个智能超表面。
根据本公开的第三方面,提供了一种具有存储在其上的一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使得该电子设备执行根据本公开的各种实施例的方法。
根据本公开的第四方面,提供了一种包括程序指令的计算机程序产品,所述程序指令在由计算机的一个或多个处理器执行时,使得所述计算机执行根据本公开的各种实施例的方法。
提供上述概述是为了总结一些示例性的实施例,以提供对本文所描述的主题的各方面的基本理解。因此,上述特征仅仅是示例并且不应该被解释为以任何方式缩小本文所描述的主题的范围或精神。本文所描述的主题的其他特征、方面和优点将从以下结合附图描述的具体实施方式而变得明晰。
附图说明
当结合附图考虑实施例的以下具体描述时,可以获得对本公开内容更好的理解。在各附图中使用了相同或相似的附图标记来表示相同或者相似的部件。各附图连同下面的具体描述一起包含在本说明书中并形成说明书的一部分,用来例示说明本公开的实施例和解释本公开的原理和优点。其中:
图1为智能超表面的应用场景图。
图2示出了根据本公开实施例的使用智能超表面的非地面网络的示例场景图。
图3示出了根据本公开实施例的用于用户设备的示例性电子设备。
图4示出了根据本公开实施例的用于网络设备的示例性电子设备。
图5示出了根据本公开实施例的用于使用智能超表面的非地面网络中的路径选择的信息交互图。
图6示出了根据本公开的用于使用智能超表面的非地面网络中的路径选择的第一实施例的示意图。
图7示出了根据本公开的用于使用智能超表面的非地面网络中的路径选择的第一实施中的系统信息块的示例图。
图8示出了根据本公开的用于使用智能超表面的非地面网络中的路径选择的第一实施例的信息交互图。
图9示出了根据本公开的用于使用智能超表面的非地面网络中的路径选择的第二实施例的示意图。
图10和图11示出了根据本公开的用于使用智能超表面的非地面网络中的路径选择的第二实施例的信息交互图。
图12示出了根据本公开的用于使用智能超表面的非地面网络中的路径选择的第三实施例的示意图。
图13示出了根据本公开实施例的用于非地面网络中的用户设备的示例方法的流程图。
图14示出了根据本公开实施例的用于非地面网络中的网络设备的示例方法的流程图。
图15为作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图;
图16为示出可以应用本公开的技术的基站的示意性配置的第一示例的框图;
图17为示出可以应用本公开的技术的基站的示意性配置的第二示例的框图;
图18为示出可以应用本公开的技术的智能电话的示意性配置的示例的框图。
图19为示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应该理解的是,附图以及对其的详细描述不旨在将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
以下描述根据本公开的设备和方法等各方面的代表性应用。这些例子的描述仅是为了增加上下文并帮助理解所描述的实施例。因此,对本领域技术人员而言清楚的是,以下所描述的实施例可以在没有具体细节当中的一些或全部的情况下被实施。在其他情况下,众所周知的过程步骤没有详细描述,以避免不必要地模糊所描述的实施例。其他应用也是可能的,本公开的方案并不限制于这些示例。
典型地,无线通信系统至少包括网络设备和用户设备,网络设备可以为一个或多个用户设备提供通信服务。
在本公开中,术语“网络设备”(或“基站”)具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。作为例子,网络设备例如可以是4G通信标准的eNB、5G通信标准的gNB、远程无线电头端、无线接入点、无人机控制塔台或者执行类似功能的通信装置。在本公开中,“网络设备”和“基站”可以互换地使用,或者“网络设备”可以实现为“基站”的一部分。下文将以网络设备为例 结合附图详细描述应用示例。
在本公开中,术语“用户设备(UE)”或“终端设备”具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分以便于通信的终端设备。作为例子,用户设备例如可以是移动电话、膝上型电脑、平板电脑、车载通信设备、可穿戴设备、传感器等之类的终端设备或其元件。在本公开中,“用户设备”(以下可被简称为“UE”)和“终端设备”可以互换地使用,或者“用户设备”可以实现为“终端设备”的一部分。
在本公开中,术语“网络设备侧”/“基站侧”具有其通常含义的全部广度,通常指示通信系统下行链路中发送数据的一侧,或者指示通信系统上行链路中接收数据的一侧。类似地,术语“用户设备侧”/“终端设备侧”具有其通常含义的全部广度,并且相应地可以指示通信系统下行链路中接收数据的一侧,或者指示通信系统上行链路中发送数据的一侧。
应该注意的是,以下虽然主要基于包含网络设备和用户设备的通信系统对本公开的实施例进行了描述,但是这些描述可以相应地扩展到包含任何其它类型的网络设备侧和用户设备侧的通信系统的情况。例如,网络设备侧的操作可以对应于基站的操作,而用户设备侧的操作可以相应地对应于终端设备的操作。
图1示出了智能超表面的应用场景图。如前所述,智能超表面可以由大量微型反射元件构成,其中每个元件可以独立地调整信号的振幅和/或相位的变化,从而精确地控制反射波束的形成。通常来说,智能超表面可以是二维平面,从而形成三维反射波束。应该理解的是,智能超表面的示例包括大型智能表面天线(Large Intelligent Surface/Antenna,LISA)、可重构智能表面(Reconfigurable Intelligent Surface,RIS)、或其他具有类似结构和功能的智能表面。
智能超表面的应用场景可以分为典型场景和非典型场景。如图1(a)所示,在典型应用场景中,网络设备(诸如gNB)与用户设备(UE)之间具有可视(Line-of-Sight,LOS)链路连接,二者也可以经由智能超表面(诸如,LISA)的反射链路进行连接。如图1(b)所示,在非典型应用场景中,网络设备与用户设备之间由于遮挡等原因不具有LOS链路连接,二者需要经由智能超表面的反射链路进行连接。
智能超表面可以包括无源和有源两种类型。无源智能超表面的反射单元对于入射信号没有放大作用,而有源智能超表面的各个反射单元对于入射信号具有放大作用。经研 究表明,在典型应用场景中,由于LOS链路连接的接收信号强度远高于反射链路的接收信号强度,因此使用无源智能超表面对于整体信道容量的提升效果有限。然而,在非典型应用场景中,由于LOS链路被遮挡,反射链路连接成为了主要连接,因此使用无源智能超表面可以带来约65%的信道容量增益,效果非常明显。在采用有源智能超表面的情况下,典型应用场景的信道容量增益可以达到129%,非典型应用场景的信道容量增益甚至可以达到1325%。
由于非地面网络通信(例如,卫星通信)通常使用高频段通信(例如,毫米波频段通信),因此高楼、高山等大型障碍物的遮挡都可能影响到非地面网络的通信质量。对此,部署智能超表面提供反射链路可以扩大非地面网络覆盖和服务的区域。
图2示出了根据本公开实施例的使用智能超表面的非地面网络的示例场景图。应该理解的是,图2仅示出非地面通信系统的示例,其具体实现方式可以存在更多种类型和可能的布置。例如,实际的非地面通信系统中可以具有更多或更少类型的设备或者更多或更少数量的设备。本公开的特征可根据需要在各种系统中的任一者中实现。
根据本公开的实施例,非地面网络可以包括网络设备(诸如gNB)、用户设备(UE)、卫星(诸如高轨道卫星(GEO)、中轨道卫星(MEO)、或低轨道卫星(LEO))、以及智能超表面(诸如LISA、RIS)。这些设备之间可以被配置为通过无线传输介质进行通信。通常来说,非地面网络可以分为采用透明卫星的非地面网络以及采用非透明卫星的非地面网络。如图2(a)所示,在透明卫星的非地面网络中,网络设备位于地面上,卫星可以将来自网络设备的信号转发给用户设备或者将来自用户设备的信号转发给网络设备;如图2(b)所示,在非透明卫星的非地面网络中,网络设备位于卫星上,并且可以从卫星上与用户设备进行通信。
一方面,卫星通信并不能保证为地面上的用户设备提供完全的通信服务覆盖。卫星通信经常使用诸如毫米波频段通信的高频段通信,高楼和高山等障碍物对位于地面上的一些用户设备造成了遮挡,破坏了这些用户设备与卫星之间的可视链路,使得其连接质量无法满足正常通信的要求(例如,与图(1)b中所示的非典型场景类似)。对此,可以部署多个智能反射面使得能够利用反射链路来增加非地面网络覆盖的通信区域。另一方面,在非地面网络中采用低轨卫星(LEO)或中轨卫星(GEO)的情况下,这些卫星相对于地面快速移动,从而其在地面的投影也将快速移动(速度可以接近10公里/秒)。这 样,当一个卫星的地面投影的直径在例如100公里左右时,该卫星对用户设备的覆盖时间仅为数秒。对此,采用智能超表面来增加反射链路,可以在卫星远离所服务的用户设备时延长卫星服务的时间。综合来说,无论是哪种类型的非地面网络,在卫星和用户设备之间需要利用部署的智能超表面来增加服务覆盖范围和延长服务时间。
不同于传统的地面蜂窝网络,在非地面网络中,卫星距离地面较远,通常距离在数百公里至数万公里之间。在这种情况下,可以将多个智能超表面部署在距离用户设备较远的位置,例如多座高山的山顶、高空平台、飞行器、甚至低轨卫星上。智能超表面与用户设备之间的距离可以为数公里、数十公里、甚至数百公里。对于一个用户设备,可能存在多个智能超表面覆盖,不同的智能超表面之间的距离可以达到数十公里甚至数百公里。由于链路的路径损耗与链路长度的平方呈反比,因此不同智能超表面的反射链路的距离相差较大,造成的路径损耗相差也较大。此外,在某些时刻,有些智能超表面的部署位置可能处于卫星渐渐远离的方向,另一些智能超表面的部署位置可能处于卫星渐渐靠近的方向。因此,基于非地面网络的实际场景,选择适当的智能超表面作为中继对于用户设备与(位于卫星上的或经由卫星转发信号的)网络设备之间实现较优的通信质量至关重要。
针对图2所示的使用智能超表面的非地面网络,本发明提供了在该非地面网络中的路径选择的方法。通过所选择的路径,用户设备可以经由智能反射面与位于卫星上的网络设备进行通信(例如,非透明卫星系统),或者经由智能反射面进而经由卫星转发与位于地面上的网络设备进行通信(例如,透明卫星系统),从而提高数据传输的可靠性和准确性。
图3示出了根据本公开实施例的用于非地面网络中的用户设备的示例性电子设备300。图3所示的电子设备300可以包括各种单元以实现根据本公开的各实施例。在该示例中,电子设备300包括通信单元302和控制单元304。在一种实施方式中,电子设备300被实现为用户设备本身或其一部分,或者被实现为用于控制用户设备或以其他方式与用户设备相关的设备或者该设备的一部分。以下结合用户设备描述的各种操作可以由电子设备300的单元302、304或者其他可能的单元实现。应该理解的是,单元302和304可以被包括或集成在用户设备的处理电路中。
在实施例中,非地面网络包括用户设备以及可以与用户设备进行通信的网络设备、 卫星、以及多个智能超表面。通信单元302可以被配置为从网络设备接收非地面网络的系统相关信息(system relevant information)。该系统相关信息可以至少包括卫星的星历信息、以及多个智能超表面中的与该卫星相关联的一个或多个智能超表面的标识符和位置。可选地,在智能超表面为有源智能超表面的情况下,系统相关信息还可以包括与卫星相关联的一个或多个智能超表面的增益。此后,控制单元304可以被配置为至少基于所接收的系统相关信息,确定用户设备与网络设备进行通信的路径。所确定的路径经由上述一个或多个智能超表面中的一个智能超表面。经由所确定的路径,通信单元302可以被配置为与网络设备进行通信。
图4示出了根据本公开实施例的用于非地面网络中的网络设备的示例性电子设备400。图4所示的电子设备400可以包括各种单元以实现根据本公开的各实施例。在该示例中,电子设备400包括获取单元402、通信单元404,以及可选地包括控制单元406。在一种实施方式中,电子设备400被实现为网络设备本身或其一部分,或者被实现为与网络设备相关的设备或者该设备的一部分。以下结合网络设备描述的各种操作可以由电子设备400的单元402、404、406或者其他可能的单元实现。应该理解的是,单元402、404和406可以被包括或集成在网络设备的处理电路中。
在实施例中,非地面网络包括网络设备以及可以与网络设备进行通信的用户设备、卫星、以及多个智能超表面。获取单元402可以被配置为获取非地面网络的系统相关信息。该系统相关信息可以至少包括卫星的星历信息、以及多个智能超表面中的与该卫星相关联的一个或多个智能超表面的标识符和位置。上述一个或多个智能超表面可以由所述网络设备(例如,通过控制单元406)至少基于卫星的位置和多个智能超表面的位置确定。可选地,在智能超表面为有源智能超表面的情况下,系统相关信息还可以包括与卫星相关联的一个或多个智能超表面的增益。此后,通信单元404可以被配置为经由一条确定的路径,与用户设备进行通信。该路径是至少基于所述系统相关信息来确定的,并且所确定的路径经由上述一个或多个智能超表面中的一个智能超表面。应该理解的是,上述路径可以由用户设备通过其控制单元304来确定,也可以由网络设备通过其控制单元406来确定。
在一些实施例中,电子设备300和400可以以芯片级来实现,或者也可以通过包括其他外部部件(例如无线电链路、天线等)而以设备级来实现。例如,各电子设备可以 作为整机而工作为通信设备。
应该注意的是,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。其中,处理电路可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
以上已经结合附图说明了根据本公开的实施例的用户设备和网络设备的示意性配置,下面将参考图5说明根据本公开实施例的用于使用智能超表面的非地面网络中的路径选择的信息交互图。该非地面网络中包括用户设备、网络设备、卫星、以及多个智能超表面。用户设备可以经由智能超表面与位于卫星上的网络设备进行通信(例如,非透明卫星系统),或者可以经由智能超表面进而经由卫星转发与位于地面上的网络设备进行通信(例如,透明卫星系统)。
应该理解的是,尽管在非地面网络中的用户设备和卫星之间存在可视链路连接时智能超表面提供的增益改进有限,但是本公开旨在针对解决卫星与用户设备之间存在高建筑物遮挡或卫星移动速度过快而导致的为用户提供的服务质量较差或服务时间过短等问题,因此本公开的实施例着重于讨论利用智能超表面的反射链路的辅助提供改善的非地面网络通信服务质量。换言之,在实际应用中,如果检测到非地面网络中的用户设备和卫星之间存在通信质量良好的可视链路连接,可以直接使用该链路进行通信;如果检测到非地面网络中的用户设备和卫星之间不存在可视链路连接或可视链路连接提供的服务质量较差,可以结合本公开提出的利用智能超表面提供反射链路的方法来选择经由适当智能超表面的路径进行通信。还应该理解的是,无论是透明卫星系统还是非透明卫星系统,都需要在卫星和用户设备之间找到适当的智能超表面作为中继来提升非地面网络通信服务的质量。
如图5所示,在501处,网络设备获取非地面网络的系统相关信息。根据本公开的实施例,系统相关信息可以至少包括卫星的星历信息、以及多个智能超表面中与该卫星 相关联的一个或多个智能超表面的标识符和位置。卫星的星历信息通常包括例如卫星的位置、卫星的编号、以及卫星的移动轨迹信息(包括卫星的移动速度和移动方向)等。应该理解的是,与卫星相关联的一个或多个智能超表面(如图5所示,编号为智能超表面1,…智能超表面N,其中N为大于或等于1的整数)可以由网络设备根据卫星的位置(例如,该位置可以从卫星的星历信息中得出)以及多个智能超表面的位置等信息来选择和确定的。例如,与卫星距离很远并且处于卫星渐渐远离方向的智能超表面几乎不可能为非地面网络的通信提供增强的增益,因此网络设备很可能不选择将该智能超表面作为候选中继,从而不将其信息(包括在系统相关信息中)发送给用户设备。此外,与卫星相关联的一个或多个智能超表面可以随着时间的变化而变化。还应该理解的是,当智能超表面是有源智能超表面时,系统相关信息还可以包括上述一个或多个智能超表面的增益。在智能超表面处于静止安装的情况下,该智能超表面可以向网络设备预先报告其地理位置和增益等信息。在智能超表面安装在移动物体(例如,飞机、高空平台、LEO/MEO卫星)上的情况下,该智能超表面可以周期性地或非周期性地向网络设备报告其地理位置、增益、以及对应的时间戳等信息。可选地,也可以使用定时器来控制智能超表面报告上述自身信息的时间,即,当定时器到期后,智能超表面可以向网络设备报告自身信息。相应地,网络设备可以周期性地或非周期性地更新非地面网络的系统相关信息。例如,网络设备可以基于卫星的移动速度来设置系统相关信息的更新周期,其中卫星移动速度大的情况下设置的更新周期短,卫星移动速度小的情况下设置的更新周期长。
在502处,网络设备可以向用户设备发送非地面网络的系统相关信息。在503处,网络设备可以向用户设备发送参考信号。具体而言,网络设备可以通过分别经由上述一个或多个智能超表面(例如,智能超表面1-智能超表面N)中的部分或全部智能超表面的多条路径中的每条路径(每条路径经由一个智能超表面),向用户设备发送参考信号。对应地,在504处,用户设备可以记录多条路径中的每条路径对应的参考信号的接收信号质量。
应该理解的是,根据本公开的实施例,网络设备侧可以使用包括多个天线元件的天线阵列来形成定向波束,以此提高传输效率和系统吞吐量。用户设备侧可以使用单个天线,也可以使用包括多个天线元件的天线阵列。还应该理解的是,根据本公开的实施例, 参考信号的示例包括同步信号块(SSB)、信道状态信息参考信号(CSI-RS)、以及本领域技术人员已知的由网络设备发送的其他参考信号。根据本公开的实施例,接收信号质量包括但不限于参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)、信干噪比(SINR)等。
接下来,在505处,用户设备可以至少基于所接收的系统相关信息,确定用户设备与网络设备进行通信的路径,其中所确定的路径经由上述一个或多个智能超表面中的一个智能超表面。更具体而言,用户设备可以至少基于系统相关信息以及在504处所记录的多条路径中的每条路径对应的接收信号质量,从多条路径中选择一条路径作为所确定的路径。应该理解的是,所确定的路径与用户设备在503处接收参考信号的接收信号质量最大的路径可以相同,也可以不同。换言之,用户设备不一定直接选择当前测量结果中最优的路径(即,接收信号质量最大的路径),而是可以结合系统相关信息来综合判断和选择在后续非地面通信中表现较好的路径。作为示例,当最大的接收信号质量与多条路径中的一条路径对应的接收信号质量的差值小于第一阈值,并且该条路径中的智能超表面被卫星覆盖的时间大于接收信号质量最大的路径中的智能超表面被卫星覆盖的时间并且大于第二阈值,那么用户设备可以选择该条路径作为所确定的路径。应该理解的是,这里所说的智能超表面被卫星覆盖的时间可以通过系统相关信息导出。应该认识到的是,第一阈值和第二阈值可以是预先设定的数值,也可以是根据先验测量信息而计算得到的数值。
在506处,用户设备可以经由所确定的路径与网络设备进行通信。本领域技术人员应该理解的是,由于卫星和智能超表面都可能移动,并且用户设备也可能移动。因此,所确定的智能超表面路径在一段时间后可能无法维持较优的通信质量。对此,可以由网络设备设置特定的时间窗口并将该时间窗口告知用户设备,也可以由用户设备基于网络设备提供的信息来确定时间窗口。在时间窗口到期后,可以重复图5中的步骤,从而重新获取系统相关信息和进行路径选择。应该理解的是,时间窗口的值可以是固定值(例如,周期性地更新路径选择),也可以是可变值(例如,非周期性地更新路径选择)。
应该注意的是,图5中所示的信息交互图仅仅提供了示例,并不旨在进行限制。图中可以包括更多或更少的步骤,并且也可以按照与图中描绘的步骤顺序不同的顺序来执行步骤。
在一个示例中,当多个智能超表面都是静止部署并且卫星是同步卫星的情况下,非地面网络的系统相关信息可以直接预先存储在用户设备中,因此可以省略502处的由网络设备向用户设备发送系统相关信息的步骤。在另一个示例中,502和503的顺序可以互换。例如,网络设备可以在向用户设备发送多个参考信号之后再发送系统相关信息。在又一个示例中,在505和506之间,用户设备可以向网络设备报告所确定的路径,例如将所确定的路径中的智能超表面的标识符报告给网络设备。其中,智能超表面的标识符可以由智能超表面在转发参考信号时(通过信息加扰等方式)发送给用户设备;也可以由用户设备根据接收参考信号的到达天线的角度,结合自身的位置和系统相关信息中的卫星的位置(卫星的位置可以被包括在卫星的星历信息中)以及一个或多个智能超表面的标识符和位置等,推导得出该参考信号所经由的智能超表面的标识符。
应该认识到的是,图5中也可以省略发送参考信号和记录参考信号的接收信号质量的步骤。根据系统相关信息,用户设备(或网络设备)可以基于卫星和一个或多个智能超表面(以及可选地,用户设备)的位置以及卫星的移动信息等来计算和推导得出优选的通信路径。该处理可以适用于通信中断后的紧急恢复等场景。
应该理解的是,图5中的确定路径的步骤也可以由网络设备执行。相应地,可以省略502处的网络设备向用户设备发送系统相关信息的步骤,并且在504和505之间可以增加用户设备向网络设备报告多条路径中的每条路径对应的参考信号的接收信号质量的步骤,以供网络设备基于系统相关信息和报告的接收信号质量,从多条路径中选择一条路径作为所确定的路径。
根据本公开的实施例,可以在多种场景中采用本文提出的用于使用智能超表面的非地面网络中的路径选择的方法。以下将通过三个实施例(包括第一实施例、第二实施例和第三实施例)来详细介绍和描述三种场景下的智能超表面路径选择方法。
第一实施例:用户设备入网前的智能超表面路径选择
在第一实施例中,用户设备尚未接入非地面蜂窝网系统,还没有进行入网后的上行链路和下行链路的时频资源申请。因此,网络设备和用户设备无法在预定的时间和频率上进行信息交互。网络设备与用户设备甚至可能互相不知道对方的地理位置。
图6示出了根据本公开的第一实施例的示意图。为了便于说明,图6中仅示出了两 个智能超表面(例如,LISA-1和LISA-2)的示例,实际非地面网络中可以包括更多或更少数量的智能超表面。应该理解的是,虽然图6中仅示出了非透明卫星系统的示例,但是第一实施例中的路径选择的方法同样适用于通过卫星将信号转发到网络设备(例如,gNB)的透明卫星系统。
如图6所示,网络设备可以以一定的时间间隔连续地发送同步信号块(SSB),即进行SSB波束扫描,其中网络设备在多个波束方向中的每个方向上发送一个SSB信号。用户设备选择最优SSB方向上的SSB信号(例如,接收信号质量最好的SSB信号对应的方向)实现下行同步。一般而言,参考信号的接收质量与信号的路径损耗有关,路径损耗PL与经由智能反射面的两段反射链路的距离(例如,La与Lb)的平方的乘积成正比。因此,距离越长的链路的空间损耗越大(附加地,如果智能超表面是有源智能超表面的情况下,还需要考虑增益的大小)。
SSB信号中包括主同步信号(PSS)和辅同步信号(SSS),因此用户设备通过接收SSB信号,可以获得小区编号(PCI)和帧起始位以及物理广播信道(PBCH)的系统信息,进而可以获得系统的系统信息块SIB1消息。SIB1消息包括后续的系统信息块SIBx(例如,x=2…21)的时频预定传输消息。当用户设备解码SIB1之后,可以在预定的时频资源上获取相应的SIBx的信息。网络设备可以将非地面网络的系统相关信息包括在系统信息块SIBx中传输给用户设备,以便用户设备的后续路径选择。
根据本公开的一些实施例,可以扩展现有的系统信息块SIBx(例如,x=2…21),以包含非地面网络的系统相关信息。如前所述,系统相关信息可以包括卫星的星历信息、以及与该卫星相关联的一个或多个智能超表面(该一个或多个智能超表面可以由网络设备至少基于卫星和非地面网络中的多个智能超表面的位置确定)的标识符和位置(以及可选地,一个或多个智能超表面的增益)。图7示出了现有的SIB9消息的代码段,该SIB9消息中包括全球定位系统(GPS)时间和国际协调时间(UTC)。根据本公开,可以将现有的SIB9消息进行扩展,使其携带诸如卫星的星历信息和智能超表面的标识符和位置等系统相关信息。附加地或替代地,可以定义新的系统信息块SIBx(例如,x=22…),使其携带非地面网络的系统相关信息。
用户设备在接收到包括系统相关信息的系统信息块SIBx之后,可以基于记录的SSB的接收信号质量和系统相关信息来确定应该选择经由哪个智能超表面的路径来进行随机 接入。通常来说,每个方向的SSB信号对应于一个单独的接入时频资源。因此,用户设备可以根据所确定的路径的相应方向的SSB信号的接入时频资源,经由所确定的路径在该接入时频资源上发送随机接入前导码,从而接入非地面网络并且与网络设备进行通信。
图8示出了根据本公开的用于使用智能超表面的非地面网络中的路径选择的第一实施例的信息交互图。如图8所示,在801处,网络设备获取非地面网络的系统相关信息,其可以包括卫星的星历信息、以及与该卫星相关联的一个或多个智能超表面的标识符和位置(以及可选地,一个或多个智能超表面的增益)。如图8所示,一个或多个智能超表面被编号为智能超表面1,…智能超表面N,其中N为大于或等于1的整数。作为示例,与图6对应的N等于2。在802处,网络设备向用户设备广播多个方向的SSB信号,即进行SSB波束扫描。应该理解的是,SSB的方向是提前预定的,每个SSB的方向上不一定存在智能超表面,并且SSB波束扫描过程不一定会遍历一个或多个智能超表面中的全部智能超表面。对应地,用户设备可以经由部分或全部智能超表面来接收SSB信号,并且在803处记录SSB信号的接收信号质量,进而在接收信号质量最强的SSB信号方向上接收SIB1信号。在804处,用户设备可以对SIB1信号进行解码,获得其后续的系统信息块SIBx消息的时频资源调度信息。根据本公开的实施例,可以扩展现有的SIBx(例如,SIB9)消息或者定义新的SIBx消息来携带系统相关信息。对应地,在805处,用户设备可以从网络设备接收包括系统相关信息的系统信息块消息。进而,用户设备可以在806处至少基于系统相关信息来确定用于接入非地面网络的路径。具体而言,用户设备可以基于SSB信号的接收信号质量结合系统相关信息,确定经由途经哪个智能超表面的路径来发送随机接入前导码。
在807处,用户设备可以经由所确定的路径,在该路径方向的SSB信号对应的时频资源上向网络设备发送随机接入前导码,从而接入非地面网络。应该认识到的是,在用户设备接入非地面网络之后,可以指示该用户设备优先以指向所确定的路径中的智能超表面的波束进行后续的多个操作,例如但不限于以下中的一者或多者:波束扫描、数据接收、波束恢复等。
应该理解的是,图8中的一些操作的细节已经在图5中详细地描述,此处不再重复。
返回参考图6,例如,假设卫星和用户设备之间存在遮挡,用户设备经由LISA-1和LISA-2接收到的SSB的信号质量较好。由于(在使用无源智能超表面时)路径损耗与两 段反射链路的距离长度有关,经由LISA-1传输SSB的路径上的损耗更小,因此用户设备可以在该SSB信号方向(即前述最优SSB方向)接收SIB1信号,并且根据SIB1中的时频资源调度信息接收包括系统相关信息的后续SIBx消息(例如,扩展的SIB9消息)。用户设备根据获得的系统相关信息,可以得知虽然LISA-1路径(即,经由LISA-1的路径)上的接收信号质量略优于LISA-2路径(即,经由LISA-2的路径),但是卫星的移动方向是远离LISA-1而靠近LISA-2的,即LISA-2路径上传输的信号将具有更长的卫星覆盖时间。例如,当上述两条路径的接收信号质量的差值在一定范围内(例如,差值的绝对值小于第一阈值)并且LISA-2路径的卫星覆盖时间长于LISA-1路径且大于一定阈值(例如,第二阈值),可以选择综合通信质量较高的LISA-2路径用于接入非地面网络,从而提高接入成功率。
附加地或替代地,除了系统信息块以外,系统相关信息还可以被包括在本领域技术人员能够想到的其他信号中被传输给用户设备。此外,还可以通过其他无线通信系统将系统相关信息从网络设备传输给用户设备。
第二实施例:用户设备入网后的智能超表面路径选择
在第二实施例中,用户设备已经接入非地面蜂窝网系统,可以与网络设备进行双向信息交互。在一些示例中,用户设备可以向网络设备通知其地理位置。
图9示出了根据本公开的第二实施例的示意图。与图6类似地,为了便于说明,图9中仅示出了两个智能超表面(例如,LISA-1和LISA-2)的示例,实际非地面网络中可以包括更多或更少数量的智能超表面。应该理解的是,虽然图9中仅示出了非透明卫星系统的示例,但是第二实施例中的路径选择的方法同样适用于通过卫星将信号转发到网络设备(例如,gNB)的透明卫星系统。
如图9所示,网络设备可以朝着每一个智能超表面的方向进行波束扫描(例如,CSI-RS波束扫描),即发送多个CSI-RS波束。每一个智能超表面可以将多个波束朝着用户设备反射,以便测量经由该智能超表面的路径上的接收信号质量。应该理解的是,网络设备可以(例如,通过波束扫描预定信息)为每一个智能超表面预先分配波束测量的时频资源,并将其通知给用户设备。这样,用户设备可以按照预定的时频资源相应地测量接收波束,并且记录接收信号质量的测量结果。
具体而言,如图9(a)所示,网络设备已经获取了与卫星相关联的一个或多个智能超表面(例如,LISA-1和LISA-2)的位置信息,并且在预定的第一时间向LISA-1的方向上细分了多个小方向依次发送CSI-RS波束。LISA-1将这些波束依次朝着用户设备反射,以便用户设备接收各个小方向上的波束并测量其接收信号质量。类似地,如图9(b)所示,网络设备在预定的第二时间向LISA-2的方向上细分了多个小方向依次发送CSI-RS波束。LISA-2将这些波束依次朝着用户设备反射,以便用户设备接收各个小方向上的波束并测量其接收信号质量。应该理解的是,在本实施例中,由于网络设备已知各个智能超表面的位置,因此所测量的路径可以遍历与卫星相关联的一个或多个智能超表面中的全部智能超表面。还应该理解的是,对于每一个智能超表面而言,由于网络设备可以在多个小方向上经由该智能超表面向用户设备发送参考信号,因此可以看作网络设备可以通过经由该智能超表面的多条路径向用户设备发送参考信号。
一般而言,参考信号的接收质量与信号的路径损耗有关,路径损耗PL与经由智能反射面的两段反射链路的距离(例如,La与Lb)的平方的乘积成正比。因此,距离越长的链路的空间损耗越大(附加地,如果智能超表面是有源智能超表面的情况下,还需要考虑增益的大小)。
根据本公开的第二实施例,在用户设备执行参考信号的测量之后,可以通过两种方式来确定最终的通信路径。一种方式是由用户设备确定路径,另一种方式是由网络设备确定路径。图10和图11分别示出了这两种方式下的信息交互图。
图10示出了由用户设备确定路径的信息交互图。如图10所示,在1001处,网络设备获取非地面网络的系统相关信息,其可以包括卫星的星历信息、以及与该卫星相关联的一个或多个智能超表面(该一个或多个智能超表面可以由网络设备至少基于卫星和非地面网络中的多个智能超表面的位置(以及可选地,用户设备的位置)确定)的标识符和位置(以及可选地,一个或多个智能超表面的增益)。如图10所示,一个或多个智能超表面被编号为智能超表面1,…智能超表面N,其中N为大于或等于1的整数。作为示例,与图9对应的N等于2。在网络设备执行波束扫描之前,网络设备可以在1002处向用户设备发送系统相关信息。作为示例,系统相关信息可以在波束扫描预定信息中携带和传输,该波束扫描预定信息中还指定了后续发送参考信号(例如,CSI-RS)的时频资源。对应地,在1003处,网络设备向用户设备在相应的时频资源上进行CSI-RS波束扫 描,其中网络设备在每一个智能超表面的方向上可以发送多个细分方向的参考信号。用户设备可以在1004处记录经由各条路径中的每一条路径的参考信号的接收信号质量,并且可以在1005处基于系统相关信息和所记录的CSI-RS的接收信号质量来确定用于通信的路径。在1006处,用户设备可以经由所确定的路径(利用该路径对应的波束方向)与网络设备进行通信。附加地,用户设备也可以向网络设备报告所确定的路径(例如,向网络设备报告该路径经由的智能超表面的标识符和对应的CSI-RS波束编号),以便网络设备经由所确定的路径与用户设备进行通信。
附加地或替代地,除了波束扫描预定信息以外,系统相关信息还可以被包括在本领域技术人员能够想到的其他信号中被传输给用户设备。此外,还可以通过其他无线通信系统将系统相关信息从网络设备传输给用户设备。
图11示出了由网络设备确定路径的信息交互图。如图11所示,如图11所示,在1101处,网络设备获取非地面网络的系统相关信息,其可以包括卫星的星历信息、以及与该卫星相关联的一个或多个智能超表面(该一个或多个智能超表面可以由网络设备至少基于卫星和非地面网络中的多个智能超表面的位置(以及可选地,用户设备的位置)确定)的标识符和位置(以及可选地,一个或多个智能超表面的增益)。如图11所示,一个或多个智能超表面被编号为智能超表面1,…智能超表面N,其中N为大于或等于1的整数。作为示例,与图9对应的N等于2。虽然网络设备在1102处向用户设备发送波束扫描预定信息,但是该信息中仅指定后续发送参考信号(例如,CSI-RS)的时频资源,而不需要包括系统相关信息。在1103处,网络设备可以向用户设备在相应的时频资源上进行CSI-RS波束扫描,其中网络设备在每一个智能超表面的方向上可以发送多个细分方向的参考信号。相应地,用户设备可以在1104处记录经由各条路径中的每一条路径的参考信号的接收信号质量。在1105处,用户设备将记录的测量结果(即,各条路径对应的参考信号的接收信号质量)报告给网络设备,使得网路设备在1106处基于系统相关信息和接收到的报告的CSI-RS的接收信号质量来确定用于通信的路径。在1007处,网络设备可以经由所确定的路径(利用该路径对应的波束方向)与用户设备进行通信。
应该理解的是,图10和图11中的一些操作的细节已经在图5中详细地描述,此处不再重复。
返回参考图9,例如,假设卫星和用户设备之间存在遮挡,用户设备经由LISA-1和 LISA-2分别接收到多个CSI-RS信号。由于(在使用无源智能超表面时)路径损耗与两段反射链路的距离长度有关,因此经由LISA-2传输CSI-RS的路径上的损耗更小。更具体而言,朝着LISA-2的方向发送的第4个CSI-RS波束(如图9(b)中的横条纹波束所示)的方向上的路径的损耗最小,即通过该条路径所获得的接收信号质量测量结果最大。结合系统相关信息,可以得知LISA-2路径(即,经由LISA-2的路径)上的接收信号质量优于LISA-1路径(即,经由LISA-1的路径),并且卫星的移动方向是远离LISA-1而靠近LISA-2的,即LISA-2路径上传输的信号将具有更长的卫星覆盖时间。因此,用户设备或网络设备选择的路径是经由LISA-2反射的。更细分地,如图9(b)所示,存在多条经由LISA-2的路径。作为示例,虽然朝着LISA-2的方向发送的第4个CSI-RS波束的方向上的路径对应的接收信号质量最大,但是其与第5个CSI-RS波束(如图9(b)中的竖条纹波束所示)的方向上的路径对应的接收信号质量的差值小于一定阈值(例如,第一阈值),并且后者路径被卫星覆盖的时间更长并且大于一定阈值(例如,第二阈值),因此可以选择后续综合通信质量较高的后者路径(图9(b)中竖条纹波束方向对应的经由LISA-2的路径)作为所确定的用于通信的路径。
第三实施例:用户设备切换小区的智能超表面路径选择
在第三实施例中,用户设备已经接入非地面蜂窝网系统,并且由于用户设备或卫星的移动等原因,用户设备需要切换到另一小区(例如,从与原gNB通信切换到与目标gNB通信)。
图12示出了根据本公开的第二实施例的示意图。与图6和图9类似地,为了便于说明,图12中仅示出了两个智能超表面(例如,LISA-1和LISA-2)的示例,实际非地面网络中可以包括更多或更少数量的智能超表面。应该理解的是,虽然图12中仅示出了非透明卫星系统的示例,但是第三实施例中的路径选择的方法同样适用于通过卫星将信号转发到网络设备的透明卫星系统。
通常来说,在用户设备发现即使切换路径通信质量都较差的情况下,可以测量相邻小区的接收信号质量,并且在适当条件触发后切换到能够提供较优通信质量的相邻小区。如图12所示,在该示例中,用户设备在原小区中可以通过经由LISA-2的路径(该路径是先前的优选路径)与原gNB进行通信。由于LISA-1与原gNB距离较远,因此原gNB并没有将LISA-1作为候选智能超表面,因此在系统相关信息中可以不提供关于LISA-1 的信息。类似地,由于LISA-2与目标gNB距离较远,因此目标gNB可能也没有将LISA-2作为本小区的用户设备的候选智能超表面,因此在系统相关信息中可以不提供关于LISA-2的信息。根据本实施例,在用户设备切换到目标gNB所在的小区之后,可以将LISA-1和LISA-2都作为候选智能超表面来提供反射链路从而改善非地面网络的通信质量。
根据图12,用户设备在切换到目标gNB之后,可以向该目标gNB发送先前在原小区中确定的优选路径中的智能超表面(例如,LISA-2)的信息,该信息可以至少包括LISA-2的标识符和位置等。至少基于该信息,网络设备可以选择用于通信的切换后的路径,或者指示用户设备选择切换后的路径。对于切换后的路径的选择,可以执行类似于第二实施例中的方法。
应该理解的是,每个网络设备可以至少基于卫星和多个智能超表面的位置等信息来确定一个或多个智能超表面(在本文中有时也称为与卫星相关联的一个或多个智能超表面),并将该一个或多个智能超表面(作为候选智能超表面集合)的信息包括在系统相关信息中,用于非地面网络中的路径选择。由于不同的网络设备所处的位置和环境不同,其确定的候选智能超表面集合也不同。例如,在用户设备的切换过程中,原gNB提供的优选路径中的智能超表面可以被纳入目标gNB所确定的候选智能超表面集合中,从而增大目标小区中的路径选择范围,有助于目标gNB更加快速和精准地确定切换后的路径。
应该认识到的是,上述实施例(包括第一实施例、第二实施例、第三实施例)中的具体示例描述仅仅是示例性的,并不旨在进行限制。在实践中,可以存在更多数量的用户设备和网络设备。对于每个用户设备和每个网络设备,可以使用本公开提供的上述方法在各种示例中进行非地面网络通信路径选择。可以理解的是,在网络设备是gNB并且该gNB包括多个发送和接收点(TRP)的情况下,可以使用上述方法对每个用户设备和每个TRP之间的非地面网络通信路径进行选择和确定。
本公开的技术效果
根据本公开提出的用于使用智能超表面的非地面网络(NTN)中的路径选择的方法,可以由用户设备或网络设备至少基于NTN系统相关信息(例如,其至少包括卫星的星历信息、以及与该卫星相关联的一个或多个智能超表面的标识符和位置等)来确定优选路径。该优选路径能够经由适当的智能超表面来为网络设备和用户设备之间的NTN通信提 供反射链路,从而在可视链路通信质量较差的场景中改善信道容量增益。
在用户设备接入NTN蜂窝网网络之前,通过扩展现有的或定义新的消息(例如,SIB消息)来传输NTN系统相关信息,可以便于用户设备确定优选路径开展随机接入,显著提高接入的成功率。在用户设备接入NTN蜂窝网络之后,由网络设备或用户设备至少基于系统相关信息(和参考信号测量结果)来确定优选路径,可以有效提升信道容量和提高系统整体的传输效率。在用户设备执行小区切换的场景中,目标网络设备可以基于原网络设备提供的原优选路径中的智能超表面等信息,更加快速和准确地确定切换后的优选路径。
示例性方法
图13示出了根据本公开实施例的用于非地面网络中的用户设备(或更具体地,电子设备300)的示例方法1300的流程图。如图13所示,该方法1300可以包括用户设备从网络设备接收非地面网络的系统相关信息(方框S1301)。该系统相关信息可以至少包括卫星的星历信息、以及多个智能超表面中的与该卫星相关联的一个或多个智能超表面的标识符和位置。在方框S1302处,用户设备可以至少基于所接收的系统相关信息,确定用户设备与网络设备进行通信的路径。在该方法中,所确定的路径经由上述一个或多个智能超表面中的一个智能超表面。此后,用户设备可以经由所确定的路径,与所述网络设备进行通信(方框1303)。该方法的详细示例操作可以参考上文关于用户设备(或更具体地,电子设备300)的操作描述,此处不再重复。
图14示出了根据本公开实施例的用于非地面网络中的网络设备(或更具体地,电子设备400)的示例方法1400的流程图。如图14所示,该方法1400可以包括网络设备获取非地面网络的系统相关信息(方框1401)。该系统相关信息至少包括卫星的星历信息、以及多个智能超表面中的与该卫星相关联的一个或多个智能超表面的标识符和位置。在该方法中,该一个或多个智能超表面由网络设备至少基于卫星的位置和多个智能超表面的位置确定。此后,在方框1402处,网络设备可以经由一条确定的路径,与用户设备进行通信。在该方法中,上述路径是(由网络设备或用户设备)至少基于系统相关信息来确定的,并且所确定的路径经由上述一个或多个智能超表面中的一个智能超表面。该方法的详细示例操作可以参考上文关于网络设备(或更具体地,电子设备400)的操作描述,此处不再重复。
本公开的方案可以以如下的示例方式实施。
条款1、一种用于非地面网络中的用户设备的电子设备,所述非地面网络还包括能够与所述用户设备进行通信的网络设备、卫星和多个智能超表面,所述电子设备包括处理电路,所述处理电路被配置为使得所述用户设备执行以下操作:
从所述网络设备接收非地面网络的系统相关信息,所述系统相关信息至少包括所述卫星的星历信息、以及所述多个智能超表面中的与所述卫星相关联的一个或多个智能超表面的标识符和位置;
至少基于所接收的系统相关信息,确定所述用户设备与所述网络设备进行通信的路径,所确定的路径经由所述一个或多个智能超表面中的一个智能超表面;以及
经由所确定的路径,与所述网络设备进行通信。
条款2、根据条款1所述的电子设备,其中所确定的路径与所述用户设备接收参考信号的接收信号质量最大的路径不同。
条款3、根据条款1所述的电子设备,其中所确定的路径与所述用户设备接收参考信号的接收信号质量最大的路径相同。
条款4、根据条款2或3所述的电子设备,所述处理电路还被配置为使得所述用户设备执行以下操作:
通过分别经由所述一个或多个智能超表面中的部分或全部智能超表面的多条路径中的每条路径,从所述网络设备接收参考信号;以及
记录所述多条路径中的每条路径对应的参考信号的接收信号质量。
条款5、根据条款4所述的电子设备,其中至少基于所接收的系统相关信息来确定所述用户设备与所述网络设备进行通信的路径包括:至少基于所述系统相关信息以及所记录的所述多条路径中的每条路径对应的接收信号质量,从所述多条路径中选择一条路径作为所确定的路径。
条款6、根据条款5所述的电子设备,所述处理电路还被配置为使得所述用户设备执行以下操作:
通过所述系统相关信息导出所述一个或多个智能超表面被卫星覆盖的时间;
响应于确定最大的接收信号质量与所述多条路径中的第一路径对应的接收信号质量 的差值小于第一阈值,并且第一路径中的智能超表面被所述卫星覆盖的时间大于所述接收信号质量最大的路径中的智能超表面被所述卫星覆盖的时间并且大于第二阈值,选择所述第一路径作为所确定的路径。
条款7、根据条款1所述的电子设备,其中所述系统相关信息被包括在系统信息块(SIB)中。
条款8、根据条款1所述的电子设备,其中确定所述用户设备与所述网络设备进行通信的路径是在所述用户设备接入所述非地面网络之前进行的,并且所述处理电路还被配置为使得所述用户设备执行以下操作:
在所述用户设备接入所述非地面网络之后,优先以指向所述一个智能超表面的波束进行以下中的一者或多者:波束扫描、数据接收、或波束恢复。
条款9、根据条款4所述的电子设备,其中:
所述系统相关信息被包括在波束扫描预定信息中;以及
所述参考信号对应的时频资源由波束扫描预定信息指定。
条款10、根据条款4所述的电子设备,其中参考信号包括同步信号块(SSB)或信道状态信息参考信号(CSI-RS)。
条款11、根据条款1所述的电子设备,所述处理电路还被配置为使得所述用户设备执行以下操作:
从所述网络设备切换到另一个网络设备;以及
向所述另一个网络设备发送所确定的路径中的智能超表面的信息,该信息至少包括所述智能超表面的标识符和位置,使得所述另一个网络设备至少基于所述信息选择用于通信的切换后的路径,或者指示所述用户设备选择切换后的路径。
条款12、根据条款1所述的电子设备,其中所述智能超表面包括大型智能表面天线(LISA)或可重构智能表面(RIS)。
条款13、根据条款1所述的电子设备,其中所述系统相关信息还包括:所述一个或多个智能超表面的增益。
条款14、根据条款1所述的电子设备,其中:
所述一个或多个智能超表面由所述网络设备至少基于所述卫星的位置和所述多个智 能超表面的位置确定。
条款15、一种用于非地面网络中的网络设备的电子设备,所述非地面网络还包括能够与所述网络设备进行通信的用户设备、卫星和多个智能超表面,所述电子设备包括处理电路,所述处理电路被配置为使得所述网络设备执行以下操作:
获取非地面网络的系统相关信息,所述系统相关信息至少包括所述卫星的星历信息、以及所述多个智能超表面中的与所述卫星相关联的一个或多个智能超表面的标识符和位置,其中所述一个或多个智能超表面由所述网络设备至少基于所述卫星的位置和所述多个智能超表面的位置确定;
经由一条确定的路径,与所述用户设备进行通信,其中所述路径是至少基于所述系统相关信息来确定的,并且所确定的路径经由所述一个或多个智能超表面中的一个智能超表面。
条款16、根据条款15所述的电子设备,其中所确定的路径与所述用户设备从所述网络设备接收参考信号的接收信号质量最大的路径不同。
条款17、根据条款15所述的电子设备,其中所确定的路径与所述用户设备从所述网络设备接收参考信号的接收信号质量最大的路径相同。
条款18、根据条款16或17所述的电子设备,所述处理电路还被配置为使得所述网络设备执行以下操作:
通过分别经由所述一个或多个智能超表面中的部分或全部智能超表面的多条路径中的每条路径,向所述用户设备发送参考信号,其中所述用户设备记录所述多条路径中的每条路径对应的接收信号质量。
条款19、根据条款18所述的电子设备,所述处理电路还被配置为使得所述网络设备执行以下操作:
从所述用户设备接收所述多条路径中的每条路径对应的参考信号的接收信号质量的报告;以及
至少基于所述系统相关信息和报告的接收信号质量,从所述多条路径中选择一条路径作为所确定的路径。
条款20、根据条款19所述的电子设备,所述处理电路还被配置为使得所述网络设 备执行以下操作:
通过所述系统相关信息导出所述一个或多个智能超表面被卫星覆盖的时间;以及
响应于确定最大的接收信号质量与所述多条路径中的第一路径对应的接收信号质量的差值小于第一阈值,并且第一路径中的智能超表面被所述卫星覆盖的时间大于所述接收信号质量最大的路径中的智能超表面被所述卫星覆盖的时间并且大于第二阈值,选择所述第一路径作为所确定的路径。
条款21、根据条款18所述的电子设备,所述处理电路还被配置为使得所述网络设备执行以下操作:
向所述用户设备发送所述系统相关信息,使得所述用户设备至少基于所述系统相关信息以及所记录的所述多条路径中的每条路径对应的接收信号质量,从所述多条路径中选择一条路径作为所确定的路径。
条款22、根据条款15所述的电子设备,其中所述系统相关信息被包括在系统信息块(SIB)中。
条款23、根据条款18所述的电子设备,其中:
所述系统相关信息被包括在波束扫描预定信息中;以及
所述参考信号对应的时频资源由波束扫描预定信息指定。
条款24、根据条款18所述的电子设备,其中参考信号包括同步信号块(SSB)或信道状态信息参考信号(CSI-RS)。
条款25、根据条款15所述的电子设备,其中另一个用户设备切换到所述网络设备,所述处理电路还被配置为使得所述网络设备执行以下操作:
从所述另一个用户设备接收其先前的路径中的智能超表面的信息,该信息至少包括所述智能超表面的标识符和位置;
至少基于所述信息选择的切换后的路径,或者指示所述另一个用户设备选择切换后的路径。
条款26、根据条款15所述的电子设备,其中所述智能超表面包括大型智能表面天线(LISA)或可重构智能表面(RIS)。
条款27、根据条款15所述的电子设备,其中所述系统相关信息还包括:所述一个 或多个智能超表面的增益。
条款28、一种用于非地面网络中的用户设备的方法,所述非地面网络还包括能够与所述用户设备进行通信的网络设备、卫星和多个智能超表面,所述方法包括:
从所述网络设备接收非地面网络的系统相关信息,所述系统相关信息至少包括所述卫星的星历信息、以及所述多个智能超表面中的与所述卫星相关联的一个或多个智能超表面的标识符和位置;
至少基于所接收的系统相关信息,确定所述用户设备与所述网络设备进行通信的路径,所确定的路径经由所述一个或多个智能超表面中的一个智能超表面;以及
经由所确定的路径,与所述网络设备进行通信。
条款29、一种用于非地面网络中的网络设备的方法,所述非地面网络还包括能够与所述网络设备进行通信的用户设备、卫星和多个智能超表面,所述方法包括:
获取非地面网络的系统相关信息,所述系统相关信息至少包括所述卫星的星历信息、以及所述多个智能超表面中的与所述卫星相关联的一个或多个智能超表面的标识符和位置,其中所述一个或多个智能超表面由所述网络设备至少基于所述卫星的位置和所述多个智能超表面的位置确定;
经由一条确定的路径,与所述用户设备进行通信,其中所述路径是至少基于所述系统相关信息来确定的,并且所确定的路径经由所述一个或多个智能超表面中的一个智能超表面。
条款30、一种具有存储在其上的一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使该电子设备执行根据条款28或29所述的方法。
条款31、一种包括程序指令的计算机程序产品,所述程序指令在由计算机的一个或多个处理器执行时,使得所述计算机执行根据条款28或29所述的方法。
应该指出,上述的应用实例仅仅是示例性的。本公开的实施例在上述应用实例中还可以任何其它适当的方式执行,仍可实现本公开的实施例所获得的有利效果。而且,本公开的实施例同样可应用于其它类似的应用实例,仍可实现本公开的实施例所获得的有利效果。
应该理解的是,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应该理解的是,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图15所示的通用个人计算机1100安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图15是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例性终端设备。
在图15中,中央处理单元(CPU)1101根据只读存储器(ROM)1102中存储的程序或从存储部分1108加载到随机存取存储器(RAM)1103的程序执行各种处理。在RAM 1103中,也根据需要存储当CPU 1101执行各种处理等时所需的数据。
CPU 1101、ROM 1102和RAM 1103经由总线1104彼此连接。输入/输出接口1105也连接到总线1104。
下述部件连接到输入/输出接口1105:输入部分1106,包括键盘、鼠标等;输出部分1107,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1108,包括硬盘等;和通信部分1109,包括网络接口卡比如LAN卡、调制解调器等。通信部分1109经由网络比如因特网执行通信处理。
根据需要,驱动器1110也连接到输入/输出接口1105。可拆卸介质1111比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1110上,使得从中读出的计算机程序根据需要被安装到存储部分1108中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1111安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图15所示的其中存储有程序、与 设备相分离地分发以向用户提供程序的可拆卸介质1111。可拆卸介质1111的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1102、存储部分1108中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本公开的技术能够应用于各种产品。
例如,根据本公开的实施例的电子设备400可以被实现为各种网络设备/基站或者被包含在各种网络设备/基站中,而如图14所示的方法也可由各种网络设备/基站实现。例如,根据本公开的实施例的电子设备300可以被实现为各种用户设备/终端设备或者被包含在各种用户设备/终端设备中,而如图13所示的方法也可由各种用户设备/终端设备实现。
例如,本公开中提到的网络设备/基站可以被实现为任何类型的基站,例如演进型节点B(gNB)。gNB可以包括一个或多个发送和接收点(TRP)。用户设备可以连接到一个或多个gNB内的一个或多个TRP。例如,用户设备可能能够接收来自多个gNB(和/或由同一gNB提供的多个TRP)的传输。例如,gNB可以包括宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的用户设备在一些示例中也称为终端设备,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。在一些情况下,用户设备可以使用多种无线通信技术进行通信。例如,用户设备可以被配置为使用GSM、UMTS、CDMA2000、WiMAX、LTE、 LTE-A、WLAN、NR、蓝牙等中的两者或更多者进行通信。在一些情况下,用户设备也可以被配置为仅使用一种无线通信技术进行通信。
以下将参照图16至图19描述根据本公开的示例。
关于基站的示例
应该理解的是,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和Node B中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,eLTE eNB等等)。本公开的基站中的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
第一示例
图16是示出可以应用本公开内容的技术的基站(本图中以gNB作为示例)的示意性配置的第一示例的框图。gNB 1200包括多个天线1210以及基站设备1220。基站设备1220和每个天线1210可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1200(或基站设备1220)可以对应于上述网络设备(或更具体地,电子设备400)。
天线1210中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1220发送和接收无线信号。如图16所示,gNB 1200可以包括多个天线1210。例如,多个天线1210可以与gNB 1200使用的多个频段兼容。
基站设备1220包括控制器1221、存储器1222、网络接口1223以及无线通信接口1225。
控制器1221可以为例如CPU或DSP,并且操作基站设备1220的较高层的各种功能。例如,控制器1221根据由无线通信接口1225处理的信号中的数据来生成数据分组,并经由网络接口1223来传递所生成的分组。控制器1221可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1221可以具有执行如下 控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1222包括RAM和ROM,并且存储由控制器1221执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1223为用于将基站设备1220连接至核心网1224的通信接口。控制器1221可以经由网络接口1223而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1200与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1223还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1223为无线通信接口,则与由无线通信接口1225使用的频段相比,网络接口1223可以使用较高频段用于无线通信。
无线通信接口1225支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1210来提供到位于gNB 1200的小区中的终端的无线连接。无线通信接口1225通常可以包括例如基带(BB)处理器1226和RF电路1227。BB处理器1226可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1221,BB处理器1226可以具有上述逻辑功能的一部分或全部。BB处理器1226可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1226的功能改变。该模块可以为插入到基站设备1220的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1227可以包括例如混频器、滤波器和放大器,并且经由天线1210来传送和接收无线信号。虽然图16示出一个RF电路1227与一根天线1210连接的示例,但是本公开并不限于该图示,而是一个RF电路1227可以同时连接多根天线1210。
如图16所示,无线通信接口1225可以包括多个BB处理器1226。例如,多个BB处理器1226可以与gNB 1200使用的多个频段兼容。如图16所示,无线通信接口1225可以包括多个RF电路1227。例如,多个RF电路1227可以与多个天线元件兼容。虽然图16示出其中无线通信接口1225包括多个BB处理器1226和多个RF电路1227的示例,但是无线通信接口1225也可以包括单个BB处理器1226或单个RF电路1227。
第二示例
图17是示出可以应用本公开内容的技术的基站(本图中以gNB作为示例)的示意性配置的第二示例的框图。gNB 1330包括多个天线1340、基站设备1350和RRH 1360。RRH 1360和每个天线1340可以经由RF线缆而彼此连接。基站设备1350和RRH 1360可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1330(或基站设备1350)可以对应于上述网络设备(或更具体地,电子设备400)。
天线1340中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1360发送和接收无线信号。如图17所示,gNB 1330可以包括多个天线1340。例如,多个天线1340可以与gNB 1330使用的多个频段兼容。
基站设备1350包括控制器1351、存储器1352、网络接口1353、无线通信接口1355以及连接接口1357。控制器1351、存储器1352和网络接口1353与参照图16描述的控制器1221、存储器1222和网络接口1223相同。
无线通信接口1355支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1360和天线1340来提供到位于与RRH 1360对应的扇区中的终端的无线通信。无线通信接口1355通常可以包括例如BB处理器1356。除了BB处理器1356经由连接接口1357连接到RRH 1360的RF电路1364之外,BB处理器1356与参照图16描述的BB处理器1226相同。如图17所示,无线通信接口1355可以包括多个BB处理器1356。例如,多个BB处理器1356可以与gNB 1330使用的多个频段兼容。虽然图17示出其中无线通信接口1355包括多个BB处理器1356的示例,但是无线通信接口1355也可以包括单个BB处理器1356。
连接接口1357为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的接口。连接接口1357还可以为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的上述高速线路中的通信的通信模块。
RRH 1360包括连接接口1361和无线通信接口1363。
连接接口1361为用于将RRH 1360(无线通信接口1363)连接至基站设备1350的接口。连接接口1361还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1363经由天线1340来传送和接收无线信号。无线通信接口1363通常可以包括例如RF电路1364。RF电路1364可以包括例如混频器、滤波器和放大器,并且 经由天线1340来传送和接收无线信号。虽然图17示出一个RF电路1364与一根天线1340连接的示例,但是本公开并不限于该图示,而是一个RF电路1364可以同时连接多根天线1340。
如图17所示,无线通信接口1363可以包括多个RF电路1364。例如,多个RF电路1364可以支持多个天线元件。虽然图17示出其中无线通信接口1363包括多个RF电路1364的示例,但是无线通信接口1363也可以包括单个RF电路1364。
关于用户设备的示例
第一示例
图18是示出可以应用本公开内容的技术的智能电话1400的示意性配置的示例的框图。智能电话1400包括处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412、一个或多个天线开关1415、一个或多个天线1416、总线1417、电池1418以及辅助控制器1419。在一种实现方式中,此处的智能电话1400(或处理器1401)可以对应于上述用户设备(或更具体地,电子设备300)。
处理器1401可以为例如CPU或片上系统(SoC),并且控制智能电话1400的应用层和另外层的功能。存储器1402包括RAM和ROM,并且存储数据和由处理器1401执行的程序。存储装置1403可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1404为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1400的接口。
摄像装置1406包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1407可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1408将输入到智能电话1400的声音转换为音频信号。输入装置1409包括例如被配置为检测显示装置1410的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1410包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1400的输出图像。扬声器1411将从智能电话1400输出的音频信号转换为声音。
无线通信接口1412支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1412通常可以包括例如BB处理器1413和RF电路1414。BB处理器1413可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1414可以包括例如混频器、滤波器和放大器,并且经由天线1416来传送和接收无线信号。无线通信接口1412可以为其上集成有BB处理器1413和RF电路1414的一个芯片模块。如图18所示,无线通信接口1412可以包括多个BB处理器1413和多个RF电路1414。虽然图18示出其中无线通信接口1412包括多个BB处理器1413和多个RF电路1414的示例,但是无线通信接口1412也可以包括单个BB处理器1413或单个RF电路1414。
此外,除了蜂窝通信方案之外,无线通信接口1412可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1412可以包括针对每种无线通信方案的BB处理器1413和RF电路1414。
天线开关1415中的每一个在包括在无线通信接口1412中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1416的连接目的地。
天线1416中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1412传送和接收无线信号。如图18所示,智能电话1400可以包括多个天线1416。虽然图18示出其中智能电话1400包括多个天线1416的示例,但是智能电话1400也可以包括单个天线1416。
此外,智能电话1400可以包括针对每种无线通信方案的天线1416。在此情况下,天线开关1415可以从智能电话1400的配置中省略。
总线1417将处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412以及辅助控制器1419彼此连接。电池1418经由馈线向图18所示的智能电话1400的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1419例如在睡眠模式下操作智能电话1400的最小必需功能。
第二示例
图19是示出可以应用本公开内容的技术的汽车导航设备1520的示意性配置的示例 的框图。汽车导航设备1520包括处理器1521、存储器1522、全球定位系统(GPS)模块1524、传感器1525、数据接口1526、内容播放器1527、存储介质接口1528、输入装置1529、显示装置1530、扬声器1531、无线通信接口1533、一个或多个天线开关1536、一个或多个天线1537以及电池1538。在一种实现方式中,此处的汽车导航设备1520(或处理器1521)可以对应于上述用户设备(或更具体地,电子设备300)。
处理器1521可以为例如CPU或SoC,并且控制汽车导航设备1520的导航功能和另外的功能。存储器1522包括RAM和ROM,并且存储数据和由处理器1521执行的程序。
GPS模块1524使用从GPS卫星接收的GPS信号来测量汽车导航设备1520的位置(诸如纬度、经度和高度)。传感器1525可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1526经由未示出的终端而连接到例如车载网络1541,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1527再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1528中。输入装置1529包括例如被配置为检测显示装置1530的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1530包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1531输出导航功能的声音或再现的内容。
无线通信接口1533支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1533通常可以包括例如BB处理器1534和RF电路1535。BB处理器1534可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1535可以包括例如混频器、滤波器和放大器,并且经由天线1537来传送和接收无线信号。无线通信接口1533还可以为其上集成有BB处理器1534和RF电路1535的一个芯片模块。如图19所示,无线通信接口1533可以包括多个BB处理器1534和多个RF电路1535。虽然图19示出其中无线通信接口1533包括多个BB处理器1534和多个RF电路1535的示例,但是无线通信接口1533也可以包括单个BB处理器1534或单个RF电路1535。
此外,除了蜂窝通信方案之外,无线通信接口1533可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1533可以包括BB处理器1534和RF电路1535。
天线开关1536中的每一个在包括在无线通信接口1533中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1537的连接目的地。
天线1537中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1533传送和接收无线信号。如图19所示,汽车导航设备1520可以包括多个天线1537。虽然图19示出其中汽车导航设备1520包括多个天线1537的示例,但是汽车导航设备1520也可以包括单个天线1537。
此外,汽车导航设备1520可以包括针对每种无线通信方案的天线1537。在此情况下,天线开关1536可以从汽车导航设备1520的配置中省略。
电池1538经由馈线向图19所示的汽车导航设备1520的各个块提供电力,馈线在图中被部分地示为虚线。电池1538累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备1520、车载网络1541以及车辆模块1542中的一个或多个块的车载系统(或车辆)1540。车辆模块1542生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1541。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有 更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (31)

  1. 一种用于非地面网络中的用户设备的电子设备,所述非地面网络还包括能够与所述用户设备进行通信的网络设备、卫星和多个智能超表面,所述电子设备包括处理电路,所述处理电路被配置为使得所述用户设备执行以下操作:
    从所述网络设备接收非地面网络的系统相关信息,所述系统相关信息至少包括所述卫星的星历信息、以及所述多个智能超表面中的与所述卫星相关联的一个或多个智能超表面的标识符和位置;
    至少基于所接收的系统相关信息,确定所述用户设备与所述网络设备进行通信的路径,所确定的路径经由所述一个或多个智能超表面中的一个智能超表面;以及
    经由所确定的路径,与所述网络设备进行通信。
  2. 根据权利要求1所述的电子设备,其中所确定的路径与所述用户设备接收参考信号的接收信号质量最大的路径不同。
  3. 根据权利要求1所述的电子设备,其中所确定的路径与所述用户设备接收参考信号的接收信号质量最大的路径相同。
  4. 根据权利要求2或3所述的电子设备,所述处理电路还被配置为使得所述用户设备执行以下操作:
    通过分别经由所述一个或多个智能超表面中的部分或全部智能超表面的多条路径中的每条路径,从所述网络设备接收参考信号;以及
    记录所述多条路径中的每条路径对应的参考信号的接收信号质量。
  5. 根据权利要求4所述的电子设备,其中至少基于所接收的系统相关信息来确定所述用户设备与所述网络设备进行通信的路径包括:至少基于所述系统相关信息以及所记录的所述多条路径中的每条路径对应的接收信号质量,从所述多条路径中选择一条路径作为所确定的路径。
  6. 根据权利要求5所述的电子设备,所述处理电路还被配置为使得所述用户设备执 行以下操作:
    通过所述系统相关信息导出所述一个或多个智能超表面被卫星覆盖的时间;
    响应于确定最大的接收信号质量与所述多条路径中的第一路径对应的接收信号质量的差值小于第一阈值,并且第一路径中的智能超表面被所述卫星覆盖的时间大于所述接收信号质量最大的路径中的智能超表面被所述卫星覆盖的时间并且大于第二阈值,选择所述第一路径作为所确定的路径。
  7. 根据权利要求1所述的电子设备,其中所述系统相关信息被包括在系统信息块(SIB)中。
  8. 根据权利要求1所述的电子设备,其中确定所述用户设备与所述网络设备进行通信的路径是在所述用户设备接入所述非地面网络之前进行的,并且所述处理电路还被配置为使得所述用户设备执行以下操作:
    在所述用户设备接入所述非地面网络之后,优先以指向所述一个智能超表面的波束进行以下中的一者或多者:波束扫描、数据接收、或波束恢复。
  9. 根据权利要求4所述的电子设备,其中:
    所述系统相关信息被包括在波束扫描预定信息中;以及
    所述参考信号对应的时频资源由波束扫描预定信息指定。
  10. 根据权利要求4所述的电子设备,其中参考信号包括同步信号块(SSB)或信道状态信息参考信号(CSI-RS)。
  11. 根据权利要求1所述的电子设备,所述处理电路还被配置为使得所述用户设备执行以下操作:
    从所述网络设备切换到另一个网络设备;以及
    向所述另一个网络设备发送所确定的路径中的智能超表面的信息,该信息至少包括所述智能超表面的标识符和位置,使得所述另一个网络设备至少基于所述信息选择用于通信的切换后的路径,或者指示所述用户设备选择切换后的路径。
  12. 根据权利要求1所述的电子设备,其中所述智能超表面包括大型智能表面天线(LISA)或可重构智能表面(RIS)。
  13. 根据权利要求1所述的电子设备,其中所述系统相关信息还包括:所述一个或多个智能超表面的增益。
  14. 根据权利要求1所述的电子设备,其中:
    所述一个或多个智能超表面由所述网络设备至少基于所述卫星的位置和所述多个智能超表面的位置确定。
  15. 一种用于非地面网络中的网络设备的电子设备,所述非地面网络还包括能够与所述网络设备进行通信的用户设备、卫星和多个智能超表面,所述电子设备包括处理电路,所述处理电路被配置为使得所述网络设备执行以下操作:
    获取非地面网络的系统相关信息,所述系统相关信息至少包括所述卫星的星历信息、以及所述多个智能超表面中的与所述卫星相关联的一个或多个智能超表面的标识符和位置,其中所述一个或多个智能超表面由所述网络设备至少基于所述卫星的位置和所述多个智能超表面的位置确定;
    经由一条确定的路径,与所述用户设备进行通信,其中所述路径是至少基于所述系统相关信息来确定的,并且所确定的路径经由所述一个或多个智能超表面中的一个智能超表面。
  16. 根据权利要求15所述的电子设备,其中所确定的路径与所述用户设备从所述网络设备接收参考信号的接收信号质量最大的路径不同。
  17. 根据权利要求15所述的电子设备,其中所确定的路径与所述用户设备从所述网络设备接收参考信号的接收信号质量最大的路径相同。
  18. 根据权利要求16或17所述的电子设备,所述处理电路还被配置为使得所述网络设备执行以下操作:
    通过分别经由所述一个或多个智能超表面中的部分或全部智能超表面的多条路径中 的每条路径,向所述用户设备发送参考信号,其中所述用户设备记录所述多条路径中的每条路径对应的接收信号质量。
  19. 根据权利要求18所述的电子设备,所述处理电路还被配置为使得所述网络设备执行以下操作:
    从所述用户设备接收所述多条路径中的每条路径对应的参考信号的接收信号质量的报告;以及
    至少基于所述系统相关信息和报告的接收信号质量,从所述多条路径中选择一条路径作为所确定的路径。
  20. 根据权利要求19所述的电子设备,所述处理电路还被配置为使得所述网络设备执行以下操作:
    通过所述系统相关信息导出所述一个或多个智能超表面被卫星覆盖的时间;以及
    响应于确定最大的接收信号质量与所述多条路径中的第一路径对应的接收信号质量的差值小于第一阈值,并且第一路径中的智能超表面被所述卫星覆盖的时间大于所述接收信号质量最大的路径中的智能超表面被所述卫星覆盖的时间并且大于第二阈值,选择所述第一路径作为所确定的路径。
  21. 根据权利要求18所述的电子设备,所述处理电路还被配置为使得所述网络设备执行以下操作:
    向所述用户设备发送所述系统相关信息,使得所述用户设备至少基于所述系统相关信息以及所记录的所述多条路径中的每条路径对应的接收信号质量,从所述多条路径中选择一条路径作为所确定的路径。
  22. 根据权利要求15所述的电子设备,其中所述系统相关信息被包括在系统信息块(SIB)中。
  23. 根据权利要求18所述的电子设备,其中:
    所述系统相关信息被包括在波束扫描预定信息中;以及
    所述参考信号对应的时频资源由波束扫描预定信息指定。
  24. 根据权利要求18所述的电子设备,其中参考信号包括同步信号块(SSB)或信道状态信息参考信号(CSI-RS)。
  25. 跟据权利要求15所述的电子设备,其中另一个用户设备切换到所述网络设备,所述处理电路还被配置为使得所述网络设备执行以下操作:
    从所述另一个用户设备接收其先前的路径中的智能超表面的信息,该信息至少包括所述智能超表面的标识符和位置;
    至少基于所述信息选择的切换后的路径,或者指示所述另一个用户设备选择切换后的路径。
  26. 根据权利要求15所述的电子设备,其中所述智能超表面包括大型智能表面天线(LISA)或可重构智能表面(RIS)。
  27. 根据权利要求15所述的电子设备,其中所述系统相关信息还包括:所述一个或多个智能超表面的增益。
  28. 一种用于非地面网络中的用户设备的方法,所述非地面网络还包括能够与所述用户设备进行通信的网络设备、卫星和多个智能超表面,所述方法包括:
    从所述网络设备接收非地面网络的系统相关信息,所述系统相关信息至少包括所述卫星的星历信息、以及所述多个智能超表面中的与所述卫星相关联的一个或多个智能超表面的标识符和位置;
    至少基于所接收的系统相关信息,确定所述用户设备与所述网络设备进行通信的路径,所确定的路径经由所述一个或多个智能超表面中的一个智能超表面;以及
    经由所确定的路径,与所述网络设备进行通信。
  29. 一种用于非地面网络中的网络设备的方法,所述非地面网络还包括能够与所述网络设备进行通信的用户设备、卫星和多个智能超表面,所述方法包括:
    获取非地面网络的系统相关信息,所述系统相关信息至少包括所述卫星的星历信息、以及所述多个智能超表面中的与所述卫星相关联的一个或多个智能超表面的标识符和位 置,其中所述一个或多个智能超表面由所述网络设备至少基于所述卫星的位置和所述多个智能超表面的位置确定;
    经由一条确定的路径,与所述用户设备进行通信,其中所述路径是至少基于所述系统相关信息来确定的,并且所确定的路径经由所述一个或多个智能超表面中的一个智能超表面。
  30. 一种具有存储在其上的一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使该电子设备执行根据权利要求28或29所述的方法。
  31. 一种包括程序指令的计算机程序产品,所述程序指令在由计算机的一个或多个处理器执行时,使得所述计算机执行根据权利要求28或29所述的方法。
PCT/CN2023/129913 2022-11-11 2023-11-06 用于非地面网络中的设备和方法 WO2024099263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211408918.0A CN118075915A (zh) 2022-11-11 2022-11-11 用于非地面网络中的设备和方法
CN202211408918.0 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024099263A1 true WO2024099263A1 (zh) 2024-05-16

Family

ID=91031976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129913 WO2024099263A1 (zh) 2022-11-11 2023-11-06 用于非地面网络中的设备和方法

Country Status (2)

Country Link
CN (1) CN118075915A (zh)
WO (1) WO2024099263A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022133952A1 (en) * 2020-12-24 2022-06-30 Huawei Technologies Co., Ltd. Systems and methods for mimo communication with controllable environments
US20220278738A1 (en) * 2021-02-26 2022-09-01 Qualcomm Incorporated Reconfigurable intelligent surface discovery procedures
WO2022188052A1 (en) * 2021-03-10 2022-09-15 Qualcomm Incorporated Decoupled uplink and downlink communications via reconfigurable intelligent surfaces
WO2022194082A1 (zh) * 2021-03-18 2022-09-22 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022133952A1 (en) * 2020-12-24 2022-06-30 Huawei Technologies Co., Ltd. Systems and methods for mimo communication with controllable environments
US20220278738A1 (en) * 2021-02-26 2022-09-01 Qualcomm Incorporated Reconfigurable intelligent surface discovery procedures
WO2022188052A1 (en) * 2021-03-10 2022-09-15 Qualcomm Incorporated Decoupled uplink and downlink communications via reconfigurable intelligent surfaces
WO2022194082A1 (zh) * 2021-03-18 2022-09-22 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DI RENZO MARCO; NTONTIN KONSTANTINOS; SONG JIAN; DANUFANE FADIL H.; QIAN XUEWEN; LAZARAKIS FOTIS; DE ROSNY JULIEN; PHAN-HUY DINH-T: "Reconfigurable Intelligent Surfaces vs. Relaying: Differences, Similarities, and Performance Comparison", IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, IEEE, vol. 1, 16 June 2020 (2020-06-16), pages 798 - 807, XP011797329, DOI: 10.1109/OJCOMS.2020.3002955 *

Also Published As

Publication number Publication date
CN118075915A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
EP3678406B1 (en) Electronic device and method for wireless communications
US20190141664A1 (en) Communication control method and user terminal
US11672027B2 (en) Managing an overlap between downlink reference signals
US20230164685A1 (en) Access Control Method and Apparatus for Terminal Device
US20220322176A1 (en) Cell Reselection Method and System, and Apparatus
KR20210015949A (ko) 기준 신호를 측정하기 위한 수신 빔 선택
WO2022017303A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
US20210314908A1 (en) Network Node, User Equipment, and Methods in a Wireless Communications Network
WO2020144973A1 (ja) 通信装置、通信方法、及びプログラム
JP6992743B2 (ja) 通信制御装置、端末装置、方法及びプログラム
WO2024099263A1 (zh) 用于非地面网络中的设备和方法
US20240022974A1 (en) Tearing down a packet data session after a transition to a different subscription of a dual subscriber identity module dual standby user equipment
CN115315990A (zh) 控制设备、无线通信设备和控制方法
WO2023130221A1 (zh) 通信方法、终端设备以及网络设备
WO2023130245A1 (zh) 通信方法、终端设备及网络设备
WO2023109575A1 (zh) 通信方法及装置
WO2024159587A1 (zh) 用于无线通信的方法及装置
US20230358844A1 (en) Angle calibration for cross-link interference angle-of-arrival estimation
WO2024174243A1 (zh) 无线通信的方法和装置
WO2024046255A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2023134526A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2023138570A1 (zh) 通信方法以及通信装置
WO2024061077A1 (zh) 一种通信方法及装置
WO2024045543A1 (zh) 通信方法及装置
CN118784403A (zh) 通信方法、装置和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887953

Country of ref document: EP

Kind code of ref document: A1