WO2024098303A1 - 一种传输能力信息的方法、装置及可读存储介质 - Google Patents

一种传输能力信息的方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2024098303A1
WO2024098303A1 PCT/CN2022/130970 CN2022130970W WO2024098303A1 WO 2024098303 A1 WO2024098303 A1 WO 2024098303A1 CN 2022130970 W CN2022130970 W CN 2022130970W WO 2024098303 A1 WO2024098303 A1 WO 2024098303A1
Authority
WO
WIPO (PCT)
Prior art keywords
insertion loss
capability information
user equipment
srs
antenna
Prior art date
Application number
PCT/CN2022/130970
Other languages
English (en)
French (fr)
Inventor
郭胜祥
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/130970 priority Critical patent/WO2024098303A1/zh
Publication of WO2024098303A1 publication Critical patent/WO2024098303A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular to a method, device and readable storage medium for transmitting capability information.
  • the Sounding Reference Signal (SRS) antenna switching function was introduced in Release 15 (R15) of the 3rd Generation Partnership Project (3GPP). Based on this function, the User Equipment (UE) can transmit SRS antennas in turn, and the base station measures the SRS sent by each UE antenna and evaluates the channel quality of the downlink channel based on channel reciprocity. This method can improve the accuracy of downlink channel estimation and avoid problems such as delay and poor accuracy caused by indirect feedback from the terminal.
  • SRS Sounding Reference Signal
  • the present disclosure provides a method, an apparatus, and a readable storage medium for transmitting capability information.
  • the present disclosure provides a method for sending capability information, which is performed by a user equipment, and the method includes:
  • the capability information is sent to the network device, where the capability information includes an insertion loss parameter of a receiving antenna of the user equipment in a sounding reference signal (SRS) antenna switching scenario.
  • SRS sounding reference signal
  • the user equipment reports the capability information to the network equipment and reports the insertion loss parameters corresponding to the receiving antenna in the SRS antenna switching scenario, so that the network equipment can obtain the insertion loss parameters of the receiving antenna of the user equipment, so that the network equipment can perform more reasonable processing based on the insertion loss parameters of the receiving antenna of the user equipment.
  • the capability information includes N bits for indicating the insertion loss parameter, and each value of the N bits indicates a corresponding insertion loss parameter.
  • the capability information includes an insertion loss parameter corresponding to each frequency band in a plurality of frequency bands.
  • the capability information includes at least one insertion loss parameter corresponding to the first frequency band.
  • sending capability information to the network device includes:
  • the capability information is sent to the network device.
  • determining the capability information according to the SRS antenna switching capability of the user equipment and the configuration information sent by the network device includes:
  • the number M of insertion loss parameters is determined according to the number of transmitting and receiving shared antennas supported by the user equipment and the number of ports of the SRS, so as to determine the capability information including the M insertion loss parameters.
  • the capability information further includes an identifier of a receiving antenna corresponding to the at least one insertion loss parameter.
  • the insertion loss parameter includes one of the following:
  • the capability information further includes an SRS antenna switching capability of the user equipment.
  • the present disclosure provides a method for receiving capability information, which is performed by a network device, and the method includes:
  • Capability information sent by a user equipment is received, where the capability information includes an insertion loss parameter of a receiving antenna of the user equipment in a sounding reference signal (SRS) antenna switching scenario.
  • SRS sounding reference signal
  • the method further includes:
  • a first part of receiving antennas to which the insertion loss parameter is applicable is determined according to the capability information.
  • the capability information further includes: SRS antenna switching capability of the user equipment;
  • the determining of the first part of receiving antennas to which the insertion loss parameter is applicable comprises:
  • the first part of receiving antennas to which the insertion loss parameter is applicable are determined according to the SRS antenna switching capability and the number of SRS ports configured by the network device.
  • the capability information includes an insertion loss parameter corresponding to each frequency band in a plurality of frequency bands
  • the determining the first part of receiving antennas to which the insertion loss parameter is applicable includes:
  • any frequency band of the multiple frequency bands determine the first part of receiving antennas to which the insertion loss parameters corresponding to the any frequency band are applicable.
  • the capability information includes at least one insertion loss parameter corresponding to the first frequency band.
  • the determining the first part of receiving antennas to which the insertion loss parameter is applicable includes:
  • the capability information includes: M insertion loss parameters corresponding to the first frequency band, and identifiers of receiving antennas corresponding to the M insertion loss parameters;
  • the determining of the first part of receiving antennas to which the insertion loss parameter is applicable comprises:
  • the first part of receiving antennas to which the M insertion loss parameters are applicable in the first frequency band are determined according to the identifier of the receiving antenna, the SRS antenna switching capability, and the number of SRS ports configured by the network device.
  • the method further includes:
  • the downlink channel quality is determined according to the capability information.
  • determining the downlink channel quality according to the capability information includes:
  • the downlink channel quality is determined according to the insertion loss parameters applicable to the first part of receiving antennas.
  • the insertion loss parameter includes one of the following:
  • the present disclosure provides a device for sending capability information, which may be used to execute the steps performed by a user equipment in the first aspect or any possible design of the first aspect.
  • the user equipment may implement the functions of the above methods in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the device may include a transceiver module and a processing module coupled to each other, wherein the transceiver module can be used to support the communication device to communicate, and the processing module can be used for the communication device to perform processing operations, such as generating information/messages to be sent, or processing received signals to obtain information/messages.
  • the transceiver module can be used to support the communication device to communicate
  • the processing module can be used for the communication device to perform processing operations, such as generating information/messages to be sent, or processing received signals to obtain information/messages.
  • the transceiver module is configured to send capability information to the network device, where the capability information includes an insertion loss parameter of a receiving antenna of the user equipment in a sounding reference signal SRS antenna switching scenario.
  • the present disclosure provides a device for receiving capability information, which can be used to execute the steps performed by a network device in the second aspect or any possible design of the second aspect.
  • the network device can implement each function in the above methods in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the device may include a transceiver module, and the transceiver module can be used to support the communication device to communicate.
  • the transceiver module is configured to receive capability information sent by the user equipment, where the capability information includes an insertion loss parameter of a receiving antenna of the user equipment in a sounding reference signal SRS antenna switching scenario.
  • the present disclosure provides a communication device, comprising a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to implement the first aspect or any possible design of the first aspect.
  • the present disclosure provides a communication device, comprising a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to implement the second aspect or any possible design of the second aspect.
  • the present disclosure provides a computer-readable storage medium, which stores instructions (or computer programs, programs), which, when called and executed on a computer, enable the computer to execute the above-mentioned first aspect or any possible design of the first aspect.
  • the present disclosure provides a computer-readable storage medium, in which instructions (or computer programs, programs) are stored.
  • instructions or computer programs, programs
  • the computer executes the above-mentioned second aspect or any possible design of the second aspect.
  • FIG1 is a schematic diagram of a wireless communication system architecture provided by an embodiment of the present disclosure.
  • FIG2 is a schematic diagram of antenna switching of a user equipment according to an exemplary embodiment
  • FIG3 is a flow chart showing a method for transmitting capability information according to an exemplary embodiment
  • FIG4 is a flow chart showing a method for sending capability information according to an exemplary embodiment
  • FIG5 is a flow chart showing another method for sending capability information according to an exemplary embodiment
  • FIG6 is a flow chart showing a method for receiving capability information according to an exemplary embodiment
  • FIG7 is a flow chart showing another method for receiving capability information according to an exemplary embodiment
  • FIG8 is a block diagram showing a device for sending capability information according to an exemplary embodiment
  • FIG9 is a block diagram of a user equipment according to an exemplary embodiment
  • FIG10 is a block diagram showing a device for receiving capability information according to an exemplary embodiment
  • Fig. 11 is a block diagram of a communication device according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the disclosed embodiments, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein may be interpreted as “at” or "when” or "in response to determination".
  • a method for transmitting capability information may be applied to a wireless communication system 100, which may include a user equipment 101 and a network device 102.
  • the user equipment 101 is configured to support carrier aggregation and may be connected to multiple carrier components of the network device 102, including a primary carrier component and one or more secondary carrier components.
  • the application scenarios of the wireless communication system 100 include, but are not limited to, long-term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) system, worldwide interoperability for microwave access (WiMAX) communication system, cloud radio access network (CRAN) system, future fifth-generation (5G) system, new radio (NR) communication system or future evolved public land mobile network (PLMN) system, etc.
  • LTE long-term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • WiMAX worldwide interoperability for microwave access
  • CDRF cloud radio access network
  • 5G fifth-generation
  • NR new radio
  • PLMN future evolved public land mobile network
  • the user equipment 101 shown above may be a terminal, an access terminal, a terminal unit, a terminal station, a mobile station (MS), a remote station, a remote terminal, a mobile terminal, a wireless communication device, a terminal agent or a terminal device, etc.
  • the user equipment 101 may have a wireless transceiver function, and it can communicate with one or more network devices of one or more communication systems (such as wireless communication) and receive network services provided by the network devices, where the network devices include but are not limited to the network device 102 shown in the figure.
  • the user equipment 101 can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in a future 5G network, or a terminal device in a future evolved PLMN network, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device 102 may be an access network device (or access network point).
  • the access network device refers to a device that provides network access functions, such as a radio access network (RAN) base station, etc.
  • the network device 102 may specifically include a base station (BS), or a base station and a wireless resource management device for controlling the base station, etc.
  • the network device 102 may also include a relay station (relay device), an access point, a base station in a future 5G network, a base station in a future evolved PLMN network, or an NR base station, etc.
  • the network device 102 may be a wearable device or a vehicle-mounted device.
  • the network device 102 may also be a communication chip with a communication module.
  • the network device 102 includes, but is not limited to, a next-generation base station (gnodeB, gNB) in 5G, an evolved node B (evolved node B, eNB) in an LTE system, a radio network controller (radio network controller, RNC), a node B (node B, NB) in a WCDMA system, a wireless controller under a CRAN system, a base station controller (basestation controller, BSC), a base transceiver station (base transceiver station, BTS) in a GSM system or a CDMA system, a home base station (for example, home evolved nodeB, or home node B, HNB), a baseband unit (baseband unit, BBU), a transmitting point (transmitting and receiving point, TRP), a transmitting point (transmitting point, TP) or a mobile switching center, etc.
  • a next-generation base station gNB
  • eNB evolved node B
  • RNC radio network controller
  • the user equipment 101 supports a 1-transmit 4-receive (1T4R) mode, that is, the user equipment 101 has a common transmit-receive antenna (or main antenna) 201 and three receive antennas (or diversity antennas) 202.
  • the common transmit-receive antenna 201 transmits a signal (such as SRS) through the main transceiver module 203
  • the signal path passes through path 1, and path 1 includes a single-pole four-throw switch (SP4T) 205 component.
  • SP4T single-pole four-throw switch
  • Any receive antenna 202 is connected to the corresponding diversity receiving module 204 to receive the signal.
  • the receiving antenna 202 needs to switch to connect to the main transceiver module 203 to transmit the SRS.
  • the SRS signal path becomes the dotted path 2, which includes a single-pole four-throw switch (SP4T) 205 component and a single-pole double-throw switch (SPDT) 206 component.
  • SP4T single-pole four-throw switch
  • SPDT single-pole double-throw switch
  • the existing protocol defines a unified insertion loss ( ⁇ T RxSRS ) for the SRS antenna switching scenario, for example, ⁇ T RxSRS is 3dB in the frequency band less than 4.4GHz, and ⁇ T RxSRS is 4.5dB in the frequency band greater than or equal to 4.4GHz.
  • the ⁇ T RxSRS is obtained by comparing the additional insertion loss on each antenna and taking the maximum value. That is to say, when a UE switches from the common transmit and receive antenna 201 to the receive antenna 202 based on the existing protocol, the base station considers compensating the unified ⁇ T RxSRS on the measurement result corresponding to the receive antenna 202 during the downlink channel estimation or the UE calculating the maximum configurable power (Pcmax).
  • ⁇ T RxSRS for channel estimation may result in large errors, affecting the accuracy of channel estimation.
  • ⁇ T RxSRS will be larger. Therefore, a more accurate channel estimation method is required.
  • FIG. 3 is a method for transmitting capability information according to an exemplary embodiment. As shown in FIG. 3 , the method includes steps S301 to S302, specifically:
  • Step S301 User equipment 101 sends capability information to network equipment 102, where the capability information includes insertion loss parameters of a receiving antenna of the user equipment in a sounding reference signal SRS antenna switching scenario.
  • Step S302 the network device 102 receives capability information.
  • the user equipment 101 may support different SRS antenna switching capabilities, that is, corresponding to different transceiver modes.
  • the user equipment 101 supports 1 transmit 2 receive (1T2R), 1 transmit 4 receive (1T4R), or 2 transmit 4 receive (2T4R), etc.
  • the capability information may also include the SRS antenna switching capability of the user equipment 101 .
  • the capability information may indicate the same insertion loss parameter applicable to the multiple receiving antennas, or indicate the insertion loss parameter corresponding to each receiving antenna respectively.
  • the user equipment 101 supports 1T4R, that is, includes one common antenna for transmitting and receiving and three receiving antennas.
  • the capability information of the user equipment 101 includes an insertion loss parameter.
  • the insertion loss parameter is applicable to any receiving antenna.
  • the user equipment 101 supports 1T4R, that is, includes one common antenna for transmitting and receiving and three receiving antennas.
  • the capability information of the user equipment 101 includes three insertion loss parameters, each of which is applicable to a corresponding receiving antenna.
  • the insertion loss parameter may refer to an insertion loss value ⁇ T RxSRS , or an insertion loss value range.
  • the network device 101 may perform downlink channel estimation according to the capability information, such as estimating the downlink channel quality, so as to perform more reasonable resource allocation or beam management.
  • the method of the present disclosure further includes step S303, specifically:
  • Step S303 The network device 102 determines the downlink channel quality according to the capability information.
  • the user equipment 101 transmits SRS for each antenna according to the SRS resource configuration of the network device 102.
  • the network device 102 receives and measures the SRS of each antenna, thereby obtaining the uplink channel quality of the channel corresponding to each antenna, and uses the insertion loss parameter corresponding to each antenna to compensate for the evaluation result.
  • the uplink channel quality can represent the downlink channel quality, so the network device 102 can obtain the downlink channel quality.
  • the parameters of the downlink channel quality include, but are not limited to, the reference signal received power (RSRP) of the SRS, the reference signal received quality (RSRQ), the signal to interference ratio (SINR) or the received signal strength indication (RSSI).
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • SINR signal to interference ratio
  • RSSI received signal strength indication
  • the compensation can be combined with the calculation method of each quality parameter, for example, adding or subtracting the corresponding insertion loss parameter from the quality parameter.
  • the user device 101 reports the capability information to the network device 102 and the insertion loss parameters corresponding to the receiving antenna in the SRS antenna switching scenario, so that the network device 102 can obtain the insertion loss parameters of the receiving antenna of the user device 101, so that the network device can perform more reasonable processing based on the insertion loss parameters of the receiving antenna of the user device, such as performing more accurate channel estimation.
  • FIG. 4 is a method for sending capability information according to an exemplary embodiment. As shown in FIG. 4 , the method includes step S401, specifically:
  • Step S401 User equipment 101 sends capability information to network equipment 102 , where the capability information includes an insertion loss parameter of a receiving antenna of user equipment 101 in a sounding reference signal SRS antenna switching scenario.
  • the insertion loss parameter may refer to an insertion loss value ⁇ T RxSRS , or an insertion loss value range.
  • the insertion loss value may be directly indicated in the capability information, that is, the field of the capability information includes a numerical value corresponding to the insertion loss value.
  • the capability information indirectly indicates the insertion loss parameter.
  • the insertion loss parameter is indicated by bits of certain fields or information domains in the capability information.
  • the user equipment 101 may obtain the insertion loss parameter corresponding to each receiving antenna in advance during a test process during the factory delivery process, and write the insertion loss parameter into the user equipment 101 .
  • the user equipment 101 may support different SRS antenna switching capabilities, that is, corresponding to different transceiver modes.
  • the user equipment 101 supports 1 transmit 2 receive (1T2R), 1 transmit 4 receive (1T4R), or 2 transmit 4 receive (2T4R), etc.
  • the capability information further includes the SRS antenna switching capability of the user equipment 101 .
  • the capability information is SRS-TxSwitch capability
  • the capability information includes insertion loss parameters.
  • the capability information may indicate the same insertion loss parameter applicable to the multiple receiving antennas, or indicate the insertion loss parameter corresponding to each receiving antenna respectively.
  • the user equipment 101 supports 1T4R, that is, includes one common antenna for transmitting and receiving and three receiving antennas.
  • the capability information of the user equipment 101 includes an insertion loss parameter.
  • the insertion loss parameter is applicable to any receiving antenna.
  • the user equipment 101 supports 1T4R, that is, includes one common antenna for transmitting and receiving and three receiving antennas.
  • the capability information of the user equipment 101 includes three insertion loss parameters, each of which is applicable to a corresponding receiving antenna.
  • the user equipment 101 transmits an SRS once per antenna according to the configuration of the network device 102 .
  • the user device 101 reports the capability information to the network device 102 and the insertion loss parameters corresponding to the receiving antenna in the SRS antenna switching scenario, so that the network device 102 can obtain the insertion loss parameters of the receiving antenna of the user device 101, so that the network device can perform more reasonable processing based on the insertion loss parameters of the receiving antenna of the user device, such as performing more accurate channel estimation.
  • the present disclosure embodiment provides a method for sending capability information, which is performed by the user equipment 101.
  • the method includes step S401, specifically:
  • Step S401 User equipment 101 sends capability information to network equipment 102 , where the capability information includes an insertion loss parameter of a receiving antenna of user equipment 101 in a sounding reference signal SRS antenna switching scenario.
  • the capability information includes N bits for indicating an insertion loss parameter, and each value of the N bits indicates a corresponding insertion loss parameter.
  • the insertion loss parameter includes one of the following: an insertion loss value, and an insertion loss value range.
  • N may be greater than or equal to 1.
  • N is equal to 1, that is, the insertion loss parameter is indicated by 1 bit in the capability information.
  • the insertion loss parameter is an insertion loss value.
  • the corresponding indicated insertion loss value is 3dB; when the one bit value is 1, the corresponding indicated insertion loss value is 4dB.
  • the insertion loss parameter is an insertion loss value range.
  • the corresponding indicated insertion loss value range is 0-4 dB; when the one bit value is 1, the corresponding indicated insertion loss value range is 4-6 dB.
  • N is equal to 2, that is, the insertion loss parameter is indicated by 2 bits in the capability information.
  • the insertion loss parameter is an insertion loss value. As shown in Table 1, when the values of the two bits are different, they respectively indicate different insertion loss values.
  • the insertion loss parameter is an insertion loss value range. As shown in Table 2, when the values of the two bits are different, they respectively indicate different insertion loss value ranges.
  • multiple frequency bands may be applicable.
  • the capability information may include insertion loss parameters corresponding to each frequency band.
  • the user equipment 101 indicates the insertion loss parameter through some bits in the capability information.
  • the embodiment of the present disclosure provides a method for sending capability information, which is performed by the user equipment 101.
  • the method includes step S401, specifically:
  • Step S401 User equipment 101 sends capability information to network equipment 102 , where the capability information includes an insertion loss parameter of a receiving antenna of user equipment 101 in a sounding reference signal SRS antenna switching scenario.
  • the capability information includes an insertion loss parameter corresponding to each frequency band in the multiple frequency bands.
  • the multiple frequency bands may be all communication frequency bands supported by the user equipment 101, or may be part of the frequency bands.
  • the capability information includes information fields corresponding to multiple frequency bands respectively, and each information field may include N bits.
  • an insertion loss parameter is reported corresponding to each frequency band, wherein the insertion loss parameter corresponding to a certain frequency band may be indicated by 1 bit or 2 bits.
  • insertion loss parameters corresponding to some frequency bands may be the same.
  • the insertion loss parameter includes one of the following: an insertion loss value, and an insertion loss value range.
  • the user equipment 101 may report corresponding insertion loss parameters according to different frequency bands, refine application scenarios, and improve the accuracy of channel estimation in different frequency bands.
  • the embodiment of the present disclosure provides a method for sending capability information, which is performed by the user equipment 101.
  • the method includes step S401, specifically:
  • Step S401 User equipment 101 sends capability information to network equipment 102 , where the capability information includes an insertion loss parameter of a receiving antenna of user equipment 101 in a sounding reference signal SRS antenna switching scenario.
  • the capability information includes at least one insertion loss parameter corresponding to the first frequency band.
  • the at least one insertion loss parameter may correspond to different receiving antennas.
  • the number of insertion loss parameters in the capability information is related to the capability of the user equipment 101 .
  • the user equipment 101 supports 1T2R, and can report an insertion loss parameter.
  • the insertion loss parameter is applicable to the first frequency band and a receiving antenna other than the transmitting and receiving shared antenna.
  • the user equipment 101 supports 1T4R, and may report two or three insertion loss parameters, each insertion loss parameter corresponding to a receiving antenna.
  • the network device 102 determines a receiving antenna to which the insertion loss parameter is applicable based on the capability information.
  • the user equipment 101 reports both the identifier of the receiving antenna and the insertion loss parameter corresponding to the receiving antenna in the capability information.
  • the insertion loss parameter includes one of the following: an insertion loss value, and an insertion loss value range.
  • each of the multiple frequency bands corresponds to an insertion loss parameter
  • its implementation method can refer to the embodiment corresponding to the first frequency band.
  • the user equipment 101 may report at least one insertion loss parameter in a certain frequency band, so that it may correspond to different receiving antennas, that is, the insertion loss parameters corresponding to different receiving antennas may be different, so as to further improve the accuracy of channel estimation corresponding to each antenna.
  • FIG. 5 is a method for sending capability information according to an exemplary embodiment. As shown in FIG. 5 , the method includes steps S501 to S502, specifically:
  • Step S501 the user equipment 101 determines capability information according to the SRS antenna switching capability and the configuration information sent by the network device 102 , where the configuration information includes the number of SRS ports.
  • Step S502 the user equipment 101 sends capability information to the network equipment 102 .
  • the capability information includes an insertion loss parameter of a receiving antenna of the user equipment 101 in an SRS antenna switching scenario, and the capability information includes at least one corresponding insertion loss parameter in the first frequency band.
  • the user equipment 101 may support 1 transmit 2 receive (1T2R), 1 transmit 4 receive (1T4R), or 2 transmit 4 receive (2T4R), etc.
  • the configuration information sent by the network device 102 includes a configured SRS resource set (SRS resources set), and the SRS resources set includes an SRS resource and a number of SRS ports (SRS ports) associated with the resource.
  • SRS resources set includes an SRS resource and a number of SRS ports (SRS ports) associated with the resource.
  • SRS ports SRS ports
  • each antenna sends an SRS according to the corresponding SRS resource.
  • the SRS port represents a logical port and can be mapped to a physical antenna port.
  • the user equipment 101 may determine the number of reported insertion loss parameters based on its own switching capability and the number of SRS ports.
  • the insertion loss parameter includes one of the following: an insertion loss value, and an insertion loss value range.
  • step S501 may include the following step S501′, specifically:
  • Step S501' determining the number M of insertion loss parameters according to the number of transmitting and receiving shared antennas supported by the user equipment and the number of SRS ports, so as to determine capability information including M insertion loss parameters.
  • the number of SRS ports is generally 1, 2 or 4.
  • the SRS antenna switching capability (SRS-TxSwitch capability) of the user equipment can represent the number of transmit and receive shared antennas it supports.
  • the user equipment 101 supports 1 transmit-receive shared antenna (antenna 1) and 1 receive antenna (antenna 2).
  • the transmit-receive shared antenna is an antenna that supports simultaneous reception and transmission of signals.
  • the number of SRS ports is 1, indicating that the user equipment 101 supports at most one antenna to perform transmission simultaneously.
  • M 1, that is, the insertion loss parameter is configured only for the one receiving antenna (antenna 2).
  • the user equipment 101 supports 1 shared transmit and receive antenna (antenna 1) and 3 receive antennas (antenna 2, antenna 3 and antenna 4).
  • the number of SRS ports is 1, indicating that the user equipment 101 supports at most one antenna to perform transmission simultaneously.
  • M 3, and insertion loss parameters need to be configured for the three receiving antennas, namely antenna 2, antenna 3, and antenna 4.
  • the insertion loss parameter is an insertion loss value
  • the insertion loss value corresponding to antenna 2 is ⁇ T RxSRS(1)
  • the insertion loss value corresponding to antenna 3 is ⁇ T RxSRS(2)
  • the insertion loss value corresponding to antenna 4 is ⁇ T RxSRS(3) .
  • the user equipment 101 supports 2 shared transmit and receive antennas (antenna 1 and antenna 2) and 2 receive antennas (antenna 3 and antenna 4).
  • the number of SRS ports is 2, indicating that the user equipment 101 supports at most 2 antennas to perform transmission simultaneously, for example, antenna 1 and antenna 2 can transmit and receive simultaneously.
  • M 2
  • insertion loss parameters need to be configured for the two receiving antennas, namely antenna 3 and antenna 4.
  • the insertion loss parameter is an insertion loss value
  • the insertion loss values of the two can be the same or different.
  • the user equipment 101 may report more ⁇ T RxSRS .
  • the user equipment 101 may report 7 ⁇ T RxSRS to correspond to 7 receiving antennas respectively. At this time, the user equipment 101 may report the antenna identifier and its corresponding insertion loss parameter in the capability information.
  • the user equipment 101 can report 3 ⁇ T RxSRS , each ⁇ T RxSRS corresponds to a group of receiving antennas, and each group of receiving antennas can include two antennas. At this time, the user equipment 101 can report the antenna group identifier and the insertion loss parameter corresponding to each group in the capability information.
  • the user equipment 101 may report 1 ⁇ T RxSRS , and the ⁇ T RxSRS is applicable to four receiving antennas.
  • the user equipment 101 in a scenario where the user equipment 101 reports multiple insertion loss parameters in a certain frequency band, the user equipment can determine the number of insertion loss parameters to be reported based on its own capabilities and network configuration information, so that the multiple insertion loss parameters can be matched to the corresponding antennas.
  • the embodiment of the present disclosure provides a method for sending capability information, which is performed by the user equipment 101.
  • the method includes step S401, specifically:
  • Step S401 User equipment 101 sends capability information to network equipment 102 , where the capability information includes an insertion loss parameter of a receiving antenna of user equipment 101 in a sounding reference signal SRS antenna switching scenario.
  • the capability information includes at least one insertion loss parameter corresponding to the first frequency band.
  • the at least one insertion loss parameter may correspond to different receiving antennas.
  • the capability information further includes an identifier of a receiving antenna corresponding to at least one insertion loss parameter.
  • the identifier corresponding to each receiving antenna may be synchronously reported in the capability information.
  • the insertion loss parameter includes one of the following: an insertion loss value, and an insertion loss value range.
  • the user equipment 101 may synchronously report the identifiers of the receiving antennas in the capability information.
  • FIG. 6 is a method for receiving capability information according to an exemplary embodiment. As shown in FIG. 6 , the method includes step S601, specifically:
  • Step S601 The network device 102 receives capability information sent by the user equipment 101, where the capability information includes an insertion loss parameter of a receiving antenna of the user equipment 101 in a sounding reference signal SRS antenna switching scenario.
  • the insertion loss value may be directly indicated in the capability information, that is, the field of the capability information includes a numerical value corresponding to the insertion loss value.
  • the capability information indirectly indicates the insertion loss parameter.
  • the insertion loss parameter is indicated by bits of certain fields or information domains in the capability information.
  • the capability information further includes the SRS antenna switching capability of the user equipment 101 .
  • the capability information is SRS-TxSwitch capability
  • the capability information includes insertion loss parameters.
  • the insertion loss parameter includes one of the following: an insertion loss value, and an insertion loss value range.
  • multiple frequency bands may be applicable.
  • the capability information may include insertion loss parameters corresponding to each frequency band.
  • the capability information indicates at least one insertion loss parameter in a first frequency band.
  • the first frequency band may be any frequency band among a plurality of frequency bands.
  • the network device 101 may perform downlink channel estimation according to the capability information, for example, estimating downlink channel quality.
  • the network device 102 obtains the insertion loss parameters of the receiving antenna of the user equipment 101 through the capability information reported by the user equipment 101, so that the network device can perform more reasonable processing based on the insertion loss parameters of the receiving antenna of the user equipment, such as performing more accurate channel estimation.
  • FIG. 7 is a method for receiving capability information according to an exemplary embodiment. As shown in FIG. 7 , the method includes steps S701 to S702, specifically:
  • Step S701 The network device 102 receives capability information sent by the user equipment 101, where the capability information includes an insertion loss parameter of a receiving antenna of the user equipment 101 in a sounding reference signal SRS antenna switching scenario.
  • Step S702 The network device 102 determines a first part of receiving antennas to which insertion loss parameters are applicable according to the capability information.
  • the network device 102 first determines the insertion loss parameter indicated in the capability information.
  • the capability information may directly include an insertion loss value, and the network device 102 may determine the insertion loss parameter after demodulating the capability information.
  • the capability information may indirectly indicate the insertion loss parameter, for example, by means of bit indication.
  • the network device 102 determines the corresponding insertion loss parameter according to the value of N bits in the capability information.
  • N may be greater than or equal to 1.
  • the network device 102 determines the corresponding insertion loss value, or the insertion loss value range, according to the value of N bits.
  • some of its antennas may be suitable for the insertion loss parameters reported in the capability information.
  • the insertion loss parameters can be used to compensate for the channel quality assessment corresponding to the antenna in the SRS antenna switching scenario.
  • the first part of receiving antennas may be all receiving antennas of the user equipment 101, or part of the receiving antennas.
  • step S702 may include the following step S702', specifically:
  • step S702' the network device 102 determines the first part of receiving antennas to which the insertion loss parameters are applicable according to the SRS antenna switching capability and the number of SRS ports configured in the network device.
  • the capability information further includes: the SRS antenna switching capability of the user equipment.
  • the user equipment 101 supports 1T2R, 1T4R or 2T4R and the like.
  • the capability information may include insertion loss parameters corresponding to a plurality of frequency bands, or may include insertion loss parameters corresponding to a certain frequency band (eg, the first frequency band).
  • the capability information includes an insertion loss parameter corresponding to each frequency band in the multiple frequency bands.
  • the user equipment 101 reports the insertion loss parameters corresponding to different frequency bands respectively.
  • step S702 may include the following step S702-1, specifically:
  • Step S702-1 In any frequency band of the multiple frequency bands, determine a first part of receiving antennas to which insertion loss parameters corresponding to any frequency band are applicable.
  • each frequency band may report an insertion loss parameter accordingly. That is, in this example, the network device 102 may determine the first part of receiving antennas in any frequency band that are applicable to the insertion loss parameter.
  • the implementation manner when more than one insertion loss parameter is reported for each frequency band, the implementation manner may refer to the description of the embodiment corresponding to the first frequency band below.
  • the network device 102 needs to determine a receiving antenna with suitable insertion loss parameters in combination with the switching capability of the user equipment 101 and the number of SRS ports.
  • the capability information includes an insertion loss value ⁇ T RxSRS corresponding to a certain frequency band among multiple frequency bands.
  • the user equipment 101 supports 1 transmit-receive shared antenna (antenna 1) and 1 receive antenna (antenna 2).
  • the number of SRS ports is 1, indicating that the user equipment 101 supports at most one antenna to perform transmission simultaneously.
  • the network device 102 can determine that the insertion loss parameter is only applicable to the one receiving antenna (antenna 2). That is, in this example, the first part of antennas includes antenna 2.
  • the user equipment 101 supports 1 shared transmit and receive antenna (antenna 1) and 3 receive antennas (antenna 2, antenna 3 and antenna 4).
  • the number of SRS ports is 1, indicating that the user equipment 101 supports at most one antenna to perform transmission simultaneously.
  • the network device 102 may determine that the insertion loss parameter is applicable to all receiving antennas, that is, in this example, the first part of antennas includes antenna 2, antenna 3 and antenna 4.
  • the user equipment 101 supports 2 shared transmit and receive antennas (antenna 1 and antenna 2) and 2 receive antennas (antenna 3 and antenna 4).
  • the number of SRS ports is 2, indicating that the user equipment 101 supports at most 2 antennas to perform transmission simultaneously, for example, antenna 1 and antenna 2 can transmit and receive simultaneously.
  • the network device 102 can determine that the insertion loss parameter is applicable to two receiving antennas.
  • the first part of antennas includes antenna 3 and antenna 4.
  • the capability information includes at least one insertion loss parameter corresponding to the first frequency band.
  • step S702 may include the following step S702-2, specifically:
  • Step S702-2 The network device 102 determines a first part of receiving antennas to which at least one insertion loss parameter is applicable in a first frequency band.
  • the network device 102 may allocate at least one insertion loss parameter to the first part of receiving antennas according to a set order.
  • the number of SRS ports is 1 and the SRS antenna switching capability of the user equipment supports 1T4R. It is assumed that three insertion loss values ⁇ T RxSRS(1) , ⁇ T RxSRS(2) and ⁇ T RxSRS(3) in the first frequency band are reported in the capability information.
  • the network device 102 knows that it supports one common antenna for transmitting and receiving (antenna 1) and three receiving antennas (antenna 2, antenna 3, and antenna 4) according to the capability of the user device 101.
  • the network device 102 can allocate the three insertion loss values to the three receiving antennas in a set order.
  • the set order can be defined by the network device 102 or corresponds to the order of round-robin transmission.
  • the network device 102 needs to determine a receiving antenna with suitable insertion loss parameters in combination with the switching capability of the user equipment 101 and the number of SRS ports.
  • the capability information includes M insertion loss parameters corresponding to the first frequency band, and identifiers of receiving antennas corresponding to the M insertion loss parameters.
  • step S702 may include the following step S702-3, specifically:
  • Step S702-3 The network device 102 determines a first part of receiving antennas to which M insertion loss parameters are applicable in the first frequency band according to the identifiers of the receiving antennas, the SRS antenna switching capability, and the number of SRS ports configured in the network device.
  • the capability information reported by the user equipment 101 indicates the antenna identification and its corresponding insertion loss parameter, so the network device 102 does not need to reallocate, and only needs to demodulate the capability information to obtain the applicability of the insertion loss parameter.
  • An embodiment of the present disclosure provides a method for receiving capability information, which is executed by the network device 102 .
  • the method includes steps S601 to S602, specifically:
  • Step S601 The network device 102 receives capability information sent by the user equipment 101, where the capability information includes an insertion loss parameter of a receiving antenna of the user equipment 101 in a sounding reference signal SRS antenna switching scenario.
  • Step S602 The network device 102 determines the downlink channel quality according to the capability information.
  • the method includes steps S701 to S703, specifically:
  • Step S701 The network device 102 receives capability information sent by the user equipment 101, where the capability information includes an insertion loss parameter of a receiving antenna of the user equipment 101 in a sounding reference signal SRS antenna switching scenario.
  • Step S702 The network device 102 determines a first part of receiving antennas to which insertion loss parameters are applicable according to the capability information.
  • Step S703 The network device 102 determines the downlink channel quality according to the capability information.
  • the network device 102 evaluates the downlink channel quality according to the insertion loss parameter in the capability information.
  • the user equipment 101 transmits the SRS according to the corresponding SRS resource for each antenna according to the SRS resource configuration of the network device 102.
  • the network device 102 receives and measures the SRS of each antenna, thereby obtaining the uplink channel quality of the channel corresponding to each antenna, and uses the insertion loss parameter corresponding to each antenna to compensate for the evaluation result.
  • the uplink channel quality can characterize the downlink channel quality, so the network device 102 can obtain the downlink channel quality.
  • the parameters of downlink channel quality include but are not limited to RSRP, RSRQ, SINR or RSSI of SRS.
  • compensation can be performed in combination with the calculation method of each indicator, for example, adding or subtracting the corresponding insertion loss parameter from the quality parameter.
  • step S703 may include the following step S703', specifically:
  • Step S703' when the first part of receiving antennas sends SRS, the network device 102 determines the downlink channel quality according to the insertion loss parameters applicable to the first part of receiving antennas.
  • the network device 102 may determine a first portion of receiving antennas, which are suitable for the insertion loss parameters reported by the user equipment 101.
  • the network device 102 can perform channel evaluation corresponding to the antenna in combination with the insertion loss parameter corresponding to the antenna, such as determining the corresponding downlink channel quality.
  • the insertion loss parameter includes one of the following: an insertion loss value, and an insertion loss value range.
  • the network device 102 obtains the insertion loss parameters of the user device 101 in the SRS antenna switching scenario based on the received capability information, so that the uplink channel quality corresponding to each receiving antenna can be accurately evaluated in combination with the insertion loss parameters of the antenna, thereby improving system performance and evaluation accuracy for better resource allocation.
  • the embodiment of the present disclosure also provides a device for sending capability information, which may have the functions of the user equipment 101 in the above method embodiment, and may be used to execute the steps performed by the user equipment 101 provided in the above method embodiment.
  • the function may be implemented by hardware, or by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 800 shown in FIG8 may be used as the user equipment 101 involved in the above method embodiment, and execute the steps performed by the user equipment 101 in the above method embodiment.
  • the communication device 800 may include a transceiver module 801, wherein the transceiver module 801 may be used to support the communication device to communicate, and the transceiver module 801 may have a wireless communication function, for example, being able to communicate wirelessly with other communication devices through a wireless air interface.
  • the transceiver module 801 When executing the steps implemented by the user equipment 101, the transceiver module 801 is configured to send capability information to the network device, where the capability information includes insertion loss parameters of the receiving antenna of the user equipment in the sounding reference signal SRS antenna switching scenario.
  • the device 900 may include one or more of the following components: a processing component 902, a memory 904, a power component 906, a multimedia component 908, an audio component 910, an input/output (I/O) interface 912, a sensor component 914, and a communication component 916.
  • the processing component 902 generally controls the overall operation of the device 900, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 902 may include one or more processors 920 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • the processing component 902 may include one or more modules to facilitate the interaction between the processing component 902 and other components.
  • the processing component 902 may include a multimedia module to facilitate the interaction between the multimedia component 908 and the processing component 902.
  • the memory 904 is configured to store various types of data to support operations on the device 900. Examples of such data include instructions for any application or method operating on the device 900, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 904 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 906 provides power to the various components of the device 900.
  • the power supply component 906 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 900.
  • the multimedia component 908 includes a screen that provides an output interface between the device 900 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 908 includes a front camera and/or a rear camera. When the device 900 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 910 is configured to output and/or input audio signals.
  • the audio component 910 includes a microphone (MIC), and when the device 900 is in an operating mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 904 or sent via the communication component 916.
  • the audio component 910 also includes a speaker for outputting audio signals.
  • I/O interface 912 provides an interface between processing component 902 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 914 includes one or more sensors for providing various aspects of status assessment for the device 900.
  • the sensor assembly 914 can detect the open/closed state of the device 900, the relative positioning of components, such as the display and keypad of the device 900, and the sensor assembly 914 can also detect the position change of the device 900 or a component of the device 900, the presence or absence of user contact with the device 900, the orientation or acceleration/deceleration of the device 900, and the temperature change of the device 900.
  • the sensor assembly 914 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor assembly 914 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 914 may also include an accelerometer, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 916 is configured to facilitate wired or wireless communication between the device 900 and other devices.
  • the device 900 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 916 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 916 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 900 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic components to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors or other electronic components to perform the above method.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 904 including instructions, and the instructions can be executed by the processor 920 of the device 900 to perform the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • the embodiment of the present disclosure also provides a device for receiving capability information, which can have the function of the network device 102 in the above method embodiment, and can be used to execute the steps performed by the network device 102 provided by the above method embodiment.
  • the function can be implemented by hardware, or by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device 1000 shown in FIG10 can be used as the network device 102 involved in the above method embodiment, and execute the steps performed by the network device 102 in the above method embodiment.
  • the device 1100 may include a transceiver module 1001 and a processing module 1002 coupled to each other, wherein the transceiver module 1001 can be used to support the communication device to communicate, and the transceiver module 1001 can have a wireless communication function, for example, it can communicate wirelessly with other communication devices through a wireless air interface.
  • the processing module 1002 can be used for the communication device to perform processing operations, such as generating information/messages to be sent, or processing received signals to obtain information/messages.
  • the transceiver module 1001 When executing the steps implemented by the network device 102, the transceiver module 1001 is configured to receive capability information sent by the user equipment, where the capability information includes insertion loss parameters of the receiving antenna of the user equipment in a sounding reference signal SRS antenna switching scenario.
  • the communication device When the communication device is a network device 102, its structure can also be shown in Figure 11. Take the base station as an example to illustrate the structure of the communication device. As shown in Figure 11, the device 1100 includes a memory 1101, a processor 1102, a transceiver component 1103, and a power supply component 1106. Among them, the memory 1101 is coupled to the processor 1102, and can be used to store the programs and data necessary for the communication device 1100 to implement various functions.
  • the processor 1102 is configured to support the communication device 1100 to perform the corresponding functions in the above method, and the functions can be implemented by calling the program stored in the memory 1101.
  • the transceiver component 1103 can be a wireless transceiver, which can be used to support the communication device 1100 to receive signaling and/or data through a wireless air interface, and send signaling and/or data.
  • the transceiver component 1103 may also be referred to as a transceiver unit or a communication unit.
  • the transceiver component 1103 may include a radio frequency component 1104 and one or more antennas 1105, wherein the radio frequency component 1104 may be a remote radio unit (RRU), which may be specifically used for transmission of radio frequency signals and conversion of radio frequency signals into baseband signals, and the one or more antennas 1105 may be specifically used for radiation and reception of radio frequency signals.
  • RRU remote radio unit
  • the processor 1102 can perform baseband processing on the data to be sent, and then output the baseband signal to the RF unit.
  • the RF unit performs RF processing on the baseband signal and then sends the RF signal in the form of electromagnetic waves through the antenna.
  • the RF unit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor 1102.
  • the processor 1102 converts the baseband signal into data and processes the data.
  • the user equipment reports capability information to the network equipment and reports the insertion loss parameters corresponding to the receiving antenna in the SRS antenna switching scenario, so that the network equipment can obtain the insertion loss parameters of the receiving antenna of the user equipment, so that the network equipment can perform more reasonable processing based on the insertion loss parameters of the receiving antenna of the user equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种传输能力信息的方法、装置及可读存储介质,所述方法包括:向网络设备发送能力信息,所述能力信息包括所述用户设备在探测参考信号SRS天线切换场景下接收天线的插损参数。本公开的方法中,用户设备通过向网络设备上报能力信息,上报SRS天线切换场景中接收天线对应的插损参数,从而网络设备可以获知该用户设备接收天线的插损参数,以便于网络设备基于该用户设备接收天线的插损参数进行更合理的处理。

Description

一种传输能力信息的方法、装置及可读存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种传输能力信息的方法、装置及可读存储介质。
背景技术
在第三代合作伙伴计划协议(3rd Generation Partnership Project,3GPP)版本15(Release 15,R15)中引入了探测参考信号(Sounding Reference Signal,SRS)天线切换功能。基于该功能,用户设备(User Equipment,UE)可进行SRS天线轮发,基站测量UE各天线发送的SRS,并基于信道互易性评估下行信道的信道质量。该方法可提升下行信道估计的准确性,并避免通过终端间接反馈带来的延时和精度差等问题。
在UE进行天线切换发送SRS的过程中,SRS所走的路径不同。需解决不同路径带来的插损不同,而影响信道估计准确性的问题。
发明内容
本公开提供了一种传输能力信息的方法、装置及可读存储介质。
第一方面,本公开提供一种发送能力信息的方法,被用户设备执行,所述方法包括:
向网络设备发送能力信息,所述能力信息包括所述用户设备在探测参考信号SRS天线切换场景下接收天线的插损参数。
本公开的方法中,用户设备通过向网络设备上报能力信息,上报SRS天线切换场景中接收天线对应的插损参数,从而网络设备可以获知该用户设备接收天线的插损参数,以便于网络设备基于该用户设备接收天线的插损参数进行更合理的处理。
在一些可能的实施方式中,所述能力信息包括用于指示所述插损参数的N个比特,所述N个比特的每种取值指示对应的插损参数。
在一些可能的实施方式中,所述能力信息包括多个频段中每个频段对应的插损参数。
在一些可能的实施方式中,所述能力信息包括第一频段下对应的至少一个插损参数。
在一些可能的实施方式中,所述向网络设备发送能力信息,包括:
根据用户设备的SRS天线切换能力以及所述网络设备发送的配置信息,确定所述能力信息,所述配置信息中包括SRS端口数;
向所述网络设备发送所述能力信息。
在一些可能的实施方式中,所述根据用户设备的SRS天线切换能力以及所述网络设备发送的配置信息,确定所述能力信息,包括:
根据所述用户设备支持的收发共用天线的数量以及所述SRS的端口数,确定插损参数的数量M,以确定包括M个插损参数的能力信息。
在一些可能的实施方式中,所述能力信息还包括所述至少一个插损参数对应的接收天线的标识。
在一些可能的实施方式中,所述插损参数包括以下中的一项:
插损值;
插损值范围。
在一些可能的实施方式中,所述能力信息还包括所述用户设备的SRS天线切换能力。
第二方面,本公开提供一种接收能力信息的方法,被网络设备执行,所述方法包括:
接收用户设备发送的能力信息,所述能力信息包括所述用户设备在探测参考信号SRS天线切换场景下接收天线的插损参数。
在一些可能的实施方式中,所述方法还包括:
根据所述能力信息,确定所述插损参数适用的第一部分接收天线。
在一些可能的实施方式中,所述能力信息还包括:用户设备的SRS天线切换能力;
所述确定所述插损参数适用的第一部分接收天线,包括:
根据所述SRS天线切换能力以及所述网络设备配置的SRS端口数,确定所述插损参数适用的所述第一部分接收天线。
在一些可能的实施方式中,所述能力信息包括多个频段中每个频段对应的插损参数;
所述确定所述插损参数适用的所述第一部分接收天线,包括:
在多个频段的任一频段下,确定所述任一频段对应的插损参数适用的所述第一部分接收天线。
在一些可能的实施方式中,所述能力信息包括第一频段下对应的至少一插损参数。
所述确定所述插损参数适用的所述第一部分接收天线,包括:
确定第一频段下所述至少一个插损参数适用的所述第一部分接收天线。
在一些可能的实施方式中,所述能力信息包括:第一频段下对应的M个插损参数,以及所述M个插损参数对应的接收天线的标识;
所述确定所述插损参数适用的第一部分接收天线,包括:
根据所述接收天线的标识、所述SRS天线切换能力以及所述网络设备配置的SRS端口数,确定第一频段下所述M个插损参数适用的所述第一部分接收天线。
在一些可能的实施方式中,所述方法还包括:
根据所述能力信息确定下行信道质量。
在一些可能的实施方式中,所述根据所述能力信息确定下行信道质量,包括:
在第一部分接收天线发送SRS时,根据所述第一部分接收天线适用的插损参数确定所述下行信道质量。
在一些可能的实施方式中,所述插损参数包括以下中的一项:
插损值;
插损值范围。
第三方面,本公开提供一种发送能力信息的装置,该装置可用于执行上述第一方面或第一方面的任一可能的设计中由用户设备执行的步骤。该用户设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第三方面所示装置时,该装置可包括相互耦合的收发模块以及处理模块,其中,收发模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
在执行上述第一方面所述步骤时,收发模块被配置为,向网络设备发送能力信息,所述能力信息包括所述用户设备在探测参考信号SRS天线切换场景下接收天线的插损参数。
第四方面,本公开提供一种接收能力信息的装置,该装置可用于执行上述第二方面或第二方面的任一可能的设计中由网络设备执行的步骤。该网络设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第四方面所示装置时,该装置可包括收发模块,收发模块可用于支持通信装置进行通信。
在执行上述第二方面所述步骤时,收发模块被配置为,接收用户设备发送的能力信息,所述能力信息包括所述用户设备在探测参考信号SRS天线切换场景下接收天线的插损参数。
第五方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第一方面或第一方面的任意一种可能的设计。
第六方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第二方面或第二方面的任意一种可能的设计。
第七方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计。
第八方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本 公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是本公开实施例提供的一种无线通信系统架构示意图;
图2是根据一示例性实施例示出的用户设备的天线切换示意图;
图3是根据一示例性实施例示出的一种传输能力信息的方法的流程图;
图4是根据一示例性实施例示出的一种发送能力信息的方法的流程图;
图5是根据一示例性实施例示出的另一种发送能力信息的方法的流程图;
图6是根据一示例性实施例示出的一种接收能力信息的方法的流程图;
图7是根据一示例性实施例示出的另一种接收能力信息的方法的流程图;
图8是根据一示例性实施例示出的一种发送能力信息的装置的框图;
图9是根据一示例性实施例示出的用户设备的框图;
图10是根据一示例性实施例示出的一种接收能力信息的装置的框图;
图11是根据一示例性实施例示出的通信装置的框图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1所示,本公开实施例提供的一种传输能力信息的方法可应用于无线通信系统100, 该无线通信系统可以包括用户设备101和网络设备102。其中,用户设备101被配置为支持载波聚合,并可连接至网络设备102的多个载波单元,包括一个主载波单元以及一个或多个辅载波单元。
应理解,以上无线通信系统100既可适用于低频场景,也可适用于高频场景。无线通信系统100的应用场景包括但不限于长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for micro wave access,WiMAX)通信系统、云无线接入网络(cloud radio access network,CRAN)系统、未来的第五代(5th-Generation,5G)系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示用户设备101可以是终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或终端设备等。该用户设备101可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备进行通信(如无线通信),并接受网络设备提供的网络服务,这里的网络设备包括但不限于图示网络设备102。
其中,用户设备101可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
网络设备102可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备102具体可包括基站(base station,BS),或包括基站以及用于控制基站的无线资源管理设备等。该网络设备102还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备102可以是可穿戴设备或车载设备。网络设备102也可以是具有通信模块的通信芯片。
比如,网络设备102包括但不限于:5G中的下一代基站(gnodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(basestation controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
以图2为例进行说明,结合图2所示,用户设备101支持1发4收(1T4R)模式,即 用户设备101具备一个收发共用天线(或称主集天线)201,三个接收天线(或称分集天线)202。收发共用天线201通过主收发模块203进行发射信号(如SRS)时,信号路径经过路径1,路径1上包含单刀四掷开关(SP4T)205元件。任一接收天线202与对应的分集接收模块204连接,以接收信号。
而在SRS天线切换场景中,接收天线202需要切换至与主收发模块203连接以发射SRS,此时SRS信号路径变为虚线的路径2,该路径2上包括单刀四掷开关(SP4T)205元件以及单刀双掷开关(SPDT)206元件。其中,每个接收天线202对应的路径2-1、路径2-2和路径2-3的长度也可能不同。
在图2示例的基础上可知,在SRS天线切换场景中,切换接收天线202来发射SRS的路径,相较于收发共用天线201发射SRS的路径,额外增加了SPDT206的插损以及额外的线路损耗。
现有协议针对SRS天线切换场景定义了统一的插损(ΔT RxSRS),例如在小于4.4GHz的频段ΔT RxSRS为3dB,在大于或等于4.4GHz的频段ΔT RxSRS为4.5dB,该ΔT RxSRS是根据对比各个天线上额外插损,取最大值得出的。也就是说,基于现有协议不同的UE在由收发共用天线201切换至接收天线202时,基站在进行下行信道估计或者UE计算最大可配置功率(Pcmax)的过程中,考虑在接收天线202对应的测量结果上补偿该统一的ΔT RxSRS
但对于不同的UE,以及UE内部的不同信号路径,采用统一的插损ΔT RxSRS进行信道估计可能会带来较大的误差,影响信道估计的准确性。并且,随着UE中接收天线数量的增加(如8R),ΔT RxSRS会更大。因此,需要提供更准确的进行信道估计的方法。
本公开实施例提供了一种传输能力信息的方法。参照图3,图3是根据一示例性实施例示出的一种传输能力信息的方法,如图3所示,该方法包括步骤S301~S302,具体的:
步骤S301,用户设备101向网络设备102发送能力信息,能力信息包括用户设备在探测参考信号SRS天线切换场景下接收天线的插损参数。
步骤S302,网络设备102接收能力信息。
在一些可能的实施方式中,用户设备101可以支持不同的SRS天线切换能力,也即对应不同的收发模式。例如,用户设备101支持1发2收(1T2R)、1发4收(1T4R)或者2发4收(2T4R)等等。
在一些可能的实施方式中,能力信息还可以包括用户设备101的SRS天线切换能力。
在一些可能的实施方式中,当用户设备101支持多个接收天线,能力信息中可指示多个接收天线适用的同一个插损参数,或者分别指示每个接收天线对应的插损参数。
在一示例中,用户设备101支持1T4R,即包含一个收发共用天线和三个接收天线。用户设备101的能力信息中包含一个插损参数。本示例中,该插损参数适用于任一接收天线。
在一示例中,用户设备101支持1T4R,即包含一个收发共用天线和三个接收天线。用户设备101的能力信息中包含三个插损参数,每个插损参数适用对应的接收天线。
在一些可能的实施方式中,插损参数可以是指插损值ΔT RxSRS,或者是,插损值范围。
在一些可能的实施方式中,网络设备101可以根据该能力信息进行下行信道估计,例如估计下行信道质量,以便于进行更合理的资源分配或进行波束管理。
在一些可能的实施方式中,本公开的方法还包括步骤S303,具体的:
步骤S303,网络设备102根据能力信息确定下行信道质量。
在一些可能的实施方式中,在SRS天线切换场景中,用户设备101按照网络设备102的SRS资源配置,每个天线发射SRS。网络设备102接收并测量各天线的SRS,从而获知各天线对应信道的上行信道质量,并采用各天线对应的插损参数补偿评估结果。结合信道互易性,上行信道质量可表征下行信道质量,因此网络设备102可获知下行信道质量。
在一示例中,下行信道质量的参数包括但不限于SRS的参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量(Reference Signal Received Quality,RSRQ)、信号噪声干扰比(Signal to Interference plus Noise Ratio,SINR)或者接收信号强度指示(Receive Signal Strength Indication,RSSI)。在采用插损参数进行补偿时,可以结合每种质量参数的计算方式进行补偿,例如,在质量参数上增加或减去对应的插损参数。
本公开实施例中,用户设备101通过向网络设备102上报能力信息,上报SRS天线切换场景中接收天线对应的插损参数,从而网络设备102可以获知该用户设备101接收天线的插损参数,以便于网络设备基于该用户设备接收天线的插损参数进行更合理的处理,如进行更准确的信道估计。
本公开实施例提供了一种发送能力信息的方法,该方法被用户设备101执行。参照图4,图4是根据一示例性实施例示出的一种发送能力信息的方法,如图4所示,该方法包括步骤S401,具体的:
步骤S401,用户设备101向网络设备102发送能力信息,能力信息包括用户设备101在探测参考信号SRS天线切换场景下接收天线的插损参数。
在一些在可能的实施方式中,插损参数可以是指插损值ΔT RxSRS,或者是,插损值范围。
在一些可能的实施方式中,能力信息中可以直接的指示插损值,即能力信息的字段中包括插损值对应的数值。
在一些可能的实施方式中,能力信息间接的指示插损参数,例如,能力信息中通过某些字段或某信息域的比特指示插损参数。
在一些可能的实施方式中,用户设备101在出厂过程的测试过程中可预先获得各接收天线对应的插损参数,并写入用户设备101内部。
在一些可能的实施方式中,用户设备101可以支持不同的SRS天线切换能力,也即对应不同的收发模式。例如,用户设备101支持1发2收(1T2R)、1发4收(1T4R)或者2发4收(2T4R)等等。
在一些可能的实施方式中,能力信息还包括用户设备101的SRS天线切换能力。
例如,该能力信息为SRS-TxSwitch capability,该能力信息中包括插损参数。
在一些可能的实施方式中,当用户设备101支持多个接收天线,能力信息中可指示多个接收天线适用的同一个插损参数,或者分别指示每个接收天线对应的插损参数。
在一示例中,用户设备101支持1T4R,即包含一个收发共用天线和三个接收天线。用户设备101的能力信息中包含一个插损参数。本示例中,该插损参数适用于任一接收天线。
在一示例中,用户设备101支持1T4R,即包含一个收发共用天线和三个接收天线。用户设备101的能力信息中包含三个插损参数,每个插损参数适用对应的接收天线。
在一些可能的实施方式中,在SRS天线切换场景中,用户设备101按照网络设备102的配置,每个天线发射一次SRS。
本公开实施例中,用户设备101通过向网络设备102上报能力信息,上报SRS天线切换场景中接收天线对应的插损参数,从而网络设备102可以获知该用户设备101接收天线的插损参数,以便于网络设备基于该用户设备接收天线的插损参数进行更合理的处理,如进行更准确的信道估计。
本公开实施例提供了一种发送能力信息的方法,该方法被用户设备101执行。该方法包括步骤S401,具体的:
步骤S401,用户设备101向网络设备102发送能力信息,能力信息包括用户设备101在探测参考信号SRS天线切换场景下接收天线的插损参数。
其中,能力信息包括用于指示插损参数的N个比特,N个比特的每种取值指示对应的插损参数。
在一些在可能的实施方式中,插损参数包括以下中的一项:插损值,插损值范围。
在一些可能的实施方式中,N可以大于或等于1。
在一些可能的实施方式中,N等于1,即能力信息中通过1个比特指示插损参数。
在一示例中,插损参数为插损值。该1个比特值为0时,对应指示插损值为3dB;该一个比特值为1时,对应指示插损值为4dB。
在一示例中,插损参数为插损值范围。该1个比特值为0时,对应指示插损值范围为0~4dB;该一个比特值为1时,对应指示插损值范围为4~6dB。
在一些可能的实施方式中,N等于2,即能力信息中通过2个比特指示插损参数。
在一示例中,插损参数为插损值。结合表1所示,该2个比特的值不同时,分别对应指示不同的插损值。
表1
比特 插损值
00 2dB
01 3dB
10 4dB
11 6dB
在一个示例中,插损参数为插损值范围。结合表2所示,该2个比特的值不同时,分别对应指示不同的插损值范围。
表2
比特 插损值
00 0~2dB
01 2~4dB
10 4~6dB
11 >6dB
在一些可能的实施方式中,能力信息中上报插损参数时,可能适用多个频段。
在一些可能的实施方式中,能力信息中可分别包括每个频段对应的插损参数。
本公开实施例中,用户设备101通过能力信息中的部分比特指示插损参数。
本公开实施例提供了一种发送能力信息的方法,该方法被用户设备101执行。该方法包括步骤S401,具体的:
步骤S401,用户设备101向网络设备102发送能力信息,能力信息包括用户设备101在探测参考信号SRS天线切换场景下接收天线的插损参数。
其中,能力信息包括多个频段中每个频段对应的插损参数。
在一些可能的实施方式中,该多个频段可能是用户设备101支持的全部通信频段,也可能是其中的部分频段。
在一些可能的实施方式中,能力信息中包括多个频段分别对应的信息域,每个信息域中可以包括N个比特。
在一些可能的实施方式中,每个频段下对应上报一个插损参数。其中,可通过1个比特或2个比特指示某一个频段对应的插损参数。
在一些可能的实施方式中,部分频段对应插损参数可以相同。
在一些在可能的实施方式中,插损参数包括以下中的一项:插损值,插损值范围。
本公开实施例中,用户设备101可根据不同的频段分别上报对应的插损参数,细化应用场景,提升不同频段下信道估计的准确性。
本公开实施例提供了一种发送能力信息的方法,该方法被用户设备101执行。该方法 包括步骤S401,具体的:
步骤S401,用户设备101向网络设备102发送能力信息,能力信息包括用户设备101在探测参考信号SRS天线切换场景下接收天线的插损参数。
其中,能力信息包括第一频段下对应的至少一个插损参数。
在一些可能的实施方式中,该至少一个插损参数可以对应不同的接收天线。
在一些可能的实施方式中,能力信息中插损参数的个数与用户设备101的能力相关。
在一示例中,用户设备101支持1T2R,则可以上报一个插损参数。该一个插损参数适用第一频段,以及除收发共用天线外的一个接收天线。
在一示例中,用户设备101支持1T4R,则可以上报两个或三个插损参数,每个插损参数对应一个接收天线。
在一些可能的实施方式中,由网络设备102根据能力信息,确定插损参数适用的接收天线。
在一些可能的实施方式中,用户设备101在能力信息中同时上报接收天线的标识以及该接收天线对应的插损参数。
在一些在可能的实施方式中,插损参数包括以下中的一项:插损值,插损值范围。
可以理解的,在多个频段中每个频段对应有插损参数的场景中,若任一频段下对应多于一个的插损参数,其实施方式可参见第一频段对应的实施例。
本公开实施例中,用户设备101可以在某个频段上报至少一个插损参数,从而可以对应到不同的接收天线,即不同的接收天线对应的插损参数可能不同,以进一步提升每个天线对应信道估计的准确性。
本公开实施例提供了一种发送能力信息的方法,该方法被用户设备101执行。参照图5,图5是根据一示例性实施例示出的一种发送能力信息的方法,如图5所示,该方法包括步骤S501~S502,具体的:
步骤S501,用户设备101根据SRS天线切换能力以及网络设备102发送的配置信息,确定能力信息,配置信息中包括SRS端口数。
步骤S502,用户设备101向网络设备102发送能力信息。
其中,能力信息包括用户设备101在SRS天线切换场景下接收天线的插损参数,能力信息包括第一频段下对应的至少一个插损参数。
在一些可能的实施方式中,结合用户设备101的SRS天线切换能力,用户设备101可能支持1发2收(1T2R)、1发4收(1T4R)或者2发4收(2T4R)等等。
在一些可能的实施方式中,网络设备102下发的配置信息包括配置的SRS资源集(SRS resources set),SRS resources set中包括SRS资源和该资源关联的SRS端口(SRS port)数。用户设备101在天线轮发过程中,每个天线依据对应的SRS资源发送SRS。
在一些可能的实施方式中,SRS端口表征逻辑端口,可以映射到物理天线端口。
在一些可能的实施方式中,用户设备101结合自身切换能力以及SRS端口数,可以确 定上报插损参数的数量。
在一些在可能的实施方式中,插损参数包括以下中的一项:插损值,插损值范围。
在一些在可能的实施方式中,步骤S501可以包括如下步骤S501’,具体的:
步骤S501’,根据用户设备支持的收发共用天线的数量以及SRS的端口数,确定插损参数的数量M,以确定包括M个插损参数的能力信息。
该实施方式中,SRS端口数一般为1个、2个或4个。
该实施方式中,用户设备的SRS天线切换能力(SRS-TxSwitch capability)即可表征其支持的收发共用天线的数量。
为便于理解本公开实施例,以下结合表3列举三个示例进行说明。
在第一个示例中:
结合表3所示,在用户设备支持收发共用天线的数量最大为1,例如SRS天线切换能力对应1T2R或者1T1R转1T2R时,用户设备101支持1个收发共用天线(天线1)和1个接收天线(天线2)。其中,收发共用天线即支持同时接收和发射信号的天线。
本示例中,SRS端口数为1,表明用户设备101最多支持1个天线同时执行发送。此时M=1,即仅为该一个接收天线(天线2)配置插损参数即可。
在第二个示例中:
结合表3所示,在用户设备支持收发共用天线的数量最大为2,例如SRS天线切换能力对应1T4R、或者1T4R转2T4R、或者1T1R转1T2R转1T4R、或者1T1R转1T2R转2T2R转1T4R转2T4R时,用户设备101支持1个收发共用天线(天线1)和3个接收天线(天线2、天线3和天线4)。
本示例中,SRS端口数为1,表明用户设备101最多支持1个天线同时执行发送。此时M=3,要为三个接收天线即天线2、天线3和天线4,分别配置插损参数。当插损参数为插损值,天线2对应的插损值为ΔT RxSRS(1)、天线3对应的插损值为ΔT RxSRS(2)和天线4对应的插损值为ΔT RxSRS(3)
在第三个示例中:
结合表3所示,在用户设备支持收发共用天线的数量最大为2,例如SRS天线切换能力对应2T4R、或者1T4R转2T4R、或者1T1R转1T2R转2T2R转2T4R、或者1T1R转1T2R转2T2R转1T4R转2T4R时,用户设备101支持2个收发共用天线(天线1和天线2)和2个接收天线(天线3和天线4)。
本示例中,SRS端口数为2,表明用户设备101最多支持2个天线同时执行发送,例如天线1和天线2可以同时收发。此时M=2,要为两个接收天线即天线3和天线4,分别配置插损参数。当插损参数为插损值,二者的插损值可以相同或不同。
表3
Figure PCTCN2022130970-appb-000001
在第四个示例中:
当用户设备101具有更多的天线时,如支持1T8R,用户设备101可能上报更多的ΔT RxSRS
例如,在SRS天线切换能力对应1T8R,且SRS端口数为1时,用户设备101可以上报7个ΔT RxSRS,以分别对应7个接收天线。此时,用户设备101在能力信息中可上报天线标识及其对应的插损参数。
再例如,在SRS天线切换能力对应1T8R,且SRS端口数为2时,用户设备101可以上报3个ΔT RxSRS,每个ΔT RxSRS对应一组接收天线,每组接收天线可包含两个天线。此时,用户设备101可在能力信息中上报天线的组标识以及每组对应的插损参数。
再例如,在SRS天线切换能力对应1T8R,且SRS端口数为4时,用户设备101可以上报1个ΔT RxSRS,该ΔT RxSRS适用四个接收天线。
本公开实施例中,用户设备101在某一频段上报多个插损参数的场景中,用户设备可以结合自身能力以及网络的配置信息,确定要上报插损参数的数量,从而该多个插损参数可以匹配至对应的天线。
本公开实施例提供了一种发送能力信息的方法,该方法被用户设备101执行。该方法包括步骤S401,具体的:
步骤S401,用户设备101向网络设备102发送能力信息,能力信息包括用户设备101在探测参考信号SRS天线切换场景下接收天线的插损参数。
其中,能力信息包括第一频段下对应的至少一个插损参数。
在一些可能的实施方式中,该至少一个插损参数可以对应不同的接收天线。
在一些可能的实施方式中,能力信息还包括至少一个插损参数对应的接收天线的标识。
在一个示例中,结合表3对应的示例,当接收天线对应不同的插损参数时,用户设备101上报能力信息时,可在能力信息中同步上报每个接收天线对应的标识。
在一些在可能的实施方式中,插损参数包括以下中的一项:插损值,插损值范围。
本公开实施例中,在多个接收天线分别对应插损参数的场景下,用户设备101可在能力信息中同步上报接收天线的标识。
本公开实施例提供了一种接收能力信息的方法,该方法被网络设备102执行。参照图6,图6是根据一示例性实施例示出的一种接收能力信息的方法,如图6所示,该方法包括步骤S601,具体的:
步骤S601,网络设备102接收用户设备101发送的能力信息,能力信息包括用户设备101在探测参考信号SRS天线切换场景下接收天线的插损参数。
在一些可能的实施方式中,能力信息中可以直接的指示插损值,即能力信息的字段中包括插损值对应的数值。
在一些可能的实施方式中,能力信息间接的指示插损参数,例如,能力信息中通过某些字段或某信息域的比特指示插损参数。
在一些可能的实施方式中,能力信息还包括用户设备101的SRS天线切换能力。
例如,该能力信息为SRS-TxSwitch capability,该能力信息中包括插损参数。
在一些可能的实施方式中,插损参数包括以下中的一项:插损值,插损值范围。
在一些可能的实施方式中,能力信息中上报插损参数时,可能适用多个频段。
在一些可能的实施方式中,能力信息中可分别包括每个频段对应的插损参数。
在一些可能的实施方式中,能力信息中指示第一频段下的至少一个插损参数。例如,第一频段可以是多个频段中的任一频段。
在一些可能的实施方式中,网络设备101可以根据该能力信息进行下行信道估计,例如估计下行信道质量。
本公开实施例中,网络设备102通过用户设备101上报的能力信息,获知该用户设备101接收天线的插损参数,以便于网络设备基于该用户设备接收天线的插损参数进行更合理的处理,如进行更准确的信道估计。
本公开实施例提供了一种接收能力信息的方法,该方法被网络设备102执行。参照图7,图7是根据一示例性实施例示出的一种接收能力信息的方法,如图7所示,该方法包括步骤S701~S702,具体的:
步骤S701,网络设备102接收用户设备101发送的能力信息,能力信息包括用户设备101在探测参考信号SRS天线切换场景下接收天线的插损参数。
步骤S702,网络设备102根据能力信息,确定插损参数适用的第一部分接收天线。
在一些可能的实施方式中,网络设备102先确定能力信息中指示的插损参数。
在一示例中,能力信息中可以是直接包含插损值,则网络设备102对能力信息解调处理后即可确定插损参数。
在一示例中,能力信息可以间接指示插损参数,例如通过比特指示的方式。此时,网络设备102根据能力信息中N个比特的值,确定对应的插损参数。
该示例中,N可以大于或等于1。
该示例中,结合表1或者表2对应的示例,网络设备102根据N个比特的值,确定对应的插损值,或者插损值范围。
在一些可能的实施方式中,对于多天线的用户设备101,在天线轮发过程中,结合切换能力和SRS端口数的差异,可能其部分天线适用于能力信息中上报的插损参数。适用该插损参数的天线,在SRS天线切换场景中,插损参数才可用于补偿该天线对应的信道质量评估。
在一些可能的实施方式中,第一部分接收天线可能是用户设备101的全部接收天线,或者部分接收天线。
在一些可能的实施方式中,在能力信息还包括SRS天线切换能力的场景下,步骤S702可以包括如下步骤S702’,具体的:
步骤S702’,网络设备102根据SRS天线切换能力以及网络设备配置的SRS端口数,确定插损参数适用的第一部分接收天线。
该实施方式中,能力信息还包括:用户设备的SRS天线切换能力。例如,用户设备101支持1T2R、1T4R或者2T4R等等。
该实施方式中,能力信息可能包括多个频段分别对应的插损参数,或者包括某一频段(如第一频段)对应的插损参数。
在一些可能的实施方式中,能力信息包括多个频段中每个频段对应的插损参数。例如,用户设备101对于不同频段分别上报该频段对应的插损参数。
该实施方式中,步骤S702可以包括如下步骤S702-1,具体的:
步骤S702-1,在多个频段的任一频段下,确定任一频段对应的插损参数适用的第一部分接收天线。
该实施方式中,每个频段可对应上报一个插损参数。即,该示例中,网络设备102可确定任一频段中,适用该一个插损参数的第一部分接收天线。
该实施方式中,当每个频段上报一个以上的插损参数,实施方式可参照下述第一频段对应实施例的描述。
该实施方式中,网络设备102需要结合用户设备101的切换能力以及SRS端口数,确定适用插损参数的接收天线。
为便于理解本公开实施例,以下结合表3列举三个示例进行说明。
在第一个示例中:
结合表4所示,能力信息中包括多个频段中某一频段对应的插损值ΔT RxSRS
在用户设备支持收发共用天线的数量最大为1,例如SRS天线切换能力对应1T2R或者1T1R转1T2R时,用户设备101支持1个收发共用天线(天线1)和1个接收天线(天线2)。
本示例中,SRS端口数为1,表明用户设备101最多支持1个天线同时执行发送。网络设备102即可确定该插损参数仅适用于该1个接收天线(天线2)。即本示例中,第一部分天线包括天线2。
在第二个示例中:
结合表4所示,在用户设备支持收发共用天线的数量最大为2,例如SRS天线切换能力对应1T4R、或者1T4R转2T4R、或者1T1R转1T2R转1T4R、或者1T1R转1T2R转2T2R转1T4R转2T4R时,用户设备101支持1个收发共用天线(天线1)和3个接收天线(天线2、天线3和天线4)。
本示例中,SRS端口数为1,表明用户设备101最多支持1个天线同时执行发送。网络设备102可确定该插损参数适用于全部接收天线,即本示例中,第一部分天线包括天线2、天线3和天线4。
在第三个示例中:
结合表4所示,在用户设备支持收发共用天线的数量最大为2,例如SRS天线切换能力对应2T4R、或者1T4R转2T4R、或者1T1R转1T2R转2T2R转2T4R、或者1T1R转1T2R转2T2R转1T4R转2T4R时,用户设备101支持2个收发共用天线(天线1和天线2)和2个接收天线(天线3和天线4)。
本示例中,SRS端口数为2,表明用户设备101最多支持2个天线同时执行发送,例如天线1和天线2可以同时收发。网络设备102可确定该插损参数适用于两个接收天线,本示例中,第一部分天线包括天线3和天线4。
表4
Figure PCTCN2022130970-appb-000002
在一些可能的实施方式中,能力信息包括第一频段下对应的至少一插损参数。
该实施方式中,步骤S702可以包括如下步骤S702-2,具体的:
步骤S702-2,网络设备102确定第一频段下至少一个插损参数适用的第一部分接收天线。
该实施方式中,网络设备102可按照设定的顺序,将至少一个插损参数分配给第一部分接收天线。
在一示例中,结合表3所示,SRS端口数为1且用户设备的SRS天线切换能力支持1T4R,假设能力信息中上报了第一频段下的三个插损值ΔT RxSRS(1)、ΔT RxSRS(2)和ΔT RxSRS(3)
该示例中,网络设备102根据用户设备101的能力可知,其支持1个收发共用天线(天线1)和3个接收天线(天线2、天线3和天线4)。网络设备102可按照设定的顺序将三个插损值分别分配给三个接收天线。其中,设定的顺序可以是网络设备102定义的,或者 对应轮发的顺序。
该实施方式中,网络设备102需要结合用户设备101的切换能力以及SRS端口数,确定适用插损参数的接收天线。
在一些可能的实施方式中,能力信息包括第一频段下对应的M个插损参数,以及M个插损参数对应的接收天线的标识。
该实施方式中,步骤S702可以包括如下步骤S702-3,具体的:
步骤S702-3,网络设备102根据接收天线的标识、SRS天线切换能力以及网络设备配置的SRS端口数,确定第一频段下M个插损参数适用的第一部分接收天线。
该实施方式中,用户设备101上报的能力信息中指示了天线标识及其对应的插损参数,因此不需要网络设备102重新分配,只需对能力信息进行解调处理即可获知插损参数的适用情况。
本公开实施例提供了一种接收能力信息的方法,该方法被网络设备102执行。
该方法包括步骤S601~S602,具体的:
步骤S601,网络设备102接收用户设备101发送的能力信息,能力信息包括用户设备101在探测参考信号SRS天线切换场景下接收天线的插损参数。
步骤S602,网络设备102根据能力信息确定下行信道质量。
或者,该方法包括步骤S701~S703,具体的:
步骤S701,网络设备102接收用户设备101发送的能力信息,能力信息包括用户设备101在探测参考信号SRS天线切换场景下接收天线的插损参数。
步骤S702,网络设备102根据能力信息,确定插损参数适用的第一部分接收天线。
步骤S703,网络设备102根据能力信息确定下行信道质量。
在一些可能的实施方式中,网络设备102根据能力信息中的插损参数评估下行信道质量。
在一些可能的实施方式中,在SRS天线切换场景中,用户设备101按照网络设备102的SRS资源配置,每个天线按照对应的SRS资源发射SRS。网络设备102接收并测量各天线的SRS,从而获知各天线对应信道的上行信道质量,并采用各天线对应的插损参数补偿评估结果。结合信道互易性,上行信道质量可表征下行信道质量,因此网络设备102可获知下行信道质量。
在一示例中,下行信道质量的参数包括但不限于SRS的RSRP、RSRQ、SINR或者RSSI。在采用插损参数进行补偿时,可以结合每种指标的计算方式进行补偿,例如,在质量参数上增加或减去对应的插损参数。
在一些可能的实施方式中,步骤S703可以包括如下步骤S703’,具体的:
步骤S703’,在第一部分接收天线发送SRS时,网络设备102根据所述第一部分接收天线适用的插损参数确定所述下行信道质量。
在一些可能的实施方式中,结合前述实施例的描述以及表3和表4,网络设备102可 以确定第一部分接收天线,该第一部分接收天线适用于用户设备101所上报的插损参数。
从而,在SRS天线轮发场景中,每切换到一个天线发送SRS时,网络设备102都可以结合该天线对应的插损参数,进行该天线对应的信道评估,如确定对应的下行信道质量。
在一些可能的实施方式中,插损参数包括以下中的一项:插损值,插损值范围。
本公开实施例中,网络设备102基于接收的能力信息,获知用户设备101在SRS天线切换场景中的插损参数,从而可以结合各接收天线的插损参数精确的评估该天线对应的上行信道质量,提升系统性能,以及评估精度,以便更好的进行资源分配。
基于与以上方法实施例相同的构思,本公开实施例还提供一种发送能力信息的装置,该装置可具备上述方法实施例中的用户设备101的功能,并可用于执行上述方法实施例提供的由用户设备101执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图8所示的通信装置800可作为上述方法实施例所涉及的用户设备101,并执行上述方法实施例中由用户设备101执行的步骤。如图8所示,该通信装置800可包括收发模块801,其中,收发模块801可用于支持通信装置进行通信,收发模块801可具备无线通信功能,例如能够通过无线空口与其他通信装置进行无线通信。
在执行由用户设备101实施的步骤时,收发模块801被配置为,向网络设备发送能力信息,能力信息包括用户设备在探测参考信号SRS天线切换场景下接收天线的插损参数。
当该通信装置为用户设备101时,其结构还可如图9所示。参照图9,装置900可以包括以下一个或多个组件:处理组件902,存储器904,电源组件906,多媒体组件908,音频组件910,输入/输出(I/O)的接口912,传感器组件914,以及通信组件916。
处理组件902通常控制装置900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件902可以包括一个或多个处理器920来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件902可以包括一个或多个模块,便于处理组件902和其他组件之间的交互。例如,处理组件902可以包括多媒体模块,以方便多媒体组件908和处理组件902之间的交互。
存储器904被配置为存储各种类型的数据以支持在设备900的操作。这些数据的示例包括用于在装置900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件906为装置900的各种组件提供电力。电源组件906可以包括电源管理系统,一个或多个电源,及其他与为装置900生成、管理和分配电力相关联的组件。
多媒体组件908包括在装置900和用户之间的提供一个输出接口的屏幕。在一些实施 例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件908包括一个前置摄像头和/或后置摄像头。当设备900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件910被配置为输出和/或输入音频信号。例如,音频组件910包括一个麦克风(MIC),当装置900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器904或经由通信组件916发送。在一些实施例中,音频组件910还包括一个扬声器,用于输出音频信号。
I/O接口912为处理组件902和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件914包括一个或多个传感器,用于为装置900提供各个方面的状态评估。例如,传感器组件914可以检测到设备900的打开/关闭状态,组件的相对定位,例如组件为装置900的显示器和小键盘,传感器组件914还可以检测装置900或装置900一个组件的位置改变,用户与装置900接触的存在或不存在,装置900方位或加速/减速和装置900的温度变化。传感器组件914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件916被配置为便于装置900和其他设备之间有线或无线方式的通信。装置900可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件916经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器904,上述指令可由装置900的处理器920执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
基于与以上方法实施例相同的构思,本公开实施例还提供一种接收能力信息的装置,该装置可具备上述方法实施例中的网络设备102的功能,并可用于执行上述方法实施例提供的由网络设备102执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图10所示的装置1000可作为上述方法实施例所涉及的网络设备102,并执行上述方法实施例中由网络设备102执行的步骤。如图10所示,该装置1100可包括相互耦合的收发模块1001以及处理模块1002,其中,收发模块1001可用于支持通信装置进行通信,收发模块1001可具备无线通信功能,例如能够通过无线空口与其他通信装置进行无线通信。处理模块1002可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
在执行由网络设备102实施的步骤时,收发模块1001被配置为,接收用户设备发送的能力信息,能力信息包括用户设备在探测参考信号SRS天线切换场景下接收天线的插损参数。
当该通信装置为网络设备102时,其结构还可如图11所示。以基站为例说明通信装置的结构。如图11所示,装置1100包括存储器1101、处理器1102、收发组件1103、电源组件1106。其中,存储器1101与处理器1102耦合,可用于保存通信装置1100实现各功能所必要的程序和数据。该处理器1102被配置为支持通信装置1100执行上述方法中相应的功能,所述功能可通过调用存储器1101存储的程序实现。收发组件1103可以是无线收发器,可用于支持通信装置1100通过无线空口进行接收信令和/或数据,以及发送信令和/或数据。收发组件1103也可被称为收发单元或通信单元,收发组件1103可包括射频组件1104以及一个或多个天线1105,其中,射频组件1104可以是远端射频单元(remote radio unit,RRU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线1105具体可用于进行射频信号的辐射和接收。
当通信装置1100需要发送数据时,处理器1102可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1100时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1102,处理器1102将基带信号转换为数据并对该数据进行处理。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本公开旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构, 并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
本公开实施例中,用户设备通过向网络设备上报能力信息,上报SRS天线切换场景中接收天线对应的插损参数,从而网络设备可以获知该用户设备接收天线的插损参数,以便于网络设备基于该用户设备接收天线的插损参数进行更合理的处理。

Claims (24)

  1. 一种发送能力信息的方法,被用户设备执行,所述方法包括:
    向网络设备发送能力信息,所述能力信息包括所述用户设备在探测参考信号SRS天线切换场景下接收天线的插损参数。
  2. 如权利要求1所述的方法,其中,所述能力信息包括用于指示所述插损参数的N个比特,所述N个比特的每种取值指示对应的插损参数。
  3. 如权利要求1所述的方法,其中,所述能力信息包括多个频段中每个频段对应的插损参数。
  4. 如权利要求1所述的方法,其中,所述能力信息包括第一频段下对应的至少一个插损参数。
  5. 如权利要求4所述的方法,其中,所述向网络设备发送能力信息,包括:
    根据用户设备的SRS天线切换能力以及所述网络设备发送的配置信息,确定所述能力信息,所述配置信息中包括SRS端口数;
    向所述网络设备发送所述能力信息。
  6. 如权利要求5所述的方法,其中,所述根据用户设备的SRS天线切换能力以及所述网络设备发送的配置信息,确定所述能力信息,包括:
    根据所述用户设备支持的收发共用天线的数量以及所述SRS的端口数,确定插损参数的数量M,以确定包括M个插损参数的能力信息。
  7. 如权利要求4至6任一项所述的方法,其中,所述能力信息还包括所述至少一个插损参数对应的接收天线的标识。
  8. 如权利要求1至6任一项所述的方法,其中,所述插损参数包括以下中的一项:
    插损值;
    插损值范围。
  9. 如权利要求1至6任一项所述的方法,其中,所述能力信息还包括所述用户设备的SRS天线切换能力。
  10. 一种接收能力信息的方法,被网络设备执行,所述方法包括:
    接收用户设备发送的能力信息,所述能力信息包括所述用户设备在探测参考信号SRS天线切换场景下接收天线的插损参数。
  11. 如权利要求10所述的方法,其中,所述方法还包括:
    根据所述能力信息,确定所述插损参数适用的第一部分接收天线。
  12. 如权利要求11所述的方法,其中,所述能力信息还包括:用户设备的SRS天线切换能力;
    所述确定所述插损参数适用的第一部分接收天线,包括:
    根据所述SRS天线切换能力以及所述网络设备配置的SRS端口数,确定所述插损参 数适用的所述第一部分接收天线。
  13. 如权利要求12所述的方法,所述能力信息包括多个频段中每个频段对应的插损参数;
    所述确定所述插损参数适用的所述第一部分接收天线,包括:
    在多个频段的任一频段下,确定所述任一频段对应的插损参数适用的所述第一部分接收天线。
  14. 如权利要求12所述的方法,其中,所述能力信息包括第一频段下对应的至少一插损参数;
    所述确定所述插损参数适用的所述第一部分接收天线,包括:
    确定第一频段下所述至少一个插损参数适用的所述第一部分接收天线。
  15. 如权利要求11所述的方法,其中,所述能力信息包括:第一频段下对应的M个插损参数,以及所述M个插损参数对应的接收天线的标识;
    所述确定所述插损参数适用的第一部分接收天线,包括:
    根据所述接收天线的标识、所述SRS天线切换能力以及所述网络设备配置的SRS端口数,确定第一频段下所述M个插损参数适用的所述第一部分接收天线。
  16. 如权利要求10至15任一项所述的方法,其中,所述方法还包括:
    根据所述能力信息确定下行信道质量。
  17. 如权利要求16所述的方法,其中,所述根据所述能力信息确定下行信道质量,包括:
    在第一部分接收天线发送SRS时,根据所述第一部分接收天线适用的插损参数确定所述下行信道质量。
  18. 如权利要求10至15任一项所述的方法,其中,所述插损参数包括以下中的一项:
    插损值;
    插损值范围。
  19. 一种发送能力信息的装置,被配置于用户设备,所述装置包括:
    收发模块,用于向网络设备发送能力信息,所述能力信息包括所述用户设备在探测参考信号SRS天线切换场景下接收天线的插损参数。
  20. 一种接收能力信息的装置,被配置于网络设备,所述装置包括:
    收发模块,用于接收用户设备发送的能力信息,所述能力信息包括所述用户设备在探测参考信号SRS天线切换场景下接收天线的插损参数。
  21. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求1-9中任一项所述的方法。
  22. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求10-18中任一项所述的方法。
  23. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-9中任一项所述的方法。
  24. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求10-18中任一项所述的方法。
PCT/CN2022/130970 2022-11-09 2022-11-09 一种传输能力信息的方法、装置及可读存储介质 WO2024098303A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130970 WO2024098303A1 (zh) 2022-11-09 2022-11-09 一种传输能力信息的方法、装置及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130970 WO2024098303A1 (zh) 2022-11-09 2022-11-09 一种传输能力信息的方法、装置及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024098303A1 true WO2024098303A1 (zh) 2024-05-16

Family

ID=91031633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130970 WO2024098303A1 (zh) 2022-11-09 2022-11-09 一种传输能力信息的方法、装置及可读存储介质

Country Status (1)

Country Link
WO (1) WO2024098303A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034536A1 (zh) * 2018-08-15 2020-02-20 Oppo广东移动通信有限公司 无线通信方法、终端设备发射上行信号的方法及设备
WO2021031028A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种用于信号发送的方法、装置以及用于信号接收的方法、装置
WO2022000214A1 (zh) * 2020-06-29 2022-01-06 Oppo广东移动通信有限公司 通信方法、装置及可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034536A1 (zh) * 2018-08-15 2020-02-20 Oppo广东移动通信有限公司 无线通信方法、终端设备发射上行信号的方法及设备
WO2021031028A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种用于信号发送的方法、装置以及用于信号接收的方法、装置
WO2022000214A1 (zh) * 2020-06-29 2022-01-06 Oppo广东移动通信有限公司 通信方法、装置及可读存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPPO: "Draft CR on SRS antenna switching change", 3GPP DRAFT; R4-2114968, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Electronic Meeting; 20210816 - 20210827, 27 August 2021 (2021-08-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052045642 *
XIAOMI: "Discussion on Tx diversity SRS antenna switching", 3GPP DRAFT; R4-2113306, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20210816 - 20210827, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052036792 *

Similar Documents

Publication Publication Date Title
WO2021114276A1 (zh) 波束测量方法及波束测量装置
US20230189026A1 (en) Method and device for measuring channel state information
WO2023122920A1 (zh) 一种上报或接收用户设备能力的方法、装置及可读存储介质
WO2022011577A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2024098303A1 (zh) 一种传输能力信息的方法、装置及可读存储介质
CN114731510A (zh) 一种传输终端能力的方法、装置及可读存储介质
WO2023115284A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2024065511A1 (zh) 一种传输定位辅助信息的方法、装置以及可读存储介质
WO2024026754A1 (zh) 一种传输测量配置信息的方法、装置、设备以及存储介质
WO2024031459A1 (zh) 一种传输能力信息的方法、装置以及可读存储介质
WO2023236195A1 (zh) 一种传输时域资源配置信息的方法、装置及可读存储介质
WO2023225922A1 (zh) 一种传输频段信息的方法、装置及可读存储介质
WO2024007228A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2024026747A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
CN115606225B (zh) 一种测量方法、确定辅小区的方法、装置、设备以及介质
WO2024031253A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2024020811A1 (zh) 一种传输参考信号测量结果的方法、装置及存储介质
WO2023206247A1 (zh) 一种传输配置信息的方法、装置及可读存储介质
WO2024059977A1 (zh) 一种执行或发送指示信息的方法、装置、设备及存储介质
WO2023097523A1 (zh) 一种小区测量方法、装置及可读存储介质
WO2023184254A1 (zh) 一种传输测量配置信息的方法、装置及可读存储介质
WO2023206239A1 (zh) 一种传输保护时间间隔信息的方法、装置及可读存储介质
WO2024130654A1 (zh) 一种波束管理的方法、装置以及可读存储介质
WO2023082201A1 (zh) 一种发送或处理关闭通知的方法、装置及可读存储介质
WO2023065085A1 (zh) 一种确定非授权上行信道的检测波束的方法、装置及介质