WO2024096550A1 - 냉매 매니폴드 - Google Patents

냉매 매니폴드 Download PDF

Info

Publication number
WO2024096550A1
WO2024096550A1 PCT/KR2023/017200 KR2023017200W WO2024096550A1 WO 2024096550 A1 WO2024096550 A1 WO 2024096550A1 KR 2023017200 W KR2023017200 W KR 2023017200W WO 2024096550 A1 WO2024096550 A1 WO 2024096550A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
manifold
housing
port
channel
Prior art date
Application number
PCT/KR2023/017200
Other languages
English (en)
French (fr)
Inventor
이상용
이다원
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230144684A external-priority patent/KR20240063773A/ko
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Publication of WO2024096550A1 publication Critical patent/WO2024096550A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices

Definitions

  • the present invention relates to a refrigerant manifold applied to a vehicle cooling system, and relates to a refrigerant manifold that can improve connectivity and workability by arranging the refrigerant port at the outermost part of the manifold body.
  • eco-friendly vehicles that can substantially replace internal combustion engine vehicles.
  • These eco-friendly vehicles are usually electric vehicles powered by fuel cells or electricity, It is classified as a hybrid vehicle that is driven by an engine and a battery.
  • eco-friendly vehicles electric vehicles or hybrid vehicles do not use a separate heater, unlike the air conditioning system of regular vehicles, and the air conditioning system applied to eco-friendly vehicles is usually referred to as a heat pump system.
  • the motor is driven using electricity supplied from the fuel cell or electric battery to generate driving force, effectively removing heat generated from the fuel cell, battery, and motor. Only then can the performance of the motor be secured.
  • the battery cooling system along with the cooling system and heat pump system, are each configured as separate sealed circuits to prevent heat generation in the battery including the motor, electrical components, and fuel cell. must do it.
  • the size and weight of the cooling module placed at the front of the vehicle increases, and the layout of the connecting pipes that supply refrigerant or coolant to each heat pump system, cooling means, and battery cooling system inside the engine room becomes complicated. there is.
  • the present invention was devised to solve the above problems, and its purpose is to provide a refrigerant manifold that can improve connectivity and workability by placing the refrigerant port at the outermost part of the manifold body.
  • a refrigerant manifold includes a manifold body in which components are mounted and a refrigerant channel through which refrigerant flows is formed; and a refrigerant port that communicates with the refrigerant channel to introduce refrigerant from the outside or discharge the refrigerant to the outside. It includes, and at least one of the refrigerant ports may be disposed on the outermost side of the manifold body.
  • the manifold body has a plate shape, and a component mounting structure for mounting the components is provided on one side and the other side of the manifold body, and a concave structure forming a refrigerant channel is formed on the inner side of the manifold body.
  • the refrigerant port may be formed on a surface other than the surface on which the refrigerant channel is formed.
  • the manifold body includes a first housing, a central plate, and a second housing, each of which has a plate shape, and may have a structure in which the first housing, the central plate, and the second housing are stacked in that order. .
  • the center plate is a flat plate with one side and the other side, and an engraved structure forming the refrigerant channel is formed on the inside of the first housing and the inside of the second housing, and between the first housing and the center plate. , and the refrigerant channel may be formed between the second housing and the central plate.
  • a component mounting structure may be provided in which the components are mounted on the outside of the first housing and on one side of the manifold body, and on the outside of the second housing and on the other side of the manifold body.
  • one or more through holes penetrating the central plate are formed in the central plate, and among the refrigerant channels, a refrigerant channel formed between the first housing and the central plate is referred to as a first refrigerant channel, and the second refrigerant channel If the refrigerant channel formed between the housing and the center plate is referred to as a second refrigerant channel, the first refrigerant channel and the second refrigerant channel may communicate with each other through a through hole in the center plate.
  • the component outside the first housing and mounted on one side of the manifold body is called the first component
  • the component outside the second housing and mounted on the other side of the manifold body is called the first component. If it is a two-component component, it may be configured to allow direct flow of refrigerant between the first component and the second component through the through hole of the central plate.
  • the first housing has a fifth refrigerant port and a sixth refrigerant port
  • the second housing has a first refrigerant port, a second refrigerant port, a third refrigerant port, and a fourth refrigerant port.
  • the porthole of the first refrigerant port may have a larger diameter compared to the portholes of the second to sixth refrigerant ports.
  • the sixth refrigerant port may be located at the lowest position among the refrigerant ports in the direction of gravity.
  • refrigerant ports may have portholes opened perpendicular to the direction in which the manifold body is stacked.
  • the refrigerant port has more portholes in the refrigerant port opening in a direction parallel to the stacking direction of the manifold body than in the refrigerant port opening in a direction perpendicular to the direction in which the manifold body is stacked. There could be many.
  • a refrigerant module includes the refrigerant manifold; and components mounted and coupled to the refrigerant manifold;
  • the components include an expansion valve, a water-cooled condenser, a chiller, and a heat pump valve, and the expansion valve is composed of a plurality, each of which is mounted on one surface of the refrigerant manifold, and the water-cooled condenser, the chiller, And a heat pump valve may be mounted on the other side of the refrigerant manifold.
  • the direction in which the refrigerant manifold is stacked may be perpendicular to the direction of gravity.
  • the water-cooled condenser and chiller are disposed on one side of the refrigerant manifold, and a multi-way valve is disposed on the other side, and the multi-way valve may be coupled to the expansion valve.
  • the water-cooled condenser may be placed in the refrigerant manifold so that the longitudinal direction of the water-cooled condenser is located from the upper side to the lower side in the direction of gravity.
  • the multi-way valve is composed of a plurality of multi-way valves, and the refrigerant manifold is provided with a plurality of refrigerant ports, and one of the plurality of refrigerant ports is located around one of the plurality of multi-way valves.
  • the fifth refrigerant port among the plurality of multi-way valves may be formed around the third valve receiving portion among the plurality of refrigerant ports.
  • the refrigerant port is disposed on the outermost part of the manifold body, when the refrigerant module is mounted on a vehicle to configure a heat exchange system, piping and hoses are used to connect the refrigerant module to other parts of the heat exchange system. Convenience in installation and assembly can be improved, and workability can be improved due to easy access to the refrigerant port.
  • connection length of the pipe and hose can be reduced, thereby reducing the complexity of the pipe connection and increasing connection stability.
  • the total number of parts and Assembly man-hours can be reduced.
  • FIG. 1 is a diagram showing a refrigerant module according to an example of the present invention.
  • Figure 2 is an exploded perspective view of the refrigerant module.
  • Figure 3 is an exploded perspective view of a refrigerant manifold according to an example of the present invention.
  • FIG. 1 is a diagram showing a refrigerant module according to an example of the present invention
  • FIG. 2 is an exploded perspective view of the refrigerant module.
  • the refrigerant module 10 of the present invention is largely comprised of a refrigerant manifold 100 and a refrigerant manifold. Includes components 200 that are combined.
  • each component 200 is integrated around a refrigerant manifold 100.
  • the refrigerant manifold 100 provides a mounting space where each of the components 200 can be mounted, and the refrigerant is stored inside.
  • a refrigerant channel through which it can flow is formed.
  • the components 200 correspond to components of the vehicle cooling system, and in the present invention, each component includes an expansion valve 210, a water-cooled condenser 220, a chiller 230, and a heat pump valve 240. You can.
  • the expansion valve 210 may be comprised of a plurality, and the expansion valve 210 may have a structure in which a multi-way valve 211 is coupled to one side.
  • the multi-way valve 211 can be configured as a three-way valve.
  • the multi-way valve 211 may be composed of a first multi-way valve (211-1), a second multi-way valve (211-2), and a third multi-way valve (211-3).
  • the multi-way valve 211 can be accommodated in the valve receiving portion 110A1 formed in the first housing 110A.
  • the valve accommodating part 110A1 may be composed of a first valve accommodating part 110A1-1, a second valve accommodating part 110A1-2, and a third valve accommodating part 110A1-3.
  • (110A1-1) accommodates the first multi-way valve (211-1)
  • the second valve receiving portion (110A1-2) accommodates the second multi-way valve (211-2)
  • the third valve receiving portion (110A1-3) can accommodate the third multi-way valve (211-3).
  • the expansion valve is a valve that vaporizes the liquid refrigerant by strengthening its pressure
  • the water-cooled condenser is a heat exchanger that condenses the gaseous refrigerant into a liquid state
  • the chiller is a heat exchanger that removes heat from the liquid refrigerant.
  • the refrigerant is sub-cooled.
  • each of these components 200 is mounted on the refrigerant manifold 100 to form the refrigerant module 10. At this time, each component 200 is mounted to communicate with a refrigerant channel formed inside the refrigerant manifold 100. More specifically, each component 200 may communicate with the refrigerant channel by being mounted to communicate with a mounting structure corresponding to each component among mounting structures formed on the refrigerant manifold 100 and communicating with the refrigerant channel.
  • FIG. 3 is an exploded perspective view of a refrigerant manifold according to an example of the present invention. As shown, the refrigerant manifold largely includes a manifold body 110 and a refrigerant port 120.
  • Components 200 are mounted on the manifold body 110, and a refrigerant channel 115 through which refrigerant flows is formed inside the manifold body 110. More specifically, a component mounting structure on which the above-mentioned components can be mounted is provided on the outside of the manifold body 110, and the components mounted on the component mounting structure can communicate with a refrigerant channel to form a refrigerant circuit.
  • the refrigerant port 120 communicates with the refrigerant channel 115 to introduce refrigerant from the outside or discharge the refrigerant to the outside, and corresponds to a refrigerant inlet or a refrigerant outlet.
  • the refrigerant port 120 may correspond to refrigerant inlets, and others may correspond to refrigerant outlets.
  • the refrigerant port 120 is disposed at the outermost part of the manifold body 110, as shown.
  • the manifold body 110 is configured as a whole in a plate shape, and is located on one side and the other side of the manifold body 110, that is, on the front and rear sides of the manifold body 110 in the drawing.
  • a mounting structure on which the components 200 can be mounted can be formed.
  • the refrigerant port 120 is disposed at the outermost part of the manifold body 110, when the above-described refrigerant module 10 is mounted on a vehicle to configure a heat exchange system, the refrigerant module and other parts of the heat exchange system Ease of installation and assembly of piping and hoses for connection can be improved, and workability can be improved due to easy access to the refrigerant port.
  • each of the plurality of refrigerant ports 120 can be disposed on the outermost side of the manifold body 110, thereby highlighting the above-mentioned advantages.
  • the refrigerant port 120 may have a flange structure that protrudes outward from the manifold body 110 by a predetermined amount, and the flange-structured refrigerant port 120 communicates with the refrigerant channel 115 to allow refrigerant to flow in or out.
  • a connection hole may be formed that penetrates the refrigerant port 120 so that it can be connected to the entrance, pipes, and hoses.
  • the refrigerant port 120 has a flange structure, the connectivity between the refrigerant port and the pipes and hoses can be further improved.
  • the manifold body 110 may have a structure in which at least two or more plates are stacked. More specifically, referring again to FIG. 3, the manifold body 110 includes a plate-shaped first housing (110A), a plate-shaped center plate (110B), and a plate-shaped second housing (110C).
  • the first housing (110A), the center plate (110B), and the second housing (110C) may be stacked in that order.
  • the first housing (110A), the center plate (110B), and the second housing (110C) may be brazed to each other, and simultaneously or separately, the first housing (110A), the center plate (110B), and the second housing ( 110C) They can be bolted to each other through bolting holes formed in each.
  • the center plate 110B is a flat plate on one side and the other side, and a concave structure forming the above-described refrigerant channel 115 may be formed on the inside of the first housing 110A and the inside of the second housing 110C.
  • the inside of the first housing (110A) refers to the space between the first housing (110A) and the center plate (110B)
  • the inside of the second housing (110C) refers to the area between the second housing (110C) and the center plate (110B). It can mean between.
  • the center plate 110B is laminated and bonded to one side of the first housing 110A (i.e., the rear side in the drawing) to close the open portion of the engraved structure formed on the inside of the first housing 110A, thereby forming the first housing 110A.
  • a complete first refrigerant channel 115-1 (not shown in the drawing) is formed between the housing 110A and the center plate 110B, and one side of the second housing 110C (i.e., the front surface in the drawing) ) is laminated and bonded to the center plate (110B) to close the open portion of the engraved structure formed on the inside of the second housing (110C), thereby forming a complete second refrigerant channel between the second housing (110C) and the center plate (110B).
  • (115-2) can be formed.
  • the refrigerant channel 115 is a first refrigerant channel 115-1 formed between the first housing 110A and the center plate 110B, and between the second housing 110C and the center plate 110B. It includes a second refrigerant channel 115-2 formed in , and each of the first refrigerant channel 115-1 and the second refrigerant channel 115-2 may be composed of a plurality of unit refrigerant channels.
  • a mounting structure on which the components 200 can be mounted is formed on the outside of the first housing 110A and on one side (i.e., the front side in the drawing) of the manifold body 110, and the second housing A mounting structure on which the components 200 can be mounted is formed on the outside of 110C and on the other side of the manifold body 110 (i.e., the rear side in the drawing), and a plurality of refrigerant ports 120 may be formed.
  • the refrigerant port 120 is integrated with the first housing 110A and the second housing 110C, the connection length between the pipe and the hose is reduced, thereby reducing the complexity of the pipe connection and increasing connection stability. Furthermore, by minimizing the use of piping and hoses, the total number of parts and assembly man-hours required to build a heat exchange system can be reduced.
  • the first housing (110A) may have a fifth refrigerant port (120-5) and a sixth refrigerant port (120-6), and the second housing (110C) may have a first refrigerant port (120-1) and a sixth refrigerant port (120-6). It may be provided with a second refrigerant port (120-2), a third refrigerant port (120-3), and a fourth refrigerant port (120-4).
  • the first refrigerant port 120-1 allows gaseous refrigerant to flow from the evaporator to the refrigerant manifold.
  • the second refrigerant port 120-2 receives compressed refrigerant from the compressor to the refrigerant manifold.
  • the third refrigerant port (120-3) allows refrigerant to flow out from the refrigerant manifold to the evaporator.
  • refrigerant flows into the refrigerant manifold from an air-cooled condenser disposed outside the refrigerant module (located in the front of the vehicle).
  • the fifth refrigerant port (120-5) discharges refrigerant from the refrigerant manifold to the air-cooled condenser.
  • the sixth refrigerant port (120-6) allows refrigerant to flow out from the refrigerant manifold to the gas-liquid separator.
  • the refrigerant port 120 has a porthole connecting a pipe through which the refrigerant flows.
  • the porthole of the first refrigerant port 120-1 may have a larger diameter than the porthole of the second to sixth refrigerant ports 120-2 to 120-6.
  • the first refrigerant port 120-1 is a refrigerant port through which gaseous refrigerant flows from the evaporator to the refrigerant manifold 100. It is preferable that the porthole of the first refrigerant port 120-1 has a large diameter so that the pressure of the refrigerant flowing into the compressor does not increase.
  • the sixth refrigerant port 120-6 is a refrigerant port through which refrigerant flows out from the refrigerant manifold 100 to the gas-liquid separator.
  • the refrigerant that has passed through the evaporator contains a plurality of liquid refrigerants.
  • the gas-liquid separator separates the liquid refrigerant and the gas phase refrigerant from the mixed liquid and gas phase refrigerant.
  • the gas-liquid separator filters the liquid refrigerant and sends only the gaseous refrigerant to the compressor. It's possible.
  • the sixth refrigerant port 120-6 is located immediately before the gas-liquid separator, so it may contain a large amount of liquid refrigerant.
  • the sixth refrigerant port 120-6 is preferably located at the bottom of the refrigerant ports 120 in the direction of gravity.
  • the arrangement position of the sixth refrigerant port 120-6 can prevent liquid refrigerant from flowing in the direction of gravity from the internal channel of the refrigerant manipod 100 and flowing into the refrigerant channel and components located at the bottom.
  • At least some of the refrigerant ports 120 may have portholes opened perpendicular to the direction in which the manifold body 110 is stacked.
  • the sixth refrigerant port 120-6 is formed parallel to the stacking direction.
  • the refrigerant port 120 is opened in a direction parallel to the stacking direction of the manifold body 110 rather than the refrigerant port in which the porthole of the refrigerant port 120 is opened in a direction perpendicular to the direction in which the manifold body 110 is stacked.
  • the refrigerant port 120 can be configured to have more portholes.
  • the refrigerant manifold is formed in a plate shape and is stacked. If there are many refrigerant ports with portholes opening in a direction parallel to the stacking direction, there may be interference with components mounted on the refrigerant manifold, and the area of the manifold may be unnecessarily large to avoid interference.
  • the purpose of the refrigerant module is to compactly miniaturize/modulate the piping and components required for the refrigerant system, so in order to efficiently arrange multiple refrigerant ports in a limited refrigerant manifold area, most refrigerant ports are placed in a direction perpendicular to the stacking direction. and placed at the outermost corner.
  • a plurality of through holes 110B_H penetrating the center plate 110B may be formed in the center plate 110B.
  • the corresponding through holes 110B_H are through holes connecting the above-described first refrigerant channel 115-1 and the second refrigerant channel 115-2, through which the first refrigerant channel 115- 1) and the second refrigerant channel 115-2 may be connected to each other.
  • the plurality of through holes 110B_H are through holes that directly connect the first component and the second component, and through this, direct flow of refrigerant between the first component and the second component may be possible.
  • the first component is a component mounted on the outside of the first housing and on one side of the manifold body (i.e., the front side in the drawing)
  • the second component is the outside of the second housing and the other side of the manifold body (i.e., in the drawing). It may refer to a component mounted on the rear). In this way, since the first component and the second component are directly connected through the through hole, the number of refrigerant channels required for connection between components is reduced, which has the advantage of simplifying the structure of the refrigerant manifold.
  • At least some of the plurality of through holes 110B_H may correspond to the bolting holes described above, through which the first housing 110A, the central plate 110B, and the second housing 110C can be bolted to each other. It is possible as we saw earlier.
  • the refrigerant module 10 includes the above-described refrigerant manifold 100 and components 200 mounted and coupled to the refrigerant manifold 100.
  • a plurality of expansion valves are installed on one side of the refrigerant manifold (i.e., the front in the drawing), and a water-cooled condenser, chiller, and heat pump valve are installed in the other side of the refrigerant manifold (i.e., the rear in the drawing). It can be.
  • the refrigerant manifold is arranged in a structure standing vertically in the direction of gravity, and the expansion valve, water-cooled condenser, chiller, and heat pump valve can each be mounted and coupled to the refrigerant manifold in a horizontal direction. This corresponds to a preferred embodiment that improves the packaging of the refrigerant module.
  • the direction in which the refrigerant manifold 100 is stacked may be perpendicular to the direction of gravity.
  • Both the water-cooled condenser 220 and the chiller 230 are heat exchangers in which refrigerant and coolant exchange heat.
  • the water-cooled condenser 220 and chiller 230 which are heat exchangers, are mounted on the refrigerant manifold 100 and communicate with the refrigerant channel 115.
  • the chiller 230 may be a battery chiller.
  • a water-cooled condenser 220 and a chiller 210 are placed on one side of the refrigerant manifold 100, and a multiway valve 211 is placed on the other side.
  • the multiway valve 211 is connected to the expansion valve 210. It can be configured in a combined form.
  • the water-cooled condenser 220 and chiller 210 may be placed on one side of the refrigerant manifold 100, and the multiway valve 211 may be placed on the other side of the refrigerant manifold 100.
  • the arrangement of these components 200 allows the formation of the refrigerant channel 115 and the arrangement of the refrigerant port 120 to be designed efficiently.
  • the water-cooled condenser 220 may be placed in the refrigerant manifold 100 so that the longitudinal direction of the water-cooled condenser 220 is located from the upper side to the lower side in the direction of gravity.
  • the water-cooled condenser 220 can be placed in the refrigerant manifold 100 in the direction of gravity.
  • the longitudinal direction of the water-cooled condenser 220 can be arranged so that it coincides with the direction of gravity.
  • the multi-way valve 211 is composed of a plurality of multi-way valves 211, and the refrigerant manifold 100 is provided with a plurality of refrigerant ports 120, and one of the plurality of refrigerant ports 120 is connected to a plurality of multi-way valves 211. It can be formed around one of the multi-way valves 211 among the way valves 211.
  • the multi-way valve 211 is composed of a plurality of them, and among them, the third multi-way valve 211-3 can determine whether to send or bypass the refrigerant that has passed through the water-cooled condenser 220 to the air-cooled condenser. there is.
  • the third multi-way valve 211-3 may be mounted on the third valve receiving portion 110A1-3.
  • the fifth refrigerant port 120-5 is a refrigerant port through which refrigerant flows from the refrigerant manifold 100 to the air-cooled condenser, and the fifth refrigerant port 120-5 is a third multi-way valve 211-3. It may be formed around the installed third valve receiving portion (110A1-3). This is desirable to minimize refrigerant channels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

본 발명은 차량 냉각 시스템에 적용되는 냉매 매니폴드에 관한 것으로서, 냉매 포트를 매니폴드 바디의 최외곽에 배치하여 냉매 모듈과 열교환 시스템의 다른 부품들과의 연결을 위한 배관과 호스의 설치 및 조립 상의 편이성이 향상될 수 있고, 냉매 포트로의 접근이 용이하여 작업성을 개선할 수 있는 냉매 매니폴드에 관한 것이다.

Description

냉매 매니폴드
본 발명은 차량 냉각 시스템에 적용되는 냉매 매니폴드에 관한 것으로서, 냉매 포트를 매니폴드 바디의 최외곽에 배치하여 연결성과 작업성을 향상시킬 수 있는 냉매 매니폴드에 관한 것이다.
최근 에너지 효율과 환경오염 문제에 대한 관심이 날로 커지면서 내연기관 자동차를 실질적으로 대체할 수 있는 친환경 자동차의 개발이 요구되고 있으며, 이러한 친환경 자동차는 보통 연료전지나 전기를 동력원으로 하여 구동되는 전기 자동차나, 엔진과 배터리를 이용하여 구동되는 하이브리드 자동차로 구분된다.
이러한 친환경 차량 중, 전기자동차 또는 하이브리드 차량에는 일반 차량의 공기조화장치와는 달리 별도의 히터가 사용되지 않으며, 친환경 차량에 적용되는 공조 시스템을 통상적으로 히트 펌프 시스템이라 한다.
한편, 전기 자동차의 경우에는 산소와 수소의 화학적 반응 에너지를 전기 에너지로 전환하여 구동력을 발생시키게 되며, 이 과정에서 연료전지 내의 화학적 반응에 의해 열에너지가 발생되는 바, 발생된 열을 효과적으로 제거하는 것이 연료전지의 성능 확보에 있어 필수적이다.
그리고 하이브리드 자동차에서도 일반적인 연료로 작동하는 엔진과 함께, 상기한 연료전지나, 전기 배터리로부터 공급되는 전기를 이용해 모터를 구동시켜 구동력을 발생시키게 되는 바, 연료전지나 배터리, 및 모터로부터 발생되는 열을 효과적으로 제거해야만 모터의 성능을 확보할 수 있게 된다.
이에 따라, 종래 기술에 따른 하이브리드 차량이나 전기 자동차에서는 모터와 전장품, 및 연료전지를 포함하는 배터리의 발열을 방지하도록 냉각 시스템, 및 히트 펌프 시스템과 함께, 배터리 냉각 시스템이 각각 별도의 밀폐회로로 구성해야만 한다.
따라서, 차량의 전방에 배치되는 쿨링모듈의 크기 및 중량이 증가되고, 엔진룸 내부에서 각각의 히트 펌프 시스템과 냉각수단 및 배터리 냉각 시스템으로 냉매 또는 냉각수를 공급하는 연결배관들의 레이아웃이 복잡해지는 문제점이 있다.
관련 선행문헌으로는 한국 공개특허공보 제2019-0068125호(2019.06.18.)가 있다.
본 발명은 상기와 같은 문제를 해결하기 위해 안출된 것으로, 냉매 포트를 매니폴드 바디의 최외곽에 배치하여 연결성과 작업성을 개선시킬 수 있는 냉매 매니폴드를 제공하기 위한 것을 목적으로 한다.
본 발명에 따른 냉매 매니폴드는, 컴포넌트들이 장착되고, 내부에 냉매가 유동되는 냉매 채널이 형성된 매니폴드 바디; 및 상기 냉매 채널과 연통되어, 외부로부터 냉매를 유입하거나 외부로 냉매를 배출하는 냉매 포트; 를 포함하며, 상기 냉매 포트 중 적어도 어느 하나는 상기 매니폴드 바디의 최외곽에 배치될 수 있다.
또한, 상기 매니폴드 바디는 판상 형태이고, 상기 매니폴드 바디의 일면과 타면에 상기 컴포넌트들이 장착되는 컴포넌트 장착구조가 구비되고, 상기 매니폴드 바디의 내측면에는 냉매 채널을 형성하는 음각 구조가 형성되고, 상기 냉매 채널이 형성된 면을 제외한 다른 면에 상기 냉매 포트가 형성될 수 있다.
또한, 상기 매니폴드 바디는 각각이 판상 형태를 가지는 제1하우징, 중앙 플레이트, 및 제2하우징을 포함하고, 상기 제1하우징, 중앙 플레이트, 및 제2하우징이 순서대로 적층된 구조로 이루어질 수 있다.
또한, 상기 중앙 플레이트는 일면과 타면이 평면인 평판이고, 상기 제1하우징의 내측과 상기 제2하우징의 내측에는 상기 냉매 채널을 형성하는 음각 구조가 형성되며, 상기 제1하우징과 중앙 플레이트의 사이, 및 상기 제2하우징과 중앙 플레이트의 사이에 상기 냉매 채널이 형성될 수 있다.
또한, 상기 제1하우징의 외측이자 상기 매니폴드 바디의 일면과, 상기 제2하우징의 외측이자 상기 매니폴드 바디의 타면에 상기 컴포넌트들이 장착되는 컴포넌트 장착구조가 구비될 수 있다.
또한, 상기 중앙 플레이트에는 상기 중앙 플레이트를 관통하는 관통홀이 하나 이상 형성되고, 상기 냉매 채널 중, 상기 제1하우징과 중앙 플레이트의 사이에 형성되는 냉매 채널을 제1 냉매 채널이라 하고, 상기 제2하우징과 중앙 플레이트의 사이에 형성되는 냉매 채널을 제2 냉매 채널이라 하면, 상기 중앙 플레이트의 관통홀을 통해 상기 제1 냉매 채널과 상기 제2 냉매 채널이 서로 연통될 수 있다.
또한, 상기 컴포넌트들 중, 상기 제1하우징의 외측이자 상기 매니폴드 바디의 일면에 장착되는 컴포넌트를 제1 컴포넌트라 하고, 상기 제2하우징의 외측이자 상기 매니폴드 바디의 타면에 장착되는 컴포넌트를 제2 컴포넌트라 하면, 상기 중앙 플레이트의 관통홀을 통해 상기 제1 컴포넌트와 제2 컴포넌트 간 냉매의 직접 유동이 가능하게 구성될 수 있다.
또한, 상기 제1하우징은 제5냉매 포트 및 제6냉매 포트를 구비하고, 상기 제2하우징은 제1냉매 포트, 제2냉매 포트, 제3냉매 포트 및 제4냉매 포트를 구비하되, 상기 제1냉매 포트의 포트홀은 상기 제2 내지 6냉매 포트의 포트홀과 대비하여 직경이 클 수 있다.
또한, 상기 제6냉매 포트는 상기 냉매포트 중 중력방향에서 최하단에 위치하할 수 있다.
또한, 상기 냉매 포트 중 적어도 일부는 상기 매니폴드 바디가 적층되는 방향에 대해 수직하게 상기 냉매 포트의 포트홀이 개구될 수 있다.
또한, 상기 냉매 포트는 상기 매니폴드 바디가 적층되는 방향과 수직인 방향으로 상기 냉매 포트의 포트홀이 개구된 냉매 포트보다 상기 매니폴드 바디의 적층 방향과 나란한 방향으로 개구된 상기 냉매 포트의 포트홀이 더 많을 수 있다.
본 발명에 따른 냉매 모듈은, 상기 냉매 매니폴드; 및 상기 냉매 매니폴드에 장착 결합되는 컴포넌트들; 을 포함하는, 상기 컴포넌트들은 팽창 밸브, 수냉식 컨덴서, 칠러, 및 히트펌프 밸브를 포함하고, 상기 팽창 밸브는 다수개로 구성되어, 각각이 상기 냉매 매니폴드의 일면에 장착되고, 상기 수냉식 컨덴서, 칠러, 및 히트펌프 밸브는 상기 냉매 매니폴드의 타면에 장착될 수 있다.
또한, 상기 냉매 매니폴드가 적층되는 방향은 중력방향과 수직일 수 있다.
또한, 냉매 매니폴드를 중심으로 일측에는 상기 수냉식 컨덴서 및 칠러가 배치되고, 타측에는 멀티웨이 밸브가 배치되되 상기 멀티웨이 밸브는 상기 팽창 밸브에 결합한 형태로 구성할 수 있다.
또한, 상기 수냉식 컨덴서는 수냉식 컨덴서의 길이방향이 중력방향 상측에서 하측에 위치하도록 냉매 매니폴드에 배치될 수 있다.
또한, 상기 멀티웨이 밸브는 복수의 멀티웨이 밸브로 구성하고, 상기 냉매 매니폴드는 복수의 냉매 포트를 구비하되, 상기 복수의 냉매 포트 중 하나는 상기 복수의 멀티웨이 밸브 중 하나의 멀티웨이 밸브 주변에 형성할 수 있다.
또한, 상기 복수의 멀티웨이 밸브 중 제5냉매 포트는 상기 복수의 냉매 포트 중 제3밸브 수용부 주변에 형성할 수 있다.
본 발명에 의하면 냉매 포트가 매니폴드 바디의 최외곽에 배치됨에 따라, 냉매 모듈을 차량에 장착하여 열교환 시스템을 구성할 경우, 냉매 모듈과 열교환 시스템의 다른 부품들과의 연결을 위한 배관과 호스의 설치 및 조립 상의 편이성이 향상될 수 있고, 냉매 포트로의 접근이 용이하여 작업성이 개선될 수 있다.
또한, 냉매 포트의 하우징으로의 일체화 구조를 통해 배관과 호스의 연결 길이를 감소시켜 배관 연결의 복잡성을 감소시킴과 동시에 연결 안정성을 증대시킬 수 있으며, 배관과 호스의 사용을 최소화하여 전체 부품수 및 조립 공수를 감소시킬 수 있다.
도 1은 본 발명의 일 예에 따른 냉매 모듈을 나타낸 도면이다.
도 2는 냉매 모듈의 분해 사시도이다.
도 3은 본 발명의 일 예에 따른 냉매 매니폴드의 분해 사시도이다.
[부호의 설명]
10: 냉매 모듈
100: 냉매 매니폴드
110: 매니폴드 바디
115: 냉매 채널
110A: 제1하우징
110B: 중앙 플레이트
110C: 제2하우징
120: 냉매 포트
200: 컴포넌트
이하, 첨부된 도면을 참조하여 본 발명에 대해 설명하도록 한다.
도 1은 본 발명의 일 예에 따른 냉매 모듈을 나타낸 도면이고, 도 2는 냉매 모듈의 분해 사시도로서, 본 발명의 냉매 모듈(10)은 크게 냉매 매니폴드(100)와, 냉매 매니폴드에 장착 결합되는 컴포넌트(200)들을 포함한다.
본 발명은 냉매 매니폴드(100)를 중심으로 각 컴포넌트(200)들이 통합된 것으로서, 냉매 매니폴드(100)는 컴포넌트(200)들 각각이 장착될 수 있는 장착공간을 제공하고, 내부에 냉매가 유동될 수 있는 냉매 채널이 형성된다.
컴포넌트(200)들은 차량 냉각 시스템의 구성요소에 해당하는 것으로, 본 발명에서 각 컴포넌트는, 팽창 밸브(210), 수냉식 컨덴서(220), 칠러(230), 및 히트펌프 밸브(240)를 포함할 수 있다. 팽창 밸브(210)는 다수개로 구성될 수 있으며, 팽창 밸브(210)는 일측에 멀티웨이 밸브(multi-way valve)(211)가 결합된 구조로 이루어질 수 있다.
여기서 멀티웨이 밸브(211)는 삼방밸브(3-way valve)로 구성할 수 있다. 도 1을 참조하면, 멀티웨이 밸브(211)는 제1멀티웨이 밸브(211-1), 제2멀티웨이 밸브(211-2), 제3멀티웨이 밸브(211-3)로 구성할 수 있다. 그리고 멀티웨이 밸브(211)는 제1하우징(110A)에 구성된 밸브 수용부(110A1)에 수용될 수 있다. 밸브 수용부(110A1)는 제1밸브 수용부(110A1-1), 제2밸브 수용부(110A1-2), 제3밸브 수용부(110A1-3)로 구성할 수 있으며, 제1밸브 수용부(110A1-1)는 제1멀티웨이 밸브(211-1)를 수용하고, 제2밸브 수용부(110A1-2)는 제2멀티웨이 밸브(211-2)를 수용하고, 제3밸브 수용부(110A1-3)는 제3멀티웨이 밸브(211-3)를 수용할 수 있다.
팽창 밸브는 액체 상태의 냉매의 압력을 강화시켜 기화시키는 밸브이고, 수냉식 컨덴서는 기체 상태의 냉매를 액체 상태로 응축시키는 열교환기이고, 칠러는 액체 상태의 냉매에서 열을 제거하는 열교환기이다. 공랭식 컨덴서(미도시)의 경우 냉매는 과냉각(Sub-Cool)된다.
이러한 각 컴포넌트(200)들은 냉매 매니폴드(100)에 장착되어 냉매 모듈(10)을 구성하며, 이때 각 컴포넌트(200)들은 냉매 매니폴드(100)의 내부에 형성된 냉매 채널과 연통되도록 장착된다. 보다 구체적으로 각 컴포넌트(200)들은 냉매 매니폴드(100)에 형성되어 냉매 채널과 연통되는 각 장착 구조들 중 각 컴포넌트들에 대응되는 장착 구조와 연통되도록 장착됨으로써 냉매 채널과 연통될 수 있다.
이하에서는 본 발명의 냉매 매니폴드(100)에 대해 먼저 살펴보도록 한다. 도 3은 본 발명의 일 예에 따른 냉매 매니폴드의 분해 사시도로서, 도시된 바와 같이 냉매 매니폴드는 크게 매니폴드 바디(110)와 냉매 포트(120)를 포함한다.
매니폴드 바디(110)에는 컴포넌트(200)들이 장착되며, 매니폴드 바디(110)의 내부에는 냉매가 유동되는 냉매 채널(115)이 형성된다. 보다 구체적으로, 매니폴드 바디(110)의 외측에는 상술한 컴포넌트들이 장착될 수 있는 컴포넌트 장착 구조가 구비되며, 해당 컴포넌트 장착 구조에 장착된 컴포넌트들은 냉매 채널과 연통되어 냉매 회로가 형성될 수 있다.
그리고, 냉매 포트(120)는 이러한 냉매 채널(115)과 연통되어, 외부로부터 냉매를 유입하거나 외부로 냉매를 배출하는 것으로, 냉매 유입구 또는 냉매 배출구에 해당한다. 냉매 포트(120)는 다수개로 구성될 수 있으며, 다수개의 냉매 포트(120) 중 일부는 냉매 유입구에 해당하고, 나머지는 냉매 배출구에 해당할 수 있다.
이때, 본 발명의 냉매 매니폴드(100)는 도시된 바와 같이 냉매 포트(120)가 매니폴드 바디(110)의 최외곽에 배치된다.
보다 구체적으로, 도 3을 다시 참조하면, 매니폴드 바디(110)는 전체적으로 판상 형태로 구성되고, 매니폴드 바디(110)의 일면과 타면, 즉 도면상 매니폴드 바디(110)의 전면과 후면에 컴포넌트(200)들이 장착될 수 있는 장착 구조가 형성될 수 있다.
이와 같이 냉매 포트(120)가 매니폴드 바디(110)의 최외곽에 배치됨에 따라, 상술한 냉매 모듈(10)을 차량에 장착하여 열교환 시스템을 구성할 경우, 냉매 모듈과 열교환 시스템의 다른 부품들과의 연결을 위한 배관과 호스의 설치 및 조립 상의 편이성이 향상될 수 있고, 냉매 포트로의 접근이 용이하여 작업성이 개선될 수 있다.
냉매 포트(120)가 다수개로 구성되는 경우, 다수개의 냉매 포트(120) 각각이 모두 매니폴드 바디(110)의 최외곽에 배치될 수 있으며, 그에 따라 상술한 이점이 부각될 수 있다.
나아가, 냉매 포트(120)는 매니폴드 바디(110)로부터 외측으로 소정 돌출되어 형성된 플랜지 구조로 이루어질 수 있으며, 플랜지 구조의 냉매 포트(120)에는 냉매 채널(115)과 연통되어 냉매가 유입되거나 배출되는 출입구와, 배관 및 호스와 연결될 수 있도록 냉매 포트(120)를 관통하는 연결홀이 형성될 수 있다. 이와 같이 냉매 포트(120)가 플랜지 구조로 이루어짐에 따라 냉매 포트와 배관 및 호스와의 연결성이 더욱 향상될 수 있다.
다음으로, 본 발명의 매니폴드 바디(110)의 구조에 대해 보다 구체적으로 살펴보면 다음과 같다.
매니폴드 바디(110)는 적어도 둘 이상의 플레이트가 적층된 구조로 이루어질 수 있다. 보다 구체적으로, 도 3을 다시 참조하면, 매니폴드 바디(110)는 판상의 제1하우징(110A)과, 판상의 중앙 플레이트(110B)와, 판상의 제2하우징(110C)을 포함하며, 제1하우징(110A), 중앙 플레이트(110B), 및 제2하우징(110C)이 순서대로 적층된 구조로 이루어질 수 있다. 제1하우징(110A), 중앙 플레이트(110B), 및 제2하우징(110C)은 서로 브레이징될 수 있고, 이와 동시에 또는 별개로 제1하우징(110A), 중앙 플레이트(110B), 및 제2하우징(110C) 각각에 형성된 볼팅 홀을 통해 서로 볼팅 결합될 수 있다.
중앙 플레이트(110B)는 일면과 타면이 평면인 평판이고, 제1하우징(110A)의 내측과 제2하우징(110C)의 내측에는 상술한 냉매 채널(115)을 형성하는 음각 구조가 형성될 수 있다. 여기서, 제1하우징(110A)의 내측이란 제1하우징(110A)과 중앙 플레이트(110B)의 사이를 의미하고, 제2하우징(110C)의 내측이란 제2하우징(110C)과 중앙 플레이트(110B)의 사이를 의미할 수 있다.
이러한 구조에서, 제1하우징(110A)의 일측 면(즉, 도면상 후면)에 중앙 플레이트(110B)가 적층 결합되어 제1하우징(110A)의 내측에 형성된 음각 구조의 개방된 부분을 폐쇄함으로써 제1하우징(110A)과 중앙 플레이트(110B)의 사이에 완전한 제1 냉매 채널(115-1, 단 도면상 표시되지 않음)이 형성되고, 제2하우징(110C)의 일측 면(즉, 도면상 전면)에 중앙 플레이트(110B)가 적층 결합되어 제2하우징(110C)의 내측에 형성된 음각 구조의 개방된 부분을 폐쇄함으로써 제2하우징(110C)과 중앙 플레이트(110B)의 사이에 완전한 제2 냉매 채널(115-2)이 형성될 수 있다.
즉, 냉매 채널(115)은 제1하우징(110A)과 중앙 플레이트(110B)의 사이에 형성되는 제1 냉매 채널(115-1)과, 제2하우징(110C)과 중앙 플레이트(110B)의 사이에 형성되는 제2 냉매 채널(115-2)을 포함하며, 제1 냉매 채널(115-1)과 제2 냉매 채널(115-2) 각각은 다수의 단위 냉매 채널로 구성될 수 있다.
그리고, 상술한 바와 같이, 제1하우징(110A)의 외측이자 매니폴드 바디(110)의 일면(즉, 도면상 전면)에 컴포넌트(200)들이 장착될 수 있는 장착 구조가 형성되고, 제2하우징(110C)의 외측이자 매니폴드 바디(110)의 타면(즉, 도면상 후면)에 컴포넌트(200)들이 장착될 수 있는 장착 구조가 형성되며, 냉매 포트(120)는 다수개로 구성될 수 있다.
이와 같이 냉매 포트(120)가 제1하우징(110A) 및 제2하우징(110C)과 일체로 구성됨에 따라, 배관과 호스의 연결 길이를 감소시켜 배관 연결의 복잡성을 감소시킴과 동시에 연결 안정성을 증대시킬 수 있으며, 나아가 배관과 호스의 사용을 최소화하여 열교환 시스템 구축에 필요한 전체 부품수 및 조립 공수를 감소시킬 수 있다.
구체적으로 냉매 포트(120)은 6개로 구성할 수 있다. 제1하우징(110A)는 제5냉매 포트(120-5)와 제6냉매 포트(120-6)를 구비할 수 있고, 제2하우징(110C)은 제1냉매 포트(120-1), 제2냉매 포트(120-2), 제3냉매 포트(120-3), 제4냉매 포트(120-4)를 구비할 수 있다.
제1 냉매 포트(120-1)는 증발기로부터 냉매 매니폴드로 기상의 냉매가 유입된다. 제2 냉매포트(120-2)는 압축기로부터 냉매 매니폴드로 압축된 냉매가 유입된다. 제3 냉매포트(120-3)는 냉매 매니폴드에서 증발기로 냉매가 유출된다. 제4 냉매포트(120-4)는 냉매 모듈 외부에 배치된(차량 전방에 배치된) 공랭식 컨덴서에서 냉매 매니폴드로 냉매가 유입된다. 제5 냉매포트(120-5)는 냉매 매니폴드에서 공랭식 컨덴서로 냉매가 유출된다. 제6 냉매포트(120-6)는 냉매 매니폴드에서 기액분리기로 냉매가 유출된다.
냉매 포트(120)는 냉매가 흐르는 파이프를 연결하는 포트홀을 구비한다. 이때 제1냉매 포트(120-1)의 포트홀은 제2 내지 6냉매 포트(120-2 내지 120-6)의 포트홀과 대비하여 직경이 크게 형성할 수 있다. 제1냉매 포트(120-1)는 증발기에서 냉매 매니폴드(100)로 기상의 냉매가 유입하는 냉매 포트이다. 압축기로 유입하는 냉매의 압력이 증가하지 않도록 제1냉매 포트(120-1)의 포트홀은 직경을 크게 형성하는 것이 바람직하다.
또한 제6 냉매 포트(120-6)는 냉매 매니폴드(100)에서 기액분리기로 냉매가 유출하는 냉매 포트이다. 증발기를 거친 냉매는 다수의 액상의 냉매를 포함한다. 기액분리기는 액상과 기상으로 섞인 냉매에서 액상의 냉매와 기상의 냉매를 분리한다. 기액분리기는 액상의 냉매를 걸러 기상의 냉매만을 압축기로 보낸다. 됩니다. 여기서 제6 냉매 포트(120-6)은 기액분리기 바로 전단에 위치하므로 다량의 액상 냉매를 포함할 수 있다. 제6냉매 포트(120-6)는 냉매포트(120) 중 중력방향에서 최하단에 위치하는 것이 바람직하다.
이러한 제6냉매 포트(120-6)의 배치 위치는 액상의 냉매가 냉매 매니포드(100) 내부 채널에서 중력방향으로 흘러내려 하단에 위치한 냉매 채널 및 컴포넌트들로 유입하는 것을 방지할 수 있다.
냉매 포트(120) 중 적어도 일부는 매니폴드 바디(110)가 적층되는 방향에 대해 수직하게 냉매 포트(120)의 포트홀이 개구될 수 있다. 여기서는 제6냉매 포트(120-6)가 적층 방향에 나란하게 형성한 것을 도시하였다.
또한 냉매 포트(120)는 매니폴드 바디(110)가 적층되는 방향과 수직인 방향으로 냉매 포트(120)의 포트홀이 개구된 냉매 포트보다 매니폴드 바디(110)의 적층 방향과 나란한 방향으로 개구된 냉매 포트(120)의 포트홀이 더 많도록 구성할 수 있다.
냉매 매니폴드는 판형으로 형성하여 적층되는 구조이다. 적층된 방향과 나란한 방향으로 개구된 포트홀을 가지는 냉매포트가 많은 경우, 냉매 매니폴드에 장착되는 컴포넌트들에 간섭될 수 있으며, 간섭을 회피하기 위해 매니폴드의 면적이 불필요하게 커질 수 있다. 냉매 모듈은 냉매 시스템에 필요한 배관 및 부품들을 컴팩트하게 소형화/모듈화하기 위한 목적이 크므로, 제한된 냉매 매니폴드 면적에서 복수의 냉매 포트를 효율적으로 배치하기 위해 대부분의 냉매 포트를 적층 방향과 수직인 방향으로 배치하고, 최외각에 배치하는 것이다.
도 3을 다시 참조하면, 중앙 플레이트(110B)에는 중앙 플레이트(110B)를 관통하는 관통홀(110B_H)이 다수 형성될 수 있다.
그리고, 해당 관통홀(110B_H) 중 적어도 일부는, 상술한 제1 냉매 채널(115-1)과 제2 냉매 채널(115-2)을 연결시키는 관통홀로서, 이를 통해 제1 냉매 채널(115-1)과 제2 냉매 채널(115-2)이 서로 연결될 수 있다. 관통홀을 통해 제1 냉매 채널과 제2 냉매 채널이 연결됨으로써 냉매 매니폴드 내부에 냉매의 유동 라인을 유연하게 설계할 수 있으며, 추가 구조물 없이 제1 냉매 채널과 제2 냉매 채널을 연결할 수 있게 되어 공간 활용도를 높일 수 있다.
또한, 다수의 관통홀(110B_H) 중 적어도 일부는, 제1 컴포넌트와 제2 컴포넌트를 직접 연결시키는 관통홀로서, 이를 통해 제1 컴포넌트와 제2 컴포넌트 간 냉매의 직접 유동이 가능해질 수 있다. 여기서, 제1 컴포넌트란 제1하우징의 외측이자 매니폴드 바디의 일면(즉, 도면상 전면)에 장착되는 컴포넌트이고, 제2 컴포넌트란 제2하우징의 외측이자 매니폴드 바디의 타면(즉, 도면상 후면)에 장착되는 컴포넌트를 의미할 수 있다. 이와 같이, 제1 컴포넌트와 제2 컴포넌트가 관통홀을 통해 직접 연결됨으로써 컴포넌트들 간 연결을 위해 필요한 냉매 채널의 수가 감소되어 냉매 매니폴드의 구조를 더욱 간단하게 구성할 수 있는 이점이 있다.
또한, 다수의 관통홀(110B_H) 중 적어도 일부는 상술한 볼팅 홀에 해당할 수 있으며, 이를 통해 제1하우징(110A), 중앙 플레이트(110B), 및 제2하우징(110C)이 서로 볼팅 결합될 수 있음은 앞서 살펴본 바와 같다.
이하에서는 본 발명의 냉매 모듈(10)에 대해 살펴본다. 도 1, 2를 다시 참조하면, 냉매 모듈(10)은 상술한 냉매 매니폴드(100)와, 냉매 매니폴드(100)에 장착 결합되는 컴포넌트(200)들을 포함한다.
구체적인 실시예로서, 냉매 매니폴드의 일면(즉, 도면상 전면)에는 다수의 팽창 밸브가 장착되고, 냉매 매니폴드의 타면(즉, 도면상 후면)에는 수냉식 컨덴서, 칠러, 및 히트펌프 밸브가 장착될 수 있다. 냉매 매니폴드는 중력방향으로 수직하게 세워진 구조로 배치되며, 팽창 밸브, 수냉식 컨덴서, 칠러, 및 히트펌프 밸브는 각각 냉매 매니폴드에 수평방향으로 장착 결합될 수 있다. 이는 냉매 모듈의 패키징성을 향상시키는 바람직한 실시예에 해당한다. 냉매 매니폴드(100)가 적층되는 방향은 중력방향에 수직일 수 있다.
이때, 냉매 매니폴드의 냉매 포트들이 매니폴드 바디의 최외곽에 배치됨에 따라, 냉매 모듈의 설치에 있어서 연결성과 작업성이 향상될 수 있음은 앞서 살펴본 바와 같다.
수냉식 컨덴서(220)와 칠러(230)는 모두 냉매와 냉각수가 열교환하는 열교환기이다. 열교환기인 수냉식 컨덴서(220)와 칠러(230)는 냉매 매니폴드(100)에 장착되어 냉매 채널(115)과 연통된다. 여기서 칠러(230)는 배터리 칠러일 수 있다.
이때 냉매 매니폴드(100)를 중심으로 일측에는 수냉식 컨덴서(220) 및 칠러(210)가 배치되고, 타측에는 멀티웨이 밸브(211)가 배치되되 멀티웨이 밸브(211)는 팽창 밸브(210)에 결합한 형태로 구성할 수 있다. 수냉식 컨덴서(220) 및 칠러(210)는 냉매 매니폴드(100) 일측에 배치되고, 멀티웨이 밸브(211) 냉매 매니폴드(100) 타측에 배치될 수 있다.
이러한 컴포넌트(200)들의 배치는 통해 냉매 채널(115)의 형성 및 냉매 포트(120)의 배치를 효율적으로 설계할 수 있도록 한다.
수냉식 컨덴서(220)는 수냉식 컨덴서(220)의 길이방향이 중력방향 상측에서 하측에 위치하도록 냉매 매니폴드(100)에 배치될 수 있다. 수냉식 컨덴서(220)는 냉매 매니폴드(100)에 중력방향으로 배치될 수 있는 것이다. 이때 수냉식 컨덴서(220)의 길이방향이 중력방향과 일치하도록 배치할 수 있는 것이다.
이는 수냉식 컨덴서(220)로 유입되는 냉각수(액체)가 상측에서 하측으로 중력방향에 따라 흐를 수 있도록 하기 위한 것이다. 이때 기상인 냉매는 하측에서 상측으로 이동하면서 냉각수와 열교환할 수 있다.
멀티웨이 밸브(211)는 복수의 멀티웨이 밸브(211)로 구성하고, 냉매 매니폴드(100)는 복수의 냉매 포트(120)를 구비하되, 복수의 냉매 포트(120) 중 하나는 복수의 멀티웨이 밸브(211) 중 하나의 멀티웨이 밸브(211) 주변에 형성할 수 있다.
상술한 것과 같이 멀티웨이 밸브(211)는 복수 개로 구성하고, 이 중 제3 멀티웨이 밸브(211-3)는 수냉식 컨덴서(220)를 거친 냉매를 공랭식 컨덴서로 보내거나 또는 바이패스하는 것을 결정할 수 있다. 제3 멀티웨이 밸브(211-3)는 제3밸브 수용부(110A1-3)에 장착될 수 있다.
여기서 제5 냉매 포트(120-5)는 냉매 매니폴드(100)에서 공랭식 컨덴서로 냉매가 유출되는 냉매 포트로써, 제5 냉매 포트(120-5)는 제3 멀티웨이 밸브(211-3)가 장착되는 제3밸브 수용부(110A1-3) 주변에 형성될 수 있다. 이는 냉매 채널을 최소화하는데 바람직하다.
이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.

Claims (17)

  1. 컴포넌트들이 장착되고, 내부에 냉매가 유동되는 냉매 채널이 형성된 매니폴드 바디; 및
    상기 냉매 채널과 연통되어, 외부로부터 냉매를 유입하거나 외부로 냉매를 배출하는 냉매 포트; 를 포함하며,
    상기 냉매 포트 중 적어도 어느 하나는 상기 매니폴드 바디의 최외곽에 배치되는,
    냉매 매니폴드.
  2. 제1항에 있어서,
    상기 매니폴드 바디는 판상 형태이고,
    상기 매니폴드 바디의 일면과 타면에 상기 컴포넌트들이 장착되는 컴포넌트 장착구조가 구비되고,
    상기 매니폴드 바디의 내측면에는 냉매 채널을 형성하는 음각 구조가 형성되고,
    상기 냉매 채널이 형성된 면을 제외한 다른 면에 상기 냉매 포트가 형성되는,
    냉매 매니폴드.
  3. 제2항에 있어서,
    상기 매니폴드 바디는
    각각이 판상 형태를 가지는 제1하우징, 중앙 플레이트, 및 제2하우징을 포함하고, 상기 제1하우징, 중앙 플레이트, 및 제2하우징이 순서대로 적층된 구조로 이루어지는,
    냉매 매니폴드.
  4. 제3항에 있어서,
    상기 중앙 플레이트는 일면과 타면이 평면인 평판이고,
    상기 제1하우징의 내측과 상기 제2하우징의 내측에는 상기 냉매 채널을 형성하는 음각 구조가 형성되며,
    상기 제1하우징과 중앙 플레이트의 사이, 및 상기 제2하우징과 중앙 플레이트의 사이에 상기 냉매 채널이 형성되는,
    냉매 매니폴드.
  5. 제4항에 있어서,
    상기 제1하우징의 외측이자 상기 매니폴드 바디의 일면과, 상기 제2하우징의 외측이자 상기 매니폴드 바디의 타면에 상기 컴포넌트들이 장착되는 컴포넌트 장착구조가 구비되며,
    냉매 매니폴드.
  6. 제4항에 있어서,
    상기 중앙 플레이트에는 상기 중앙 플레이트를 관통하는 관통홀이 하나 이상 형성되고,
    상기 냉매 채널 중, 상기 제1하우징과 중앙 플레이트의 사이에 형성되는 냉매 채널을 제1 냉매 채널이라 하고, 상기 제2하우징과 중앙 플레이트의 사이에 형성되는 냉매 채널을 제2 냉매 채널이라 하면,
    상기 중앙 플레이트의 관통홀을 통해 상기 제1 냉매 채널과 상기 제2 냉매 채널이 서로 연통되는,
    냉매 매니폴드.
  7. 제6항에 있어서,
    상기 컴포넌트들 중, 상기 제1하우징의 외측이자 상기 매니폴드 바디의 일면에 장착되는 컴포넌트를 제1 컴포넌트라 하고, 상기 제2하우징의 외측이자 상기 매니폴드 바디의 타면에 장착되는 컴포넌트를 제2 컴포넌트라 하면,
    상기 중앙 플레이트의 관통홀을 통해 상기 제1 컴포넌트와 제2 컴포넌트 간 냉매의 직접 유동이 가능하게 구성되는,
    냉매 매니폴드.
  8. 제3항에 있어서,
    상기 제1하우징은 제5냉매 포트 및 제6냉매 포트를 구비하고, 상기 제2하우징은 제1냉매 포트, 제2냉매 포트, 제3냉매 포트 및 제4냉매 포트를 구비하되,
    상기 제1냉매 포트의 포트홀은 상기 제2 내지 6냉매 포트의 포트홀과 대비하여 직경이 큰,
    냉매 매니폴드.
  9. 제8항에 있어서,
    상기 제6냉매 포트는 상기 냉매포트 중 중력방향에서 최하단에 위치하는,
    냉매 매니폴드.
  10. 제8항에 있어서,
    상기 냉매 포트 중 적어도 일부는 상기 매니폴드 바디가 적층되는 방향에 대해 수직하게 상기 냉매 포트의 포트홀이 개구된,
    냉매 매니폴드.
  11. 제8항에 있어서,
    상기 냉매 포트는 상기 매니폴드 바디가 적층되는 방향과 수직인 방향으로 상기 냉매 포트의 포트홀이 개구된 냉매 포트보다 상기 매니폴드 바디의 적층 방향과 나란한 방향으로 개구된 상기 냉매 포트의 포트홀이 더 많은,
    냉매 매니폴드.
  12. 제1항의 냉매 매니폴드; 및
    상기 냉매 매니폴드에 장착 결합되는 컴포넌트들; 을 포함하는,
    상기 컴포넌트들은 팽창 밸브, 수냉식 컨덴서, 칠러, 및 히트펌프 밸브를 포함하고,
    상기 팽창 밸브는 다수개로 구성되어, 각각이 상기 냉매 매니폴드의 일면에 장착되고,
    상기 수냉식 컨덴서, 칠러, 및 히트펌프 밸브는 상기 냉매 매니폴드의 타면에 장착되는,
    냉매 모듈.
  13. 제7항에 있어서,
    상기 냉매 매니폴드가 적층되는 방향은 중력방향과 수직인,
    냉매 모듈.
  14. 제13항에 있어서,
    냉매 매니폴드를 중심으로 일측에는 상기 수냉식 컨덴서 및 칠러가 배치되고, 타측에는 멀티웨이 밸브가 배치되되 상기 멀티웨이 밸브는 상기 팽창 밸브에 결합한 형태로 구성하는,
    냉매 모듈.
  15. 제13항에 있어서,
    상기 수냉식 컨덴서는 수냉식 컨덴서의 길이방향이 중력방향 상측에서 하측에 위치하도록 냉매 매니폴드에 배치되는,
    냉매 모듈.
  16. 제14항에 있어서,
    상기 멀티웨이 밸브는 복수의 멀티웨이 밸브로 구성하고, 상기 냉매 매니폴드는 복수의 냉매 포트를 구비하되, 상기 복수의 냉매 포트 중 하나는 상기 복수의 멀티웨이 밸브 중 하나의 멀티웨이 밸브 주변에 형성하는,
    냉매 모듈.
  17. 제16항에 있어서,
    상기 복수의 멀티웨이 밸브 중 제5냉매 포트는 상기 복수의 냉매 포트 중 제3밸브 수용부 주변에 형성하는,
    냉매 모듈.
PCT/KR2023/017200 2022-11-03 2023-11-01 냉매 매니폴드 WO2024096550A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0145138 2022-11-03
KR20220145138 2022-11-03
KR1020230144684A KR20240063773A (ko) 2022-11-03 2023-10-26 냉매 매니폴드
KR10-2023-0144684 2023-10-26

Publications (1)

Publication Number Publication Date
WO2024096550A1 true WO2024096550A1 (ko) 2024-05-10

Family

ID=90931172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/017200 WO2024096550A1 (ko) 2022-11-03 2023-11-01 냉매 매니폴드

Country Status (1)

Country Link
WO (1) WO2024096550A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190039440A1 (en) * 2017-08-04 2019-02-07 Tesla, Inc. Technologies for manifolds
KR20210022220A (ko) * 2019-08-19 2021-03-03 현대자동차주식회사 차량의 통합 열관리 모듈
US20210086587A1 (en) * 2019-09-20 2021-03-25 Ford Global Technologies, Llc Integrated heat pump bundled module mounting manifold
CN113733844A (zh) * 2020-05-29 2021-12-03 比亚迪股份有限公司 集成式水壶组件及热管理系统
KR20220118217A (ko) * 2021-02-18 2022-08-25 지엠비코리아 주식회사 차량의 공조용 냉각수 매니폴드 및 통합 냉각수 분배 및 저장 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190039440A1 (en) * 2017-08-04 2019-02-07 Tesla, Inc. Technologies for manifolds
KR20210022220A (ko) * 2019-08-19 2021-03-03 현대자동차주식회사 차량의 통합 열관리 모듈
US20210086587A1 (en) * 2019-09-20 2021-03-25 Ford Global Technologies, Llc Integrated heat pump bundled module mounting manifold
CN113733844A (zh) * 2020-05-29 2021-12-03 比亚迪股份有限公司 集成式水壶组件及热管理系统
KR20220118217A (ko) * 2021-02-18 2022-08-25 지엠비코리아 주식회사 차량의 공조용 냉각수 매니폴드 및 통합 냉각수 분배 및 저장 모듈

Similar Documents

Publication Publication Date Title
WO2022255769A1 (ko) 통합 쿨링 모듈
WO2018225919A1 (ko) 배터리 팩
WO2010067944A1 (en) Middle or large-sized battery pack of novel air cooling structure
WO2010044553A2 (ko) 냉각 효율성이 향상된 전지모듈 어셈블리
WO2012020941A2 (ko) 신규한 구조의 전지팩
WO2017116128A1 (ko) 전기소자 냉각용 열교환기
WO2022177303A1 (ko) 차량의 공조용 냉각수 매니폴드 및 통합 냉각수 분배 및 저장 모듈
WO2020246792A1 (ko) 열관리 시스템
WO2017026634A1 (ko) 전기자동차의 배터리 열교환 장치
WO2022065751A1 (ko) 냉각수 제어 모듈
WO2023287200A1 (ko) 통합 쿨링 모듈
WO2022245155A1 (ko) 통합 쿨링 모듈
CN214013020U (zh) 水冷板及电池模组
WO2024096550A1 (ko) 냉매 매니폴드
WO2022124700A1 (ko) 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2024014739A1 (ko) 매니폴드 유체 모듈
WO2024014740A1 (ko) 매니폴드 유체 모듈
WO2018164418A1 (ko) 배기가스를 이용하는 수소 개질기
WO2023177060A1 (ko) 냉각수 매니폴드를 포함하는 냉각수 모듈
CN220155700U (zh) 一种散热泄压装置、电池模组及电池包
CN118263474A (zh) 一种适用于高功率燃料电池的膜增湿器
WO2023132561A1 (ko) 유체 가열 히터
KR20240063773A (ko) 냉매 매니폴드
WO2022075606A1 (ko) 배터리 모듈
WO2024219763A1 (ko) 차량용 열관리 유체 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23886246

Country of ref document: EP

Kind code of ref document: A1