WO2024098497A1 - 智能连接线 - Google Patents

智能连接线 Download PDF

Info

Publication number
WO2024098497A1
WO2024098497A1 PCT/CN2022/138087 CN2022138087W WO2024098497A1 WO 2024098497 A1 WO2024098497 A1 WO 2024098497A1 CN 2022138087 W CN2022138087 W CN 2022138087W WO 2024098497 A1 WO2024098497 A1 WO 2024098497A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch unit
serial communication
communication interface
control
capacitor
Prior art date
Application number
PCT/CN2022/138087
Other languages
English (en)
French (fr)
Inventor
童志国
黄俊威
路延
马许愿
Original Assignee
澳门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 澳门大学 filed Critical 澳门大学
Publication of WO2024098497A1 publication Critical patent/WO2024098497A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/06Intermediate parts for linking two coupling parts, e.g. adapter
    • H01R31/065Intermediate parts for linking two coupling parts, e.g. adapter with built-in electric apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit

Definitions

  • the present application relates to the field of integrated circuit technology, and in particular to a smart connecting line.
  • the device side of the electronic device must be equipped with a corresponding step-down chip to match the power supply voltage of the device.
  • the conversion efficiency will inevitably increase the dissipated power, which will increase the heat dissipation performance of the electronic device and increase the cost and volume of the electronic device.
  • the purpose of the present application is to provide an intelligent connecting line to address the deficiencies in the above-mentioned related technologies, which can reduce the voltage reduction requirements for electronic devices and reduce the cost and volume of electronic devices.
  • An embodiment of the present application provides a smart connection line, comprising: a first serial communication interface, a first active adapter board, a transmission cable, a second active adapter board, and a second serial communication interface; wherein the first active adapter board and the second active adapter board are two adapter boards with a step-down function that are mirror-set;
  • the first serial communication interface is connected to the first active adapter board, the first active adapter board is connected to the second active adapter board through the transmission cable, and the second active adapter board is connected to the second serial communication interface.
  • a first buck module and a first control module are provided on the first active adapter board, and a second buck module and a second control module are provided on the second active adapter board;
  • the first control module is connected to the first serial communication interface to detect a first electrical signal of the first serial communication interface, and the first control module is also connected to the first step-down module to control the first step-down module based on the first electrical signal;
  • the second control module is connected to the second serial communication interface to detect a second electrical signal of the second serial communication interface, and the second control module is also connected to the second step-down module to control the second step-down module based on the second electrical signal.
  • the second control module determines whether the second serial communication interface is a power input terminal or a power output terminal based on the second electrical signal.
  • the second control module controls the second step-down module to perform a step-down operation that matches the power input terminal; when the second serial communication interface is the power output terminal, the second control module controls the second step-down module to perform a step-down operation that matches the power output terminal.
  • the first active adapter board is further provided with: a first capacitor
  • the second active adapter board is further provided with: a second capacitor
  • the first capacitor is connected to both ends of the first serial communication interface; the second capacitor is connected to both ends of the second serial communication interface.
  • the first capacitor and the second capacitor realize either sharing of input voltage or voltage stabilization and filtering.
  • the first step-down module includes: a first switch unit and a second switch unit
  • the second step-down module includes: a third switch unit and a fourth switch unit
  • the first switch unit and the second switch unit are connected in series at two ends of the first serial communication interface, two ends of the second switch unit are connected to two first connection terminals of the transmission cable, and the first control module is connected to the control ends of the first switch unit and the second switch unit;
  • the third switch unit and the fourth switch unit are connected in series at both ends of the second serial communication interface, the two ends of the third switch unit are connected to the two second connection terminals of the transmission cable, and the second control module connects the control ends of the third switch unit and the fourth switch unit.
  • the third switch unit is controlled by the second control module to be in a normally open state, and the fourth switch unit is in a normally closed state, and the first control module is used to control the first switch unit and the second switch unit to be alternately opened, and the transmission cable acts as a passive inductor element.
  • the first step-down module includes: a first switch unit, a second switch unit, a third switch unit, a fourth switch unit and a third capacitor;
  • the second step-down module includes: a fifth switch unit, a sixth switch unit, a seventh switch unit, an eighth switch unit and a fourth capacitor;
  • the first switch unit, the second switch unit, the third switch unit, and the fourth switch unit are sequentially connected in series to connect the two first terminals of the transmission cable, and the first switch unit and the second switch unit are connected in series to the two ends of the first serial communication interface;
  • the third capacitor is connected between the first series connection point and the second series connection point, the first series connection point is the series connection point of the first switch unit and the second switch unit, and the second series connection point is the series connection point of the third switch unit and the fourth switch unit;
  • the first control module is connected to the control ends of the first switch unit, the second switch unit, the third switch unit, and the fourth switch unit;
  • the fifth switch unit, the sixth switch unit, the seventh switch unit and the eighth switch unit are connected in series in sequence to connect the two second connection terminals of the transmission cable, and the seventh switch unit and the eighth switch unit are connected in series to the two ends of the second serial communication interface;
  • the fourth capacitor is connected between the third series connection point and the fourth series connection point, the third series connection point is the series connection point of the fifth switch unit and the sixth switch unit, and the fourth series connection point is the series connection point of the seventh switch unit and the eighth switch unit;
  • the second control module is connected to the control ends of the fifth switch unit, the sixth switch unit, the seventh switch unit and the eighth switch unit.
  • the seventh switch unit and the eighth switch unit are controlled by the second control module to be in a normally open state, and the fifth switch unit and the sixth switch unit are in a normally closed state, and the first control module controls the first switch unit, the second switch unit, the third switch unit, and the fourth switch unit to be opened alternately, and the transmission cable acts as a passive inductor element.
  • the first step-down module includes: a first switch unit, a second switch unit, a third switch unit and a third capacitor;
  • the second step-down module includes: a fourth switch unit, a fifth switch unit, a sixth switch unit and a fourth capacitor;
  • two ends of the third capacitor and the third switch unit connected in series are respectively connected to two first terminals of the transmission cable, one end of the first serial communication interface is connected to one end of the third capacitor through the first switch unit, and one end of the first serial communication interface is also connected to the other end of the third capacitor through the second switch unit;
  • the first control module is connected to the control ends of the first switch unit, the second switch unit and the third switch unit;
  • the two ends of the fourth capacitor and the fourth switch unit connected in series are respectively connected to the two second connection terminals of the transmission cable, one end of the second serial communication interface is connected to one end of the fourth capacitor through the fifth switch unit, and one end of the second serial communication interface is also connected to the other end of the fourth capacitor through the sixth switch unit; the second control module is connected to the control ends of the fourth switch unit, the fifth switch unit and the sixth switch unit.
  • the first control module controls the first switch unit to be in a normally closed state, and the second switch unit and the third switch unit to be in a normally open state, and the second control module controls the fourth switch unit, the fifth switch unit, and the sixth switch unit to be opened alternately, and the transmission cable acts as a passive inductor element.
  • the first step-down module is an integrated step-down chip, or a step-down module composed of discrete components
  • the second step-down module is an integrated step-down module, or a step-down module composed of discrete components.
  • the first capacitor is arranged on a chip where the first step-down module is located, or outside the chip where the first step-down module is located;
  • the second capacitor is arranged on the chip where the second voltage-reducing module is located, or is arranged outside the chip where the second voltage-reducing module is located.
  • the first control module includes: a first control unit and a first level converter, the first control unit is connected to the first serial communication interface to generate a first digital control signal based on the first electrical signal; the first control unit is also connected to the first level converter to generate a first level control signal based on the first digital control signal, and the first level converter is also connected to the first step-down module to control the first step-down module based on the first level control signal;
  • the second control module includes: a second control unit and a second level converter, the second control unit is connected to the second serial communication interface to generate a second digital control signal based on the second electrical signal; the second control unit is also connected to the second level converter to generate a second level control signal based on the second digital control signal, and the second level converter is also connected to the first step-down module to control the second step-down module based on the second level control signal.
  • the first serial communication interface and the second serial communication interface are serial communication interfaces of the same type, or serial communication interfaces of different types.
  • the first active adapter board and the second active adapter board are both active printed circuit boards.
  • An intelligent connection line may include: a first serial communication interface, a first active adapter board, a transmission cable, a second active adapter board and a second serial communication interface, wherein the first serial communication interface and the second serial communication interface are respectively connected to the first active adapter board and the second active adapter board, and the first active adapter board is connected to the second active adapter board through the transmission cable, wherein the first active adapter board and the second active adapter board are respectively two adapter boards with a step-down function set in mirror image.
  • the step-down function is realized outside the electronic device, so that the step-down function module is not required to be set in the electronic device, the volume and cost of the electronic device are reduced, and the power dissipation of the electronic device during the charging process is reduced, and the charging heat dissipation of the electronic device is reduced;
  • the transmission cable can be used as a passive inductor element of the first active adapter board and the second active adapter board, and the voltage domain conversion is realized while the energy is transmitted, reducing the number of passive elements required in the power conversion process and the required volume.
  • FIG1 shows a schematic structural diagram of a smart connecting line provided in an embodiment of the present application
  • FIG2 shows a second structural schematic diagram of a smart connecting line provided in an embodiment of the present application
  • FIG3 shows a third structural diagram of a smart connecting line provided in an embodiment of the present application.
  • FIG4 shows a schematic diagram of an equivalent circuit of a smart connecting line provided in an embodiment of the present application
  • FIG5 shows a fourth structural diagram of a smart connecting line provided in an embodiment of the present application.
  • FIG6 shows a second schematic diagram of an equivalent circuit of a smart connecting line provided in an embodiment of the present application.
  • FIG. 7 shows a fifth structural diagram of a smart connecting line provided in an embodiment of the present application.
  • FIG8 shows a third equivalent circuit diagram of a smart connecting line provided in an embodiment of the present application.
  • FIG. 9 shows a sixth structural diagram of a smart connecting line provided in an embodiment of the present application.
  • 10-first serial communication interface 11-first active adapter board; 12-transmission cable; 13-second active adapter board; 14-second serial communication interface; 111-first step-down module; 112-first control module; 131-second step-down module; 132-second control module; 1121-first control unit; 1122-first level converter; 1321-second control unit; 1322-second level converter; C1-first capacitor; C2-second capacitor; C3-third capacitor; C4-fourth capacitor; S1-first switch unit; S2-second switch unit; S3-third switch unit; S4-fourth switch unit; S5-fifth switch unit; S6-sixth switch unit; S7-seventh switch unit; S8-eighth switch unit.
  • the embodiment of the present application relates to a smart cable.
  • the smart cable may also be referred to as a smart cable, an active cable, an active cable, or a smart charging cable, etc.
  • the module with the step-down function can be migrated from the electronic device and set in the smart cable, and the adapter board with the step-down function is embedded in the smart cable to achieve the step-down through the smart cable, so that the electronic device does not need to be provided with a step-down chip or module, thereby reducing the cost, volume and weight of the electronic device.
  • the above-mentioned electronic device may be, for example: a mobile phone, a tablet computer and other electronic devices that require data line energy transmission.
  • Fig. 1 is a schematic diagram of the structure of a smart cable provided in an embodiment of the present application.
  • the smart cable may include: a first serial communication interface 10, a first active adapter board 11, a transmission cable 12, a second active adapter board 13, and a second serial communication interface 14.
  • the first active adapter board 11 and the second active adapter board 13 may be two adapter boards with a step-down function that are mirror-imaged.
  • the first serial communication interface 10 is connected to the first active adapter board 11 , the first active adapter board 11 is connected to the second active adapter board 13 via a transmission cable 12 , and the second active adapter board 13 is connected to the second serial communication interface 14 .
  • the first serial communication interface 10 and the second serial communication interface 14 can be Universal Serial Bus (USB) interfaces, which can be used to connect the serial communication interface and charging power supply of the electronic device respectively.
  • the first serial communication interface 10 and the second serial communication interface 14 can be the same type of serial communication interface, or different types of serial communication interfaces.
  • the first serial communication interface can be any type of USB interface such as USB type-A, USB type-B, USB type-C, etc.
  • the second serial communication interface can be any type of USB interface such as USB type-A, USB type-B, USB type-C, etc.
  • the first active adapter board 11 and the second active adapter board 13 can both be active printed circuit boards (PCBs), which can be adapter boards with a step-down function implemented using PCBs.
  • the first active adapter board 11 and the second active adapter board 13 are two circuit boards with the same structure that are mirror-imaged. Since the first active adapter board 11 and the second active adapter board 13 are respectively connected to the transmission cable 12, the transmission cable 12 is equivalent to a passive inductor element, also known as a magnetic element, for the first active adapter board 11 and the second active adapter board 13, which can achieve voltage domain conversion while transmitting energy.
  • the smart connection cable can realize power transmission.
  • the smart connection line provided in the embodiment of the present application may include: a first serial communication interface, a first active adapter board, a transmission cable, a second active adapter board and a second serial communication interface, wherein the first serial communication interface and the second serial communication interface are respectively connected to the first active adapter board and the second active adapter board, and the first active adapter board is connected to the second active adapter board through the transmission cable, wherein the first active adapter board and the second active adapter board are respectively two adapter boards with a step-down function set in mirror image.
  • the step-down function is realized outside the electronic device, so that the step-down function module does not need to be set in the electronic device, the volume and cost of the electronic device are reduced, and the power dissipation of the electronic device during the charging process is reduced, and the charging heat dissipation of the electronic device is reduced;
  • the transmission cable can be used as a passive inductor element of the first active adapter board and the second active adapter board, and the voltage domain conversion is realized while the energy is transmitted, reducing the number of passive elements required in the power conversion process and the required volume.
  • FIG2 is a second schematic diagram of the structure of a smart connection line provided in the embodiment of the present application.
  • the first active adapter board 11 is provided with a first buck module 111 and a first control module 112
  • the second active adapter board 13 is provided with a second buck module 131 and a second control module 132.
  • the first control module 112 is connected to the first serial communication interface 10 to detect the first electrical signal of the first serial communication interface 10, and the first control module 112 is also connected to the first step-down module 111 to control the first step-down module 111 based on the first electrical signal;
  • the second control module 132 is connected to the second serial communication interface 14 to detect the second electrical signal of the second serial communication interface 14, and the second control module 132 is also connected to the second step-down module 131 to control the second step-down module 131 based on the second electrical signal.
  • the two ends of the first step-down module 111 are respectively connected to the first serial communication interface 10 and the transmission cable 12, the input end of the first control module 112 is connected to the first serial communication interface 10 to detect the first electrical signal of the first serial communication interface 10, and the output end of the first control module 112 is connected to the control end of the first step-down module 111.
  • the first control module 112 can determine whether the first serial communication interface 10 is a power input end or a power output end according to the first electrical signal. If the first serial communication interface 10 is a power input end, the first control module 112 controls the first step-down module 111 to perform a step-down operation matching the power input end. If the first serial communication interface 10 is a power output end, the first control module 112 controls the first step-down module 111 to perform a step-down operation matching the power output end.
  • two ends of the second step-down module 131 are connected to the second serial communication interface 14 and the transmission cable 12, respectively.
  • the input end of the second control module 132 is connected to the second serial communication interface 14 to detect the second electrical signal of the second serial communication interface 14, and the output end of the second control module 132 is connected to the control end of the second step-down module 131.
  • the second control module 132 can determine whether the second serial communication interface 14 is a power input end or a power output end according to the second electrical signal. If the second serial communication interface 14 is a power input end, the second control module 132 controls the second step-down module 131 to perform a step-down operation matched with the power input end. If the second serial communication interface 14 is a power output end, the second control module 132 controls the second step-down module 131 to perform a step-down operation matched with the power output end.
  • the first step-down module and the first control module cooperate with each other, and the second step-down module and the second control module cooperate with each other, so that the first active adapter board and the second active adapter board are connected to the transmission cable to realize the step-down conversion during the power transmission process.
  • the active adapter board provided in this embodiment is realized by the cooperation of the step-down module and the control module, and realizes the active voltage conversion function, without the need for an additional control module, and avoids the excessive size of the smart connection line.
  • the first active adapter board 11 is further provided with a first capacitor C1
  • the second active adapter board 13 is further provided with a second capacitor C2.
  • the first capacitor C1 is connected to both ends of the first serial communication interface 10
  • the second capacitor C2 is connected to both ends of the second serial communication interface 14.
  • the first capacitor C1 can share the input voltage
  • the second capacitor C2 can perform the function of voltage stabilization and filtering.
  • the second capacitor C2 can share the input voltage
  • the first capacitor C1 can perform the function of voltage stabilization and filtering.
  • FIG3 is a structural schematic diagram of a smart connection line provided in an embodiment of the present application.
  • the first buck module 111 includes: a first switch unit S1 and a second switch unit S2
  • the second buck module 131 includes: a third switch unit S3 and a fourth switch unit S4.
  • the first switch unit S1 and the second switch unit S2 are connected in series at both ends of the first serial communication interface 10, both ends of the second switch unit S2 are connected to the two first connection terminals of the transmission cable 12, and the first control module 112 connects the control ends of the first switch unit S1 and the second switch unit S2.
  • the third switch unit S3 and the fourth switch unit S4 are connected in series at both ends of the second serial communication interface 14, the two ends of the third switch unit S3 are connected to the two second connection terminals of the transmission cable 12, and the second control module 132 connects the control ends of the third switch unit S3 and the fourth switch unit S4.
  • the first control module 112 can control the on/off state of the first switch unit S1 and the second switch unit S2 in different ways based on whether the first serial communication interface 10 is a power input terminal or a power output terminal.
  • the second control module 132 can control the on/off state of the third switch unit S3 and the fourth switch unit S4 in different ways based on whether the second serial communication interface 14 is a power input terminal or a power output terminal.
  • FIG4 is a schematic diagram of the equivalent circuit of a smart connection line provided in an embodiment of the present application.
  • the third switch unit S3 can be controlled to be in a normally open state and the fourth switch unit S4 can be in a normally closed state by the second control module 132, and the first switch unit S1 and the second switch unit S2 can be controlled to be alternately opened by the first control module 112.
  • the transmission cable 12 can be used as a passive inductor element and acts as a magnetic element in the converter, realizing the step-down conversion of the voltage domain while transmitting energy.
  • the embodiment of the present application further provides a possible implementation method of the structure of a first buck module and a second buck module.
  • Figure 5 is a schematic diagram of the structure of a smart connection line provided in an embodiment of the present application.
  • the first buck module 111 includes: a first switch unit S1, a second switch unit S2, a third switch unit S3, a fourth switch unit S4 and a third capacitor C3, and the second buck module 131 includes: a fifth switch unit S5, a sixth switch unit S6, a seventh switch unit S7, an eighth switch unit S8 and a fourth capacitor C4.
  • the first switch unit S1, the second switch unit S2, the third switch unit S3, and the fourth switch unit S4 are connected in series in sequence to connect the two first connection terminals of the transmission cable 12.
  • the first switch unit S1 and the second switch unit S2 are connected in series to the two ends of the first serial communication interface 10; the third capacitor C3 is connected between the first series connection point and the second series connection point, the first series connection point is the series connection point of the first switch unit S1 and the second switch unit S2, and the second series connection point is the series connection point of the third switch unit S3 and the fourth switch unit S4;
  • the first control module 112 connects the control ends of the first switch unit S1, the second switch unit S2, the third switch unit S3, and the fourth switch unit S4.
  • the seventh switch unit S7 and the eighth switch unit S8 are connected in series in sequence, the two second connection terminals of the transmission cable 12, the seventh switch unit S7 and the eighth switch unit S8 are connected in series and connected to the two ends of the second serial communication interface 14;
  • the fourth capacitor C4 is connected between the third series connection point and the fourth series connection point, the third series connection point is the series connection point of the fifth switch unit S5 and the sixth switch unit S6, and the fourth series connection point is the series connection point of the seventh switch unit S7 and the eighth switch unit S8;
  • the second control module 132 connects the control ends of the fifth switch unit S5, the sixth switch unit S6, the seventh switch unit S7 and the eighth switch unit S8.
  • the first switch unit S1, the second switch unit S2, the third switch unit S3, the fourth switch unit S4 and the third capacitor C3 of the first step-down module 111 are connected in the above-mentioned line to jointly realize the voltage reduction effect of the first step-down module 111
  • the fifth switch unit S5, the sixth switch unit S6, the seventh switch unit S7, the eighth switch unit S8 and the fourth capacitor C4 of the second step-down module 131 are connected in the above-mentioned line to jointly realize the voltage reduction effect of the second step-down module 131.
  • the first serial communication interface 10 is connected in parallel with the first switch unit S1 and the second switch unit S2 connected in series
  • the third capacitor C3 is connected in parallel with the first switch unit S1 and the second switch unit S2 connected in series
  • the first control module 112 controls the first switch unit S1, the second switch unit S2, the third switch unit S3 and the fourth switch unit S4 by connecting the control ends of the first switch unit S1, the second switch unit S2, the third switch unit S3 and the fourth switch unit S4.
  • the second serial communication interface 14 is connected in parallel with the seventh switch unit S7 and the eighth switch unit S8 connected in series
  • the fourth capacitor C4 is connected in parallel with the sixth switch unit S6 and the seventh switch unit S7 connected in series
  • the second control module 132 controls the fifth switch unit S5, the sixth switch unit S6, the seventh switch unit S7 and the eighth switch unit S8 by connecting the control ends of the fifth switch unit S5, the sixth switch unit S6, the seventh switch unit S7 and the eighth switch unit S8.
  • the first switch unit S1, the second switch unit S2, the third switch unit S3 and the fourth switch unit S4 in the first step-down module 111 are turned on alternately, and together with the transmission cable 12, the second capacitor C2 and the fourth capacitor C4 in the second step-down module 131, a step-down conversion is achieved.
  • the fifth switch unit S5, the sixth switch unit S6, the seventh switch unit S7 and the eighth switch unit S8 in the second step-down module 131 are turned on alternately, and together with the transmission cable 12, the first capacitor C1 and the third capacitor C3 in the first step-down module 111, a step-down conversion is achieved.
  • FIG6 is a second equivalent circuit diagram of a smart connection line provided by an embodiment of the present application.
  • the seventh switch unit S7 and the eighth switch unit S8 can be controlled to be in a normally open state
  • the fifth switch unit S5 and the sixth switch unit S6 can be in a normally closed state through the second control module 132
  • the first switch unit S1, the second switch unit S2, the third switch unit S3, and the fourth switch unit S4 can be controlled to be alternately opened through the first control module 112
  • the transmission cable 12 can be used as a passive inductor element, acting as a magnetic element in the converter, and realizing step-down conversion while transmitting energy.
  • FIG. 7 is a structural schematic diagram 5 of a smart connection line provided in an embodiment of the present application.
  • the first buck module 111 includes: a first switch unit S1, a second switch unit S2, a third switch unit S3 and a third capacitor C3;
  • the second buck module 131 includes: a fourth switch unit S4, a fifth switch unit S5, a sixth switch unit S6 and a fourth capacitor C4;
  • the two ends of the third capacitor C3 and the third switch unit S3 connected in series are respectively connected to the two first connection terminals of the transmission cable 12, one end of the first serial communication interface 10 is connected to one end of the third capacitor C3 through the first switch unit S1, and one end of the first serial communication interface 10 is also connected to the other end of the third capacitor C3 through the second switch unit S2; the first control module 112 connects the control ends of the first switch unit S1, the second switch unit S2 and the third switch unit S3.
  • the two ends of the fourth capacitor C4 and the fourth switch unit S4 after being connected in series are respectively connected to the two second connection terminals of the transmission cable 12, one end of the second serial communication interface 14 is connected to one end of the fourth capacitor C4 through the fifth switch unit S5, and one end of the second serial communication interface 14 is also connected to the other end of the fourth capacitor C4 through the sixth switch unit S6; the second control module 132 connects the control ends of the fourth switch unit S4, the fifth switch unit S5 and the sixth switch unit S6.
  • the first switch unit S1, the second switch unit S2, the third switch unit S3 and the third capacitor C3 in the first step-down module 111 jointly realize the voltage reduction effect of the first step-down module 111 through the above-mentioned line connection method
  • the fourth switch unit S4, the fifth switch unit S5, the sixth switch unit S6 and the fourth capacitor C4 in the second step-down module 131 jointly realize the voltage reduction effect of the first step-down module 111 through the above-mentioned line connection method.
  • connection relationship between the transmission cable 12 and the third capacitor C3 and the third switch unit S3 connected in series is a parallel connection
  • the first control module 112 controls the first switch unit S1, the second switch unit S2 and the third switch unit S3 by connecting the control ends of the first switch unit S1, the second switch unit S2 and the third switch unit S3.
  • connection relationship between the transmission cable 12 and the fourth capacitor C4 and the fourth switch unit S4 connected in series is a parallel connection
  • the second control module 132 controls the fourth switch unit S4, the fifth switch unit S5 and the sixth switch unit S6 by connecting the control ends of the fourth switch unit S4, the fifth switch unit S5 and the sixth switch unit S6.
  • the first switch unit S1, the second switch unit S2, and the third switch unit S3 in the first step-down module 111 are turned on alternately, and together with the transmission cable 12, the second capacitor C2 and the fourth capacitor C4 in the second step-down module 131, a step-down conversion is achieved.
  • the fourth switch unit S4, the fifth switch unit S5, and the sixth switch unit S6 in the second step-down module 131 are turned on alternately, and together with the transmission cable 12, the first capacitor C1 and the third capacitor C3 in the first step-down module 111, a step-down conversion is achieved.
  • FIG8 is a schematic diagram of the equivalent circuit of a smart connection line provided in an embodiment of the present application.
  • the first switch unit S1 can be controlled to be in a normally closed state through the first control module 112, and the second switch unit S2 and the third switch unit S3 can be in a normally open state, and the fourth switch unit S4, the fifth switch unit S5, and the sixth switch unit S6 can be controlled to be alternately opened through the second control module 132, and the transmission cable 12 can be used as a passive inductor element, acting as a magnetic element in the converter, and realizing the voltage domain buck conversion while transmitting energy.
  • the embodiment of the present application further provides a possible implementation of a first buck module and a second buck module.
  • the first buck module 111 is an integrated buck chip, or a buck module composed of discrete components
  • the second buck module 131 is an integrated buck module, or a buck module composed of discrete components.
  • the first step-down module may include a step-down chip to achieve the step-down purpose, or may include discrete components that can achieve the step-down function.
  • the second step-down module may include a step-down chip to achieve the step-down purpose, or may include discrete components that can achieve the step-down function.
  • the embodiment of the present application further provides a possible implementation of a first capacitor and a second capacitor.
  • the first capacitor is arranged on the chip where the first buck module 111 is located, or outside the chip where the first buck module 111 is located;
  • the second capacitor is arranged on the chip where the second buck module 131 is located, or outside the chip where the second buck module 131 is located.
  • the chip where the first step-down module is located may include a first capacitor.
  • the first capacitor may be selected in many ways according to the requirements for achieving the step-down purpose. If the volume of the first capacitor is too large, the first capacitor may be arranged outside the step-down chip where the first step-down module is located and then connected to the step-down chip.
  • the chip where the second step-down module is located may include a second capacitor.
  • the second capacitor may be selected in many ways according to the requirements for achieving the step-down purpose. If the volume of the second capacitor is too large, the second capacitor may be arranged outside the step-down chip where the second step-down module is located and then connected to the step-down chip.
  • FIG9 is a sixth structural diagram of a smart connecting line provided in the embodiment of the present application.
  • the first control module 112 includes: a first control unit 1121 and a first level converter 1122.
  • the first control unit is connected to the first serial communication interface 10 to generate a first digital control signal based on the first control unit 1121; the first control unit is also connected to the first level converter 1122 to generate a first level control signal based on the first digital control signal.
  • the first level converter 1122 is also connected to the first step-down module 111 to control the first step-down module 111 based on the first level control signal.
  • the second control module 132 includes: a second control unit 1321 and a second level converter 1322.
  • the second control unit 1321 is connected to the second serial communication interface 14 to generate a second digital control signal based on the second control unit 1321; the second control unit 1321 is also connected to the second level converter 1322 to generate a second level control signal based on the second digital control signal.
  • the second level converter 1322 is also connected to the second step-down module 131 to control the second step-down module 131 based on the second level control signal.
  • the first electrical signal transmitted by the first serial communication interface 10 generates a first digital control signal through the first control unit 1121, and then converts the first digital control signal into a first level control signal through the first level converter 1122, and controls the first step-down module 111 through a series of signal conversions.
  • the second control unit 1321 transmitted by the second serial communication interface 14 generates a second digital control signal through the second control unit, and then converts the second digital control signal into a second level control signal through the second level converter 1322, and controls the second step-down module 131 through a series of signal conversions.
  • the present application provides a smart connection line, which may include: a first serial communication interface, a first active adapter board, a transmission cable, a second active adapter board and a second serial communication interface, wherein the first serial communication interface and the second serial communication interface are respectively connected to the first active adapter board and the second active adapter board, the first active adapter board is connected to the second active adapter board through the transmission cable, wherein the first active adapter board and the second active adapter board are two adapter boards with a step-down function that are mirror-set.
  • the step-down function is realized outside the electronic device, so that the step-down function module is not required to be set in the electronic device, the volume and cost of the electronic device are reduced, and the power dissipation of the electronic device during the charging process is reduced, and the charging heat dissipation of the electronic device is reduced;
  • the transmission cable can be used as a passive inductor element of the first active adapter board and the second active adapter board, and the voltage domain conversion is realized while the energy is transmitted, reducing the number of passive elements required in the power conversion process and the required volume.
  • the smart connection line of the present application is reproducible and can be used in a variety of industrial applications.
  • the smart connection line of the present application can be used in the field of integrated circuit technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请提供了一种智能连接线,涉及集成电路技术领域。其中,该智能连接线包括:第一串行通信接口、第一有源转接板、传输线缆、第二有源转接板以及第二串行通信接口;第一串行通信接口连接第一有源转接板,第一有源转接板通过传输线缆连接第二有源转接板,第二有源转接板连接第二串行通信接口。本申请可降低系统对电子设备的降压要求,减小所需无源元件的数量与体积,在能量传输的同时实现电压域的转换。

Description

智能连接线
相关申请的交叉引用
本申请要求于2022年11月08日提交中国国家知识产权局的申请号为202211388371.2、名称为“智能连接线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及集成电路技术领域,具体而言,涉及一种智能连接线。
背景技术
随着消费类电子设备性能日趋提高,功能日趋复杂,该类设备对采用串行传输总线进行充电的速度的要求也越来越严格。
为应对加快充电速度这一市场需求,开发了众多快速充电软硬件,其中一种基于串行传输总线的充电协议得到广泛应用,它可通过提供可编程的较高输入电压来降低连接线电流及相应的能量损耗,提高串行传输总线的传输功率。
为适配电子设备的快速充电,在电子设备的设备端必须有配备相应的降压芯片来匹配设备的供电电压。随着充电功率的逐步提升,转换效率相同时,势必使得耗散功率进一步增大,这样会增加电子设备的散热性能,提高电子设备的成本与体积。
发明内容
本申请的目的在于,针对上述相关技术中的不足,提供一种智能连接线,可以降低对电子设备的降压要求,减小电子设备的成本和体积。
为实现上述目的,本申请实施例采用的技术方案如下:
本申请一实施例提供了一种智能连接线,包括:第一串行通信接口、第一有源转接板、传输线缆、第二有源转接板以及第二串行通信接口;其中,所述第一有源转接板和所述第二有源转接板分别为镜像设置的两个具有降压功能的转接板;
所述第一串行通信接口连接所述第一有源转接板,所述第一有源转接板通过所述传输线缆连接所述第二有源转接板,所述第二有源转接板连接所述第二串行通信接口。
可选的,所述第一有源转接板上设置有第一降压模块和第一控制模块,所述第二有源转接板上设置有第二降压模块和第二控制模块;
所述第一控制模块连接所述第一串行通信接口,以检测所述第一串行通信接口的第一电信号,所述第一控制模块还连接所述第一降压模块,以基于所述第一电信号对所述第一降压模块进行控制;所述第二控制模块连接所述第二串行通信接口,以检测所述第二串行通信接口的第二电信号,所述第二控制模块还连接所述第二降压模块,以基于所述第二电信号对所述第二降压模块进行控制。
可选的,所述第二控制模块根据所述第二电信号确定所述第二串行通信接口为电源输入端,还是电源输出端,当所述第二串行通信接口为所述电源输入端时,所述第二控制模块控制所述第二降压模块执行所述电源输入端匹配的降压操作;当所述第二串行通信接口为所述电源输出端时,所述第二控制模块控制所述第二降压模块执行所述电源输出端匹配的降压操作。
可选的,所述第一有源转接板上还设置有:第一电容,所述第二有源转接板上还设置有:第二电容;
所述第一电容连接在所述第一串行通信接口的两端;所述第二电容连接在所述第二串行通信接口的两端。
可选的,所述第一电容和所述第二电容实现输入电压的分担或稳压滤波的作用中的任一者。
可选的,所述第一降压模块包括:第一开关单元和第二开关单元,所述第二降压模块包括:第三开关单元和第四开关单元;
其中,所述第一开关单元和所述第二开关单元串联后连接在所述第一串行通信接口的两端,所述第二开关单元的两端连接所述传输线缆的两个第一接线端,所述第一控制模块连接所述第一开关单元和所述第二开关单元的控制端;
所述第三开关单元和所述第四开关单元串联后连接在所述第二串行通信接口的两端,所述第三开关单元的两端连接所述传输线缆的两个第二接线端,所述第二控制模块连接所述第三开关单元和所述第四开关单元的控制端。
可选的,当所述第一串行通信接口为电源输入端,所述第二串行通信接口为电源输出端时,通过所述第二控制模块控制所述第三开关单元处于常开状态,所述第四开关单元处于常闭状态,通过所述第一控制模块控制所述第一开关单元和所述第二开关单元交替打开,所述传输线缆作为无源电感元件。
可选的,所述第一降压模块包括:第一开关单元、第二开关单元、第三开关单元、第四开关单元和第三电容;所述第二降压模块包括:第五开关单元、第六开关单元、第七开关单元、第八开关单元和第四电容;
其中,所述第一开关单元、所述第二开关单元、所述第三开关单元、所述第四开关单元依次串联连接后,连接所述传输线缆的两个第一接线端,所述第一开关单元和所述第二开关单元串联后连接在所述第一串行通信接口的两端;所述第三电容连接在第一串联连接点,和第二串联连接点之间,所述第一串联连接点为所述第一开关单元和所述第二开关单元的串联连接点,所述第二串联连接点为所述第三开关单元和所述第四开关单元的串联连接点;所述第一控制模块连接所述第一开关单元、所述第二开关单元、所述第三开关单元 和所述第四开关单元的控制端;
所述第五开关单元、所述第六开关单元、所述第七开关单元和所述第八开关单元依次串联连接后,连接所述传输线缆的两个第二接线端,所述第七开关单元和所述第八开关单元串联后连接在所述第二串行通信接口的两端;所述第四电容连接在第三串联连接点,和第四串联连接点之间,所述第三串联连接点为所述第五开关单元和所述第六开关单元的串联连接点,所述第四串联连接点为所述第七开关单元和所述第八开关单元的串联连接点;所述第二控制模块连接所述第五开关单元、所述第六开关单元、所述第七开关单元和所述第八开关单元的控制端。
可选的,当所述第一串行通信接口为电源输入端,所述第二串行通信接口为电源输出端时,通过所述第二控制模块控制所述第七开关单元和所述第八开关单元处于常开状态,所述第五开关单元和所述第六开关单元处于常闭状态,通过所述第一控制模块控制所述第一开关单元、所述第二开关单元、所述第三开关单元、所述第四开关单元交替打开,所述传输线缆作为无源电感元件。
可选的,所述第一降压模块包括:第一开关单元、第二开关单元、第三开关单元以及第三电容;所述第二降压模块包括:第四开关单元、第五开关单元、第六开关单元以及第四电容;
其中,所述第三电容和所述第三开关单元串联后的两端,分别连接所述传输线缆的两个第一接线端,所述第一串行通信接口的一端通过所述第一开关单元连接所述第三电容的一端,所述第一串行通信接口的一端还通过所述第二开关单元连接所述第三电容的另一端;所述第一控制模块连接所述第一开关单元、所述第二开关单元和所述第三开关单元的控制端;
所述第四电容和所述第四开关单元串联后的两端,分别连接所述传输线缆的两个第二接线端,所述第二串行通信接口的一端通过所述第五开关单元连接所述第四电容的一端,所述第二串行通信接口的一端还通过所述第六开关单元连接所述第四电容的另一端;所述第二控制模块连接所述第四开关单元、所述第五开关单元和所述第六开关单元的控制端。
可选的,当所述第一串行通信接口为电源输入端,所述第二串行通信接口为电源输出端时,通过所述第一控制模块控制所述第一开关单元处于常闭状态,所述第二开关单元、所述第三开关单元处于常开状态,通过所述第二控制模块控制所述第四开关单元、所述第五开关单元、所述第六开关单元交替打开,所述传输线缆作为无源电感元件。
可选的,所述第一降压模块为集成降压芯片,或者,由分立元器件构成的降压模块;
所述第二降压模块为集成降压模块,或者由分立元器件构成的降压模块。
可选的,所述第一电容设置在所述第一降压模块所在的芯片上,或者所述第一降压模 块所在的芯片之外;
所述第二电容设置在所述第二降压模块所在的芯片上,或者,所述第二降压模块所在的芯片之外。
可选的,所述第一控制模块包括:第一控制单元和第一电平转换器,所述第一控制单元连接所述第一串行通信接口,以基于所述第一电信号产生第一数字控制信号;所述第一控制单元还连接所述第一电平转换器,以基于所述第一数字控制信号产生第一电平控制信号,所述第一电平转换器还连接所述第一降压模块,以基于所述第一电平控制信号,对所述第一降压模块进行控制;
所述第二控制模块包括:第二控制单元和第二电平转换器,所述第二控制单元连接所述第二串行通信接口,以基于所述第二电信号产生第二数字控制信号;所述第二控制单元还连接所述第二电平转换器,以基于所述第二数字控制信号产生第二电平控制信号,所述第二电平转换器还连接所述第一降压模块,以基于所述第二电平控制信号,对所述第二降压模块进行控制。
可选的,所述第一串行通信接口和所述第二串行通信接口为相同类型的串行通信接口,或者不同类型的串行通信接口。
可选的,所述第一有源转接板和所述第二有源转接板均为有源印制电路板。
本申请实施例提供的一种智能连接线,其可包括:第一串行通信接口、第一有源转接板、传输线缆、第二有源转接板以及第二串行通信接口,其中第一串行通信接口和第二串行通信接口分别连接第一有源转接板和第二有源转接板,第一有源转接板通过传输线缆连接第二有源转接板,其中,第一有源转接板和第二有源转接板分别为镜像设置的两个具有降压功能的转接板。由于本申请实施例提供的智能连接线中传输线缆的两端分别镜像设置两个具有降压功能的转接板,即第一有源转接板和第二有源转接板,实现了降压功能在电子设备外的实现,使得减小电子设备中无需设置降压功能模块,减小了电子设备的体积和成本,并且降低了电子设备在充电过程中的耗散功率,减小了电子设备的充电散热;其次,传输线缆可作为第一有源转接板和第二有源转接板的无源电感元件,在能量传输的同时便实现了电压域的转换,减小了电能转换过程中所需的无源元件的数量与所需的体积。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本申请实施例提供的一种智能连接线的结构示意图;
图2示出了本申请实施例提供的一种智能连接线的结构示意图二;
图3示出了本申请实施例提供的一种智能连接线的结构示意图三;
图4示出了本申请实施例提供的一种智能连接线的等效电路示意图;
图5示出了本申请实施例提供的一种智能连接线的结构示意图四;
图6示出了本申请实施例提供的一种智能连接线的等效电路示意图二;
图7示出了本申请实施例提供的一种智能连接线的结构示意图五;
图8示出了本申请实施例提供的一种智能连接线的等效电路示意图三;
图9示出了本申请实施例提供的一种智能连接线的结构示意图六。
图标:
10-第一串行通信接口;11-第一有源转接板;12-传输线缆;13-第二有源转接板;14-第二串行通信接口;111-第一降压模块;112-第一控制模块;131-第二降压模块;132-第二控制模块;1121-第一控制单元;1122-第一电平转换器;1321-第二控制单元;1322-第二电平转换器;C1-第一电容;C2-第二电容;C3-第三电容;C4-第四电容;S1-第一开关单元;S2-第二开关单元;S3-第三开关单元;S4-第四开关单元;S5-第五开关单元;S6-第六开关单元;S7-第七开关单元;S8-第八开关单元。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,应当理解,本申请中附图仅起到说明和描述的目的,并不用于限定本申请的保护范围。另外,应当理解,示意性的附图并未按实物比例绘制。本申请中使用的流程图示出了根据本申请的一些实施例实现的操作。应该理解,流程图的操作可以不按顺序实现,没有逻辑的上下文关系的步骤可以反转顺序或者同时实施。此外,本领域技术人员在本申请内容的指引下,可以向流程图添加一个或多个其他操作,也可以从流程图中移除一个或多个操作。
另外,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
此外,本申请的说明书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含, 例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,在不冲突的情况下,本申请的实施例中的特征可以相互结合。
在对本申请进行详细地解释解释之前,先对本申请的可能应用的一种场景予以介绍。
本申请实施例涉及一种智能连接线。在其他一些应用场景中,智能连接线还可能被称为智能线缆、有源线缆、有源连接线或者智能充电线等。根据本申请实施例提供的智能连接线,可通过将降压功能的模块从电子设备中迁移设置在智能连接线中,作为内嵌在智能连接线中的具有降压功能的转接板,实现通过智能连接线的降压,使得电子设备中无需再设置降压芯片或者模块,降低了电子设备的成本、体积和重量。上述电子设备例如可以为:手机、平板电脑及其他需要数据线能量传输的电子设备。
以下结合附图先对本申请实施例提供的智能连接线进行示例性地解释说明。
图1为本申请实施例提供的一种智能连接线的结构示意图。如图1所示,智能连接线可包括:第一串行通信接口10、第一有源转接板11、传输线缆12、第二有源转接板13以及第二串行通信接口14。其中,第一有源转接板11和第二有源转接板13可分别为镜像设置的两个具有降压功能的转接板。
第一串行通信接口10连接第一有源转接板11,第一有源转接板11通过传输线缆12连接第二有源转接板13,第二有源转接板13连接第二串行通信接口14。
其中,第一串行通信接口10与第二串行通信接口14可以为通用串行总线(Universal Serial Bus,USB)接口,可分别用来连接电子设备的串行通信接口和充电电源。第一串行通信接口10和第二串行通信接口14可以为相同类型的串行通信接口,或者不同类型的串行通信接口。例如,第一串行通信接口例如可以为USB type-A,USB type-B,USB type-C等任一类型的USB接口,第二串行通信接口例如可以为USB type-A,USB type-B,USB type-C等任一类型的USB接口。
第一有源转接板11和第二有源转接板13均可以为有源印制电路板(Printed Circuie Board,PCB),其可以为采用PCB实现的具有降压功能的转接板。第一有源转接板11和第二有源转接板13为分别镜像设置的两个具有相同结构的电路板。由于第一有源转接板11和第二有源转接板13分别连接传输线缆12,因此,传输线缆12对于第一有源转接板11和第二有源转接板13,其相当于无源电感元件,又称磁性元件,可在能量传输的同时,实现电压域的转换。
由于第一有源转接板11和第二有源转接板13相对于传输线缆12相互镜像设置,因此,无论是第一串行通信接口10连接充电电源,第二串行通信接口14连接电子设备,亦或是 第一串行通信接口10连接电子设备,第二串行通信接口14连接充电电源,其智能连接线均可实现电能传输。
本申请实施例提供的智能连接线,其可包括:第一串行通信接口、第一有源转接板、传输线缆、第二有源转接板以及第二串行通信接口,其中第一串行通信接口和第二串行通信接口分别连接第一有源转接板和第二有源转接板,第一有源转接板通过传输线缆连接第二有源转接板,其中,第一有源转接板和第二有源转接板分别为镜像设置的两个具有降压功能的转接板。由于本申请实施例提供的智能连接线中传输线缆的两端分别镜像设置两个具有降压功能的转接板,即第一有源转接板和第二有源转接板,实现了降压功能在电子设备外的实现,使得电子设备中无需设置降压功能模块,减小了电子设备的体积和成本,并且降低了电子设备在充电过程中的耗散功率,减小了电子设备的充电散热;其次,传输线缆可作为第一有源转接板和第二有源转接板的无源电感元件,在能量传输的同时便实现了电压域的转换,减小了电能转换过程中所需的无源元件的数量与所需的体积。
在上述图1所示的智能连接线的基础上,本申请实施例还通过具体的示例对第一有源转接板和第二有源转接板的具体结构进行示例说明。图2为本申请实施例提供的一种智能连接线的结构示意图二。如图2所示,第一有源转接板11上设置有第一降压模块111和第一控制模块112,第二有源转接板13上设置有第二降压模块131和第二控制模块132。
第一控制模块112连接第一串行通信接口10,以检测第一串行通信接口10的第一电信号,第一控制模块112还连接第一降压模块111,以基于第一电信号对第一降压模块111进行控制;第二控制模块132连接第二串行通信接口14,以检测第二串行通信接口14的第二电信号,第二控制模块132还连接第二降压模块131,以基于第二电信号对第二降压模块131进行控制。
在具体实现过程中,第一降压模块111的两端分别连接第一串行通信接口10和传输线缆12,第一控制模块112的输入端连接第一串行通信接口10,以检测第一串行通信接口10的第一电信号,第一控制模块112的输出端连接第一降压模块111的控制端。示例的,第一控制模块112可根据第一电信号确定第一串行通信接口10为电源输入端,还是电源输出端,若第一串行通信接口10为电源输入端,则第一控制模块112控制第一降压模块111执行电源输入端匹配的降压操作。若第一串行通信接口10为电源输出端,则第一控制模块112控制第一降压模块111执行电源输出端匹配的降压操作。
相应的,第二降压模块131的两端分别连接第二串行通信接口14和传输线缆12。第二控制模块132的输入端连接第二串行通信接口14,以检测第二串行通信接口14的第二电信号,第二控制模块132的输出端连接第二降压模块131的控制端。示例的,第二控制模块132可根据第二电信号确定第二串行通信接口14为电源输入端,还是电源输出端,若第 二串行通信接口14为电源输入端,则第二控制模块132控制第二降压模块131执行电源输入端匹配的降压操作。若第二串行通信接口14为电源输出端,则第二控制模块132控制第二降压模块131执行电源输出端匹配的降压操作。
本实施例提供的智能连接线中,可通过第一降压模块和第一控制模块相互配合、第二降压模块和第二控制模块相互配合,使得第一有源转接板和第二有源转接板连通传输线缆,实现电能传输过程中的降压转换。也就是说,本实施例提供的有源转接板是通过降压模块以及控制模块配合实现的,实现了有源的电压转换功能,无需额外的控制模块,避免了智能连接线的体积过大。
继续参照上述图2,第一有源转接板11上还设置有:第一电容C1,第二有源转接板13上还设置有:第二电容C2。第一电容C1连接在第一串行通信接口10的两端,第二电容C2连接在第二串行通信接口14的两端。
当第一串行通信接口10为电源输入端,第二串行通信接口14为电源输出端时,第一电容C1,可实现输入电压的分担,第二电容C2可稳压滤波的作用。当第一串行通信接口10为电源输出端,第二串行通信接口14为电源输入端时,第二电容C2可实现输入电压的分担,第一电容C1可实现稳压滤波的作用。
如下通过第一降压模块和第二降压模块的可能实现方式,对智能连接线进行说明。图3为本申请实施例提供的一种智能连接线的结构示意图三。如图3所示,第一降压模块111包括:第一开关单元S1和第二开关单元S2,第二降压模块131包括:第三开关单元S3和第四开关单元S4。
第一开关单元S1和第二开关单元S2串联后连接在第一串行通信接口10的两端,第二开关单元S2的两端连接传输线缆12的两个第一接线端,第一控制模块112连接第一开关单元S1和第二开关单元S2的控制端。
第三开关单元S3和第四开关单元S4串联后连接在第二串行通信接口14的两端,第三开关单元S3的两端连接传输线缆12的两个第二接线端,第二控制模块132连接第三开关单元S3和第四开关单元S4的控制端。
第一控制模块112,可基于第一串行通信接口10为电源输入端,还是电源输出端,分别采用不同的方式对第一开关单元S1和第二开关单元S2的通断状态进行控制。第二控制模块132,可基于第二串行通信接口14为电源输入端,还是电源输出端,分别采用不同的方式对第三开关单元S3和第四开关单元S4的通断状态进行控制。
如下以第一串行通信接口为电源输入端,第二串行通信接口为电源输出端为例,结合等效电路图进行说明,图4为本申请实施例提供的一种智能连接线的等效电路示意图。如图4所示,若第一串行通信接口10为电源输入端,第二串行通信接口14为电源输出端, 可通过第二控制模块132控制第三开关单元S3处于常开状态,第四开关单元S4处于常闭状态,通过第一控制模块112控制第一开关单元S1和第二开关单元S2交替打开,传输线缆12可作为无源电感元件,充当了转换器中的磁性元件,在能量传输的同时,实现了电压域的降压转换。
在本申请上述任一实施例提供的智能连接线的基础上,本申请实施例还提供了一种第一降压模块和第二降压模块结构的可能实现方式。图5为本申请实施例提供的一种智能连接线的结构示意图四,如图5所示,第一降压模块111包括:第一开关单元S1、第二开关单元S2、第三开关单元S3、第四开关单元S4和第三电容C3,第二降压模块131包括:第五开关单元S5、第六开关单元S6、第七开关单元S7、第八开关单元S8和第四电容C4。第一开关单元S1、第二开关单元S2、第三开关单元S3、第四开关单元S4依次串联连接后,连接传输线缆12的两个第一接线端,第一开关单元S1和第二开关单元S2串联后连接在第一串行通信接口10的两端;第三电容C3连接在第一串联连接点和第二串联连接点之间,第一串联连接点为第一开关单元S1和第二开关单元S2的串联连接点,第二串联连接点为第三开关单元S3和第四开关单元S4的串联连接点;第一控制模块112连接第一开关单元S1、第二开关单元S2、第三开关单元S3和第四开关单元S4的控制端。
第五开关单元S5、第六开关单元S6、第七开关单元S7和第八开关单元S8依次串联连接后,传输线缆12的两个第二接线端,第七开关单元S7和第八开关单元S8串联后连接在第二串行通信接口14的两端;第四电容C4连接在第三串联连接点和第四串联连接点之间,第三串联连接点为第五开关单元S5和第六开关单元S6的串联连接点,第四串联连接点为第七开关单元S7和第八开关单元S8的串联连接点;第二控制模块132连接第五开关单元S5、第六开关单元S6、第七开关单元S7和第八开关单元S8的控制端。
第一降压模块中111的第一开关单元S1、第二开关单元S2、第三开关单元S3、第四开关单元S4和第三电容C3通过上述线路连接方式,共同实现第一降压模块111的降压作用,第二降压模块131中的第五开关单元S5、第六开关单元S6、第七开关单元S7、第八开关单元S8和第四电容C4通过上述线路连接方式,共同实现第二降压模块131的降压作用。
第一串行通信接口10与串联在一起的第一开关单元S1和第二开关单元S2并列连接,第三电容C3与串联在一起的第一开关单元S1和第二开关单元S2并列连接,第一控制模块112通过连接第一开关单元S1、第二开关单元S2、第三开关单元S3和第四开关单元S4的控制端实现对第一开关单元S1、第二开关单元S2、第三开关单元S3和第四开关单元S4的控制。
第二串行通信接口14与串联在一起的第七开关单元S7和第八开关单元S8并列连接, 第四电容C4与串联在一起的第六开关单元S6和第七开关单元S7并列连接,第二控制模块132通过连接第五开关单元S5、第六开关单元S6、第七开关单元S7和第八开关单元S8的控制端实现对第五开关单元S5、第六开关单元S6、第七开关单元S7和第八开关单元S8的控制。
当第一串行通信接口10为电源输入端,第二串行通信接口14为电源输出端时,第一降压模块111中的第一开关单元S1、第二开关单元S2、第三开关单元S3和第四开关单元S4交替打开,与传输线缆12、第二降压模块131中的第二电容C2和第四电容C4共同实现降压转换。当第一串行通信接口10为电源输出端,第二串行通信接口14为电源输入端时,第二降压模块131中的第五开关单元S5、第六开关单元S6、第七开关单元S7和第八开关单元S8交替打开,与传输线缆12、第一降压模块111中的第一电容C1和第三电容C3共同实现降压转换。
如下以第一串行通信接口为电源输入端,第二串行通信接口为电源输出端为例,结合等效电路图进行说明,图6为本申请实施例提供的一种智能连接线的等效电路示意图二。如图6所示,若第一串行通信接口10为电源输入端,第二串行通信接口14为电源输出端,可通过第二控制模块132控制第七开关单元S7和第八开关单元S8处于常开状态,第五开关单元S5和第六开关单元S6处于常闭状态,通过第一控制模块112控制第一开关单元S1、第二开关单元S2、第三开关单元S3、第四开关单元S4交替打开,传输线缆12可作为无源电感元件,充当了转换器中的磁性元件,在能量传输的同时,实现了降压转换。
在本申请上述任一实施例提供的智能连接线的基础上,本申请实施例还提供了一种第一降压模块和第二降压模块结构的可能实现方式。图7为本申请实施例提供的一种智能连接线的结构示意图五,如图7所示,第一降压模块111包括:第一开关单元S1、第二开关单元S2、第三开关单元S3以及第三电容C3;所述第二降压模块131包括:第四开关单元S4、第五开关单元S5、第六开关单元S6以及第四电容C4;
第三电容C3和第三开关单元S3串联后的两端,分别连接传输线缆12的两个第一接线端,第一串行通信接口10的一端通过第一开关单元S1连接第三电容C3的一端,第一串行通信接口10的一端还通过第二开关单元S2连接第三电容C3的另一端;第一控制模块112连接第一开关单元S1、第二开关单元S2和第三开关单元S3的控制端。
第四电容C4和第四开关单元S4串联后的两端,分别连接传输线缆12的两个第二接线端,第二串行通信接口14的一端通过第五开关单元S5连接第四电容C4的一端,第二串行通信接口14的一端还通过第六开关单元S6连接第四电容C4的另一端;第二控制模块132连接第四开关单元S4、第五开关单元S5和第六开关单元S6的控制端。
第一降压模块111中的第一开关单元S1、第二开关单元S2、第三开关单元S3以及第 三电容C3通过上述线路连接方式,共同实现第一降压模块111的降压作用,第二降压模块131中的第四开关单元S4、第五开关单元S5、第六开关单元S6以及第四电容C4通过上述线路连接方式,共同实现第一降压模块111的降压作用。
传输线缆12与串联的第三电容C3和第三开关单元S3的连接关系为并列连接,第一控制模块112通过连接第一开关单元S1、第二开关单元S2和第三开关单元S3的控制端实现对第一开关单元S1、第二开关单元S2和第三开关单元S3的控制。
传输线缆12与串联的第四电容C4和第四开关单元S4的连接关系为并列连接,第二控制模块132通过连接第四开关单元S4、第五开关单元S5和第六开关单元S6的控制端实现对第四开关单元S4、第五开关单元S5和第六开关单元S6的控制。
当第一串行通信接口10为电源输入端,第二串行通信接口14为电源输出端时,第一降压模块111中的第一开关单元S1、第二开关单元S2、第三开关单元S3交替打开,与传输线缆12、第二降压模块131中的第二电容C2和第四电容C4共同实现降压转换。当第一串行通信接口10为电源输出端,第二串行通信接口14为电源输入端时,第二降压模块131中的第四开关单元S4、第五开关单元S5和第六开关单元S6交替打开,与传输线缆12、第一降压模块111中的第一电容C1和第三电容C3共同实现降压转换。
如下以第一串行通信接口为电源输入端,第二串行通信接口为电源输出端为例,结合等效电路图进行说明,图8为本申请实施例提供的一种智能连接线的等效电路示意图三。如图8所示,若第一串行通信接口10为电源输入端,第二串行通信接口14为电源输出端,可通过第一控制模块112控制第一开关单元S1处于常闭状态,第二开关元S2、第三开关单元S3处于常开状态,通过第二控制模块132控制第四开关单元S4、第五开关单元S5、第六开关单元S6交替打开,传输线缆12可作为无源电感元件,充当了转换器中的磁性元件,在能量传输的同时,实现了电压域的降压转换。
在本申请上述任一实施例提供的智能连接线的基础上,本申请实施例还提供了一种第一降压模块和第二降压模块的可能实现方式。在可能的实现方式中,第一降压模块111为集成降压芯片,或者,由分立元器件构成的降压模块;第二降压模块131为集成降压模块,或者由分立元器件构成的降压模块。
第一降压模块可能包含降压芯片,通过降压芯片实现降压目的,也可能包含可以实现降压功能的分立元器件。第二降压模块可能包含降压芯片,通过降压芯片实现降压目的,也可能包含可以实现降压功能的分立元器件。
在本申请上述任一实施例提供的智能连接线的基础上,本申请实施例还提供了一种第一电容和第二电容的可能实现方式。在可能的实现方式中,第一电容设置在第一降压模块111所在的芯片上,或者第一降压模块111所在的芯片之外;第二电容设置在第二降压模块 131所在的芯片上,或者,第二降压模块131所在的芯片之外。
第一降压模块所在的芯片中可以包含第一电容,根据实现降压目的的要求,第一电容可以有很多种选择方式,如果第一电容的体积太大,可将第一电容设置在第一降压模块所在的降压芯片之外,再与降压芯片连接。
第二降压模块所在的芯片中可以包含第二电容,根据实现降压目的的要求,第二电容可以有很多种选择方式,如果第二电容的体积太大,可将第二电容设置在第二降压模块所在的降压芯片之外,再与降压芯片连接。
在本申请上述任一实施例提供的智能连接线的基础上,本申请实施例还提供了一种第一控制模块和第二控制模块结构的可能实现方式。图9为本申请实施例提供的一种智能连接线的结构示意图六。
第一控制模块112包括:第一控制单元1121和第一电平转换器1122,第一控制单元连接第一串行通信接口10,以基于第一控制单元1121产生第一数字控制信号;第一控制单元还连接第一电平转换器1122,以基于第一数字控制信号产生第一电平控制信号,第一电平转换器1122还连接第一降压模块111,以基于第一电平控制信号,对第一降压模块111进行控制。
第二控制模块132包括:第二控制单元1321和第二电平转换器1322,第二控制单元1321连接第二串行通信接口14,以基于第二控制单元1321产生第二数字控制信号;第二控制单元1321还连接第二电平转换器1322,以基于第二数字控制信号产生第二电平控制信号,第二电平转换器1322还连接第二降压模块131,以基于第二电平控制信号,对第二降压模块131进行控制。
第一串行通信接口10传递的第一电信号通过第一控制单元1121产生第一数字控制信号,再通过第一电平转换器1122将第一数字控制信号转换成第一电平控制信号,通过一系列的信号转换实现对第一降压模块111的控制。第二串行通信接口14传递的第二控制单元1321通过第二控制单元产生第二数字控制信号,再通过第二电平转换器1322将第二数字控制信号转换成第二电平控制信号,通过一系列的信号转换实现对第二降压模块131的控制。
以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。
工业实用性
本申请提供了一种智能连接线,其可包括:第一串行通信接口、第一有源转接板、传输线缆、第二有源转接板以及第二串行通信接口,其中第一串行通信接口和第二串行通信 接口分别连接第一有源转接板和第二有源转接板,第一有源转接板通过传输线缆连接第二有源转接板,其中,第一有源转接板和第二有源转接板分别为镜像设置的两个具有降压功能的转接板。由于本申请实施例提供的智能连接线中传输线缆的两端分别镜像设置两个具有降压功能的转接板,即第一有源转接板和第二有源转接板,实现了降压功能在电子设备外的实现,使得减小电子设备中无需设置降压功能模块,减小了电子设备的体积和成本,并且降低了电子设备在充电过程中的耗散功率,减小了电子设备的充电散热;其次,传输线缆可作为第一有源转接板和第二有源转接板的无源电感元件,在能量传输的同时便实现了电压域的转换,减小了电能转换过程中所需的无源元件的数量与所需的体积。
此外,可以理解的是,本申请的智能连接线是可以重现的,并且可以用在多种工业应用中。例如,本申请的智能连接线可以用于集成电路技术领域。

Claims (16)

  1. 一种智能连接线,其特征在于,包括:第一串行通信接口、第一有源转接板、传输线缆、第二有源转接板以及第二串行通信接口;其中,所述第一有源转接板和所述第二有源转接板分别为镜像设置的两个具有降压功能的转接板;
    所述第一串行通信接口连接所述第一有源转接板,所述第一有源转接板通过所述传输线缆连接所述第二有源转接板,所述第二有源转接板连接所述第二串行通信接口。
  2. 根据权利要求1所述的智能连接线,其特征在于,所述第一有源转接板上设置有第一降压模块和第一控制模块,所述第二有源转接板上设置有第二降压模块和第二控制模块;
    所述第一控制模块连接所述第一串行通信接口,以检测所述第一串行通信接口的第一电信号,所述第一控制模块还连接所述第一降压模块,以基于所述第一电信号对所述第一降压模块进行控制;所述第二控制模块连接所述第二串行通信接口,以检测所述第二串行通信接口的第二电信号,所述第二控制模块还连接所述第二降压模块,以基于所述第二电信号对所述第二降压模块进行控制。
  3. 根据权利要求2所述的智能连接线,其特征在于,所述第二控制模块根据所述第二电信号来确定所述第二串行通信接口是电源输入端还是电源输出端,当所述第二串行通信接口为所述电源输入端时,所述第二控制模块控制所述第二降压模块执行所述电源输入端匹配的降压操作;当所述第二串行通信接口为所述电源输出端时,所述第二控制模块控制所述第二降压模块执行所述电源输出端匹配的降压操作。
  4. 根据权利要求2或3所述的智能连接线,其特征在于,所述第一有源转接板上还设置有:第一电容,所述第二有源转接板上还设置有:第二电容;
    所述第一电容连接在所述第一串行通信接口的两端;所述第二电容连接在所述第二串行通信接口的两端。
  5. 根据权利要求4所述的智能连接线,其特征在于,所述第一电容和所述第二电容实现输入电压的分担或稳压滤波的作用中的任一者。
  6. 根据权利要求2至5中任一项所述的智能连接线,其特征在于,所述第一降压模块包括:第一开关单元和第二开关单元,所述第二降压模块包括:第三开关单元和第四开关单元;
    其中,所述第一开关单元和所述第二开关单元串联后连接在所述第一串行通信接口的两端,所述第二开关单元的两端连接所述传输线缆的两个第一接线端,所述第一控制模块连接所述第一开关单元和所述第二开关单元的控制端;
    所述第三开关单元和所述第四开关单元串联后连接在所述第二串行通信接口的两端, 所述第三开关单元的两端连接所述传输线缆的两个第二接线端,所述第二控制模块连接所述第三开关单元和所述第四开关单元的控制端。
  7. 根据权利要求6所述的智能连接线,其特征在于,当所述第一串行通信接口为电源输入端,所述第二串行通信接口为电源输出端时,通过所述第二控制模块控制所述第三开关单元处于常开状态,所述第四开关单元处于常闭状态,通过所述第一控制模块控制所述第一开关单元和所述第二开关单元交替打开,其中所述传输线缆作为无源电感元件运作。
  8. 根据权利要求2至7中任一项所述的智能连接线,其特征在于,所述第一降压模块包括:第一开关单元、第二开关单元、第三开关单元、第四开关单元和第三电容;所述第二降压模块包括:第五开关单元、第六开关单元、第七开关单元、第八开关单元和第四电容;
    其中,所述第一开关单元、所述第二开关单元、所述第三开关单元、所述第四开关单元依次串联连接后,连接所述传输线缆的两个第一接线端,所述第一开关单元和所述第二开关单元串联后连接在所述第一串行通信接口的两端;所述第三电容连接在第一串联连接点,和第二串联连接点之间,所述第一串联连接点为所述第一开关单元和所述第二开关单元的串联连接点,所述第二串联连接点为所述第三开关单元和所述第四开关单元的串联连接点;所述第一控制模块连接所述第一开关单元、所述第二开关单元、所述第三开关单元和所述第四开关单元的控制端;
    所述第五开关单元、所述第六开关单元、所述第七开关单元和所述第八开关单元依次串联连接后,连接所述传输线缆的两个第二接线端,所述第七开关单元和所述第八开关单元串联后连接在所述第二串行通信接口的两端;所述第四电容连接在第三串联连接点,和第四串联连接点之间,所述第三串联连接点为所述第五开关单元和所述第六开关单元的串联连接点,所述第四串联连接点为所述第七开关单元和所述第八开关单元的串联连接点;所述第二控制模块连接所述第五开关单元、所述第六开关单元、所述第七开关单元和所述第八开关单元的控制端。
  9. 根据权利要求8所述的智能连接线,其特征在于,当所述第一串行通信接口为电源输入端,所述第二串行通信接口为电源输出端时,通过所述第二控制模块控制所述第七开关单元和所述第八开关单元处于常开状态,所述第五开关单元和所述第六开关单元处于常闭状态,通过所述第一控制模块控制所述第一开关单元、所述第二开关单元、所述第三开关单元、所述第四开关单元交替打开,其中所述传输线缆作为无源电感元件运作。
  10. 根据权利要求2至5中任一项所述的智能连接线,其特征在于,所述第一降压模块包括:第一开关单元、第二开关单元、第三开关单元以及第三电容;所述第二降压模块包括:第四开关单元、第五开关单元、第六开关单元以及第四电容;
    其中,所述第三电容和所述第三开关单元串联后的两端,分别连接所述传输线缆的两个第一接线端,所述第一串行通信接口的一端通过所述第一开关单元连接所述第三电容的一端,所述第一串行通信接口的一端还通过所述第二开关单元连接所述第三电容的另一端;所述第一控制模块连接所述第一开关单元、所述第二开关单元和所述第三开关单元的控制端;
    所述第四电容和所述第四开关单元串联后的两端,分别连接所述传输线缆的两个第二接线端,所述第二串行通信接口的一端通过所述第五开关单元连接所述第四电容的一端,所述第二串行通信接口的一端还通过所述第六开关单元连接所述第四电容的另一端;所述第二控制模块连接所述第四开关单元、所述第五开关单元和所述第六开关单元的控制端。
  11. 根据权利要求10所述的智能连接线,其特征在于,当所述第一串行通信接口为电源输入端,所述第二串行通信接口为电源输出端时,通过所述第一控制模块控制所述第一开关单元处于常闭状态,所述第二开关单元、所述第三开关单元处于常开状态,通过所述第二控制模块控制所述第四开关单元、所述第五开关单元、所述第六开关单元交替打开,其中所述传输线缆作为无源电感元件运作。
  12. 根据权利要求2至11中任一项所述的智能连接线,其特征在于,所述第一降压模块为集成降压芯片,或者,由分立元器件构成的降压模块;
    所述第二降压模块为集成降压模块,或者由分立元器件构成的降压模块。
  13. 根据权利要求4或5所述的智能连接线,其特征在于,所述第一电容设置在所述第一降压模块所在的芯片上,或者所述第一降压模块所在的芯片之外;
    所述第二电容设置在所述第二降压模块所在的芯片上,或者,所述第二降压模块所在的芯片之外。
  14. 根据权利要求2至13中任一项所述的智能连接线,其特征在于,所述第一控制模块包括:第一控制单元和第一电平转换器,所述第一控制单元连接所述第一串行通信接口,以基于所述第一电信号产生第一数字控制信号;所述第一控制单元还连接所述第一电平转换器,以基于所述第一数字控制信号产生第一电平控制信号,所述第一电平转换器还连接所述第一降压模块,以基于所述第一电平控制信号,对所述第一降压模块进行控制;
    所述第二控制模块包括:第二控制单元和第二电平转换器,所述第二控制单元连接所述第二串行通信接口,以基于所述第二电信号产生第二数字控制信号;所述第二控制单元还连接所述第二电平转换器,以基于所述第二数字控制信号产生第二电平控制信号,所述第二电平转换器还连接所述第一降压模块,以基于所述第二电平控制信号,对所述第二降压模块进行控制。
  15. 根据权利要求1至14中任一所述的智能连接线,其特征在于,所述第一串行通信 接口和所述第二串行通信接口为相同类型的串行通信接口,或者不同类型的串行通信接口。
  16. 根据权利要求1至15中任一所述的智能连接线,其特征在于,所述第一有源转接板和所述第二有源转接板均为有源印制电路板。
PCT/CN2022/138087 2022-11-08 2022-12-09 智能连接线 WO2024098497A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211388371.2A CN115548810A (zh) 2022-11-08 2022-11-08 智能连接线
CN202211388371.2 2022-11-08

Publications (1)

Publication Number Publication Date
WO2024098497A1 true WO2024098497A1 (zh) 2024-05-16

Family

ID=84721334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138087 WO2024098497A1 (zh) 2022-11-08 2022-12-09 智能连接线

Country Status (2)

Country Link
CN (1) CN115548810A (zh)
WO (1) WO2024098497A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206272004U (zh) * 2016-12-25 2017-06-20 惠州市进新精艺实业有限公司 一种带自动变压功能的数据线
CN212543383U (zh) * 2020-06-02 2021-02-12 东莞市日东智能装备有限公司 一种便携式usb充电线

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206272004U (zh) * 2016-12-25 2017-06-20 惠州市进新精艺实业有限公司 一种带自动变压功能的数据线
CN212543383U (zh) * 2020-06-02 2021-02-12 东莞市日东智能装备有限公司 一种便携式usb充电线

Also Published As

Publication number Publication date
CN115548810A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
CN107148806A (zh) 用于通过使用电力协商协议而经由电力线控制负载设备的装置、方法和系统
EP3618451A1 (en) Interface switching circuit and device
CN106330468A (zh) 一种以太网供电装置以及以太网供电方法
US20100194539A1 (en) Power socket fascia
WO2014134798A1 (zh) 一种供电电路及供电面板
US20180097315A1 (en) Power adapter, terminal device, charging system, and charging method
CN112134337A (zh) 电源适配器、终端设备、电子设备及其充电控制方法
US20220224805A1 (en) Camera adaptor
US10509453B2 (en) Electronic communications device, particularly Power-over-Ethernet terminal, as well as add-on board
WO2024098497A1 (zh) 智能连接线
CN110602821B (zh) 一种基于poe供电的灯光控制系统、方法及存储介质
US6246600B1 (en) Multi-use battery
JP5624089B2 (ja) ブロードバンド電力ラインネットワーク装置
CN110493015B (zh) 一种poe信号转接设备及其信号转接方法
CN104243357A (zh) 交换机、交换系统、交换网芯片组件及转发芯片组件
CN217655451U (zh) 用于实现通讯切换的控制电路及照明控制系统
JP2016207212A (ja) 格納装置積み重ねシステムの実行方法
CN101958495B (zh) 可同时作为传输信号及作为电源供输手段的连接装置
CN114467284B (zh) 网络供电系统
CN209913192U (zh) 网络供电转接装置
CN112187698B (zh) 通信方法、业务系统、电子设备及其具有的主mcu
CN103119801B (zh) 模块化接口系统及方法
RU2740791C1 (ru) Передача сигналов
WO2013170806A1 (zh) 信息传输方法及系统
EP2741428A1 (en) Network access device with power line communication capability