WO2024096329A1 - Hydrogen generation system - Google Patents

Hydrogen generation system Download PDF

Info

Publication number
WO2024096329A1
WO2024096329A1 PCT/KR2023/014860 KR2023014860W WO2024096329A1 WO 2024096329 A1 WO2024096329 A1 WO 2024096329A1 KR 2023014860 W KR2023014860 W KR 2023014860W WO 2024096329 A1 WO2024096329 A1 WO 2024096329A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
hydrogen
processing device
hydrogen generation
flow path
Prior art date
Application number
PCT/KR2023/014860
Other languages
French (fr)
Korean (ko)
Inventor
곽헌길
Original Assignee
케이퓨전테크놀로지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230126153A external-priority patent/KR20240062092A/en
Application filed by 케이퓨전테크놀로지 주식회사 filed Critical 케이퓨전테크놀로지 주식회사
Publication of WO2024096329A1 publication Critical patent/WO2024096329A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • the present invention relates to a hydrogen production system, and more specifically, to a hydrogen production system capable of producing hydrogen in an environmentally friendly manner.
  • renewable energy such as solar and wind power has the advantage of being environmentally friendly and infinite, but has problems such as intermittency of power generation and system stabilization.
  • the hydrogen economy refers to an economy in which hydrogen becomes a source of economic growth and eco-friendly energy by using hydrogen as an important energy source to bring about fundamental changes in the national economy and people's lives.
  • Hydrogen production technologies can be classified according to the raw materials used and also according to the energy source and chemical reaction used.
  • Raw materials used to produce hydrogen include fossil fuels, water, biomass, and waste resources, and energy sources include heat and electricity. Additionally, representative hydrogen production methods include byproduct hydrogen method, reformed hydrogen method, and water electrolysis method.
  • the byproduct hydrogen method uses hydrogen produced incidentally through a chemical reaction in a petrochemical or steel manufacturing process.
  • This method has the advantage of being highly economical as there is no additional facility investment cost for hydrogen production because it uses waste gas.
  • there is a limit to production because it uses hydrogen generated as a by-product, and its low purity requires a high purity process to be utilized. There is a problem of necessity.
  • the reformed hydrogen method produces hydrogen through a catalytic reaction using hydrocarbon fossil fuels such as natural gas, coal, and oil.
  • Water electrolysis is a water decomposition method caused by an electrochemical reaction that generates hydrogen by applying electricity to water.
  • water electrolysis methods include alkaline water electrolysis (AECl), polymer electrolyte water electrolysis (PEMECl), and solid oxide water electrolysis (SOECl).
  • the present invention was developed in consideration of the above points, and the purpose of the present invention is to produce hydrogen in an environmentally friendly manner by generating plasma while flowing fluid at high speed and extracting hydrogen from the fluid treated with the generated plasma.
  • the purpose is to provide a generating device.
  • the hydrogen generation system generates plasma by collapsing bubbles contained in the fluid flowing into the inside, and uses the generated plasma to process the fluid.
  • a processing device comprising: a hydrogen generation device connected to the processing device and extracting hydrogen from the fluid processed by the processing device; and a connecting device that connects the processing device and the hydrogen generating device and is configured to change the electrical properties of the fluid as the fluid passes through it.
  • connection device may be configured to lower the electrical potential of the fluid.
  • the connection device may include a buffer tank that has a storage space capable of storing the fluid and is configured to be grounded to a ground portion to ground the fluid.
  • the connection device includes a buffer tank capable of storing the fluid; and a discharge electrode at least partially installed inside the buffer tank so as to contact the fluid and ground the fluid.
  • connection device may include a discharge member at least partially disposed in the connection pipe to ground the fluid flowing along the connection pipe connecting the processing device and the hydrogen generating device.
  • the hydrogen generation system may include an electrical energy extraction device connected to the discharge member to extract electrical potential energy from the fluid through the discharge member.
  • the hydrogen generation system may include a temperature control device disposed upstream of the hydrogen generation device based on the flow direction of the fluid to change the temperature of the fluid.
  • connection device includes a buffer tank that has a storage space capable of storing the fluid and is configured to be grounded to a ground portion to ground the fluid to lower the electrical potential of the fluid, and the temperature control device includes the It may include a heat exchange member at least partially disposed in the storage space to exchange heat with the fluid stored in the storage space.
  • the temperature control device includes a heat exchange member disposed in contact with or adjacent to the connection pipe to exchange heat with the fluid flowing along the connection pipe connecting the processing device and the hydrogen production device. can do.
  • the processing device includes: a first flow path having a shape whose diameter decreases at least in part along the flow direction of the fluid; a second flow path having a shape whose diameter is enlarged in at least two sections to collapse bubbles contained in the fluid flowing in through the first flow path; And it may include a screw disposed in the first flow path to generate a vortex of the fluid.
  • the processing device includes a hollow external body that accommodates the screw; And it may include a guide assembly accommodated in the external body to be positioned downstream of the screw based on the flow direction of the fluid to provide the first flow path and the second flow path.
  • the fluid is water
  • the guide assembly may be made of a material that frictionally charges the water with a positive charge.
  • the processing device may include an accelerator disposed in the second flow path to promote collapse of bubbles contained in the fluid.
  • the processing device includes a first body including a screw and a first fluid flow path that guides the flow of the fluid passing through the screw and has a shape whose diameter decreases at least in part along the flow direction of the fluid; a second body connected to the first body and including a second fluid passage having a relatively larger diameter than one end of the first fluid passage to provide a change in pressure to the fluid passing through the first fluid passage; and is connected to the second body, is formed of a material with higher electrical conductivity than the second body, and has a relatively smaller diameter than the second fluid passage to provide a change in pressure to the fluid passing through the second fluid passage. It may include a third body including a third fluid flow path.
  • a hydrogen generation system generates plasma by collapsing bubbles contained in the fluid flowing into the inside, and processes the fluid through the generated plasma.
  • a processing device configured to; a plurality of hydrogen generating devices connected to the processing device and extracting hydrogen from the fluid processed by the processing device; and a connecting device that connects the processing device and the plurality of hydrogen generating devices, and is configured to change electrical characteristics of the fluid while the fluid passes, wherein the plurality of hydrogen generating devices include the connecting device and the plurality of hydrogen generating devices. connected in parallel.
  • a coupler capable of separably connecting the connecting device and each of the plurality of hydrogen generating devices may be installed between the connecting device and each of the plurality of hydrogen generating devices.
  • a hydrogen generation system generates plasma by collapsing bubbles contained in the fluid flowing into the inside, and processes the fluid through the generated plasma.
  • a processing device configured to; a plurality of hydrogen generating devices connected to the processing device and extracting hydrogen from the fluid processed by the processing device; and a connecting device that connects the processing device and the plurality of hydrogen generating devices, and is configured to change electrical characteristics of the fluid while the fluid passes, wherein the plurality of hydrogen generating devices include the connecting device and the plurality of hydrogen generating devices. connected in parallel.
  • a coupler capable of separably connecting the connecting device and each of the plurality of hydrogen generating devices may be installed between the connecting device and each of the plurality of hydrogen generating devices.
  • the hydrogen generation system according to the present invention chemically decomposes the fluid in an electrodeless manner using a fluid processing device, changes the electrical characteristics of the fluid using a connection device, and then extracts hydrogen from the fluid using a hydrogen generation device. can do. Therefore, hydrogen can be produced in an environmentally friendly manner without the need for a fluid electrolysis process.
  • a large amount of fine bubbles with a high negative charge density are generated at the interface through cavitation of the flowing fluid and friction charging, and the bubbles are collapsed in the fluid to generate plasma, thereby chemically decomposing the fluid, Hydrogen can be efficiently extracted from fluid.
  • Figure 1 schematically shows a hydrogen production system according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view showing a processing device of a hydrogen production system according to an embodiment of the present invention.
  • Figure 3 shows an enlarged portion of Figure 2.
  • FIG. 4 is a cross-sectional view showing the external body of the processing device shown in FIG. 2.
  • Figure 5 shows a portion of the processing device shown in Figure 2 in isolation.
  • Figure 6 is a cross-sectional view showing a processing device according to another embodiment of the present invention.
  • Figure 7 shows an enlarged portion of Figure 6.
  • Figure 8 shows a portion of the processing device shown in Figure 6 in isolation.
  • Figure 1 schematically shows a hydrogen production system according to an embodiment of the present invention.
  • the hydrogen generation system 10 includes a processing device 100 that processes fluid for hydrogen generation, and electrical characteristics of the fluid processed in the processing device 100. It includes a connecting device 210 configured to change the fluid, and a hydrogen generating device 300 that receives fluid through the connecting device 210 and extracts hydrogen from the fluid.
  • the processing device 100 and the connecting device 210 may be connected through a connecting pipe 420, and the connecting device 210 and the hydrogen generating device 300 may be connected through another connecting pipe 430.
  • a valve 500 may be installed between the connection device 210 and the hydrogen generation device 300 to regulate the flow of fluid supplied from the connection device 210 to the hydrogen generation device 300.
  • the valve 500 may be a manual valve or an automatic valve.
  • the processing device 100 receives fluid from a fluid supply device (not shown) through the supply pipe 410, generates plasma in the fluid by frictionally charging the flowing fluid without an external power source or electrode, and chemically decomposes the fluid through this. It can be processed.
  • Processing device 100 can process various fluids.
  • the treatment device 100 processes water to produce a large amount of hydronium ions (H 3 O + ), hydrogen nano-bubbles (for example, 65 nm in diameter or less), and Plasma activated water containing oxygen nano-bubbles (for example, diameter 65 nm or less) can be generated.
  • the water supplied to the treatment device 100 may be water that has been pretreated to remove foreign substances and have low electrical conductivity.
  • the processing device 100 includes an external body 110, a screw 130 accommodated inside the external body 110, and a guide assembly 140.
  • the external body 110 is hollow to accommodate the screw 130 and the guide assembly 140.
  • a through hole 111 is formed inside the outer body 110, penetrating the outer body 110 in the longitudinal direction.
  • the through hole 111 may form a fluid flow path through which fluid can flow.
  • a screw 130 and a guide assembly 140 are accommodated in the through hole 111.
  • at least a portion of the connecting tube 160 for guiding fluid to the screw 130 may be accommodated in the through hole 111 .
  • the portion of the through hole 111 between the guide assembly 140 and the connecting tube 160 forms an entry passage 115 that connects the guide assembly 140 and the connecting tube 160 so that fluid can flow.
  • a screw 130 is disposed in the entry passage 115.
  • another portion of the through hole 111 forms a discharge passage 113 through which fluid passing through the guide assembly 140 can flow.
  • the discharge passage 113 is wider than the passages provided in the guide assembly 140.
  • a ledge 118 is provided on the inside of the external body 110 to limit the movement of the guide assembly 140.
  • the ledge 118 protrudes from the inner surface of the outer body 110.
  • the ledge 118 may restrict the movement of the guide assembly 140 by contacting the end of the guide assembly 140 to prevent the guide assembly 140 from moving in the fluid flow direction A.
  • the ledge 118 may be ring-shaped or in various other shapes that may contact the end of the guide assembly 140.
  • the ledge 118 includes an enlarged portion 120 and a contact portion 122.
  • the contact portion 122 is disposed upstream of the enlarged portion 120 based on the fluid flow direction A so as to contact the guide assembly 140.
  • the enlarged portion 120 has a curved shape whose diameter gradually increases in a direction away from the end of the guide assembly 140.
  • a first enlarged part connection part 120a and a second enlarged part connection part 120b are provided at both ends of the enlarged part 120, respectively.
  • the first enlarged part connection part 120a is disposed upstream of the second enlarged part connection part 120b based on the fluid flow direction A.
  • the first enlarged portion connection portion 120a may be formed in a convex curved shape with a constant radius of curvature.
  • the second enlarged portion connection portion 120b may be formed in a concave curved shape with a constant radius of curvature.
  • the radius of curvature of the first enlarged portion connecting portion 120a and the radius of curvature of the second enlarged portion connecting portion 120b may be the same or different.
  • the second enlarged portion connection portion 120b may be connected to the inner surface of the external body 110 that borders the discharge passage 113 at a gentle slope.
  • the enlarged portion 120 may form a flow path that expands at a gentle inclination angle between the guide assembly 140 and the discharge flow path 113. If there is a corner on the inner surface of the external body 110 in contact with the fluid, a problem may occur where electric charges are concentrated at the corner.
  • the fluid processing device 100 according to the present invention is provided with an enlarged portion 120 between the guide assembly 140 and the discharge passage 113, so that electric charges are concentrated between the guide assembly 140 and the discharge passage 113. , the problem of the external body 110 or the guide assembly 140 being damaged or broken due to concentration of electric charges can be reduced.
  • the contact portion 122 has a shape whose inner diameter is gradually reduced along the flow direction of the fluid so as to stably contact the guide assembly 140.
  • a first contact connection portion 122a and a second contact connection portion 122b are provided at both ends of the contact portion 122, respectively.
  • the first contact connection portion 122a is disposed upstream of the second contact connection portion 122b based on the fluid flow direction A.
  • the first contact connection portion 122a may be formed in a concave curved shape with a constant radius of curvature.
  • the second contact connection portion 122b may be formed in a convex curved shape with a constant radius of curvature.
  • first contact connection part 122a may be formed in a curved shape with an arbitrary first radius of curvature
  • the second contact connection part 122b may be formed in a curved shape with an arbitrary second radius of curvature.
  • the first radius of curvature and the second radius of curvature may be the same or different.
  • the outer body 110 is made of an insulating material.
  • the external body 110 may be made of synthetic resin materials such as acrylic and engineering plastic, or various dielectric materials.
  • the screw 130 is disposed upstream of the guide assembly 140 based on the fluid flow direction A, and can rotate the fluid to flow into the guide assembly 140.
  • the screw 130 is preferably made of a material that is easily frictionally charged with a negative charge, that is, a material that can frictionally charge a fluid with a positive charge.
  • the screw 130 may be made of synthetic resin materials such as acrylic and engineering plastic, or various dielectric materials.
  • the screw 130 has blades 131 for generating vortices in the fluid.
  • the blade 131 may be shaped to generate a vortex by rotating the fluid. Accordingly, the fluid passing through the blade 131 may flow while swirling.
  • a cavitation phenomenon occurs due to a rapid change in fluid pressure, which causes fine bubbles (B, for example, 50 ⁇ m in diameter or less) to be generated in the fluid.
  • the fluid may be frictionally charged with a positive charge when it quickly passes through the screw 130.
  • the screw 130 may be referred to as a vortex guide.
  • the screw 130 enters between the guide assembly 140 and the connecting tube 160 in various ways, such as being press-fitted into the external body 110 or fixed between the guide assembly 140 and the connecting tube 160. It may be fixed to the flow path 115. Accordingly, the screw 130 can rotate the fluid without rotating. When the screw 130 is rotated by the flowing fluid, the friction charging efficiency between the fluid and the screw 130 may decrease. On the other hand, the fluid processing device 100 according to an embodiment of the present invention guides the fluid with the screw 130 fixed, thereby increasing the friction charging efficiency of the fluid.
  • the screw 130 is shown as having a diameter corresponding to the diameter of the entry passage 115, but the screw 130 may have a diameter smaller than the diameter of the entry passage 115.
  • the guide assembly 140 is located downstream of the screw 130 based on the fluid flow direction (A).
  • the guide assembly 140 may provide a first flow path 156 and a second flow path 158 through which fluid passes.
  • the first flow path 156 may be referred to as a bubble forming flow path 156
  • the second flow path 158 may be referred to as a reaction flow path 158.
  • the bubble forming flow path 156 is configured to form bubbles B in the fluid flowing along it.
  • the reaction passage 158 is configured to collapse bubbles B contained in the fluid flowing along it.
  • the first flow path 156 is disposed upstream of the second flow path 158 based on the fluid flow direction (A).
  • the guide assembly 140 includes a first guide 141 and a second guide 145.
  • the first guide 141 and the second guide 145 are sequentially arranged along the fluid flow direction A.
  • the first guide 141 and the second guide 145 are preferably made of a material that is easily charged with a negative charge, that is, a material that can frictionally charge the fluid with a positive charge.
  • the first guide 141 and the second guide 145 may be made of synthetic resin materials such as acrylic and engineering plastic, or various dielectric materials.
  • the first guide 141 may be in contact with the screw 130 or disposed adjacent to the screw 130 to allow fluid passing through the screw 130 to flow in.
  • the first guide 141 includes a focusing flow path 142 and an inlet flow path 143.
  • the focusing flow path 142 has a shape whose diameter gradually decreases along the fluid flow direction (A).
  • the focusing flow path 142 may guide the fluid passing through the screw 130 to the inlet flow path 143. That is, the fluid may flow along the focusing flow path 142 and be concentrated in the inlet flow path 143.
  • the inlet flow path 143 is connected to the focusing flow path 142 so that fluid flows in from the focusing flow path 142.
  • the inlet flow path 143 is narrower than the focusing flow path 142, so the friction charging effect can be increased by increasing the flow rate of the fluid.
  • the diameter of the focusing flow path 142 and the diameter of the inlet flow path 143 are the same.
  • the first guide 141 may provide a first flow path 156. That is, the focusing passage 142 and the inlet passage 143 of the first guide 141 form the first passage 156 together with the entry passage 115 that accommodates the screw 130.
  • the fluid may flow while generating a vortex in the first flow path 156, and may be frictionally charged with a positive charge due to friction with the screw 130 and the first guide 141. At this time, the screw 130 and the first guide 141 may be negatively charged. Additionally, when the fluid passes through the first flow path 156, fine bubbles B are generated in the fluid due to cavitation. In addition, when the fluid passes through the first passage 156, the fluid is positively charged, and negative charges are concentrated at the interface of the bubbles (B) generated in the fluid.
  • the fluid passes through the first passage 156, the fluid Although a large amount of bubbles B are generated in the fluid, the area where bubbles B are generated in the fluid is not limited to the first flow path 156. That is, even when the fluid passes through the second flow path 158, bubbles B may be generated in the fluid.
  • the second guide 145 may be in contact with the first guide 141 or may be disposed adjacent to the first guide 141 to allow fluid that has passed through the first guide 141 to flow in.
  • the second guide 145 has an expanded flow path 146, a reduced flow path 147, and a connecting flow path 148.
  • the expansion flow path 146 is connected to the inlet flow path 143 of the first guide 141. Fluid passing through the inlet flow path 143 flows into the expansion flow path 146.
  • the diameter of the expansion flow path 146 is larger than the diameter of the inlet flow path 143.
  • the pressure of the fluid that has passed through the narrow inlet passage 143 flows into the expansion passage 146, and the bubbles B in the fluid may expand in the expansion passage 146.
  • the reduced flow path 147 is connected to the expanded flow path 146.
  • the diameter of the reduced flow path 147 is smaller than the diameter of the expanded flow path 146. Accordingly, the pressure of the fluid that has passed through the expansion passage 146 flows into the reduction passage 147, and the bubbles B in the fluid may shrink in the reduction passage 147.
  • the connection flow path 148 connects the reduction flow path 147 and the discharge flow path 113.
  • connection flow path 148 is connected to the reduction flow path 147.
  • the connection passage 148 has a diameter whose diameter gradually expands along the fluid flow direction (A).
  • the connection passage 148 has a diameter of the portion connected to the reduction passage 147 that is the same as the diameter of the reduction passage 147, and the diameter of the portion connected to the discharge passage 113 is larger than the diameter of the reduction passage 147. .
  • the diameter of the portion of the connection passage 148 connected to the discharge passage 113 is smaller than the diameter of the discharge passage 113.
  • the connection passage 148 has a shape that gradually expands from the reduction passage 147 toward the discharge passage 113, so that the fluid passing through the reduction passage 147 can be more smoothly discharged into the discharge passage 113. .
  • the second guide 145 is provided with an inclined portion 152 corresponding to the contact portion 122 of the external body 110.
  • the inclined portion 152 is provided on the outer surface of the second guide 145 in a shape whose outer diameter gradually decreases along the fluid flow direction A.
  • a first inclined portion connection portion 152a and a second inclined portion connecting portion 152b are provided at both ends of the inclined portion 152, respectively.
  • the first inclined portion connection portion 152a is disposed upstream of the second inclined portion connecting portion 152b based on the fluid flow direction (A).
  • the first inclined portion connection portion 152a may be formed in a convex curved shape with a constant radius of curvature.
  • the second inclined portion connection portion 152b may be formed in a concave curved shape with a constant radius of curvature.
  • the first inclined portion connection portion 152a is formed in a curved shape with a first radius of curvature like the first contact portion connecting portion 122a of the contact portion 122
  • the second inclined portion connecting portion 152b is a contact portion ( Like the second contact connection portion 122b of 122), it may be formed in a curved shape with a second radius of curvature. Since the first inclined portion connecting portion 152a has the same radius of curvature as the first contact connecting portion 122a, the first inclined portion connecting portion 152a can stably contact the first contact connecting portion 122a. Additionally, since the second inclined portion connection portion 152b has the same radius of curvature as the second contact portion connecting portion 122b, the second inclined portion connecting portion 152b can stably contact the second contact portion connecting portion 122b.
  • the radius of curvature of the first inclined portion connection portion 152a or the second inclined portion connecting portion 152b may vary depending on the radius of curvature of the first contact portion connecting portion 122a or the second contact portion connecting portion 122b.
  • a curved round part 154 is provided around the edge of the end of the second guide 145 adjacent to the enlarged part 120 of the external body 110. If there is a sharp edge at the end of the guide assembly 140, a problem may occur where electric charges are concentrated on the edge. Therefore, by providing the round portion 154 around the end edge of the second guide 145, charges are concentrated at the end of the second guide 145, or the second guide 145 is damaged due to the concentration of charges. Damage problems can be reduced.
  • the second guide 145 may provide a second flow path 158 whose diameter is enlarged in at least some sections so that a rapid change in pressure of the fluid can occur. That is, the expanded flow path 146 and the contracted flow path 147 of the second guide 145 form the second flow path 158.
  • the expansion flow path 146 may form an enlarged diameter section in the second flow path 158.
  • the fluid processing process by the fluid processing device 100 is as follows.
  • the fluid supplied to the processing device 100 through the supply pipe 410 passes through the screw 130. Fluid flowing quickly along the blade 131 of the screw 130 generates a vortex. At this time, a cavitation phenomenon occurs due to a rapid change in fluid pressure, which causes fine bubbles (B) to be generated in the fluid.
  • the fluid passing through the screw 130 generates a vortex and sequentially passes through the focusing flow path 142 and the inlet flow path 143 of the first guide 141. At this time, the fluid is frictionally charged with positive charges, and negative charges are concentrated at the interface of the bubbles (B) in the fluid.
  • the fluid that has passed through the bubble forming flow path 156 first flows into the expansion flow path 146 and its pressure is rapidly lowered.
  • the bubbles B in the fluid may expand in the expansion passage 146.
  • the pressure of the fluid that has passed through the expansion passage 146 flows into the reduction passage 147 and rapidly increases.
  • the bubbles B in the fluid may be reduced in the reduction flow path 147.
  • the fluid causes a rapid change in pressure as it sequentially passes through the expansion flow path 146 and the contraction flow path 147 forming the reaction flow path 158. Accordingly, while the bubbles B in the fluid pass through the reaction passage 158, they undergo expansion and contraction processes and collapse in large quantities. And, when a large number of bubbles (B) collapse, a discharge phenomenon occurs due to positive and negative charges in the fluid, thereby generating plasma in the fluid. At this time, since plasma is accompanied by light, high heat, and high pressure, the fluid may be ionized or decomposed.
  • the fluid treated with plasma in this way flows to the connection device 210 through the connection pipe 420.
  • connection device 210 connects the processing device 100 and the hydrogen generation device 300 and is configured to change the electrical characteristics of the fluid as it passes through.
  • Connecting device 210 includes a buffer tank 212 that can store treated fluid from processing device 100 .
  • the buffer tank 212 has a storage space 214 capable of storing fluid.
  • the buffer tank 212 is made entirely or partially of a conductive material and is configured to be grounded to the ground portion (G). Accordingly, the buffer tank 212 can ground the fluid contained therein to the ground portion (G). That is, the buffer tank 212 can lower the electrical potential of the fluid by releasing electrons or charges of the fluid to the outside of the storage space 214.
  • the connection device 210 can store the fluid for a preset time to lower the electrical potential of the fluid and then supply it to the hydrogen generation device 300. For example, after valve 500 is controlled to block the flow of fluid through connector 430, fluid may be supplied to buffer tank 212 at a preset level. And after the electrical potential of the fluid stored in the buffer tank 212 is lowered below a preset level, the valve 500 is controlled to open so that the fluid can be supplied to the hydrogen generating device 300.
  • connection device 210 supplies the fluid to the hydrogen generating device 300 after sufficiently lowering the electrical potential of the fluid, thereby preventing such problems.
  • connection device 210 connects the fluid supplied from the processing device 100 to the buffer tank 212. It may be configured to supply directly to the hydrogen generation device 300.
  • Hydrogen generation device 300 is configured to extract hydrogen from a fluid.
  • the hydrogen generation device 300 includes a separation membrane 310 for separating hydrogen from a fluid, a first discharge pipe 320 for discharging hydrogen, and discharging the fluid from which the hydrogen has been separated or the remaining material from which the hydrogen has been separated from the fluid. It includes a second discharge pipe 330 for.
  • As the separation membrane 310 various types of membranes capable of separating hydrogen, such as a polymer electrolyte membrane (PEM), may be used.
  • PEM polymer electrolyte membrane
  • the fluid processing device 100 may treat the water into water rich in hydronium ions and hydrogen nanobubbles.
  • the water supplied to the fluid processing device 100 is preferably pretreated water or ultrapure water with foreign substances removed to have low electrical conductivity and high electrical resistance.
  • Ultrapure water is water that has relatively high electrical resistance because minerals and dissolved gases have been removed. As water with high electrical resistance passes through the fluid processing device 100, less discharge of electric charge occurs before plasma is generated. In addition, water with high electrical resistance generates less discharge of electric charge before plasma generation, so a more powerful plasma can be induced, and thus can be treated more efficiently.
  • Water treated in the treatment device 100 flows into the buffer tank 212 through the connection pipe 420, and the water flowing into the buffer tank 212 is grounded to the ground portion (G), thereby lowering the electrical potential.
  • Water whose electrical properties have been changed by the connecting device 210 is supplied to the hydrogen generating device 300 through the connecting pipe 430.
  • the hydrogen generation device 300 can extract hydrogen from water using the separation membrane 310. Hydrogen extracted by the separation membrane 310 may flow into a hydrogen storage device (not shown) through the first discharge pipe 320.
  • the hydrogen generation device 300 is supplied with water that has been treated by the treatment device 100 to contain a large amount of hydronium ions and oxygen and hydrogen nano-bubbles, a larger amount of hydrogen can be extracted from the water.
  • water treated by the treatment device 100 to contain a large amount of hydronium ions and oxygen and hydrogen nano-bubbles can increase the hydrogen extraction efficiency of the separation membrane 310, making the hydrogen generation device 300 more efficient. It can produce large amounts of hydrogen.
  • the catalyst of the polymer electrolyte membrane can be reduced and activated by the excellent reducing power of H2 present in nanobubbles created in water. Additionally, the hydrogen extraction performance of the polymer electrolyte membrane can be improved by activating the catalyst.
  • the hydrogen generation system 10 chemically decomposes and ionizes the fluid in an electrodeless manner using the fluid processing device 100, and uses the connection device 210 to After lowering the electrical potential, hydrogen can be extracted from the fluid using the hydrogen generating device 300. Therefore, hydrogen can be produced in an environmentally friendly manner without the need for a fluid electrolysis process.
  • the electrodeless method of the fluid processing device 100 uses the energy generated when the bubbles (B) in the fluid collapse to ionize or ionize the fluid without the need for an electrode to apply electrical energy to the bubbles (B) in the fluid. It may mean a method of decomposition.
  • the fluid processing device 100 generates a large amount of fine bubbles (B) using the cavitation phenomenon of the flowing fluid, and collapses a large amount of the fine bubbles (B) with negative charges concentrated at the interface to generate plasma by discharge of the charge, thereby generating a large amount of fine bubbles (B) using the cavitation phenomenon of the flowing fluid. Can be chemically decomposed or ionized.
  • the fluid can be ionized or decomposed in an electrodeless manner by collapsing a large number of fine bubbles (B) with a high negative charge density at the interface in a positively charged fluid to generate high temperature and high pressure plasma. Therefore, the fluid can be ionized or decomposed without an external power source or electrode, and the fluid can be efficiently treated with little energy.
  • the specific configuration of the fluid processing device 100 is not limited to the form described and shown above.
  • the specific configuration of the guide assembly 140 for providing the bubble forming flow path 156 and the reaction flow path 158 may be changed in various ways.
  • the first guide 141 may be manufactured in a separate form, with one guide having the focusing flow path 142 formed thereon and the other guide having the inlet flow path 143 formed therein.
  • the second guide 145 may be manufactured in a form in which the guide formed with the expansion flow path 146, the guide formed with the reduced flow path 147, and the guide formed with the connecting flow path 148 are separated. .
  • the guide assembly 140 may be manufactured so that the first guide 141 and the second guide 145 are integrated.
  • the guide assembly 140 may be integrated with the external body 110.
  • the outer body 110 may be formed in a single insulating material with a through hole having a portion whose diameter is reduced and a portion whose diameter is enlarged.
  • the bubble forming flow path 156 may be changed to a shape other than the shape shown, with the diameter decreasing in at least a portion along the flow direction of the fluid so as to form bubbles in the flowing fluid.
  • reaction passage 158 may be changed to a shape other than that shown, which is configured to collapse bubbles contained in the fluid.
  • the screw 130 may be omitted.
  • FIG. 6 is a cross-sectional view showing a processing device according to another embodiment of the present invention
  • FIG. 7 is an enlarged view of a portion of FIG. 6
  • FIG. 8 is a separated view of a portion of the processing device shown in FIG. 6.
  • the fluid processing device 600 shown in FIGS. 6 to 8 includes an external body 110, a first body 610 accommodated inside the external body 110, a second body 620, and a third body. It includes 630 and a fourth body 640.
  • the first body 610 provides a bubble forming flow path 650 for forming bubbles B in the fluid
  • the second body 620 and fourth body 640 provide bubbles B contained in the fluid.
  • a reaction passage 652 for collapse may be provided.
  • the third body 630 may be disposed in the reaction passage 652 to promote the collapse of bubbles B contained in the fluid.
  • the external body 110 is hollow and can accommodate the first body 610, the second body 620, the third body 630, and the fourth body 640.
  • the interior of the external body 110 is provided with a discharge passage 113 through which fluid passing through the fourth body 640 flows.
  • the discharge passage 113 is disposed downstream of the fourth body 640 based on the fluid flow direction (A).
  • the interior of the outer body 110 is provided with an entry passage 115 in which the screw 130 of the first body 610 is accommodated and an intermediate passage 116 in which the third body 630 is accommodated.
  • the entry passage 115 is provided between the connecting tube 160 and the first guide 141 of the first body 610, and the intermediate passage 116 is provided between the second body 620 and the fourth body 640. It is arranged in between.
  • a ledge 118 is provided inside the outer body 110 to limit the movement of the fourth body 640.
  • the ledge 118 includes an enlarged portion 120 and a contact portion 122.
  • the specific configuration of the external body 110 is the same as described above.
  • the first body 610 includes a screw 130 and a first guide 141.
  • the screw 130 is disposed upstream of the first guide 141 based on the fluid flow direction A, and can rotate the fluid to flow into the first guide 141.
  • the screw 130 has blades 131 for generating vortices in the fluid.
  • the first guide 141 includes a focusing flow path 142 and an inlet flow path 143.
  • the focusing flow path 142 and the inlet flow path 143 may form a first fluid flow path 611 having a shape whose diameter decreases at least in part along the fluid flow direction A.
  • the second body 620 may be in contact with the first guide 141 or may be disposed adjacent to the first guide 141 so that the fluid that has passed through the first guide 141 flows in.
  • the second body 620 has a second fluid flow path 621. Fluid passing through the first fluid passage 611 of the first body 610 flows into the second fluid passage 621.
  • the diameter of the second fluid flow path 621 is larger than the diameter of the inlet flow path 143.
  • the pressure of the fluid that has passed through the narrow inlet passage 143 flows into the second fluid passage 621, and the bubbles B in the fluid may expand in the second fluid passage 621.
  • the third body 630 may be in contact with the second body 620 or may be disposed adjacent to the second body 620 so that fluid passing through the second body 620 flows in.
  • the third body 630 has a third fluid passage 631.
  • the diameter of the third fluid passage 631 is smaller than the diameter of the second fluid passage 621. Accordingly, the pressure of the fluid passing through the second fluid passage 621 increases as it flows into the third fluid passage 631, and the bubbles B in the fluid may shrink in the third fluid passage 631.
  • the third body 630 is made of a material with higher electrical conductivity than the first body 610, the second body 620, and the fourth body 640.
  • the third body 630 may be made of metal.
  • the third body 630 may function as a storage body for storing negative charges.
  • the third body 630 may promote the collapse of bubbles B contained in the fluid. That is, the third body 630 stores negative charges and applies a repulsive force to the bubbles B with negative charges concentrated at the interface, thereby promoting the collapse of the bubbles B.
  • the third body 630 can promote the collapse of the bubbles B with negative charges concentrated at the interface by forming an electric field in the fluid.
  • the third body 630 can induce plasma to be stably generated along the center of the reaction passage 652 by concentrating the bubbles B in the center of the reaction passage 652 through repulsion.
  • the third body 630 has a function of promoting the collapse of the bubbles B, and may be called an accelerator or a metal insert.
  • the fourth body 640 may be in contact with the third body 630 or may be disposed adjacent to the third body 630 so that fluid passing through the third body 630 flows in.
  • the fourth body 640 has a fourth fluid passage 641 that flows fluid into the discharge passage 113.
  • the fourth fluid flow path 641 includes a reduced flow path 642 and a connecting flow path 643.
  • the reduced flow path 642 is connected to the third fluid flow path 631 of the third body 630.
  • the diameter of the reduced flow path 642 may be the same as that of the third fluid flow path 631.
  • the connection passage 643 has a diameter whose diameter gradually increases along the fluid flow direction (A).
  • the connection passage 643 has a diameter of the portion connected to the reduction passage 642 that is the same as the diameter of the reduction passage 642, and the diameter of the portion connected to the discharge passage 113 is larger than the diameter of the reduction passage 642. .
  • the diameter of the connection passage 643 connected to the discharge passage 113 is smaller than the diameter of the discharge passage 113.
  • the connection passage 643 has a shape that gradually expands from the reduction passage 642 toward the discharge passage 113, so that the fluid passing through the reduction passage 642 can be more smoothly discharged into the discharge passage 113. .
  • the inner surface of the fourth body 640 is provided with an inclined surface 644 that is inclined with respect to the center line of the connection passage 643 to border the circumference of the connection passage 643.
  • the fourth body 640 is provided with an inclined portion 645 corresponding to the contact portion 122 of the external body 110.
  • the inclined portion 645 is provided on the outer surface of the fourth body 640 in a shape whose outer diameter gradually decreases along the fluid flow direction A.
  • a first inclined portion connection portion 645a and a second inclined portion connecting portion 645b are provided at both ends of the inclined portion 645, respectively.
  • the first inclined portion connection portion 645a may be formed in a convex curved shape with a constant radius of curvature.
  • the second inclined portion connection portion 645b may be formed in a concave curved shape with a constant radius of curvature.
  • first inclined portion connection portion 645a is formed in a curved shape with a first radius of curvature like the first contact portion connecting portion 122a of the contact portion 122
  • second inclined portion connecting portion 645b is a contact portion ( Like the second contact connection portion 122b of 122), it may be formed in a curved shape with a second radius of curvature.
  • a curved round part 647 is provided around the edge of the end of the fourth body 640 adjacent to the enlarged part 120 of the external body 110.
  • the fluid processing process by the fluid processing device 600 according to this embodiment is as follows.
  • High-pressure fluid flowing into the interior of the external body 110 through the supply pipe 410 first passes through the screw 130. Fluid flowing quickly along the blade 131 of the screw 130 generates a vortex. At this time, a cavitation phenomenon occurs due to a rapid change in fluid pressure, which causes fine bubbles (B) to be generated in the fluid.
  • the fluid passing through the screw 130 generates a vortex and sequentially passes through the focusing flow path 142 and the inlet flow path 143 of the first guide 141. At this time, the fluid is frictionally charged with positive charges, and negative charges are concentrated at the interface of the bubbles (B) in the fluid.
  • the fluid passing through the second fluid passage 621, the third fluid passage 631, and the contraction passage 642 causes a rapid change in pressure, and the bubbles B in the fluid undergo expansion and contraction processes. collapses in large quantities.
  • the third body 630 applies a repulsive force to the bubbles B in the fluid, thereby promoting the collapse of the bubbles B.
  • plasma is generated in the fluid, and the fluid may be ionized or decomposed by plasma generation.
  • the fluid treated by the fluid processing device 600 according to this embodiment can be used to generate hydrogen by flowing to the hydrogen generating device 300 through the connecting device 210.
  • Figures 9 to 17 show various modifications of the hydrogen production system according to the present invention.
  • the hydrogen production system 15 shown in FIG. 9 includes a processing device 100 that processes fluid for hydrogen production, and a connection device 210 configured to change the electrical properties of the fluid processed in the processing device 100. and a hydrogen generating device 300 that receives fluid through a connection device 210 and extracts hydrogen from the fluid.
  • the installation position of the valve 500 is changed compared to the hydrogen generation system 10 described above. That is, the valve 500 is installed on the connector 420 connecting the processing device 100 and the connecting device 210 to control the flow of fluid flowing from the processing device 100 to the connecting device 210. there is.
  • the hydrogen production system 20 shown in FIG. 10 includes a processing device 100 that processes fluid for hydrogen production, and a connection device 220 configured to change the electrical characteristics of the fluid processed in the processing device 100. and a hydrogen generating device 300 that receives fluid through a connection device 220 and extracts hydrogen from the fluid.
  • the processing device 100 and the hydrogen generation device 300 are the same as described above.
  • connection device 220 connects the processing device 100 and the hydrogen generation device 300 and is configured to change the electrical characteristics of the fluid as it passes through.
  • Connecting device 220 includes a buffer tank 222 that can store treated fluid from processing device 100 .
  • the buffer tank 222 has a storage space 224 capable of storing fluid.
  • a discharge electrode 226 configured to be grounded to the ground portion (G) is installed in the buffer tank 222. At least a portion of the discharge electrode 226 is installed inside the buffer tank 222 so that it can contact the fluid stored in the storage space 224. The discharge electrode 226 is grounded to the ground portion G, thereby grounding the fluid stored in the buffer tank 222 and lowering the electrical potential of the fluid.
  • the hydrogen generation system 20 includes a discharge electrode 226 installed in the buffer tank 222 to ground the fluid to the ground portion G, so that the buffer tank 222 is made of an insulating material. It can be.
  • the hydrogen production system 25 shown in FIG. 11 includes a processing device 100 that processes fluid for hydrogen production, and a connection device 210 configured to change the electrical properties of the fluid processed in the processing device 100. It includes a hydrogen generation device 300 that receives fluid through a connection device 210 and extracts hydrogen from the fluid, and a temperature control device 710.
  • the processing device 100, the connecting device 210, and the hydrogen generating device 300 are the same as described above.
  • the temperature control device 710 is used to control the temperature of the fluid.
  • the temperature control device 710 is disposed upstream of the hydrogen generation device 300 based on the fluid flow direction.
  • the temperature control device 710 includes a heat exchange medium supply 712 and a heat exchange member 714, at least a portion of which is disposed in the storage space 214 of the buffer tank 212.
  • the heat exchange medium supplier 712 may be configured to supply heat exchange medium to the heat exchange member 714.
  • the heat exchange member 714 may be formed in the form of a tube through which a heat exchange medium can flow.
  • the heat exchange medium that has exchanged heat with the fluid while passing through the heat exchange member 714 may be returned to the heat exchange medium supplier 712, cooled or heated to a preset temperature in the heat exchange medium supplier 712, and then supplied to the heat exchange member 714 again. there is.
  • the temperature control device 710 can control the temperature of the fluid stored in the buffer tank 212 by allowing the heat exchange member 714 to receive a heat exchange medium capable of exchanging heat with the fluid from the heat exchange medium supplier 712.
  • the optimal operating temperature for producing hydrogen may vary depending on the type of fluid supplied to the processing device 100, the hydrogen extraction method of the hydrogen generating device 300, etc.
  • the optimal operating temperature for hydrogen production is known to be around 80 degrees.
  • the hydrogen generation system 25 can control the temperature of the fluid in various ways according to various operating conditions by using the temperature control device 710.
  • temperature control device 710 may be configured to cool the fluid.
  • the heat exchange medium supplier 712 may be configured to supply cooling medium to the heat exchange member 714.
  • the heat exchange medium supplier 712 may be configured to cool the heat exchange medium using a refrigeration cycle.
  • temperature control device 710 may be configured to heat a fluid.
  • the heat exchange medium supplier 712 may be configured to supply heating medium to the heat exchange member 714.
  • Heat exchange medium supply 712 may include various heaters capable of heating a heating medium.
  • the hydrogen generation system 25 includes a sensor (not shown) for measuring the temperature of the fluid stored in the buffer tank 212, receiving a measurement signal from the sensor, and controlling the heat exchange medium supply 712.
  • a controller (not shown) may be included.
  • the drawing shows that the heat exchange member 714 is installed inside the buffer tank 212, but the heat exchange member 714 is installed in the buffer tank 212 so as to exchange heat with the fluid stored in the buffer tank 212. Can be installed externally.
  • the temperature control device 710 may include a heat exchange member configured to cool the fluid in various ways, such as a heat pump method or a thermoelectric cooling method.
  • the temperature control device 710 may include a heat exchange member configured to heat fluid in various ways.
  • the hydrogen generation system 30 shown in FIG. 12 includes a processing device 100 that processes fluid for hydrogen generation, and a connection device 230 configured to change the electrical characteristics of the fluid processed in the processing device 100. and a hydrogen generating device 300 that receives fluid through a connection device 230 and extracts hydrogen from the fluid.
  • the processing device 100 and the hydrogen generation device 300 are the same as described above.
  • the connection device 230 is configured to change the electrical properties of the fluid as it passes.
  • the connection device 230 is installed in the connection pipe 440 connecting the processing device 100 and the hydrogen generation device 300.
  • the connection device 230 includes a connection housing 232 connected to the connection pipe 440, and a discharge member 235 installed on the connection housing 232 so as to contact the fluid flowing into the connection housing 232. Includes.
  • a housing chamber 233 through which fluid flows is provided inside the connection housing 232, and at least a portion of the discharging member 235 is accommodated in the housing chamber 233.
  • the discharge member 235 is made of a conductive material through which current can flow.
  • the discharge member 235 may be configured in a mesh shape with a plurality of passages through which fluid can pass.
  • the discharge member 235 is connected to the connection electrode 237 and may be grounded to the ground portion G through the connection electrode 237.
  • connection device 230 can lower the electrical potential of the fluid by using the discharge member 235 to ground the fluid flowing to the hydrogen generation device 300 along the connection pipe 440 to the ground portion (G).
  • connection devices 230 are shown connected in series to the connector 440, but the number or arrangement structure of the connection devices 230 may be changed in various ways.
  • the discharge member 235 of the connection device 230 has various other shapes in addition to the mesh form that can contact the fluid flowing along the connection pipe 440 and discharge electrons or charges in the fluid to the outside of the connection pipe 440. It can be done in the form
  • connection device 230 may be configured so that at least a portion of the discharge member 235 is accommodated within the connection pipe 440 without the connection housing 232 .
  • the hydrogen production system 35 shown in FIG. 13 includes a processing device 100 that processes fluid for hydrogen production, and a connection device 230 configured to change the electrical characteristics of the fluid processed in the processing device 100. It includes a hydrogen generation device 300 that receives fluid through a connection device 230 and extracts hydrogen from the fluid, and a temperature control device 720.
  • the processing device 100, the connecting device 230, and the hydrogen generating device 300 are the same as described above.
  • the temperature control device 720 is used to control the temperature of the fluid.
  • the temperature control device 720 is disposed upstream of the hydrogen generation device 300 based on the fluid flow direction.
  • the temperature control device 720 is a heat exchange member ( 724).
  • the heat exchange medium supplier 722 may be configured to supply heat exchange medium to the heat exchange member 724.
  • the heat exchange member 724 is formed in the form of a tube through which a heat exchange medium can flow, and may be placed in contact with the connection pipe 440 or adjacent to the connection pipe 440.
  • the heat exchange member 724 may be in the form of a coil surrounding at least a portion of the connection pipe 440 as shown in the drawing.
  • the installation position of the heat exchange member 724 is not limited to that shown and may be changed in various ways.
  • the heat exchange medium passing through the heat exchange member 724 exchanges heat with the fluid flowing along the connection pipe 440, and the heat exchanged heat exchange medium is returned to the heat exchange medium supplier 722 and cooled to a preset temperature in the heat exchange medium supplier 722. Alternatively, it may be heated and then supplied to the heat exchange member 724 again.
  • the temperature control device 720 can control the temperature of the fluid flowing along the connection pipe 440 by allowing the heat exchange member 724 to receive a heat exchange medium capable of exchanging heat with the fluid from the heat exchange medium supplier 722.
  • Temperature control device 720 may be configured to cool the fluid.
  • the heat exchange medium supplier 722 may be configured to supply cooling medium to the heat exchange member 724.
  • the heat exchange medium supplier 722 may be configured to cool the heat exchange medium using a refrigeration cycle.
  • temperature control device 720 may be configured to heat a fluid.
  • the heat exchange medium supplier 722 may be configured to supply heating medium to the heat exchange member 724.
  • Heat exchange medium supply 722 may include various heaters capable of heating a heating medium.
  • the temperature control device 720 may include a heat exchange member configured to cool the fluid in various ways, such as a heat pump method or a thermoelectric cooling method.
  • the temperature control device 720 may include a heat exchange member configured to heat fluid in various ways.
  • the hydrogen production system 40 shown in FIG. 14 includes a processing device 100 that processes fluid for hydrogen production, and a connection device 230 configured to change the electrical characteristics of the fluid processed in the processing device 100. It includes a hydrogen generation device 300 that receives fluid through a connection device 230 and extracts hydrogen from the fluid, and an electric energy extraction device 800.
  • the processing device 100, the connecting device 230, and the hydrogen generating device 300 are the same as described above.
  • the electrical energy extraction device 800 is configured to generate electricity from the connection device 230. That is, the electrical energy extraction device 800 can extract electrical energy from the discharge member 235 by being electrically connected to the discharge member 235 (see FIG. 12) of the connection device 230 through the connection electrode 237. .
  • the electrical energy extraction device 800 may include a battery capable of charging electrical energy according to the flow of electrons through the connection device 230.
  • the hydrogen generation system 40 can produce electricity by recovering electrons or charges emitted from the connection device 230 using the electric energy extraction device 800, and the produced electricity can be converted to hydrogen generation system ( 40) It can be used as energy needed for driving.
  • the hydrogen production system 10 shown in FIG. 1 may include an electrical energy extraction device 800 connected to a connection device 210.
  • the hydrogen production system 20 shown in FIG. 10 may include an electrical energy extraction device 800 connected to the connection device 220.
  • the hydrogen production system 45 shown in FIG. 15 includes a processing device 100 that processes fluid for hydrogen production, and a connection device 210 configured to change the electrical properties of the fluid processed in the processing device 100. and a plurality of hydrogen generating devices 300 that receive fluid through a connection device 210 and extract hydrogen from the fluid. A plurality of hydrogen generating devices 300 are connected in parallel with the connecting device 210.
  • the hydrogen generation system 45 can increase hydrogen generation efficiency by connecting a plurality of hydrogen generation devices 300 in parallel with the connection device 210.
  • the hydrogen generation system 45 includes a plurality of couplers 350 disposed between the connection device 210 and each of the plurality of hydrogen generation devices 300.
  • the coupler 350 is configured to detachably connect the connecting device 210 and the hydrogen generating device 300.
  • the coupler 350 is shown as being installed in the plurality of connectors 430 that respectively connect the connection device 210 and the plurality of hydrogen generating devices 300, but the installation location of the coupler 350 varies. you can change it.
  • the hydrogen production system 50 shown in FIG. 16 includes a processing device 100 that processes fluid for hydrogen production, and a plurality of connection devices configured to change the electrical characteristics of the fluid processed in the processing device 100 ( 230) and a plurality of hydrogen generating devices 300 that each receive fluid through a plurality of connection devices 230 and extract hydrogen from the fluid.
  • a plurality of connection devices 230 and a plurality of hydrogen generating devices 300 are connected in parallel to the processing device 100.
  • the fluid that has passed through the processing device 100 may be distributed through the branch pipe 450 to a plurality of connection pipes 440 connected to the branch pipe 450 and flow to a plurality of connection devices 230.
  • a connection device 230, a hydrogen generation device 300, a coupler 350, and a valve 500 are installed in each connection pipe 440.
  • the coupler 350 is configured to detachably connect the connecting device 230 and the hydrogen generating device 300.
  • the hydrogen production system 55 shown in FIG. 17 includes a processing device 100 that processes fluid for hydrogen production, and a connection device 230 configured to change the electrical characteristics of the fluid processed in the processing device 100. and a plurality of hydrogen generating devices 300 that receive fluid through a connection device 230 and extract hydrogen from the fluid. A plurality of hydrogen generating devices 300 are connected in parallel with the connecting device 230.
  • connection pipe 440 on which the connection device 230 is installed is connected to the branch pipe 450, and the branch pipe 450 is connected to a plurality of connection pipes 460.
  • a hydrogen generating device 300, a coupler 350, and a valve 500 are installed in each connection pipe 460.
  • the coupler 350 is configured to detachably connect the connecting device 230 and the hydrogen generating device 300.

Landscapes

  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The present invention pertains to a hydrogen generation system that can produce hydrogen in an eco-friendly manner. A hydrogen generation system according to an embodiment of the present invention comprises: a treatment device configured to generate plasma by collapsing bubbles contained in an inflowing fluid and treat the fluid through the generated plasma; a hydrogen generation device that is connected to the treatment device and extracts hydrogen from the fluid treated by the treatment device; and a connection device that connects the treatment device and the hydrogen generation device and is configured to change the electrical properties of the fluid while the fluid passes through.

Description

수소 생성 시스템hydrogen generation system
본 발명은 수소 생성 시스템에 관한 것으로, 더욱 상세하게는 친환경적인 방식으로 수소를 생산할 수 있는 수소 생성 시스템에 관한 것이다.The present invention relates to a hydrogen production system, and more specifically, to a hydrogen production system capable of producing hydrogen in an environmentally friendly manner.
지구온난화 및 기후변화의 가속화 문제를 해결하고자 전세계적으로 온실가스 감축을 위해 친환경 에너지를 생산하고 활용하는 기술에 대한 관심이 높아지고 있다.In order to solve the problem of global warming and accelerating climate change, interest in technologies that produce and utilize eco-friendly energy to reduce greenhouse gases is increasing around the world.
친환경 에너지로서 태양광, 풍력 등 재생 에너지는 친환경적이고 무한하다는 장점이 있지만, 발전의 간헐성 및 계통 안정화 등의 문제점이 있다.As eco-friendly energy, renewable energy such as solar and wind power has the advantage of being environmentally friendly and infinite, but has problems such as intermittency of power generation and system stabilization.
이러한 문제점을 보완하기 위해 재생 에너지의 보완재로 수소가 주목받고 있으며, 많은 국가에서 수소경제 확산을 위한 다양한 정책들을 발표하고 있다.To address these problems, hydrogen is attracting attention as a complementary material to renewable energy, and many countries are announcing various policies to expand the hydrogen economy.
수소경제는 수소를 중요한 에너지원으로 사용하여 국가경제, 국민생활 등에 근본적 변화를 초래함으로써 수소가 경제성장과 친환경 에너지의 원천이 되는 경제를 의미한다.The hydrogen economy refers to an economy in which hydrogen becomes a source of economic growth and eco-friendly energy by using hydrogen as an important energy source to bring about fundamental changes in the national economy and people's lives.
수소경제 활성화를 위해서는 생산, 저장 및 운송, 활용 등 수소경제 전주기에 걸친 기술개발 노력이 필요하며, 그 첫단계로 충분한 수소 확보 및 공급을 위한 수소 생산 기술이 중요하다.In order to revitalize the hydrogen economy, technology development efforts are needed across the entire hydrogen economy cycle, including production, storage, transportation, and utilization. As a first step, hydrogen production technology to secure and supply sufficient hydrogen is important.
수소 생산 기술은 사용 원료에 따라, 또한 사용되는 에너지원과 화학반응에 따라 분류될 수 있다. 수소 생산을 위해 사용되는 원료로는 화석연료, 물, 바이오매스, 폐자원 등이 있으며, 에너지원으로는 열, 전기 등이 있다. 그리고, 대표적 수소 생산 방식으로는 부생 수소 방식, 개질 수소 방식, 수전해 방식이 있다.Hydrogen production technologies can be classified according to the raw materials used and also according to the energy source and chemical reaction used. Raw materials used to produce hydrogen include fossil fuels, water, biomass, and waste resources, and energy sources include heat and electricity. Additionally, representative hydrogen production methods include byproduct hydrogen method, reformed hydrogen method, and water electrolysis method.
부생 수소 방식은 석유 화학 공정이나 제철 공정에서 화학반응에 의해 부수적으로 생산되는 수소를 이용하는 방식이다.The byproduct hydrogen method uses hydrogen produced incidentally through a chemical reaction in a petrochemical or steel manufacturing process.
이러한 방식은 폐가스를 활용하므로 수소 생산을 위한 추가설비 투자비용 등이 없어 경제성이 높다는 장점이 있으나, 부산물로 발생하는 수소를 이용하기 때문에 생산량에 한계가 있고, 순도가 낮아서 활용을 위해서는 고순도화 공정이 필수적이라는 문제가 있다.This method has the advantage of being highly economical as there is no additional facility investment cost for hydrogen production because it uses waste gas. However, there is a limit to production because it uses hydrogen generated as a by-product, and its low purity requires a high purity process to be utilized. There is a problem of necessity.
개질 수소 방식은 천연가스, 석탄, 석유 등 탄화수소계 화석연료를 활용하여 촉매 반응으로 수소를 생산하는 방식이다.The reformed hydrogen method produces hydrogen through a catalytic reaction using hydrocarbon fossil fuels such as natural gas, coal, and oil.
현재 전세계의 생산되는 대부분의 수소는 화석연료 개질을 통한 수소이다. 그러나, 화석연료 개질을 통하여 수소를 생산하는 방식은 이산화탄소 배출이 동반되는 문제가 있다.Currently, most hydrogen produced around the world is hydrogen produced through fossil fuel reforming. However, the method of producing hydrogen through fossil fuel reforming has the problem of accompanying carbon dioxide emissions.
수전해 방식은 전기화학 반응에 기인한 물 분해 방식으로 물에 전기를 가하여 수소를 생성하는 방식이다. 수전해 방식으로는 전해질에 따라 알칼라인 수전해(AECl), 고분자전해질 수전해(PEMECl), 고체산화물 수전해(SOECl) 등이 있다.Water electrolysis is a water decomposition method caused by an electrochemical reaction that generates hydrogen by applying electricity to water. Depending on the electrolyte, water electrolysis methods include alkaline water electrolysis (AECl), polymer electrolyte water electrolysis (PEMECl), and solid oxide water electrolysis (SOECl).
재생에너지를 기반으로 수전해를 통하여 수소를 생산하는 경우에는 이산화탄소가 발생하지 않기 때문에 친환경적이지만, 현재의 방식으로는 경제성이 떨어지는 문제가 있다.Producing hydrogen through water electrolysis based on renewable energy is environmentally friendly because it does not generate carbon dioxide, but the current method has the problem of poor economic feasibility.
본 발명은 상기와 같은 점을 감안하여 안출된 것으로서, 본 발명의 목적은 유체를 고속으로 유동시키면서 플라즈마를 생성시키고, 생성된 플라즈마로 처리된 유체로부터 수소를 추출함으로써 친환경적으로 수소를 생산할 수 있는 수소 생성 장치를 제공하는 것이다.The present invention was developed in consideration of the above points, and the purpose of the present invention is to produce hydrogen in an environmentally friendly manner by generating plasma while flowing fluid at high speed and extracting hydrogen from the fluid treated with the generated plasma. The purpose is to provide a generating device.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems of the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
상술한 바와 같은 과제를 해결하기 위하여 본 발명의 일 실시예에 따른 수소 생성 시스템은, 내부로 유입되는 유체에 포함된 기포를 붕괴시켜 플라즈마를 생성하고, 생성된 플라즈마를 이용하여 상기 유체를 처리하도록 구성되는 처리 장치; 상기 처리 장치와 연결되고, 상기 처리 장치에 의해 처리된 상기 유체로부터 수소를 추출하는 수소 생성 장치; 및 상기 처리 장치와 상기 수소 생성 장치를 연결하며, 상기 유체가 통과하는 과정에서 상기 유체의 전기적인 특성을 변화시키도록 구성되는 연결 장치를 포함한다.In order to solve the problems described above, the hydrogen generation system according to an embodiment of the present invention generates plasma by collapsing bubbles contained in the fluid flowing into the inside, and uses the generated plasma to process the fluid. A processing device comprising: a hydrogen generation device connected to the processing device and extracting hydrogen from the fluid processed by the processing device; and a connecting device that connects the processing device and the hydrogen generating device and is configured to change the electrical properties of the fluid as the fluid passes through it.
상기 연결 장치는 상기 유체의 전기적 포텐셜을 낮추도록 구성될 수 있다.The connection device may be configured to lower the electrical potential of the fluid.
상기 연결 장치는, 상기 유체를 저장할 수 있는 저장 공간을 구비하고, 상기 유체를 접지시키기 위해 그라운드부에 접지되도록 구성되는 버퍼 탱크를 포함할 수 있다.The connection device may include a buffer tank that has a storage space capable of storing the fluid and is configured to be grounded to a ground portion to ground the fluid.
상기 연결 장치는, 상기 유체를 저장할 수 있는 버퍼 탱크; 및 상기 유체와 접촉하여 상기 유체를 접지시킬 수 있도록 적어도 일부가 상기 버퍼 탱크 내부에 설치되는 방전 전극을 포함할 수 있다.The connection device includes a buffer tank capable of storing the fluid; and a discharge electrode at least partially installed inside the buffer tank so as to contact the fluid and ground the fluid.
상기 연결 장치는, 상기 처리 장치와 상기 수소 생성 장치를 연결하는 연결관을 따라 유동하는 상기 유체를 접지시킬 수 있도록 적어도 일부가 상기 연결관 중에 배치되는 방전 부재를 포함할 수 있다.The connection device may include a discharge member at least partially disposed in the connection pipe to ground the fluid flowing along the connection pipe connecting the processing device and the hydrogen generating device.
본 발명의 일 실시예에 따른 수소 생성 시스템은, 상기 방전 부재를 통해 상기 유체로부터 전기적 포텐셜 에너지를 추출할 수 있도록 상기 방전 부재와 연결되는 전기에너지 추출 장치를 포함할 수 있다.The hydrogen generation system according to an embodiment of the present invention may include an electrical energy extraction device connected to the discharge member to extract electrical potential energy from the fluid through the discharge member.
본 발명의 일 실시예에 따른 수소 생성 시스템은, 상기 유체의 온도를 변화시키기 위해 상기 유체의 흐름 방향을 기준으로 상기 수소 생성 장치보다 상류 측에 배치되는 온도 조절 장치를 포함할 수 있다.The hydrogen generation system according to an embodiment of the present invention may include a temperature control device disposed upstream of the hydrogen generation device based on the flow direction of the fluid to change the temperature of the fluid.
상기 연결 장치는, 상기 유체를 저장할 수 있는 저장 공간을 구비하고, 상기 유체를 접지시켜 상기 유체의 전기적 포텐셜을 낮추기 위해 그라운드부에 접지되도록 구성되는 버퍼 탱크를 포함하고, 상기 온도 조절 장치는, 상기 저장 공간에 저장된 상기 유체와 열교환할 수 있도록 적어도 일부가 상기 저장 공간에 배치되는 열교환 부재를 포함할 수 있다.The connection device includes a buffer tank that has a storage space capable of storing the fluid and is configured to be grounded to a ground portion to ground the fluid to lower the electrical potential of the fluid, and the temperature control device includes the It may include a heat exchange member at least partially disposed in the storage space to exchange heat with the fluid stored in the storage space.
상기 온도 조절 장치는, 상기 처리 장치와 상기 수소 생성 장치를 연결하는 연결관을 따라 유동하는 상기 유체와 열교환할 수 있도록 상기 연결관과 접촉하거나, 또는 상기 연결관에 인접하도록 배치되는 열교환 부재를 포함할 수 있다.The temperature control device includes a heat exchange member disposed in contact with or adjacent to the connection pipe to exchange heat with the fluid flowing along the connection pipe connecting the processing device and the hydrogen production device. can do.
상기 처리 장치는, 상기 유체의 흐름 방향을 따라 적어도 일부분에서 직경이 감소하는 형상을 가지는 제1 유로; 상기 제1 유로를 통과하여 유입된 상기 유체에 포함된 기포들을 붕괴시키도록 적어도 둘 이상의 구간에서 직경이 확대되는 형상을 가지는 제2 유로; 및 상기 유체의 와류를 발생시키기 위해 상기 제1 유로 중에 배치되는 스크류를 포함할 수 있다.The processing device includes: a first flow path having a shape whose diameter decreases at least in part along the flow direction of the fluid; a second flow path having a shape whose diameter is enlarged in at least two sections to collapse bubbles contained in the fluid flowing in through the first flow path; And it may include a screw disposed in the first flow path to generate a vortex of the fluid.
상기 처리 장치는, 상기 스크류를 수용하는 중공형의 외부 바디; 및 상기 제1 유로 및 상기 제2 유로를 제공하기 위해 상기 유체의 흐름 방향을 기준으로 상기 스크류보다 하류 측에 위치하도록 상기 외부 바디에 수용되는 가이드 어셈블리를 포함할 수 있다.The processing device includes a hollow external body that accommodates the screw; And it may include a guide assembly accommodated in the external body to be positioned downstream of the screw based on the flow direction of the fluid to provide the first flow path and the second flow path.
상기 유체는 물이고, 상기 가이드 어셈블리는 물을 양전하로 마찰 대전시키는 소재로 이루어질 수 있다.The fluid is water, and the guide assembly may be made of a material that frictionally charges the water with a positive charge.
상기 처리 장치는, 상기 제2 유로 중에 배치되어 상기 유체에 포함된 기포의 붕괴를 촉진하는 액셀러레이터를 포함할 수 있다.The processing device may include an accelerator disposed in the second flow path to promote collapse of bubbles contained in the fluid.
상기 처리 장치는, 스크류와, 상기 스크류를 통과한 상기 유체의 흐름을 안내하며, 상기 유체의 흐름 방향을 따라 적어도 일부분에서 직경이 감소하는 형상을 가지는 제1 유체 유로를 포함하는 제1 바디; 상기 제1 바디와 연결되고, 상기 제1 유체 유로를 통과한 유체에 압력의 변화를 제공하도록 상기 제1 유체 유로의 일단보다 상대적으로 큰 직경을 갖는 제2 유체 유로를 포함하는 제2 바디; 및 상기 제2 바디와 연결되고, 상기 제2 바디보다 전기 전도도가 높은 재질로 형성되며, 상기 제2 유체 유로를 통과한 유체에 압력의 변화를 제공하도록 상기 제2 유체 유로보다 상대적으로 작은 직경을 갖는 제3 유체 유로를 포함하는 제3 바디를 포함할 수 있다.The processing device includes a first body including a screw and a first fluid flow path that guides the flow of the fluid passing through the screw and has a shape whose diameter decreases at least in part along the flow direction of the fluid; a second body connected to the first body and including a second fluid passage having a relatively larger diameter than one end of the first fluid passage to provide a change in pressure to the fluid passing through the first fluid passage; and is connected to the second body, is formed of a material with higher electrical conductivity than the second body, and has a relatively smaller diameter than the second fluid passage to provide a change in pressure to the fluid passing through the second fluid passage. It may include a third body including a third fluid flow path.
한편, 상술한 바와 같은 과제를 해결하기 위하여 본 발명의 다른 실시예에 따른 수소 생성 시스템은, 내부로 유입되는 유체에 포함된 기포를 붕괴시켜 플라즈마를 생성하고, 생성된 플라즈마를 통해 상기 유체를 처리하도록 구성되는 처리 장치; 상기 처리 장치와 연결되고, 상기 처리 장치에 의해 처리된 상기 유체로부터 수소를 추출하는 복수의 수소 생성 장치; 및 상기 처리 장치와 상기 복수의 수소 생성 장치를 연결하며, 상기 유체가 통과하는 과정에서 상기 유체의 전기적인 특성을 변경하도록 구성되는 연결 장치를 포함하고, 상기 복수의 수소 생성 장치는 상기 연결 장치와 병렬 연결된다.Meanwhile, in order to solve the problems described above, a hydrogen generation system according to another embodiment of the present invention generates plasma by collapsing bubbles contained in the fluid flowing into the inside, and processes the fluid through the generated plasma. a processing device configured to; a plurality of hydrogen generating devices connected to the processing device and extracting hydrogen from the fluid processed by the processing device; and a connecting device that connects the processing device and the plurality of hydrogen generating devices, and is configured to change electrical characteristics of the fluid while the fluid passes, wherein the plurality of hydrogen generating devices include the connecting device and the plurality of hydrogen generating devices. connected in parallel.
상기 연결 장치와 상기 복수의 수소 생성 장치 각각의 사이에는 상기 연결 장치와 상기 복수의 수소 생성 장치 각각을 분리 가능하게 연결할 수 있는 커플러가 설치될 수 있다.A coupler capable of separably connecting the connecting device and each of the plurality of hydrogen generating devices may be installed between the connecting device and each of the plurality of hydrogen generating devices.
한편, 상술한 바와 같은 과제를 해결하기 위하여 본 발명의 다른 실시예에 따른 수소 생성 시스템은, 내부로 유입되는 유체에 포함된 기포를 붕괴시켜 플라즈마를 생성하고, 생성된 플라즈마를 통해 상기 유체를 처리하도록 구성되는 처리 장치; 상기 처리 장치와 연결되고, 상기 처리 장치에 의해 처리된 상기 유체로부터 수소를 추출하는 복수의 수소 생성 장치; 및 상기 처리 장치와 상기 복수의 수소 생성 장치를 연결하며, 상기 유체가 통과하는 과정에서 상기 유체의 전기적인 특성을 변경하도록 구성되는 연결 장치를 포함하고, 상기 복수의 수소 생성 장치는 상기 연결 장치와 병렬 연결된다.Meanwhile, in order to solve the problems described above, a hydrogen generation system according to another embodiment of the present invention generates plasma by collapsing bubbles contained in the fluid flowing into the inside, and processes the fluid through the generated plasma. a processing device configured to; a plurality of hydrogen generating devices connected to the processing device and extracting hydrogen from the fluid processed by the processing device; and a connecting device that connects the processing device and the plurality of hydrogen generating devices, and is configured to change electrical characteristics of the fluid while the fluid passes, wherein the plurality of hydrogen generating devices include the connecting device and the plurality of hydrogen generating devices. connected in parallel.
상기 연결 장치와 상기 복수의 수소 생성 장치 각각의 사이에는 상기 연결 장치와 상기 복수의 수소 생성 장치 각각을 분리 가능하게 연결할 수 있는 커플러가 설치될 수 있다.A coupler capable of separably connecting the connecting device and each of the plurality of hydrogen generating devices may be installed between the connecting device and each of the plurality of hydrogen generating devices.
본 발명에 따른 수소 생성 시스템은 유체 처리 장치를 이용하여 유체를 무전극 방식으로 화학분해시키고, 연결 장치를 이용하여 유체의 전기적인 특성을 변화시킨 후, 수소 생성 장치를 이용하여 유체로부터 수소를 추출할 수 있다. 따라서, 유체를 전기 분해하는 과정이 필요없이 친환경적으로 수소를 생산할 수 있다.The hydrogen generation system according to the present invention chemically decomposes the fluid in an electrodeless manner using a fluid processing device, changes the electrical characteristics of the fluid using a connection device, and then extracts hydrogen from the fluid using a hydrogen generation device. can do. Therefore, hydrogen can be produced in an environmentally friendly manner without the need for a fluid electrolysis process.
또한, 본 발명에 따르면, 유동하는 유체의 공동 현상과, 마찰 대전을 통해 계면에 음전하 밀도가 높은 미세한 기포를 대량으로 발생시키고, 기포를 유체 속에서 붕괴시켜 플라즈마를 발생시킴으로써 유체를 화학분해시키고, 유체로부터 수소를 효율적으로 추출할 수 있다.In addition, according to the present invention, a large amount of fine bubbles with a high negative charge density are generated at the interface through cavitation of the flowing fluid and friction charging, and the bubbles are collapsed in the fluid to generate plasma, thereby chemically decomposing the fluid, Hydrogen can be efficiently extracted from fluid.
또한, 본 발명에 따르면, 외부의 전원이나 전극 없이 플라즈마를 발생시켜 유체를 화학분해시킬 수 있고, 적은 에너지로 유체를 효율적으로 처리한 후, 유체로부터 수소를 추출할 수 있다.In addition, according to the present invention, it is possible to chemically decompose a fluid by generating plasma without an external power source or electrode, and to efficiently process the fluid with little energy and then extract hydrogen from the fluid.
또한, 본 발명에 따르면, 적은 투입 비용으로 유체를 처리하고, 유체로부터 수소를 생성할 수 있다.Additionally, according to the present invention, it is possible to process fluid and generate hydrogen from the fluid at low input cost.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않고, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.The various and beneficial advantages and effects of the present invention are not limited to the above-described contents, and further various effects are included in the present specification.
도 1은 본 발명의 일 실시예에 따른 수소 생성 시스템을 개략적으로 나타낸 것이다.Figure 1 schematically shows a hydrogen production system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 수소 생성 시스템의 처리 장치를 나타낸 단면도이다.Figure 2 is a cross-sectional view showing a processing device of a hydrogen production system according to an embodiment of the present invention.
도 3은 도 2의 일부분을 확대하여 나타낸 것이다.Figure 3 shows an enlarged portion of Figure 2.
도 4는 도 2에 나타낸 처리 장치의 외부 바디를 나타낸 단면도이다.FIG. 4 is a cross-sectional view showing the external body of the processing device shown in FIG. 2.
도 5는 도 2에 나타낸 처리 장치의 일부분을 분리하여 나타낸 것이다.Figure 5 shows a portion of the processing device shown in Figure 2 in isolation.
도 6은 본 발명의 다른 실시예에 따른 처리 장치를 나타낸 단면도이다.Figure 6 is a cross-sectional view showing a processing device according to another embodiment of the present invention.
도 7은 도 6의 일부분을 확대하여 나타낸 것이다.Figure 7 shows an enlarged portion of Figure 6.
도 8은 도 6에 나타낸 처리 장치의 일부분을 분리하여 나타낸 것이다.Figure 8 shows a portion of the processing device shown in Figure 6 in isolation.
도 9 내지 도 17은 본 발명에 따른 수소 생성 시스템의 다양한 변형예를 나타낸 것이다.9 to 17 show various modifications of the hydrogen production system according to the present invention.
이하, 본 발명에 따른 수소 생성 시스템을 도면을 참조하여 상세히 설명한다.Hereinafter, the hydrogen production system according to the present invention will be described in detail with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 수소 생성 시스템을 개략적으로 나타낸 것이다.Figure 1 schematically shows a hydrogen production system according to an embodiment of the present invention.
도면에 나타낸 것과 같이, 본 발명의 일 실시예에 따른 수소 생성 시스템(10)은 수소 생성을 위한 유체를 처리하는 처리 장치(100)와, 처리 장치(100)에서 처리된 유체의 전기적인 특성을 변화시키도록 구성되는 연결 장치(210)와, 연결 장치(210)를 통해 유체를 공급받고 유체로부터 수소를 추출하는 수소 생성 장치(300)를 포함한다. 처리 장치(100)와 연결 장치(210)는 연결관(420)을 통해 연결되고, 연결 장치(210)와 수소 생성 장치(300)는 다른 연결관(430)을 통해 연결될 수 있다. 연결 장치(210)와 수소 생성 장치(300)의 사이에는 연결 장치(210)로부터 수소 생성 장치(300)로 공급되는 유체의 흐름을 단속하기 위한 밸브(500)가 설치될 수 있다. 밸브(500)로는 수동 밸브 또는 자동 밸브가 이용될 수 있다.As shown in the drawing, the hydrogen generation system 10 according to an embodiment of the present invention includes a processing device 100 that processes fluid for hydrogen generation, and electrical characteristics of the fluid processed in the processing device 100. It includes a connecting device 210 configured to change the fluid, and a hydrogen generating device 300 that receives fluid through the connecting device 210 and extracts hydrogen from the fluid. The processing device 100 and the connecting device 210 may be connected through a connecting pipe 420, and the connecting device 210 and the hydrogen generating device 300 may be connected through another connecting pipe 430. A valve 500 may be installed between the connection device 210 and the hydrogen generation device 300 to regulate the flow of fluid supplied from the connection device 210 to the hydrogen generation device 300. The valve 500 may be a manual valve or an automatic valve.
처리 장치(100)는 공급관(410)을 통해 유체 공급 장치(미도시)로부터 유체를 공급받고 외부의 전원이나 전극 없이 유동하는 유체를 마찰 대전시켜 유체 내에 플라즈마를 발생시키고, 이를 통해 유체를 화학분해시켜 처리할 수 있다.The processing device 100 receives fluid from a fluid supply device (not shown) through the supply pipe 410, generates plasma in the fluid by frictionally charging the flowing fluid without an external power source or electrode, and chemically decomposes the fluid through this. It can be processed.
처리 장치(100)는 다양한 유체를 처리할 수 있다. 예를 들어, 본 발명의 일 실시예에 따른 처리 장치(100)는 물을 플라즈마 처리하여 다량의 하이드로늄 이온(H3O+)과, 수소 나노 기포(예를 들어, 직경 65㎚ 이하) 및 산소 나노 기포(예를 들어, 직경 65㎚ 이하)를 포함하는 플라즈마 활성수를 생성할 수 있다. 처리 장치(100)에 공급되는 물은 이물질이 제거되고 전기 전도도가 낮게 전처리된 물일 수 있다. Processing device 100 can process various fluids. For example, the treatment device 100 according to an embodiment of the present invention processes water to produce a large amount of hydronium ions (H 3 O + ), hydrogen nano-bubbles (for example, 65 nm in diameter or less), and Plasma activated water containing oxygen nano-bubbles (for example, diameter 65 nm or less) can be generated. The water supplied to the treatment device 100 may be water that has been pretreated to remove foreign substances and have low electrical conductivity.
도 2 내지 도 5에 나타낸 것과 같이, 처리 장치(100)는 외부 바디(110)와, 외부 바디(110)의 내부에 수용되는 스크류(130)와, 가이드 어셈블리(140)를 포함한다.As shown in FIGS. 2 to 5 , the processing device 100 includes an external body 110, a screw 130 accommodated inside the external body 110, and a guide assembly 140.
외부 바디(110)는 스크류(130)와, 가이드 어셈블리(140)를 수용할 수 있는 중공형으로 이루어진다. 외부 바디(110)의 내부에는 외부 바디(110)를 길이 방향으로 관통하는 관통 홀(111)이 형성된다. 관통 홀(111)은 유체가 흐를 수 있는 유체의 흐름 경로를 형성할 수 있다. 관통 홀(111) 속에 스크류(130) 및 가이드 어셈블리(140)가 수용된다. 또한, 관통 홀(111)에는 유체를 스크류(130)로 가이드하기 위한 연결 튜브(160)의 적어도 일부가 수용될 수 있다.The external body 110 is hollow to accommodate the screw 130 and the guide assembly 140. A through hole 111 is formed inside the outer body 110, penetrating the outer body 110 in the longitudinal direction. The through hole 111 may form a fluid flow path through which fluid can flow. A screw 130 and a guide assembly 140 are accommodated in the through hole 111. Additionally, at least a portion of the connecting tube 160 for guiding fluid to the screw 130 may be accommodated in the through hole 111 .
관통 홀(111) 중 가이드 어셈블리(140)와 연결 튜브(160)의 사이에 있는 부분은 유체가 유동할 수 있도록 가이드 어셈블리(140)와 연결 튜브(160)를 연결하는 진입 유로(115)를 이루고, 진입 유로(115)에 스크류(130)가 배치된다. 또한, 관통 홀(111) 중 다른 부분은 가이드 어셈블리(140)를 통과한 유체가 흐를 수 있는 배출 유로(113)를 이룬다. 배출 유로(113)는 가이드 어셈블리(140)에 구비되는 유로들보다 넓다.The portion of the through hole 111 between the guide assembly 140 and the connecting tube 160 forms an entry passage 115 that connects the guide assembly 140 and the connecting tube 160 so that fluid can flow. , a screw 130 is disposed in the entry passage 115. Additionally, another portion of the through hole 111 forms a discharge passage 113 through which fluid passing through the guide assembly 140 can flow. The discharge passage 113 is wider than the passages provided in the guide assembly 140.
외부 바디(110)의 내측에는 가이드 어셈블리(140)의 움직임을 제한하기 위한 렛지(118)가 구비된다. 렛지(118)는 외부 바디(110)의 내면으로부터 돌출된다. 렛지(118)는 가이드 어셈블리(140)의 단부와 접함으로써 가이드 어셈블리(140)를 유체의 흐름 방향(A)으로 움직이지 못하도록 가이드 어셈블리(140)의 움직임을 구속할 수 있다. 렛지(118)는 링 모양 또는 가이드 어셈블리(140)의 단부와 접할 수 있는 다양한 다른 모양으로 이루어질 수 있다.A ledge 118 is provided on the inside of the external body 110 to limit the movement of the guide assembly 140. The ledge 118 protrudes from the inner surface of the outer body 110. The ledge 118 may restrict the movement of the guide assembly 140 by contacting the end of the guide assembly 140 to prevent the guide assembly 140 from moving in the fluid flow direction A. The ledge 118 may be ring-shaped or in various other shapes that may contact the end of the guide assembly 140.
렛지(118)는 확대부(120)와 접촉부(122)를 포함한다. 접촉부(122)는 가이드 어셈블리(140)와 접촉할 수 있도록 유체의 흐름 방향(A)을 기준으로 확대부(120)보다 상류 측에 배치된다.The ledge 118 includes an enlarged portion 120 and a contact portion 122. The contact portion 122 is disposed upstream of the enlarged portion 120 based on the fluid flow direction A so as to contact the guide assembly 140.
확대부(120)는 가이드 어셈블리(140)의 끝단으로부터 멀어지는 방향으로 직경이 점진적으로 확대되는 곡면형으로 이루어진다. 확대부(120)의 양쪽 단부에는 제1 확대부 연결부(120a) 및 제2 확대부 연결부(120b)가 각각 구비된다. 제1 확대부 연결부(120a)는 유체의 흐름 방향(A)을 기준으로 제2 확대부 연결부(120b)보다 상류 측에 배치된다. 제1 확대부 연결부(120a)는 일정한 곡률 반경을 갖는 볼록한 곡면형으로 이루어질 수 있다. 제2 확대부 연결부(120b)는 일정한 곡률 반경을 갖는 오록한 곡면형으로 이루어질 수 있다. 제1 확대부 연결부(120a)의 곡률 반경과 제2 확대부 연결부(120b)의 곡률 반경은 같거나, 또는 다를 수 있다. 제2 확대부 연결부(120b)는 배출 유로(113)의 둘레를 경계짓는 외부 바디(110)의 내면과 완만한 경사를 이루며 연결될 수 있다.The enlarged portion 120 has a curved shape whose diameter gradually increases in a direction away from the end of the guide assembly 140. A first enlarged part connection part 120a and a second enlarged part connection part 120b are provided at both ends of the enlarged part 120, respectively. The first enlarged part connection part 120a is disposed upstream of the second enlarged part connection part 120b based on the fluid flow direction A. The first enlarged portion connection portion 120a may be formed in a convex curved shape with a constant radius of curvature. The second enlarged portion connection portion 120b may be formed in a concave curved shape with a constant radius of curvature. The radius of curvature of the first enlarged portion connecting portion 120a and the radius of curvature of the second enlarged portion connecting portion 120b may be the same or different. The second enlarged portion connection portion 120b may be connected to the inner surface of the external body 110 that borders the discharge passage 113 at a gentle slope.
확대부(120)는 가이드 어셈블리(140)와 배출 유로(113) 사이에 완만한 경사각으로 확대되는 유로를 형성할 수 있다. 유체가 접촉하는 외부 바디(110)의 내면에 모서리가 있으면 그 모서리에 전하가 집중되는 문제가 발생할 수 있다. 본 발명에 따른 유체 처리 장치(100)는 가이드 어셈블리(140)와 배출 유로(113) 사이에 확대부(120)가 구비됨으로써, 가이드 어셈블리(140)와 배출 유로(113) 사이에 전하가 집중되거나, 전하의 집중으로 인해 외부 바디(110)나 가이드 어셈블리(140)가 손상되거나 파손되는 문제를 줄일 수 있다.The enlarged portion 120 may form a flow path that expands at a gentle inclination angle between the guide assembly 140 and the discharge flow path 113. If there is a corner on the inner surface of the external body 110 in contact with the fluid, a problem may occur where electric charges are concentrated at the corner. The fluid processing device 100 according to the present invention is provided with an enlarged portion 120 between the guide assembly 140 and the discharge passage 113, so that electric charges are concentrated between the guide assembly 140 and the discharge passage 113. , the problem of the external body 110 or the guide assembly 140 being damaged or broken due to concentration of electric charges can be reduced.
접촉부(122)는 가이드 어셈블리(140)와 안정적으로 접촉할 수 있도록 유체의 흐름 방향을 따라 내경이 점진적으로 감소되는 형상으로 이루어진다. 접촉부(122)의 양쪽 단부에는 제1 접촉부 연결부(122a) 및 제2 접촉부 연결부(122b)가 각각 구비된다. 제1 접촉부 연결부(122a)는 유체의 흐름 방향(A)을 기준으로 제2 접촉부 연결부(122b)보다 상류 측에 배치된다. 제1 접촉부 연결부(122a)는 일정한 곡률 반경을 갖는 오목한 곡면형으로 이루어질 수 있다. 제2 접촉부 연결부(122b)는 일정한 곡률 반경을 갖는 볼록한 곡면형으로 이루어질 수 있다. 예를 들어, 제1 접촉부 연결부(122a)는 임의의 제1 곡률 반경을 갖는 곡면형으로 이루어지고, 제2 접촉부 연결부(122b)는 임의의 제2 곡률 반경을 갖는 곡면형으로 이루어질 수 있다. 제1 곡률 반경과 제2 곡률 반경은 같거나, 또는 다를 수 있다.The contact portion 122 has a shape whose inner diameter is gradually reduced along the flow direction of the fluid so as to stably contact the guide assembly 140. A first contact connection portion 122a and a second contact connection portion 122b are provided at both ends of the contact portion 122, respectively. The first contact connection portion 122a is disposed upstream of the second contact connection portion 122b based on the fluid flow direction A. The first contact connection portion 122a may be formed in a concave curved shape with a constant radius of curvature. The second contact connection portion 122b may be formed in a convex curved shape with a constant radius of curvature. For example, the first contact connection part 122a may be formed in a curved shape with an arbitrary first radius of curvature, and the second contact connection part 122b may be formed in a curved shape with an arbitrary second radius of curvature. The first radius of curvature and the second radius of curvature may be the same or different.
외부 바디(110)는 절연성 소재로 이루어진다. 예를 들어, 외부 바디(110)는 아크릴, 엔지니어링 플라스틱 등의 합성수지 소재, 또는 다양한 유전체로 이루어질 수 있다.The outer body 110 is made of an insulating material. For example, the external body 110 may be made of synthetic resin materials such as acrylic and engineering plastic, or various dielectric materials.
스크류(130)는 유체의 흐름 방향(A)을 기준으로 가이드 어셈블리(140)보다 상류 측에 배치되며, 유체를 선회시켜 가이드 어셈블리(140)로 유동시킬 수 있다. 스크류(130)는 음전하로 마찰 대전되기 쉬운 물질, 즉, 유체를 양전하로 마찰 대전시킬 수 있는 소재로 이루어지는 것이 좋다. 예를 들어, 스크류(130)는 아크릴, 엔지니어링 플라스틱 등의 합성수지 소재, 또는 다양한 유전체로 이루어질 수 있다.The screw 130 is disposed upstream of the guide assembly 140 based on the fluid flow direction A, and can rotate the fluid to flow into the guide assembly 140. The screw 130 is preferably made of a material that is easily frictionally charged with a negative charge, that is, a material that can frictionally charge a fluid with a positive charge. For example, the screw 130 may be made of synthetic resin materials such as acrylic and engineering plastic, or various dielectric materials.
스크류(130)는 유체의 와류를 발생시키기 위한 블레이드(131)를 갖는다. 블레이드(131)는 유체를 선회시켜 와류를 발생시킬 수 있는 형태로 이루어질 수 있다. 따라서, 블레이드(131)를 통과하는 유체는 소용돌이치며 유동할 수 있다. 유체가 스크류(130)를 빠르게 통과할 때 유체 압력의 급격한 변화로 인해 공동 현상이 발생하고, 이에 의해 유체 속에 미세한 기포(B, 예를 들어, 직경 50㎛ 이하)가 발생하게 된다. 또한, 유체는 스크류(130)를 빠르게 통과할 때 양전하로 마찰 대전될 수 있다. 스크류(130)는 와류 가이드로 명명될 수 있다.The screw 130 has blades 131 for generating vortices in the fluid. The blade 131 may be shaped to generate a vortex by rotating the fluid. Accordingly, the fluid passing through the blade 131 may flow while swirling. When the fluid quickly passes through the screw 130, a cavitation phenomenon occurs due to a rapid change in fluid pressure, which causes fine bubbles (B, for example, 50 μm in diameter or less) to be generated in the fluid. Additionally, the fluid may be frictionally charged with a positive charge when it quickly passes through the screw 130. The screw 130 may be referred to as a vortex guide.
스크류(130)는 외부 바디(110)에 압입되는 방식, 가이드 어셈블리(140)와 연결 튜브(160) 사이에 끼어 고정되는 방식 등 다양한 방식으로 가이드 어셈블리(140)와 연결 튜브(160) 사이의 진입 유로(115)에 고정될 수 있다. 따라서, 스크류(130)는 회전하지 않고 유체를 선회시킬 수 있다. 스크류(130)가 유동하는 유체에 의해 회전하게 되면 유체와 스크류(130) 간의 마찰 대전 효율이 떨어질 수 있다. 이에 반해, 본 발명의 일 실시예에 따른 유체 처리 장치(100)는 스크류(130)가 고정된 상태로 유체를 가이드함으로써 유체의 마찰 대전 효율을 높일 수 있다.The screw 130 enters between the guide assembly 140 and the connecting tube 160 in various ways, such as being press-fitted into the external body 110 or fixed between the guide assembly 140 and the connecting tube 160. It may be fixed to the flow path 115. Accordingly, the screw 130 can rotate the fluid without rotating. When the screw 130 is rotated by the flowing fluid, the friction charging efficiency between the fluid and the screw 130 may decrease. On the other hand, the fluid processing device 100 according to an embodiment of the present invention guides the fluid with the screw 130 fixed, thereby increasing the friction charging efficiency of the fluid.
도면에는 스크류(130)가 진입 유로(115)의 직경에 대응하는 직경을 갖는 것으로 나타냈으나, 스크류(130)는 진입 유로(115)의 직경보다 작은 직경을 가질 수 있다.In the drawing, the screw 130 is shown as having a diameter corresponding to the diameter of the entry passage 115, but the screw 130 may have a diameter smaller than the diameter of the entry passage 115.
가이드 어셈블리(140)는 유체의 흐름 방향(A)을 기준으로 스크류(130)보다 하류 측에 위치한다. 가이드 어셈블리(140)는 유체가 통과하는 제1 유로(156) 및 제2 유로(158)를 제공할 수 있다. 본 명세서에서 제1 유로(156)는 기포 형성 유로(156)로 명명되고, 제2 유로(158)는 반응 유로(158)로 명명될 수 있다. 기포 형성 유로(156)는 이를 따라 유동하는 유체 중에 기포(B)를 형성시키도록 구성된다. 반응 유로(158)는 이를 따라 유동하는 유체에 포함된 기포(B)를 붕괴시키도록 구성된다. 제1 유로(156)는 유체의 흐름 방향(A)을 기준으로 제2 유로(158)보다 상류 측에 배치된다.The guide assembly 140 is located downstream of the screw 130 based on the fluid flow direction (A). The guide assembly 140 may provide a first flow path 156 and a second flow path 158 through which fluid passes. In this specification, the first flow path 156 may be referred to as a bubble forming flow path 156, and the second flow path 158 may be referred to as a reaction flow path 158. The bubble forming flow path 156 is configured to form bubbles B in the fluid flowing along it. The reaction passage 158 is configured to collapse bubbles B contained in the fluid flowing along it. The first flow path 156 is disposed upstream of the second flow path 158 based on the fluid flow direction (A).
가이드 어셈블리(140)는 제1 가이드(141)와, 제2 가이드(145)를 포함한다. 제1 가이드(141)와, 제2 가이드(145)는 유체의 흐름 방향(A)을 따라 차례로 배치된다. 제1 가이드(141)와, 제2 가이드(145)는 음전하로 대전되기 쉬운 물질, 즉 유체를 양전하로 마찰 대전시킬 수 있는 소재로 이루어지는 것이 좋다. 예를 들어, 제1 가이드(141)와, 제2 가이드(145)는 아크릴, 엔지니어링 플라스틱 등의 합성수지 소재, 또는 다양한 유전체로 이루어질 수 있다.The guide assembly 140 includes a first guide 141 and a second guide 145. The first guide 141 and the second guide 145 are sequentially arranged along the fluid flow direction A. The first guide 141 and the second guide 145 are preferably made of a material that is easily charged with a negative charge, that is, a material that can frictionally charge the fluid with a positive charge. For example, the first guide 141 and the second guide 145 may be made of synthetic resin materials such as acrylic and engineering plastic, or various dielectric materials.
제1 가이드(141)는 스크류(130)를 통과한 유체가 유입될 수 있도록 스크류(130)와 접하거나, 또는 스크류(130)와 인접하게 배치될 수 있다. 제1 가이드(141)는 포커싱 유로(142) 및 인렛 유로(143)를 포함한다. 포커싱 유로(142)는 유체의 흐름 방향(A)을 따라 직경이 점진적으로 감소하는 형태로 이루어진다. 포커싱 유로(142)는 스크류(130)를 통과하는 유체를 인렛 유로(143)로 가이드할 수 있다. 즉, 유체는 포커싱 유로(142)를 따라 유동하여 인렛 유로(143)에 집중될 수 있다. 인렛 유로(143)는 포커싱 유로(142)로부터 유체가 유입되도록 포커싱 유로(142)와 연결된다. 인렛 유로(143)는 포커싱 유로(142)보다 좁아 유체의 유속을 높임으로써 마찰 대전 효과를 증대시킬 수 있다. 포커싱 유로(142)와 인렛 유로(143)가 연결되는 부분에서 포커싱 유로(142)의 직경과 인렛 유로(143)의 직경은 같다.The first guide 141 may be in contact with the screw 130 or disposed adjacent to the screw 130 to allow fluid passing through the screw 130 to flow in. The first guide 141 includes a focusing flow path 142 and an inlet flow path 143. The focusing flow path 142 has a shape whose diameter gradually decreases along the fluid flow direction (A). The focusing flow path 142 may guide the fluid passing through the screw 130 to the inlet flow path 143. That is, the fluid may flow along the focusing flow path 142 and be concentrated in the inlet flow path 143. The inlet flow path 143 is connected to the focusing flow path 142 so that fluid flows in from the focusing flow path 142. The inlet flow path 143 is narrower than the focusing flow path 142, so the friction charging effect can be increased by increasing the flow rate of the fluid. At the portion where the focusing flow path 142 and the inlet flow path 143 are connected, the diameter of the focusing flow path 142 and the diameter of the inlet flow path 143 are the same.
제1 가이드(141)는 제1 유로(156)를 제공할 수 있다. 즉, 제1 가이드(141)의 포커싱 유로(142)와 인렛 유로(143)는 스크류(130)를 수용하는 진입 유로(115)와 함께 제1 유로(156)를 형성한다. 유체는 제1 유로(156)에서 와류를 발생하면서 유동할 수 있고, 스크류(130) 및 제1 가이드(141)와의 마찰로 인해 양전하로 마찰 대전될 수 있다. 이때, 스크류(130)와 제1 가이드(141)는 음전하로 대전될 수 있다. 또한, 유체가 제1 유로(156)를 통과할 때 공동 현상으로 인해 유체 중에 미세한 기포(B)가 발생하게 된다. 또한, 유체가 제1 유로(156)를 통과할 때 유체는 양전하로 대전되고, 유체 속에 발생하는 기포(B)의 계면에는 음전하가 집중된다.유체가 제1 유로(156)를 통과할 때 유체 중에 기포(B)가 대량으로 발생하지만, 유체 중에 기포(B)가 발생하는 영역이 제1 유로(156)로 한정되는 것은 아니다. 즉, 유체가 제2 유로(158)를 통과할 때에도 유체 중에 기포(B)가 발생할 수 있다.The first guide 141 may provide a first flow path 156. That is, the focusing passage 142 and the inlet passage 143 of the first guide 141 form the first passage 156 together with the entry passage 115 that accommodates the screw 130. The fluid may flow while generating a vortex in the first flow path 156, and may be frictionally charged with a positive charge due to friction with the screw 130 and the first guide 141. At this time, the screw 130 and the first guide 141 may be negatively charged. Additionally, when the fluid passes through the first flow path 156, fine bubbles B are generated in the fluid due to cavitation. In addition, when the fluid passes through the first passage 156, the fluid is positively charged, and negative charges are concentrated at the interface of the bubbles (B) generated in the fluid. When the fluid passes through the first passage 156, the fluid Although a large amount of bubbles B are generated in the fluid, the area where bubbles B are generated in the fluid is not limited to the first flow path 156. That is, even when the fluid passes through the second flow path 158, bubbles B may be generated in the fluid.
제2 가이드(145)는 제1 가이드(141)를 통과한 유체가 유입되도록 제1 가이드(141)와 접하거나, 또는 제1 가이드(141)와 인접하게 배치될 수 있다. 제2 가이드(145)는 확장 유로(146)와, 축소 유로(147) 및 연결 유로(148)를 갖는다.The second guide 145 may be in contact with the first guide 141 or may be disposed adjacent to the first guide 141 to allow fluid that has passed through the first guide 141 to flow in. The second guide 145 has an expanded flow path 146, a reduced flow path 147, and a connecting flow path 148.
확장 유로(146)는 제1 가이드(141)의 인렛 유로(143)와 연결된다. 인렛 유로(143)를 통과하는 유체가 확장 유로(146)로 유입된다. 확장 유로(146)의 직경은 인렛 유로(143)의 직경보다 크다. 좁은 인렛 유로(143)를 통과한 유체는 확장 유로(146)로 유입되면서 압력이 낮아지게 되고, 확장 유로(146)에서 유체 속의 기포(B)는 팽창할 수 있다.The expansion flow path 146 is connected to the inlet flow path 143 of the first guide 141. Fluid passing through the inlet flow path 143 flows into the expansion flow path 146. The diameter of the expansion flow path 146 is larger than the diameter of the inlet flow path 143. The pressure of the fluid that has passed through the narrow inlet passage 143 flows into the expansion passage 146, and the bubbles B in the fluid may expand in the expansion passage 146.
축소 유로(147)는 확장 유로(146)와 연결된다. 축소 유로(147)의 직경은 확장 유로(146)의 직경보다 작다. 따라서, 확장 유로(146)를 통과한 유체는 축소 유로(147)로 유입되면서 압력이 상승하게 되고, 축소 유로(147)에서 유체 속의 기포(B)는 축소될 수 있다. 연결 유로(148)는 축소 유로(147)와 배출 유로(113)를 연결한다.The reduced flow path 147 is connected to the expanded flow path 146. The diameter of the reduced flow path 147 is smaller than the diameter of the expanded flow path 146. Accordingly, the pressure of the fluid that has passed through the expansion passage 146 flows into the reduction passage 147, and the bubbles B in the fluid may shrink in the reduction passage 147. The connection flow path 148 connects the reduction flow path 147 and the discharge flow path 113.
연결 유로(148)는 축소 유로(147)와 연결된다. 연결 유로(148)는 유체의 흐름 방향(A)을 따라 직경이 점진적으로 확대되는 형태로 이루어진다. 연결 유로(148)는, 축소 유로(147)와 연결되는 부분의 직경이 축소 유로(147)의 직경과 같고, 배출 유로(113)와 연결되는 부분의 직경이 축소 유로(147)의 직경보다는 크다. 또한, 연결 유로(148)는 배출 유로(113)와 연결되는 부분의 직경이 배출 유로(113)의 직경보다 작다. 연결 유로(148)는 축소 유로(147)에서 배출 유로(113) 방향으로 점진적으로 확대되는 형상으로 이루어짐으로써 축소 유로(147)를 통과하는 유체를 더욱 원활하게 배출 유로(113)로 배출시킬 수 있다.The connection flow path 148 is connected to the reduction flow path 147. The connection passage 148 has a diameter whose diameter gradually expands along the fluid flow direction (A). The connection passage 148 has a diameter of the portion connected to the reduction passage 147 that is the same as the diameter of the reduction passage 147, and the diameter of the portion connected to the discharge passage 113 is larger than the diameter of the reduction passage 147. . In addition, the diameter of the portion of the connection passage 148 connected to the discharge passage 113 is smaller than the diameter of the discharge passage 113. The connection passage 148 has a shape that gradually expands from the reduction passage 147 toward the discharge passage 113, so that the fluid passing through the reduction passage 147 can be more smoothly discharged into the discharge passage 113. .
제2 가이드(145)에는 외부 바디(110)의 접촉부(122)에 대응하는 경사부(152)가 구비된다. 경사부(152)는 유체의 흐름 방향(A)을 따라 외경이 점진적으로 감소되는 형상으로 제2 가이드(145)의 외면에 마련된다. 경사부(152)의 양쪽 단부에는 제1 경사부 연결부(152a) 및 제2 경사부 연결부(152b)가 각각 구비된다. 제1 경사부 연결부(152a)는 유체의 흐름 방향(A)을 기준으로 제2 경사부 연결부(152b)보다 상류 측에 배치된다. 제1 경사부 연결부(152a)는 일정한 곡률 반경을 갖는 볼록한 곡면형으로 이루어질 수 있다. 제2 경사부 연결부(152b)는 일정한 곡률 반경을 갖는 오록한 곡면형으로 이루어질 수 있다. 예를 들어, 제1 경사부 연결부(152a)는 접촉부(122)의 제1 접촉부 연결부(122a)과 같이 제1 곡률 반경을 갖는 곡면형으로 이루어지고, 제2 경사부 연결부(152b)는 접촉부(122)의 제2 접촉부 연결부(122b)와 같이 제2 곡률 반경을 갖는 곡면형으로 이루어질 수 있다. 제1 경사부 연결부(152a)가 제1 접촉부 연결부(122a)와 같은 곡률 반경을 가짐으로써 제1 경사부 연결부(152a)는 제1 접촉부 연결부(122a)와 안정적으로 접촉할 수 있다. 또한, 제2 경사부 연결부(152b)가 제2 접촉부 연결부(122b)와 같은 곡률 반경을 가짐으로써 제2 경사부 연결부(152b)는 제2 접촉부 연결부(122b)와 안정적으로 접촉할 수 있다.The second guide 145 is provided with an inclined portion 152 corresponding to the contact portion 122 of the external body 110. The inclined portion 152 is provided on the outer surface of the second guide 145 in a shape whose outer diameter gradually decreases along the fluid flow direction A. A first inclined portion connection portion 152a and a second inclined portion connecting portion 152b are provided at both ends of the inclined portion 152, respectively. The first inclined portion connection portion 152a is disposed upstream of the second inclined portion connecting portion 152b based on the fluid flow direction (A). The first inclined portion connection portion 152a may be formed in a convex curved shape with a constant radius of curvature. The second inclined portion connection portion 152b may be formed in a concave curved shape with a constant radius of curvature. For example, the first inclined portion connection portion 152a is formed in a curved shape with a first radius of curvature like the first contact portion connecting portion 122a of the contact portion 122, and the second inclined portion connecting portion 152b is a contact portion ( Like the second contact connection portion 122b of 122), it may be formed in a curved shape with a second radius of curvature. Since the first inclined portion connecting portion 152a has the same radius of curvature as the first contact connecting portion 122a, the first inclined portion connecting portion 152a can stably contact the first contact connecting portion 122a. Additionally, since the second inclined portion connection portion 152b has the same radius of curvature as the second contact portion connecting portion 122b, the second inclined portion connecting portion 152b can stably contact the second contact portion connecting portion 122b.
제1 경사부 연결부(152a)나 제2 경사부 연결부(152b)의 곡률 반경은 제1 접촉부 연결부(122a)나 제2 접촉부 연결부(122b)의 곡률 반경 등에 따라 다양하게 변경될 수 있다.The radius of curvature of the first inclined portion connection portion 152a or the second inclined portion connecting portion 152b may vary depending on the radius of curvature of the first contact portion connecting portion 122a or the second contact portion connecting portion 122b.
외부 바디(110)의 확대부(120)에 인접하는 제2 가이드(145)의 끝단의 가장자리 둘레에는 곡면형의 라운드부(154)가 구비된다. 가이드 어셈블리(140)의 끝단에 뾰족한 모서리가 있으면 그 모서리에 전하가 집중되는 문제가 발생할 수 있다. 따라서, 제2 가이드(145)의 끝단 가장자리 둘레에 라운드부(154)를 마련함으로써, 제2 가이드(145)의 끝단에 전하가 집중되거나, 전하의 집중으로 인해 제2 가이드(145)가 손상되거나 파손되는 문제를 줄일 수 있다.A curved round part 154 is provided around the edge of the end of the second guide 145 adjacent to the enlarged part 120 of the external body 110. If there is a sharp edge at the end of the guide assembly 140, a problem may occur where electric charges are concentrated on the edge. Therefore, by providing the round portion 154 around the end edge of the second guide 145, charges are concentrated at the end of the second guide 145, or the second guide 145 is damaged due to the concentration of charges. Damage problems can be reduced.
제2 가이드(145)는 유체의 급속한 압력 변화가 발생할 수 있도록 적어도 일부 구간에서 직경이 확대되는 제2 유로(158)를 제공할 수 있다. 즉, 제2 가이드(145)의 확장 유로(146) 및 축소 유로(147)가 제2 유로(158)를 형성한다. 확장 유로(146)는 제2 유로(158) 중에 직경 확대 구간을 형성할 수 있다. 유체가 제2 유로(158)를 통과할 때 유체의 급속한 압력 변화가 발생하고, 유체 속의 기포(B)가 붕괴될 수 있다.The second guide 145 may provide a second flow path 158 whose diameter is enlarged in at least some sections so that a rapid change in pressure of the fluid can occur. That is, the expanded flow path 146 and the contracted flow path 147 of the second guide 145 form the second flow path 158. The expansion flow path 146 may form an enlarged diameter section in the second flow path 158. When the fluid passes through the second flow path 158, a rapid change in pressure of the fluid may occur, and the bubbles B in the fluid may collapse.
계면에 음전하 밀도가 높은 미세한 기포(B)가 양전하로 대전된 유체 속에서 대량으로 붕괴할 때 고온(예를 들어, 12,000 ~ 14,000 K), 고압(예를 들어, 3,200,000 bar)의 플라즈마가 발생하게 된다. 그리고 유체 속에서 발생하는 플라즈마로 인해 유체가 이온화 또는 분해될 수 있다. 즉, 유체 속에서 발생하는 플라즈마에 의해 유체를 구성하는 물질이 화학분해될 수 있다.When fine bubbles (B) with a high density of negative charges at the interface collapse in large quantities in a positively charged fluid, plasma at high temperature (e.g., 12,000 to 14,000 K) and high pressure (e.g., 3,200,000 bar) is generated. do. Additionally, the fluid may be ionized or decomposed due to the plasma generated within the fluid. In other words, substances constituting the fluid may be chemically decomposed by plasma generated in the fluid.
유체가 제2 유로(158)를 통과할 때 유체 속 기포(B)가 대량으로 붕괴되지만, 기포(B)가 붕괴되는 영역이 제2 유로(158)로 한정되는 것은 아니다. 즉, 제1 유로(156)의 적어도 일부 영역 또는 배출 유로(113)의 일부 영역에서 기포(B)의 붕괴가 발생할 수 있다.When the fluid passes through the second flow path 158, a large amount of bubbles B in the fluid collapse, but the area where the bubbles B collapse is not limited to the second flow path 158. That is, collapse of the bubbles B may occur in at least a partial area of the first flow path 156 or a partial area of the discharge flow path 113.
유체 처리 장치(100)에 의한 유체 처리 과정은 다음과 같다.The fluid processing process by the fluid processing device 100 is as follows.
공급관(410)을 통해 처리 장치(100)로 공급되는 유체는 스크류(130)를 통과하게 된다. 스크류(130)의 블레이드(131)를 따라 빠르게 유동하는 유체는 와류를 발생하게 된다. 이때, 유체 압력의 급격한 변화로 인해 공동 현상이 발생하고, 이에 의해 유체 속에 미세한 기포(B)가 발생하게 된다. 스크류(130)를 통과한 유체는 와류를 일으키면서 제1 가이드(141)의 포커싱 유로(142)와 인렛 유로(143)를 차례로 통과하게 된다. 이때, 유체는 양전하로 마찰 대전되고, 유체 속 기포(B)의 계면에는 음전하가 집중된다.The fluid supplied to the processing device 100 through the supply pipe 410 passes through the screw 130. Fluid flowing quickly along the blade 131 of the screw 130 generates a vortex. At this time, a cavitation phenomenon occurs due to a rapid change in fluid pressure, which causes fine bubbles (B) to be generated in the fluid. The fluid passing through the screw 130 generates a vortex and sequentially passes through the focusing flow path 142 and the inlet flow path 143 of the first guide 141. At this time, the fluid is frictionally charged with positive charges, and negative charges are concentrated at the interface of the bubbles (B) in the fluid.
이와 같이, 기포 형성 유로(156)를 통과하면서 기포(B)가 발생한 유체는 제2 유로(158) 즉, 반응 유로(158)로 유입되어 급격한 압력 변화를 일으키면서 유동하게 된다.In this way, the fluid in which bubbles B are generated while passing through the bubble forming flow path 156 flows into the second flow path 158, that is, the reaction flow path 158, causing a rapid change in pressure.
구체적으로, 기포 형성 유로(156)를 통과한 유체는 먼저 확장 유로(146)로 유입되면서 압력이 급격하게 낮아지게 된다. 확장 유로(146)에서 유체 속의 기포(B)는 팽창할 수 있다. 계속해서, 확장 유로(146)를 통과한 유체는 축소 유로(147)로 유입되면서 압력이 급격하게 상승하게 된다. 축소 유로(147)에서 유체 속의 기포(B)는 축소될 수 있다.Specifically, the fluid that has passed through the bubble forming flow path 156 first flows into the expansion flow path 146 and its pressure is rapidly lowered. The bubbles B in the fluid may expand in the expansion passage 146. Subsequently, the pressure of the fluid that has passed through the expansion passage 146 flows into the reduction passage 147 and rapidly increases. The bubbles B in the fluid may be reduced in the reduction flow path 147.
이와 같이, 유체는 반응 유로(158)를 형성하는 확장 유로(146) 및 축소 유로(147)를 차례로 통과하면서 급격한 압력 변화를 일으키게 된다. 따라서, 유체 속 기포(B)가 반응 유로(158)를 통과하는 중에 팽창, 수축 과정을 거치면서 대량으로 붕괴된다. 그리고, 기포(B)가 대량으로 붕괴될 때 유체 속에서 양전하와 음전하에 의한 방전 현상이 일어나고, 이에 따라 유체 속에 플라즈마가 발생하게 된다. 이때, 플라즈마는 빛과, 고열 및 고압을 동반하므로, 유체가 이온화 또는 분해될 수 있다.In this way, the fluid causes a rapid change in pressure as it sequentially passes through the expansion flow path 146 and the contraction flow path 147 forming the reaction flow path 158. Accordingly, while the bubbles B in the fluid pass through the reaction passage 158, they undergo expansion and contraction processes and collapse in large quantities. And, when a large number of bubbles (B) collapse, a discharge phenomenon occurs due to positive and negative charges in the fluid, thereby generating plasma in the fluid. At this time, since plasma is accompanied by light, high heat, and high pressure, the fluid may be ionized or decomposed.
이와 같은 방식으로 플라즈마 처리된 유체는 연결관(420)을 통해 연결 장치(210)로 유동하게 된다.The fluid treated with plasma in this way flows to the connection device 210 through the connection pipe 420.
다시, 도 1을 참조하면, 연결 장치(210)는 처리 장치(100)와 수소 생성 장치(300)를 연결하고, 유체가 통과하는 과정에서 유체의 전기적인 특성을 변화시키도록 구성된다. 연결 장치(210)는 처리 장치(100)로부터 처리된 유체를 저장할 수 있는 버퍼 탱크(212)를 포함한다. 버퍼 탱크(212)는 유체를 저장할 수 있는 저장 공간(214)을 구비한다. 버퍼 탱크(212)는 전체 또는 일부가 전도성 소재로 이루어지고, 그라운드부(G)에 접지되도록 구성된다. 따라서, 버퍼 탱크(212)는 그 내부에 수용되는 유체를 그라운드부(G)에 접지시킬 수 있다. 즉, 버퍼 탱크(212)는 유체의 전자 또는 전하를 저장 공간(214)의 외부로 방출하여 유체의 전기적 포텐셜을 낮출 수 있다.Referring again to FIG. 1, the connection device 210 connects the processing device 100 and the hydrogen generation device 300 and is configured to change the electrical characteristics of the fluid as it passes through. Connecting device 210 includes a buffer tank 212 that can store treated fluid from processing device 100 . The buffer tank 212 has a storage space 214 capable of storing fluid. The buffer tank 212 is made entirely or partially of a conductive material and is configured to be grounded to the ground portion (G). Accordingly, the buffer tank 212 can ground the fluid contained therein to the ground portion (G). That is, the buffer tank 212 can lower the electrical potential of the fluid by releasing electrons or charges of the fluid to the outside of the storage space 214.
연결 장치(210)는 유체를 사전 설정된 시간동안 저장하여 유체의 전기적 포텐셜을 낮춘 후 수소 생성 장치(300)로 공급할 수 있다. 예를 들어, 밸브(500)가 연결관(430)을 통한 유체의 흐름을 차단하도록 제어된 후, 유체가 사전 설정된 수위로 버퍼 탱크(212)에 공급될 수 있다. 그리고 버퍼 탱크(212)에 저장된 유체의 전기적 포텐셜이 사전 설정된 수준 이하로 낮아진 후, 밸브(500)가 열림 제어됨으로써 수소 생성 장치(300)로 유체가 공급될 수 있다.The connection device 210 can store the fluid for a preset time to lower the electrical potential of the fluid and then supply it to the hydrogen generation device 300. For example, after valve 500 is controlled to block the flow of fluid through connector 430, fluid may be supplied to buffer tank 212 at a preset level. And after the electrical potential of the fluid stored in the buffer tank 212 is lowered below a preset level, the valve 500 is controlled to open so that the fluid can be supplied to the hydrogen generating device 300.
유체가 처리 장치(100)를 통과할 때 유체는 마찰 대전에 의해 양전하로 대전되므로, 유체의 전기적 포텐셜은 높은 상태이다 따라서, 처리 장치(100)로부터 유체가 직접 수소 생성 장치(300)로 공급되면 수소 생성 장치(300) 또는 수소 생성 장치(300)에 연결되는 각종 전자 소자나 센서에서 방전 현상이 발생하여 수소 생성 장치(300)가 오작동을 일으키거나 파손될 수 있다. 연결 장치(210)는 유체의 전기적 포텐셜을 충분히 낮춘 후 유체를 수소 생성 장치(300)로 공급하므로, 그러한 문제를 방지할 수 있다.When the fluid passes through the processing device 100, the fluid is positively charged by friction charging, so the electrical potential of the fluid is high. Therefore, when the fluid is directly supplied from the processing device 100 to the hydrogen generating device 300, A discharge phenomenon may occur in the hydrogen generation device 300 or various electronic devices or sensors connected to the hydrogen generation device 300, which may cause the hydrogen generation device 300 to malfunction or be damaged. The connection device 210 supplies the fluid to the hydrogen generating device 300 after sufficiently lowering the electrical potential of the fluid, thereby preventing such problems.
연결 장치(210)가 유체 중의 전자 또는 전하를 방출하는 효율이 우수하여 방전 현상을 충분히 방지할 수 있는 경우, 연결 장치(210)는 처리 장치(100)로부터 버퍼 탱크(212)로 공급되는 유체를 바로 수소 생성 장치(300)로 공급하도록 구성될 수 있다.If the connection device 210 has excellent efficiency in releasing electrons or charges in the fluid and can sufficiently prevent the discharge phenomenon, the connection device 210 connects the fluid supplied from the processing device 100 to the buffer tank 212. It may be configured to supply directly to the hydrogen generation device 300.
수소 생성 장치(300)는 유체로부터 수소를 추출하도록 구성된다. 수소 생성 장치(300)는 유체로부터 수소를 분리할 수 있는 분리막(310)과, 수소를 배출하기 위한 제1 배출관(320)과, 수소가 분리된 유체 또는 유체 중 수소가 분리된 나머지 물질을 배출하기 위한 제2 배출관(330)을 포함한다. 분리막(310)으로는 고분자전해질막(PEM) 등 수소를 분리할 수 있는 다양한 것이 이용될 수 있다. Hydrogen generation device 300 is configured to extract hydrogen from a fluid. The hydrogen generation device 300 includes a separation membrane 310 for separating hydrogen from a fluid, a first discharge pipe 320 for discharging hydrogen, and discharging the fluid from which the hydrogen has been separated or the remaining material from which the hydrogen has been separated from the fluid. It includes a second discharge pipe 330 for. As the separation membrane 310, various types of membranes capable of separating hydrogen, such as a polymer electrolyte membrane (PEM), may be used.
분리막을 이용한 수소 추출 기술은 알려진 것이므로, 수소 생성 장치(300)에 대한 보다 상세한 설명은 생략한다.Since hydrogen extraction technology using a separation membrane is known, a detailed description of the hydrogen generation device 300 will be omitted.
이하에서는, 본 발명의 일 실시예에 따른 수소 생성 시스템(10)이 무기질이나 용존 가스 등이 제거된 물을 공급받아 수소를 생성하는 과정에 대하여 설명한다.Below, a process in which the hydrogen generation system 10 according to an embodiment of the present invention generates hydrogen by receiving water from which minerals or dissolved gases have been removed will be described.
유체 처리 장치(100)가 물을 공급받는 경우, 유체 처리 장치(100)는 물을 하이드로늄 이온 및 수소 나노 기포가 풍부한 물로 처리할 수 있다.When the fluid processing device 100 is supplied with water, the fluid processing device 100 may treat the water into water rich in hydronium ions and hydrogen nanobubbles.
유체 처리 장치(100)로 공급되는 물은 이물질이 제거되어 전기 전도도가 낮고 전기 저항이 크게 전처리된 물, 또는 초순수인 것이 좋다. 초순수는 무기질이나 용존 가스 등이 제거되어 전기 저항이 상대적으로 큰 물이다. 전기 저항이 큰 물은 유체 처리 장치(100)를 통과하면서 플라즈마가 발생하기 전에 전하의 방전이 적게 발생하게 된다. 그리고, 전기 저항이 큰 물은 플라즈마 발생 전에 전하의 방전이 적게 발생하므로, 더욱 강력한 플라즈마가 유도될 수 있고, 이에 의해 더욱 효율적으로 처리될 수 있다.The water supplied to the fluid processing device 100 is preferably pretreated water or ultrapure water with foreign substances removed to have low electrical conductivity and high electrical resistance. Ultrapure water is water that has relatively high electrical resistance because minerals and dissolved gases have been removed. As water with high electrical resistance passes through the fluid processing device 100, less discharge of electric charge occurs before plasma is generated. In addition, water with high electrical resistance generates less discharge of electric charge before plasma generation, so a more powerful plasma can be induced, and thus can be treated more efficiently.
고압의 물이 유체 처리 장치(100)로 공급될 때 앞서 설명한 것과 같은 원리에 의해 물 속에 미세한 기포(B)가 대량으로 발생하게 되고, 이들 기포들(B)이 붕괴되면서 플라즈마가 발생하게 된다. 그리고, 플라즈마 발생에 수반되는 고온과 고압으로 인한 화학분해 및 이온화 반응에 의해 물 분자가 분해되면서, H+ 이온과, OH- 이온이 생성된다. 또한, 플라즈마 발생으로 인한 고온과 고압으로 인해 다량의 OH- 이온이 수소와 산소로 분해될 수 있다. 이러한 물 분자의 화학분해 반응에 따라 다량의 하이드로늄 이온(H3O+)과, 다량의 수소 나노 기포(예를 들어, 직경 65㎚ 이하) 및 산소 나노 기포(예를 들어, 직경 65㎚ 이하)가 생성된다.When high-pressure water is supplied to the fluid processing device 100, a large amount of fine bubbles (B) are generated in the water according to the same principle as described above, and these bubbles (B) collapse to generate plasma. Additionally, water molecules are decomposed through chemical decomposition and ionization reactions due to the high temperature and pressure accompanying plasma generation, generating H+ ions and OH- ions. Additionally, a large amount of OH- ions may be decomposed into hydrogen and oxygen due to the high temperature and pressure caused by plasma generation. According to this chemical decomposition reaction of water molecules, a large amount of hydronium ions (H 3 O + ), a large amount of hydrogen nano-bubbles (e.g., diameter 65 nm or less) and oxygen nano-bubbles (e.g., diameter 65 nm or less) ) is created.
처리 장치(100)에서 처리된 물은 연결관(420)을 통해 버퍼 탱크(212)로 유입되고, 버퍼 탱크(212)로 유입되는 물은 그라운드부(G)에 접지됨으로써 전기적 포텐셜이 낮아진다. 이렇게 연결 장치(210)에 의해 전기적인 특성이 변화된 물은 연결관(430)을 통해 수소 생성 장치(300)로 공급된다.Water treated in the treatment device 100 flows into the buffer tank 212 through the connection pipe 420, and the water flowing into the buffer tank 212 is grounded to the ground portion (G), thereby lowering the electrical potential. Water whose electrical properties have been changed by the connecting device 210 is supplied to the hydrogen generating device 300 through the connecting pipe 430.
수소 생성 장치(300)는 분리막(310)을 이용하여 물로부터 수소를 추출할 수 있다. 분리막(310)에 의해 추출되는 수소는 제1 배출관(320)을 통해 수소 저장 장치(미도시)로 유동할 수 있다.The hydrogen generation device 300 can extract hydrogen from water using the separation membrane 310. Hydrogen extracted by the separation membrane 310 may flow into a hydrogen storage device (not shown) through the first discharge pipe 320.
수소 생성 장치(300)는 처리 장치(100)에 의해 다량의 하이드로늄 이온과, 산소 및 수소 나노 기포를 함유하도록 처리된 물을 공급받으므로 물로부터 더욱 많은 양의 수소를 추출할 수 있다.Since the hydrogen generation device 300 is supplied with water that has been treated by the treatment device 100 to contain a large amount of hydronium ions and oxygen and hydrogen nano-bubbles, a larger amount of hydrogen can be extracted from the water.
또한, 처리 장치(100)에 의해 다량의 하이드로늄 이온과, 산소 및 수소 나노 기포를 함유하도록 처리된 물은 분리막(310)의 수소 추출 효율을 증대시킬 수 있으므로, 수소 생성 장치(300)가 더욱 많은 양의 수소를 생성할 수 있다.In addition, water treated by the treatment device 100 to contain a large amount of hydronium ions and oxygen and hydrogen nano-bubbles can increase the hydrogen extraction efficiency of the separation membrane 310, making the hydrogen generation device 300 more efficient. It can produce large amounts of hydrogen.
예를 들어, 분리막(310)으로 고분자전해질막이 사용되는 경우, 물 속에 생성된 나노 기포에 존재하는 H2의 우수한 환원력으로 고분자전해질막의 촉매가 환원되어 활성화될 수 있다. 그리고, 촉매의 활성화로 고분자전해질막의 수소 추출 성능이 향상될 수 있다.For example, when a polymer electrolyte membrane is used as the separator 310, the catalyst of the polymer electrolyte membrane can be reduced and activated by the excellent reducing power of H2 present in nanobubbles created in water. Additionally, the hydrogen extraction performance of the polymer electrolyte membrane can be improved by activating the catalyst.
상술한 것과 같이, 본 발명의 일 실시예에 따른 수소 생성 시스템(10)은 유체 처리 장치(100)를 이용하여 유체를 무전극 방식으로 화학분해 및 이온화시키고, 연결 장치(210)를 이용하여 유체의 전기적 포텐셜을 낮춘 후, 수소 생성 장치(300)를 이용하여 유체로부터 수소를 추출할 수 있다. 따라서, 유체를 전기 분해하는 과정이 필요없이 친환경적으로 수소를 생산할 수 있다.As described above, the hydrogen generation system 10 according to an embodiment of the present invention chemically decomposes and ionizes the fluid in an electrodeless manner using the fluid processing device 100, and uses the connection device 210 to After lowering the electrical potential, hydrogen can be extracted from the fluid using the hydrogen generating device 300. Therefore, hydrogen can be produced in an environmentally friendly manner without the need for a fluid electrolysis process.
여기에서, 유체 처리 장치(100)의 무전극 방식은 유체 속 기포(B)에 전기 에너지를 가하기 위한 전극이 필요 없이 유체 속 기포(B)가 붕괴될 때 발생하는 에너지를 이용하여 유체를 이온화 또는 분해시키는 방식을 의미할 수 있다. 유체 처리 장치(100)는 유동하는 유체의 공동 현상을 이용하여 미세 기포(B)를 대량 발생시키고, 계면에 음전하가 집중된 미세 기포(B)를 대량 붕괴시켜 전하의 방전에 의한 플라즈마를 발생시킴으로써 유체를 화학분해시키거나 이온화 할 수 있다. 즉, 계면에 음전하 밀도가 높은 미세한 기포(B)를 양전하로 대전된 유체 속에서 대량으로 붕괴시켜 고온, 고압의 플라즈마를 발생시킴으로써 유체를 무전극 방식으로 이온화 또는 분해시킬 수 있다. 따라서, 외부의 전원이나 전극 없이 유체를 이온화 또는 분해할 수 있고, 적은 에너지로 유체를 효율적으로 처리할 수 있다.Here, the electrodeless method of the fluid processing device 100 uses the energy generated when the bubbles (B) in the fluid collapse to ionize or ionize the fluid without the need for an electrode to apply electrical energy to the bubbles (B) in the fluid. It may mean a method of decomposition. The fluid processing device 100 generates a large amount of fine bubbles (B) using the cavitation phenomenon of the flowing fluid, and collapses a large amount of the fine bubbles (B) with negative charges concentrated at the interface to generate plasma by discharge of the charge, thereby generating a large amount of fine bubbles (B) using the cavitation phenomenon of the flowing fluid. Can be chemically decomposed or ionized. In other words, the fluid can be ionized or decomposed in an electrodeless manner by collapsing a large number of fine bubbles (B) with a high negative charge density at the interface in a positively charged fluid to generate high temperature and high pressure plasma. Therefore, the fluid can be ionized or decomposed without an external power source or electrode, and the fluid can be efficiently treated with little energy.
유체 처리 장치(100)의 구체적인 구성은 앞에서 설명되고 도시되는 형태로 한정되는 것은 아니다.The specific configuration of the fluid processing device 100 is not limited to the form described and shown above.
예를 들어, 기포 형성 유로(156) 및 반응 유로(158)를 제공하기 위한 가이드 어셈블리(140)의 구체적인 구성은 다양하게 변경될 수 있다.For example, the specific configuration of the guide assembly 140 for providing the bubble forming flow path 156 and the reaction flow path 158 may be changed in various ways.
다른 실시예로서, 제1 가이드(141)는 포커싱 유로(142)가 형성된 하나의 가이드와, 인렛 유로(143)가 형성된 다른 하나의 가이드가 분리된 형태로 제작될 수 있다.As another embodiment, the first guide 141 may be manufactured in a separate form, with one guide having the focusing flow path 142 formed thereon and the other guide having the inlet flow path 143 formed therein.
또 다른 실시예로서, 제2 가이드(145)는 확장 유로(146)가 형성된 가이드와, 축소 유로(147)가 형성된 가이드와, 연결 유로(148)가 형성된 가이드가 분리된 형태로 제작될 수 있다.As another embodiment, the second guide 145 may be manufactured in a form in which the guide formed with the expansion flow path 146, the guide formed with the reduced flow path 147, and the guide formed with the connecting flow path 148 are separated. .
또 다른 실시예로서, 가이드 어셈블리(140)는 제1 가이드(141)와 제2 가이드(145)가 일체형으로 제작될 수 있다.As another embodiment, the guide assembly 140 may be manufactured so that the first guide 141 and the second guide 145 are integrated.
또 다른 실시예로서, 가이드 어셈블리(140)가 외부 바디(110)와 일체형으로 이루어질 수 있다. 이 경우, 외부 바디(110)는 하나의 절연성 소재의 내부에 직경이 축소되는 부분과 직경이 확대되는 부분을 갖는 관통 홀이 형성된 형태로 이루어질 수 있다.As another embodiment, the guide assembly 140 may be integrated with the external body 110. In this case, the outer body 110 may be formed in a single insulating material with a through hole having a portion whose diameter is reduced and a portion whose diameter is enlarged.
또한, 기포 형성 유로(156)는 도시된 형상 이외에 유입되는 유체에 기포를 형성시킬 수 있도록 유체의 흐름 방향을 따라 적어도 일부분에서 직경이 감소하는 다른 형상으로 변경될 수 있다.Additionally, the bubble forming flow path 156 may be changed to a shape other than the shape shown, with the diameter decreasing in at least a portion along the flow direction of the fluid so as to form bubbles in the flowing fluid.
또한, 반응 유로(158)는 도시된 형상 이외에 유체에 포함된 기포를 붕괴시키도록 구성되는 다른 형상으로 변경될 수 있다.Additionally, the reaction passage 158 may be changed to a shape other than that shown, which is configured to collapse bubbles contained in the fluid.
또한, 스크류(130)는 생략될 수 있다.Additionally, the screw 130 may be omitted.
한편, 도 6은 본 발명의 다른 실시예에 따른 처리 장치를 나타낸 단면도이고, 도 7은 도 6의 일부분을 확대하여 나타낸 것이고, 도 8은 도 6에 나타낸 처리 장치의 일부분을 분리하여 나타낸 것이다.Meanwhile, FIG. 6 is a cross-sectional view showing a processing device according to another embodiment of the present invention, FIG. 7 is an enlarged view of a portion of FIG. 6, and FIG. 8 is a separated view of a portion of the processing device shown in FIG. 6.
도 6 내지 도 8에 나타낸 유체 처리 장치(600)는 외부 바디(110)와, 외부 바디(110)의 내부에 수용되는 제1 바디(610)와, 제2 바디(620)와, 제3 바디(630)와, 제4 바디(640)를 포함한다. 제1 바디(610)는 유체 중에 기포(B)를 형성시키기 위한 기포 형성 유로(650)를 제공하고, 제2 바디(620) 및 제4 바디(640)는 유체에 포함된 기포(B)를 붕괴시키기 위한 반응 유로(652)를 제공할 수 있다. 제3 바디(630)는 반응 유로(652) 중에 배치되어 유체에 포함된 기포(B)의 붕괴를 촉진하는 역할을 할 수 있다.The fluid processing device 600 shown in FIGS. 6 to 8 includes an external body 110, a first body 610 accommodated inside the external body 110, a second body 620, and a third body. It includes 630 and a fourth body 640. The first body 610 provides a bubble forming flow path 650 for forming bubbles B in the fluid, and the second body 620 and fourth body 640 provide bubbles B contained in the fluid. A reaction passage 652 for collapse may be provided. The third body 630 may be disposed in the reaction passage 652 to promote the collapse of bubbles B contained in the fluid.
외부 바디(110)는 제1 바디(610)와, 제2 바디(620)와, 제3 바디(630)와, 제4 바디(640)를 수용할 수 있는 중공형으로 이루어진다. 외부 바디(110)의 내부에는 제4 바디(640)를 통과한 유체가 유입되는 배출 유로(113)가 구비된다. 배출 유로(113)는 유체의 흐름 방향(A)을 기준으로 제4 바디(640)보다 하류 측에 배치된다. 또한, 외부 바디(110)의 내부에는 제1 바디(610)의 스크류(130)가 수용되는 진입 유로(115)와, 제3 바디(630)가 수용되는 중간 유로(116)가 구비된다. 진입 유로(115)는 연결 튜브(160)와 제1 바디(610)의 제1 가이드(141) 사이에 마련되고, 중간 유로(116)는 제2 바디(620)와 제4 바디(640)의 사이에 마련된다.The external body 110 is hollow and can accommodate the first body 610, the second body 620, the third body 630, and the fourth body 640. The interior of the external body 110 is provided with a discharge passage 113 through which fluid passing through the fourth body 640 flows. The discharge passage 113 is disposed downstream of the fourth body 640 based on the fluid flow direction (A). In addition, the interior of the outer body 110 is provided with an entry passage 115 in which the screw 130 of the first body 610 is accommodated and an intermediate passage 116 in which the third body 630 is accommodated. The entry passage 115 is provided between the connecting tube 160 and the first guide 141 of the first body 610, and the intermediate passage 116 is provided between the second body 620 and the fourth body 640. It is arranged in between.
또한, 외부 바디(110)의 내부에는 제4 바디(640)의 움직임을 제한하기 위한 렛지(118)가 구비된다. 렛지(118)는 확대부(120)와 접촉부(122)를 포함한다.Additionally, a ledge 118 is provided inside the outer body 110 to limit the movement of the fourth body 640. The ledge 118 includes an enlarged portion 120 and a contact portion 122.
외부 바디(110)의 구체적인 구성은 앞서 설명한 것과 같다.The specific configuration of the external body 110 is the same as described above.
제1 바디(610)는 스크류(130)와, 제1 가이드(141)를 포함한다.The first body 610 includes a screw 130 and a first guide 141.
스크류(130)는 유체의 흐름 방향(A)을 기준으로 제1 가이드(141)보다 상류 측에 배치되며, 유체를 선회시켜 제1 가이드(141)로 유동시킬 수 있다. 스크류(130)는 유체의 와류를 발생시키기 위한 블레이드(131)를 갖는다.The screw 130 is disposed upstream of the first guide 141 based on the fluid flow direction A, and can rotate the fluid to flow into the first guide 141. The screw 130 has blades 131 for generating vortices in the fluid.
제1 가이드(141)는 포커싱 유로(142) 및 인렛 유로(143)를 포함한다. 포커싱 유로(142)와 인렛 유로(143)는 유체의 흐름 방향(A)을 따라 적어도 일부분에서 직경이 감소하는 형상을 가지는 제1 유체 유로(611)를 형성할 수 있다.The first guide 141 includes a focusing flow path 142 and an inlet flow path 143. The focusing flow path 142 and the inlet flow path 143 may form a first fluid flow path 611 having a shape whose diameter decreases at least in part along the fluid flow direction A.
스크류(130)와 제1 가이드(141)는 앞서 설명한 것과 같으므로, 이들에 대한 보다 상세한 설명은 생략한다.Since the screw 130 and the first guide 141 are the same as previously described, a detailed description thereof will be omitted.
제2 바디(620)는 제1 가이드(141)를 통과한 유체가 유입되도록 제1 가이드(141)와 접하거나, 또는 제1 가이드(141)와 인접하게 배치될 수 있다. 제2 바디(620)는 제2 유체 유로(621)를 갖는다. 제1 바디(610)의 제1 유체 유로(611)를 통과하는 유체가 제2 유체 유로(621)로 유입된다. 제2 유체 유로(621)의 직경은 인렛 유로(143)의 직경보다 크다. 좁은 인렛 유로(143)를 통과한 유체는 제2 유체 유로(621)로 유입되면서 압력이 낮아지게 되고, 제2 유체 유로(621)에서 유체 속의 기포(B)는 팽창할 수 있다.The second body 620 may be in contact with the first guide 141 or may be disposed adjacent to the first guide 141 so that the fluid that has passed through the first guide 141 flows in. The second body 620 has a second fluid flow path 621. Fluid passing through the first fluid passage 611 of the first body 610 flows into the second fluid passage 621. The diameter of the second fluid flow path 621 is larger than the diameter of the inlet flow path 143. The pressure of the fluid that has passed through the narrow inlet passage 143 flows into the second fluid passage 621, and the bubbles B in the fluid may expand in the second fluid passage 621.
제3 바디(630)는 제2 바디(620)를 통과한 유체가 유입되도록 제2 바디(620)와 접하거나, 또는 제2 바디(620)와 인접하게 배치될 수 있다. 제3 바디(630)는 제3 유체 유로(631)를 갖는다. 제3 유체 유로(631)의 직경은 제2 유체 유로(621)의 직경보다 작다. 따라서, 제2 유체 유로(621)를 통과한 유체는 제3 유체 유로(631)로 유입되면서 압력이 상승하게 되고, 제3 유체 유로(631)에서 유체 속의 기포(B)는 축소될 수 있다.The third body 630 may be in contact with the second body 620 or may be disposed adjacent to the second body 620 so that fluid passing through the second body 620 flows in. The third body 630 has a third fluid passage 631. The diameter of the third fluid passage 631 is smaller than the diameter of the second fluid passage 621. Accordingly, the pressure of the fluid passing through the second fluid passage 621 increases as it flows into the third fluid passage 631, and the bubbles B in the fluid may shrink in the third fluid passage 631.
제3 바디(630)는 제1 바디(610)나 제2 바디(620), 제4 바디(640)보다 전기 전도도가 높은 재질로 이루어진다. 예를 들어, 제3 바디(630)는 금속으로 이루어질 수 있다. 제3 바디(630)는 음전하를 저장하는 저장체로서 작용할 수 있다. 또한, 제3 바디(630)는 유체에 포함된 기포(B)의 붕괴를 촉진할 수 있다. 즉, 제3 바디(630)는 음전하를 저장하여 계면에 음전하가 집중된 기포(B)에 척력을 가함으로써 기포(B)의 붕괴를 촉진할 수 있다.The third body 630 is made of a material with higher electrical conductivity than the first body 610, the second body 620, and the fourth body 640. For example, the third body 630 may be made of metal. The third body 630 may function as a storage body for storing negative charges. Additionally, the third body 630 may promote the collapse of bubbles B contained in the fluid. That is, the third body 630 stores negative charges and applies a repulsive force to the bubbles B with negative charges concentrated at the interface, thereby promoting the collapse of the bubbles B.
또한, 제3 바디(630)는 유체 중에 전기장을 형성함으로써 계면에 음전하가 집중된 기포(B)의 붕괴를 촉진할 수 있다.Additionally, the third body 630 can promote the collapse of the bubbles B with negative charges concentrated at the interface by forming an electric field in the fluid.
또한, 제3 바디(630)는 척력에 의해 기포들(B)을 반응 유로(652)의 중심부에 집중되도록 함으로써 플라즈마가 반응 유로(652)의 중심부를 따라 안정적으로 발생하도록 유도할 수 있다.Additionally, the third body 630 can induce plasma to be stably generated along the center of the reaction passage 652 by concentrating the bubbles B in the center of the reaction passage 652 through repulsion.
이와 같이, 제3 바디(630)는 기포(B)의 붕괴를 촉진하는 기능을 갖는 것으로서, 액셀러레이터 또는 금속 인서트로 명명될 수 있다.As such, the third body 630 has a function of promoting the collapse of the bubbles B, and may be called an accelerator or a metal insert.
제4 바디(640)는 제3 바디(630)를 통과한 유체가 유입되도록 제3 바디(630)와 접하거나, 또는 제3 바디(630)와 인접하게 배치될 수 있다. 제4 바디(640)는 유체를 배출 유로(113)로 유동시키는 제4 유체 유로(641)를 갖는다.The fourth body 640 may be in contact with the third body 630 or may be disposed adjacent to the third body 630 so that fluid passing through the third body 630 flows in. The fourth body 640 has a fourth fluid passage 641 that flows fluid into the discharge passage 113.
제4 유체 유로(641)는 축소 유로(642) 및 연결 유로(643)를 포함한다. 축소 유로(642)는 제3 바디(630)의 제3 유체 유로(631)와 연결된다. 축소 유로(642)의 직경은 제3 유체 유로(631)와 같을 수 있다. 연결 유로(643)는 유체의 흐름 방향(A)을 따라 직경이 점진적으로 증가하는 형태로 이루어진다. 연결 유로(643)는, 축소 유로(642)와 연결되는 부분의 직경이 축소 유로(642)의 직경과 같고, 배출 유로(113)와 연결되는 부분의 직경이 축소 유로(642)의 직경보다 크다. 또한, 연결 유로(643)는 배출 유로(113)와 연결되는 부분의 직경이 배출 유로(113)의 직경보다 작다. 연결 유로(643)는 축소 유로(642)에서 배출 유로(113) 방향으로 점진적으로 확대되는 형상으로 이루어짐으로써 축소 유로(642)를 통과하는 유체를 더욱 원활하게 배출 유로(113)로 배출시킬 수 있다.The fourth fluid flow path 641 includes a reduced flow path 642 and a connecting flow path 643. The reduced flow path 642 is connected to the third fluid flow path 631 of the third body 630. The diameter of the reduced flow path 642 may be the same as that of the third fluid flow path 631. The connection passage 643 has a diameter whose diameter gradually increases along the fluid flow direction (A). The connection passage 643 has a diameter of the portion connected to the reduction passage 642 that is the same as the diameter of the reduction passage 642, and the diameter of the portion connected to the discharge passage 113 is larger than the diameter of the reduction passage 642. . Additionally, the diameter of the connection passage 643 connected to the discharge passage 113 is smaller than the diameter of the discharge passage 113. The connection passage 643 has a shape that gradually expands from the reduction passage 642 toward the discharge passage 113, so that the fluid passing through the reduction passage 642 can be more smoothly discharged into the discharge passage 113. .
제4 바디(640)의 내면에는 연결 유로(643)의 둘레를 경계짓도록 연결 유로(643)의 중심선에 대해 경사진 형태의 경사면(644)이 구비된다.The inner surface of the fourth body 640 is provided with an inclined surface 644 that is inclined with respect to the center line of the connection passage 643 to border the circumference of the connection passage 643.
제4 바디(640)에는 외부 바디(110)의 접촉부(122)에 대응하는 경사부(645)가 구비된다. 경사부(645)는 유체의 흐름 방향(A)을 따라 외경이 점진적으로 감소되는 형상으로 제4 바디(640)의 외면에 마련된다. 경사부(645)의 양쪽 단부에는 제1 경사부 연결부(645a) 및 제2 경사부 연결부(645b)가 각각 구비된다. 제1 경사부 연결부(645a)는 일정한 곡률 반경을 갖는 볼록한 곡면형으로 이루어질 수 있다. 제2 경사부 연결부(645b)는 일정한 곡률 반경을 갖는 오록한 곡면형으로 이루어질 수 있다. 예를 들어, 제1 경사부 연결부(645a)는 접촉부(122)의 제1 접촉부 연결부(122a)과 같이 제1 곡률 반경을 갖는 곡면형으로 이루어지고, 제2 경사부 연결부(645b)는 접촉부(122)의 제2 접촉부 연결부(122b)와 같이 제2 곡률 반경을 갖는 곡면형으로 이루어질 수 있다.The fourth body 640 is provided with an inclined portion 645 corresponding to the contact portion 122 of the external body 110. The inclined portion 645 is provided on the outer surface of the fourth body 640 in a shape whose outer diameter gradually decreases along the fluid flow direction A. A first inclined portion connection portion 645a and a second inclined portion connecting portion 645b are provided at both ends of the inclined portion 645, respectively. The first inclined portion connection portion 645a may be formed in a convex curved shape with a constant radius of curvature. The second inclined portion connection portion 645b may be formed in a concave curved shape with a constant radius of curvature. For example, the first inclined portion connection portion 645a is formed in a curved shape with a first radius of curvature like the first contact portion connecting portion 122a of the contact portion 122, and the second inclined portion connecting portion 645b is a contact portion ( Like the second contact connection portion 122b of 122), it may be formed in a curved shape with a second radius of curvature.
외부 바디(110)의 확대부(120)에 인접하는 제4 바디(640)의 끝단의 가장자리 둘레에는 곡면형의 라운드부(647)가 구비된다. 제4 바디(640)의 끝단 가장자리 둘레에 라운드부(647)가 마련됨으로써, 제4 바디(640)의 끝단에 전하가 집중되거나, 전하의 집중으로 인해 제4 바디(640)가 손상되거나 파손되는 문제를 줄일 수 있다.A curved round part 647 is provided around the edge of the end of the fourth body 640 adjacent to the enlarged part 120 of the external body 110. By providing a round portion 647 around the end edge of the fourth body 640, charges are concentrated at the end of the fourth body 640, or the fourth body 640 is damaged or damaged due to the concentration of charges. Problems can be reduced.
본 실시예에 따른 유체 처리 장치(600)에 의한 유체 처리 과정은 다음과 같다.The fluid processing process by the fluid processing device 600 according to this embodiment is as follows.
공급관(410)을 통해 외부 바디(110)의 내부로 유입되는 고압의 유체는 먼저 스크류(130)를 통과하게 된다. 스크류(130)의 블레이드(131)를 따라 빠르게 유동하는 유체는 와류를 발생하게 된다. 이때, 유체 압력의 급격한 변화로 인해 공동 현상이 발생하고, 이에 의해 유체 속에 미세한 기포(B)가 발생하게 된다. 스크류(130)를 통과한 유체는 와류를 일으키면서 제1 가이드(141)의 포커싱 유로(142)와 인렛 유로(143)를 차례로 통과하게 된다. 이때, 유체는 양전하로 마찰 대전되고, 유체 속 기포(B)의 계면에는 음전하가 집중된다.High-pressure fluid flowing into the interior of the external body 110 through the supply pipe 410 first passes through the screw 130. Fluid flowing quickly along the blade 131 of the screw 130 generates a vortex. At this time, a cavitation phenomenon occurs due to a rapid change in fluid pressure, which causes fine bubbles (B) to be generated in the fluid. The fluid passing through the screw 130 generates a vortex and sequentially passes through the focusing flow path 142 and the inlet flow path 143 of the first guide 141. At this time, the fluid is frictionally charged with positive charges, and negative charges are concentrated at the interface of the bubbles (B) in the fluid.
제1 가이드(141)를 통과한 유체는 제2 바디(620)의 제2 유체 유로(621)로 유입되면서 압력이 급격하게 낮아지게 된다. 제2 유체 유로(621)에서 유체 속의 기포(B)는 팽창할 수 있다. 계속해서, 제2 유체 유로(621)를 통과한 유체는 제3 바디(630)의 제3 유체 유로(631) 및 제4 바디(640)의 축소 유로(642)로 유입되면서 압력이 급격하게 상승하게 된다.As the fluid that has passed through the first guide 141 flows into the second fluid passage 621 of the second body 620, its pressure suddenly decreases. Bubbles B in the fluid may expand in the second fluid passage 621. Subsequently, the fluid that has passed through the second fluid passage 621 flows into the third fluid passage 631 of the third body 630 and the reduced passage 642 of the fourth body 640, and the pressure rapidly increases. I do it.
이와 같이, 제2 유체 유로(621)와 제3 유체 유로(631) 및 축소 유로(642)를 통과하는 유체는 급격한 압력 변화를 일으키게 되고, 유체 속 기포(B)가 팽창, 수축 과정을 거치면서 대량으로 붕괴된다. 이때, 제3 바디(630)가 유체 속 기포(B)에 척력을 가함으로써 기포(B)의 붕괴가 촉진될 수 있다. 유체 속 기포(B)가 대량으로 붕괴됨에 따라 유체 속에 플라즈마가 발생하게 되고, 플라즈마 발생에 의해 유체가 이온화 또는 분해될 수 있다.In this way, the fluid passing through the second fluid passage 621, the third fluid passage 631, and the contraction passage 642 causes a rapid change in pressure, and the bubbles B in the fluid undergo expansion and contraction processes. collapses in large quantities. At this time, the third body 630 applies a repulsive force to the bubbles B in the fluid, thereby promoting the collapse of the bubbles B. As bubbles (B) in the fluid collapse in large quantities, plasma is generated in the fluid, and the fluid may be ionized or decomposed by plasma generation.
본 실시예에 따른 유체 처리 장치(600)에 의해 처리된 유체는 연결 장치(210)를 거쳐 수소 생성 장치(300)로 유동함으로써 수소를 생성하는데 이용될 수 있다.The fluid treated by the fluid processing device 600 according to this embodiment can be used to generate hydrogen by flowing to the hydrogen generating device 300 through the connecting device 210.
한편, 도 9 내지 도 17은 본 발명에 따른 수소 생성 시스템의 다양한 변형예를 나타낸 것이다.Meanwhile, Figures 9 to 17 show various modifications of the hydrogen production system according to the present invention.
도 9에 나타낸 수소 생성 시스템(15)은 수소 생성을 위한 유체를 처리하는 처리 장치(100)와, 처리 장치(100)에서 처리된 유체의 전기적인 특성을 변화시키도록 구성되는 연결 장치(210)와, 연결 장치(210)를 통해 유체를 공급받고 유체로부터 수소를 추출하는 수소 생성 장치(300)를 포함한다.The hydrogen production system 15 shown in FIG. 9 includes a processing device 100 that processes fluid for hydrogen production, and a connection device 210 configured to change the electrical properties of the fluid processed in the processing device 100. and a hydrogen generating device 300 that receives fluid through a connection device 210 and extracts hydrogen from the fluid.
본 실시예에 따른 수소 생성 시스템(15)은 앞서 설명한 수소 생성 시스템(10)과 비교하여 밸브(500)의 설치 위치가 변경된 것이다. 즉, 밸브(500)는 처리 장치(100)와 연결 장치(210)를 연결하는 연결관(420)에 설치되어 처리 장치(100)로부터 연결 장치(210)로 유동하는 유체의 흐름을 단속할 수 있다.In the hydrogen generation system 15 according to this embodiment, the installation position of the valve 500 is changed compared to the hydrogen generation system 10 described above. That is, the valve 500 is installed on the connector 420 connecting the processing device 100 and the connecting device 210 to control the flow of fluid flowing from the processing device 100 to the connecting device 210. there is.
도 10에 나타낸 수소 생성 시스템(20)은 수소 생성을 위한 유체를 처리하는 처리 장치(100)와, 처리 장치(100)에서 처리된 유체의 전기적인 특성을 변화시키도록 구성되는 연결 장치(220)와, 연결 장치(220)를 통해 유체를 공급받고 유체로부터 수소를 추출하는 수소 생성 장치(300)를 포함한다. 처리 장치(100)와 수소 생성 장치(300)는 앞서 설명한 것과 같다.The hydrogen production system 20 shown in FIG. 10 includes a processing device 100 that processes fluid for hydrogen production, and a connection device 220 configured to change the electrical characteristics of the fluid processed in the processing device 100. and a hydrogen generating device 300 that receives fluid through a connection device 220 and extracts hydrogen from the fluid. The processing device 100 and the hydrogen generation device 300 are the same as described above.
연결 장치(220)는 처리 장치(100)와 수소 생성 장치(300)를 연결하고, 유체가 통과하는 과정에서 유체의 전기적인 특성을 변화시키도록 구성된다. 연결 장치(220)는 처리 장치(100)로부터 처리된 유체를 저장할 수 있는 버퍼 탱크(222)를 포함한다. 버퍼 탱크(222)는 유체를 저장할 수 있는 저장 공간(224)을 구비한다.The connection device 220 connects the processing device 100 and the hydrogen generation device 300 and is configured to change the electrical characteristics of the fluid as it passes through. Connecting device 220 includes a buffer tank 222 that can store treated fluid from processing device 100 . The buffer tank 222 has a storage space 224 capable of storing fluid.
버퍼 탱크(222)에는 그라운드부(G)에 접지되도록 구성되는 방전 전극(226)이 설치된다. 방전 전극(226)은 저장 공간(224)에 저장된 유체와 접촉할 수 있도록 적어도 일부가 버퍼 탱크(222) 내부에 설치된다. 방전 전극(226)는 그라운드부(G)에 접지됨으로써 버퍼 탱크(222)에 저장된 유체를 접지시켜 유체의 전기적 포텐셜을 낮출 수 있다.A discharge electrode 226 configured to be grounded to the ground portion (G) is installed in the buffer tank 222. At least a portion of the discharge electrode 226 is installed inside the buffer tank 222 so that it can contact the fluid stored in the storage space 224. The discharge electrode 226 is grounded to the ground portion G, thereby grounding the fluid stored in the buffer tank 222 and lowering the electrical potential of the fluid.
본 실시예에 따른 수소 생성 시스템(20)은 유체를 그라운드부(G)에 접지시킬 수 있도록 버퍼 탱크(222)에 설치되는 방전 전극(226)을 포함함으로써 버퍼 탱크(222)가 절연 소재로 형성될 수 있다.The hydrogen generation system 20 according to this embodiment includes a discharge electrode 226 installed in the buffer tank 222 to ground the fluid to the ground portion G, so that the buffer tank 222 is made of an insulating material. It can be.
도 11에 나타낸 수소 생성 시스템(25)은 수소 생성을 위한 유체를 처리하는 처리 장치(100)와, 처리 장치(100)에서 처리된 유체의 전기적인 특성을 변화시키도록 구성되는 연결 장치(210)와, 연결 장치(210)를 통해 유체를 공급받고 유체로부터 수소를 추출하는 수소 생성 장치(300)와, 온도 조절 장치(710)를 포함한다. 처리 장치(100)와, 연결 장치(210)와, 수소 생성 장치(300)는 앞서 설명한 것과 같다.The hydrogen production system 25 shown in FIG. 11 includes a processing device 100 that processes fluid for hydrogen production, and a connection device 210 configured to change the electrical properties of the fluid processed in the processing device 100. It includes a hydrogen generation device 300 that receives fluid through a connection device 210 and extracts hydrogen from the fluid, and a temperature control device 710. The processing device 100, the connecting device 210, and the hydrogen generating device 300 are the same as described above.
온도 조절 장치(710)는 유체의 온도를 조절하기 위한 것이다. 온도 조절 장치(710)는 유체의 흐름 방향을 기준으로 수소 생성 장치(300)보다 상류 측에 배치된다. 온도 조절 장치(710)는 열교환 매체 공급기(712)와, 적어도 일부가 버퍼 탱크(212)의 저장 공간(214)에 배치되는 열교환 부재(714)를 포함한다. 열교환 매체 공급기(712)는 열교환 매체를 열교환 부재(714)에 공급하도록 구성될 수 있다. 열교환 부재(714)는 열교환 매체가 흐를 수 있는 튜브 형태로 이루어질 수 있다. 열교환 부재(714)를 통과하면서 유체와 열교환된 열교환 매체는 열교환 매체 공급기(712)로 회수되어 열교환 매체 공급기(712)에서 사전 설정된 온도로 냉각 또는 가열된 후 다시 열교환 부재(714)로 공급될 수 있다. 온도 조절 장치(710)는 열교환 부재(714)가 열교환 매체 공급기(712)로부터 유체와 열교환할 수 있는 열교환 매체를 공급받음으로써 버퍼 탱크(212)에 저장된 유체의 온도를 조절할 수 있다.The temperature control device 710 is used to control the temperature of the fluid. The temperature control device 710 is disposed upstream of the hydrogen generation device 300 based on the fluid flow direction. The temperature control device 710 includes a heat exchange medium supply 712 and a heat exchange member 714, at least a portion of which is disposed in the storage space 214 of the buffer tank 212. The heat exchange medium supplier 712 may be configured to supply heat exchange medium to the heat exchange member 714. The heat exchange member 714 may be formed in the form of a tube through which a heat exchange medium can flow. The heat exchange medium that has exchanged heat with the fluid while passing through the heat exchange member 714 may be returned to the heat exchange medium supplier 712, cooled or heated to a preset temperature in the heat exchange medium supplier 712, and then supplied to the heat exchange member 714 again. there is. The temperature control device 710 can control the temperature of the fluid stored in the buffer tank 212 by allowing the heat exchange member 714 to receive a heat exchange medium capable of exchanging heat with the fluid from the heat exchange medium supplier 712.
처리 장치(100)로 공급되는 유체의 종류나, 수소 생성 장치(300)의 수소 추출 방식 등에 따라 수소를 생산하기 위한 최적 운전 온도가 다를 수 있다. 예를 들어, 수소 생성 장치(300)가 분리막(310)으로 고분자전해질막을 이용하는 경우, 수소 생산을 위한 최적의 운전 온도는 80도 내외인 것으로 알려져 있다. 또한, 수소의 대량 생산에는 유체의 온도가 높은 것이 유리하고, 필요에 따라 운전 온도를 상온으로 유지하는 것이 유리할 때가 있다.The optimal operating temperature for producing hydrogen may vary depending on the type of fluid supplied to the processing device 100, the hydrogen extraction method of the hydrogen generating device 300, etc. For example, when the hydrogen generation device 300 uses a polymer electrolyte membrane as the separation membrane 310, the optimal operating temperature for hydrogen production is known to be around 80 degrees. In addition, for mass production of hydrogen, it is advantageous to have a high fluid temperature, and there are times when it is advantageous to maintain the operating temperature at room temperature when necessary.
본 실시예에 따른 수소 생성 시스템(25)은 온도 조절 장치(710)를 이용함으로써 다양한 운전 조건에 따라 유체의 온도를 다양하게 조절할 수 있다.The hydrogen generation system 25 according to this embodiment can control the temperature of the fluid in various ways according to various operating conditions by using the temperature control device 710.
처리 장치(100)에서 처리된 유체는 온도가 상대적으로 높을 수 있으므로, 온도 조절 장치(710)는 유체를 냉각시키도록 구성될 수 있다. 이 경우, 열교환 매체 공급기(712)는 냉각 매체를 열교환 부재(714)에 공급하도록 구성될 수 있다. 열교환 매체 공급기(712)는 냉동사이클 방식으로 열교환 매체를 냉각시키도록 구성될 수 있다.Because the fluid processed in processing device 100 may have a relatively high temperature, temperature control device 710 may be configured to cool the fluid. In this case, the heat exchange medium supplier 712 may be configured to supply cooling medium to the heat exchange member 714. The heat exchange medium supplier 712 may be configured to cool the heat exchange medium using a refrigeration cycle.
다른 예로서, 온도 조절 장치(710)는 유체를 가열하도록 구성될 수 있다. 이 경우, 열교환 매체 공급기(712)는 가열 매체를 열교환 부재(714)에 공급하도록 구성될 수 있다. 열교환 매체 공급기(712)는 가열 매체를 가열할 수 있는 다양한 히터를 포함할 수 있다.As another example, temperature control device 710 may be configured to heat a fluid. In this case, the heat exchange medium supplier 712 may be configured to supply heating medium to the heat exchange member 714. Heat exchange medium supply 712 may include various heaters capable of heating a heating medium.
본 실시예에 따른 수소 생성 시스템(25)은 버퍼 탱크(212)에 저장되는 유체의 온도를 측정하기 위한 센서(미도시)와, 센서로부터 측정 신호를 수신하고 열교환 매체 공급기(712)를 제어하기 위한 컨트롤러(미도시)를 포함할 수 있다.The hydrogen generation system 25 according to this embodiment includes a sensor (not shown) for measuring the temperature of the fluid stored in the buffer tank 212, receiving a measurement signal from the sensor, and controlling the heat exchange medium supply 712. A controller (not shown) may be included.
또한, 도면에는 열교환 부재(714)가 버퍼 탱크(212)의 내부에 설치되는 것으로 나타냈으나, 열교환 부재(714)는 버퍼 탱크(212)에 저장된 유체와 열교환할 수 있도록 버퍼 탱크(212)의 외부에 설치될 수 있다.In addition, the drawing shows that the heat exchange member 714 is installed inside the buffer tank 212, but the heat exchange member 714 is installed in the buffer tank 212 so as to exchange heat with the fluid stored in the buffer tank 212. Can be installed externally.
또한, 온도 조절 장치(710)는 히트 펌프 방식, 열전 냉각 방식 등 다양한 방식으로 유체를 냉각시키도록 구성되는 열교환 부재를 포함할 수 있다.Additionally, the temperature control device 710 may include a heat exchange member configured to cool the fluid in various ways, such as a heat pump method or a thermoelectric cooling method.
또한, 온도 조절 장치(710)는 다양한 방식으로 유체를 가열하도록 구성되는 열교환 부재를 포함할 수 있다.Additionally, the temperature control device 710 may include a heat exchange member configured to heat fluid in various ways.
도 12에 나타낸 수소 생성 시스템(30)은 수소 생성을 위한 유체를 처리하는 처리 장치(100)와, 처리 장치(100)에서 처리된 유체의 전기적인 특성을 변화시키도록 구성되는 연결 장치(230)와, 연결 장치(230)를 통해 유체를 공급받고 유체로부터 수소를 추출하는 수소 생성 장치(300)를 포함한다. 처리 장치(100)와 수소 생성 장치(300)는 앞서 설명한 것과 같다.The hydrogen generation system 30 shown in FIG. 12 includes a processing device 100 that processes fluid for hydrogen generation, and a connection device 230 configured to change the electrical characteristics of the fluid processed in the processing device 100. and a hydrogen generating device 300 that receives fluid through a connection device 230 and extracts hydrogen from the fluid. The processing device 100 and the hydrogen generation device 300 are the same as described above.
연결 장치(230)는 유체가 통과하는 과정에서 유체의 전기적인 특성을 변화시키도록 구성된다. 연결 장치(230)는 처리 장치(100)와 수소 생성 장치(300)를 연결하는 연결관(440)에 설치된다. 연결 장치(230)는 연결관(440)과 연결되는 연결 하우징(232)과, 연결 하우징(232)의 내부로 유입되는 유체와 접촉할 수 있도록 연결 하우징(232)에 설치되는 방전 부재(235)를 포함한다. 연결 하우징(232)의 내부에는 유체가 유입되는 하우징 챔버(233)가 마련되고, 방전 부재(235)는 적어도 일부가 하우징 챔버(233)에 수용된다. 방전 부재(235)는 전류가 흐를 수 있는 전도성 소재로 이루어진다. 방전 부재(235)는 유체가 통과할 수 있는 복수의 통로를 갖는 메쉬 형태로 구성될 수 있다. 방전 부재(235)는 연결 전극(237)과 연결되고, 연결 전극(237)을 통해 그라운드부(G)에 접지될 수 있다.The connection device 230 is configured to change the electrical properties of the fluid as it passes. The connection device 230 is installed in the connection pipe 440 connecting the processing device 100 and the hydrogen generation device 300. The connection device 230 includes a connection housing 232 connected to the connection pipe 440, and a discharge member 235 installed on the connection housing 232 so as to contact the fluid flowing into the connection housing 232. Includes. A housing chamber 233 through which fluid flows is provided inside the connection housing 232, and at least a portion of the discharging member 235 is accommodated in the housing chamber 233. The discharge member 235 is made of a conductive material through which current can flow. The discharge member 235 may be configured in a mesh shape with a plurality of passages through which fluid can pass. The discharge member 235 is connected to the connection electrode 237 and may be grounded to the ground portion G through the connection electrode 237.
연결 장치(230)는 방전 부재(235)를 이용하여 연결관(440)을 따라 수소 생성 장치(300)로 유동하는 유체를 그라운드부(G)에 접지시킴으로써 유체의 전기적 포텐셜을 낮출 수 있다.The connection device 230 can lower the electrical potential of the fluid by using the discharge member 235 to ground the fluid flowing to the hydrogen generation device 300 along the connection pipe 440 to the ground portion (G).
도면에는 연결관(440)에 두 개의 연결 장치(230)가 직렬 연결된 것으로 나타냈으나, 연결 장치(230)의 설치 개수나 배치 구조는 다양하게 변경될 수 있다.In the drawing, two connection devices 230 are shown connected in series to the connector 440, but the number or arrangement structure of the connection devices 230 may be changed in various ways.
또한, 연결 장치(230)의 방전 부재(235)는 메쉬 형태 이외에 연결관(440)을 따라 유동하는 유체와 접촉하여 유체 중의 전자 또는 전하를 연결관(440)의 외부로 방출할 수 있는 다양한 다른 형태로 이루어질 수 있다.In addition, the discharge member 235 of the connection device 230 has various other shapes in addition to the mesh form that can contact the fluid flowing along the connection pipe 440 and discharge electrons or charges in the fluid to the outside of the connection pipe 440. It can be done in the form
또한, 연결 장치(230)는 연결 하우징(232)없이 방전 부재(235)의 적어도 일부가 연결관(440)의 내부에 수용되도록 구성될 수 있다.Additionally, the connection device 230 may be configured so that at least a portion of the discharge member 235 is accommodated within the connection pipe 440 without the connection housing 232 .
도 13에 나타낸 수소 생성 시스템(35)은 수소 생성을 위한 유체를 처리하는 처리 장치(100)와, 처리 장치(100)에서 처리된 유체의 전기적인 특성을 변화시키도록 구성되는 연결 장치(230)와, 연결 장치(230)를 통해 유체를 공급받고 유체로부터 수소를 추출하는 수소 생성 장치(300)와, 온도 조절 장치(720)를 포함한다. 처리 장치(100)와, 연결 장치(230)와, 수소 생성 장치(300)는 앞서 설명한 것과 같다.The hydrogen production system 35 shown in FIG. 13 includes a processing device 100 that processes fluid for hydrogen production, and a connection device 230 configured to change the electrical characteristics of the fluid processed in the processing device 100. It includes a hydrogen generation device 300 that receives fluid through a connection device 230 and extracts hydrogen from the fluid, and a temperature control device 720. The processing device 100, the connecting device 230, and the hydrogen generating device 300 are the same as described above.
온도 조절 장치(720)는 유체의 온도를 조절하기 위한 것이다. 온도 조절 장치(720)는 유체의 흐름 방향을 기준으로 수소 생성 장치(300)보다 상류 측에 배치된다. 온도 조절 장치(720)는 열교환 매체 공급기(722)와, 처리 장치(100)와 수소 생성 장치(300)를 연결하는 연결관(440)을 따라 유동하는 유체와 열교환할 수 있도록 구성되는 열교환 부재(724)를 포함한다. 열교환 매체 공급기(722)는 열교환 매체를 열교환 부재(724)에 공급하도록 구성될 수 있다. 열교환 부재(724)는 열교환 매체가 흐를 수 있는 튜브 형태로 이루어지고, 연결관(440)과 접촉하거나, 또는 연결관(440)에 인접하도록 배치될 수 있다. 예를 들어, 열교환 부재(724)는 도면에 나타낸 것과 같이 연결관(440)의 적어도 일부를 감싸는 코일 형태로 이루어질 수 있다. 열교환 부재(724)의 설치 위치는 도시된 것으로 한정되지 않고 다양하게 변경될 수 있다.The temperature control device 720 is used to control the temperature of the fluid. The temperature control device 720 is disposed upstream of the hydrogen generation device 300 based on the fluid flow direction. The temperature control device 720 is a heat exchange member ( 724). The heat exchange medium supplier 722 may be configured to supply heat exchange medium to the heat exchange member 724. The heat exchange member 724 is formed in the form of a tube through which a heat exchange medium can flow, and may be placed in contact with the connection pipe 440 or adjacent to the connection pipe 440. For example, the heat exchange member 724 may be in the form of a coil surrounding at least a portion of the connection pipe 440 as shown in the drawing. The installation position of the heat exchange member 724 is not limited to that shown and may be changed in various ways.
열교환 부재(724)를 통과하는 열교환 매체는 연결관(440)을 따라 흐르는 유체와 열교환되고, 열교환된 열교환 매체는 열교환 매체 공급기(722)로 회수되어 열교환 매체 공급기(722)에서 사전 설정된 온도로 냉각 또는 가열된 후 다시 열교환 부재(724)로 공급될 수 있다. 온도 조절 장치(720)는 열교환 부재(724)가 열교환 매체 공급기(722)로부터 유체와 열교환할 수 있는 열교환 매체를 공급받음으로써 연결관(440)을 따라 흐르는 유체의 온도를 조절할 수 있다.The heat exchange medium passing through the heat exchange member 724 exchanges heat with the fluid flowing along the connection pipe 440, and the heat exchanged heat exchange medium is returned to the heat exchange medium supplier 722 and cooled to a preset temperature in the heat exchange medium supplier 722. Alternatively, it may be heated and then supplied to the heat exchange member 724 again. The temperature control device 720 can control the temperature of the fluid flowing along the connection pipe 440 by allowing the heat exchange member 724 to receive a heat exchange medium capable of exchanging heat with the fluid from the heat exchange medium supplier 722.
온도 조절 장치(720)는 유체를 냉각시키도록 구성될 수 있다. 이 경우, 열교환 매체 공급기(722)는 냉각 매체를 열교환 부재(724)에 공급하도록 구성될 수 있다. 열교환 매체 공급기(722)는 냉동사이클 방식으로 열교환 매체를 냉각시키도록 구성될 수 있다. Temperature control device 720 may be configured to cool the fluid. In this case, the heat exchange medium supplier 722 may be configured to supply cooling medium to the heat exchange member 724. The heat exchange medium supplier 722 may be configured to cool the heat exchange medium using a refrigeration cycle.
다른 예로서, 온도 조절 장치(720)는 유체를 가열하도록 구성될 수 있다. 이 경우, 열교환 매체 공급기(722)는 가열 매체를 열교환 부재(724)에 공급하도록 구성될 수 있다. 열교환 매체 공급기(722)는 가열 매체를 가열할 수 있는 다양한 히터를 포함할 수 있다.As another example, temperature control device 720 may be configured to heat a fluid. In this case, the heat exchange medium supplier 722 may be configured to supply heating medium to the heat exchange member 724. Heat exchange medium supply 722 may include various heaters capable of heating a heating medium.
또한, 온도 조절 장치(720)는 히트 펌프 방식, 열전 냉각 방식 등 다양한 방식으로 유체를 냉각시키도록 구성되는 열교환 부재를 포함할 수 있다.Additionally, the temperature control device 720 may include a heat exchange member configured to cool the fluid in various ways, such as a heat pump method or a thermoelectric cooling method.
또한, 온도 조절 장치(720)는 다양한 방식으로 유체를 가열하도록 구성되는 열교환 부재를 포함할 수 있다.Additionally, the temperature control device 720 may include a heat exchange member configured to heat fluid in various ways.
도 14에 나타낸 수소 생성 시스템(40)은 수소 생성을 위한 유체를 처리하는 처리 장치(100)와, 처리 장치(100)에서 처리된 유체의 전기적인 특성을 변화시키도록 구성되는 연결 장치(230)와, 연결 장치(230)를 통해 유체를 공급받고 유체로부터 수소를 추출하는 수소 생성 장치(300)와, 전기에너지 추출 장치(800)를 포함한다. 처리 장치(100)와, 연결 장치(230)와, 수소 생성 장치(300)는 앞서 설명한 것과 같다.The hydrogen production system 40 shown in FIG. 14 includes a processing device 100 that processes fluid for hydrogen production, and a connection device 230 configured to change the electrical characteristics of the fluid processed in the processing device 100. It includes a hydrogen generation device 300 that receives fluid through a connection device 230 and extracts hydrogen from the fluid, and an electric energy extraction device 800. The processing device 100, the connecting device 230, and the hydrogen generating device 300 are the same as described above.
전기에너지 추출 장치(800)는 연결 장치(230)로부터 전기를 발생할 수 있도록 구성된다. 즉, 전기에너지 추출 장치(800)는 연결 전극(237)을 통해 연결 장치(230)의 방전 부재(235; 도 12 참조)와 전기적으로 연결됨으로써 방전 부재(235)로부터 전기 에너지를 추출할 수 있다. 전기에너지 추출 장치(800)는 연결 장치(230)로를 통한 전자의 흐름에 따라 전기에너지를 충전할 수 있는 배터리를 포함할 수 있다.The electrical energy extraction device 800 is configured to generate electricity from the connection device 230. That is, the electrical energy extraction device 800 can extract electrical energy from the discharge member 235 by being electrically connected to the discharge member 235 (see FIG. 12) of the connection device 230 through the connection electrode 237. . The electrical energy extraction device 800 may include a battery capable of charging electrical energy according to the flow of electrons through the connection device 230.
본 실시예에 따른 수소 생성 시스템(40)은 연결 장치(230)로부터 방출되는 전자 또는 전하를 전기에너지 추출 장치(800)를 이용하여 회수하여 전기를 생산할 수 있고, 생산되는 전기를 수소 생성 시스템(40)의 운전에 필요한 에너지로 활용할 수 있다.The hydrogen generation system 40 according to this embodiment can produce electricity by recovering electrons or charges emitted from the connection device 230 using the electric energy extraction device 800, and the produced electricity can be converted to hydrogen generation system ( 40) It can be used as energy needed for driving.
다른 실시예로서, 도 1에 나타낸 수소 생성 시스템(10)이 연결 장치(210)와 연결되는 전기에너지 추출 장치(800)를 포함할 수 있다.As another example, the hydrogen production system 10 shown in FIG. 1 may include an electrical energy extraction device 800 connected to a connection device 210.
또 다른 실시예로서, 도 10에 나타낸 수소 생성 시스템(20)이 연결 장치(220)와 연결되는 전기에너지 추출 장치(800)를 포함할 수 있다.As another example, the hydrogen production system 20 shown in FIG. 10 may include an electrical energy extraction device 800 connected to the connection device 220.
도 15에 나타낸 수소 생성 시스템(45)은 수소 생성을 위한 유체를 처리하는 처리 장치(100)와, 처리 장치(100)에서 처리된 유체의 전기적인 특성을 변화시키도록 구성되는 연결 장치(210)와, 연결 장치(210)를 통해 유체를 공급받고 유체로부터 수소를 추출하는 복수의 수소 생성 장치(300)를 포함한다. 복수의 수소 생성 장치(300)는 연결 장치(210)와 병렬 연결된다.The hydrogen production system 45 shown in FIG. 15 includes a processing device 100 that processes fluid for hydrogen production, and a connection device 210 configured to change the electrical properties of the fluid processed in the processing device 100. and a plurality of hydrogen generating devices 300 that receive fluid through a connection device 210 and extract hydrogen from the fluid. A plurality of hydrogen generating devices 300 are connected in parallel with the connecting device 210.
본 실시예에 따른 수소 생성 시스템(45)은 복수의 수소 생성 장치(300)가 연결 장치(210)와 병렬 연결됨으로써 수소 생성 효율을 높일 수 있다.The hydrogen generation system 45 according to this embodiment can increase hydrogen generation efficiency by connecting a plurality of hydrogen generation devices 300 in parallel with the connection device 210.
본 실시예에 따른 수소 생성 시스템(45)은 연결 장치(210)와 복수의 수소 생성 장치(300) 각각의 사이에 배치되는 복수의 커플러(350)를 포함한다. 커플러(350)는 연결 장치(210)와 수소 생성 장치(300)를 분리 가능하게 연결하도록 구성된다.The hydrogen generation system 45 according to this embodiment includes a plurality of couplers 350 disposed between the connection device 210 and each of the plurality of hydrogen generation devices 300. The coupler 350 is configured to detachably connect the connecting device 210 and the hydrogen generating device 300.
따라서, 수소 생성 시스템(45)의 운전 중에 일부 수소 생성 장치(300)에 문제가 발생하는 경우, 수소 생성 시스템(45)의 운전을 정지시키지 않고 문제가 발생한 수소 생성 장치(300)만 분리하거나 교체하는 것이 가능하다.Therefore, if a problem occurs in some of the hydrogen generation devices 300 during operation of the hydrogen generation system 45, only the problematic hydrogen generation device 300 is separated or replaced without stopping the operation of the hydrogen generation system 45. It is possible.
도면에는 커플러(350)가 연결 장치(210)와 복수의 수소 생성 장치(300)를 각각 연결하는 복수의 연결관(430)에는 설치되는 것으로 나타냈으나, 커플러(350)의 설치 위치는 다양하게 변경 가능하다.In the drawing, the coupler 350 is shown as being installed in the plurality of connectors 430 that respectively connect the connection device 210 and the plurality of hydrogen generating devices 300, but the installation location of the coupler 350 varies. you can change it.
도 16에 나타낸 수소 생성 시스템(50)은 수소 생성을 위한 유체를 처리하는 처리 장치(100)와, 처리 장치(100)에서 처리된 유체의 전기적인 특성을 변화시키도록 구성되는 복수의 연결 장치(230)와, 복수의 연결 장치(230)를 통해 각각 유체를 공급받고 유체로부터 수소를 추출하는 복수의 수소 생성 장치(300)를 포함한다. 복수의 연결 장치(230) 및 복수의 수소 생성 장치(300)는 처리 장치(100)와 병렬 연결된다.The hydrogen production system 50 shown in FIG. 16 includes a processing device 100 that processes fluid for hydrogen production, and a plurality of connection devices configured to change the electrical characteristics of the fluid processed in the processing device 100 ( 230) and a plurality of hydrogen generating devices 300 that each receive fluid through a plurality of connection devices 230 and extract hydrogen from the fluid. A plurality of connection devices 230 and a plurality of hydrogen generating devices 300 are connected in parallel to the processing device 100.
처리 장치(100)를 통과한 유체는 분기관(450)을 통해 분기관(450)에 연결된 복수의 연결관(440)으로 분배되어 복수의 연결 장치(230)로 유동할 수 있다. 각각의 연결관(440)에 연결 장치(230)와, 수소 생성 장치(300)와, 커플러(350)와, 밸브(500)가 설치된다. 커플러(350)는 연결 장치(230)와 수소 생성 장치(300)를 분리 가능하게 연결하도록 구성된다.The fluid that has passed through the processing device 100 may be distributed through the branch pipe 450 to a plurality of connection pipes 440 connected to the branch pipe 450 and flow to a plurality of connection devices 230. A connection device 230, a hydrogen generation device 300, a coupler 350, and a valve 500 are installed in each connection pipe 440. The coupler 350 is configured to detachably connect the connecting device 230 and the hydrogen generating device 300.
도 17에 나타낸 수소 생성 시스템(55)은 수소 생성을 위한 유체를 처리하는 처리 장치(100)와, 처리 장치(100)에서 처리된 유체의 전기적인 특성을 변화시키도록 구성되는 연결 장치(230)와, 연결 장치(230)를 통해 유체를 공급받고 유체로부터 수소를 추출하는 복수의 수소 생성 장치(300)를 포함한다. 복수의 수소 생성 장치(300)는 연결 장치(230)와 병렬 연결된다.The hydrogen production system 55 shown in FIG. 17 includes a processing device 100 that processes fluid for hydrogen production, and a connection device 230 configured to change the electrical characteristics of the fluid processed in the processing device 100. and a plurality of hydrogen generating devices 300 that receive fluid through a connection device 230 and extract hydrogen from the fluid. A plurality of hydrogen generating devices 300 are connected in parallel with the connecting device 230.
연결 장치(230)가 설치되는 연결관(440)은 분기관(450)과 연결되고, 분기관(450)은 복수의 연결관(460)과 연결된다. 각각의 연결관(460)에 수소 생성 장치(300)와, 커플러(350)와, 밸브(500)가 설치된다. 커플러(350)는 연결 장치(230)와 수소 생성 장치(300)를 분리 가능하게 연결하도록 구성된다.이상 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것은 아니고, 본 발명의 기술 사상을 벗어나지 않는 범위 내에서 다양하게 변형실시 될 수 있다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The connection pipe 440 on which the connection device 230 is installed is connected to the branch pipe 450, and the branch pipe 450 is connected to a plurality of connection pipes 460. A hydrogen generating device 300, a coupler 350, and a valve 500 are installed in each connection pipe 460. The coupler 350 is configured to detachably connect the connecting device 230 and the hydrogen generating device 300. Although embodiments of the present invention have been described in detail with reference to the attached drawings, the present invention does not necessarily apply to these embodiments. It is not limited to examples, and various modifications may be made without departing from the technical spirit of the present invention. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but are for illustrative purposes, and the scope of the technical idea of the present invention is not limited by these embodiments. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. The scope of protection of the present invention should be interpreted in accordance with the claims below, and all technical ideas within the equivalent scope should be construed as being included in the scope of rights of the present invention.

Claims (18)

  1. 내부로 유입되는 유체에 포함된 기포를 붕괴시켜 플라즈마를 생성하고, 생성된 플라즈마를 이용하여 상기 유체를 처리하도록 구성되는 처리 장치;a processing device configured to generate plasma by collapsing bubbles contained in a fluid flowing into the inside, and to process the fluid using the generated plasma;
    상기 처리 장치와 연결되고, 상기 처리 장치에 의해 처리된 상기 유체로부터 수소를 추출하는 수소 생성 장치; 및a hydrogen generation device connected to the processing device and extracting hydrogen from the fluid processed by the processing device; and
    상기 처리 장치와 상기 수소 생성 장치를 연결하며, 상기 유체가 통과하는 과정에서 상기 유체의 전기적인 특성을 변화시키도록 구성되는 연결 장치를 포함하는 수소 생성 시스템.A hydrogen generation system comprising a connection device that connects the processing device and the hydrogen generation device and is configured to change electrical characteristics of the fluid as the fluid passes through it.
  2. 제 1 항에 있어서,According to claim 1,
    상기 연결 장치는 상기 유체의 전기적 포텐셜을 낮추도록 구성되는 수소 생성 시스템.The hydrogen production system of claim 1, wherein the connecting device is configured to lower the electrical potential of the fluid.
  3. 제 2 항에 있어서,According to claim 2,
    상기 연결 장치는,The connection device is,
    상기 유체를 저장할 수 있는 저장 공간을 구비하고, 상기 유체를 접지시키기 위해 그라운드부에 접지되도록 구성되는 버퍼 탱크를 포함하는 수소 생성 시스템.A hydrogen generation system including a buffer tank that has a storage space for storing the fluid and is configured to be grounded to a ground portion to ground the fluid.
  4. 제 2 항에 있어서,According to claim 2,
    상기 연결 장치는,The connection device is,
    상기 유체를 저장할 수 있는 버퍼 탱크; 및a buffer tank capable of storing the fluid; and
    상기 유체와 접촉하여 상기 유체를 접지시킬 수 있도록 적어도 일부가 상기 버퍼 탱크 내부에 설치되는 방전 전극을 포함하는 수소 생성 시스템.A hydrogen generation system including a discharge electrode at least partially installed inside the buffer tank so as to contact the fluid and ground the fluid.
  5. 제 2 항에 있어서,According to claim 2,
    상기 연결 장치는,The connection device is,
    상기 처리 장치와 상기 수소 생성 장치를 연결하는 연결관을 따라 유동하는 상기 유체를 접지시킬 수 있도록 적어도 일부가 상기 연결관 중에 배치되는 방전 부재를 포함하는 수소 생성 시스템.A hydrogen generation system comprising a discharge member at least partially disposed in the connection pipe connecting the processing device and the hydrogen generation device to ground the fluid flowing along the connection pipe.
  6. 제 5 항에 있어서,According to claim 5,
    상기 방전 부재를 통해 상기 유체로부터 전기적 포텐셜 에너지를 추출할 수 있도록 상기 방전 부재와 연결되는 전기에너지 추출 장치를 포함하는 수소 생성 시스템.A hydrogen generation system comprising an electrical energy extraction device connected to the discharge member to extract electrical potential energy from the fluid through the discharge member.
  7. 제 1 항에 있어서,According to claim 1,
    상기 유체의 온도를 변화시키기 위해 상기 유체의 흐름 방향을 기준으로 상기 수소 생성 장치보다 상류 측에 배치되는 온도 조절 장치를 포함하는 수소 생성 시스템.A hydrogen generation system comprising a temperature control device disposed upstream of the hydrogen generation device based on the flow direction of the fluid to change the temperature of the fluid.
  8. 제 7 항에 있어서,According to claim 7,
    상기 연결 장치는,The connection device is,
    상기 유체를 저장할 수 있는 저장 공간을 구비하고, 상기 유체를 접지시켜 상기 유체의 전기적 포텐셜을 낮추기 위해 그라운드부에 접지되도록 구성되는 버퍼 탱크를 포함하고,It includes a buffer tank that has a storage space for storing the fluid and is configured to be grounded to a ground portion to ground the fluid and lower the electrical potential of the fluid,
    상기 온도 조절 장치는,The temperature control device is,
    상기 저장 공간에 저장된 상기 유체와 열교환할 수 있도록 적어도 일부가 상기 저장 공간에 배치되는 열교환 부재를 포함하는 수소 생성 시스템.A hydrogen generation system comprising a heat exchange member at least partially disposed in the storage space so as to exchange heat with the fluid stored in the storage space.
  9. 제 7 항에 있어서,According to claim 7,
    상기 온도 조절 장치는,The temperature control device is,
    상기 처리 장치와 상기 수소 생성 장치를 연결하는 연결관을 따라 유동하는 상기 유체와 열교환할 수 있도록 상기 연결관과 접촉하거나, 또는 상기 연결관에 인접하도록 배치되는 열교환 부재를 포함하는 수소 생성 시스템.A hydrogen generation system comprising a heat exchange member disposed in contact with or adjacent to the connection pipe so as to exchange heat with the fluid flowing along the connection pipe connecting the processing device and the hydrogen generation device.
  10. 제 1 항에 있어서,According to claim 1,
    상기 처리 장치는,The processing device is,
    상기 유체의 흐름 방향을 따라 적어도 일부분에서 직경이 감소하는 형상을 가지는 제1 유로;a first flow path having a shape whose diameter decreases at least in part along the flow direction of the fluid;
    상기 제1 유로를 통과하여 유입된 상기 유체에 포함된 기포들을 붕괴시키도록 적어도 둘 이상의 구간에서 직경이 확대되는 형상을 가지는 제2 유로; 및a second flow path having a shape whose diameter is enlarged in at least two sections to collapse bubbles contained in the fluid flowing in through the first flow path; and
    상기 유체의 와류를 발생시키기 위해 상기 제1 유로 중에 배치되는 스크류를 포함하는 수소 생성 시스템.A hydrogen generation system comprising a screw disposed in the first flow path to generate a vortex of the fluid.
  11. 제 10 항에 있어서,According to claim 10,
    상기 처리 장치는,The processing device is,
    상기 스크류를 수용하는 중공형의 외부 바디; 및a hollow outer body accommodating the screw; and
    상기 제1 유로 및 상기 제2 유로를 제공하기 위해 상기 유체의 흐름 방향을 기준으로 상기 스크류보다 하류 측에 위치하도록 상기 외부 바디에 수용되는 가이드 어셈블리를 포함하는 수소 생성 시스템.A hydrogen generation system comprising a guide assembly accommodated in the external body to be located downstream of the screw based on the flow direction of the fluid to provide the first flow path and the second flow path.
  12. 제 11 항에 있어서,According to claim 11,
    상기 유체는 물이고, 상기 가이드 어셈블리는 물을 양전하로 마찰 대전시키는 소재로 이루어지는 수소 생성 시스템.The fluid is water, and the guide assembly is made of a material that frictionally charges the water with a positive charge.
  13. 제 10 항에 있어서,According to claim 10,
    상기 처리 장치는,The processing device is,
    상기 제2 유로 중에 배치되어 상기 유체에 포함된 기포의 붕괴를 촉진하는 액셀러레이터를 포함하는 수소 생성 시스템.A hydrogen generation system comprising an accelerator disposed in the second flow path to promote collapse of bubbles contained in the fluid.
  14. 제 1 항에 있어서,According to claim 1,
    상기 처리 장치는,The processing device is,
    스크류와, 상기 스크류를 통과한 상기 유체의 흐름을 안내하며, 상기 유체의 흐름 방향을 따라 적어도 일부분에서 직경이 감소하는 형상을 가지는 제1 유체 유로를 포함하는 제1 바디;A first body including a screw and a first fluid flow path that guides the flow of the fluid passing through the screw and has a shape whose diameter decreases at least in part along the flow direction of the fluid;
    상기 제1 바디와 연결되고, 상기 제1 유체 유로를 통과한 유체에 압력의 변화를 제공하도록 상기 제1 유체 유로의 일단보다 상대적으로 큰 직경을 갖는 제2 유체 유로를 포함하는 제2 바디; 및a second body connected to the first body and including a second fluid passage having a relatively larger diameter than one end of the first fluid passage to provide a change in pressure to the fluid passing through the first fluid passage; and
    상기 제2 바디와 연결되고, 상기 제2 바디보다 전기 전도도가 높은 재질로 형성되며, 상기 제2 유체 유로를 통과한 유체에 압력의 변화를 제공하도록 상기 제2 유체 유로보다 상대적으로 작은 직경을 갖는 제3 유체 유로를 포함하는 제3 바디를 포함하는 수소 생성 시스템.It is connected to the second body, is made of a material with higher electrical conductivity than the second body, and has a relatively smaller diameter than the second fluid passage to provide a change in pressure to the fluid passing through the second fluid passage. A hydrogen production system comprising a third body comprising a third fluid flow path.
  15. 내부로 유입되는 유체에 포함된 기포를 붕괴시켜 플라즈마를 생성하고, 생성된 플라즈마를 통해 상기 유체를 처리하도록 구성되는 처리 장치;A processing device configured to generate plasma by collapsing bubbles contained in a fluid flowing into the inside, and to process the fluid through the generated plasma;
    상기 처리 장치와 연결되고, 상기 처리 장치에 의해 처리된 상기 유체로부터 수소를 추출하는 복수의 수소 생성 장치; 및a plurality of hydrogen generating devices connected to the processing device and extracting hydrogen from the fluid processed by the processing device; and
    상기 처리 장치와 상기 복수의 수소 생성 장치를 연결하며, 상기 유체가 통과하는 과정에서 상기 유체의 전기적인 특성을 변경하도록 구성되는 연결 장치를 포함하고,A connecting device connecting the processing device and the plurality of hydrogen generating devices and configured to change electrical properties of the fluid as the fluid passes through it,
    상기 복수의 수소 생성 장치는 상기 연결 장치와 병렬 연결되는 수소 생성 시스템.A hydrogen generation system in which the plurality of hydrogen generation devices are connected in parallel with the connection device.
  16. 제 15 항에 있어서,According to claim 15,
    상기 연결 장치와 상기 복수의 수소 생성 장치 각각의 사이에는 상기 연결 장치와 상기 복수의 수소 생성 장치 각각을 분리 가능하게 연결할 수 있는 커플러가 설치되는 수소 생성 시스템.A hydrogen generation system in which a coupler is installed between the connecting device and each of the plurality of hydrogen generating devices to detachably connect the connecting device and each of the plurality of hydrogen generating devices.
  17. 내부로 유입되는 유체에 포함된 기포를 붕괴시켜 플라즈마를 생성하고, 생성된 플라즈마를 통해 상기 유체를 처리하도록 구성되는 처리 장치;a processing device configured to generate plasma by collapsing bubbles contained in a fluid flowing into the interior, and to process the fluid through the generated plasma;
    상기 처리 장치와 연결되고, 상기 처리 장치에 의해 처리된 상기 유체로부터 수소를 추출하는 복수의 수소 생성 장치; 및a plurality of hydrogen generating devices connected to the processing device and extracting hydrogen from the fluid processed by the processing device; and
    상기 처리 장치와 상기 복수의 수소 생성 장치를 각각 연결하며, 상기 유체가 통과하는 과정에서 상기 유체의 전기적인 특성을 변경하도록 구성되는 복수의 연결 장치를 포함하고,A plurality of connecting devices each connecting the processing device and the plurality of hydrogen generating devices and configured to change electrical characteristics of the fluid as the fluid passes through it,
    상기 복수의 연결 장치는 상기 처리 장치와 병렬 연결되는 수소 생성 시스템.A hydrogen production system wherein the plurality of connection devices are connected in parallel with the processing device.
  18. 제 17 항에 있어서,According to claim 17,
    상기 복수의 연결 장치와 상기 복수의 수소 생성 장치 각각의 사이에는 상기 복수의 연결 장치와 상기 복수의 수소 생성 장치 각각을 분리 가능하게 연결할 수 있는 커플러가 설치되는 수소 생성 시스템.A hydrogen generation system in which a coupler is installed between the plurality of connection devices and each of the plurality of hydrogen generation devices to detachably connect the plurality of connection devices and the plurality of hydrogen generation devices.
PCT/KR2023/014860 2022-11-01 2023-09-26 Hydrogen generation system WO2024096329A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220143456 2022-11-01
KR10-2022-0143456 2022-11-01
KR1020230126153A KR20240062092A (en) 2022-11-01 2023-09-21 System for generating hydrogen
KR10-2023-0126153 2023-09-21

Publications (1)

Publication Number Publication Date
WO2024096329A1 true WO2024096329A1 (en) 2024-05-10

Family

ID=90930819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014860 WO2024096329A1 (en) 2022-11-01 2023-09-26 Hydrogen generation system

Country Status (1)

Country Link
WO (1) WO2024096329A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060071343A (en) * 2004-12-21 2006-06-26 양현익 Energy generating apparatus and method thereof
KR20080073890A (en) * 2007-02-07 2008-08-12 아주대학교산학협력단 Method for generating hydrogen, apparatus for generating hydrogen, and electrically-driven system using the same
KR101752979B1 (en) * 2015-12-23 2017-07-03 한국기초과학지원연구원 System for hydrogen production using plasma
KR20200102888A (en) * 2019-02-22 2020-09-01 케이퓨전테크놀로지 주식회사 Underwater plasma generating device and an application comprising the same
KR20210109988A (en) * 2020-02-28 2021-09-07 케이퓨전테크놀로지 주식회사 Functional water production device using underwater plasma

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060071343A (en) * 2004-12-21 2006-06-26 양현익 Energy generating apparatus and method thereof
KR20080073890A (en) * 2007-02-07 2008-08-12 아주대학교산학협력단 Method for generating hydrogen, apparatus for generating hydrogen, and electrically-driven system using the same
KR101752979B1 (en) * 2015-12-23 2017-07-03 한국기초과학지원연구원 System for hydrogen production using plasma
KR20200102888A (en) * 2019-02-22 2020-09-01 케이퓨전테크놀로지 주식회사 Underwater plasma generating device and an application comprising the same
KR20210109988A (en) * 2020-02-28 2021-09-07 케이퓨전테크놀로지 주식회사 Functional water production device using underwater plasma

Similar Documents

Publication Publication Date Title
KR100516476B1 (en) Method and devices for producing hydrogen by plasma reformer
WO2020171261A1 (en) Submerged plasma generator and application comprising same
WO2018199417A1 (en) Glow plasma reaction apparatus for water treatment and operating method thereof
WO2021172654A1 (en) Apparatus for producing functional water using underwater plasma
WO2019190244A1 (en) System for producing carbon monoxide and hydrogen from carbon dioxide and water by using reversible oxidation-reduction converter and method therefor
WO2020180082A1 (en) Reversible water electrolysis system and operation method thereof
WO2014069796A1 (en) Integrated carbon dioxide conversion system for connecting oxy-fuel combustion and catalytic conversion process
WO2024096329A1 (en) Hydrogen generation system
WO2010137774A1 (en) Sealed fuel cell system
BR0115035A (en) Atmospheric plasma treatment process of an object to be treated in an electrically conductive material and device for carrying out the process
CN102842884A (en) Electrode and method for supplying current to reactor
WO2015047007A1 (en) Fluid exchange membrane module
WO2011093652A2 (en) Hollow-fibre membrane module
US5484978A (en) Destruction of hydrocarbon materials
CA2901485A1 (en) High power dc non transferred steam plasma torch system
WO2017003089A1 (en) Solid oxide fuel cell system heated by external heat source
WO2024096331A1 (en) Fluid treatment device and fluid treatment system including same
WO2024096332A1 (en) Fluid treatment apparatus
WO2024096330A1 (en) Fluid processing device
WO2020138668A1 (en) Secondary battery generating hydrogen by using carbon dioxide and complex power generation system having same
KR100766155B1 (en) The structure of gasket which prevents stack be imbrued of the fuel cell
WO2024096328A1 (en) Fluid treatment device
CA2225815A1 (en) High-temperature fuel cell system and a method for its operation
KR20240062092A (en) System for generating hydrogen
WO2019221313A1 (en) Underwater plasma generating apparatus