WO2024098931A1 - 服务器 - Google Patents

服务器 Download PDF

Info

Publication number
WO2024098931A1
WO2024098931A1 PCT/CN2023/117462 CN2023117462W WO2024098931A1 WO 2024098931 A1 WO2024098931 A1 WO 2024098931A1 CN 2023117462 W CN2023117462 W CN 2023117462W WO 2024098931 A1 WO2024098931 A1 WO 2024098931A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage
slide rail
chassis
push
board
Prior art date
Application number
PCT/CN2023/117462
Other languages
English (en)
French (fr)
Inventor
李志新
Original Assignee
超聚变数字技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 超聚变数字技术有限公司 filed Critical 超聚变数字技术有限公司
Publication of WO2024098931A1 publication Critical patent/WO2024098931A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the field of computer servers, and in particular to a server.
  • the purpose of the embodiments of the present application is to provide a server for increasing the number of memories that can be placed in a server chassis to realize a high-density server, which relates to the field of computer servers.
  • an embodiment of the present application provides a server.
  • the server includes: a chassis, a system board and at least one storage module.
  • the chassis includes an opening.
  • the chassis includes a first accommodating space and a second accommodating space, and the first accommodating space is closer to the opening than the second accommodating space.
  • the system board is located in the second accommodating space.
  • the storage module includes a push-pull bracket, a storage board and a plurality of memories.
  • the storage board is fixed in the push-pull bracket, and the storage board is electrically connected to the system board.
  • a plurality of memories are arranged on opposite sides of the storage board, and are all pluggably connected to the storage board.
  • the storage module is slidably connected to the chassis through the push-pull bracket, so that the storage module can be pushed from the opening into the first accommodating space.
  • the server provided in some embodiments of the present application may be provided with at least one storage module.
  • the storage board can be arranged in the middle position of the push-pull bracket, so that multiple memories are arranged on opposite sides of the storage board, and the multiple memories are pluggable and connected to the storage board.
  • the insertion direction of the memory in the push-pull bracket can be increased, which is conducive to making the server push-pull bracket usable on both sides under the premise that the specifications in the unit space remain unchanged, and then the chassis has more space to accommodate the memory, so as to realize a high-density storage server.
  • the push-pull bracket can be directly pulled out of the chassis along the Y-axis direction, and then the memory can be directly taken out along the X-axis direction to maintain the memory. After the maintenance is completed, the push-pull bracket is pushed into the chassis again, which is more convenient for directly plugging and unplugging the memory, thereby improving the staff's maintenance efficiency of the server.
  • the push-pull bracket includes a support plate and a cage, wherein the cage is located on one side of the support plate.
  • the cage includes a mounting position, and the memory board is mounted in the mounting position.
  • the cage also includes a plurality of plug-in slots; the plurality of plug-in slots are arranged on opposite sides of the mounting position so that the memory can be inserted into the plug-in slots and electrically connected to the memory board.
  • the storage board is installed in the installation card position, that is, the storage board is installed in the cage. Furthermore, the space on both sides of the storage board in the cage can be used to place the memory. Based on this, it is possible to set multiple memories on opposite sides of the storage board. Furthermore, the memory can be inserted into the plug-in slot in different directions to be electrically connected to the storage board, so as to increase the insertion direction of the memory in the push-pull bracket, which is conducive to making the server push-pull bracket usable on both sides under the premise of unchanged specifications in the unit space, and then there is more space inside the chassis to accommodate the memory, so as to realize a high-density storage server.
  • the push-pull bracket further includes a slide rail assembly.
  • the slide rail assembly is located on a side surface of the support plate away from the cage body. Between the chassis.
  • the slide rail assembly can be used to realize the push-pull bracket to reciprocate along the Y-axis direction in the chassis.
  • the push-pull bracket is placed in the first accommodation space in the chassis by using the slide rail assembly.
  • the slide rail assembly can be used to pull the push-pull bracket out of the chassis, and then the storage on the push-pull bracket can be pulled out along the Y-axis direction to maintain the storage, thereby improving the maintenance efficiency of the staff on the server.
  • the slide rail assembly includes at least one telescopic slide rail.
  • the telescopic slide rail includes a first fixed slide rail, a connecting slide rail, and a second fixed slide rail.
  • One side of the first fixed slide rail is fixedly connected to the chassis, and the other side of the first fixed slide rail is slidably connected to the connecting slide rail.
  • Both ends of the first fixed slide rail are provided with a first limiting structure for limiting the detachment of the connecting slide rail.
  • One side of the second fixed slide rail is fixedly connected to the support plate, and the other side of the second fixed slide rail is slidably connected to the connecting slide rail. Both ends of the second fixed slide rail are provided with a second limiting structure for limiting the detachment of the connecting slide rail.
  • the first fixed rail of the telescopic rail is fixedly connected to the chassis
  • the second fixed rail of the telescopic rail is fixedly connected to the support plate.
  • the relative movement of the first fixed rail and the second fixed rail can drive the support plate to slide in the chassis, so that the storage module can slide in the chassis through the push-pull bracket, and the storage module can be pushed into the first accommodating space from the opening.
  • it can be helpful to reduce the friction force when the push-pull bracket slides in the chassis and it can be convenient to pull the push-pull bracket out of the chassis along the Y-axis direction, and then directly take out the storage device along the X-axis direction to maintain the storage device. That is, it can be more convenient to plug and unplug the storage device, which improves the maintenance efficiency of the server by the staff.
  • the multiple storage modules are arranged along a first direction, wherein the first direction is parallel to the plug-in and pull-out direction of the memory, and wherein a first airflow gap is formed between two adjacent storage modules.
  • the cold air flowing through the first airflow gap can enter the two storage modules adjacent to the first airflow gap respectively, and perform heat dissipation treatment on each memory in the two storage modules. Since the cold air is not affected by the temperature of other memories, it will directly act on each memory, which can help improve the heat dissipation effect of the cold air on each memory, and help improve the heat dissipation effect and heat dissipation efficiency of the server.
  • a width of the first airflow gap along the first direction is greater than or equal to 4 mm.
  • Such an arrangement can ensure that the width of the first airflow gap is not too small, so that sufficient cold air can flow through the first airflow gap and perform heat dissipation treatment on each adjacent memory, thereby improving the heat dissipation effect of the cold air on each memory.
  • a width of the first airflow gap along the first direction is less than or equal to 12 mm.
  • Such an arrangement ensures that the width of the first airflow gap is not too large, and the first airflow gap does not occupy too much space inside the chassis, thereby meeting the space requirement for placing multiple storage devices in the chassis.
  • a second airflow gap is provided between the storage module and the chassis, wherein the first direction is parallel to a plug-in and pull-out direction of the storage.
  • the cold air flows through the second air gap and enters each adjacent storage device through the second air gap to dissipate heat for each storage device. Since the cold air is not affected by the temperature of other storage devices, it will directly act on each storage device, which can help improve the heat dissipation effect of the cold air on each storage device, and help improve the heat dissipation effect and efficiency of the server.
  • a width of the second air flow gap along the first direction is greater than or equal to 4 mm.
  • Such an arrangement can ensure that the width of the second airflow gap is not too small, so that sufficient cold air can flow through the second airflow gap and perform heat dissipation treatment on each adjacent memory, thereby improving the heat dissipation effect of the cold air on each memory.
  • a width of the second air flow gap along the first direction is less than or equal to 6 mm.
  • Such an arrangement can ensure that the width of the second airflow gap is not too large, and the second airflow gap does not occupy too much space inside the chassis, thereby meeting the space requirement for placing multiple storage devices in the chassis.
  • the chassis along the push-pull direction of the storage module, the chassis includes a side panel opposite to the opening.
  • the side panel includes a plurality of Vents.
  • the server further includes a cable.
  • One end of the cable is electrically connected to the system board, and the other end of the cable is electrically connected to the storage board.
  • the chassis further includes a third accommodation space. The third accommodation space is located between the first accommodation space and the second accommodation space. The third accommodation space is used to store the cable.
  • the cable when the push-pull bracket is pushed in a direction away from the system board, the cable can extend from the third accommodation space to the first accommodation space, so that when the push-pull bracket is pulled out of the chassis, the system board and the storage board can still maintain electrical connection.
  • the cable When the push-pull bracket is pushed in a direction close to the system board, the cable can be retracted to the third accommodation space and stored in the third accommodation space, which will neither affect the storage space of the system board in the second accommodation space nor the storage space of the storage module in the first accommodation space. This can help improve the sliding flexibility of the push-pull bracket in the chassis.
  • FIG1 is a schematic diagram of the structure of a server provided in some embodiments of the present application.
  • FIG2 is a schematic diagram of the structure of a server provided in some other embodiments of the present application.
  • FIG3 is a top view of a server provided in some embodiments of the present application.
  • FIG4 is a schematic structural diagram of the heat dissipation module in FIG2 ;
  • FIG5 is a schematic diagram of the assembly of the slide rail assembly and the chassis in FIG3 ;
  • FIG6 is a schematic diagram of the structure of the telescopic slide rail in the slide rail assembly in FIG3 ;
  • FIG. 7 is a schematic diagram of the structure of a server provided in some other embodiments of the present application.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • the terms “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used to indicate that two or more components are in direct physical or electrical contact with each other. Physical contact or electrical contact.
  • the term “coupled” or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other but still cooperate or interact with each other. The embodiments disclosed herein are not necessarily limited to the contents of this document.
  • a component can be, but is not limited to, a process running on a processor, a processor, an object, an executable file, an execution thread, a program and/or a computer.
  • applications and computing devices running on a computing device can be components.
  • One or more components may reside in a process and/or an execution thread, and a component may be located on a computer and/or distributed between two or more computers.
  • these components may be executed from various computer-readable media having various data structures stored thereon.
  • Components may, for example, communicate through local and/or remote processes according to signals having one or more data packets (e.g., data from two components interacting with another component between a local system, a distributed system and/or a network, such as the Internet interacting with other systems through signals).
  • signals having one or more data packets (e.g., data from two components interacting with another component between a local system, a distributed system and/or a network, such as the Internet interacting with other systems through signals).
  • FIG1 is a schematic diagram of the structure of a server provided in some embodiments of the present application.
  • FIG2 is a schematic diagram of the structure of a server provided in other embodiments of the present application. It is understood that FIG1 and the related figures below only schematically illustrate some components included in the server 100, and the actual shape, actual size, actual position and actual structure of these components are not limited by FIG1 and the figures below.
  • the server 100 includes: a chassis 10 , a system board 20 , and at least one storage module 30 .
  • the server 100 is a cube.
  • an XYZ coordinate system is established.
  • the width direction of the server 100 is defined as the X-axis direction
  • the length direction of the server 100 is defined as the Y-axis direction
  • the height direction of the server 100 is defined as the Z-axis direction. It can be understood that the coordinate system setting of the server 100 can be flexibly set according to actual needs, and is not specifically limited here.
  • the chassis 10 includes an opening 11 .
  • the chassis 10 includes a first accommodating space 12 and a second accommodating space 13 .
  • the first accommodating space 12 is closer to the opening 11 than the second accommodating space 13 .
  • the chassis 10 includes a first side plate S1 and a second side plate S2 that are relatively arranged along the X-axis direction, and the chassis 10 includes a top plate S3 and a bottom plate S4 that are relatively arranged along the Z-axis direction. And, the chassis 10 also includes a third side plate S5. Along the Y-axis direction, the third side plate S5 is arranged opposite to the opening 11, the first side plate S1, the second side plate S2, the top plate S3 and the bottom plate S4 are arranged around the circumference of the third side plate S5, and the first side plate S1, the second side plate S2, the top plate S3 and the bottom plate S4 are fixedly connected to the third side plate S5.
  • a accommodating space A is formed by using the first side plate S1, the second side plate S2, the top plate S3, the bottom plate S4 and the third side plate S5.
  • the accommodating space A includes a first accommodating space 12 and a second accommodating space 13, and the first accommodating space is farther away from the third side plate S5 than the second accommodating space 13.
  • first side panel S1, the second side panel S2, the top panel S3 and the bottom panel S4 are connected to each other without side panels to form an opening 11 of the chassis 10. This allows external objects to be pushed into the accommodating space A through the opening 11.
  • the first accommodating space is farther from the third side panel S5 than the second accommodating space 13. That is, the first accommodating space is closer to the opening 11 than the second accommodating space 13.
  • the system board 20 is located in the second accommodating space 13 . That is, the system board 20 can be disposed at a side of the chassis 10 away from the opening 11 .
  • system board 20 can be connected to the bottom plate S4 of the chassis 10 to fix the system board 20 and prevent the system board 20 from being displaced.
  • connection method between the system board 20 and the bottom plate S4 is not limited, and welding or other connection methods can be used.
  • the storage module 30 in the server 100 includes a push-pull bracket 31, a storage board 32, and a plurality of memories 33.
  • the storage module 30 is slidably connected to the chassis 10 through the push-pull bracket 31, so that the storage module 30 can be pushed into the chassis 10 through the opening 11. To the first accommodating space 12.
  • the push-pull bracket 31 can reciprocate along the Y-axis direction in the chassis 10.
  • the push-pull bracket 31 can be pulled from the first accommodating space 12 to the outside of the chassis 10 along the direction from the third side plate S5 to the opening 11.
  • the push-pull bracket 31 can be pushed from the outside of the chassis 10 to the first accommodating space 12 along the direction from the opening 11 to the third side plate S5.
  • the server 100 only illustrates an example in which the server 100 includes two storage modules 30 arranged along the X-axis. However, some embodiments of the present application do not limit the number of storage modules 30 in the server 100. For example, the server 100 may include three, four or five storage modules 30 arranged along the X-axis.
  • the push-pull bracket 31 is located in the first accommodating space 12. That is, the push-pull bracket 31 is arranged on the side of the system board 20 close to the opening 11, and obstacles are set to prevent the push-pull bracket 31 and the opening 11 bracket from being blocked, which can facilitate the free movement of the push-pull bracket 31 along the Y-axis direction.
  • the push-pull bracket 31 may be a drawer structure. Multiple memories 33 may be placed in the push-pull bracket 31.
  • the push-pull bracket 31 in the server 100 may be pulled out along the Y-axis direction, which is conducive to taking and placing the memories 33 stored in the push-pull bracket 31 at any time.
  • the push-pull bracket 31 can be placed in the first accommodating space 12 in the chassis 10.
  • the push-pull bracket 31 can be pulled out of the chassis 10 (the push-pull bracket 31 can be pulled from the first accommodating space 12 to the outside of the chassis 10 along the direction of the third side plate S5 pointing to the opening 11), and then the memory 33 on the push-pull bracket 31 is pulled out along the Y-axis direction to maintain the memory 33, thereby improving the maintenance efficiency of the staff on the server.
  • the push-pull bracket 31 can be pushed into the chassis 10 (the push-pull bracket 31 can be pushed from the outside of the chassis 10 to the first accommodating space 12 along the direction of the opening 11 pointing to the third side plate S5) to achieve the storage of multiple memories 33 on the push-pull bracket 31 into the chassis 10.
  • the memory board 32 can be fixed in the push-pull bracket 31.
  • the memory board 32 is electrically connected to the system board 20 so that signals are transmitted between the memory board 32 and the system board 20. Also, the memory board 32 is electrically connected to a plurality of memories 33 so that signals are transmitted between the memories 33 and the memory board 32.
  • the memory 33 is a hard disk
  • the storage board 32 is a hard disk backplane.
  • the hard disk backplane is electrically connected to the system board 20, and the hard disk is electrically connected to the hard disk backplane to achieve signal transmission between the hard disk, the hard disk backplane and the system board 20.
  • multiple memories 33 are disposed in the push-pull bracket 31 and are all pluggably connected to the storage board 32 , so that the multiple memories 33 can transmit signals to the storage board 32 .
  • the storage board 32 may be a double-sided storage board.
  • the storage board 32 includes a first side surface C1 and a second side surface C2 that are arranged opposite to each other.
  • the first side surface C1 is closer to the first side plate S1 than the second side surface C2.
  • the second side surface C2 is closer to the second side plate S2 than the first side surface C1.
  • the first side surface C1 and the second side surface C2 of the storage board 32 may be pluggably connected to a plurality of memories 33 to realize that the storage board 32 is a double-sided storage board.
  • the memory board 32 can be fixed at the middle position of the push-pull bracket 31, and the memory board 32 can be placed vertically in the push-pull bracket 31.
  • the length of the memory board 32 can be set to extend along the Y-axis direction, and the width of the memory board 32 can be set to extend along the Z-axis direction, so that the memory board 32 is placed vertically in the push-pull bracket 31.
  • the storage board 32 in the server 100 provided in some embodiments of the present application can be a double-sided storage board. Then, multiple memories 33 can be set on opposite sides of the storage board 32, and all are pluggable and connected to the storage board 32. That is, memories 33 can be set on both sides of the push-pull bracket 31. Thus, the insertion direction of the memory 33 in the push-pull bracket 31 can be increased, which is conducive to making the push-pull bracket 31 of the server 100 usable on both sides under the premise of unchanged specifications in the unit space, and then the chassis 10 has more space inside to accommodate the memory 33, so as to realize a high-density storage server.
  • the storage 33 located closer to the first side plate S1 can be moved along the direction toward the second side plate S2.
  • the storage device 33 located closer to the second side plate S2 can be plugged in and out in the direction of the second side plate S2. That is, there is no obstacle in the Z-axis direction of the storage device 33, which makes it easier to directly plug and unplug the storage device 33, thereby improving the maintenance efficiency of the server for the staff.
  • the push-pull brackets 31 of each storage module 30 can be pulled out separately. That is, only one push-pull bracket 31 is pulled out each time.
  • the storage 33 on the push-pull bracket 31 is maintained, other adjacent push-pull brackets 31 can be prevented from obstructing the operation of plugging and unplugging the storage 33, which can be more convenient to directly plug and unplug the storage 33, thereby improving the maintenance efficiency of the server by the staff.
  • a larger gap can be made between the push-pull brackets 31 that are pulled out at the same time, ensuring that there is sufficient space on the side of the storage 33 to be plugged in and out away from the storage board 32, so that the storage 33 can be plugged and unplugged, and other push-pull brackets 31 can be prevented from obstructing the operation of plugging and unplugging the storage 33, which is beneficial to improving the maintenance efficiency of the server by the staff.
  • each memory 33 may include a first interface
  • the storage board 32 may include multiple second interfaces corresponding to the first interfaces of the memory 33. That is, a memory 33 may be plugged into a second interface on the storage board 32 through its first interface to achieve electrical connection between the memory 33 and the storage board 32.
  • the number of second structures on the storage board 32 is not limited, that is, some embodiments of the present application do not limit the number of memories 33 that can be plugged and unplugged on the storage board 32.
  • the first side surface C1 of the memory board 32 includes a plurality of second interfaces
  • the second side surface C2 of the memory board 32 also includes a plurality of second interfaces.
  • the number of second interfaces on the first side C1 may be equal to the number of second interfaces on the second side C2. It is understandable that in other examples, the number of second interfaces on the first side C1 may be different from the number of second interfaces on the second side C2. In some embodiments of the present application, there is no restriction on the number of second interfaces on the first side C1 and the second side C2 of the storage board 32.
  • the server 100 may include at least one storage module 30.
  • a storage board 32 may be arranged at the middle position of a push-pull bracket 31, so that a plurality of memories 33 are arranged on opposite sides of the storage board 32, and are all pluggable and connected to the storage board 32.
  • the insertion direction of the memory 33 in the push-pull bracket 31 can be increased, which is conducive to making the push-pull bracket 31 of the server 100 available on both sides under the premise that the specifications in the unit space remain unchanged, and then the chassis 10 has more space inside to accommodate the memory 33, so as to realize a high-density storage server.
  • any push-pull bracket 31 can be directly pulled out of the chassis 10 along the Y-axis direction, and then the memory 33 can be directly taken out along the ⁇ X-axis direction (the memory 33 is directly taken out in the direction away from the storage board 32), and the memory 33 is maintained. After the maintenance is completed, the push-pull bracket 31 is pushed into the chassis 10, which is more convenient for directly plugging and unplugging the memory 33, thereby improving the maintenance efficiency of the staff on the server.
  • the number of storage modules 30 in the server 100 is multiple, and the multiple storage modules 30 are arranged along a first direction.
  • the first direction is parallel to the plugging and unplugging direction of the memory 33.
  • the first direction is also parallel to the X-axis direction.
  • the server 100 By configuring the server 100 to include a plurality of storage modules 30 , the storage modules 30 inside the chassis 10 can accommodate more memories 33 , thereby realizing a high-density storage server.
  • the server 100 contains a larger number of memories 33, a large amount of heat will be generated inside the server 100 when the server 100 is working normally. This heat cannot be dissipated in the closed space, which will cause the internal temperature of the server 100 to continue to rise, which may easily damage the memories 33 and affect the quality of the memories 33. Therefore, it is necessary to use cold air to dissipate the heat of the server 100 to avoid the problem that the internal temperature of the server 100 is too high and affects the quality of the memories 33.
  • cold air can be released into the server 100 at the position of the opening 11 to dissipate heat from the server 100.
  • the path of the cold air entering from the opening 11 is the opening 11, the first row of memory, the second row of memory, the third row of memory, and so on.
  • the nth column memory Based on this, when the cold air enters the first column memory, after absorbing the heat of the first column memory, the temperature of the cold air will increase to a certain extent. The cold air with the increased temperature then enters the second column memory to dissipate the heat of the second column memory, and the temperature of the cold air with the increased temperature will increase again.
  • the cold air with the increased temperature again goes to the third column memory to dissipate the heat of the third column memory, and so on until the nth column memory.
  • the temperature has reached a certain level, and the subsequent memories cannot be dissipated, resulting in a lower heat dissipation effect on the server 100.
  • FIG. 3 is a top view of a server provided in some embodiments of the present application.
  • a first airflow gap 40 is formed between two adjacent storage modules 30 .
  • the cold air paths entering through the opening 11 may include the following two: the first path (as shown by the arrow flowing through the first airflow gap 40), the cold air flows through the first airflow gap 40, enters each adjacent storage 33 from the first airflow gap 40, and performs heat dissipation treatment on each storage 33.
  • the cold air flowing through the first airflow gap 40 can enter the two storage modules 30 adjacent to the first airflow gap 40 respectively, and perform heat dissipation treatment on each storage 33 in the two storage modules 30.
  • the cold air Since the cold air is not affected by the temperature of other storages 33, it will directly act on each storage 33, which can help improve the heat dissipation effect of the cold air on each storage 33, and help improve the heat dissipation effect of the server 100, and its heat dissipation efficiency.
  • the second path is as above, opening 11, first column memory, second column memory, third column memory, ... nth column memory.
  • the specific heat dissipation process is consistent with the above description, which will not be repeated here.
  • each adjacent storage 33 is heat-dissipated. That is, most of the cold air will enter the first airflow gap 40 first. Of course, there will be a small amount of remaining cold air that will heat each storage 33 through the second path.
  • Some embodiments of the present application do not limit the cold air that flows through the second path. As long as part of the cold air can directly act on each storage device 33 through the first path, it can help improve the heat dissipation effect of the cold air on each storage device 33, and help improve the heat dissipation effect of the server 100 and its heat dissipation efficiency.
  • the width of the first airflow gap 40 along the first direction is greater than or equal to 4 mm. That is, along the X-axis direction, the width of the first airflow gap 40 between two adjacent storage modules 30 is greater than or equal to 4 mm.
  • the first direction is also parallel to the X-axis direction.
  • the width of the first airflow gap 40 along the first direction is equal to or close to 4 mm, sufficient cold air can flow through the first airflow gap 40 and perform heat dissipation treatment on each adjacent storage 33, thereby improving the heat dissipation effect of the cold air on each storage 33.
  • the width of the first airflow gap 40 is small, the occupation of the internal space of the chassis 10 by the first airflow gap 40 can be reduced, and there is sufficient space in the remaining chassis 10 to place multiple storage modules 30.
  • the width of the first airflow gap 40 along the first direction is less than or equal to 12 mm. That is, along the X-axis direction, the width of the first airflow gap 40 between two adjacent storage modules 30 is less than or equal to 12 mm.
  • the first direction is also parallel to the X-axis direction.
  • the width of the first airflow gap 40 along the first direction is equal to or close to 12 mm, the space requirement for placing multiple storage modules 30 in the chassis 10 can be met.
  • the width of the first airflow gap 40 is relatively large, it is beneficial to allow sufficient cold air to flow through the first airflow gap 40 and perform heat dissipation treatment on each adjacent storage 33, which can better improve the heat dissipation effect of cold air on each storage 33.
  • the width of the first airflow gap 40 along the first direction ranges from 4 mm to 12 mm. In this way, the width of the first airflow gap 40 is neither too large nor too small, and can prevent the space in the chassis 10 from being occupied too much. The heat dissipation effect of cold air on each storage 33 can be better improved.
  • the width of the first airflow gap 40 along the first direction is less than or equal to 6 mm. That is, along the X-axis direction, the width of the first airflow gap 40 between two adjacent storage modules 30 is less than or equal to 6 mm.
  • the width of the first airflow gap 40 along the first direction is equal to or close to 6 mm, the space requirement for placing multiple storage modules 30 in the chassis 10 can be met.
  • the width of the first airflow gap 40 is relatively large but not too large, it is beneficial to allow sufficient cold air to flow through the first airflow gap 40 and perform heat dissipation treatment on each adjacent storage 33, which can better improve the heat dissipation effect of cold air on each storage 33.
  • the width of the first airflow gap 40 along the first direction ranges from 4 mm to 6 mm. That is, along the X-axis direction, the width of the first airflow gap 40 between two adjacent storage modules 30 ranges from 4 mm to 6 mm.
  • Such a configuration can improve the heat dissipation effect of cold air on each storage 33 and better prevent the first airflow gap 40 from occupying too much space in the chassis 10, so that there is sufficient space in the remaining chassis 10 to place multiple storage modules 30.
  • the width of the first airflow gap 40 along the first direction may be any one of 4mm, 5mm, 6mm, 7mm, 8mm, 9mm, 10mm, 11mm or 12mm. However, some embodiments of the present application are not limited to this for the width of the first airflow gap 40 along the first direction.
  • the storage module 30 and the chassis 10 include a second airflow gap 50.
  • the first direction is parallel to the plugging and unplugging direction of the memory 33.
  • the first direction is also parallel to the X-axis direction.
  • a second airflow gap 50 is provided between the storage module 30 and the chassis 10.
  • the heat dissipation principle of the second airflow gap 50 is similar to that of the first airflow gap 40, and can also include the following two cold air paths: In the first path, the cold air flows through the second airflow gap 50 and enters each adjacent memory 33 from the second airflow gap 50 to perform heat dissipation treatment on each memory 33. Since the cold air is not affected by the temperature of other memories 33, it will directly act on each memory 33, which can help improve the heat dissipation effect of the cold air on each memory 33, and help improve the heat dissipation effect of the server 100 and its heat dissipation efficiency.
  • the second path is as above, opening 11, first column memory, second column memory, third column memory, ... nth column memory.
  • the specific heat dissipation process is consistent with the above description, which will not be repeated here.
  • each adjacent storage 33 is heat-dissipated. That is, most of the cold air will enter the second airflow gap 50 first. Of course, there will be a small amount of remaining cold air that will heat each storage 33 through the second path.
  • Some embodiments of the present application do not limit the cold air that flows through the second path. As long as part of the cold air can directly act on each storage device 33 through the first path, it can help improve the heat dissipation effect of the cold air on each storage device 33, and help improve the heat dissipation effect of the server 100 and its heat dissipation efficiency.
  • the side of the storage module 30 close to the first side plate S1 has a second airflow gap 50 with the first side plate S1.
  • the side of the storage module 30 close to the second side plate S2 has a second airflow gap 50 with the second side plate S2.
  • the storage module 30 closer to the first side panel S1 among the two storage modules 30 is the first storage module 30a
  • the storage module 30 closer to the second side panel S2 among the two storage modules 30 is the second storage module 30b.
  • the first storage module 30a is close to the side of the first side plate S1 and has a second airflow gap 50 between it and the first side plate S1. Also, the second storage module 30b is closer to the side of the second side plate S2 and has a second airflow gap 50 between it and the second side plate S2.
  • the server 100 includes a first airflow gap 40 and a second airflow gap 50. Therefore, the server 100 has all the beneficial effects of the first airflow gap 40 and the second airflow gap 50 described above, which will not be described in detail.
  • the server 100 includes three storage modules 30, and the three storage modules 30 are respectively a first storage module, a second storage module, and a third storage module.
  • the storage module 30 closest to the first side plate S1 among the three storage modules 30 is the first storage module
  • the storage module closest to the second side plate S2 among the three storage modules 30 is the second storage module
  • the second storage module is located between the first storage module and the second storage module.
  • the side of the first storage module close to the first side plate S1 has a second airflow gap 50 with the first side plate S1
  • the side of the second storage module close to the second side plate S2 also has a second airflow gap 50 with the second side plate S2.
  • first airflow gap 40 between the surface of the third storage module close to the first storage module and the surface of the first storage module close to the third storage module
  • first airflow gap 40 between the surface of the third storage module close to the second storage module and the surface of the second storage module close to the third storage module
  • the server includes more than three storage modules 30 , similar to the above case, the description when there are three storage modules 30 can be combined, and the only difference is that there is an additional corresponding first airflow gap 40 .
  • the width of the second airflow gap 50 along the first direction is greater than or equal to 4 mm.
  • the first direction is parallel to the X-axis direction. That is, along the X-axis direction, the storage module 30 closest to the first side panel S1 of the chassis 10, the width of the second airflow gap 50 between its surface close to the first side panel S1 and the first side panel S1 is greater than or equal to 4 mm.
  • the storage module 30 closest to the second side panel S2 of the chassis 10 the width of the second airflow gap 50 between its surface close to the second side panel S2 and the second side panel S2 is greater than or equal to 4 mm.
  • the width of the second airflow gap 50 along the first direction is equal to or close to 4 mm, sufficient cold air can flow through the second airflow gap 50 and perform heat dissipation treatment on each adjacent storage 33, thereby improving the heat dissipation effect of the cold air on each storage 33.
  • the width of the second airflow gap 50 is small, the occupation of the internal space of the chassis 10 by the second airflow gap 50 can be reduced, and sufficient space in the remaining chassis 10 is sufficient to place multiple storage modules 30.
  • the width of the second airflow gap 50 along the first direction is less than or equal to 6 mm.
  • the first direction is parallel to the X-axis direction. That is, along the X-axis direction, the storage module 30 closest to the first side panel S1 of the chassis 10, the width of the second airflow gap 50 between its surface close to the first side panel S1 and the first side panel S1 is less than or equal to 6 mm.
  • the storage module 30 closest to the second side panel S2 of the chassis 10 the width of the second airflow gap 50 between its surface close to the second side panel S2 and the second side panel S2 is less than or equal to 6 mm.
  • the width of the second airflow gap 50 along the first direction is equal to or close to 6 mm, the space requirement for placing multiple storage modules 30 in the chassis 10 can be met.
  • the width of the second airflow gap 50 is relatively large, it is beneficial to allow sufficient cold air to flow through the second airflow gap 50 and perform heat dissipation treatment on each adjacent storage 33, which can better improve the heat dissipation effect of cold air on each storage 33.
  • the width of the second airflow gap 50 along the first direction ranges from 4 mm to 6 mm. In this way, the width of the first airflow gap 40 is neither too large nor too small, and the heat dissipation effect of the cold air on each storage 33 can be better improved on the basis of preventing too much space in the chassis 10 from being occupied.
  • the width of the second airflow gap 50 along the first direction may be any one of 4 mm, 5 mm, or 6 mm. However, in some embodiments of the present application, the width of the second airflow gap 50 along the first direction is not limited thereto.
  • the chassis 10 includes a side plate S5 opposite to the opening 11.
  • the side plate S5 includes a plurality of heat dissipation holes T.
  • the push-pull direction of the storage module 30 is parallel to the Y-axis direction.
  • the chassis 10 includes a side panel S5 opposite to the opening 11.
  • the side panel S5 is the third side panel S5 of the chassis 10.
  • a plurality of heat dissipation holes T are provided on the third side panel S5.
  • the cold air is input into the server 100 through the opening 11. After the cold air dissipates the heat of each memory 33 in the server 100, the cold air The air temperature rises, and the heated cold air can flow out through the heat dissipation holes T. Based on this, the heat dissipation of each memory 33 in the server 100 is completed.
  • Some embodiments of the present application do not limit the number and shape of the heat dissipation holes T on the side plate S5, and can be set according to actual conditions.
  • the shape of the heat dissipation holes T can be circular, square, triangular, etc.
  • FIG2 takes the shape of the heat dissipation holes T as a circular shape as an example for illustration.
  • the heat dissipation hole T and the memory 33 at least partially overlap, and the heat dissipation hole T and the second airflow gap 50 do not overlap.
  • the server 100 has the first airflow gap 40, it can be set that along the Y-axis direction, the heat dissipation hole T and the first airflow gap 40 do not overlap.
  • the heat dissipation hole T and the memory 33 are at least partially overlapped, so that the gas after the heat dissipation and cooling of the memory 33 can be directly transmitted to the outside of the chassis 10 through the heat dissipation hole T, shortening the path of the cold air, and preventing the cold air after heating from flowing in the chassis 10, affecting the heat dissipation efficiency.
  • the heat dissipation hole T and the second airflow gap 50 are arranged to have no overlap along the Y-axis direction.
  • the heat dissipation hole T and the first airflow gap 40 are arranged to have no overlap.
  • FIG. 4 is a schematic structural diagram of the heat dissipation module in FIG. 2 .
  • the push-pull bracket 31 in the storage module 30 includes a support plate 311 and a cage 312, and the cage 312 is located on one side of the support plate 311.
  • the cage 312 includes an installation card position Q, and the storage board 32 is located in the installation card position Q.
  • the cage 312 may also include a plurality of plug-in slots K. The plurality of plug-in slots K are arranged on both sides of the installation card position Q so that the memory 33 can be inserted into the plug-in slots K and electrically connected to the storage board 32.
  • the storage board 32 is installed in the installation card position Q, that is, the storage board 32 is installed in the cage 312. Then, the space on both sides of the storage board 32 in the cage 312 can be used to place the memory 33. Thus, it is possible to set multiple memories 33 on opposite sides of the storage board 32. Then, the insertion direction of the memory 33 in the push-pull bracket 31 can be increased, which is conducive to making the push-pull bracket 31 of the server 100 usable on both sides without changing the specifications in the unit space, and then the chassis 10 has more space inside to accommodate the memory 33, so as to realize a high-density storage server.
  • the plug-in slot K located on the side of the installation position Q close to the first side panel S1 is the first plug-in slot K1
  • the plug-in slot K located on the side of the installation position Q close to the second side panel S2 is the second plug-in slot K2.
  • the cage body 312 can be divided into two storage spaces, that is, the space for placing the memory 33 in the cage body 312 is increased.
  • a part of the memories 33 in the plurality of memories 33 can be inserted into the first plug-in slot K1 along the direction from the first side plate S1 to the mounting card position Q and can be pluggably electrically connected to the memory board 32.
  • Another part of the memories 33 in the plurality of memories 33 can be inserted into the second plug-in slot K2 along the direction from the second side plate S2 to the mounting card position Q and can be pluggably electrically connected to the memory board 32.
  • the memory 33 can be inserted into the plug-in slot K in different directions to be electrically connected to the memory board 32, that is, the insertion direction of the memory 33 in the push-pull bracket 31 is increased, which can be beneficial to keep the specifications unchanged within the unit space.
  • the push-pull bracket 31 of the server 100 is usable on both sides, so that there is more space inside the chassis 10 to accommodate the memory 33, so as to realize a high-density storage server.
  • Fig. 5 is a schematic diagram of the assembly of the slide rail assembly and the chassis in Fig. 3. To better illustrate the position of the slide rail assembly 313 in the server 100, the system board 20 in the chassis 10 is also illustrated in Fig. 5.
  • the push-pull bracket 31 further includes a slide rail assembly 313 .
  • the slide rail assembly 313 is located between the side surface of the support plate 311 that is away from the cage body 312 and the chassis 10 .
  • the push-pull bracket 31 also includes a slide rail assembly 313, which can extend along the Y-axis direction so that the storage module 30 can be slidably connected to the chassis 10 through the push-pull bracket 31, so that the storage module 30 can be pushed from the opening 11 to the first accommodating space 12, or the storage module 30 can be pulled from the first accommodating space 12 to the side of the opening 11 away from the first accommodating space 12.
  • the push-pull bracket 31 can reciprocate along the Y-axis direction in the chassis 10 by using the slide rail assembly 313.
  • the push-pull bracket 31 is placed in the first accommodation space 12 in the chassis 10 by using the slide rail assembly 313.
  • the push-pull bracket 31 can be pulled out of the chassis 10 by using the slide rail assembly 313 (the push-pull bracket 31 can be pulled from the first accommodation space 12 to the outside of the chassis 10 along the direction of the opening 11 pointed by the third side plate S5), and then the memory 33 on the push-pull bracket 31 is pulled out along the Y-axis direction to maintain the memory 33, thereby improving the maintenance efficiency of the staff on the server.
  • the slide rail assembly 313 is located between the side surface of the support plate 311 away from the cage body 312 and the chassis 10. The following two situations may be included:
  • the slide rail assembly 313 is located between a side surface of the support plate 311 that is away from the cage body 312 and the bottom plate S4.
  • the second type is that the slide rail assembly 313 is located between a surface of the support plate 311 that is away from the cage body 312 and the top plate S3.
  • the above two methods are to set the slide rail assembly 313 at both ends of the push-pull bracket 31 along the Z-axis direction.
  • Such a setting can prevent the slide rail assembly 313 from occupying one side surface of the push-pull bracket 31 along the X-axis direction, so as to facilitate the realization of the storage 33 being arranged on both sides of the push-pull bracket 31 along the X-axis direction, and the slide rail assembly 313 will not affect the plugging and unplugging of the storage 33.
  • the insertion direction of the storage 33 in the push-pull bracket 31 can be increased, which is conducive to making the push-pull bracket 31 of the server 100 usable on both sides under the premise of unchanged specifications in the unit space, and then the chassis 10 has more space inside to accommodate the storage 33, so as to realize a high-density storage server.
  • the rail assembly 313 includes at least one telescopic rail H.
  • the telescopic rail H is used to drive the support plate 311 to slide in the chassis 10, so that the storage module 30 can slide in the chassis 10 through the push-pull bracket 31, and the storage module 30 can be pushed from the opening 11 to the first accommodating space 12.
  • Such a configuration can help reduce the friction when the push-pull bracket 31 slides in the chassis 10, and can facilitate the push-pull bracket 31 to be pulled out of the chassis 10 along the Y-axis direction, and then the storage 33 can be directly taken out along the X-axis direction to maintain the storage 33. That is, it is easier to plug and unplug the storage 33, which improves the maintenance efficiency of the server 100 by the staff.
  • the rail assembly 313 may include two telescopic rails H.
  • the two telescopic rails H are spaced apart on a side of the support plate 311 away from the cage 312.
  • the force on the rail assembly 313 can be better dispersed, and thus the rail assembly 313 can be better fixedly connected to the support plate 311 to prevent the support plate 311 from shaking left and right during reciprocating motion (where left and right refers to deflection toward the first side plate S1 or toward the second side plate S2), which is beneficial to improving the stability of the support plate 311 during motion, that is, it is beneficial to improving the stability of the storage module 30 during motion.
  • the positions of the two telescopic rails H in a rail assembly 313 are not limited.
  • the two telescopic rails H are respectively a first telescopic rail Ha and a second telescopic rail Hb.
  • the first telescopic rail Ha can be arranged to overlap with the storage board 32 along the Z-axis direction, and the second telescopic rail Hb can be arranged at a position closer to the first side plate S1 relative to the first telescopic rail Ha.
  • first telescopic slide rail Ha and the second telescopic slide rail Hb may be respectively arranged at the positions of the two sides of the support plate 311 along the X-axis direction, and some embodiments of the present disclosure are not limited thereto.
  • FIG. 6 is a schematic diagram of the structure of the telescopic slide rail in the slide rail assembly in FIG. 3 .
  • the rail assembly 313 includes at least one telescopic rail H.
  • the telescopic rail H includes a first fixed rail H1, a connecting rail H3, and a second fixed rail H2.
  • One side of the first fixed rail H1 is fixedly connected to the chassis 10, and the other side of the first fixed rail H1 is slidably connected to the connecting rail H3.
  • One side of the second fixed rail H2 is fixedly connected to the support plate 311, and the other side of the second fixed rail H2 is slidably connected to the connecting rail H3.
  • the slide rail assembly 313 is provided to include at least one telescopic slide rail H.
  • the telescopic slide rail H includes a first fixed slide rail H1, a connecting slide rail H3, and a second fixed slide rail H2.
  • the first fixed slide rail H1 of the telescopic slide rail H is fixedly connected to the chassis 10
  • the second fixed slide rail H2 of the telescopic slide rail H is fixedly connected to the support plate 311.
  • the support plate 311 can be driven to slide in the chassis 10 through the relative movement of the first fixed slide rail H1 and the second fixed slide rail H2, so that the storage module 30 can slide in the chassis 10 through the push-pull bracket 31, and the storage module 30 can be pushed from the opening 11 to the first accommodating space 12.
  • Such a setting can help reduce the friction force when the push-pull bracket 31 slides in the chassis 10, and can facilitate the push-pull bracket 31 to be pulled out of the chassis 10 along the Y-axis direction, and then the storage 33 can be directly taken out along the X-axis direction to maintain the storage 33. That is, it is more convenient to plug and unplug the storage 33, which improves the maintenance efficiency of the staff on the server 100.
  • the second fixed rail H2 can be slid and extended to a greater distance, and the push-pull bracket 31 can be slid and extended to a greater distance, making it easier to pull the push-pull bracket 31 out of the chassis 10. This makes it easier to plug and unplug the storage 33, which helps to improve the maintenance efficiency of the server 100 for the staff.
  • a first limiting structure is provided at both ends of the first fixed slide rail H1 to limit the connection slide rail H3 from being separated.
  • the first limiting structure is equivalent to blocking both ends of the first fixed slide rail H1, so that the first fixed slide rail H1 and the connection slide rail H3 can slide, but the connection slide rail H3 will not be separated from the first fixed slide rail H1, thereby ensuring the stability of the telescopic slide rail H.
  • the second limiting structures for limiting the separation of the connecting rail H3 are provided at both ends of the second fixed rail H2.
  • the second limiting structures are equivalent to blocking both ends of the second fixed rail H2, so that the second fixed rail H2 and the connecting rail H3 can slide, but the connecting rail H3 will not separate from the second fixed rail H2, thereby ensuring the stability of the telescopic rail H.
  • the first limiting structure may be a metal block, which is disposed at both ends of the first fixed rail H1 and fixedly connected to both ends of the first fixed rail H1.
  • the first limiting structure may be used to prevent the first fixed rail H1 and the connecting rail H3 from derailing.
  • the second limiting structure can be a metal block disposed at both ends of the second fixed rail H2 and fixedly connected to both ends of the second fixed rail H2.
  • the second limiting structure can be used to prevent the second fixed rail H2 and the connecting rail H3 from derailing.
  • FIG. 7 is a schematic diagram of the structure of a server provided in some other embodiments of the present application.
  • the server 100 further includes a cable 60.
  • One end of the cable 60 is electrically connected to the system board 20, and the other end of the cable 60 is electrically connected to the memory board 32. Based on this, the system board 20 can perform signal transmission with the memory board 32 through the cable 60.
  • the storage board 32 includes a first connector F1 (refer to FIG. 4 ).
  • the system board 20 includes a second connector F2.
  • One end of the cable 60 is electrically connected to the first connector F1, and the other end of the cable 60 is electrically connected to the second connector F2.
  • the first connector F1 and the second connector F2 are electrically connected to each other, so that the storage board 32 and the system board 20 are electrically connected.
  • the models of the first connector F1 and the second connector F2 are not limited, as long as the storage board 32 and the system board 20 are electrically connected to perform signal transmission.
  • the cable 60 may be a flexible cable.
  • a flexible cable refers to a flexible cable that can be bent or deformed, so that when the push-pull bracket 31 reciprocates along the Y-axis direction, that is, when the push-pull bracket 31 is pushed in a direction away from the system board 20 (in a direction from the second accommodating space 13 to the first accommodating space 12), the flexible cable will change from one deformation state to another deformation state. Since it is flexible, this deformation will not hinder the movement of the push-pull bracket 31. Also, when the push-pull bracket 31 is pushed in a direction close to the system board 20 (in a direction from the first accommodating space 12 to the second accommodating space 13), the flexible cable returns to the previous deformation state. However, no matter in which state, the flexible cable can be used for signal transmission.
  • the chassis 10 further includes a third accommodating space 14 .
  • the third accommodating space 14 is located between the first accommodating space 12 and the second accommodating space 13 ; the third accommodating space 14 is used to store the cables 60 .
  • the cable 60 can extend from the third accommodating space 14 to the first accommodating space 12, so as to ensure that the system board 20 and the storage board 32 can still maintain electrical connection when the push-pull bracket 31 is pulled out of the chassis 10.
  • the cable 60 can be retracted to the third accommodating space 14 and stored in the third accommodating space 14, which will not affect the storage space of the system board 20 in the second accommodating space 13, nor will it affect the storage space of the storage module 30 in the first accommodating space 12. This can help improve the sliding flexibility of the push-pull bracket 31 in the chassis 10.
  • the memory board 32 includes a first portion 32a and a second portion 32b, and the second portion 32b is closer to the system board 20 than the first portion 32a.
  • the first portion 32a of the memory board 32 is located between the first plug-in slot K1 and the second plug-in slot K2. That is, along the X-axis direction, the first portion 32a overlaps the cage 312.
  • the second portion 32b of the memory board 32 protrudes from the cage 312 along the Y-axis direction. That is, along the X-axis direction, the second portion 32b does not overlap with the cage 312.
  • the first part 32a is set to be pluggable and connected to the multiple memories 33
  • the second part 32b of the storage board 32 is set to be electrically connected to the system board.
  • the second part 32b is set closer to the system board 20 relative to the first part 32a, which can prevent the first part 32a from having to reserve space to be electrically connected to the system board 20, which is conducive to the pluggable connection between the first part 32a and the multiple memories 33.
  • the second part 32b closer to the side of the system board 20 is set to be electrically connected to the system board 20, that is, the second part 32b is electrically connected to the system board 20 through the cable 60.
  • the first connector on the storage board 32 may be located at the second portion 32 b. Based on this, the cable 60 can be easily stored to prevent the cable 60 from hindering the push-pull bracket 31 from sliding in the chassis 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种服务器(100),服务器(100)包括:机箱(10)、系统板(20)和至少一个存储模组(30),机箱(10)包括开口(11),机箱(10)内包括第一容置空间(12)和第二容置空间(13),第一容置空间(12)相对第二容置空间(13)更靠近开口(11),系统板(20)位于第二容置空间(13),存储模组(30)包括推拉支架(31)、存储板卡(32)和多个存储器(33),存储板卡(32)固定于推拉支架(31)内,且存储板卡(32)与系统板(20)电连接,多个存储器(33)设置于存储板卡(32)的相对两侧,且均与存储板卡(32)可插拔连接,存储模组(30)通过推拉支架(31)与机箱(10)滑动连接,以使存储模组(30)能够从开口(11)推入至第一容置空间(12),机箱(10)内可以放置更多的存储器(33),有利于实现服务器(100)的高密度存储。

Description

服务器
本申请要求于2022年11月08日提交国家知识产权局、申请号为202211395979.8、申请名称为“服务器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机服务器领域,尤其涉及一种服务器。
背景技术
随着近年来互联网技术、大数据领域的发展,对服务器存储的需求越来越大,那么对于单台服务器存储能力要求也就越来越高。
而传统的高密度存储服务器中,由于服务器机箱内组件结构设计以及布置方式等因素,限制了服务器中存放硬盘的数量,不能满足日益增长的大存储的需求。
发明内容
本申请实施例的目的在于提供一种服务器,用于增加服务器机箱内可放置的存储器的数量,实现高密度服务器,涉及计算机服务器领域。
为例实现上述目的,本申请实施例提供如下技术方案:
一方面,本申请实施例提供了一种服务器。服务器包括:机箱、系统板和至少一个存储模组。机箱包括开口。机箱内包括第一容置空间和第二容置空间,第一容置空间相对第二容置空间更靠近开口。系统板位于第二容置空间。存储模组包括推拉支架、存储板卡和多个存储器。存储板卡固定于推拉支架内,且存储板卡与系统板电连接。多个存储器设置于存储板卡的相对两侧,且均与存储板卡可插拔连接。存储模组通过推拉支架与机箱滑动连接,以使存储模组能够从开口推入至第一容置空间。
本申请一些实施例提供的服务器可以设有至少一个存储模组。每个存储模组内,可以将存储板卡设置在推拉支架的中间位置处,以使多个存储器设置于存储板卡的相对两侧,且多个存储器均与存储板卡可插拔连接。由此,可以增加推拉支架中存储器的插入方向,有利于在单位空间内规格不变的前提下,使得服务器推拉支架双面可用,进而机箱内部拥有更多空间容纳存储器,以实现高密度存储服务器。此外,当需要对存储器进行维护时,可以直接沿Y轴方向将推拉支架抽出机箱,再将存储器沿X轴方向直接取出,对存储器进行维护。维护结束后,再将推拉支架推动至机箱内,更便于直接对存储器进行插拔操作,提高了工作人员对服务器的维护效率。
在一些实施例中,推拉支架包括支撑板和笼体,笼体位于支撑板的一侧。笼体包括安装卡位,存储板卡安装于安装卡位内。笼体还包括多个插接槽;多个插接槽设置于安装卡位的相对两侧,以使存储器能够插入至插接槽内,与存储板卡电连接。
如此设置,将存储板卡装于安装卡位内,也即将存储板卡安装于笼体内。进而,笼体内存储板卡两侧的空间均可以用于放置存储器。基于此,可以实现将多个存储器设置于存储板卡的相对两侧。进而可以将存储器通过不同的方向插入插接槽内与存储板卡电连接,以实现增加推拉支架中存储器的插入方向,有利于在单位空间内规格不变的前提下,使得服务器推拉支架双面可用,进而机箱内部拥有更多空间容纳存储器,以实现高密度存储服务器。
在一些实施例中,推拉支架还包括滑轨组件。滑轨组件位于支撑板背离笼体的一侧表面 与机箱之间。
如此设置,可以利用滑轨组件实现推拉支架可以在机箱内沿Y轴方向上往复运动。在服务器正常的工作状态下,利用滑轨组件将推拉支架置于机箱内的第一容置空间内。而当需要对服务器内的存储器进行维护时,可以利用滑轨组件将推拉支架从机箱内拉出,再将推拉支架上的存储器沿Y轴方向拔出,对存储器进行维护,提高了工作人员对服务器的维护效率。
在一些实施例中,滑轨组件包括至少一个伸缩滑轨。伸缩滑轨包括第一固定滑轨、连接滑轨和第二固定滑轨。第一固定滑轨的一侧与机箱固定连接,第一固定滑轨的另一侧与连接滑轨滑动连接。第一固定滑轨的两端设置有限制连接滑轨脱离的第一限位结构。第二固定滑轨的一侧与支撑板固定连接,第二固定滑轨的另一侧与连接滑轨滑动连接。第二固定滑轨的两端设置有限制连接滑轨脱离的第二限位结构。
如此设置,伸缩滑轨的第一固定滑轨与机箱固定连接,伸缩滑轨的第二固定滑轨与支撑板固定连接。可以通过第一固定滑轨和第二固定滑轨的相对运动,带动支撑板在机箱内滑动,以实现存储模组通过推拉支架在机箱滑动,存储模组能够从开口推入至第一容置空间。基于此,可以有利于降低推拉支架在机箱内滑动时的摩擦力,可以便于沿Y轴方向将推拉支架抽出机箱,再将存储器沿X轴方向直接取出,对存储器进行维护。也即,可以更便于对存储器进行插拔操作,提高了工作人员对服务器的维护效率。
在一些实施例中,存储模组的数量为多个,多个存储模组沿第一方向排布。其中,第一方向与存储器的插拔方向相平行。其中,相邻的两个存储模组之间形成有第一气流间隙。
如此设置,流经第一气流间隙的冷空气可以分别进入与第一气流间隙相邻的两个存储模组内,对该两个存储模组内的各个存储器进行散热处理。而由于该冷气并未被其他存储器的温度影响,将直接作用于各个存储器,可以有利于提高冷气对各个存储器的散热效果,有利于提高服务器的散热效果,及其散热效率。
在一些实施例中,第一气流间隙沿第一方向的宽度大于等于4mm。
如此设置,可以使得第一气流间隙的宽度不会过小,可以满足足够的冷气流经第一气流间隙,并对其相邻的各个存储器进行散热处理,提高冷气对各个存储器的散热效果。
在一些实施例中,第一气流间隙沿第一方向的宽度小于等于12mm。
如此设置,使得第一气流间隙的宽度不会过大,第一气流间隙对机箱内部空间的占用不会过大,可以满足机箱内放置多个存储器对空间的需求。
在一些实施例中,在第一方向上,存储模组与机箱之间包括第二气流间隙。其中,第一方向与存储器的插拔方向相平行。
如此设置,冷气流经第二气流间隙,由第二气流间隙进入其相邻的各个存储器,对各个存储器进行散热处理。而由于该冷气并未被其他存储器的温度影响,将直接作用于各个存储器,可以有利于提高冷气对各个存储器的散热效果,有利于提高服务器的散热效果,及其散热效率。
在一些实施例中,第二气流间隙沿第一方向的宽度大于等于4mm。
如此设置,可以使得第二气流间隙的宽度不会过小,可以满足足够的冷气流经第二气流间隙,并对其相邻的各个存储器进行散热处理,提高冷气对各个存储器的散热效果。
在一些实施例中,第二气流间隙沿第一方向的宽度小于等于6mm。
如此设置,可以使得第二气流间隙的宽度不会过大,第二气流间隙对机箱内部空间的占用不会过大,可以满足机箱内放置多个存储器对空间的需求。
在一些实施例中,沿存储模组的推拉方向,机箱包括与开口相对的侧板。侧板包括多个 散热孔。
如此设置,冷气通过开口输入至服务器内,冷气对服务器内各个存储器散热后,冷气温度升高,升温后的冷气可以通过散热孔T流出。基于此,完成对服务器内各个存储器散热。
在一些实施例中,服务器还包括线缆。线缆的一端电连接至系统板,线缆的另一端电连接至存储板卡。机箱还包括第三容置空间。第三容置空间位于第一容置空间和第二容置空间之间。第三容置空间用于存放线缆。
如此设置,当推拉支架朝向背离系统板卡方向推动时,线缆可以从第三容置空间延伸至第一容置空间,满足将推拉支架拉出机箱时,保证系统板和存储板卡依旧可以保持电连接。而当推拉支架朝向靠近系统板卡方向推动时,线缆可以回缩至第三容置空间,并将线缆存放于第三容置空间,既不会影响位于第二容置空间内系统板的存放空间,也不会影响位于第一容置空间内的存储模组的存放空间。进而可以有利于提高推拉支架在机箱内滑动的灵活性。
附图说明
图1为本申请一些实施例提供的服务器的结构示意图;
图2为本申请另一些实施例提供的服务器的结构示意图;
图3为本申请一些实施例提供的服务器的俯视图;
图4为图2中散热模组的结构示意图;
图5为图3中滑轨组件和机箱的装配示意图;
图6为图3中滑轨组件内伸缩滑轨的结构示意图;
图7为本申请又一些实施例提供的服务器的结构示意图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接 物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
图1为本申请一些实施例提供的服务器的结构示意图。图2为本申请另一些实施例提供的服务器的结构示意图。可以理解的是,图1以及下文相关附图仅示意性的示出了服务器100包括的一些部件,这些部件的实际形状、实际大小、实际位置和实际构造不受图1以及下文各附图限定。
本申请的实施例提供了一种服务器,如图1,以及结合图2所示,服务器100包括:机箱10、系统板20和至少一个存储模组30。
在图1所示实施例中,服务器100呈立方体。为了方便下文各实施例的描述,建立XYZ坐标系。具体的,定义服务器100的宽度方向为X轴方向,服务器100的长度方向为Y轴方向,服务器100的高度方向为Z轴方向。可以理解的,服务器100的坐标系设置可以根据实际需要进行灵活设置,在此不做具体限定。
机箱10包括开口11。机箱10内包括第一容置空间12和第二容置空间13,第一容置空间相对第二容置空间13更靠近开口11。
在一些示例中,如图1和图2所示,机箱10包括沿X轴方向相对设置的第一侧板S1和第二侧板S2,机箱10包括沿Z轴方向上相对设置的顶板S3和底板S4。以及,机箱10还包括第三侧板S5。沿Y轴方向上,第三侧板S5与开口11相对设置,第一侧板S1、第二侧板S2、顶板S3和底板S4围绕第三侧板S5的周向设置,且第一侧板S1、第二侧板S2、顶板S3和底板S4与第三侧板S5固定连接。以利用第一侧板S1、第二侧板S2、顶板S3、底板S4和第三侧板S5形成一个容置空间A。沿Y轴方向上,容置空间A包括第一容置空间12和第二容置空间13,第一容置空间相对第二容置空间13更远离第三侧板S5。
并且,设置第一侧板S1、第二侧板S2、顶板S3和底板S4的另一侧边缘未设置侧板相互连接,以形成机箱10的开口11。以便于外部物品可以通过开口11推入容置空间A。其中,第一容置空间相对第二容置空间13更远离第三侧板S5。也即,第一容置空间相对第二容置空间13更靠近开口11。
系统板20位于第二容置空间13。也即,可以将系统板20设置在机箱10内远离开口11的一侧。
在一些示例中,系统板20可以与机箱10的底板S4连接,以固定系统板20,防止系统板20发生位移等问题。其中,本申请一些实施例对系统板20与底板S4的连接方式不做限定,可以采用焊接或者其他的连接方式。
如图2所示,服务器100中的存储模组30包括推拉支架31、存储板卡32和多个存储器33。存储模组30通过推拉支架31与机箱10滑动连接,以使存储模组30能够从开口11推入 至第一容置空间12。
也即,推拉支架31可以在机箱10内沿Y轴方向上往复运动。其中,可以沿第三侧板S5指向开口11的方向,将推拉支架31从第一容置空间12内拉动至机箱10的外部。以及,可以沿开口11指向第三侧板S5的方向,将推拉支架31从机箱10的外部推动至第一容置空间12。
其中,图1仅以服务器100包括沿X轴方向上排布2个存储模组30为例进行示意。但本申请一些实施例对服务器100内存储模组30的数量不做限定,例如,服务器100可以包括沿X轴上排布的3个、4个或者5个存储模组30。
在一些示例中,推拉支架31位于第一容置空间12内。也即将推拉支架31设置在系统板20靠近开口11的一侧,防止推拉支架31和开口11支架设有阻挡物,可以更便于推拉支架31沿Y轴方向上的自由移动。
在一些示例中,推拉支架31可以为抽屉结构。推拉支架31内可以放置多个存储器33。设置服务器100内的推拉支架31可以沿Y轴方向上抽拉,有利于随时取放存储在推拉支架31内的存储器33。
基于此,在服务器100正常的工作状态下,推拉支架31可以置于机箱10内的第一容置空间12内。而当需要对服务器100内的存储器33进行维护时,可以将推拉支架31从机箱10内拉出(可以沿第三侧板S5指向开口11的方向,将推拉支架31从第一容置空间12内拉动至机箱10的外部),再将推拉支架31上的存储器33沿Y轴方向拔出,对存储器33进行维护,提高了工作人员对服务器的维护效率。在对存储器33完成在线维护后,可以将推拉支架31推动至机箱10内(沿开口11指向第三侧板S5的方向,将推拉支架31从机箱10的外部推动至第一容置空间12),以实现将推拉支架31上的多个存储器33存放至机箱10内。
其中,存储板卡32可以固定于推拉支架31内。存储板卡32与系统板20电连接,以使存储板卡32与系统板卡20之间进行信号传输。以及,存储板卡32与多个存储器33电连接,以使存储器33和存储板卡32之间进行信号传输。
在一些示例中,存储器33为硬盘,存储板卡32为硬盘背板。硬盘背板和系统板卡20电连接,硬盘和硬盘背板电连接,以实现硬盘、硬盘背板和系统板卡20之间进行信号传输。
在一些示例中,多个存储器33设置在推拉支架31内,且均与存储板卡32可插拔连接。以使多个存储器33可以与存储板卡32之间进行信号的传输。
在一些示例中,存储板卡32可以为双面存储板卡。沿X轴方向上,存储板卡32包括相对设置的第一侧面C1和第二侧面C2。其中,第一侧面C1相对第二侧面C2更靠近第一侧板S1。以及,第二侧面C2相对第一侧面C1更靠近第二侧板S2。存储板卡32的第一侧面C1和第二侧面C2均可以与多个存储器33可插拔连接,以实现存储板卡32为双面存储板卡。
基于此,可以将存储板卡32固定于推拉支架31的中间位置处,且设置存储板卡32竖直放置推拉支架31内。其中,可以设置存储板卡32的长度沿Y轴方向延伸,以及设置存储板卡32的宽度沿Z轴方向延伸,以使存储板卡32竖直放置推拉支架31内。
而由于本申请一些实施例中提供的服务器100内的存储板卡32可以为双面存储板卡。进而可以将多个存储器33设置于存储板卡32的相对两侧,且均与存储板卡32可插拔连接。也即,可以在推拉支架31的两侧均设置有存储器33。由此,可以增加推拉支架31中存储器33的插入方向,有利于在单位空间内规格不变的前提下,使得服务器100推拉支架31双面可用,进而机箱10内部拥有更多空间容纳存储器33,以实现高密度存储服务器。
以及,当需对存储器33进行维护时,位于更靠近第一侧板S1的存储器33可以沿朝向第 一侧板S1方向上插拔;而位于更靠近第二侧板S2一侧的存储器33可以沿朝向第二侧板S2的方向上插拔。也即实现存储器33在沿Z轴方向上无阻挡物,可以更便于直接对存储器33进行插拔操作,提高了工作人员对服务器的维护效率。
此外,当服务器100包括多个存储模组30时,各个存储模组30的推拉支架31可以单独抽出。也即每次仅抽出一个推拉支架31,对推拉支架31上的存储器33进行维护时,可以防止其他相邻推拉支架31阻碍插拔存储器33的操作,可以更便于直接对存储器33进行插拔操作,提高了工作人员对服务器的维护效率。或者,也可以限定服务器100内相邻的两个推拉支架31不同时抽出。也即,可以使同时抽出的推拉支架31之间具有较大间隙,确保待插拔存储器33背离存储板卡32的一侧具有充足的空间,可以进行存储器33的插拔操作,防止其他推拉支架31阻碍插拔存储器33的操作,有利于提高了工作人员对服务器的维护效率。
在一些示例中,各个存储器33可以包括第一接口,以及存储板卡32可以包括多个与存储器33第一接口对应的多个第二接口。也即,一个存储器33可以通过其第一接口与存储板卡32上的一个第二接口插接,以实现存储器33与存储板卡32电连接。其中,本申请一些实施例对存储板卡32上第二结构的数量不做限定,也即本申请一些实施例对存储板卡32上可插拔连接的存储器33的数量不做限定。
在一些示例中,存储板卡32的第一侧面C1包括多个第二接口,存储板卡32的第二侧面C2也包括多个第二接口。
在一些示例中,第一侧面C1上第二接口的数量可以与第二侧面C2上第二接口的数量相等。可以理解的是,在另一些示例中,第一侧面C1上第二接口的数量可以与第二侧面C2上第二接口的数量不等。本申请一些实施例中,对存储板卡32的第一侧面C1和第二侧面C2上的第二接口的数量不做限制。
综上所述,本申请一些实施例提供的服务器100可以包括至少一个存储模组30。每个存储模组30内可以将存储板卡32设置在推拉支架31的中间位置处,以使多个存储器33设置于存储板卡32的相对两侧,且均与存储板卡32可插拔连接。由此,可以增加推拉支架31中存储器33的插入方向,有利于在单位空间内规格不变的前提下,使得服务器100推拉支架31双面可用,进而机箱10内部拥有更多空间容纳存储器33,以实现高密度存储服务器。此外,当需要对存储器33进行维护时,可以直接沿Y轴方向将任一个推拉支架31抽出机箱10,再将存储器33沿±X轴方向直接取出(将存储器33沿背离存储板卡32方向直接取出),对存储器33进行维护。维护结束后,再将推拉支架31推动至机箱10内,更便于直接对存储器33进行插拔操作,提高了工作人员对服务器的维护效率。
在一些实施例中,如图1和图2所示,服务器100中存储模组30的数量为多个,多个存储模组30沿第一方向排布。其中,第一方向与存储器33的插拔方向相平行。其中,第一方向也与X轴方向平行。
设置服务器100中包括多个存储模组30,可以使机箱10内部的存储模组30容纳更多存储器33,以实现高密度存储服务器。
而由于服务器100内容纳有更多数量的存储器33,在服务器100正常工作的状态下,服务器100内部会产生大量的热量,这些热量在密闭空间内无法散发,会导致服务器100内部温度持续升高,容易导致存储器33发生损坏,影响存储器33的质量。进而需要利用冷气对服务器100进行散热,避免导致服务器100内部温度过高,影响存储器33质量的问题。
进而可以在开口11位置处向服务器100内部释放冷气,对服务器100进行散热。但是,由开口11进入的冷气路径为,开口11、第一列存储器、第二列存储器、第三列存储器…… 第n列存储器。基于此,冷气进入第一列存储器时,吸收第一列存储器的热量后,冷气温度会有一定程度的升高。升高温度后的冷气再进入第二列存储器,对第二列存储器进行散热,升高温度后的冷气温度会再次升高。而再次升高温度后的冷气进而第三列存储器,对第三列存储器进行散热,如此直至第n列存储器。再冷气传输至后几列存储器时,温度已经高到一定程度,而无法对后续的存储器进行散热,导致对服务器100的散热效果较低,散热效果较低。
图3为本申请一些实施例提供的服务器的俯视图。
而本申请一些实施例提供的服务器100,如图3所示,设置相邻的两个存储模组30之间形成有第一气流间隙40。
基于此,由开口11进入的冷气路径可以包括以下两条:第一条路径(如流经第一气流间隙40的箭头所示),冷气流经第一气流间隙40,由第一气流间隙40进入其相邻的各个存储器33,对各个存储器33进行散热处理。具体的,流经第一气流间隙40的冷空气可以分别进入与第一气流间隙40相邻的两个存储模组30内,对该两个存储模组30内的各个存储器33进行散热处理。而由于该冷气并未被其他存储器33的温度影响,将直接作用于各个存储器33,可以有利于提高冷气对各个存储器33的散热效果,有利于提高服务器100的散热效果,及其散热效率。
第二条路径如上,开口11、第一列存储器、第二列存储器、第三列存储器……第n列存储器。具体散热过程与上述描述一致,在此不再赘述。
而由于第一条路径上的第一气流间隙40并无遮挡物,会使得冷气可以优先进入第一气流间隙40。基于第一气流间隙40,对其相邻的各个存储器33进行散热处理。也即,大部分冷气会优先进入第一气流间隙40。当然,也会存在剩余小部分冷气通过第二条路径对各个存储器33进行散热处理。
本申请一些实施例对会通过第二条路径流动的冷气不做限定,只要部分冷气可以通过第一条路径直接作用于各个存储器33,就可以有利于提高冷气对各个存储器33的散热效果,有利于提高服务器100的散热效果,及其散热效率。
在一些实施例中,如图3所示,第一气流间隙40沿第一方向的宽度大于或等于4mm。也即,沿X轴方向上,相邻的两个存储模组30之间第一气流间隙40的宽度大于或等于4mm。其中,第一方向也与X轴方向平行。
当第一气流间隙40沿第一方向的宽度等于或趋近于4mm时,可以满足最够的冷气可以流经第一气流间隙40,并对其相邻的各个存储器33进行散热处理,提高冷气对各个存储器33的散热效果。同时,由于第一气流间隙40的宽度较小,可以减小第一气流间隙40对机箱10内部空间的占用,剩余机箱10内具有充足的空间放置多个存储模组30。
在一些实施例中,如图3所示,第一气流间隙40沿第一方向的宽度小于或等于12mm。也即,沿X轴方向上,相邻的两个存储模组30之间第一气流间隙40的宽度小于或等于12mm。其中,第一方向也与X轴方向平行。
当第一气流间隙40沿第一方向的宽度等于或趋近于12mm时,可以满足机箱10内放置多个存储模组30对空间的需求。同时,由于第一气流间隙40的宽度较大,可以有利于使得充足的冷气流经第一气流间隙40,并对其相邻的各个存储器33进行散热处理,可以更好的提高冷气对各个存储器33的散热效果。
在一些实施例中,第一气流间隙40沿第一方向的宽度范围为4mm~12mm。如此设置,第一气流间隙40的宽度既不会过大也不会过小,可以在防止过多占用机箱10内空间的基础 上,更好的提高冷气对各个存储器33的散热效果。
在另一些实施例中,第一气流间隙40沿第一方向的宽度小于或等于6mm。也即,沿X轴方向上,相邻的两个存储模组30之间第一气流间隙40的宽度小于或等于6mm。
当第一气流间隙40沿第一方向的宽度等于或趋近于6mm时,可以满足机箱10内放置多个存储模组30对空间的需求。同时,由于第一气流间隙40的宽度较大,但不会过大,可以有利于使得充足的冷气流经第一气流间隙40,并对其相邻的各个存储器33进行散热处理,可以更好的提高冷气对各个存储器33的散热效果。
在又一些实施例中,第一气流间隙40沿第一方向的宽度范围为4mm~6mm。也即,沿X轴方向上,相邻的两个存储模组30之间第一气流间隙40的宽度范围为4mm~6mm。
如此设置,可以在提高冷气对各个存储器33的散热效果的基础上,更好的防止第一气流间隙40过多占用机箱10内空间,剩余机箱10内具有充足的空间放置多个存储模组30。
在一些示例中,第一气流间隙40沿第一方向的宽度可以为4mm、5mm、6mm、7mm、8mm、9mm、10mm、11mm或12mm中任一种。但本申请一些实施例对第一气流间隙40沿第一方向的宽度不限制于此。
在一些实施例中,如图3所示,在第一方向上,存储模组30与机箱10之间包括第二气流间隙50。其中,第一方向与存储器33的插拔方向相平行。其中,第一方向也与X轴方向平行。
设置存储模组30与机箱10之间具有第二气流间隙50。第二气流间隙50和第一气流间隙40散热原理相似,同样可以包括以下两条冷风路径:第一条路径,冷气流经第二气流间隙50,由第二气流间隙50进入其相邻的各个存储器33,对各个存储器33进行散热处理。而由于该冷气并未被其他存储器33的温度影响,将直接作用于各个存储器33,可以有利于提高冷气对各个存储器33的散热效果,有利于提高服务器100的散热效果,及其散热效率。
第二条路径如上,开口11、第一列存储器、第二列存储器、第三列存储器……第n列存储器。具体散热过程与上述描述一致,在此不再赘述。
而由于第一条路径上的第二气流间隙50并无遮挡物,会使得冷气可以优先进入第二气流间隙50。基于第二气流间隙50,对其相邻的各个存储器33进行散热处理。也即,大部分冷气会优先进入第二气流间隙50。当然,也会存在剩余小部分冷气通过第二条路径对各个存储器33进行散热处理。
本申请一些实施例对会通过第二条路径流动的冷气不做限定,只要部分冷气可以通过第一条路径直接作用于各个存储器33,就可以有利于提高冷气对各个存储器33的散热效果,有利于提高服务器100的散热效果,及其散热效率。
在一些示例中,以服务器100仅包括一个存储模组30为例,存储模组30靠近第一侧板S1的侧面与第一侧板S1之间具有第二气流间隙50。存储模组30靠近第二侧板S2的侧面与第二侧板S2之间具有第二气流间隙50。
在另一些示例中,如图3所示,以服务器100包括2个存储模组30为例,2个存储模组30内更靠近第一侧板S1的存储模组30为第一存储模组30a,2个存储模组30内更靠近第二侧板S2的为第二存储模组30b。
第一存储模组30a靠近第一侧板S1的侧面,与第一侧板S1之间具有第二气流间隙50。以及,第二存储模组30b更靠近第二侧板S2的侧面,与第二侧板S2之间也具有第二气流间隙50。
此外,第一存储模组30a和第二存储模组30b之间具有第一气流间隙40。也即,此时服 务器100包括第一气流间隙40和第二气流间隙50。因此,服务器100具有上述第一气流间隙40和第二气流间隙50的全部有益效果,在此不再赘述。
在又一些示例中,以服务器100包括3个存储模组30为例,3个存储模组30分别为第一存储模组、第二存储模组和第三存储模组。其中,3个存储模组30内最靠近第一侧板S1的存储模组30为第一存储模组,3个存储模组30内最靠近第二侧板S2的为第二存储模组,第二存储模组位于第一存储模组和第二存储模组之间。
第一存储模组靠近第一侧板S1的侧面,与第一侧板S1之间具有第二气流间隙50。以及,第二存储模组靠近第二侧板S2的侧面,与第二侧板S2之间也具有第二气流间隙50。
此外,第三存储模组靠近第一存储模组的表面和第一存储模组靠近第三存储模组的表面之间具有第一气流间隙40,以及,第三存储模组靠近第二存储模组的表面和第二存储模组靠近第三存储模组的表面之间具有第一气流间隙40。
可以理解的是,在服务器包括3个以上存储模组30时,与上述情况类似,可以结合3个存储模组30时的描述,区别仅在于多了对应的第一气流间隙40。
在一些实施例中,如图3所示,第二气流间隙50沿第一方向的宽度大于或等于4mm。其中,第一方向与X轴方向平行。也即,沿X轴方向上,最靠近机箱10第一侧板S1的存储模组30,其靠近第一侧板S1一侧的表面与第一侧板S1之间具有的第二气流间隙50的宽度大于或等于4mm。或者,沿X轴方向上,最靠近机箱10第二侧板S2的存储模组30,其靠近第二侧板S2的表面与第二侧板S2之间具有的第二气流间隙50的宽度大于或等于4mm。
当第二气流间隙50沿第一方向的宽度等于或趋近于4mm时,可以满足最够的冷气可以流经第二气流间隙50,并对其相邻的各个存储器33进行散热处理,提高冷气对各个存储器33的散热效果。同时,由于第二气流间隙50的宽度较小,可以减小第二气流间隙50对机箱10内部空间的占用,剩余机箱10内充足的空间放置多个存储模组30。
在一些实施例中,如图3所示,第二气流间隙50沿第一方向的宽度小于或等于6mm。其中,第一方向与X轴方向平行。也即,沿X轴方向上,最靠近机箱10第一侧板S1的存储模组30,其靠近第一侧板S1一侧的表面与第一侧板S1之间具有的第二气流间隙50的宽度小于或等于6mm。或者,沿X轴方向上,最靠近机箱10第二侧板S2的存储模组30,其靠近第二侧板S2的表面与第二侧板S2之间具有的第二气流间隙50的宽度小于或等于6mm。
当第二气流间隙50沿第一方向的宽度等于或趋近于6mm时,可以满足机箱10内放置多个存储模组30对空间的需求。同时,由于第二气流间隙50的宽度较大,可以有利于使得充足的冷气流经第二气流间隙50,并对其相邻的各个存储器33进行散热处理,可以更好的提高冷气对各个存储器33的散热效果。
在一些实施例中,如图3所示,第二气流间隙50沿第一方向的宽度的范围为4mm~6mm。如此设置,第一气流间隙40的宽度既不会过大也不会过小,可以在防止过多占用机箱10内空间的基础上,更好的提高冷气对各个存储器33的散热效果。
在一些示例中,第二气流间隙50沿第一方向的宽度可以为4mm、5mm或6mm中任一种。但本申请一些实施例对第二气流间隙50沿第一方向的宽度不限制于此。
在一些实施例中,如图2,以及结合图3所示,沿存储模组30的推拉方向,机箱10包括与开口11相对的侧板S5。侧板S5包括多个散热孔T。
其中,存储模组30的推拉方向与Y轴方向平行。沿Y轴方向上,机箱10包括与开口11相对的侧板S5。该侧板S5即为机箱10的第三侧板S5。在第三侧板S5上设有多个散热孔T。
冷气通过开口11输入至服务器100内,冷气对服务器100内各个存储器33散热后,冷 气温度升高,升温后的冷气可以通过散热孔T流出。基于此,完成对服务器100内各个存储器33散热。
本申请一些实施例对侧板S5上散热孔T的数量和形状不做限定,可以根据实际情况设置。例如,散热孔T的形状可以为圆形、方形、三角形等。其中,图2中以散热孔T的形状为圆形为例进行示意。
在一些实施例中,如图2,以及结合图3所示,沿Y轴方向上,散热孔T和存储器33至少部分交叠,以及散热孔T和第二气流间隙50无交叠。在服务器100具有第一气流间隙40的基础上,可以设置沿Y轴方向上,散热孔T和第一气流间隙40无交叠。
其中,设置散热孔T和存储器33至少部分交叠,可以使得对存储器33进行散热降温后的气体直接通过散热孔T传输至机箱10外部,缩减冷气的路径,防止以升温后的冷气在机箱10内流动,影响散热效率。而设置沿Y轴方向上,散热孔T和第二气流间隙50无交叠。可以防止经第二气流间隙50冷气还未对存储器33进行散热降温,直接通过散热孔T传输至机箱10外部,从而可以提高冷气的利用率,进而有利于提高对服务器100内各个存储器33的散热效果。以及,设置Y轴方向上,散热孔T和和第一气流间隙40无交叠。基于相同的原理,可以防止经第一气流间隙40冷气还未对存储器33进行散热降温,直接通过散热孔T传输至机箱10外部,从而可以提高冷气的利用率,进而有利于提高对服务器100内各个存储器33的散热效果。
上文介绍服务器100内的各个器件,以及器件之间的间距。而下文将结合附图具体介绍服务器100内存储模组30的具体结构。
图4为图2中散热模组的结构示意图。
在一些实施例中,如图4所示,存储模组30内的推拉支架31包括支撑板311和笼体312,笼体312位于支撑板311的一侧。笼体312包括安装卡位Q,存储板卡32位于安装卡位Q内。笼体312还可以包括多个插接槽K。多个插接槽K设置与安装卡位Q的两侧,以使存储器33能够插入至所述插接槽K内,与存储板卡32电连接。
基于此,将存储板卡32装于安装卡位Q内,也即将存储板卡32安装于笼体312内。进而,笼体312内存储板卡32两侧的空间均可以用于放置存储器33。由此,可以实现将多个存储器33设置于存储板卡32的相对两侧。进而可以增加推拉支架31中存储器33的插入方向,有利于在单位空间内规格不变的前提下,使得服务器100推拉支架31双面可用,进而机箱10内部拥有更多空间容纳存储器33,以实现高密度存储服务器。
在一些示例中,如图4所示,以及结合图2所示,位于安装卡位Q靠近第一侧板S1的一侧的插接槽K为第一插接槽K1,位于安装卡位Q靠近第二侧板S2一侧的插接槽K为第二插接槽K2。
沿X轴向上,相邻设置第一插接槽K1和第二插接槽K2之间具有间隙,可以用于形成安装卡位Q。基于此,可以使得笼体312内划分为两个存储空间,也即增加了可以笼体312内放置存储器33的空间。
具体的,多个存储器33内的一部分存储器33,可以沿第一侧板S1指向安装卡位Q的方向插入第一插接槽K1内并与存储板卡32可插拔电连接。多个存储器33内的另一部分存储器33,可以沿第二侧板S2指向安装卡位Q的方向插入第二插接槽K2内并与存储板卡32可插拔电连接。
基于此,可以将存储器33通过不同的方向插入插接槽K内与存储板卡32电连接,也即增加了推拉支架31中存储器33的插入方向,可以有利于在单位空间内规格不变的前提下, 使得服务器100推拉支架31双面可用,进而机箱10内部拥有更多空间容纳存储器33,以实现高密度存储服务器。
图5为图3中滑轨组件和机箱的装配示意图。为更好示意出滑轨组件313在服务器100内的位置,在图5中也示意出机箱10内的系统板20。
在一些实施例中,如图5,以及结合图3所示,推拉支架31还包括滑轨组件313。滑轨组件313位于支撑板311背离笼体312的一侧表面与机箱10之间。
设置推拉支架31还包括滑轨组件313,滑轨组件313可以沿Y轴方向延伸,以使存储模组30可以通过推拉支架31与机箱10滑动连接,实现存储模组30能够从开口11推入至第一容置空间12,或者实现存储模组30能够从第一容置空间12拉动至开口11远离第一容置空间12的一侧。
也即,利用滑轨组件313实现推拉支架31可以在机箱10内沿Y轴方向上往复运动。在服务器100正常的工作状态下,利用滑轨组件313将推拉支架31置于机箱10内的第一容置空间12内。而当需要对服务器100内的存储器33进行维护时,可以利用滑轨组件313将推拉支架31从机箱10内拉出(可以沿第三侧板S5指向开口11的方向,将推拉支架31从第一容置空间12内拉动至机箱10的外部),再将推拉支架31上的存储器33沿Y轴方向拔出,对存储器33进行维护,提高了工作人员对服务器的维护效率。
其中,滑轨组件313位于支撑板311背离笼体312的一侧表面与机箱10之间。可以包括以下两种情况:
第一种,滑轨组件313位于支撑板311背离笼体312的一侧表面与底板S4之间。
第二种,滑轨组件313位于支撑板311背离笼体312的一侧表面与顶板S3之间。
综上,上述两种方式均是将滑轨组件313设置在推拉支架31沿Z轴方向的两端。如此设置,可以防止滑轨组件313占用推拉支架31的沿X轴方向上的一侧表面,从而有利于实现在推拉支架31的沿X轴方向上两侧均设置有存储器33,滑轨组件313不会影响存储器33的插拔情况。由此,可以增加推拉支架31中存储器33的插入方向,有利于在单位空间内规格不变的前提下,使得服务器100推拉支架31双面可用,进而机箱10内部拥有更多空间容纳存储器33,以实现高密度存储服务器。
此外,由于上述两种方式均是将滑轨组件313设置在推拉支架31沿Z轴方向的两端。如此设置,还可以防止滑轨组件313设置在推拉支架31沿X轴方向的两端时,影响第一气流间隙40和第二气流间隙50尺寸的大小,以及防止滑轨组件313阻挡第一气流间隙40和第二气流间隙50内冷风的传送,有利于提高对服务器100内各个存储器33的散热效果。
在一些实施例中,如图5,以及结合图3所示,滑轨组件313包括至少一个伸缩滑轨H。利用伸缩滑轨H实现带动支撑板311在机箱10内滑动,以实现存储模组30通过推拉支架31在机箱10滑动,存储模组30能够从开口11推入至第一容置空间12。如此设置,可以有利于降低推拉支架31在机箱10内滑动时的摩擦力,可以便于沿Y轴方向将推拉支架31抽出机箱10,再将存储器33沿X轴方向直接取出,对存储器33进行维护。也即,可以更便于对存储器33进行插拔操作,提高了工作人员对服务器100的维护效率。
在一些示例中,滑轨组件313可以包括两个伸缩滑轨H。两个伸缩滑轨H间隔设置在支撑板311远离笼体312的一侧。可以更好的分散滑轨组件313的受到作用力,进而可以更好的与支撑板311进行固定连接,防止支撑板311在往复运动是发生左右晃动的问题,(其中,左右代指向第一侧板S1一侧偏转,或者向第二侧板S2一侧偏转),有利于提高支撑板311在运动过程中的稳定性,也即有利于提高存储模组30运动过程中的稳定性。
其中,本公开一些实施例中一个滑轨组件313内两个伸缩滑轨H的位置不做限定。示例的,两个伸缩滑轨H分别为第一伸缩滑轨Ha和第二伸缩滑轨Hb。第一伸缩滑轨Ha可以设置在沿Z轴方向上与存储板卡32重叠,第二伸缩滑轨Hb可以设置在相对第一伸缩滑轨Ha更靠近第一侧板S1的位置处。
可以理解的是,在另一些示例中,可以设置第一伸缩滑轨Ha和第二伸缩滑轨Hb分别设置在支撑板311沿X轴方向上的两个侧边的位置处,本公开一些实施例并不限定于此。
图6为图3中滑轨组件内伸缩滑轨的结构示意图。
在一些实施例中,如图6,以及结合图3所示,滑轨组件313包括至少一个伸缩滑轨H。伸缩滑轨H包括第一固定滑轨H1、连接滑轨H3和第二固定滑轨H2。第一固定滑轨H1的一侧与机箱10固定连接,第一固定滑轨H1的另一侧与连接滑轨H3滑动连接。第二固定滑轨H2的一侧与支撑板311固定连接,第二固定滑轨H2的另一侧与连接滑轨H3滑动连接。
设置滑轨组件313包括至少一个伸缩滑轨H。伸缩滑轨H包括第一固定滑轨H1、连接滑轨H3和第二固定滑轨H2。伸缩滑轨H的第一固定滑轨H1与机箱10固定连接,伸缩滑轨H的第二固定滑轨H2与支撑板311固定连接。可以通过第一固定滑轨H1和第二固定滑轨H2的相对运动,带动支撑板311在机箱10内滑动,以实现存储模组30通过推拉支架31在机箱10滑动,存储模组30能够从开口11推入至第一容置空间12。如此设置,可以有利于降低推拉支架31在机箱10内滑动时的摩擦力,可以便于沿Y轴方向将推拉支架31抽出机箱10,再将存储器33沿X轴方向直接取出,对存储器33进行维护。也即,可以更便于对存储器33进行插拔操作,提高了工作人员对服务器100的维护效率。
此外,由于第一固定滑轨H1和第二固定滑轨H2通过连接滑轨H3滑动连接,可以使得第二固定滑轨H2滑动伸出的距离更大,使得推拉支架31滑动伸出的距离更大,更便于实现将推拉支架31抽出机箱10。进而更便于对存储器33进行插拔操作,有利于提高了工作人员对服务器100的维护效率。
基于此,设置第一固定滑轨H1的两端设置有限制连接滑轨H3脱离的第一限位结构。第一限位结构相当于堵住第一固定滑轨H1的两端,可以使第一固定滑轨H1和连接滑轨H3发生滑动,但是连接滑轨H3并不会脱离第一固定滑轨H1,保证伸缩滑轨H的稳定性。
设置第二固定滑轨H2的两端设置有限制连接滑轨H3脱离的第二限位结构。第二限位结构相当于堵住第二固定滑轨H2的两端,可以使第二固定滑轨H2和连接滑轨H3发生滑动,但是连接滑轨H3并不会脱离第二固定滑轨H2,保证伸缩滑轨H的稳定性。
在一些示例中,第一限位结构可以为一个金属块,将其设置在第一固定滑轨H1的两端,与第一固定滑轨H1的两端固定连接。可以利用第一限位结构防止第一固定滑轨H1和连接滑轨H3发生脱轨的问题。
在一些示例中,第二限位结构可以为一个金属块将其设置在第二固定滑轨H2的两端,与第二固定滑轨H2的两端固定连接。可以利用第二限位结构防止第二固定滑轨H2和连接滑轨H3发生脱轨的问题。
图7为本申请又一些实施例提供的服务器的结构示意图。
在一些实施例中,如图7所示,服务器100还包括线缆60。线缆60的一端电连接至系统板20,线缆60的另一端电连接至存储板卡32。基于此,系统板20可以通过线缆60与存储板卡32进行信号传输。
在一些示例中,存储板卡32包括第一连接器F1(可以返回参考图4所示)。系统板20包括第二连接器F2。线缆60的一端与第一连接器F1电连接,线缆60的另一端与第二连接 器F2电连接,以使存储板卡32和系统板20电连接。但本申请一些实施例中,对第一连接器F1和第二连接器F2的型号不做限定,只要保证存储板卡32和系统板20电连接,进行信号传输即可。
在一些示例中,线缆60可以为柔性线缆。其中,柔性线缆是指可弯折或形变,柔软的线缆,这样可以保证推拉支架31在沿Y轴方向上往复运动时,即当推拉支架31朝向背离系统板卡20方向(沿第二容置空间13指向第一容置空间12的方向)推动时,柔性线缆会从一种形变状态变为另一种形变状态,由于其是柔性的,这种形变并不会阻碍推拉支架31的移动。以及,当推拉支架31朝向靠近系统板卡20方向(沿第一容置空间12指向第二容置空间13的方向)推动时,柔性线缆恢复之前的形变状态。但不管处于哪种状态,柔性线缆都能用于进行信号传输。
在一些示例中,机箱10还包括第三容置空间14。第三容置空间14位于第一容置空间12和第二容置空间13之间;第三容置空间14用于存放线缆60。
当推拉支架31朝向背离系统板卡20方向(沿第二容置空间13指向第一容置空间12的方向)推动时,线缆60可以从第三容置空间14延伸至第一容置空间12,满足将推拉支架31拉出机箱10时,保证系统板20和存储板卡32依旧可以保持电连接。而当推拉支架31朝向靠近系统板卡20方向(沿第一容置空间12指向第二容置空间13的方向)推动时,线缆60可以回缩至第三容置空间14,并将线缆60存放于第三容置空间14,既不会影响位于第二容置空间13内系统板20的存放空间,也不会影响位于第一容置空间12内的存储模组30的存放空间。进而可以有利于提高推拉支架31在机箱10内滑动的灵活性。
在一些实施例中,如图7所示,沿Y轴方向上,存储板卡32包括第一部分32a和第二部分32b,且第二部分32b相对于第一部分32a更靠近系统板20。存储板卡32的第一部分32a位于第一插接槽K1和第二插接槽K2之间。也即,沿X轴方向上,第一部分32a和笼体312重叠。而存储板卡32的第二部分32b沿Y轴方向上凸出于笼体312。也即,沿X轴方向上,第二部分32b与笼体312无交叠。
基于此,设置第一部分32a与多个存储器33可插拔连接,且设置存储板卡32的第二部分32b与系统板电连接。而设置第二部分32b相对于第一部分32a更靠近系统板20,可以防止第一部分32a还需预留出空间与系统板20电连接,有利于第一部分32a与多个存储器33可插拔连接。同时,设置更靠近系统板20一侧的第二部分32b与系统板20电连接,也即,第二部分32b通过线缆60与系统板20电连接,基于第二部分32b的位置也可以便于收纳线缆60,防止线缆60阻碍推拉支架31在机箱10内滑动。
示例的,存储板卡32上的第一连接器可以位于第二部分32b。基于此,可以便于收纳线缆60,防止线缆60阻碍推拉支架31在机箱10内滑动。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种服务器,其特征在于,包括:机箱、系统板和至少一个存储模组;
    所述机箱包括开口;所述机箱内包括第一容置空间和第二容置空间,所述第一容置空间相对所述第二容置空间更靠近所述开口;
    所述系统板位于所述第二容置空间;
    所述存储模组包括推拉支架、存储板卡和多个存储器;所述存储板卡固定于所述推拉支架内,且所述存储板卡与所述系统板电连接;所述多个存储器设置于所述存储板卡的相对两侧,且均与所述存储板卡可插拔连接;
    所述存储模组通过所述推拉支架与所述机箱滑动连接,以使所述存储模组能够从所述开口推入至所述第一容置空间。
  2. 根据权利要求1所述的服务器,其特征在于,所述推拉支架包括支撑板和笼体,所述笼体位于所述支撑板的一侧;所述笼体包括安装卡位,所述存储板卡安装于所述安装卡位内;
    所述笼体还包括多个插接槽;所述多个插接槽设置于所述安装卡位的相对两侧,以使所述存储器能够插入至所述插接槽内,与所述存储板卡电连接。
  3. 根据权利要求2所述的服务器,其特征在于,所述推拉支架还包括滑轨组件;所述滑轨组件位于所述支撑板背离所述笼体的一侧表面与所述机箱之间。
  4. 根据权利要求3所述的服务器,其特征在于,所述滑轨组件包括至少一个伸缩滑轨;所述伸缩滑轨包括第一固定滑轨、连接滑轨和第二固定滑轨;
    所述第一固定滑轨的一侧与所述机箱固定连接,所述第一固定滑轨的另一侧与所述连接滑轨滑动连接;所述第一固定滑轨的两端设置有限制所述连接滑轨脱离的第一限位结构;
    所述第二固定滑轨的一侧与所述支撑板固定连接,所述第二固定滑轨的另一侧与所述连接滑轨滑动连接;所述第二固定滑轨的两端设置有限制所述连接滑轨脱离的第二限位结构。
  5. 根据权利要求1~4中任一项所述的服务器,其特征在于,所述存储模组的数量为多个,多个所述存储模组沿第一方向排布;其中,所述第一方向与所述存储器的插拔方向相平行;
    其中,相邻的两个所述存储模组之间形成有第一气流间隙。
  6. 根据权利要求5所述的服务器,其特征在于,所述第一气流间隙沿所述第一方向的宽度大于或等于4mm。
  7. 根据权利要求5或6所述的服务器,其特征在于,所述第一气流间隙沿所述第一方向的宽度小于或等于12mm。
  8. 根据权利要求1~7中任一项所述的服务器,其特征在于,在第一方向上,所述存储模组与所述机箱之间包括第二气流间隙;其中,所述第一方向与所述存储器的插拔方向相平行。
  9. 根据权利要求8所述的服务器,其特征在于,所述第二气流间隙沿所述第一方向的宽度大于或等于4mm。
  10. 根据权利要求1~9中任一项所述的服务器,其特征在于,还包括线缆;所述线缆的一端电连接至所述系统板,所述线缆的另一端电连接至所述存储板卡。
  11. 根据权利要求1~10中任一项所述的服务器,其特征在于,沿所述存储模组的推拉方向,所述机箱包括与所述开口相对的侧板;所述侧板包括多个散热孔。
PCT/CN2023/117462 2022-11-08 2023-09-07 服务器 WO2024098931A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211395979.8 2022-11-08
CN202211395979.8A CN115756104A (zh) 2022-11-08 2022-11-08 服务器

Publications (1)

Publication Number Publication Date
WO2024098931A1 true WO2024098931A1 (zh) 2024-05-16

Family

ID=85368435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117462 WO2024098931A1 (zh) 2022-11-08 2023-09-07 服务器

Country Status (2)

Country Link
CN (1) CN115756104A (zh)
WO (1) WO2024098931A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115756104A (zh) * 2022-11-08 2023-03-07 超聚变数字技术有限公司 服务器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122760A (ja) * 2008-11-17 2010-06-03 Nec Corp ブレードサーバシステム、ケース本体、ブレードサーバ、ブレードサーバの実装方法およびそのプログラム
CN102436291A (zh) * 2011-11-07 2012-05-02 华为技术有限公司 服务器及其使用装配方法、存储系统、硬盘装置
CN103389777A (zh) * 2013-06-26 2013-11-13 汉柏科技有限公司 一种存储服务器
CN104345844A (zh) * 2014-11-21 2015-02-11 英业达科技有限公司 存储服务器
US20150043151A1 (en) * 2013-08-08 2015-02-12 Dell Products L.P. Supplemental Storage Tray for Increasing Storage Capacity within an Information Handling System
US20200174533A1 (en) * 2017-03-17 2020-06-04 Intel Corporation Solid state memory case with enhanced cooling
CN111610831A (zh) * 2020-05-11 2020-09-01 北京达佳互联信息技术有限公司 服务器
CN112596587A (zh) * 2020-12-31 2021-04-02 深圳市宝德计算机系统有限公司 新型服务器
CN214409825U (zh) * 2021-03-04 2021-10-15 山东英信计算机技术有限公司 一种高密度多模块服务器机箱
CN113934261A (zh) * 2020-07-13 2022-01-14 鸿富锦精密电子(天津)有限公司 机箱及具有该机箱的服务器
CN115756104A (zh) * 2022-11-08 2023-03-07 超聚变数字技术有限公司 服务器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122760A (ja) * 2008-11-17 2010-06-03 Nec Corp ブレードサーバシステム、ケース本体、ブレードサーバ、ブレードサーバの実装方法およびそのプログラム
CN102436291A (zh) * 2011-11-07 2012-05-02 华为技术有限公司 服务器及其使用装配方法、存储系统、硬盘装置
CN103389777A (zh) * 2013-06-26 2013-11-13 汉柏科技有限公司 一种存储服务器
US20150043151A1 (en) * 2013-08-08 2015-02-12 Dell Products L.P. Supplemental Storage Tray for Increasing Storage Capacity within an Information Handling System
CN104345844A (zh) * 2014-11-21 2015-02-11 英业达科技有限公司 存储服务器
US20200174533A1 (en) * 2017-03-17 2020-06-04 Intel Corporation Solid state memory case with enhanced cooling
CN111610831A (zh) * 2020-05-11 2020-09-01 北京达佳互联信息技术有限公司 服务器
CN113934261A (zh) * 2020-07-13 2022-01-14 鸿富锦精密电子(天津)有限公司 机箱及具有该机箱的服务器
CN112596587A (zh) * 2020-12-31 2021-04-02 深圳市宝德计算机系统有限公司 新型服务器
CN214409825U (zh) * 2021-03-04 2021-10-15 山东英信计算机技术有限公司 一种高密度多模块服务器机箱
CN115756104A (zh) * 2022-11-08 2023-03-07 超聚变数字技术有限公司 服务器

Also Published As

Publication number Publication date
CN115756104A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2024098931A1 (zh) 服务器
US10021806B2 (en) System and method for flexible storage and networking provisioning in large scalable processor installations
US9019708B2 (en) Apparatus and systems having storage devices in a side accessible drive sled
US9326420B2 (en) Server
US20060250766A1 (en) Apparatus for removably securing storage components in an enclosure
US8879248B2 (en) Storage apparatus, storage controller for storage apparatus, chassis for storage controller
US10925186B2 (en) Vertical lift heat transfer device for pluggable modules
CA2896779C (en) Heat dissipation system for communications device
US7773378B2 (en) Heat-dissipating structure for expansion board architecture
US9629275B1 (en) Mass storage device retainer assembly
EP3518635B1 (en) Design to expand panel port number
WO2019169136A1 (en) Ssd module for mounting in a hdd bay of a rack server
US20080057781A1 (en) Mounting assembly for connectors
US7583515B2 (en) Method for supporting a plurality of cards in an information handling system
US11495267B2 (en) Data storage retainer systems, methods, and devices
US20150173249A1 (en) Data storage device enclosure and cooling system
US20140140025A1 (en) Server backplane
CN109101090A (zh) 服务器
CN111149076A (zh) 用于容纳电组件的交替塑形的底板
WO2021259194A1 (zh) 一种存储设备
US20240292521A1 (en) Vibration dampening for high-density storage system structure
US20240288914A1 (en) High-density storage system structure
EP2180774B1 (en) Heat-dissipating structure for expansion board architecture
TW201135427A (en) Computer system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887625

Country of ref document: EP

Kind code of ref document: A1