WO2024098704A1 - 一种小型化mt光纤连接器及适配器组件 - Google Patents

一种小型化mt光纤连接器及适配器组件 Download PDF

Info

Publication number
WO2024098704A1
WO2024098704A1 PCT/CN2023/093615 CN2023093615W WO2024098704A1 WO 2024098704 A1 WO2024098704 A1 WO 2024098704A1 CN 2023093615 W CN2023093615 W CN 2023093615W WO 2024098704 A1 WO2024098704 A1 WO 2024098704A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
miniaturized
connector
fiber connector
cantilever
Prior art date
Application number
PCT/CN2023/093615
Other languages
English (en)
French (fr)
Inventor
张迪
Original Assignee
武汉邮埃服光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉邮埃服光电科技有限公司 filed Critical 武汉邮埃服光电科技有限公司
Publication of WO2024098704A1 publication Critical patent/WO2024098704A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means

Definitions

  • the invention belongs to the technical field of optical fiber communication, and in particular relates to a miniaturized MT optical fiber connector and an adapter assembly.
  • connection between optical fibers and between optical fibers and devices is basically achieved through connectors.
  • the requirements for optical fiber connection density are also constantly increasing, that is, more optical fiber connections must be achieved within a unit volume.
  • speed and energy consumption are two very critical factors. People expect to provide greater bandwidth in a smaller space and with lower energy consumption. Therefore, multi-core optical fiber connectors that can perform parallel optical fiber transmission and reception have been widely used.
  • the traditional multi-core fiber optic connector (MPO) structure contains a large number of parts, the product is relatively long, high, and wide, and it takes up too much wiring space; at the same time, as a connector with active coupling and docking, the fiber optic connection needs to be able to be easily and freely decoupled in most occasions.
  • the connectors on the market, especially the small-sized connectors cannot be easily decoupled, which brings great troubles to engineering use; in particular, the MPO connector is relatively large in width and length, which makes the module integration and miniaturization design of the MPO connector difficult.
  • the connection between optical fiber connectors is achieved through optical fiber adapters.
  • the size of the optical fiber adapter In the context of the demand for small-sized connection space, it is far from enough to simply reduce the size of the connector.
  • the size of the optical fiber adapter must also be reduced to reduce the space for the entire connection electrical device.
  • the size of the traditional multi-core fiber MPO adapter is relatively large, especially in the height direction where the size is more sensitive.
  • the traditional multi-core fiber MPO adapter has a relatively thick side wall, which causes the adapter to be too large in the thickness direction, causing great trouble to the module layout; especially the adapter material is made of plastic material so that it has elasticity at the mechanical lock structure, then the larger the size of the adapter, the worse the electromagnetic shielding performance of the module layout will be; it is well known that metal materials have a blocking and shielding effect on electromagnetic shielding signals, while plastic materials do not have this function for electromagnetic signals; in module design, how to expand the use of metal materials and reduce the use of plastic materials is a topic that has been studied in the field of electromagnetic shielding; therefore, it is also necessary to propose a more reasonable technical solution to solve the technical problems existing in the prior art.
  • the purpose of the present invention is to provide a miniaturized MT optical fiber connector and adapter assembly to solve the problems existing in the prior art. at least one of the above problems.
  • a miniaturized MT optical fiber connector and an adapter assembly comprising a miniaturized MT optical fiber connector and an adapter body for connecting the miniaturized MT optical fiber connector and a common multi-core ferrule MPO connector, one end of the adapter body being a front-end connection portion coupled and docked with the common multi-core ferrule MPO connector, the other end of the adapter body being a rear-end connection portion coupled and docked with the miniaturized MT optical fiber connector, an accommodating cavity communicating with the front-end connection portion and the rear-end connection portion being arranged inside the adapter body; the front-end connection portion comprising an upper cantilever located on the upper side of the accommodating cavity and a lower cantilever located on the lower side of the accommodating cavity, wherein the upper cantilever and the lower cantilever form a left clearance notch and a right clearance notch in the thickness direction of the front-end connection portion region;
  • the miniaturized MT optical fiber connector comprises a multi-core ferrule, a connector housing and two alignment PINs.
  • the connector housing is provided with at least one cantilever beam, and the cantilever beam is provided with an outward protrusion that cooperates with the rear end connection part;
  • the connector housing is provided with a rear mounting groove that connects its inner cavity and the outside;
  • the rear mounting groove is provided with a step groove for accommodating the alignment PINs, and the two alignment PINs are both installed on the multi-core ferrule and connected to the step groove.
  • the alignment PIN is a cylindrical structure, and an annular groove is provided at the tail of the alignment PIN, a C-shaped limiting protrusion is provided in the step groove, the C-shaped limiting protrusion is connected to the rear groove through its opening, the width of the opening of the C-shaped limiting protrusion is smaller than the inner diameter of the C-shaped limiting protrusion, the C-shaped limiting protrusion in the step groove is engaged with the annular groove of the alignment PIN, and the annular groove is matched with the inner wall gap of the C-shaped limiting protrusion.
  • the adapter body is made of elastic plastic
  • the connector shell is made of elastic plastic or elastic metal sheet.
  • the multi-core ferrule is provided with two mutually parallel alignment holes, and two alignment PINs are respectively matched and installed in one alignment hole.
  • the cantilever beam is at least partially sunken into the connector shell in the height direction of the connector shell and is partially suspended relative to the connector shell; the upper side and/or the lower side of the connector shell is provided with side grooves corresponding to the cantilever beam, and the cantilever beam is arranged in the corresponding side grooves; the size of the side grooves is larger than the cantilever beam arm portion sunk inside the side grooves, and the side grooves and the left and right sides of the cantilever beam have a movable gap; the bottom of the side grooves has an elastic deformation gap with the cantilever beam, and the height of the elastic deformation gap is greater than the height of the outward protrusion.
  • the left clearance gap and the right clearance gap are both connected to the accommodating cavity and allow the accommodating cavity to penetrate the thickness direction of the front end connecting part.
  • the left clearance gap and the right clearance gap penetrate the upper side and the lower side of the entire front end connecting part, so that the width of the adapter body in the left and right directions is relatively small.
  • the front ends of the upper cantilever and the lower cantilever are both provided with buckles, and the two buckles are engaged with the mechanical latches of the common multi-core ferrule MPO connector.
  • the rear end connecting portion is provided with at least one limiting window, and the limiting window is engaged with the outward protrusion.
  • the limit window is arranged at the upper end and/or lower end of the rear end connecting part, a direction key boss is arranged on an inner side wall of the rear end connecting part, and one side of the rear mounting groove is slidably connected to the direction key boss.
  • an avoidance groove is provided on the inner wall of the upper end of the rear end connecting part and/or on the inner wall of the lower end of the rear end connecting part.
  • the present invention connects a miniaturized MT fiber optic connector and a common multi-core ferrule MPO connector through the front-end connecting part and the rear-end connecting part of the adapter body.
  • One end of the common multi-core ferrule MPO connector and one end of the miniaturized MT fiber optic connector are both arranged in the accommodating cavity, so as to realize the docking of the common multi-core ferrule MPO connector and the miniaturized MT fiber optic connector, and ensure the stable connection of the common multi-core ferrule MPO connector and the miniaturized MT fiber optic connector under the action of the adapter body.
  • the front-end connecting part is connected to the common multi-core ferrule MPO connector through the upper cantilever and the lower cantilever, and the upper cantilever and the lower cantilever form a left clearance gap and a right clearance gap in the thickness direction of the front-end connecting part area, so that not only the stable connection of the front-end connecting part and the common multi-core ferrule MPO connector can be ensured, but also the material of the adapter itself remains unchanged, and the plastic material is still used in the same way as the prior art.
  • the two side walls of the front end of the existing adapter are reduced by using the left clearance gap and the right clearance gap, thereby reducing the use of plastic, and making the size of the entire front-end connecting part smaller.
  • the reduced plastic part has a metal module structure on the outside for electromagnetic shielding, so there is no need to worry about electromagnetic leakage.
  • the present invention provides at least one cantilever beam on the connector housing, and an outward protrusion is provided on the cantilever beam, which is convenient for clamping with the adapter, thereby achieving the purpose of quick assembly and disassembly, so that free decoupling can be conveniently achieved in most use occasions;
  • a rear installation groove connecting its inner cavity and the outside is provided on the connector housing, and the optical fiber connected with the multi-core ferrule can enter the inner cavity of the connector housing through the rear installation groove, and the assembly sequence of the multi-core ferrule and the connector housing can be flexibly applied.
  • the utility model can be assembled with the connector shell before the multi-core ferrule is combined with the optical fiber, or the multi-core ferrule can be assembled with the connector shell after the multi-core ferrule is combined with the optical fiber, and the connection is convenient; a step groove for accommodating the alignment PIN is arranged in the rear installation groove, and two alignment PINs are installed on the multi-core ferrule and connected in the step groove to form an installation and fixing structure of the alignment PIN, which is convenient for connection and can ensure the stability of the structure, thereby forming a limit for the multi-core ferrule, and making the installation of the multi-core ferrule more convenient.
  • the two alignment PINs are installed on the multi-core ferrule to complete the basic use structure, and the tail of the alignment PIN is clamped in the step groove, and the alignment PIN is limited by the step groove, thereby ensuring the stability of the alignment PIN, so that the structure of the miniaturized MT optical fiber connector is simple, and the size is reduced in both the length direction and the width direction, thereby meeting the design requirements of module integration and miniaturization using the multi-core ferrule.
  • FIG1 is a schematic diagram of the structure of the present invention and a common multi-core ferrule MPO connector before assembly;
  • FIG2 is a schematic diagram of the assembly of the present invention and a common multi-core ferrule MPO connector
  • FIG3 is a perspective schematic diagram of an adapter body in the present invention.
  • FIG4 is a top view of the adapter body of the present invention.
  • FIG5 is a front view of the adapter body of the present invention.
  • FIG6 is a schematic diagram of the structure of the present invention before the module is installed outside the adapter body;
  • FIG. 7 is a schematic structural diagram of the connector housing provided by the present invention before being matched with the alignment PIN;
  • FIG8 is a cross-sectional schematic diagram of a miniaturized MT optical fiber connector provided by the present invention.
  • FIG9 is a schematic diagram of the assembly of the connector housing and the alignment PIN provided by the present invention.
  • FIG10 is a schematic diagram of the structure of a multi-core ferrule provided by the present invention.
  • FIG11 is a schematic diagram of the assembly structure shown in Embodiment 2 and Embodiment 3 of the present invention.
  • FIG12 is a schematic diagram of the structure of an existing adapter
  • FIG13 is a schematic diagram of the structure of an existing multi-core optical fiber connector
  • FIG14 is a schematic diagram showing a length comparison between the miniaturized MT optical fiber connector provided by the present invention and the existing multi-core optical fiber connector;
  • FIG. 15 is an exploded schematic diagram of an existing multi-core optical fiber connector.
  • this embodiment provides a miniaturized MT fiber optic connector and an adapter assembly, including a miniaturized MT fiber optic connector and an adapter body 4 connecting the miniaturized MT fiber optic connector and a common multi-core ferrule MPO connector 6, wherein one end of the adapter body 4 is a front end connection portion 41 coupled and docked with the common multi-core ferrule MPO connector 6, and the other end of the adapter body 4 is a rear end connection portion 42 coupled and docked with the miniaturized MT fiber optic connector.
  • the adapter body 4 is provided with an accommodating cavity 43 connecting the front end connection portion 41 and the rear end connection portion 42, one end of the common multi-core ferrule MPO connector 6 and one end of the miniaturized MT fiber optic connector are both arranged in the accommodating cavity 43, so as to realize the docking between the common multi-core ferrule MPO connector 6 and the miniaturized MT fiber optic connector, and ensure the stable connection between the common multi-core ferrule MPO connector 6 and the miniaturized MT fiber optic connector under the action of the adapter body 4.
  • the front end connection portion 41 includes The upper cantilever 411 located on the upper side of the accommodating cavity 43 and the lower cantilever 412 located on the lower side of the accommodating cavity 43, the front end connecting part 41 is connected to the ordinary multi-core plug-in MPO connector 6 through the upper cantilever 411 and the lower cantilever 412, wherein the upper cantilever 411 and the lower cantilever 412 form a left clearance notch 413 and a right clearance notch 414 in the thickness direction of the front end connecting part 41 area, which not only ensures the stable connection between the front end connecting part 41 and the ordinary multi-core plug-in MPO connector 6, but also when the material of the adapter itself remains unchanged and still uses the same plastic material as the prior art, the present application utilizes the left clearance notch 413 and the right clearance notch 414 to reduce the two side walls of the front end of the existing adapter (as shown in Figure 12), thereby reducing the use of plastic, and making the size of the entire front end connecting part 41 smaller. In practice, the reduced
  • the miniaturized MT optical fiber connector comprises a multi-core ferrule 1, a connector housing 3 and two alignment PINs 2.
  • the connector housing 3 is provided with at least one cantilever beam 31, and the cantilever beam 31 is provided with an outward protrusion that cooperates with the rear end connection part 42.
  • the connector housing 3 is provided with a rear mounting groove 34 connecting its inner cavity and the outside, and the optical fiber connected to the multi-core ferrule 1 can enter the inner cavity of the connector housing 3 through the rear mounting groove 34, and the flexible application of the assembly sequence of the multi-core ferrule 1 and the connector housing 3 can be achieved here, and it can be assembled with the connector housing before making the multi-core ferrule and the optical fiber combination, or it can be assembled with the connector housing after the multi-core ferrule and the optical fiber combination, which is convenient for connection;
  • the rear mounting groove 34 is provided with a step groove 32 for accommodating the alignment PIN2, and the two alignment PIN2s are installed on the multi-core ferrule 1 and connected to the step groove 34.
  • step groove 32 an installation and fixing structure of the alignment PIN is formed, which is convenient for connection and can ensure the stability of the structure, thereby forming a limit for the multi-core ferrule 1, which is more convenient for the installation of the multi-core ferrule 1.
  • the two alignment PINs 2 are both installed on the multi-core ferrule 1 to complete the basic use structure, and the tail of the alignment PIN 2 is clamped in the step groove 32, and the alignment PIN 2 is limited by the step groove 32, thereby ensuring the stability of the alignment PIN 2, so that the structure of the miniaturized MT optical fiber connector is simple.
  • the size is reduced in both the length and width directions, thereby meeting the design requirements of module integration and miniaturization using multi-core ferrules.
  • the present invention connects the miniaturized MT optical fiber connector and the ordinary multi-core ferrule MPO connector 6 through the front-end connecting part 41 and the rear-end connecting part 42 of the adapter body 4.
  • One end of the ordinary multi-core ferrule MPO connector 6 and one end of the miniaturized MT optical fiber connector are both arranged in the accommodating cavity 43, so as to realize the docking of the ordinary multi-core ferrule MPO connector 6 and the miniaturized MT optical fiber connector, and ensure the stable connection of the ordinary multi-core ferrule MPO connector 6 and the miniaturized MT optical fiber connector under the action of the adapter body 4.
  • the front-end connecting part 41 is connected to the ordinary multi-core ferrule MPO connector 6 through the upper cantilever 411 and the lower cantilever 412.
  • the upper cantilever 411 and the lower cantilever 412 are connected to each other.
  • the arm 412 forms a left clearance notch 413 and a right clearance notch 414 in the thickness direction of the front end connection part 41 area, which not only ensures the stable connection between the front end connection part 41 and the ordinary multi-core MPO connector 6, but also, when the material of the adapter itself remains unchanged and still uses the same plastic material as the prior art, the left clearance notch 413 and the right clearance notch 414 are used to reduce the two side walls of the front end of the existing adapter, thereby reducing the use of plastic, and making the size of the entire front end connection part 41 smaller.
  • the reduced plastic part will be electromagnetically shielded by a metal module structure on the outside, so there is no need to worry about electromagnetic leakage.
  • the present invention provides at least one cantilever beam 31 on the connector housing 3, and an outward protrusion 311 is provided on the cantilever beam 31, which is convenient for clamping with the adapter, thereby achieving the purpose of quick loading and unloading, so that free decoupling can be conveniently achieved in most usage occasions;
  • the connector housing 3 is provided with a rear groove 34 connecting its inner cavity and the outside, and the optical fiber connected to the multi-core ferrule 1 can enter the inner cavity of the connector housing 3 through the rear groove 34, and the multi-core ferrule 1 and the connection can be realized here.
  • the flexible application of the assembly sequence of the connector housing 3 can realize the assembly with the connector housing before the multi-core ferrule and the optical fiber are combined, and can also realize the assembly with the connector housing after the multi-core ferrule and the optical fiber are combined, which is convenient for connection; a step groove 32 for accommodating the alignment PIN 2 is provided in the rear installation groove 34, and two alignment PINs 2 are installed on the multi-core ferrule 1 and connected in the step groove 32 to form an installation and fixing structure of the alignment PIN, which is convenient for connection and can ensure the stability of the structure, thereby forming a limit for the multi-core ferrule 1, which is more convenient for the installation of the multi-core ferrule 1, and the two alignment PINs 2 are installed on the multi-core ferrule 1 to complete the basic use structure, and the tail of the alignment PIN 2 is clamped in the step groove 32, and the alignment PIN 2 is limited by the step groove 32, thereby ensuring the stability of the alignment PIN 2, so that the structure of the miniaturized MT optical
  • the alignment PIN2 is a cylindrical structure, and an annular groove 21 is provided at the tail of the alignment PIN2, and a C-shaped limit protrusion 33 is provided in the step groove 32, and the C-shaped limit protrusion 33 is connected to the rear groove 34 through its opening, and the width of the opening of the C-shaped limit protrusion 33 is smaller than the inner diameter of the C-shaped limit protrusion 33, and the C-shaped limit protrusion 33 in the step groove 32 is engaged with the annular groove 21 of the alignment PIN2, so that the alignment PIN2 can be more conveniently and stably engaged in the C-shaped limit protrusion 33 of the step groove 32, and the position of the annular groove 21 cannot fall off freely from the opening of the C-shaped limit protrusion 33, and the inner wall clearance of the annular groove 21 and the C-shaped limit protrusion 33 is matched, and the alignment PIN2 can shake relative to the connector housing 3.
  • the adapter body 4 is made of elastic plastic, the material of the adapter body 4 has not been changed, and the connector shell 3 is made of elastic plastic or elastic metal sheet, so that the position of the annular groove 21 at the tail of the alignment PIN2 and the C-shaped limiting protrusion 33 can be easily realized, and the stability during the clamping can be guaranteed.
  • two mutually parallel alignment holes 11 are provided on the multi-core ferrule 1, and two alignment PINs 2 are respectively matched and installed in one alignment hole 11, so that the matching installation of the two alignment PINs 2 and the multi-core ferrule 1 can be easily and quickly realized.
  • the cantilever beam 31 is at least partially sunken in the connector housing 3 in the height direction of the connector housing 3 and is partially suspended relative to the connector housing 3.
  • One end of the cantilever beam arm 31 is connected to the connector housing 3, and an outward protrusion 311 is provided on the cantilever beam 31, so that the suspended part of the cantilever beam 31 can produce a certain bending deformation effect, and then the outward protrusion 311 on the cantilever beam 31 is used to align with the adapter 4.
  • the upper and/or lower sides of the connector housing 3 are provided with side grooves 35 corresponding to the cantilever beam 31, and the cantilever beam 31 is arranged in the corresponding side grooves 35; the size of the side grooves 35 is larger than the part of the cantilever arm 31 sunk inside the side grooves 35, and the side grooves 35 and the left and right sides of the cantilever beam 31 have a movable gap; the bottom of the side grooves 35 and the cantilever beam 31 have an elastic deformation gap, and the height of this elastic deformation gap is greater than the height of the outward protrusion 311, ensuring that the outward protrusion 311 has sufficient elastic space, and when mating and connecting with the adapter 4, the cantilever beam 31 is allowed to undergo a certain deformation, so that the outward protrusion 311 can quickly fit and snap-fit with the adapter 4.
  • the connector housing 3 and the two alignment PINs 2 can be integrally formed, providing an alignment PIN 2 with low precision requirements, but can improve the design cost and assembly efficiency of the device.
  • the left clearance notch 413 and the right clearance notch 414 are both connected to the accommodating cavity 43 and the accommodating cavity 43 runs through the thickness direction of the front end connecting portion 41.
  • the left clearance notch 413 and the right clearance notch 414 run through the upper side and the lower side of the entire front end connecting portion 41, so that the width of the adapter body 4 in the left and right directions is relatively small.
  • the left protrusion 513 cooperates with the left clearance notch 413, so that the left protrusion 513 structure set in the module enters the left side of the accommodating cavity 43 through the left clearance notch 413, and the right protrusion 514 cooperates with the right clearance notch 414, so that the right protrusion 514 structure set in the module enters the right side of the accommodating cavity 43 through the right clearance notch 414.
  • the upper cantilever 411, the lower cantilever 412, the left protrusion 513 of the module and the right protrusion 514 of the module form a channel that can limit the four surfaces of the ordinary multi-core ferrule MPO connector 6 from four directions: up, down, left and right.
  • the front end of the upper cantilever 411 and the front end of the lower cantilever 412 are both provided with a clip 415, and the two clips 415 are engaged with the mechanical latch 61 of the ordinary multi-core ferrule MPO connector 6, and the engagement method is simple and has good stability.
  • the rear end connection portion 42 is provided with at least one limit window 421, and the limit window 421 is engaged with the outward protrusion 311, so that the connection method is simple and stable, and this connection method does not require a complex structure, thereby making the size easier to control.
  • the side of the limit window 421 away from the ordinary multi-core ferrule MPO connector 6 is a vertical stop surface 4244, and on the vertical stop surface 4244, the contact between the outward protrusion 102 and the limit window 421 is a surface contact, which can ensure that the outward protrusion 102 is in the limit position.
  • the stability within the window 421 ensures a stable connection between the miniaturized MT optical fiber connector and the adapter body 4 .
  • the limit window 421 is arranged at the upper end and/or lower end of the rear end connecting part 42.
  • the limit window 421 can be located at the upper end or the lower end.
  • the two limit windows 421 can be located at the upper end and the lower end respectively, and the design flexibility is strong.
  • a direction key boss 422 is arranged on an inner side wall of the rear end connecting part 42, and one side of the rear mounting groove 34 is slidingly connected to the direction key boss 422. In this way, a fool-proof design can be achieved to ensure that the fiber sequence in the miniaturized MT optical fiber connector is correctly connected with the fiber sequence in the adapter body 4. Only when the direction key boss 422 is aligned with one side of the rear mounting groove 34, the fiber sequence in the miniaturized MT optical fiber connector can be correctly plugged into the adapter body 4, otherwise, it cannot be inserted.
  • an avoidance groove 423 is provided on the inner wall of the upper end of the rear end connecting portion 42 and/or the inner wall of the lower end of the rear end connecting portion 42, which is used for sliding connection with the miniaturized MT optical fiber connector.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • this embodiment further provides another miniaturized MT optical fiber connector, which is different from the miniaturized MT optical fiber connector described in the first embodiment in that when the other optical fiber connector paired with the miniaturized MT optical fiber connector is also the same miniaturized MT optical fiber connector, it is only necessary to optimize the adapter structure accordingly, so that the two ends of the adapter are respectively provided with adapter windows 421 that cooperate with the miniaturized MT optical fiber connector, and the ends of the adapter windows 421 at both ends close to the rear of the connector housing 3 are respectively provided with vertical stop surfaces 424 that can prevent the outward protrusion 311 from being disengaged, so as to prevent the outward protrusion 311 from withdrawing from the adapter window 421.
  • the adapter windows 421 at both ends of the two connector housings 3 and the adapter body 4 are matched with each other, so that the two miniaturized MT optical fiber connectors can form a pair of nodes or systems for transmitting light.
  • this embodiment further provides another miniaturized MT optical fiber connector based on the technical solution of the second embodiment.
  • the difference between this embodiment and the miniaturized MT optical fiber connector described in the second embodiment is that in order to make the butt joint surfaces of the two miniaturized MT optical fiber connectors have a certain pre-tightening force, an elastic device can be directly set between the multi-core ferrule and the connector housing of one of the miniaturized MT optical fiber connectors.
  • the adapter windows 421 for mating with the optical fiber connector are matched, and the ends of the adapter windows 421 at both ends close to the rear of the connector housing 3 are respectively provided with vertical stop surfaces 424 capable of preventing the outward protrusion 311 from being disengaged, thereby preventing the outward protrusion 311 from withdrawing from the adapter windows 421.
  • the adapter windows 421 at both ends of the two connector housings 3 and the adapter body 4 are matched with each other, so that the two miniaturized MT optical fiber connectors can form a pair of nodes or systems for transmitting light; and a certain pre-tightening force is obtained on the two ferrule end faces, making the connector docking more reliable and stable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

一种小型化MT光纤连接器及适配器组件,包括适配器本体(4)的一端为与普通多芯插芯MPO连接器(6)耦合对接的前端连接部(41),适配器本体(4)的另一端为与小型化MT光纤连接器耦合对接的后端连接部(42),适配器本体(4)内部设置有容纳腔(43);前端连接部(41)包括上悬臂(411)和下悬臂(412),上悬臂(411)与下悬臂(412)在前端连接部(41)区域的厚度方向形成左让位缺口(413)与右让位缺口(414);连接器外壳(3)上设置有悬臂梁(31),悬臂梁(31)上设置有与后端连接部(42)配合连接的向外凸起(311);连接器外壳(3)内设置有后装槽(34),多芯插芯(1)安装于后装槽(34)内,后装槽(34)的尾部设置有台阶槽(32),台阶槽(32)与后装槽(34)相连通,两个准直PIN(2)均安装于多芯插芯(1)上,准直PIN(2)的尾部卡接于台阶槽(32)内。本发明减少了塑料的使用,尺寸更小;达到了模块集成化和小型化的要求。

Description

一种小型化MT光纤连接器及适配器组件 技术领域
本发明属于光纤通信技术领域,具体涉及一种小型化MT光纤连接器及适配器组件。
背景技术
光纤与光纤之间的连接,以及光纤与设备之间的连接,基本都是通过连接器来实现的,随着信息互联网和云服务爆炸式的增长,光纤连接密度的要求也在不断的提高,即在单位体积内要实现更多路的光纤连接,随着人类对通信需求的快速增长,现有的通信系统面临更大的挑战。其中速率和能耗是两个非常关键的因素。人们期望在更小的空间、更低的能耗条件下提供更大的带宽。因此能够进行并行光纤收发的多芯光纤连接器得到了广泛的应用。
目前,传统多芯光纤连接器(MPO)结构包含零件数量比较多,产品长度比较长,高度高,宽度宽,占用了太多的布线空间;同时,光纤连接作为一种活动耦合对接的连接器,在大部分使用场合,需要能够方便自由的解耦,目前市场上连接器,尤其小尺寸连接器不能方便解耦,给工程使用带来了很大的困扰;尤其MPO连接器在宽度方向上与长度方向上尺寸比较大,使应用MPO连接器的模块集成化,小型化的设计困难重重。另一方面,一般光纤连接器与光纤连接器对接都是通过光纤适配器实现的,在小尺寸对接空间的需求背景下,仅仅缩小连接器尺寸是远远不够的,还要缩小光纤适配器尺寸,才能使整个对接电器件的空间缩小,目前传统多芯光纤MPO适配器尺寸比较大,尤其在尺寸比较敏感的高度方向上,传统多芯光纤MPO适配器都有比较厚的侧壁,导致适配器厚度方向的尺寸过大,给模块布局带来很大的困扰;尤其适配器材料由塑料材质制造以便在机械锁栓结构处具有弹性,那么尺寸越大的适配器对于模块布局的电磁屏蔽性能就会越差;众所周知,金属材料对电磁屏蔽信号具有阻断与屏蔽作用,而塑料材质却没有对电磁信号有这种功能;在模块设计中,如何扩大金属材料的使用,与减小塑料材料的使用是电磁屏蔽领域一直研究的课题;故还需要提出更为合理的技术方案,解决现有技术中存在的技术问题。
发明内容
本发明的目的是提供一种小型化MT光纤连接器及适配器组件,用以解决现有技术中存在 的至少一个上述问题。
为了实现上述目的,本发明采用以下技术方案:
一种小型化MT光纤连接器及适配器组件,包括小型化MT光纤连接器及连接小型化MT光纤连接器和普通多芯插芯MPO连接器的适配器本体,所述适配器本体的一端为与普通多芯插芯MPO连接器耦合对接的前端连接部,适配器本体的另一端为与小型化MT光纤连接器耦合对接的后端连接部,适配器本体内部设置有连通前端连接部和后端连接部的容纳腔;所述前端连接部包括位于容纳腔上侧的上悬臂和位于容纳腔下侧的下悬臂,其中,所述上悬臂与下悬臂在前端连接部区域的厚度方向形成左让位缺口与右让位缺口;
所述小型化MT光纤连接器包括多芯插芯、连接器外壳和两个准直PIN,连接器外壳上设置有至少一个悬臂梁,悬臂梁上设置有与后端连接部配合连接的向外凸起;所述连接器外壳上开设有连通其内腔和外部的后装槽;所述后装槽内设置有容纳准直PIN的台阶槽,两个准直PIN均安装于多芯插芯上并连接于台阶槽中。
作为本发明中一种优选的技术方案,所述准直PIN为圆柱体结构,且准直PIN的尾部设置有环形凹槽,所述台阶槽内设置有C型限位凸起,C型限位凸起通过其开口处连通后装槽,C型限位凸起的开口处的宽度小于C型限位凸起的内径,台阶槽内的C型限位凸起与准直PIN的环形凹槽配合卡接,且环形凹槽与C型限位凸起的内壁间隙配合。
作为本发明中一种优选的技术方案,所述适配器本体由弹性塑料制成,连接器外壳由弹性塑料或弹性金属片制成。
作为本发明中一种优选的技术方案,所述多芯插芯上设置有两个相互平行的准直孔,两个准直PIN各匹配的安装于一个准直孔内。
作为本发明中一种优选的技术方案,所述悬臂梁在连接器外壳的高度方向至少部分下沉于连接器外壳并且相对于连接器外壳部分悬空设置;所述连接器外壳上侧和/或下侧设置有与悬臂梁对应的侧凹槽,悬臂梁设置于对应的侧凹槽内;所述侧凹槽尺寸大于下沉于侧凹槽内部的所述悬梁臂部分,且侧凹槽与所述悬臂梁左右两侧具有可活动的间隙;所述侧凹槽的底部与悬臂梁具有弹性变形间隙,此弹性变形间隙的高度大于向外凸起的高度。
作为本发明中一种优选的技术方案,所述左让位缺口与右让位缺口均连通容纳腔且使得容纳腔贯穿前端连接部的厚度方向,左让位缺口与右让位缺口贯穿整个前端连接部的上侧面与下侧面,使适配器本体左右方向的宽度比较小。
作为本发明中一种优选的技术方案,所述上悬臂的前端和下悬臂的前端均设置有卡扣,两个卡扣与普通多芯插芯MPO连接器的机械闩锁配合卡接。
作为本发明中一种优选的技术方案,所述后端连接部设置有至少一个限位窗口,限位窗口与向外凸起配合卡接。
作为本发明中一种优选的技术方案,所述限位窗口设置于后端连接部上端和/或下端,所述后端连接部的一个内侧壁上设置有方向键凸台,后装槽的一侧与方向键凸台滑动连接。
作为本发明中一种优选的技术方案,所述后端连接部上端的内壁上和/或后端连接部下端的内壁上设置有避让滑槽。
有益效果:本发明通过适配器本体的前端连接部和后端连接部连接小型化MT光纤连接器和普通多芯插芯MPO连接器,普通多芯插芯MPO连接器的一端和小型化MT光纤连接器的一端均设置于容纳腔内,实现普通多芯插芯MPO连接器和小型化MT光纤连接器的对接,并且在适配器本体的作用下保证普通多芯插芯MPO连接器和小型化MT光纤连接器的稳定连接,具体的,前端连接部通过上悬臂和下悬臂与普通多芯插芯MPO连接器实现连接,上悬臂与下悬臂在前端连接部区域的厚度方向形成左让位缺口与右让位缺口,这样不仅仅可以保证前端连接部与普通多芯插芯MPO连接器的稳定连接,而且在适配器本身的材质不变,仍与现有技术相同的采用塑料材质的情况下,利用左让位缺口与右让位缺口减少了现有适配器前端的两个侧壁,进而减少了塑料的使用,可以使得整个前端连接部的尺寸更小,其中减少的塑料部分在实际中因为外部会有金属材质的模块结构进行电磁屏蔽,因此也不必担心有电磁泄漏的问题。
本发明在连接器外壳上设置有至少一个悬臂梁,悬臂梁上设置有向外凸起,向外凸起方便与适配器卡接,进而达到快速装卸的目的,这样在大部分使用场合,就可以方便实现自由的解耦;连接器外壳上开设有连通其内腔和外部的后装槽,多芯插芯连接的光纤可以通过后装槽进入连接器外壳的内腔中,此处可以实现多芯插芯与连接器外壳的装配顺序的灵活应 用,可以实现在制作多芯插芯与光纤组合前与连接器外壳装配,也可以实现多芯插芯与光纤组合后再与连接器外壳装配,连接方便;后装槽内设置有容纳准直PIN的台阶槽,两个准直PIN均安装于多芯插芯上并连接于台阶槽中,形成准直PIN的安装与固定结构,连接方便,且可以保证结构的稳定,进而对多芯插芯形成限位,更加方便多芯插芯的安装,两个准直PIN均安装于多芯插芯上,完成基本的使用结构,且准直PIN的尾部卡接于台阶槽内,通过台阶槽对准直PIN形成限位,进而保证准直PIN的稳定性,使得小型化MT光纤连接器的结构简单,在长度方向和宽度方向上均减小了尺寸,进而达到了应用多芯插芯的模块集成化、小型化的设计要求。
附图说明
图1为本发明与普通多芯插芯MPO连接器在组装前的结构示意图;
图2为本发明与普通多芯插芯MPO连接器的组装示意图;
图3为本发明中适配器本体的立体示意图;
图4为本发明中适配器本体的俯视图;
图5为本发明中适配器本体的主视图;
图6为本发明在适配器本体外安装模块之前的结构示意图;
图7为本发明提供的连接器外壳与准直PIN配合前的结构示意图;
图8为本发明提供的一种小型化MT光纤连接器的剖视示意图;
图9为本发明提供的连接器外壳与准直PIN的装配示意图;
图10为本发明提供的多芯插芯的结构示意图;
图11为本发明实施例二与实施例三所展示的装配结构示意图;
图12为现有的适配器的结构示意图;
图13为现有的多芯光纤连接器的结构示意图;
图14为本发明提供的小型化MT光纤连接器与现有多芯光纤连接器的长度对比示意图;
图15为现有多芯光纤连接器的爆炸示意图。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将结合附图和实施例或现有技术的描述对本发明作简单地介绍,显而易见地,下面关于附图结构的描述仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在此需要说明的是,对于这些实施例方式的说明用于帮助理解本发明,但并不构成对本发明的限定。
实施例:
如图1-图10所示,本实施例提供了一种小型化MT光纤连接器及适配器组件,包括小型化MT光纤连接器及连接小型化MT光纤连接器和普通多芯插芯MPO连接器6的适配器本体4,小所述适配器本体4的一端为与普通多芯插芯MPO连接器6耦合对接的前端连接部41,适配器本体4的另一端为与小型化MT光纤连接器耦合对接的后端连接部42,适配器本体4内部设置有连通前端连接部41和后端连接部42的容纳腔43,普通多芯插芯MPO连接器6的一端和小型化MT光纤连接器的一端均设置于容纳腔43内,实现普通多芯插芯MPO连接器6和小型化MT光纤连接器的对接,并且在适配器本体4的作用下保证普通多芯插芯MPO连接器6和小型化MT光纤连接器的稳定连接,具体的,所述前端连接部41包括位于容纳腔43上侧的上悬臂411和位于容纳腔43下侧的下悬臂412,前端连接部41通过上悬臂411和下悬臂412与普通多芯插芯MPO连接器6实现连接,其中,所述上悬臂411与下悬臂412在前端连接部41区域的厚度方向形成左让位缺口413与右让位缺口414,这样不仅仅可以保证前端连接部41与普通多芯插芯MPO连接器6的稳定连接,而且在适配器本身的材质不变,仍与现有技术相同的采用塑料材质的情况下,本申请利用左让位缺口413与右让位缺口414减少了现有适配器(如图12所示)前端的两个侧壁,进而减少了塑料的使用,可以使得整个前端连接部41的尺寸更小,其中减少的塑料部分在实际中因为外部会有金属材质的模块结构进行电磁屏蔽,因此也不必担心有电磁泄漏的问题。
所述小型化MT光纤连接器包括多芯插芯1、连接器外壳3和两个准直PIN2,连接器外壳3上设置有至少一个悬臂梁31,悬臂梁31上设置有与后端连接部42配合连接的向外凸起 311,进而达到快速装卸的目的,这样在大部分使用场合,就可以方便实现自由的解耦;所述连接器外壳3上开设有连通其内腔和外部的后装槽34,多芯插芯1连接的光纤可以通过后装槽34进入连接器外壳3的内腔中,此处可以实现多芯插芯1与连接器外壳3的装配顺序的灵活应用,可以实现在制作多芯插芯与光纤组合前与连接器外壳装配,也可以实现多芯插芯与光纤组合后再与连接器外壳装配,连接方便;所述后装槽34内设置有容纳准直PIN2的台阶槽32,两个准直PIN2均安装于多芯插芯1上并连接于台阶槽32中,形成准直PIN的安装与固定结构,连接方便,且可以保证结构的稳定,进而对多芯插芯1形成限位,更加方便多芯插芯1的安装,两个准直PIN2均安装于多芯插芯1上,完成基本的使用结构,且准直PIN2的尾部卡接于台阶槽32内,通过台阶槽32对准直PIN2形成限位,进而保证准直PIN2的稳定性,使得小型化MT光纤连接器的结构简单,与如图13、图14和图15所展示的现有技术相比,在长度方向和宽度方向上均减小了尺寸,进而达到了应用多芯插芯的模块集成化、小型化的设计要求。
本发明通过适配器本体4的前端连接部41和后端连接部42连接小型化MT光纤连接器和普通多芯插芯MPO连接器6,普通多芯插芯MPO连接器6的一端和小型化MT光纤连接器的一端均设置于容纳腔43内,实现普通多芯插芯MPO连接器6和小型化MT光纤连接器的对接,并且在适配器本体4的作用下保证普通多芯插芯MPO连接器6和小型化MT光纤连接器的稳定连接,具体的,前端连接部41通过上悬臂411和下悬臂412与普通多芯插芯MPO连接器6实现连接,上悬臂411与下悬臂412在前端连接部41区域的厚度方向形成左让位缺口413与右让位缺口414,这样不仅仅可以保证前端连接部41与普通多芯插芯MPO连接器6的稳定连接,而且在适配器本身的材质不变,仍与现有技术相同的采用塑料材质的情况下,利用左让位缺口413与右让位缺口414减少了现有适配器前端的两个侧壁,进而减少了塑料的使用,可以使得整个前端连接部41的尺寸更小,其中减少的塑料部分在实际中因为外部会有金属材质的模块结构进行电磁屏蔽,因此也不必担心有电磁泄漏的问题。
本发明在连接器外壳3上设置有至少一个悬臂梁31,悬臂梁31上设置有向外凸起311,向外凸起311方便与适配器卡接,进而达到快速装卸的目的,这样在大部分使用场合,就可以方便实现自由的解耦;连接器外壳3上开设有连通其内腔和外部的后装槽34,多芯插芯1连接的光纤可以通过后装槽34进入连接器外壳3的内腔中,此处可以实现多芯插芯1与连接 器外壳3的装配顺序的灵活应用,可以实现在制作多芯插芯与光纤组合前与连接器外壳装配,也可以实现多芯插芯与光纤组合后再与连接器外壳装配,连接方便;后装槽34内设置有容纳准直PIN2的台阶槽32,两个准直PIN2均安装于多芯插芯1上并连接于台阶槽32中,形成准直PIN的安装与固定结构,连接方便,且可以保证结构的稳定,进而对多芯插芯1形成限位,更加方便多芯插芯1的安装,两个准直PIN2均安装于多芯插芯1上,完成基本的使用结构,且准直PIN2的尾部卡接于台阶槽32内,通过台阶槽32对准直PIN2形成限位,进而保证准直PIN2的稳定性,使得小型化MT光纤连接器的结构简单,在长度方向和宽度方向上均减小了尺寸,进而达到了应用多芯插芯的模块集成化、小型化的设计要求。
作为本实施例中一种优选的实施方案,需要进一步说明的是,所述准直PIN2为圆柱体结构,且准直PIN2的尾部设置有环形凹槽21,所述台阶槽32内设置有C型限位凸起33,C型限位凸起33通过其开口处连通后装槽34,C型限位凸起33的开口处的宽度小于C型限位凸起33的内径,台阶槽32内的C型限位凸起33与准直PIN2的环形凹槽21配合卡接,这样可以使得准直PIN2更方便和稳定的卡接在台阶槽32的C型限位凸起33内,且环形凹槽21位置不能从C型限位凸起33的开口处自由脱落出来,且环形凹槽21与C型限位凸起33的内壁间隙配合,准直PIN2相对于连接器外壳3可以晃动。
作为本实施例中一种优选的实施方案,需要进一步说明的是,所述适配器本体4由弹性塑料制成,适配器本体4的材质并未做出改变,连接器外壳3由弹性塑料或弹性金属片制成,进而可以方便的实现准直PIN2尾部环形凹槽21位置与C型限位凸起33之间的卡接,且可以保证卡接时的稳定性。
作为本实施例中一种优选的实施方案,需要进一步说明的是,所述多芯插芯1上设置有两个相互平行的准直孔11,两个准直PIN2各匹配的安装于一个准直孔11内,可以轻松快捷的实现两个准直PIN2与多芯插芯1的配合安装。
作为本实施例中一种优选的实施方案,需要进一步说明的是,所述悬臂梁31在连接器外壳3的高度方向至少部分下沉于连接器外壳3并且相对于连接器外壳3部分悬空设置,悬梁臂31一端与连接器外壳3相连,以及悬臂梁31上设置有向外凸起311,这样可以使得悬臂梁31的悬空部位可以产生一定的弯曲变形效果,进而利用悬臂梁31上的向外凸起311与适配器4 配合卡接;所述连接器外壳3上侧和/或下侧设置有与悬臂梁31对应的侧凹槽35,悬臂梁31设置于对应的侧凹槽35内;所述侧凹槽35尺寸大于下沉于侧凹槽35内部的所述悬梁臂31部分,且侧凹槽35与所述悬臂梁31左右两侧具有可活动的间隙;所述侧凹槽35的底部与悬臂梁31具有弹性变形间隙,此弹性变形间隙的高度大于向外凸起311的高度,保证向外凸起311具有足够的弹性空间,在与适配器4配合连接时,允许悬臂梁31发生一定的变形,以使得向外凸起311快速与适配器4配合卡接。
作为一种优选的实施方案,需要进一步说明的是,所述连接器外壳3和两个准直PIN2可以一体成型,提供一种精度要求不高的准直PIN2,但是却可以提高设备的设计成本和组装效率。
作为本实施例中一种优选的实施方案,需要进一步说明的是,所述左让位缺口413与右让位缺口414均连通容纳腔43且使得容纳腔43贯穿前端连接部41的厚度方向,左让位缺口413与右让位缺口414贯穿整个前端连接部41的上侧面与下侧面,使适配器本体4左右方向的宽度比较小,在安装模块时,模块上会设计与左让位缺口413相对应的左侧凸起513和与右让位缺口414相对应的右侧凸起514,如图6所示,左侧凸起513与左让位缺口413配合,使模块设置的左侧凸起513结构通过左让位缺口413进入容纳腔43左侧,右侧凸起514与右让位缺口414配合,使模块设置的右侧凸起514结构通过右让位缺口414进入容纳腔43右侧,上悬臂411、下悬臂412、模块的左侧凸起513与模块的右侧凸起514从上下左右四个方向上,形成一个可以对普通多芯插芯MPO连接器6四个面限位的通道。
作为本实施例中一种优选的实施方案,需要进一步说明的是,所述上悬臂411的前端和下悬臂412的前端均设置有卡扣415,两个卡扣415与普通多芯插芯MPO连接器6的机械闩锁61配合卡接,配合连接的方式简单,稳定性好。
作为本实施例中一种优选的实施方案,需要进一步说明的是,所述后端连接部42设置有至少一个限位窗口421,限位窗口421与向外凸起311配合卡接,使得连接方式简单,稳定性好,而且这种连接方式不需要复杂的结构,进而使得尺寸大小更加容易控制。进一步优选的,所述限位窗口421内远离普通多芯插芯MPO连接器6的一面为竖直止位面4244,在竖直止位面4244,向外凸起102与限位窗口421的接触为面接触,可以保证向外凸起102在限位 窗口421内的稳定性,也就是保证小型化MT光纤连接器与适配器本体4的稳定连接。
作为本实施例中一种优选的实施方案,需要进一步说明的是,所述限位窗口421设置于后端连接部42上端和/或下端当设置有一个限位窗口421时,该限位窗口421可以是位于上端或下端,当设置有两个限位窗口421时,两个限位窗口421可以分别位于上端和下端,设计灵活性强,所述后端连接部42的一个内侧壁上设置有方向键凸台422,后装槽34的一侧与方向键凸台422滑动连接,这样可以做到防呆设计,保证小型化MT光纤连接器内的纤序与适配器本体4内的纤序正确对接,只有在方向键凸台422与后装槽34的一侧对准时小型化MT光纤连接器内的纤序才可以与适配器本体4正确插接,否则,不能插入。
作为本实施例中一种优选的实施方案,需要进一步说明的是,所述后端连接部42上端的内壁上和/或后端连接部42下端的内壁上设置有避让滑槽423,用于与小型化MT光纤连接器滑动连接,通过一个或者两个避让滑槽423与弹性悬臂梁101配合,可以使得小型化MT光纤连接器的安装更加稳定,并对小型化MT光纤连接器起到限位作用。
实施例二:
如图12所示:本实施例在实施例一的技术方案基础上,还提供了另一种小型化MT光纤连接器,其与实施例一所述小型化MT光纤连接器的不同之处在于:与所述小型化MT光纤连接器对偶的另一个光纤连接器也是同样的小型化MT光纤连接器时,只需要对应优化适配器结构,使适配的两端分别设置与小型化MT光纤连接器配合对接的适配器窗口421,两端的适配器窗口421内靠近连接器外壳3尾部的一端分别设置有能够阻止向外凸起311脱开的竖直止位面424,防止向外凸起311从适配器窗口421退出,而两个连接器外壳3与适配器本体4两端的适配器窗口421配套设置,可以使得两个小型化MT光纤连接器组成一对传输光的节点或者系统。
实施例三:
如图12所示:本实施例在实施例二的技术方案基础上,还提供了另一种小型化MT光纤连接器,其与实施例二所述小型化MT光纤连接器的不同之处在于:为了使两个小型化MT光纤连接器对接端面具有一定的预紧力,可以在其中一个小型化MT光纤连接器的多芯插芯与连接器外壳直接设置弹性装置,只需要对应优化适配器结构,使适配的两端分别设置与小型化MT 光纤连接器配合对接的适配器窗口421,两端的适配器窗口421内靠近连接器外壳3尾部的一端分别设置有能够阻止向外凸起311脱开的竖直止位面424,防止向外凸起311从适配器窗口421退出,而两个连接器外壳3与适配器本体4两端的适配器窗口421配套设置,可以使得两个小型化MT光纤连接器组成一对传输光的节点或者系统;并且在两个插芯端面获得了一定的预紧力,使连接器对接更可靠与稳定。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。例如本发明的技思路及技术方案可以应用在目前所有光纤连接器及未来类型的光纤连接器以及相关的光电混合连接器及适配器中,例如LC型、SC型、ST型、FC型、MPO型和MT型等光纤连接器及适配器类型中。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种小型化MT光纤连接器及适配器组件,包括小型化MT光纤连接器及连接小型化MT光纤连接器和普通多芯插芯MPO连接器(6)的适配器本体(4),其特征在于,所述适配器本体(4)的一端为与普通多芯插芯MPO连接器(6)耦合对接的前端连接部(41),适配器本体(4)的另一端为与小型化MT光纤连接器耦合对接的后端连接部(42),适配器本体(4)内部设置有连通前端连接部(41)和后端连接部(42)的容纳腔(43);所述前端连接部(41)包括位于容纳腔(43)上侧的上悬臂(411)和位于容纳腔(43)下侧的下悬臂(412),其中,所述上悬臂(411)与下悬臂(412)在前端连接部(41)区域的厚度方向形成左让位缺口(413)与右让位缺口(414);
    所述小型化MT光纤连接器包括多芯插芯(1)、连接器外壳(3)和两个准直PIN(2),连接器外壳(3)上设置有至少一个悬臂梁(31),悬臂梁(31)上设置有与后端连接部(42)配合连接的向外凸起(311);所述连接器外壳(3)上开设有连通其内腔和外部的后装槽(34);所述后装槽(34)内设置有容纳准直PIN(2)的台阶槽(32),两个准直PIN(2)均安装于多芯插芯(1)上并连接于台阶槽(32)中。
  2. 根据权利要求1所述的一种小型化MT光纤连接器及适配器组件,其特征在于,所述准直PIN(2)为圆柱体结构,且准直PIN(2)的尾部设置有环形凹槽(21),所述台阶槽(32)内设置有C型限位凸起(33),C型限位凸起(33)通过其开口处连通后装槽(34),C型限位凸起(33)的开口处的宽度小于C型限位凸起(33)的内径,台阶槽(32)内的C型限位凸起(33)与准直PIN(2)的环形凹槽(21)配合卡接,且环形凹槽(21)与C型限位凸起(33)的内壁间隙配合。
  3. 根据权利要求1所述的一种小型化MT光纤连接器及适配器组件,其特征在于,所述适配器本体(4)由弹性塑料制成,连接器外壳(3)由弹性塑料或弹性金属片制成。
  4. 根据权利要求1所述的一种小型化MT光纤连接器及适配器组件,其特征在于,所述多芯插芯(1)上设置有两个相互平行的准直孔(11),两个准直PIN(2)各匹配的安装于一个准直孔(11)内。
  5. 根据权利要求1所述的一种小型化MT光纤连接器及适配器组件,其特征在于,所述悬臂梁(31)在连接器外壳(3)的高度方向至少部分下沉于连接器外壳(3)并且相对于连接器 外壳(3)部分悬空设置;所述连接器外壳(3)上侧和/或下侧设置有与悬臂梁(31)对应的侧凹槽(35),悬臂梁(31)设置于对应的侧凹槽(35)内;所述侧凹槽(35)尺寸大于下沉于侧凹槽(35)内部的所述悬梁臂(31)部分,且侧凹槽(35)与所述悬臂梁(31)左右两侧具有可活动的间隙;所述侧凹槽(35)的底部与悬臂梁(31)具有弹性变形间隙,此弹性变形间隙的高度大于向外凸起(311)的高度。
  6. 根据权利要求1所述的一种小型化MT光纤连接器及适配器组件,其特征在于,所述左让位缺口(413)与右让位缺口(414)均连通容纳腔(43)且使得容纳腔(43)贯穿前端连接部(41)的厚度方向,左让位缺口(413)与右让位缺口(414)贯穿整个前端连接部(41)的上侧面与下侧面,使适配器本体(4)左右方向的宽度比较小。
  7. 根据权利要求1所述的一种小型化MT光纤连接器及适配器组件,其特征在于,所述上悬臂(411)的前端和下悬臂(412)的前端均设置有卡扣(415),两个卡扣(415)与普通多芯插芯MPO连接器(6)的机械闩锁(61)配合卡接。
  8. 根据权利要求1或7所述的一种小型化MT光纤连接器及适配器组件,其特征在于,所述后端连接部(42)设置有至少一个限位窗口(421),限位窗口(421)与向外凸起(311)配合卡接。
  9. 根据权利要求8所述的一种小型化MT光纤连接器及适配器组件,其特征在于,所述限位窗口(421)设置于后端连接部(42)上端和/或下端,所述后端连接部(42)的一个内侧壁上设置有方向键凸台(422),后装槽(34)的一侧与方向键凸台(422)滑动连接。
  10. 根据权利要求8所述的一种小型化MT光纤连接器及适配器组件,其特征在于,所述后端连接部(42)上端的内壁上和/或后端连接部(42)下端的内壁上设置有避让滑槽(423)。
PCT/CN2023/093615 2022-11-09 2023-05-11 一种小型化mt光纤连接器及适配器组件 WO2024098704A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211401389.1A CN115857112A (zh) 2022-11-09 2022-11-09 一种小型化mt光纤连接器及适配器组件
CN202211401389.1 2022-11-09

Publications (1)

Publication Number Publication Date
WO2024098704A1 true WO2024098704A1 (zh) 2024-05-16

Family

ID=85662906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093615 WO2024098704A1 (zh) 2022-11-09 2023-05-11 一种小型化mt光纤连接器及适配器组件

Country Status (2)

Country Link
CN (1) CN115857112A (zh)
WO (1) WO2024098704A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115857112A (zh) * 2022-11-09 2023-03-28 武汉邮埃服光电科技有限公司 一种小型化mt光纤连接器及适配器组件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615123A (zh) * 2015-05-29 2018-01-19 扇港元器件有限公司 具有可改变阴阳构型的光学纤维连接器
CN111239919A (zh) * 2014-06-09 2020-06-05 扇港元器件有限公司 减小轮廓的连接组件
CN113467002A (zh) * 2021-07-01 2021-10-01 博创科技股份有限公司 一种光模块结构中的mt插芯的高容差固定结构
US11353664B1 (en) * 2019-08-21 2022-06-07 Senko Advanced Components, Inc. Fiber optic connector
CN114779414A (zh) * 2022-05-13 2022-07-22 青岛海信宽带多媒体技术有限公司 光模块
CN218332062U (zh) * 2022-11-09 2023-01-17 武汉邮埃服光电科技有限公司 一种小型化mt光纤连接器
CN218446081U (zh) * 2022-11-09 2023-02-03 武汉邮埃服光电科技有限公司 一种小型化mt转mpo光纤适配器
CN115857112A (zh) * 2022-11-09 2023-03-28 武汉邮埃服光电科技有限公司 一种小型化mt光纤连接器及适配器组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111239919A (zh) * 2014-06-09 2020-06-05 扇港元器件有限公司 减小轮廓的连接组件
CN107615123A (zh) * 2015-05-29 2018-01-19 扇港元器件有限公司 具有可改变阴阳构型的光学纤维连接器
US11353664B1 (en) * 2019-08-21 2022-06-07 Senko Advanced Components, Inc. Fiber optic connector
CN113467002A (zh) * 2021-07-01 2021-10-01 博创科技股份有限公司 一种光模块结构中的mt插芯的高容差固定结构
CN114779414A (zh) * 2022-05-13 2022-07-22 青岛海信宽带多媒体技术有限公司 光模块
CN218332062U (zh) * 2022-11-09 2023-01-17 武汉邮埃服光电科技有限公司 一种小型化mt光纤连接器
CN218446081U (zh) * 2022-11-09 2023-02-03 武汉邮埃服光电科技有限公司 一种小型化mt转mpo光纤适配器
CN115857112A (zh) * 2022-11-09 2023-03-28 武汉邮埃服光电科技有限公司 一种小型化mt光纤连接器及适配器组件

Also Published As

Publication number Publication date
CN115857112A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
US10690870B2 (en) Optical communication assemblies
EP2548062B1 (en) Fiber optic interface devices for electronic devices
US11579373B2 (en) Optical fiber micro connector and connector assembly
US8641293B2 (en) Optical fiber connector and apparatus of facilitating to pull out optical fiber connector
US5076656A (en) High precision optical fiber connectors
US8821031B2 (en) Optical fiber adapter with shutter member
US11592626B2 (en) Fiber optic connector with boot-integrated release and related assemblies
AU2017421290A1 (en) Multifiber fiber optic connectors, cable assemblies and methods of making the same
US20240085637A1 (en) Fiber optic connector and its assembly
JPH087303B2 (ja) 光ファイバ・コネクタ・ハウジング装置及び光アセンブリ
WO2024098704A1 (zh) 一种小型化mt光纤连接器及适配器组件
TW201400901A (zh) 具有轉換元件之光連接器和光耦合系統
CN113109905A (zh) 一种光电适配器及通信系统
US20130011103A1 (en) Optoelectronic connector having improved optical module
EP3948376A1 (en) Fiber optic adapter holder; assembly; and method
CN218332062U (zh) 一种小型化mt光纤连接器
CN218446081U (zh) 一种小型化mt转mpo光纤适配器
CN105676372A (zh) 一种光纤连接头的转接连接器
WO2021114358A1 (zh) 连接器和连接器的组装方法
CN216817011U (zh) 一种mpo卡口适配器及光模块
WO2022120759A1 (zh) 一种线缆适配器
CN211554383U (zh) 一种插拨式光滤波器
JP4477218B2 (ja) 多心光コネクタ
US20240069295A1 (en) Optical transceiver including connector coupler with elastic holding arm for holding connector
CN214954226U (zh) 用于光纤布线系统的光纤耦合器