WO2020138668A1 - Secondary battery generating hydrogen by using carbon dioxide and complex power generation system having same - Google Patents

Secondary battery generating hydrogen by using carbon dioxide and complex power generation system having same Download PDF

Info

Publication number
WO2020138668A1
WO2020138668A1 PCT/KR2019/013460 KR2019013460W WO2020138668A1 WO 2020138668 A1 WO2020138668 A1 WO 2020138668A1 KR 2019013460 W KR2019013460 W KR 2019013460W WO 2020138668 A1 WO2020138668 A1 WO 2020138668A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
secondary battery
carbon dioxide
electrolyte solution
reaction space
Prior art date
Application number
PCT/KR2019/013460
Other languages
French (fr)
Korean (ko)
Inventor
김건태
김창민
김정원
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180170838A external-priority patent/KR102042683B1/en
Priority claimed from KR1020190007608A external-priority patent/KR102205629B1/en
Priority claimed from KR1020190007609A external-priority patent/KR102163935B1/en
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2020138668A1 publication Critical patent/WO2020138668A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • H01M50/682Containers for storing liquids; Delivery conduits therefor accommodated in battery or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present technology relates to a secondary battery, and more particularly, to provide a secondary battery using carbon dioxide and a combined power generation system having the same.
  • Carbon dioxide emissions by industry type are highest in energy sources such as power plants, and carbon dioxide generated in the cement/steel/refining industry including power generation accounts for half of the world's emissions.
  • the CO2 conversion/utilization field can be largely divided into chemical conversion, biological conversion, and direct utilization, and the technical categories can be categorized into catalyst, electrochemistry, bioprocess, light utilization, inorganic (carbonation), and polymer.
  • Carbon dioxide is generated in various industries and processes, and various approaches for carbon dioxide reduction are required because carbon dioxide reduction cannot be achieved with one technology.
  • CCUS Carbon Capture & Storage
  • CCU CCU
  • CCUS technology is recognized as an effective method to reduce GHG emissions, but faces the problems of high investment cost, the possibility of releasing harmful capture agents into the atmosphere, and low technology maturity.
  • CCUS provides a means to substantially reduce greenhouse gas emissions, but there are many complements to the realization of technology. Accordingly, there is a need to develop a new concept of breakthrough technology that more efficiently captures, stores, and utilizes carbon dioxide.
  • Korean Patent Publication No. 10-2015-0091834 includes a liquid cathode part including a sodium-containing solution and a cathode impregnated in the sodium-containing solution; An anode portion including a liquid organic electrolyte, an anode impregnated with the liquid organic electrolyte, and a negative electrode active material positioned on the anode surface; And a solid electrolyte positioned between the cathode portion and the cathode portion. And a hydrogen discharge part connected to the cathode part to draw hydrogen generated in the cathode part to the outside during discharge.
  • the purpose of the present technology is to provide a secondary battery that produces hydrogen when discharged by using carbon dioxide, a greenhouse gas, as a raw material.
  • Another object of the present technology is to provide a secondary battery with improved discharge capacity while producing hydrogen upon discharge with the removal of carbon dioxide.
  • Another object of the present technology is to provide a secondary battery-metal recovery system capable of recovering metal used in the removal of carbon dioxide.
  • a secondary battery capable of charging and discharging, at least a first electrolyte that is an aqueous electrolyte accommodated in a first reaction space and the first electrolyte A cathode part having a cathode that is partially locked; And an anode portion including a second electrolyte, which is an aqueous electrolyte accommodated in the second reaction space, and an anode that is at least partially submerged in the second electrolyte, and in the discharge process, the temperature of the first electrolyte and the second electrolyte is It is maintained at 60°C to 80°C, carbon dioxide gas is introduced into the first electrolyte, and hydrogen ions and bicarbonate ions are generated by the reaction of water and the carbon dioxide gas in the first electrolyte, and the hydrogen ions and the cathode A secondary battery in which hydrogen gas is generated due to electrons being combined is provided.
  • a secondary battery capable of charging and discharging, at least a first electrolyte solution which is an aqueous electrolyte accommodated in a first reaction space and the first electrolyte solution A cathode part having a cathode that is partially locked; A carbon dioxide treatment unit having the first electrolyte solution accommodated in an accommodation space communicating with the first reaction space; And an anode portion including a second electrolyte, which is an aqueous electrolyte accommodated in the second reaction space, and an anode that is at least partially submerged in the second electrolyte, and in the discharge process, the temperature of the first electrolyte and the second electrolyte is It is maintained at 60°C to 80°C, carbon dioxide gas is introduced into the first electrolyte solution in the accommodation space, hydrogen ions and bicarbonate ions are generated by reaction of water and the carbon dioxide gas in the first electrolyte solution, and the ca
  • a secondary battery capable of charging and discharging, comprising: an electrolyte that is an aqueous electrolyte accommodated in a reaction space; A cathode immersed in at least a portion of the electrolyte solution; And an anode at least partially submerged in the electrolytic solution, and in the discharge process, the temperature of the electrolytic solution is maintained at 60°C to 80°C, carbon dioxide gas flows into the electrolyte solution, and the reaction of water and the carbon dioxide gas in the electrolyte solution Thereby, a hydrogen ion and bicarbonate ion are generated, and a secondary battery in which hydrogen gas is generated by combining electrons of the hydrogen ion and the cathode is provided.
  • the aqueous electrolyte contained in the reaction space and the receiving space communicating with the reaction space is an electrolyte;
  • an anode in which at least a part is immersed in the electrolyte in the reaction space, and in the discharge process the temperature of the electrolyte is maintained at 60°C to 80°C, and carbon dioxide gas is introduced into the electrolyte in the receiving space, whereby Hydrogen ions and bicarbonate ions are generated by the reaction of water and the carbon dioxide gas, and in the reaction space, hydrogen ions and electrons of the cathode are combined to generate hydrogen gas, and carbon dioxide flowing into the aqueous electrolyte in the accommodation space
  • a secondary battery is provided in which non-ionized carbon dioxide gas in the gas is separated from the electrolyte in the
  • the first electrolyte and the first electrolyte which are aqueous electrolytes accommodated in the first reaction space, A cathode part having a cathode at least partially locked;
  • An anode unit including a second electrolyte solution that is an aqueous electrolyte accommodated in a second reaction space, and an anode at least partially submerged in the second electrolyte solution;
  • an electrolyte circulating unit comprising a second electrolyte solution stored in an electrolyte storage space communicating with the second reaction space, and a circulation pump circulating the second electrolyte solution between the electrolyte storage space and the second reaction space.
  • carbon dioxide gas is introduced into the first electrolyte solution, and hydrogen ions and bicarbonate ions are generated by reaction of water and the carbon dioxide gas in the first electrolyte solution, and electrons of the hydrogen ion and the cathode are combined to generate hydrogen.
  • a secondary battery in which gas is generated is provided.
  • the first electrolyte and the first electrolyte which are aqueous electrolytes accommodated in the first reaction space, A cathode part having a cathode at least partially locked; A carbon dioxide treatment unit having the first electrolyte solution accommodated in an accommodation space communicating with the first reaction space; An anode unit including a second electrolyte solution that is an aqueous electrolyte accommodated in a second reaction space, and an anode at least partially submerged in the second electrolyte solution; And an electrolyte circulating unit having a circulating pump for circulating the second electrolyte between the electrolyte storage space and the second reaction space, and an electrolyte storage space in which the second electrolyte is stored, and Carbon dioxide gas is introduced into the first electrolytic solution, and hydrogen ions and bicarbonate ions are generated by the reaction of water and the carbon dioxide gas in
  • a secondary battery is provided in which gas is generated, and the carbon dioxide processing unit separates non-ionized carbon dioxide gas from the first electrolyte from among the carbon dioxide gas flowing into the first electrolyte in the accommodation space so as not to be supplied to the cathode.
  • the secondary battery for generating hydrogen by using carbon dioxide as a fuel in the discharge process;
  • a reformer for producing hydrogen-rich reformed gas from hydrogen-containing fuel and generating carbon dioxide as a by-product;
  • a fuel cell receiving the reformed gas produced from the reformer as fuel;
  • a carbon dioxide supply unit supplying carbon dioxide generated in the reformer to the secondary battery.
  • the secondary battery for generating hydrogen by using carbon dioxide as a fuel in the discharge process;
  • a reformer producing a reforming gas rich in hydrogen from a hydrogen-containing furnace;
  • a fuel cell receiving the reformed gas produced from the reformer as fuel;
  • a hydrogen supply unit that additionally supplies hydrogen generated in the secondary battery as fuel of the fuel cell.
  • a secondary battery for generating hydrogen by using carbon dioxide as a fuel in the discharge process;
  • a reformer for producing hydrogen-rich reformed gas from hydrogen-containing fuel and generating carbon dioxide as a by-product;
  • a fuel cell receiving the reformed gas produced from the reformer as fuel;
  • a carbon dioxide supply unit supplying carbon dioxide generated in the reformer to the secondary battery;
  • a hydrogen supply unit that additionally supplies hydrogen generated in the secondary battery as fuel of the fuel cell.
  • the secondary battery is a first electrolyte that is an aqueous electrolyte accommodated in the first reaction space, and the agent 1 Cathode portion having a cathode at least partially submerged in the electrolyte;
  • an anode unit including a second electrolyte, which is an aqueous electrolyte accommodated in a second reaction space, and an anode that is at least partially submerged in the second electrolyte, wherein carbon dioxide gas is introduced into the first electrolyte, and the first Hydrogen ions and bicarbonate ions are generated by the reaction of water in the electrolyte with the carbon dioxide gas, and hydrogen ions are generated by combining the hydrogen ions and the electrons of the cathode, and the metal recovery part dissolves metal ions oxidized at the anode.
  • a supply unit that receives the second electrolyte solution; A recovery space accommodating the supplied second electrolyte; A second cathode made of the same material as the anode at least partially immersed in the second electrolyte contained in the recovery space; a second anode immersed in the second electrolyte contained in the recovery space; And a power supply unit supplying power to the second cathode and the second anode.
  • a secondary battery-metal recovery system is provided for recovering oxidized metal ions from the supplied second electrolyte.
  • the secondary battery is an electrolyte that is an aqueous electrolyte accommodated in the reaction space; A cathode immersed in at least a portion of the electrolyte solution; And an anode in which at least a part is immersed in the electrolyte solution, carbon dioxide gas is introduced into the electrolyte solution, hydrogen ions and bicarbonate ions are generated by reaction of water and the carbon dioxide gas in the electrolyte solution, and the hydrogen ions and the cathode Hydrogen gas is generated by the electrons being combined, and the metal recovery part is a supply part receiving an electrolyte solution in which metal ions oxidized at the anode are dissolved; A recovery space accommodating the supplied electrolyte solution; A second cathode made of the same material as the anode, at least partially immersed in the electrolyte solution accommodated in the recovery space; a second ano
  • the present technology it is possible to achieve all the objects of the present technology described above. Specifically, it includes a cathode and a metal anode immersed in the electrolyte, which is an aqueous electrolyte, and the temperature of the electrolyte in the secondary battery generating hydrogen gas by introducing carbon dioxide gas into the electrolyte during the discharge process has a maximum current density of about twice the room temperature.
  • the optimum temperature of 60°C to 80°C the performance of the secondary battery and the combined power generation system including the secondary battery is greatly improved.
  • the second electrolytic solution accommodated in the second reaction space is circulated by the electrolyte circulating portion, thereby slowing corrosion of the anode metal in the second reaction space, and washing the metal oxide that has been corroded and accumulated on the surface of the anode metal, thereby discharging the discharge capacity. It is greatly increased.
  • FIG. 1 is a schematic diagram showing a discharge state of a secondary battery for producing hydrogen using carbon dioxide according to an embodiment of the present technology.
  • FIG. 2 is a graph showing the results of a half-cell experiment according to the temperature of the electrolyte solution for the secondary battery of the embodiment shown in FIG.
  • FIG. 3 is a graph showing HER initiation regions by temperature in the graph of FIG. 2.
  • FIG. 4 is a graph showing HER voltage for each temperature at a current density of 10 mA/cm 2 in the graph of FIG. 2.
  • FIG. 5 is a graph showing the results of a single cell experiment according to the temperature of the electrolyte for the secondary battery of the embodiment shown in FIG.
  • FIG. 6 is a schematic diagram showing a discharge state of a secondary battery for producing hydrogen using carbon dioxide according to another embodiment of the present technology.
  • FIG. 7 is a schematic diagram showing a discharge state of a secondary battery for producing hydrogen using carbon dioxide according to another embodiment of the present technology.
  • FIG. 8 is a schematic diagram showing a discharge state of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology.
  • FIG. 9 is a schematic view showing a discharge state of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology.
  • FIG. 10 is a schematic diagram showing a discharge state of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology.
  • FIG. 11 is a schematic diagram showing a discharge state of a secondary battery for producing hydrogen using carbon dioxide according to another embodiment of the present technology.
  • FIG. 12 is a schematic diagram showing a discharge state of a secondary battery that produces hydrogen by using carbon dioxide according to another embodiment of the present technology.
  • FIG. 13 is a schematic diagram showing a discharge state of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology.
  • FIG. 14 is a view showing a schematic configuration of a complex power generation system having a secondary battery for producing hydrogen using carbon dioxide according to another embodiment of the present technology.
  • 15 is a schematic diagram showing a discharge state of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology.
  • 16 is a schematic diagram showing a discharge state of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology.
  • 17 is a schematic diagram showing a discharge state of a secondary battery for producing hydrogen using carbon dioxide according to another embodiment of the present technology.
  • FIG. 18 is a schematic diagram showing a discharge state of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology.
  • 19 is a schematic diagram showing a discharge state of a secondary battery for producing hydrogen using carbon dioxide according to another embodiment of the present technology.
  • 20 is a schematic diagram of a metal recovery part of a secondary battery-metal recovery system according to another embodiment of the present technology.
  • the secondary battery 100 includes a cathode unit 110, an anode unit 150, and a connection unit 190 connecting the cathode unit 110 and the anode unit 150.
  • the secondary battery 100 uses the carbon dioxide gas (CO 2 ), which is a greenhouse gas, as a raw material in the discharge process to produce hydrogen (H 2 ), which is an eco-friendly fuel.
  • CO 2 carbon dioxide gas
  • H 2 hydrogen
  • the cathode unit 110 includes a first reaction vessel 110a that provides a first reaction space 111 therein, a first electrolyte 115 that is an aqueous electrolyte contained in the first reaction space 111, and a first A cathode 118 in which at least a portion is immersed in the electrolyte 115 is provided.
  • a first electrolyte 115 an alkaline aqueous solution (in this embodiment, an elution of CO 2 in a strong basic solution of 1M KOH is used), seawater, tap water, distilled water, and the like can be used.
  • the temperature of the first electrolyte 115 is preferably 60°C to 70°C, and most preferably 70°C.
  • the cathode 118 is an electrode for forming an electrical circuit, and may be carbon paper, carbon fiber, carbon felt, carbon cloth, metal foam, metal thin film, or a combination thereof, and a platinum catalyst may also be used.
  • a platinum catalyst may also be used.
  • all other catalysts that can be generally used as a hydrogen generation reaction (HER) catalyst such as a carbon-based catalyst, a carbon-metal-based composite catalyst, and a perovskite oxide catalyst, are also included.
  • HER hydrogen generation reaction
  • a first inlet port 112, a first outlet port 113, and a first connector port 114 communicating with the first reaction space 111 are formed in the first reaction container 110a.
  • the first inlet 112 is positioned below the first reaction space 111 so that it is located below the water surface of the first electrolyte 115.
  • the first outlet 113 is positioned above the first reaction space 111 so as to be positioned above the water surface of the first electrolyte 115.
  • Carbon dioxide which is used as a raw material in the discharge process, is introduced into the first reaction space 111 through the first inlet 112, and the first electrolyte 115 may also be introduced, if necessary.
  • Gas generated in the process of charging and discharging is discharged to the outside through the first outlet 113.
  • the first inlet 112 and the first outlet 113 may be selectively opened and closed in a timely manner by a valve or the like during charging and discharging.
  • the first connector 114 is positioned below the water surface of the first electrolyte 115, and the connection part 190 is connected to the first connector 114. In the cathode unit 110, a carbon dioxide elution reaction occurs in the discharge process.
  • the anode unit 150 includes a second reaction vessel 150a providing a second reaction space 151 therein, a second electrolyte 155 serving as an aqueous electrolyte contained in the second reaction space 151, and a second An anode 158 in which at least a portion is immersed in the electrolyte 155 is provided.
  • a second electrolyte solution 155 an alkali solution having a high concentration is used, for example, 1M KOH or 6M KOH may be used.
  • the temperature of the second electrolyte 155 is preferably 60°C to 80°C, and most preferably 70°C.
  • the anode 158 is an electrode of a metal material constituting an electrical circuit, and in this embodiment, it will be described that zinc (Zn) or aluminum (Al) is used as the anode 158.
  • an alloy containing zinc or aluminum may be used as the anode 158.
  • vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu) may be used as the anode 158, wherein the acid or basic
  • the solution may be used as the second electrolyte 155.
  • a second connector 154 communicating with the second reaction space 151 is formed in the anode unit 150. The second connector 154 is positioned below the water surface of the second electrolyte 155, and the connection unit 190 is connected to the second connector 154.
  • connection part 190 includes a connection passage 191 connecting the cathode part 110 and the anode part 150, and an ion transfer member 192 installed inside the connection passage 191.
  • connection passage 191 extends between the first connector 114 formed in the cathode portion 110 and the second connector 154 formed in the anode portion 150 so that the first reaction space 111 of the cathode portion 110 ) And the second reaction space 151 of the anode 150 are communicated.
  • the ion transfer member 192 is installed inside the connection passage 191.
  • the ion transfer member 192 is generally disk-shaped and is installed in a form of blocking the inside of the connection passage 191.
  • the ion transfer member 192 is made of a porous structure and allows only the movement of ions between the cathode portion 110 and the anode portion 150.
  • the material of the ion transfer member is described as glass, but the present technology is not limited thereto, and other materials having a porous structure may also be used, and this is also within the scope of the present technology.
  • the ion transfer member 192 has a pore size of 40 to 90 microns corresponding to a G2 grade (grade), 15 to 40 microns corresponding to a G3 grade, 5 to 15 microns corresponding to a G4 grade, Porous glass of 1 to 2 microns corresponding to G5 can be used.
  • the ion transfer member 192 eliminates ion imbalance generated in the discharge process by transferring only ions.
  • FIG. 1 shows the discharge process of the secondary battery 100 together.
  • carbon dioxide gas is injected into the first electrolyte 115 through the first inlet 112, and a chemical elution reaction of carbon dioxide is performed in the cathode 110 as shown in [Scheme 1].
  • the carbon dioxide gas (CO 2 ) supplied to the cathode portion 110 undergoes a spontaneous chemical reaction with water (H 2 O) of the first electrolyte 115 and hydrogen cations (H + ) and bicarbonate (HCO 3 -) is generated.
  • the anode 158 is aluminum (Al)
  • an oxidation reaction as shown in [Reaction Scheme 6] is performed.
  • FIG. 2 is a graph showing the results of a half-cell test according to the temperature of the electrolytes 115 and 155 for the secondary battery of the embodiment shown in FIG. 1, and FIG. 3 discloses HER (hydrogen generation reaction) by temperature in the graph of FIG. 2 It is a graph showing the region, and FIG. 4 is a graph showing HER voltage for each temperature at a current density of 10 mA/cm 2 in the graph of FIG. 2.
  • the HER initiation region improves from room temperature (RT) to 45°C as the temperature increases, and tends to decrease gradually after 45°C.
  • the performance improves as the temperature increases from room temperature (RT), but tends to be saturated from 60°C.
  • FIG. 5 is a graph showing the results of a single cell experiment according to the temperature of the electrolytes 115 and 155 for the secondary battery of the embodiment shown in FIG. 1. Referring to FIG. 5, it is confirmed that in the case of the cathode voltage in which the hydrogen generation reaction occurs, the tendency similar to the half cell performance results shown in FIGS. 2 to 4 is shown. In the case of the anode voltage in which the oxidation reaction occurs, the oxidation result is improved due to the temperature increase, and it is confirmed that the electrode oxidation performance is saturated in the temperature range of 70°C to 80°C.
  • the cathode and the anode exhibits excellent performance in the temperature range of the electrolyte at 60°C to 80°C, and the maximum current density at a temperature of 70°C is about 320mA/cm2, at room temperature. It is confirmed that it shows the best performance by increasing about 2 times to about 160 mA/cm 2 measured. This is because the rate of the hydrogen generation reaction and the metal oxidation reaction is accelerated at the above temperature, and at a temperature exceeding 80° C., the rate of carbon dioxide dissolution reaction is slowed down, and the amount of dissolution is small, so performance decreases.
  • the secondary battery 100 includes a cathode unit 110, an anode unit 150, a connection unit 190 connecting the cathode unit 110 and the anode unit 150, and a carbon dioxide processing unit 120 ), the carbon dioxide circulation supply unit 130, and the cathode 110 and the carbon dioxide processing unit 120, the communication pipe 140 for communicating.
  • the cathode unit 110, the anode unit 150, and the connection unit 190 are the same as those described in the embodiment illustrated in FIG. 1, so a detailed description thereof will be omitted.
  • the secondary battery 100 of the configuration shown in FIG. 6 also preferably exhibits excellent performance at a temperature range of 60° C. to 80° C., more preferably 70° C., as described through FIGS. 2 to 5. Is done.
  • the carbon dioxide processing unit 120 includes a storage container 120a that provides a storage space 121 therein, and a first that is accommodated in the storage space 121 and is the same electrolyte solution as the first electrolyte solution 115 of the cathode 110.
  • An electrolyte 115 is provided.
  • the receiving container 120a is located at the upper portion of the receiving space 121, the second inlet 122 through which carbon dioxide gas flows into the receiving space 121, the communication port 123 to which the connecting pipe 140 is connected, and the receiving space 121.
  • the second outlet 124 is formed.
  • the second inlet 122 is positioned above the communication port 123 in the accommodation space 121, and is located below the water surface of the second outlet 124 and the first electrolyte 115. Carbon dioxide gas used as a raw material in the discharge process is introduced into the receiving space 121 through the second inlet 122.
  • the first electrolyte 115 may also be supplied as needed through the second inlet 122.
  • the second inlet 122 and the first outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
  • the communication port 123 is located below the second inlet port 122 in the accommodation space 121, and a connection pipe 140 is connected to the communication port 123.
  • the accommodation space 121 communicates with the first reaction space 111 through the communication port 123.
  • the second outlet 124 is positioned above the water surface of the second inlet 122 and the first electrolyte 115 in the accommodation space 121. Carbon dioxide gas that is not ionized because it is not dissolved in the first electrolyte 115 in the accommodation space 121 is discharged to the outside through the second outlet 124. The carbon dioxide gas discharged through the second outlet 124 is supplied to the second inlet 122 through the carbon dioxide circulation supply unit 130.
  • the carbon dioxide circulation supply unit 130 recirculates the carbon dioxide gas discharged through the second outlet 224 to the second inlet 122 to re-supply it.
  • the connector 140 connects the first inlet port 112 of the first reaction space 111 and the communication port 123 of the receiving space 121.
  • the first reaction space 111 and the accommodation space 121 communicate with each other through a connection passage 141 formed inside the connection pipe 140.
  • Carbon dioxide gas that is not ionized because it is not dissolved in the first electrolyte 115 among the carbon dioxide introduced into the accommodation space 121 of the carbon dioxide processing unit 120 through the second inlet 122 is the first reaction space of the cathode 110
  • the carbon dioxide gas discharged through the second outlet 124 and discharged through the second outlet 124 after being collected in the space above the water surface of the first electrolyte 115 in the accommodation space 121 without being able to move to (111) Is supplied to the receiving space 121 through the second inlet 122 by the carbon dioxide circulation supply unit 130 is recycled.
  • carbon dioxide gas that is not ionized because it is not dissolved in the first electrolyte 115 among the carbon dioxide introduced into the accommodation space 121 of the carbon dioxide processing unit 120 does not move to the first reaction space 111 of the cathode 110. Since it is not possible, high-purity hydrogen in which carbon dioxide is not mixed may be discharged through the first outlet 113.
  • the secondary battery 100 includes a cathode unit 110, an anode unit 150, and a connection unit 190 connecting the cathode unit 110 and the anode unit 150.
  • the secondary battery 100 of the configuration shown in FIG. 7 also preferably exhibits excellent performance at a temperature range of 60° C. to 80° C., more preferably at a temperature of 70° C., as described through FIGS. 2 to 5. do.
  • the cathode 110 includes a first reaction vessel 110a that provides a first reaction space 111 therein, a first electrolyte 115 contained in the first reaction space 111, and a first electrolyte 115 ) Is provided with a cathode (118) at least partially submerged.
  • a first electrolyte solution 115 an aqueous potassium hydroxide solution (in this embodiment, an elution of CO 2 in a strong basic solution of 1M KOH is used) is used. Since the configuration of the first reaction vessel 110a and the cathode 118 is the same as the corresponding configuration in the embodiment illustrated in FIG. 1, detailed description thereof will be omitted.
  • the anode unit 150 includes a second reaction container 150a providing a second reaction space 151 therein, a second electrolyte solution 155 contained in the second reaction space 151, and a second electrolyte solution 155 ) Is provided with an anode 158 in which at least a part is locked.
  • a second electrolyte solution 155 an aqueous potassium hydroxide solution is described, and for example, 1M KOH or 6M KOH may be used. Since the configuration of the second reaction vessel 150a and the anode 158 is the same as the corresponding configuration in the embodiment illustrated in FIG. 1, detailed description thereof will be omitted.
  • connection part 190 includes a connection passage 191 connecting the cathode part 110 and the anode part 150, and an ion exchange membrane 292 installed inside the connection passage 191.
  • connection passage 191 has the same configuration as the connection passage 191 illustrated in FIG. 1, and an ion exchange membrane 192 is installed inside the connection passage 191.
  • the ion exchange membrane 192 is installed in a form that blocks the inside of the connection passage 191.
  • the ion exchange membrane 192 allows only the movement of ions between the cathode portion 110 and the anode portion 150.
  • the potassium ion (K + ) contained in the second electrolyte solution 155 is moved to the first electrolyte solution 115 by the ion exchange membrane 192.
  • a fluorine resin-based cation exchange membrane developed by DuPont, USA is used to describe that Nafion is used, but the present technology is not limited thereto, and potassium ion ( Anything that allows only the movement of K + ) is possible.
  • the ion exchange membrane 192 eliminates ion imbalance generated in the discharge process by transferring only ions.
  • the secondary battery 100 includes a cathode unit 110, an anode unit 150, a connection unit 190 connecting the cathode unit 110 and the anode unit 150, and a carbon dioxide processing unit 120 ), the carbon dioxide circulation supply unit 130, and the cathode 110 and the carbon dioxide processing unit 120, the communication pipe 140 for communicating.
  • the cathode unit 110, the anode unit 150, and the connection unit 190 are the same as those described in the embodiment shown in FIG. 7, and the carbon dioxide processing unit 120, the carbon dioxide circulation supply unit 130, and the connection pipe 140 are Since it is the same as the corresponding configuration shown in FIG.
  • the secondary battery 100 of the configuration shown in FIG. 8 also preferably exhibits excellent performance at a temperature range of 60° C. to 80° C., more preferably 70° C., as described through FIGS. 2 to 5. do.
  • the configuration of reference numerals not described in FIG. 8 is the same as the configuration indicated by the same reference numerals in the embodiment illustrated in FIG. 6.
  • the secondary battery 100 includes a cathode unit 110, an anode unit 150, a connection unit 190 connecting the cathode unit 110 and the anode unit 150.
  • the cathode unit 110 and the anode unit 250 are the same as the corresponding components of the embodiment illustrated in FIG. 7, so a detailed description thereof will be omitted.
  • the secondary battery 100 of the configuration shown in FIG. 9 also preferably exhibits excellent performance at a temperature range of 60° C. to 80° C., more preferably at a temperature of 70° C., as described through FIGS. 2 to 5. do.
  • connection part 190 includes a connection passage 191 connecting the cathode part 110 and the anode part 150 and an ion exchange membrane 192 installed inside the connection passage 191.
  • connection passage 191 is the same as the connection passage 191 of the embodiment shown in FIG. 7, and an ion exchange membrane 192 is installed inside the connection passage 191.
  • the ion exchange membrane 192 is installed in a form that blocks the inside of the connection passage 191.
  • the ion exchange membrane 192 allows only the movement of ions between the cathode portion 110 and the anode portion 150.
  • the hydroxide ions contained in the first electrolyte solution (115) (OH -) is moved in the second electrolyte 155.
  • a fluorine resin-based cation exchange membrane Nafion developed by DuPont of the United States is used, but the present technology is not limited thereto, and hydroxide ions ( all as long as it is possible that only) movement of the - OH.
  • Hydroxide ions by an ion exchange membrane (192) (OH -) is written doemeu delivered from the cathode 110 to the anode 150, thereby eliminating the ion imbalance caused in the discharge process.
  • the secondary battery 100 includes a cathode unit 110, an anode unit 150, a connection unit 190 connecting the cathode unit 110 and the anode unit 150, and a carbon dioxide processing unit 120 ), the carbon dioxide circulation supply unit 130, and the cathode 110 and the carbon dioxide processing unit 120, the communication pipe 140 for communicating.
  • the cathode unit 110, the anode unit 150, and the connection unit 190 are the same as those described in the embodiment shown in FIG. 9, and the carbon dioxide processing unit 120, the carbon dioxide circulation supply unit 130, and the connection pipe 140 are Since it is the same as the corresponding configuration shown in FIG.
  • the secondary battery 100 of the configuration shown in FIG. 10 also preferably exhibits excellent performance at a temperature range of 60° C. to 80° C., more preferably 70° C., as described through FIGS. 2 to 5. do.
  • the configuration of reference numerals not described in FIG. 10 is the same as the configuration indicated by the same reference numerals in the embodiment illustrated in FIG. 8.
  • a salt bridge connecting the first electrolyte 115 and the second electrolyte 155 may be used instead of the connecting portion 190, which is also within the scope of the present technology. Belong.
  • a salt bridge an internal solution of a salt bridge that is commonly used, such as potassium chloride (KCl) or sodium chloride (NaCl), may be used as the internal solution of the salt bridge.
  • KCl potassium chloride
  • NaCl sodium chloride
  • HCO 3 ⁇ bicarbonate ions
  • sodium ions are diffused from the salt bridge and exist as ions in the form of an aqueous sodium hydrogen carbonate (NaHCO 3 ) solution.
  • NaHCO 3 aqueous sodium hydrogen carbonate
  • the secondary battery 100 includes a reaction vessel 210 providing a reaction space 211 therein, an electrolyte 215 serving as an aqueous electrolyte contained in the reaction space 211, and a reaction space 211.
  • the cathode 118 is immersed in the electrolyte 215, and the anode 158 is immersed in the electrolyte 215 in the reaction space 211.
  • the secondary battery 100 uses the carbon dioxide gas (CO 2 ), which is a greenhouse gas, as a raw material in the discharge process to produce hydrogen (H 2 ), which is an eco-friendly fuel.
  • CO 2 carbon dioxide gas
  • H 2 hydrogen
  • the reaction vessel 210 provides a reaction space 211 in which the electrolyte 215 is contained and the cathode 118 and the anode 158 are accommodated.
  • a first inlet 212 and a first outlet 213 in communication with the reaction space 211 are formed in the reaction vessel 210.
  • the first inlet 212 is positioned below the reaction space 211 to be positioned below the water surface of the electrolyte 215.
  • the first outlet 213 is positioned above the reaction space 211 so as to be positioned above the water surface of the electrolyte 215.
  • Carbon dioxide gas used as a raw material in the discharge process is introduced into the reaction space 211 through the first inlet 212, and an electrolyte 215 may also be introduced if necessary.
  • Gas generated in the process of charging and discharging is discharged to the outside through the first outlet 213.
  • the first inlet 212 and the first outlet 213 may be selectively opened and closed in a timely manner by a valve or the like during charging and discharging.
  • carbon dioxide elution reaction occurs in the discharge process.
  • a basic solution or seawater is used as the electrolyte 115.
  • the electrolytic solution 215 becomes weakly acidic by the carbon dioxide gas flowing through the first inlet 212 during the discharge process.
  • the cathode 118 is at least partially immersed in the electrolyte 215 in the reaction space 211.
  • the cathode 118 is positioned relatively closer to the first inlet 212 than the anode 158 in the reaction space 211.
  • the cathode 118 is an electrode for forming an electrical circuit, and may be carbon paper, carbon fiber, carbon felt, carbon cloth, metal foam, metal thin film, or a combination thereof, and a platinum catalyst may also be used.
  • HER hydrogen generation reaction
  • a reduction reaction occurs at the cathode 118, and hydrogen is generated accordingly.
  • the anode 158 is at least partially immersed in the electrolyte 215 in the reaction space 211.
  • the anode 158 is located relatively far from the first inlet 212 in the reaction space 211 than the cathode 118.
  • the anode 158 is an electrode of a metal material constituting an electrical circuit, and in this embodiment, as the anode 158, vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel It is explained that (Ni), copper (Cu), aluminum (Al) or zinc (Zn) is used.
  • an oxidation reaction occurs in the anode 158 according to the weakly acidic environment.
  • the secondary battery 100 of the configuration shown in FIG. 11 also preferably exhibits excellent performance at a temperature range of 60° C. to 80° C., more preferably 70° C., as described through FIGS. 2 to 5. Is done.
  • FIG. 11 shows the discharge process of the secondary battery 100 together.
  • carbon dioxide gas is injected into the electrolyte solution 215 through the first inlet 212 during discharge, and a chemical elution reaction of carbon dioxide as in [Reaction Scheme 1] is performed in the reaction space 211. That is, carbon dioxide (CO 2 ) supplied to the reaction space 211 generates hydrogen cations (H + ) and bicarbonate (HCO 3 ⁇ ) through spontaneous chemical reactions with water (H 2 O) of the electrolyte 215.
  • an electrical reaction such as [Scheme 2] is performed at the cathode 118. That is, hydrogen cations (H + ) in the vicinity of the cathode 118 receive electrons (e ⁇ ) from the cathode 118 to generate hydrogen (H 2 ) gas. The generated hydrogen (H 2 ) gas is discharged to the outside through the first outlet 213.
  • the secondary battery 100 includes a reaction vessel 210 that provides a reaction space 211 therein, an electrolyte solution 215 contained in the reaction space 211, and an electrolyte solution in the reaction space 211 ( Cathode 118 at least partially immersed in 215, anode 158 at least partially immersed in electrolyte 215 in reaction space 211, carbon dioxide processing unit 120, and carbon dioxide circulation supply unit 130, and a connection pipe 140 for connecting the reaction vessel 210 and the carbon dioxide treatment unit 120.
  • the reaction vessel 210, the electrolyte 215, the cathode 118, and the anode 158 are the same as each of the corresponding configurations described in the embodiment shown in FIG. 11, and the carbon dioxide processing unit 120, the carbon dioxide circulation supply unit ( 130) and the connector 140 is the same as each of the corresponding components shown in FIG. 6, so a detailed description thereof will be omitted.
  • the secondary battery 100 of the configuration shown in FIG. 12 also preferably exhibits excellent performance at a temperature range of 60° C. to 80° C., more preferably 70° C., as described through FIGS. 2 to 5. Is done.
  • the secondary battery 100 includes a cathode unit 110, an anode unit 150, an electrolyte circulation unit 180 connected to the anode unit 150, a cathode unit 110, and an anode unit It includes a connecting portion 190 for connecting the (150).
  • the secondary battery 100 uses the carbon dioxide gas (CO 2 ), which is a greenhouse gas, as a raw material in the discharge process to produce hydrogen (H 2 ), which is an eco-friendly fuel.
  • CO 2 carbon dioxide gas
  • the cathode unit 110, the anode unit 150, and the connection unit 190 are the same as the corresponding components in the embodiment illustrated in FIG. 1, so a detailed description thereof will be omitted.
  • the anode 158 is formed with a first through hole 1581 and a second through hole 1582 passing through the anode 158.
  • the first electrolyte 155 supplied from the electrolyte circulation unit 180 flows into the second reaction space 151 through the first through hole 1561, and the second reaction through the second through hole 1582.
  • the second electrolyte 155 in the space 151 is discharged to the electrolyte circulation unit 180.
  • a second connector 154 communicating with the second reaction space 151 is formed in the anode unit 150.
  • the electrolyte circulating portion 180 circulates the second electrolyte 155 used in the anode portion 150.
  • the electrolyte circulation unit 180 includes an electrolyte storage container 182 and an electrolyte storage space 181 that provide an electrolyte storage space 181 in which the second electrolyte 155 used in the anode 150 is stored.
  • the first circulation pipe 184 and the second circulation pipe 185 communicating with the second reaction space 151 of the anode 150 and the electrolyte storage space 181 and the second reaction space 151 are removed.
  • 2 is provided with a circulation pump 188 for flowing the second electrolyte 155 so that the electrolyte 155 circulates.
  • the electrolyte storage container 182 provides an electrolyte storage space 181 therein, and a second electrolyte 155 used in the anode unit 150 is stored in the electrolyte storage space 181.
  • the electrolyte storage space 181 communicates with the second reaction space 151 of the anode unit 150 through the first circulation pipe 184 and the second circulation pipe 185.
  • the second electrolyte 155 stored in the electrolyte storage space 181 is supplied to the second reaction space 151 through the first circulation tube 184.
  • the second electrolyte 155 stored in the second reaction space 151 flows through the second circulation pipe 185 into the electrolyte storage space 181.
  • the first circulation pipe 184 communicates the electrolyte storage space 181 and the second reaction space 151.
  • the second electrolyte 155 stored in the electrolyte storage container 182 flows through the first circulation pipe 184 to the second reaction space 151.
  • the first circulation pipe 184 is directly connected to the first through hole 1581 formed in the anode 158 in the second reaction space 151. Accordingly, the second electrolyte 155 flowing through the first circulation pipe 184 from the electrolyte storage space 181 is discharged to the second reaction space 151 through the first through hole 1581.
  • the second circulation pipe 185 communicates the electrolyte storage space 181 and the second reaction space 151.
  • the second electrolyte 155 stored in the second reaction space 151 flows through the second circulation pipe 185 to the electrolyte storage container 182.
  • the second circulation pipe 185 is directly connected to the second through hole 1582 formed in the anode 158 in the second reaction space 151. Accordingly, the second electrolyte solution 155 of the second reaction space 151 flows through the second through hole 1582 of the anode 158 and the second circulation tube 185 in sequence to the electrolyte storage container 182. do.
  • the circulation pump 188 flows the second electrolyte 155 such that the second electrolyte 155 circulates between the electrolyte storage space 181 and the second reaction space 151.
  • the circulation pump 188 is described as being installed in the first circulation pipe 184.
  • the second circulation pipe 185 may be installed at another suitable location, which is also within the scope of the present technology. Belong.
  • the combined power generation system 1000 includes a secondary battery 100 that generates hydrogen gas (H 2 ) using carbon dioxide gas (CO 2 ) as a raw material during a discharge process, A reformer 400 for producing hydrogen-rich reformed gas from hydrogen-containing fuel and additionally generating carbon dioxide gas (CO 2 ), a fuel cell 300 for producing electricity using hydrogen and oxygen, and a reformer 400 ) Produced by the carbon dioxide supply unit 500 for supplying the carbon dioxide gas generated in the secondary battery 100, the hydrogen supply unit 600 for supplying hydrogen gas generated in the secondary battery 100 to the fuel cell, and the reformer 400 It includes a reforming gas supply unit 700 for supplying the reformed gas to the fuel cell 300.
  • H 2 hydrogen gas
  • CO 2 carbon dioxide gas
  • CO 2 carbon dioxide gas
  • a fuel cell 300 for producing electricity using hydrogen and oxygen
  • a reformer 400 Produced by the carbon dioxide supply unit 500 for supplying the carbon dioxide gas generated in the secondary battery 100, the hydrogen supply unit 600 for supplying hydrogen gas generated in the secondary battery 100 to the fuel cell, and
  • the secondary battery 100 is a secondary battery 100 previously described with reference to FIG. 1, and uses carbon dioxide gas as a raw material in the discharge process and generates hydrogen gas as described in detail with reference to FIG. 1.
  • the carbon dioxide gas supplied to the secondary battery 100 is carbon dioxide gas generated from the reformer 400 and supplied through the carbon dioxide supply unit 500.
  • the hydrogen gas generated in the secondary battery 100 is supplied to the fuel cell 300 by the hydrogen supply unit 600.
  • the secondary battery 100 illustrated in FIG. 1 is described as being used in a combined power generation system, but unlike this, the secondary batteries of the embodiments illustrated in FIGS. 6 to 13 may be used, which is also the scope of the present technology. It belongs to.
  • the reformer 400 produces hydrogen-rich reformed gas from the hydrogen-containing fuel and additionally generates carbon dioxide gas.
  • the reformer 400 is described as a methane-steam reformer that produces hydrogen (H 2 ) by a reforming reaction of methane (CH 4 ) and water vapor (H 2 O).
  • the methane-steam reformer 400 occupies a considerable portion of the hydrogen production process because of the advantages of low process cost and mass production.
  • the following [Scheme 8] relates to the reforming reaction of the methane-steam reformer 400.
  • hydrogen produced in the methane-steam reformer 400 is supplied to the fuel, such as the fuel cell 300, by the reforming gas supply unit 700.
  • the methane-steam reformer 400 has many of the above-mentioned advantages, but as can be seen from [Scheme 8], it is necessary to supply water vapor from the outside for the operation of the process, and global warming as a by-product of hydrogen production. There is a problem that carbon dioxide, which is a main cause of environmental problems, is forced to be generated.
  • carbon dioxide generated from the methane-steam reformer 400 is discharged into the atmosphere or transferred to a separate carbon dioxide capture and storage process, instead of being supplied to the carbon dioxide supply unit 500 for the discharge reaction of the secondary battery 100
  • a system for linking the secondary battery 100 and the methane-steam reformer 400 can be solved as well as solving the problem of generating carbon dioxide, which is a necessary evil in the operation of the methane-steam reformer 400.
  • duplicate process can be omitted. Since the methane-steam reformer 400 is a known technique, detailed description thereof is omitted here.
  • the fuel cell 300 water is generated by a chemical reaction between hydrogen and oxygen, and electric energy is generated.
  • the fuel cell 300 has many advantages in terms of eco-friendliness, but must be supplied with hydrogen extracted from the methane-steam reformer 400 and the like.
  • the fuel cell 300 is constructed as one system with the secondary battery 100, so that hydrogen gas generated in the process of discharging the secondary battery 100 is supplied, so that efficiency can be significantly improved. .
  • the carbon dioxide supply unit 500 supplies carbon dioxide gas generated as a by-product in the reformer 400 to the secondary battery 100.
  • the hydrogen supply unit 600 supplies hydrogen gas generated as a by-product in the discharge process of the secondary battery 100 as fuel of the fuel cell 300.
  • the reforming gas supply unit 700 supplies the reformed gas produced by the reformer 400 as fuel of the fuel cell 300.
  • 15 to 21 show configurations for each of the secondary batteries that can be used in the system of FIG. 21 in place of the secondary battery 100 of the embodiment shown in FIG. 13.
  • the secondary battery 100 includes a cathode unit 110, an anode unit 150, an electrolyte circulation unit 180 connected to the anode unit 150, a cathode unit 110, and an anode unit It includes a connecting portion 190 for connecting the 150, the carbon dioxide processing unit 120, the carbon dioxide circulation supply unit 130, the cathode 110 and the connection pipe 140 for communicating the carbon dioxide processing unit 120.
  • the cathode unit 110, the anode unit 150, the electrolyte circulation unit 180, and the connection unit 190 are the same as those described in the embodiment illustrated in FIG. 13, and thus detailed description thereof will be omitted.
  • the carbon dioxide processing unit 120 is made of a storage container 120a that provides a storage space 121 therein, and an agent that is accommodated in the storage space 121 and is the same as the first electrolyte solution 115 of the cathode 110. 1
  • the electrolyte 115 is provided.
  • the receiving container 120a is located at the upper portion of the receiving space 121, the second inlet 122 through which carbon dioxide gas flows into the receiving space 121, the communication port 123 to which the connecting pipe 140 is connected, and the receiving space 121.
  • the second outlet 124 is formed.
  • the second inlet 122 is positioned above the communication port 123 in the accommodation space 121, and is located below the water surface of the second outlet 124 and the first electrolyte 115. Carbon dioxide gas used as a raw material in the discharge process is introduced into the receiving space 121 through the second inlet 122.
  • the first electrolyte 115 may also be supplied as needed through the second inlet 122.
  • the second inlet 122 and the first outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
  • the communication port 123 is located below the second inlet port 122 in the accommodation space 121, and a connection pipe 140 is connected to the communication port 123.
  • the accommodation space 121 communicates with the first reaction space 111 through the communication port 123.
  • the second outlet 124 is positioned above the water surface of the second inlet 122 and the first electrolyte 115 in the accommodation space 121. Carbon dioxide gas that is not ionized because it is not dissolved in the first electrolytic solution 115 in the receiving space 121 is discharged to the outside through the second outlet 124. The carbon dioxide gas discharged through the second outlet 124 is supplied to the second inlet 122 through the carbon dioxide circulation supply unit 130.
  • the carbon dioxide circulation supply unit 130 recirculates the carbon dioxide gas discharged through the second outlet 224 to the second inlet 122 to re-supply it.
  • the connector 140 connects the first inlet port 112 of the first reaction space 111 and the communication port 123 of the receiving space 121.
  • the first reaction space 111 and the accommodation space 121 communicate with each other through a connection passage 141 formed inside the connection pipe 140.
  • Carbon dioxide gas that is not ionized because it is not dissolved in the first electrolyte 115 among the carbon dioxide introduced into the accommodation space 121 of the carbon dioxide processing unit 120 through the second inlet 122 is the first reaction space of the cathode 110
  • the carbon dioxide gas discharged through the second outlet 124 and discharged through the second outlet 124 after being collected in the space above the water surface of the first electrolyte 115 in the accommodation space 121 without being able to move to (111) Is supplied to the receiving space 121 through the second inlet 122 by the carbon dioxide circulation supply unit 130 is recycled.
  • carbon dioxide gas that is not ionized because it is not dissolved in the first electrolyte 115 among the carbon dioxide introduced into the accommodation space 121 of the carbon dioxide processing unit 120 does not move to the first reaction space 111 of the cathode 110. Since it is not possible, high-purity hydrogen in which carbon dioxide is not mixed may be discharged through the first outlet 113.
  • the secondary battery 300 includes a cathode unit 210, an anode unit 250, an electrolyte circulating unit 180 connected to the anode unit 250, a cathode unit 210, and an anode unit ( 250) includes a connecting portion 290 for connecting.
  • the cathode unit 210 includes a first reaction vessel 110a providing a first reaction space 111 therein, a first electrolyte solution 215 contained in the first reaction space 111, and a first electrolyte solution 215.
  • a first electrolyte solution 215. Is provided with a cathode (118) at least partially submerged.
  • an aqueous potassium hydroxide solution in this embodiment, an elution of CO 2 in a strong basic solution of 1M KOH is used
  • the configuration of the first reaction vessel 110a and the cathode 118 is the same as the corresponding configuration in the embodiment illustrated in FIG. 13, detailed description thereof will be omitted.
  • the anode unit 150 includes a second reaction container 150a providing a second reaction space 151 therein, a second electrolyte solution 155 contained in the second reaction space 151, and a second electrolyte solution 155 ) Is provided with an anode 158 in which at least a part is locked.
  • a second electrolyte solution 155 an aqueous potassium hydroxide solution is described, and for example, 1M KOH or 6M KOH may be used. Since the configuration of the second reaction vessel 150a and the anode 158 is the same as the corresponding configuration in the embodiment illustrated in FIG. 13, detailed description thereof will be omitted.
  • electrolyte circulating portion 180 is the same as the electrolyte circulating portion 180 illustrated in FIG. 13, detailed description thereof will be omitted.
  • connection part 290 includes a connection passage 191 connecting the cathode part 110 and the anode part 150, and an ion exchange membrane 192 installed inside the connection passage 191.
  • connection passage 191 has the same configuration as the connection passage 191 shown in FIG. 13, and an ion exchange membrane 192 is installed inside the connection passage 191.
  • the ion exchange membrane 192 is installed in a form that blocks the inside of the connection passage 191.
  • the ion exchange membrane 192 allows only the movement of ions between the cathode portion 110 and the anode portion 150.
  • the potassium ion (K + ) contained in the second electrolyte solution 155 is moved to the first electrolyte solution 115 by the ion exchange membrane 192.
  • a fluorine resin-based cation exchange membrane developed by DuPont, USA is used to describe that Nafion is used, but the present technology is not limited thereto, and potassium ion ( Anything that allows only the movement of K + ) is possible.
  • the ion exchange membrane 192 eliminates ion imbalance generated in the discharge process by transferring only ions.
  • the secondary battery 100 includes a cathode unit 110, an anode unit 150, an electrolyte circulating unit 180 connected to the anode unit 150, a cathode unit 110, and an anode unit It includes a connecting portion 190 for connecting the 150, the carbon dioxide processing unit 120, the carbon dioxide circulation supply unit 130, the cathode 110 and the connection pipe 140 for communicating the carbon dioxide processing unit 120.
  • the cathode unit 110, the anode unit 150, the electrolyte circulation unit 180, and the connection unit 190 are the same as described in the embodiment illustrated in FIG. 16, and the carbon dioxide processing unit 120 and the carbon dioxide circulation supply unit 130 And the connector 140 is the same as the corresponding configuration shown in Figure 15, a detailed description thereof will be omitted.
  • the secondary battery 100 includes a cathode unit 110, an anode unit 150, an electrolyte circulation unit 180 connected to the anode unit 150, a cathode unit 110, and an anode unit It includes a connecting portion 190 for connecting the (150).
  • the cathode unit 110, the anode unit 150, and the electrolyte circulation unit 180 are the same as the corresponding configurations of the embodiment illustrated in FIG. 16, and thus detailed descriptions thereof will be omitted.
  • connection part 190 includes a connection passage 191 connecting the cathode part 110 and the anode part 150 and an ion exchange membrane 192 installed inside the connection passage 191.
  • connection passage 191 is the same as the connection passage 191 of the embodiment shown in FIG. 16, and an ion exchange membrane 192 is installed inside the connection passage 191.
  • the ion exchange membrane 192 is installed in a form that blocks the inside of the connection passage 191.
  • the ion exchange membrane 192 allows only the movement of ions between the cathode portion 110 and the anode portion 150.
  • the hydroxide ions contained in the first electrolyte solution (115) (OH -) is moved in the second electrolyte 155.
  • a fluorine resin-based cation exchange membrane Nafion developed by DuPont of the United States is used, but the present technology is not limited thereto, and hydroxide ions ( all as long as it is possible that only) movement of the - OH.
  • Hydroxide ions by an ion exchange membrane (192) (OH -) is written doemeu delivered from the cathode 110 to the anode 150, thereby eliminating the ion imbalance caused in the discharge process.
  • the secondary battery 100 includes a cathode unit 110, an anode unit 150, an electrolyte circulating unit 180 connected to the anode unit 150, a cathode unit 110, and an anode unit It includes a connecting portion 190 for connecting the 150, the carbon dioxide processing unit 120, the carbon dioxide circulation supply unit 130, the cathode 110 and the connection pipe 140 for communicating the carbon dioxide processing unit 120.
  • the cathode unit 110, the anode unit 150, the electrolyte circulation unit 180, and the connection unit 190 are the same as described in the embodiment illustrated in FIG. 18, and the carbon dioxide processing unit 120 and the carbon dioxide circulation supply unit 130 And the connector 140 is the same as the corresponding configuration shown in Figure 16, detailed description thereof will be omitted.
  • a salt bridge connecting the first electrolyte 115 and the second electrolyte 155 may be used instead of the connecting portion 190, which is also within the scope of the present technology. Belong.
  • a salt bridge an internal solution of a salt bridge that is commonly used, such as potassium chloride (KCl) or sodium chloride (NaCl), may be used as the internal solution of the salt bridge.
  • KCl potassium chloride
  • NaCl sodium chloride
  • HCO 3 ⁇ bicarbonate ions
  • sodium ions are diffused from the salt bridge and exist as ions in the form of an aqueous sodium hydrogen carbonate (NaHCO 3 ) solution.
  • NaHCO 3 aqueous sodium hydrogen carbonate
  • the metal recovery part 800 includes the same aqueous solution as the second electrolyte solution 155 of the anode part 150 or the aqueous solution 215 of the reaction space 211.
  • the metal recovery part 800 is a supply part 810 that receives the second electrolyte solution 155 used as the anode part 150 or the aqueous solution 215 used in the reaction space 211, and the supplied aqueous solution 155 or 215.
  • the supply unit 810 supplies an aqueous solution 155 or 215 in which metal ions are dissolved from the secondary battery 100 to the metal recovery unit 800.
  • the supply unit 810 may be selectively opened and closed at a suitable time by a valve or the like as necessary.
  • the second cathode 820 is at least partially submerged in the aqueous solution 155 or 215 accommodated in the recovery space 850, and is made of the same material as the anode 158.
  • the anode 158 of the secondary battery 100 is zinc (Zn)
  • Zn(OH) 4 2- is present in the supplied aqueous solution (155 or 215).
  • a reduction reaction such as the following [Reaction Scheme 9] may be performed.
  • the metal ions dissolved in the aqueous solution (155 or 215) supplied from the secondary battery 100 receive electrons from the second cathode 820 to become a metal. Can be reduced.
  • the second anode 830 is at least partially submerged in an aqueous solution accommodated in the recovery space 850, and is an electrode for forming an electrical circuit.
  • the material of the second anode 830 may be carbon paper, carbon fiber, carbon felt, carbon cloth, metal foam, metal thin film, or a combination thereof, and a platinum catalyst may also be used.
  • a platinum catalyst may also be used.
  • all other catalysts that can be generally used as an oxygen generating reaction (HER) catalyst such as a carbon-based catalyst, a carbon-metal-based composite catalyst, and a perovskite oxide catalyst, are also included.
  • the power supply unit 840 is electrically connected to the second cathode 820 and the second anode 830 to provide electricity.
  • the negative electrode of the power supply unit 840 is electrically connected to the second cathode 820 of the metal recovery unit 800, and the positive electrode of the power supply unit 840 is electrically connected to the second anode 830 of the metal recovery unit 800.
  • the power supply unit 840 is not limited thereto, and renewable energy such as solar cells and wind power generation may be used as well as general cells and generators.
  • the secondary battery of the present technology includes a cathode and a metal anode immersed in an electrolyte, which is an aqueous electrolyte, and the maximum current of the electrolyte in the secondary battery generating hydrogen gas by introducing carbon dioxide gas into the electrolyte during the discharge process is about twice the maximum current than room temperature.
  • the second electrolytic solution accommodated in the second reaction space is circulated by the electrolyte circulating portion, thereby slowing corrosion of the anode metal in the second reaction space, and washing the metal oxide which has been corroded and accumulated on the surface of the anode metal, thereby discharging capacity Can be greatly increased.
  • a metal recovery unit it is possible to recover the metal consumed in the secondary battery and remain in ionic form again with high purity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

Provided is, according to the present technology, a secondary battery capable of charging and discharging, comprising: a cathode unit including a first electrolyte which is an aqueous electrolyte accommodated in a first reaction space, and a cathode which is at least partially submerged in the first electrolyte; and an anode unit including a second electrolyte which is an aqueous electrolyte accommodated in a second reaction space, and an anode which is at least partially submerged in the second electrolyte, wherein carbon dioxide gas is introduced into the first electrolyte, and hydrogen ions and bicarbonate ions are generated by a reaction between water of the first electrolyte with the carbon dioxide gas , and the hydrogen ions and the electrons of the cathode are combined to generate hydrogen gas.

Description

이산화탄소를 이용하여 수소를 생산하는 이차전지 및 이를 구비하는 복합 발전 시스템Secondary battery for producing hydrogen using carbon dioxide and complex power generation system having the same
본 기술은 이차전지에 관한 것으로서, 더욱 상세하게는 이산화탄소를 이용하는 이차전지 및 이를 구비하는 복합 발전 시스템을 제공하는 것이다.The present technology relates to a secondary battery, and more particularly, to provide a secondary battery using carbon dioxide and a combined power generation system having the same.
최근 산업화와 더불어 온실가스의 배출이 지속적으로 증가하고 있으며, 온실가스 중 이산화탄소가 가장 큰 비중을 차지하고 있다. 산업 유형별 이산화탄소 배출량은 발전소 등 에너지 공급원에서 가장 많고, 발전을 포함한 시멘트/철강/정제 산업 등에서 발생되는 이산화탄소가 전 세계 발생량의 절반을 차지하고 있다. 이산화탄소 전환/활용 분야는 크게 화학적 전환, 생물학적 전환, 직접 활용으로 구분할 수 있으며, 기술적 범주로는 촉매, 전기화학, 바이오공정, 광활용, 무기(탄산)화, 폴리머 등으로 구분지을 수 있다. 이산화탄소는 다양한 산업 및 공정에서 발생되고, 하나의 기술로 이산화탄소 저감을 달성할 수 없기 때문에 이산화탄소 저감을 위한 다양한 접근 방식이 필요하다.With the recent industrialization, greenhouse gas emissions are continuously increasing, and carbon dioxide accounts for the largest share of greenhouse gases. Carbon dioxide emissions by industry type are highest in energy sources such as power plants, and carbon dioxide generated in the cement/steel/refining industry including power generation accounts for half of the world's emissions. The CO2 conversion/utilization field can be largely divided into chemical conversion, biological conversion, and direct utilization, and the technical categories can be categorized into catalyst, electrochemistry, bioprocess, light utilization, inorganic (carbonation), and polymer. Carbon dioxide is generated in various industries and processes, and various approaches for carbon dioxide reduction are required because carbon dioxide reduction cannot be achieved with one technology.
현재 미국 에너지성 DOE(Department Of Energy)는 이산화탄소를 저감하기 위한 기술로 CCS(Carbon Capture & Storage)와 CCU (CC & Utilization)이 복합된 CCUS 기술에 관심을 두고 다각적 기술 개발을 추진 중이다. CCUS 기술은 효과적인 온실가스 감축 방안으로 인정받고 있으나, 고 투자 비용, 유해 포집제의 대기 방출 가능성, 낮은 기술 성숙도의 문제에 직면하고 있다. 또한, 에너지 및 기후 정책적 관점에서 CCUS는 온실가스 배출량을 실질적으로 감축하는 수단을 제공하지만 기술의 실현에 는 보완 사항이 많다. 따라서, 보다 효율적으로 이산화탄소 포집, 저장 및 활용하는 새로운 개념의 한계돌파형(breakthrough) 기술 개발이 요구되고 있다.Currently, the United States Department of Energy's Department of Energy (DOE) is a technology to reduce carbon dioxide and is focusing on CCUS technology, which is a combination of CCS (Carbon Capture & Storage) and CCU (CC & Utilization). CCUS technology is recognized as an effective method to reduce GHG emissions, but faces the problems of high investment cost, the possibility of releasing harmful capture agents into the atmosphere, and low technology maturity. In addition, from an energy and climate policy perspective, CCUS provides a means to substantially reduce greenhouse gas emissions, but there are many complements to the realization of technology. Accordingly, there is a need to develop a new concept of breakthrough technology that more efficiently captures, stores, and utilizes carbon dioxide.
본 기술의 기술분야와 관련된 선행 특허문헌으로서, 공개특허공보 제10-2015-0091834호에는 나트륨 함유 용액 및 나트륨 함유 용액에 함침된 캐소드를 포함하는 액상의 캐소드부; 액상의 유기 전해질, 상기 액상의 유기 전해질에 함침된 애노드 및 상기 애노드 표면에 위치하는 음극 활물질을 포함하는 애노드부; 및 상기 캐소드부와 상기 음극부 사이에 위치하는 고체 전해질; 및 상기 캐소드부에 연결되어 방전시 캐소드부에서 발생되는 수소를 외부로 인출하는 수소배출부를 포함하는 이차전지가 기재되어 있다.As a prior patent document related to the technical field of the present technology, Korean Patent Publication No. 10-2015-0091834 includes a liquid cathode part including a sodium-containing solution and a cathode impregnated in the sodium-containing solution; An anode portion including a liquid organic electrolyte, an anode impregnated with the liquid organic electrolyte, and a negative electrode active material positioned on the anode surface; And a solid electrolyte positioned between the cathode portion and the cathode portion. And a hydrogen discharge part connected to the cathode part to draw hydrogen generated in the cathode part to the outside during discharge.
본 기술의 목적은 온실 가스인 이산화탄소를 원료로 사용하여 방전시 수소를 함께 생산하는 이차전지를 제공하는 것이다.The purpose of the present technology is to provide a secondary battery that produces hydrogen when discharged by using carbon dioxide, a greenhouse gas, as a raw material.
본 기술의 다른 목적은 이산화탄소의 제거와 함께 방전시 수소를 생산하면서 방전 용량이 향상된 이차전지를 제공하는 것이다.Another object of the present technology is to provide a secondary battery with improved discharge capacity while producing hydrogen upon discharge with the removal of carbon dioxide.
본 기술의 또 다른 목적은 이산화탄소의 제거시 사용된 금속을 회수할 수 있는 이차전지-금속 회수 시스템을 제공하는 것이다.Another object of the present technology is to provide a secondary battery-metal recovery system capable of recovering metal used in the removal of carbon dioxide.
상기한 본 기술의 목적을 달성하기 위하여, 본 기술의 일 측면에 따르면, 충전과 방전이 가능한 이차전지에 있어서, 제1 반응 공간에 수용되는 수계전해질인 제1 전해액과, 상기 제1 전해액에 적어도 일부가 잠기는 캐소드를 구비하는 캐소드부; 및 제2 반응 공간에 수용되는 수계전해질인 제2 전해액과, 상기 제2 전해액에 적어도 일부가 잠기는 애노드를 구비하는 애노드부를 포함하며, 방전 과정에서, 상기 제1 전해액과 상기 제2 전해액의 온도는 60℃ 내지 80℃로 유지되며, 상기 제1 전해액으로 이산화탄소 기체가 유입되고, 상기 제1 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되며, 상기 수소이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하는 이차전지가 제공된다.In order to achieve the object of the present technology described above, according to an aspect of the present technology, in a secondary battery capable of charging and discharging, at least a first electrolyte that is an aqueous electrolyte accommodated in a first reaction space and the first electrolyte A cathode part having a cathode that is partially locked; And an anode portion including a second electrolyte, which is an aqueous electrolyte accommodated in the second reaction space, and an anode that is at least partially submerged in the second electrolyte, and in the discharge process, the temperature of the first electrolyte and the second electrolyte is It is maintained at 60°C to 80°C, carbon dioxide gas is introduced into the first electrolyte, and hydrogen ions and bicarbonate ions are generated by the reaction of water and the carbon dioxide gas in the first electrolyte, and the hydrogen ions and the cathode A secondary battery in which hydrogen gas is generated due to electrons being combined is provided.
상기한 본 기술의 목적을 달성하기 위하여, 본 기술의 다른 측면에 따르면, 충전과 방전이 가능한 이차전지에 있어서, 제1 반응 공간에 수용되는 수계전해질인 제1 전해액과, 상기 제1 전해액에 적어도 일부가 잠기는 캐소드를 구비하는 캐소드부; 상기 제1 반응 공간과 연통되는 수용 공간에 수용되는 상기 제1 전해액을 구비하는 이산화탄소 처리부; 및 제2 반응 공간에 수용되는 수계전해질인 제2 전해액과, 상기 제2 전해액에 적어도 일부가 잠기는 애노드를 구비하는 애노드부를 포함하며, 방전 과정에서, 상기 제1 전해액과 상기 제2 전해액의 온도는 60℃ 내지 80℃로 유지되며, 상기 수용 공간의 상기 제1 전해액으로 이산화탄소 기체가 유입되고, 상기 제1 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되며, 상기 캐소드부에서 상기 수소이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하며, 상기 이산화탄소 처리부는 상기 수용 공간의 상기 제1 전해액으로 유입되는 이산화탄소 기체 중 이온화되지 않은 이산화탄소 기체를 상기 제1 전해액으로부터 분리하여 상기 캐소드부로 공급되지 않도록 하는 이차전지가 제공된다.In order to achieve the object of the present technology described above, according to another aspect of the present technology, in a secondary battery capable of charging and discharging, at least a first electrolyte solution which is an aqueous electrolyte accommodated in a first reaction space and the first electrolyte solution A cathode part having a cathode that is partially locked; A carbon dioxide treatment unit having the first electrolyte solution accommodated in an accommodation space communicating with the first reaction space; And an anode portion including a second electrolyte, which is an aqueous electrolyte accommodated in the second reaction space, and an anode that is at least partially submerged in the second electrolyte, and in the discharge process, the temperature of the first electrolyte and the second electrolyte is It is maintained at 60°C to 80°C, carbon dioxide gas is introduced into the first electrolyte solution in the accommodation space, hydrogen ions and bicarbonate ions are generated by reaction of water and the carbon dioxide gas in the first electrolyte solution, and the cathode part In the hydrogen ions and electrons of the cathode are combined to generate hydrogen gas, and the carbon dioxide processing unit separates the non-ionized carbon dioxide gas from the first electrolyte from the carbon dioxide gas flowing into the first electrolyte in the accommodation space. A secondary battery is provided that is not supplied to the cathode portion.
상기한 본 기술의 목적을 달성하기 위하여, 본 기술의 또 다른 측면에 따르면, 충전과 방전이 가능한 이차전지에 있어서, 반응 공간에 수용되는 수계전해질인 전해액; 상기 전해액에 적어도 일부가 잠긴 캐소드; 및 상기 전해액에 적어도 일부가 잠긴 애노드를 포함하며, 방전 과정에서, 상기 전해액의 온도는 60℃ 내지 80℃로 유지되며, 상기 전해액으로 이산화탄소 기체가 유입되고, 상기 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되며, 상기 수소 이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하는 이차전지가 제공된다.In order to achieve the above object of the present technology, according to another aspect of the present technology, a secondary battery capable of charging and discharging, comprising: an electrolyte that is an aqueous electrolyte accommodated in a reaction space; A cathode immersed in at least a portion of the electrolyte solution; And an anode at least partially submerged in the electrolytic solution, and in the discharge process, the temperature of the electrolytic solution is maintained at 60°C to 80°C, carbon dioxide gas flows into the electrolyte solution, and the reaction of water and the carbon dioxide gas in the electrolyte solution Thereby, a hydrogen ion and bicarbonate ion are generated, and a secondary battery in which hydrogen gas is generated by combining electrons of the hydrogen ion and the cathode is provided.
상기한 본 기술의 목적을 달성하기 위하여, 본 기술의 또 다른 측면에 따르면, 충전과 방전이 가능한 이차전지에 있어서, 반응 공간 및 상기 반응 공간과 연통되는 수용 공간에 수용되는 수계전해질이 전해액; 상기 반응 공간에서 상기 전해액에 적어도 일부가 잠기는 캐소드; 및 상기 반응 공간에서 상기 전해액에 적어도 일부가 잠기는 애노드를 포함하며, 방전 과정에서, 상기 전해액의 온도는 60℃ 내지 80℃로 유지되며, 상기 수용 공간의 상기 전해액으로 이산화탄소 기체가 유입되어서 상기 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되고, 상기 반응 공간에서 상기 수소이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하며, 상기 수용 공간의 상기 수계 전해질로 유입되는 이산화탄소 기체 중 이온화되지 않은 이산화탄소 기체는 상기 수용 공간에서 상기 전해액으로부터 분리되어서 상기 반응 공간으로 공급되지 않도록 하는 이차전지가 제공된다.In order to achieve the above object of the present technology, according to another aspect of the present technology, in a secondary battery capable of charging and discharging, the aqueous electrolyte contained in the reaction space and the receiving space communicating with the reaction space is an electrolyte; A cathode in which at least a part is immersed in the electrolyte solution in the reaction space; And an anode in which at least a part is immersed in the electrolyte in the reaction space, and in the discharge process, the temperature of the electrolyte is maintained at 60°C to 80°C, and carbon dioxide gas is introduced into the electrolyte in the receiving space, whereby Hydrogen ions and bicarbonate ions are generated by the reaction of water and the carbon dioxide gas, and in the reaction space, hydrogen ions and electrons of the cathode are combined to generate hydrogen gas, and carbon dioxide flowing into the aqueous electrolyte in the accommodation space A secondary battery is provided in which non-ionized carbon dioxide gas in the gas is separated from the electrolyte in the receiving space and is not supplied to the reaction space.
상기한 본 기술의 목적을 달성하기 위하여, 본 기술의 또 다른 측면에 따르면, 충전과 방전이 가능한 이차전지에 있어서, 제1 반응 공간에 수용되는 수계전해질인 제1 전해액과, 상기 제1 전해액에 적어도 일부가 잠긴 캐소드를 구비하는 캐소드부; 제2 반응 공간에 수용되는 수계전해질인 제2 전해액과, 상기 제2 전해액에 적어도 일부가 잠긴 애노드를 구비하는 애노드부; 및 상기 제2 반응 공간과 연통되는 전해액 저장 공간에 저장되는 상기 제2 전해액과, 상기 전해액 저장 공간과 상기 제2 반응 공간 사이에서 상기 제2 전해액을 순환시키는 순환 펌프를 구비하는 전해액 순환부를 포함하며, 방전 과정에서 상기 제1 전해액으로 이산화탄소 기체가 유입되고, 상기 제1 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되며, 상기 수소이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하는 이차전지가 제공된다.In order to achieve the above object of the present technology, according to another aspect of the present technology, in a secondary battery capable of charging and discharging, the first electrolyte and the first electrolyte, which are aqueous electrolytes accommodated in the first reaction space, A cathode part having a cathode at least partially locked; An anode unit including a second electrolyte solution that is an aqueous electrolyte accommodated in a second reaction space, and an anode at least partially submerged in the second electrolyte solution; And an electrolyte circulating unit comprising a second electrolyte solution stored in an electrolyte storage space communicating with the second reaction space, and a circulation pump circulating the second electrolyte solution between the electrolyte storage space and the second reaction space. In the discharge process, carbon dioxide gas is introduced into the first electrolyte solution, and hydrogen ions and bicarbonate ions are generated by reaction of water and the carbon dioxide gas in the first electrolyte solution, and electrons of the hydrogen ion and the cathode are combined to generate hydrogen. A secondary battery in which gas is generated is provided.
상기한 본 기술의 목적을 달성하기 위하여, 본 기술의 또 다른 측면에 따르면, 충전과 방전이 가능한 이차전지에 있어서, 제1 반응 공간에 수용되는 수계전해질인 제1 전해액과, 상기 제1 전해액에 적어도 일부가 잠긴 캐소드를 구비하는 캐소드부; 상기 제1 반응 공간과 연통되는 수용 공간에 수용되는 상기 제1 전해액을 구비하는 이산화탄소 처리부; 제2 반응 공간에 수용되는 수계전해질인 제2 전해액과, 상기 제2 전해액에 적어도 일부가 잠긴 애노드를 구비하는 애노드부; 및 상기 제2 전해액이 저장되는 전해액 저장 공간과, 상기 전해액 저장 공간과 상기 제2 반응 공간 사이에서 상기 제2 전해액을 순환시키는 순환 펌프를 구비하는 전해액 순환부를 포함하며, 방전 과정에서 상기 수용 공간의 상기 제1 전해액으로 이산화탄소 기체가 유입되고, 상기 제1 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되며, 상기 캐소드부에서 상기 수소이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하며, 상기 이산화탄소 처리부는 상기 수용 공간의 상기 제1 전해액으로 유입되는 이산화탄소 기체 중 이온화되지 않은 이산화탄소 기체를 상기 제1 전해액으로부터 분리하여 상기 캐소드부로 공급되지 않도록 하는 이차전지가 제공된다.In order to achieve the above object of the present technology, according to another aspect of the present technology, in a secondary battery capable of charging and discharging, the first electrolyte and the first electrolyte, which are aqueous electrolytes accommodated in the first reaction space, A cathode part having a cathode at least partially locked; A carbon dioxide treatment unit having the first electrolyte solution accommodated in an accommodation space communicating with the first reaction space; An anode unit including a second electrolyte solution that is an aqueous electrolyte accommodated in a second reaction space, and an anode at least partially submerged in the second electrolyte solution; And an electrolyte circulating unit having a circulating pump for circulating the second electrolyte between the electrolyte storage space and the second reaction space, and an electrolyte storage space in which the second electrolyte is stored, and Carbon dioxide gas is introduced into the first electrolytic solution, and hydrogen ions and bicarbonate ions are generated by the reaction of water and the carbon dioxide gas in the first electrolytic solution, and the hydrogen ions and electrons of the cathode are combined in the cathode part to produce hydrogen. A secondary battery is provided in which gas is generated, and the carbon dioxide processing unit separates non-ionized carbon dioxide gas from the first electrolyte from among the carbon dioxide gas flowing into the first electrolyte in the accommodation space so as not to be supplied to the cathode.
상기한 본 기술의 목적을 달성하기 위하여, 본 기술의 또 다른 측면에 따르면, 방전 과정에서 이산화탄소를 연료로 사용하여 수소를 발생시키는 상기 이차전지; 수소함유 연료로부터 수소가 풍부한 개질 가스를 생산하고 부산물로 이산화탄소를 발생시키는 개질기; 상기 개질기로부터 생산된 개질 가스를 연료로 공급받는 연료전지; 및 상기 개질기에서 발생한 이산화탄소를 상기 이차전지로 공급하는 이산화탄소 공급부를 포함하는 복합 발전 시스템이 제공된다.In order to achieve the above object of the present technology, according to another aspect of the present technology, the secondary battery for generating hydrogen by using carbon dioxide as a fuel in the discharge process; A reformer for producing hydrogen-rich reformed gas from hydrogen-containing fuel and generating carbon dioxide as a by-product; A fuel cell receiving the reformed gas produced from the reformer as fuel; And a carbon dioxide supply unit supplying carbon dioxide generated in the reformer to the secondary battery.
상기한 본 기술의 목적을 달성하기 위하여, 본 기술의 또 다른 측면에 따르면, 방전 과정에서 이산화탄소를 연료로 사용하여 수소를 발생시키는 상기 이차전지; 수소함유 연로로부터 수소가 풍부한 개질 가스를 생산하는 개질기; 상기 개질기로부터 생산된 개질 가스를 연료로 공급받는 연료전지; 및 상기 이차전지에서 발생한 수소를 상기 연료전지의 연료로 추가로 공급하는 수소 공급부를 포함하는 복합 발전 시스템이 제공된다.In order to achieve the above object of the present technology, according to another aspect of the present technology, the secondary battery for generating hydrogen by using carbon dioxide as a fuel in the discharge process; A reformer producing a reforming gas rich in hydrogen from a hydrogen-containing furnace; A fuel cell receiving the reformed gas produced from the reformer as fuel; And a hydrogen supply unit that additionally supplies hydrogen generated in the secondary battery as fuel of the fuel cell.
상기한 본 기술의 목적을 달성하기 위하여, 본 기술의 또 다른 측면에 따르면, 방전 과정에서 이산화탄소를 연료로 사용하여 수소를 발생시키는 이차전지; 수소함유 연료로부터 수소가 풍부한 개질 가스를 생산하고 부산물로 이산화탄소를 발생시키는 개질기; 상기 개질기로부터 생산된 개질 가스를 연료로 공급받는 연료전지; 상기 개질기에서 발생한 이산화탄소를 상기 이차전지로 공급하는 이산화탄소 공급부; 및 상기 이차전지에서 발생한 수소를 상기 연료전지의 연료로 추가로 공급하는 수소 공급부를 포함하는 복합 발전 시스템이 제공된다.In order to achieve the above object of the present technology, according to another aspect of the present technology, a secondary battery for generating hydrogen by using carbon dioxide as a fuel in the discharge process; A reformer for producing hydrogen-rich reformed gas from hydrogen-containing fuel and generating carbon dioxide as a by-product; A fuel cell receiving the reformed gas produced from the reformer as fuel; A carbon dioxide supply unit supplying carbon dioxide generated in the reformer to the secondary battery; And a hydrogen supply unit that additionally supplies hydrogen generated in the secondary battery as fuel of the fuel cell.
상기한 본 기술의 목적을 달성하기 위하여, 본 기술의 또 다른 측면에 따르면, 이차전지 및 금속 회수부를 포함하고, 상기 이차전지는 제1 반응 공간에 수용되는 수계전해질인 제1 전해액과, 상기 제1 전해액에 적어도 일부가 잠기는 캐소드를 구비하는 캐소드부; 및 제2 반응 공간에 수용되는 수계전해질인 제2 전해액과, 상기 제2 전해액에 적어도 일부가 잠기는 애노드를 구비하는 애노드부;를 포함하며, 상기 제1 전해액으로 이산화탄소 기체가 유입되고, 상기 제1 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되며, 상기 수소이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하고, 상기 금속 회수부는 상기 애노드에서 산화된 금속 이온이 용해된 제2 전해액을 공급받는 공급부; 상기 공급받은 제2 전해액을 수용하는 회수 공간; 상기 회수 공간에 수용된 제2 전해액에 적어도 일부가 잠기는 상기 애노드와 동일한 재질의 제2 캐소드;, 상기 회수 공간에 수용된 제2 전해액에 적어도 일부가 잠기는 제2 애노드; 및 상기 제2 캐소드와 상기 제2 애노드에 전원을 공급하는 전원공급부;를 포함하며, 상기 공급받은 제2 전해액으로부터 산화된 금속 이온을 회수하는 이차전지-금속 회수 시스템이 제공된다In order to achieve the above object of the present technology, according to another aspect of the present technology, including a secondary battery and a metal recovery unit, the secondary battery is a first electrolyte that is an aqueous electrolyte accommodated in the first reaction space, and the agent 1 Cathode portion having a cathode at least partially submerged in the electrolyte; And an anode unit including a second electrolyte, which is an aqueous electrolyte accommodated in a second reaction space, and an anode that is at least partially submerged in the second electrolyte, wherein carbon dioxide gas is introduced into the first electrolyte, and the first Hydrogen ions and bicarbonate ions are generated by the reaction of water in the electrolyte with the carbon dioxide gas, and hydrogen ions are generated by combining the hydrogen ions and the electrons of the cathode, and the metal recovery part dissolves metal ions oxidized at the anode. A supply unit that receives the second electrolyte solution; A recovery space accommodating the supplied second electrolyte; A second cathode made of the same material as the anode at least partially immersed in the second electrolyte contained in the recovery space; a second anode immersed in the second electrolyte contained in the recovery space; And a power supply unit supplying power to the second cathode and the second anode. A secondary battery-metal recovery system is provided for recovering oxidized metal ions from the supplied second electrolyte.
상기한 본 기술의 목적을 달성하기 위하여, 본 기술의 또 다른 측면에 따르면, 이차전지 및 금속 회수부를 포함하고, 상기 이차전지는 반응 공간에 수용되는 수계전해질인 전해액; 상기 전해액에 적어도 일부가 잠긴 캐소드; 및 상기 전해액에 적어도 일부가 잠긴 애노드를 포함하며, 상기 전해액으로 이산화탄소 기체가 유입되고, 상기 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되며, 상기 수소 이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하고, 상기 금속 회수부는 상기 금속 회수부는 상기 애노드에서 산화된 금속 이온이 용해된 전해액을 공급받는 공급부; 상기 공급받은 전해액을 수용하는 회수 공간; 상기 회수 공간에 수용된 전해액에 적어도 일부가 잠기는 상기 애노드와 동일한 재질의 제2 캐소드;, 상기 회수 공간에 수용된 수용액에 적어도 일부가 잠기는 제2 애노드; 및 상기 제2 캐소드와 상기 제2 애노드에 전원을 공급하는 전원공급부;를 포함하며, 상기 공급받은 전해액으로부터 산화된 금속 이온을 회수하는 이차전지-금속 회수 시스템이 제공된다.In order to achieve the above object of the present technology, according to another aspect of the present technology, including a secondary battery and a metal recovery unit, the secondary battery is an electrolyte that is an aqueous electrolyte accommodated in the reaction space; A cathode immersed in at least a portion of the electrolyte solution; And an anode in which at least a part is immersed in the electrolyte solution, carbon dioxide gas is introduced into the electrolyte solution, hydrogen ions and bicarbonate ions are generated by reaction of water and the carbon dioxide gas in the electrolyte solution, and the hydrogen ions and the cathode Hydrogen gas is generated by the electrons being combined, and the metal recovery part is a supply part receiving an electrolyte solution in which metal ions oxidized at the anode are dissolved; A recovery space accommodating the supplied electrolyte solution; A second cathode made of the same material as the anode, at least partially immersed in the electrolyte solution accommodated in the recovery space; a second anode immersed in the aqueous solution accommodated in the recovery space; And a power supply unit supplying power to the second cathode and the second anode. A secondary battery-metal recovery system is provided for recovering oxidized metal ions from the supplied electrolyte.
본 기술에 의하면 앞서서 기재한 본 기술의 목적을 모두 달성할 수 있다. 구체적으로는, 수계전해질인 전해액에 잠긴 캐소드와 금속 애노드를 포함하며, 방전 과정에서 전해액으로 이산화탄소 기체가 유입되어서 수소 기체를 발생시키는 이차전지에서 전해액의 온도가 실온보다 약 2배의 최대 전류밀도를 보여주는 60℃ 내지 80℃의 최적 온도로 유지됨으로써, 이차전지 및 이차전지를 구비하는 복합 발전 시스템의 성능이 크게 향상된다. According to the present technology, it is possible to achieve all the objects of the present technology described above. Specifically, it includes a cathode and a metal anode immersed in the electrolyte, which is an aqueous electrolyte, and the temperature of the electrolyte in the secondary battery generating hydrogen gas by introducing carbon dioxide gas into the electrolyte during the discharge process has a maximum current density of about twice the room temperature. By maintaining the optimum temperature of 60°C to 80°C, the performance of the secondary battery and the combined power generation system including the secondary battery is greatly improved.
또한, 제2 반응 공간에 수용되는 제2 전해액이 전해액 순환부에 의해 순환함으로써, 제2 반응 공간의 애노드 금속의 부식을 늦추고, 애노드 금속의 표면에 부식되어 쌓인 금속 산화물이 씻겨짐으로써 방전 용량이 크게 증가된다.In addition, the second electrolytic solution accommodated in the second reaction space is circulated by the electrolyte circulating portion, thereby slowing corrosion of the anode metal in the second reaction space, and washing the metal oxide that has been corroded and accumulated on the surface of the anode metal, thereby discharging the discharge capacity. It is greatly increased.
또한, 금속 회수부를 포함함으로써, 상기 이차전지에서 소모되어 이온 형태로 남은 금속을 고순도로 다시 회수할 수 있다.In addition, by including a metal recovery unit, it is possible to recover the metal consumed in the secondary battery and remain in ionic form again with high purity.
도 1은 본 기술의 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 방전 상태를 도시한 모식도이다.1 is a schematic diagram showing a discharge state of a secondary battery for producing hydrogen using carbon dioxide according to an embodiment of the present technology.
도 2는 도 1에 도시된 실시예의 이차전지에 대한 전해액의 온도에 따른 반쪽 전지 실험 결과를 보여주는 그래프이다.2 is a graph showing the results of a half-cell experiment according to the temperature of the electrolyte solution for the secondary battery of the embodiment shown in FIG.
도 3은 도 2의 그래프에서 온도별 HER 개시 영역을 보여주는 그래프이다.3 is a graph showing HER initiation regions by temperature in the graph of FIG. 2.
도 4는 도 2의 그래프에서 전류밀도 10mA/㎠에서의 온도별 HER 전압을 보여주는 그래프이다.4 is a graph showing HER voltage for each temperature at a current density of 10 mA/cm 2 in the graph of FIG. 2.
도 5는 도 1에 도시된 실시예의 이차전지에 대한 전해액의 온도에 따른 단전지 실험 결과를 보여주는 그래프이다.5 is a graph showing the results of a single cell experiment according to the temperature of the electrolyte for the secondary battery of the embodiment shown in FIG.
도 6은 본 기술의 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 방전 상태를 도시한 모식도이다.6 is a schematic diagram showing a discharge state of a secondary battery for producing hydrogen using carbon dioxide according to another embodiment of the present technology.
도 7은 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 방전 상태를 도시한 모식도이다.7 is a schematic diagram showing a discharge state of a secondary battery for producing hydrogen using carbon dioxide according to another embodiment of the present technology.
도 8은 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 방전 상태를 도시한 모식도이다.8 is a schematic diagram showing a discharge state of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology.
도 9는 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 방전 상태를 도시한 모식도이다.9 is a schematic view showing a discharge state of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology.
도 10은 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 방전 상태를 도시한 모식도이다.10 is a schematic diagram showing a discharge state of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology.
도 11은 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 방전 상태를 도시한 모식도이다.11 is a schematic diagram showing a discharge state of a secondary battery for producing hydrogen using carbon dioxide according to another embodiment of the present technology.
도 12는 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 방전 상태를 도시한 모식도이다.12 is a schematic diagram showing a discharge state of a secondary battery that produces hydrogen by using carbon dioxide according to another embodiment of the present technology.
도 13은 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 방전 상태를 도시한 모식도이다.13 is a schematic diagram showing a discharge state of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology.
도 14는 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지를 구비하는 복합 발전 시스템의 개략적인 구성을 도시한 도면이다.14 is a view showing a schematic configuration of a complex power generation system having a secondary battery for producing hydrogen using carbon dioxide according to another embodiment of the present technology.
도 15는 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 방전 상태를 도시한 모식도이다.15 is a schematic diagram showing a discharge state of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology.
도 16은 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 방전 상태를 도시한 모식도이다.16 is a schematic diagram showing a discharge state of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology.
도 17은 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 방전 상태를 도시한 모식도이다.17 is a schematic diagram showing a discharge state of a secondary battery for producing hydrogen using carbon dioxide according to another embodiment of the present technology.
도 18은 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 방전 상태를 도시한 모식도이다.18 is a schematic diagram showing a discharge state of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology.
도 19는 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 방전 상태를 도시한 모식도이다.19 is a schematic diagram showing a discharge state of a secondary battery for producing hydrogen using carbon dioxide according to another embodiment of the present technology.
도 20은 본 기술의 또 다른 일 실시예에 따른 이차전지-금속 회수 시스템의 금속회수부의 모식도이다.20 is a schematic diagram of a metal recovery part of a secondary battery-metal recovery system according to another embodiment of the present technology.
이하, 도면을 참조하여 본 기술의 실시예의 구성 및 작용을 상세하게 설명한다.Hereinafter, the configuration and operation of the embodiment of the present technology will be described in detail with reference to the drawings.
도 1에는 본 기술의 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 구성이 도시되어 있다. 도 1을 참조하면, 이차전지(100)는 캐소드부(110)와, 애노드부(150)와, 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190)를 포함한다. 이차전지(100)는 방전과정에서 온실가스인 이산화탄소 기체(CO2)를 원료로 사용하여 친환경 연료인 수소(H2)를 생산한다.1 shows a configuration of a secondary battery for producing hydrogen using carbon dioxide according to an embodiment of the present technology. Referring to FIG. 1, the secondary battery 100 includes a cathode unit 110, an anode unit 150, and a connection unit 190 connecting the cathode unit 110 and the anode unit 150. The secondary battery 100 uses the carbon dioxide gas (CO 2 ), which is a greenhouse gas, as a raw material in the discharge process to produce hydrogen (H 2 ), which is an eco-friendly fuel.
캐소드부(110)는, 내부에 제1 반응 공간(111)을 제공하는 제1 반응 용기(110a)와, 제1 반응 공간(111)에 담긴 수계전해질인 제1 전해액(115)과, 제1 전해액(115)에 적어도 일부가 잠기는 캐소드(cathode)(118)를 구비한다. 제1 전해액(115)으로는 알칼리성 수용액(본 실시예에서는 1M KOH의 강염기성 용액에서 CO2를 용리시킨 것이 사용됨), 해수, 수돗물 및 증류수 등이 사용될 수 있다. The cathode unit 110 includes a first reaction vessel 110a that provides a first reaction space 111 therein, a first electrolyte 115 that is an aqueous electrolyte contained in the first reaction space 111, and a first A cathode 118 in which at least a portion is immersed in the electrolyte 115 is provided. As the first electrolyte 115, an alkaline aqueous solution (in this embodiment, an elution of CO 2 in a strong basic solution of 1M KOH is used), seawater, tap water, distilled water, and the like can be used.
본 실시예에서 제1 전해액(115)의 온도는 60℃ 내지 70℃인 것이 바람직하며, 70℃인 것이 가장 바람직하다. In this embodiment, the temperature of the first electrolyte 115 is preferably 60°C to 70°C, and most preferably 70°C.
캐소드(118)는 전기 회로를 형성하기 위한 전극으로서, 탄소 페이퍼, 탄소 섬유, 탄소 펠트, 탄소 천, 금속 폼, 금속박막, 또는 이들의 조합일 수 있으며, 백금 촉매도 사용될 수 있다. 촉매의 경우, 백금 촉매 외에 탄소 계열 촉매, 탄소-금속 계열 복합 촉매, 페로브스카이트 산화물 촉매 등 일반적으로 수소발생반응(HER) 촉매로 사용될 수 있는 다른 모든 촉매도 포함한다. 제1 반응 용기(110a)에는 제1 반응 공간(111)과 연통되는 제1 유입구(112), 제1 배출구(113) 및 제1 연결구(114)가 형성된다. 제1 유입구(112)는 제1 전해액(115)의 수면보다 아래에 위치하도록 제1 반응 공간(111)의 하부에 위치한다. 제1 배출구(113)는 제1 전해액(115)의 수면보다 위에 위치하도록 제1 반응 공간(111)의 상부에 위치한다. 제1 유입구(112)를 통해 방전과정에서 원료로 사용되는 이산화탄소가 제1 반응 공간(111)으로 유입되는데, 필요 시 제1 전해액(115)도 유입될 수 있다. 제1 배출구(113)를 통해서는 충방전 과정에서 생성된 가스가 외부로 배출된다. 도시되지는 않았으나, 제1 유입구(112)와 제1 배출구(113)는 충전 및 방전시 밸브 등에 의해 선택적으로 적절히 시기에 맞춰서 개폐될 수 있다. 제1 연결구(114)는 제1 전해액(115)의 수면보다 아래에 위치하며, 제1 연결구(114)에 연결부(190)가 연결된다. 캐소드부(110)에서는 방전과정에서 이산화탄소 용리 반응이 일어난다.The cathode 118 is an electrode for forming an electrical circuit, and may be carbon paper, carbon fiber, carbon felt, carbon cloth, metal foam, metal thin film, or a combination thereof, and a platinum catalyst may also be used. In the case of the catalyst, in addition to the platinum catalyst, all other catalysts that can be generally used as a hydrogen generation reaction (HER) catalyst, such as a carbon-based catalyst, a carbon-metal-based composite catalyst, and a perovskite oxide catalyst, are also included. A first inlet port 112, a first outlet port 113, and a first connector port 114 communicating with the first reaction space 111 are formed in the first reaction container 110a. The first inlet 112 is positioned below the first reaction space 111 so that it is located below the water surface of the first electrolyte 115. The first outlet 113 is positioned above the first reaction space 111 so as to be positioned above the water surface of the first electrolyte 115. Carbon dioxide, which is used as a raw material in the discharge process, is introduced into the first reaction space 111 through the first inlet 112, and the first electrolyte 115 may also be introduced, if necessary. Gas generated in the process of charging and discharging is discharged to the outside through the first outlet 113. Although not shown, the first inlet 112 and the first outlet 113 may be selectively opened and closed in a timely manner by a valve or the like during charging and discharging. The first connector 114 is positioned below the water surface of the first electrolyte 115, and the connection part 190 is connected to the first connector 114. In the cathode unit 110, a carbon dioxide elution reaction occurs in the discharge process.
애노드부(150)는, 내부에 제2 반응 공간(151)을 제공하는 제2 반응 용기(150a)와, 제2 반응 공간(151)에 담긴 수계전해질인 제2 전해액(155)과, 제2 전해액(155)에 적어도 일부가 잠기는 애노드(anode)(158)를 구비한다. 제2 전해액(155)으로는 고농도의 알칼리 용액이 사용되는데, 예를 들어, 1M KOH 또는 6M KOH가 사용될 수 있다. The anode unit 150 includes a second reaction vessel 150a providing a second reaction space 151 therein, a second electrolyte 155 serving as an aqueous electrolyte contained in the second reaction space 151, and a second An anode 158 in which at least a portion is immersed in the electrolyte 155 is provided. As the second electrolyte solution 155, an alkali solution having a high concentration is used, for example, 1M KOH or 6M KOH may be used.
본 실시예에서 제2 전해액(155)의 온도는 60℃ 내지 80℃인 것이 바람직하며, 70℃인 것이 가장 바람직하다. In the present embodiment, the temperature of the second electrolyte 155 is preferably 60°C to 80°C, and most preferably 70°C.
애노드(158)는 전기 회로를 이루는 금속 재질의 전극으로서, 본 실시예에서는 애노드(158)로 아연(Zn) 또는 알루미늄(Al)이 사용되는 것으로 설명한다. 또한, 애노드(158)로는 아연 또는 알루미늄을 포함하는 합금이 사용될 수도 있다. 추가적으로, 애노드(158)로 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu)가 사용될 수 있으며, 이때 산성 또는 염기성 용액이 제2 전해액(155)으로 사용될 수 있다. 애노드부(150)에는 제2 반응 공간(151)과 연통되는 제2 연결구(154)가 형성된다. 제2 연결구(154)는 제2 전해액(155)의 수면보다 아래에 위치하며, 제2 연결구(154)에 연결부(190)가 연결된다.The anode 158 is an electrode of a metal material constituting an electrical circuit, and in this embodiment, it will be described that zinc (Zn) or aluminum (Al) is used as the anode 158. In addition, an alloy containing zinc or aluminum may be used as the anode 158. Additionally, vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu) may be used as the anode 158, wherein the acid or basic The solution may be used as the second electrolyte 155. A second connector 154 communicating with the second reaction space 151 is formed in the anode unit 150. The second connector 154 is positioned below the water surface of the second electrolyte 155, and the connection unit 190 is connected to the second connector 154.
연결부(190)는 캐소드부(110)와 애노드부(150)를 연결하는 연결 통로(191)와, 연결 통로(191)의 내부에 설치되는 이온 전달 부재(192)를 구비한다.The connection part 190 includes a connection passage 191 connecting the cathode part 110 and the anode part 150, and an ion transfer member 192 installed inside the connection passage 191.
연결 통로(191)는 캐소드부(110)에 형성된 제1 연결구(114)와 애노드부(150)에 형성된 제2 연결구(154)의 사이에 연장되어서 캐소드부(110)의 제1 반응 공간(111)과 애노드부(150)의 제2 반응 공간(151)을 연통시킨다. 연결 통로(191)의 내부에 이온 전달 부재(192)가 설치된다.The connection passage 191 extends between the first connector 114 formed in the cathode portion 110 and the second connector 154 formed in the anode portion 150 so that the first reaction space 111 of the cathode portion 110 ) And the second reaction space 151 of the anode 150 are communicated. The ion transfer member 192 is installed inside the connection passage 191.
이온 전달 부재(192)는 대체로 디스크 형상으로서 연결 통로(191)의 내부를 막는 형태로 설치된다. 이온 전달 부재(192)는 다공성 구조로 이루어져서 캐소드부(110)와 애노드부(150)의 사이에서 이온의 이동만을 허용한다. 본 실시예에서는 이온 전달 부재의 재질이 유리인 것으로 설명하는데, 본 기술은 이에 제한되는 것은 아니며, 다공성 구조의 다른 재질도 사용될 수 있고 이 또한 본 기술의 범위에 속하는 것이다. 본 실시예에서 이온 전달 부재(192)는 기공 크기가 G2 등급(grade)에 해당하는 40 내지 90 미크론(micron), G3 등급에 해당하는 15 내지 40 미크론, G4 등급에 해당하는 5 내지 15 미크론, G5에 해당하는 1 내지 2 미크론인 다공성 유리가 사용될 수 있다. 이온 전달 부재(192)는 이온만 전달시킴으로써 방전과정에서 생기는 이온 불균형을 해소하게 된다.The ion transfer member 192 is generally disk-shaped and is installed in a form of blocking the inside of the connection passage 191. The ion transfer member 192 is made of a porous structure and allows only the movement of ions between the cathode portion 110 and the anode portion 150. In this embodiment, the material of the ion transfer member is described as glass, but the present technology is not limited thereto, and other materials having a porous structure may also be used, and this is also within the scope of the present technology. In this embodiment, the ion transfer member 192 has a pore size of 40 to 90 microns corresponding to a G2 grade (grade), 15 to 40 microns corresponding to a G3 grade, 5 to 15 microns corresponding to a G4 grade, Porous glass of 1 to 2 microns corresponding to G5 can be used. The ion transfer member 192 eliminates ion imbalance generated in the discharge process by transferring only ions.
이제, 위에서 구성 중심으로 설명된 이차전지(100)의 방전과정이 상세하게 설명된다. 도 1에는 이차전지(100)의 방전과정이 함께 도시되어 있다. 도 1을 참조하면, 제1 유입구(112)를 통해 제1 전해액(115)으로 이산화탄소 기체가 주입되며, 캐소드부(110)에서는 다음 [반응식 1]과 같은 이산화탄소의 화학적 용리 반응이 이루어진다.Now, the discharge process of the secondary battery 100 described above with a focus on the configuration will be described in detail. 1 shows the discharge process of the secondary battery 100 together. Referring to FIG. 1, carbon dioxide gas is injected into the first electrolyte 115 through the first inlet 112, and a chemical elution reaction of carbon dioxide is performed in the cathode 110 as shown in [Scheme 1].
[반응식 1][Scheme 1]
H2O(l) + CO2(g) → H+(aq) + HCO3 -(aq) H 2 O (l) + CO 2 (g) → H + (aq) + HCO 3 - (aq)
즉, 캐소드부(110)에서는 캐소드부(110)에 공급된 이산화탄소 기체(CO2)가 제1 전해액(115)의 물(H2O)과 자발적인 화학반응을 통해 수소 양이온(H+)과 중탄산염(HCO3 -)이 생성된다.That is, in the cathode portion 110, the carbon dioxide gas (CO 2 ) supplied to the cathode portion 110 undergoes a spontaneous chemical reaction with water (H 2 O) of the first electrolyte 115 and hydrogen cations (H + ) and bicarbonate (HCO 3 -) is generated.
또한, 캐소드부(110)에서는 다음 [반응식 2]와 같은 전기적 반응이 이루어진다.In addition, an electrical reaction as shown in [Reaction Scheme 2] is performed at the cathode unit 110.
[반응식 2][Scheme 2]
2H+(aq) + 2e- → H2(g) 2H + (aq) + 2e - → H 2 (g)
즉, 캐소드부(110)에서 수소 양이온(H+)은 전자(e-)를 받아서 수소 기체(H2)가 발생하게 된다. 발생된 수소 기체는 제1 배출구(113)를 통해서 외부로 배출된다.That is, hydrogen cations at the cathode portion (110) (H +) are electron (e -) is a hydrogen gas (H 2) generated receives. The generated hydrogen gas is discharged to the outside through the first outlet 113.
아울러, 캐소드부(110)에서는 다음 [반응식 3]과 같은 복합 수소발생 반응이 이루어진다.In addition, a composite hydrogen generating reaction as shown in [Scheme 3] is performed at the cathode 110.
[반응식 3][Scheme 3]
2H2O(l) + 2CO2(g) + 2e- → H2(g) + 2HCO3 -(aq) 2H 2 O (l) + 2CO 2 (g) + 2e - → H 2 (g) + 2HCO 3 - (aq)
그리고, 애노드부(150)에서는 애노드(158)가 아연(Zn)인 경우에 다음 [반응식 4]와 같은 산화 반응이 이루어진다.Then, in the anode unit 150, when the anode 158 is zinc (Zn), an oxidation reaction as shown in [Reaction Scheme 4] is performed.
[반응식 4][Scheme 4]
Zn + 4OH- → Zn(OH)4 2- + 2e- (E0 = -1.25 V) Zn + 4OH - → Zn (OH ) 4 2- + 2e - (E 0 = -1.25 V)
Zn(OH)4 2- → ZnO + H2O + 2OH- Zn (OH) 4 2- → ZnO + H 2 O + 2OH -
결국, 애노드(158)가 아연(Zn)인 경우에 방전 과정에서 이루어지는 전체 반응식은 다음 [반응식 5]와 같다.As a result, when the anode 158 is zinc (Zn), the overall reaction equation formed in the discharge process is as follows.
[반응식 5][Scheme 5]
Zn + 2CO2 + 2H2O + 2OH- → ZnO + 2HCO3 -(aq) + H2(g) (E0 = 1.25 V) Zn + 2CO 2 + 2H 2 O + 2OH - → ZnO + 2HCO 3 - (aq) + H 2 (g) (E 0 = 1.25 V)
만일, 애노드부(150)에서 애노드(158)가 알루미늄(Al)인 경우에 다음 [반응식 6]과 같은 산화 반응이 이루어진다.If, in the anode unit 150, the anode 158 is aluminum (Al), an oxidation reaction as shown in [Reaction Scheme 6] is performed.
[반응식 6][Scheme 6]
Al + 3OH- → Al(OH)3 + 3e- (E0 = -2.31 V) Al + 3OH - → Al (OH ) 3 + 3e - (E 0 = -2.31 V)
결국, 애노드(158)가 알루미늄(Al)인 경우에 방전 과정에서 이루어지는 전체 반응식은 다음 [반응식 7]과 같다.As a result, when the anode 158 is aluminum (Al), the overall reaction equation made in the discharge process is as follows.
[반응식 7][Scheme 7]
2Al + 6CO2 + 6H2O + 6OH- → 2Al(OH)3 + 6HCO3 -(aq) + 3H2(g) (E0 = 2.31 V) 2Al + 6CO 2 + 6H 2 O + 6OH - → 2Al (OH) 3 + 6HCO 3 - (aq) + 3H 2 (g) (E 0 = 2.31 V)
결과적으로, [반응식 6]과 [반응식 7]을 통해 알 수 있는 바와 같이, 방전 시 제1 전해액(115)에서 용리된 이산화탄소에 의해 생성된 수소 이온이 캐소드(1 18)로부터 전자를 받아서 수소 기체로 환원되어서, 제1 배출구(113)를 통해 배출되고, 금속 애노드(158)는 산화물의 형태로 변하게 된다.As a result, as can be seen through [Scheme 6] and [Scheme 7], hydrogen ions generated by carbon dioxide eluted from the first electrolyte 115 during discharge receive electrons from the cathode 1 18 to generate hydrogen gas. It is reduced to, discharged through the first outlet 113, the metal anode 158 is changed to the form of oxide.
도 2는 도 1에 도시된 실시예의 이차전지에 대한 전해액(115, 155)의 온도에 따른 반쪽 전지 실험 결과를 보여주는 그래프이며, 도 3은 도 2의 그래프에서 온도별 HER(수소발생반응) 개시 영역을 보여주는 그래프이고, 도 4는 도 2의 그래프에서 전류밀도 10mA/㎠에서의 온도별 HER 전압을 보여주는 그래프이다.FIG. 2 is a graph showing the results of a half-cell test according to the temperature of the electrolytes 115 and 155 for the secondary battery of the embodiment shown in FIG. 1, and FIG. 3 discloses HER (hydrogen generation reaction) by temperature in the graph of FIG. 2 It is a graph showing the region, and FIG. 4 is a graph showing HER voltage for each temperature at a current density of 10 mA/cm 2 in the graph of FIG. 2.
도 2 내지 도 4를 참조하면, HER 개시 영역은 실온(RT)으로부터 온도가 증가함에 따라 45℃ 구간까지 향상되다가, 45℃ 이후부터는 점차 감소하는 경향을 보인다. 또한, 전류밀도 10mA/㎠에서 HER 전압을 비교할 경우, 실온(RT)으로부터 온도가 증가함에 따라 성능이 향상되는데, 60℃부터는 대체로 포화되는 경향을 보인다. 2 to 4, the HER initiation region improves from room temperature (RT) to 45°C as the temperature increases, and tends to decrease gradually after 45°C. In addition, when comparing the HER voltage at a current density of 10mA/cm 2, the performance improves as the temperature increases from room temperature (RT), but tends to be saturated from 60°C.
도 5는 도 1에 도시된 실시예의 이차전지에 대한 전해액(115, 155)의 온도에 따른 단전지 실험 결과를 보여주는 그래프이다. 도 5를 참조하면, 수소발생반응이 일어나는 캐소드 전압의 경우, 도 2 내지 도 4에 도시된 반쪽 전지 성능 결과와 유사한 경향을 나타내는 것이 확인된다. 산화반응이 일어나는 애노드 전압의 경우, 온도 상승으로 인해 산화 결과가 향상되며, 70℃ 내지 80℃의 온도 범위에서 전극 산화 성능이 포화되는 것으로 확인된다. 따라서, 캐소드와 애노드의 온도별 성능을 동시에 고려할 때, 60℃ 내지 80℃의 전해액 온도 구간에서 우수한 성능을 나타내는 것으로 확인되며, 특히 70℃의 온도에서 최대 전류밀도가 약 320mA/㎠로서, 실온에서 측정되는 약 160mA/㎠보다 2배 정도 증가하여 가장 우수한 성능을 나타내는 것으로 확인된다. 이는 상기 온도에서 수소발생반응 및 금속 산화반응의 속도가 촉진되기 때문이며, 80℃가 넘은 온도에서는 이산화탄소 용해 반응 속도가 느려지고, 용해량이 적어서 성능이 감소한다.5 is a graph showing the results of a single cell experiment according to the temperature of the electrolytes 115 and 155 for the secondary battery of the embodiment shown in FIG. 1. Referring to FIG. 5, it is confirmed that in the case of the cathode voltage in which the hydrogen generation reaction occurs, the tendency similar to the half cell performance results shown in FIGS. 2 to 4 is shown. In the case of the anode voltage in which the oxidation reaction occurs, the oxidation result is improved due to the temperature increase, and it is confirmed that the electrode oxidation performance is saturated in the temperature range of 70°C to 80°C. Therefore, when considering the performance of the cathode and the anode at the same time, it is confirmed that it exhibits excellent performance in the temperature range of the electrolyte at 60°C to 80°C, and the maximum current density at a temperature of 70°C is about 320mA/cm2, at room temperature. It is confirmed that it shows the best performance by increasing about 2 times to about 160 mA/cm 2 measured. This is because the rate of the hydrogen generation reaction and the metal oxidation reaction is accelerated at the above temperature, and at a temperature exceeding 80° C., the rate of carbon dioxide dissolution reaction is slowed down, and the amount of dissolution is small, so performance decreases.
도 6에는 본 기술의 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 구성의 방전 과정이 도시되어 있다. 도 6을 참조하면, 이차전지(100)는 캐소드부(110)와, 애노드부(150)와, 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190)와, 이산화탄소 처리부(120)와, 이산화탄소 순환 공급부(130)와, 캐소드부(110)와 이산화탄소 처리부(120)를 연통시키는 연결관(140)을 포함한다. 캐소드부(110), 애노드부(150) 및 연결부(190)는 도 1에 도시된 실시예에서 설명된 것과 동일하므로 이에 대한 상세한 설명은 생략한다. 도 6에 도시된 구성의 이차전지(100)도 도 2 내지 도 5를 통해 설명된 바와 같이 바람직하기로는 60℃ 내지 80℃의 온도범위, 더욱 바라직하기로는 70℃의 온도에서 우수한 성능을 발휘하게 된다. 6 shows a discharge process of a configuration of a secondary battery that produces hydrogen using carbon dioxide according to another embodiment of the present technology. Referring to FIG. 6, the secondary battery 100 includes a cathode unit 110, an anode unit 150, a connection unit 190 connecting the cathode unit 110 and the anode unit 150, and a carbon dioxide processing unit 120 ), the carbon dioxide circulation supply unit 130, and the cathode 110 and the carbon dioxide processing unit 120, the communication pipe 140 for communicating. The cathode unit 110, the anode unit 150, and the connection unit 190 are the same as those described in the embodiment illustrated in FIG. 1, so a detailed description thereof will be omitted. The secondary battery 100 of the configuration shown in FIG. 6 also preferably exhibits excellent performance at a temperature range of 60° C. to 80° C., more preferably 70° C., as described through FIGS. 2 to 5. Is done.
이산화탄소 처리부(120)는, 내부에 수용 공간(121)을 제공하는 수용 용기(120a)와, 수용 공간(121)에 수용되고 캐소드부(110)의 제1 전해액(115)과 동일한 전해액인 제1 전해액(115)을 구비한다. 수용 용기(120a)에는 수용 공간(121)으로 이산화탄소 기체가 유입되는 제2 유입구(122)와, 연결관(140)이 연결되는 연통구(123)와, 수용 공간(121)의 상부에 위치하는 제2 배출구(124)가 형성된다. The carbon dioxide processing unit 120 includes a storage container 120a that provides a storage space 121 therein, and a first that is accommodated in the storage space 121 and is the same electrolyte solution as the first electrolyte solution 115 of the cathode 110. An electrolyte 115 is provided. The receiving container 120a is located at the upper portion of the receiving space 121, the second inlet 122 through which carbon dioxide gas flows into the receiving space 121, the communication port 123 to which the connecting pipe 140 is connected, and the receiving space 121. The second outlet 124 is formed.
제2 유입구(122)는 수용 공간(121)에서 연통구(123)보다 위에 위치하고, 제2 배출구(124) 및 제1 전해액(115)의 수면보다 아래에 위치한다. 제2 유입구(122)를 통해 방전과정에서 원료로 사용되는 이산화탄소 기체가 수용 공간(121)으로 유입된다. 제2 유입구(122)를 통해 필요에 따라 제1 전해액(115)도 공급될 수 있다. 제2 유입구(122)와 제1 배출구(113)는 충전 및 방전시 밸브 등에 의해 선택적으로 적절한 시기에 맞춰서 개폐될 수 있다.The second inlet 122 is positioned above the communication port 123 in the accommodation space 121, and is located below the water surface of the second outlet 124 and the first electrolyte 115. Carbon dioxide gas used as a raw material in the discharge process is introduced into the receiving space 121 through the second inlet 122. The first electrolyte 115 may also be supplied as needed through the second inlet 122. The second inlet 122 and the first outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
연통구(123)는 수용 공간(121)에서 제2 유입구(122)보다 아래에 위치하며, 연통구(123)에는 연결관(140)이 연결된다. 연통구(123)를 통해 수용 공간(121)은 제1 반응 공간(111)과 연통된다.The communication port 123 is located below the second inlet port 122 in the accommodation space 121, and a connection pipe 140 is connected to the communication port 123. The accommodation space 121 communicates with the first reaction space 111 through the communication port 123.
제2 배출구(124)는 수용 공간(121)에서 제2 유입구(122) 및 제1 전해액(115)의 수면보다 위에 위치한다. 제2 배출구(124)를 통해 수용 공간(121)에서 제1 전해액(115)에 용해되지 않아서 이온화되지 않은 이산화탄소 기체가 외부로 배출된다. 제2 배출구(124)를 통해 배출된 이산화탄소 가스는 이산화탄소 순환 공급부(130)를 통해 제2 유입구(122)로 공급된다.The second outlet 124 is positioned above the water surface of the second inlet 122 and the first electrolyte 115 in the accommodation space 121. Carbon dioxide gas that is not ionized because it is not dissolved in the first electrolyte 115 in the accommodation space 121 is discharged to the outside through the second outlet 124. The carbon dioxide gas discharged through the second outlet 124 is supplied to the second inlet 122 through the carbon dioxide circulation supply unit 130.
이산화탄소 순환 공급부(130)는 제2 배출구(224)를 통해 배출되는 이산화탄소 가스를 제 2유입구(122)로 순환시켜서 재공급한다. The carbon dioxide circulation supply unit 130 recirculates the carbon dioxide gas discharged through the second outlet 224 to the second inlet 122 to re-supply it.
연결관(140)은 제1 반응 공간(111)의 제1 유입구(112)와 수용 공간(121)의 연통구(123)을 연결한다. 연결관(140)의 내부에 형성되는 연결 통로(141)를 통해 제1 반응 공간(111)과 수용 공간(121)이 연통된다.The connector 140 connects the first inlet port 112 of the first reaction space 111 and the communication port 123 of the receiving space 121. The first reaction space 111 and the accommodation space 121 communicate with each other through a connection passage 141 formed inside the connection pipe 140.
제2 유입구(122)를 통해 이산화탄소 처리부(120)의 수용 공간(121)으로 유입된 이산화탄소 중 제1 전해액(115)에 용해되지 않아서 이온화되지 않은 이산화탄소 기체는 캐소드부(110)의 제1 반응 공간(111)으로 이동하지 못하고 상승하여 수용 공간(121) 내 제1 전해액(115)의 수면 위 공간에 모인 후 제2 배출구(124)를 통해 배출되고 제2 배출구(124)를 통해 배출된 이산화탄소 기체는 이산화탄소 순환 공급부(130)에 의해 제2 유입구(122)를 통해 수용 공간(121)으로 공급되어서 재활용된다. 또한, 이산화탄소 처리부(120)의 수용 공간(121)으로 유입된 이산화탄소 중 제1 전해액(115)에 용해되지 않아서 이온화되지 않은 이산화탄소 기체는 캐소드부(110)의 제1 반응 공간(111)으로 이동하지 못하므로, 제1 배출구(113)를 통해서 이산화탄소가 섞이지 않은 고순도의 수소가 배출될 수 있다.Carbon dioxide gas that is not ionized because it is not dissolved in the first electrolyte 115 among the carbon dioxide introduced into the accommodation space 121 of the carbon dioxide processing unit 120 through the second inlet 122 is the first reaction space of the cathode 110 The carbon dioxide gas discharged through the second outlet 124 and discharged through the second outlet 124 after being collected in the space above the water surface of the first electrolyte 115 in the accommodation space 121 without being able to move to (111) Is supplied to the receiving space 121 through the second inlet 122 by the carbon dioxide circulation supply unit 130 is recycled. In addition, carbon dioxide gas that is not ionized because it is not dissolved in the first electrolyte 115 among the carbon dioxide introduced into the accommodation space 121 of the carbon dioxide processing unit 120 does not move to the first reaction space 111 of the cathode 110. Since it is not possible, high-purity hydrogen in which carbon dioxide is not mixed may be discharged through the first outlet 113.
도 6에서 설명되지 않은 도면부호의 구성은 도 1에 도시된 실시예에서 같은 도면부호로 지시된 구성과 동일하다.The configuration of reference numerals not described in FIG. 6 is the same as the configuration indicated by the same reference numerals in the embodiment illustrated in FIG. 1.
도 7은 본 기술의 또 다른 일 실시예에 따른 이차전지의 방전과정을 설명하는 모식도이다. 도 7을 참조하면, 이차전지(100)는 캐소드부(110)와, 애노드부(150)와, 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190)를 포함한다. 도 7에 도시된 구성의 이차전지(100)도 도 2 내지 도 5를 통해 설명된 바와 같이 바람직하기로는 60℃ 내지 80℃의 온도범위, 더욱 바람직하기로는 70℃의 온도에서 우수한 성능을 발휘하게 된다. 7 is a schematic diagram illustrating a discharge process of a secondary battery according to another embodiment of the present technology. Referring to FIG. 7, the secondary battery 100 includes a cathode unit 110, an anode unit 150, and a connection unit 190 connecting the cathode unit 110 and the anode unit 150. The secondary battery 100 of the configuration shown in FIG. 7 also preferably exhibits excellent performance at a temperature range of 60° C. to 80° C., more preferably at a temperature of 70° C., as described through FIGS. 2 to 5. do.
캐소드부(110)는, 내부에 제1 반응 공간(111)을 제공하는 제1 반응 용기(110a)와, 제1 반응 공간(111)에 담긴 제1 전해액(115)과, 제1 전해액(115)에 적어도 일부가 잠기는 캐소드(cathode)(118)를 구비한다. 제1 전해액(115)으로는 수산화칼륨 수용액(본 실시예에서는 1M KOH의 강염기성 용액에서 CO2를 용리시킨 것이 사용됨)이 사용된다. 제1 반응 용기(110a)와 캐소드(118)의 구성은 도 1에 도시된 실시예에서 대응하는 구성과 동일하므로 이에 대한 상세한 설명은 생략한다.The cathode 110 includes a first reaction vessel 110a that provides a first reaction space 111 therein, a first electrolyte 115 contained in the first reaction space 111, and a first electrolyte 115 ) Is provided with a cathode (118) at least partially submerged. As the first electrolyte solution 115, an aqueous potassium hydroxide solution (in this embodiment, an elution of CO 2 in a strong basic solution of 1M KOH is used) is used. Since the configuration of the first reaction vessel 110a and the cathode 118 is the same as the corresponding configuration in the embodiment illustrated in FIG. 1, detailed description thereof will be omitted.
애노드부(150)는, 내부에 제2 반응 공간(151)을 제공하는 제2 반응 용기(150a)와, 제2 반응 공간(151)에 담긴 제2 전해액(155)과, 제2 전해액(155)에 적어도 일부가 잠기는 애노드(anode)(158)를 구비한다. 제2 전해액(155)으로는 수산화칼륨 수용액이 사용되는 것으로 설명하며, 예를 들어 1M KOH 또는 6M KOH가 사용될 수 있다. 제2 반응 용기(150a)와 애노드(158)의 구성은 도 1에 도시된 실시예에서 대응하는 구성과 동일하므로 이에 대한 상세한 설명은 생략한다.The anode unit 150 includes a second reaction container 150a providing a second reaction space 151 therein, a second electrolyte solution 155 contained in the second reaction space 151, and a second electrolyte solution 155 ) Is provided with an anode 158 in which at least a part is locked. As the second electrolyte solution 155, an aqueous potassium hydroxide solution is described, and for example, 1M KOH or 6M KOH may be used. Since the configuration of the second reaction vessel 150a and the anode 158 is the same as the corresponding configuration in the embodiment illustrated in FIG. 1, detailed description thereof will be omitted.
연결부(190)는 캐소드부(110)와 애노드부(150)를 연결하는 연결 통로(191)와, 연결 통로(191)의 내부에 설치되는 이온 교환 멤브레인(membrane)(292)를 구비한다.The connection part 190 includes a connection passage 191 connecting the cathode part 110 and the anode part 150, and an ion exchange membrane 292 installed inside the connection passage 191.
연결 통로(191)는 도 1에 도시된 연결 통로(191)와 동일한 구성으로서, 연결 통로(191)의 내부에 이온 교환 멤브레인(192)이 설치된다.The connection passage 191 has the same configuration as the connection passage 191 illustrated in FIG. 1, and an ion exchange membrane 192 is installed inside the connection passage 191.
이온 교환 멤브레인(192)은 연결 통로(191)의 내부를 막는 형태로 설치된다. 이온 교환 멤브레인(192)은 캐소드부(110)와 애노드부(150)의 사이에 이온의 이동만을 허용한다. 이온 교환 멤브레인(192)에 의해 제2 전해액(155)에 포함된 칼륨 이온(K+)이 제1 전해액(115)으로 이동한다. 본 실시예에서는 이온 교환 멤브레인(192)으로서, 미국의 듀퐁사에서 개발된 불소 수지계의 카티온 교환막인 내피온(Nafion)이 사용되는 것으로 설명하는데, 본 기술은 이에 제한되는 것은 아니며, 칼륨 이온(K+)의 이동만을 허용하는 것이면 모두 가능하다. 이온 교환 멤브레인(192)은 이온만 전달시킴으로써 방전과정에서 생기는 이온 불균형을 해소하게 된다.The ion exchange membrane 192 is installed in a form that blocks the inside of the connection passage 191. The ion exchange membrane 192 allows only the movement of ions between the cathode portion 110 and the anode portion 150. The potassium ion (K + ) contained in the second electrolyte solution 155 is moved to the first electrolyte solution 115 by the ion exchange membrane 192. In this embodiment, as the ion exchange membrane 192, a fluorine resin-based cation exchange membrane developed by DuPont, USA, is used to describe that Nafion is used, but the present technology is not limited thereto, and potassium ion ( Anything that allows only the movement of K + ) is possible. The ion exchange membrane 192 eliminates ion imbalance generated in the discharge process by transferring only ions.
도 7에서 설명되지 않은 도면 부호의 구성은 도 1에 도시된 실시예에서 같은 도면부호로 지시된 구성과 동일하다.The configuration of reference numerals not described in FIG. 7 is the same as the configuration indicated by the same reference numerals in the embodiment illustrated in FIG. 1.
도 8은 본 기술의 또 다른 일 실시예에 따른 이차전지의 방전과정을 도시한 모식도이다. 도 8을 참조하면, 이차전지(100)는 캐소드부(110)와, 애노드부(150)와, 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190)와, 이산화탄소 처리부(120)와, 이산화탄소 순환 공급부(130)와, 캐소드부(110)와 이산화탄소 처리부(120)를 연통시키는 연결관(140)을 포함한다. 캐소드부(110), 애노드부(150) 및 연결부(190)는 도 7에 도시된 실시예에서 설명된 것과 동일하며, 이산화탄소 처리부(120), 이산화탄소 순환 공급부(130) 및 연결관(140)은 도 6에 도시된 대응하는 구성과 동일하므로 이에 대한 상세한 설명은 생략한다. 도 8에 도시된 구성의 이차전지(100)도 도 2 내지 도 5를 통해 설명된 바와 같이 바람직하기로는 60℃ 내지 80℃의 온도범위, 더욱 바람직하기로는 70℃의 온도에서 우수한 성능을 발휘하게 된다. 도 8에서 설명되지 않은 도면부호의 구성은 도 6에 도시된 실시예에서 같은 도면부호로 지시된 구성과 동일하다.8 is a schematic diagram showing a discharge process of a secondary battery according to another embodiment of the present technology. Referring to FIG. 8, the secondary battery 100 includes a cathode unit 110, an anode unit 150, a connection unit 190 connecting the cathode unit 110 and the anode unit 150, and a carbon dioxide processing unit 120 ), the carbon dioxide circulation supply unit 130, and the cathode 110 and the carbon dioxide processing unit 120, the communication pipe 140 for communicating. The cathode unit 110, the anode unit 150, and the connection unit 190 are the same as those described in the embodiment shown in FIG. 7, and the carbon dioxide processing unit 120, the carbon dioxide circulation supply unit 130, and the connection pipe 140 are Since it is the same as the corresponding configuration shown in FIG. 6, detailed description thereof will be omitted. The secondary battery 100 of the configuration shown in FIG. 8 also preferably exhibits excellent performance at a temperature range of 60° C. to 80° C., more preferably 70° C., as described through FIGS. 2 to 5. do. The configuration of reference numerals not described in FIG. 8 is the same as the configuration indicated by the same reference numerals in the embodiment illustrated in FIG. 6.
도 9는 본 기술의 또 다른 일 실시예에 따른 이차전지의 방전과정을 설명하는 모식도이다. 도 9를 참조하면, 이차전지(100)는 캐소드부(110)와, 애노드부(150)와 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190)를 포함한다. 캐소드부(110) 및 애노드부(250)는 도 7에 도시된 실시예의 대응하는 구성과 동일하므로 이에 대한 상세한 설명은 생략한다. 도 9에 도시된 구성의 이차전지(100)도 도 2 내지 도 5를 통해 설명된 바와 같이 바람직하기로는 60℃ 내지 80℃의 온도범위, 더욱 바람직하기로는 70℃의 온도에서 우수한 성능을 발휘하게 된다. 9 is a schematic diagram illustrating a discharge process of a secondary battery according to another embodiment of the present technology. Referring to FIG. 9, the secondary battery 100 includes a cathode unit 110, an anode unit 150, a connection unit 190 connecting the cathode unit 110 and the anode unit 150. The cathode unit 110 and the anode unit 250 are the same as the corresponding components of the embodiment illustrated in FIG. 7, so a detailed description thereof will be omitted. The secondary battery 100 of the configuration shown in FIG. 9 also preferably exhibits excellent performance at a temperature range of 60° C. to 80° C., more preferably at a temperature of 70° C., as described through FIGS. 2 to 5. do.
연결부(190)는 캐소드부(110)와 애노드부(150)를 연결하는 연결 통로(191)와, 연결 통로(191)의 내부에 설치되는 이온 교환 멤브레인(membrane)(192)를 구비한다.The connection part 190 includes a connection passage 191 connecting the cathode part 110 and the anode part 150 and an ion exchange membrane 192 installed inside the connection passage 191.
연결 통로(191)는 도 7에 도시된 실시예의 연결 통로(191)와 동일하며, 연결 통로(191)의 내부에 이온 교환 멤브레인(192)이 설치된다.The connection passage 191 is the same as the connection passage 191 of the embodiment shown in FIG. 7, and an ion exchange membrane 192 is installed inside the connection passage 191.
이온 교환 멤브레인(192)은 연결 통로(191)의 내부를 막는 형태로 설치된다. 이온 교환 멤브레인(192)은 캐소드부(110)와 애노드부(150)의 사이에 이온의 이동만을 허용한다. 이온 교환 멤브레인(192)을 통해 제1 전해액(115)에 포함된 수산화 이온(OH-)이 제2 전해액(155)으로 이동한다. 본 실시예에서는 이온 교환 멤브레인(192)으로서, 미국의 듀퐁사에서 개발된 불소 수지계의 카티온 교환막인 내피온(Nafion)이 사용되는 것으로 설명하는데, 본 기술은 이에 제한되는 것은 아니며, 수산화 이온(OH-)의 이동만을 허용하는 것이면 모두 가능하다. 이온 교환 멤브레인(192)에 의해 수산화 이온(OH-)이 캐소드부(110)로부터 애노드부(150)로 전달됨으써 방전과정에서 생기는 이온 불균형을 해소하게 된다.The ion exchange membrane 192 is installed in a form that blocks the inside of the connection passage 191. The ion exchange membrane 192 allows only the movement of ions between the cathode portion 110 and the anode portion 150. Through the ion exchange membrane 192, the hydroxide ions contained in the first electrolyte solution (115) (OH -) is moved in the second electrolyte 155. In this embodiment, as the ion exchange membrane 192, it is described that a fluorine resin-based cation exchange membrane Nafion developed by DuPont of the United States is used, but the present technology is not limited thereto, and hydroxide ions ( all as long as it is possible that only) movement of the - OH. Hydroxide ions by an ion exchange membrane (192) (OH -) is written doemeu delivered from the cathode 110 to the anode 150, thereby eliminating the ion imbalance caused in the discharge process.
도 9에서 설명되지 않은 도면부호의 구성은 도 7에 도시된 실시예에서 같은 도면부호로 지시된 구성과 동일하다.The configuration of reference numerals not described in FIG. 9 is the same as the configuration indicated by the same reference numerals in the embodiment illustrated in FIG. 7.
도 10은 본 기술의 또 다른 일 실시예에 따른 이차전지의 방전과정을 도시한 모식도이다. 도 10을 참조하면, 이차전지(100)는 캐소드부(110)와, 애노드부(150)와, 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190)와, 이산화탄소 처리부(120)와, 이산화탄소 순환 공급부(130)와, 캐소드부(110)와 이산화탄소 처리부(120)를 연통시키는 연결관(140)을 포함한다. 캐소드부(110), 애노드부(150) 및 연결부(190)는 도 9에 도시된 실시예에서 설명된 것과 동일하며, 이산화탄소 처리부(120), 이산화탄소 순환 공급부(130) 및 연결관(140)은 도 8에 도시된 대응하는 구성과 동일하므로 이에 대한 상세한 설명은 생략한다. 도 10에 도시된 구성의 이차전지(100)도 도 2 내지 도 5를 통해 설명된 바와 같이 바람직하기로는 60℃ 내지 80℃의 온도범위, 더욱 바람직하기로는 70℃의 온도에서 우수한 성능을 발휘하게 된다. 도 10에서 설명되지 않은 도면부호의 구성은 도 8에 도시된 실시예에서 같은 도면부호로 지시된 구성과 동일하다.10 is a schematic diagram showing a discharge process of a secondary battery according to another embodiment of the present technology. Referring to FIG. 10, the secondary battery 100 includes a cathode unit 110, an anode unit 150, a connection unit 190 connecting the cathode unit 110 and the anode unit 150, and a carbon dioxide processing unit 120 ), the carbon dioxide circulation supply unit 130, and the cathode 110 and the carbon dioxide processing unit 120, the communication pipe 140 for communicating. The cathode unit 110, the anode unit 150, and the connection unit 190 are the same as those described in the embodiment shown in FIG. 9, and the carbon dioxide processing unit 120, the carbon dioxide circulation supply unit 130, and the connection pipe 140 are Since it is the same as the corresponding configuration shown in FIG. 8, detailed description thereof will be omitted. The secondary battery 100 of the configuration shown in FIG. 10 also preferably exhibits excellent performance at a temperature range of 60° C. to 80° C., more preferably 70° C., as described through FIGS. 2 to 5. do. The configuration of reference numerals not described in FIG. 10 is the same as the configuration indicated by the same reference numerals in the embodiment illustrated in FIG. 8.
도 1과 도 6에 도시된 실시예에서 연결부(190) 대신에 제1 전해액(115)과 제2 전해액(155)을 연결하는 염다리(salt bridge)가 사용될 수 있으며, 이 또한 본 기술의 범위에 속하는 것이다. 염다리가 사용되는 경우, 염다리의 내부 용액으로는 염화칼륨(KCl), 염화나트륨(NaCl) 등 통상적으로 사용되는 염다리 내부 용액이 사용될 수 있다. 염다리가 사용되는 경우에, 방전이 진행되면서 제1 전해액(115)에는 HCO3 -(중탄산이온)이 생성되는데, 염다리의 내부 용액이 염화나트륨(NaCl)과 같이 나트륨 이온(Na+)을 포함하는 경우, 이온 균형을 맞추기 위하여 염다리로부터 나트륨 이온이 확산되어서 탄산수소나트륨(NaHCO3) 수용액 형태의 이온으로 존재하게 된다. 이 용액을 건조하면 베이킹소다 형태의 탄산나트륨 고체 생성물이 부가적으로 획득된다.In the embodiment shown in FIGS. 1 and 6, a salt bridge connecting the first electrolyte 115 and the second electrolyte 155 may be used instead of the connecting portion 190, which is also within the scope of the present technology. Belong. When a salt bridge is used, an internal solution of a salt bridge that is commonly used, such as potassium chloride (KCl) or sodium chloride (NaCl), may be used as the internal solution of the salt bridge. When a salt bridge is used, as discharge proceeds, HCO 3 (bicarbonate ions) is generated in the first electrolyte 115, when the solution inside the salt bridge contains sodium ions (Na + ) such as sodium chloride (NaCl). , In order to balance the ions, sodium ions are diffused from the salt bridge and exist as ions in the form of an aqueous sodium hydrogen carbonate (NaHCO 3 ) solution. When the solution is dried, a sodium carbonate solid product in the form of baking soda is additionally obtained.
도 11은 본 기술의 또 다른 일 실시예에 따른 이차전지의 방전과정을 도시한 모식도이다. 도 11을 참조하면, 이차전지(100)는 내부에 반응 공간(211)을 제공하는 반응 용기(210)와, 반응 공간(211)에 담긴 수계전해질인 전해액(215)과, 반응 공간(211)에서 전해액(215)에 적어도 일부가 잠기는 캐소드(118)와, 반응 공간(211)에서 전해액(215)에 적어도 일부가 잠기는 애노드(158)를 포함한다. 이차전지(100)는 방전과정에서 온실가스인 이산화탄소 기체(CO2)를 원료로 사용하여 친환경 연료인 수소(H2)를 생산한다.11 is a schematic diagram showing a discharge process of a secondary battery according to another embodiment of the present technology. Referring to FIG. 11, the secondary battery 100 includes a reaction vessel 210 providing a reaction space 211 therein, an electrolyte 215 serving as an aqueous electrolyte contained in the reaction space 211, and a reaction space 211. In at least a portion of the cathode 118 is immersed in the electrolyte 215, and the anode 158 is immersed in the electrolyte 215 in the reaction space 211. The secondary battery 100 uses the carbon dioxide gas (CO 2 ), which is a greenhouse gas, as a raw material in the discharge process to produce hydrogen (H 2 ), which is an eco-friendly fuel.
반응 용기(210)는 내부에 전해액(215)이 담기고 캐소드(118)와 애노드(158)가 수용되는 반응 공간(211)을 제공한다. 반응 용기(210)에는 반응 공간(211)과 연통되는 제1 유입구(212)와 제1 배출구(213)가 형성된다. 제1 유입구(212)는 전해액(215)의 수면보다 아래에 위치하도록 반응 공간(211)의 하부에 위치한다. 제1 배출구(213)는 전해액(215)의 수면보다 위에 위치하도록 반응 공간(211)의 상부에 위치한다. 제1 유입구(212)를 통해 방전과정에서 원료로 사용되는 이산화탄소 가스가 반응 공간(211)으로 유입되는데, 필요 시 전해액(215)도 유입될 수 있다. 제1 배출구(213)를 통해서는 충방전 과정에서 생성된 가스가 외부로 배출된다. 도시되지는 않았으나, 제1 유입구(212)와 제1 배출구(213)는 충전 및 방전시 밸브 등에 의해 선택적으로 적절히 시기에 맞춰서 개폐될 수 있다. 반응 공간(211)에서는 방전 과정에서 이산화탄소 용리 반응이 일어난다.The reaction vessel 210 provides a reaction space 211 in which the electrolyte 215 is contained and the cathode 118 and the anode 158 are accommodated. A first inlet 212 and a first outlet 213 in communication with the reaction space 211 are formed in the reaction vessel 210. The first inlet 212 is positioned below the reaction space 211 to be positioned below the water surface of the electrolyte 215. The first outlet 213 is positioned above the reaction space 211 so as to be positioned above the water surface of the electrolyte 215. Carbon dioxide gas used as a raw material in the discharge process is introduced into the reaction space 211 through the first inlet 212, and an electrolyte 215 may also be introduced if necessary. Gas generated in the process of charging and discharging is discharged to the outside through the first outlet 213. Although not shown, the first inlet 212 and the first outlet 213 may be selectively opened and closed in a timely manner by a valve or the like during charging and discharging. In the reaction space 211, carbon dioxide elution reaction occurs in the discharge process.
수계전해질인 전해액(215)은 반응 공간(211)에 담기며, 전해액(215)에 캐소드(118)의 적어도 일부와 애노드(158)의 적어도 일부가 잠긴다. 본 실시예에서 전해액(115)으로 염기성 용액 또는 해수가 사용되는 것으로 설명한다. 전해액(215)은 방전과정에서 제1 유입구(212)를 통해 유입되는 이산화탄소 가스에 의해 약산성을 띄게 된다.The electrolyte 215, which is an aqueous electrolyte, is contained in the reaction space 211, and at least a portion of the cathode 118 and at least a portion of the anode 158 are immersed in the electrolyte 215. In this embodiment, it will be described that a basic solution or seawater is used as the electrolyte 115. The electrolytic solution 215 becomes weakly acidic by the carbon dioxide gas flowing through the first inlet 212 during the discharge process.
캐소드(118)는 반응 공간(211)에서 전해액(215)에 적어도 일부가 잠긴다. 캐소드(118)는 반응 공간(211)에서 애노드(158)보다 제1 유입구(212)에 상대적으로 가깝게 위치한다. 캐소드(118)는 전기 회로를 형성하기 위한 전극으로서, 탄소 페이퍼, 탄소 섬유, 탄소 펠트, 탄소 천, 금속 폼, 금속박막, 또는 이들의 조합일 수 있으며, 백금 촉매도 사용될 수 있다. 촉매의 경우, 백금 촉매 외에 탄소 계열 촉매, 탄소-금속 계열 복합 촉매, 페로브스카이트 산화물 촉매 등 일반적으로 수소발생반응(HER) 촉매로 사용될 수 있는 다른 모든 촉매도 포함한다. 방전 시 캐소드(118)에서는 환원 반응이 일어나며, 그에 따라 수소가 발생하게 된다.The cathode 118 is at least partially immersed in the electrolyte 215 in the reaction space 211. The cathode 118 is positioned relatively closer to the first inlet 212 than the anode 158 in the reaction space 211. The cathode 118 is an electrode for forming an electrical circuit, and may be carbon paper, carbon fiber, carbon felt, carbon cloth, metal foam, metal thin film, or a combination thereof, and a platinum catalyst may also be used. In the case of the catalyst, in addition to the platinum catalyst, all other catalysts that can be generally used as a hydrogen generation reaction (HER) catalyst, such as a carbon-based catalyst, a carbon-metal-based composite catalyst, and a perovskite oxide catalyst, are also included. During discharge, a reduction reaction occurs at the cathode 118, and hydrogen is generated accordingly.
애노드(158)는 반응 공간(211)에서 전해액(215)에 적어도 일부가 잠긴다. 애노드(158)는 반응 공간(211)에서 캐소드(118)보다 제1 유입구(212)와 상대적으로 멀게 위치한다. 애노드(158)는 전기 회로를 이루는 금속 재질의 전극으로서, 본 실시예에서는 애노드(158)로 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 알루미늄(Al) 또는 아연(Zn)이 사용되는 것으로 설명한다. 방전 시 애노드(158)에서는 약산성 환경에 따른 산화 반응이 일어나게 된다.The anode 158 is at least partially immersed in the electrolyte 215 in the reaction space 211. The anode 158 is located relatively far from the first inlet 212 in the reaction space 211 than the cathode 118. The anode 158 is an electrode of a metal material constituting an electrical circuit, and in this embodiment, as the anode 158, vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel It is explained that (Ni), copper (Cu), aluminum (Al) or zinc (Zn) is used. During discharge, an oxidation reaction occurs in the anode 158 according to the weakly acidic environment.
도 11에 도시된 구성의 이차전지(100)도 도 2 내지 도 5를 통해 설명된 바와 같이 바람직하기로는 60℃ 내지 80℃의 온도범위, 더욱 바라직하기로는 70℃의 온도에서 우수한 성능을 발휘하게 된다.The secondary battery 100 of the configuration shown in FIG. 11 also preferably exhibits excellent performance at a temperature range of 60° C. to 80° C., more preferably 70° C., as described through FIGS. 2 to 5. Is done.
이제, 위에서 구성 중심으로 설명된 이차전지(100)의 방전 과정이 상세하게 설명된다. 도 11에는 이차전지(100)의 방전과정이 함께 도시되어 있다. 도 11을 참조하면, 방전시 제1 유입구(212)를 통해 전해액(215)로 이산화탄소 가스가 주입되며, 반응 공간(211)에서는 상기 [반응식 1]과 같은 이산화탄소의 화학적 용리 반응이 이루어진다. 즉, 반응 공간(211)으로 공급된 이산화탄소(CO2)가 전해액(215)의 물(H2O)과 자발적인 화학반응을 통해 수소 양이온(H+)과 중탄산염(HCO3 -)이 생성된다.Now, the process of discharging the secondary battery 100 described above as a configuration center will be described in detail. 11 shows the discharge process of the secondary battery 100 together. Referring to FIG. 11, carbon dioxide gas is injected into the electrolyte solution 215 through the first inlet 212 during discharge, and a chemical elution reaction of carbon dioxide as in [Reaction Scheme 1] is performed in the reaction space 211. That is, carbon dioxide (CO 2 ) supplied to the reaction space 211 generates hydrogen cations (H + ) and bicarbonate (HCO 3 ) through spontaneous chemical reactions with water (H 2 O) of the electrolyte 215.
또한, 캐소드(118)에서는 상기 [반응식 2]와 같은 전기적 반응이 이루어진다. 즉, 캐소드(118) 주변에서 수소 양이온(H+)은 캐소드(118)로부터 전자(e-)를 받아서 수소(H2) 기체가 발생하게 된다. 발생된 수소(H2) 기체는 제1 배출구(213)를 통해서 외부로 배출된다.In addition, an electrical reaction such as [Scheme 2] is performed at the cathode 118. That is, hydrogen cations (H + ) in the vicinity of the cathode 118 receive electrons (e ) from the cathode 118 to generate hydrogen (H 2 ) gas. The generated hydrogen (H 2 ) gas is discharged to the outside through the first outlet 213.
아울러, 캐소드(118) 주변에서는 상기 [반응식 3]과 같은 복합 수소발생 반응이 이루어진다.In addition, a complex hydrogen generating reaction such as [Scheme 3] is performed around the cathode 118.
그리고, 애노드(158)에서는 애노드(158)가 아연(Zn)인 경우에 상기 [반응식 4]와 같은 산화 반응이 이루어진다.Then, in the anode 158, when the anode 158 is zinc (Zn), an oxidation reaction as in [Reaction Scheme 4] is performed.
결국, 애노드(158)가 아연(Zn)인 경우에 방전과정에서 이루어지는 전체 반응식은 상기 [반응식 5]와 같다.As a result, when the anode 158 is zinc (Zn), the overall reaction formula formed in the discharge process is the same as [Reaction Scheme 5].
만일, 애노드(158)가 알루미늄(Al)인 경우에 상기 [반응식 6]과 같은 산화 반응이 이루어진다.If, when the anode 158 is aluminum (Al), the oxidation reaction as shown in [Scheme 6] is performed.
결국, 애노드(158)가 알루미늄(Al)인 경우에 방전과정에서 이루어지는 전체 반응식은 상기 [반응식 7]과 같다.As a result, when the anode 158 is aluminum (Al), the overall reaction equation formed in the discharge process is the same as [Scheme 7].
결과적으로, 방전 시 수계전해질인 전해액(215)에서 용리된 이산화탄소에 의해 생성된 수소 이온이 캐소드(118)로부터 전자를 받아서 수소 기체로 환원되어서, 제1 배출구(213)를 통해 배출되고, 금속 애노드(158)는 산화물의 형태로 변하게 된다.As a result, during discharge, hydrogen ions generated by carbon dioxide eluted from the electrolyte 215, which is an aqueous electrolyte, receive electrons from the cathode 118 and are reduced to hydrogen gas, discharged through the first outlet 213, and discharged through the metal anode 158 is changed to an oxide form.
도 12는 본 기술의 또 다른 일 실시예에 따른 이차전지의 방전과정을 도시한 모식도이다. 도 12를 참조하면, 이차전지(100)는 내부에 반응 공간(211)을 제공하는 반응 용기(210)와, 반응 공간(211)에 담긴 전해액(215)과, 반응 공간(211)에서 전해액(215)에 적어도 일부가 잠기는 캐소드(cathode)(118)와, 반응 공간(211)에서 전해액(215)에 적어도 일부가 잠기는 애노드(anode)(158)와, 이산화탄소 처리부(120)와, 이산화탄소 순환 공급부(130)와, 반응 용기(210)과 이산화탄소 처리부(120)를 연결하는 연결관(140)을 포함한다. 반응용기(210), 전해액(215), 캐소드(118) 및 애노드(158)은 도 11에 도시된 실시예에서 설명된 대응하는 구성들 각각과 동일하며, 이산화탄소 처리부(120), 이산화탄소 순환 공급부(130) 및 연결관(140)은 도 6에 도시된 대응하는 구성들 각각과 동일하므로 이에 대한 상세한 설명은 생략한다. 도 12에 도시된 구성의 이차전지(100)도 도 2 내지 도 5를 통해 설명된 바와 같이 바람직하기로는 60℃ 내지 80℃의 온도범위, 더욱 바라직하기로는 70℃의 온도에서 우수한 성능을 발휘하게 된다.12 is a schematic diagram showing a discharge process of a secondary battery according to another embodiment of the present technology. Referring to FIG. 12, the secondary battery 100 includes a reaction vessel 210 that provides a reaction space 211 therein, an electrolyte solution 215 contained in the reaction space 211, and an electrolyte solution in the reaction space 211 ( Cathode 118 at least partially immersed in 215, anode 158 at least partially immersed in electrolyte 215 in reaction space 211, carbon dioxide processing unit 120, and carbon dioxide circulation supply unit 130, and a connection pipe 140 for connecting the reaction vessel 210 and the carbon dioxide treatment unit 120. The reaction vessel 210, the electrolyte 215, the cathode 118, and the anode 158 are the same as each of the corresponding configurations described in the embodiment shown in FIG. 11, and the carbon dioxide processing unit 120, the carbon dioxide circulation supply unit ( 130) and the connector 140 is the same as each of the corresponding components shown in FIG. 6, so a detailed description thereof will be omitted. The secondary battery 100 of the configuration shown in FIG. 12 also preferably exhibits excellent performance at a temperature range of 60° C. to 80° C., more preferably 70° C., as described through FIGS. 2 to 5. Is done.
도 13에는 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지의 구성이 도시되어 있다. 도 13을 참조하면, 이차전지(100)는 캐소드부(110)와, 애노드부(150)와, 애노드부(150)와 연결되는 전해액 순환부(180)와, 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190)를 포함한다. 이차전지(100)는 방전과정에서 온실가스인 이산화탄소 기체(CO2)를 원료로 사용하여 친환경 연료인 수소(H2)를 생산한다. 캐소드부(110), 애노드부(150) 및 연결부(190)는 도 1에 도시된 실시예에서 대응하는 구성과 동일하므로 이에 대한 상세한 설명은 생략한다.13 shows a configuration of a secondary battery for producing hydrogen using carbon dioxide according to another embodiment of the present technology. Referring to FIG. 13, the secondary battery 100 includes a cathode unit 110, an anode unit 150, an electrolyte circulation unit 180 connected to the anode unit 150, a cathode unit 110, and an anode unit It includes a connecting portion 190 for connecting the (150). The secondary battery 100 uses the carbon dioxide gas (CO 2 ), which is a greenhouse gas, as a raw material in the discharge process to produce hydrogen (H 2 ), which is an eco-friendly fuel. The cathode unit 110, the anode unit 150, and the connection unit 190 are the same as the corresponding components in the embodiment illustrated in FIG. 1, so a detailed description thereof will be omitted.
애노드(158)에는 애노드(158)를 관통하는 제1 관통구(1581)와 제2 관통구(1582)가 형성된다. 제1 관통구(1581)를 통해서는 전해액 순환부(180)로부터 공급되는 제1 전해액(155)이 제2 반응 공간(151)으로 유입되며, 제2 관통구(1582)를 통해서는 제2 반응 공간(151)의 제2 전해액(155)이 전해액 순환부(180)로 배출된다. 애노드부(150)에는 제2 반응 공간(151)과 연통되는 제2 연결구(154)가 형성된다. The anode 158 is formed with a first through hole 1581 and a second through hole 1582 passing through the anode 158. The first electrolyte 155 supplied from the electrolyte circulation unit 180 flows into the second reaction space 151 through the first through hole 1561, and the second reaction through the second through hole 1582. The second electrolyte 155 in the space 151 is discharged to the electrolyte circulation unit 180. A second connector 154 communicating with the second reaction space 151 is formed in the anode unit 150.
전해액 순환부(180)는 애노드부(150)에서 사용되는 제2 전해액(155)을 순환시킨다. 전해액 순환부(180)는 애노드부(150)에서 사용되는 제2 전해액(155)이 저장되는 전해액 저장 공간(181)을 내부에 제공하는 전해액 저장 용기(182)와, 전해액 저장 공간(181)과 애노드부(150)의 제2 반응 공간(151)을 연통시키는 제1 순환관(184) 및 제2 순환관(185)과, 전해액 저장 공간(181)과 제2 반응 공간(151) 사이에서 제2 전해액(155)이 순환하도록 제2 전해액(155)을 유동시키는 순환 펌프(188)를 구비한다.The electrolyte circulating portion 180 circulates the second electrolyte 155 used in the anode portion 150. The electrolyte circulation unit 180 includes an electrolyte storage container 182 and an electrolyte storage space 181 that provide an electrolyte storage space 181 in which the second electrolyte 155 used in the anode 150 is stored. The first circulation pipe 184 and the second circulation pipe 185 communicating with the second reaction space 151 of the anode 150 and the electrolyte storage space 181 and the second reaction space 151 are removed. 2 is provided with a circulation pump 188 for flowing the second electrolyte 155 so that the electrolyte 155 circulates.
전해액 저장 용기(182)는 내부에 전해액 저장 공간(181)을 제공하며, 전해액 저장 공간(181)에는 애노드부(150)에서 사용되는 제2 전해액(155)이 저장된다. 전해액 저장 공간(181)은 제1 순환관(184) 및 제2 순환관(185)을 통해 애노드부(150)의 제2 반응 공간(151)과 연통된다. 전해액 저장 공간(181)에 저장된 제2 전해액(155)은 제1 순환관(184)을 통해서 제2 반응 공간(151)으로 공급된다. 또한, 전해액 저장 공간(181)으로 제2 순환관(185)을 통해 제2 반응 공간(151)에 저장된 제2 전해액(155)이 유입된다.The electrolyte storage container 182 provides an electrolyte storage space 181 therein, and a second electrolyte 155 used in the anode unit 150 is stored in the electrolyte storage space 181. The electrolyte storage space 181 communicates with the second reaction space 151 of the anode unit 150 through the first circulation pipe 184 and the second circulation pipe 185. The second electrolyte 155 stored in the electrolyte storage space 181 is supplied to the second reaction space 151 through the first circulation tube 184. In addition, the second electrolyte 155 stored in the second reaction space 151 flows through the second circulation pipe 185 into the electrolyte storage space 181.
제1 순환관(184)은 전해액 저장 공간(181)과 제2 반응 공간(151)을 연통시킨다. 제1 순환관(184)을 통해서 전해액 저장 용기(182)에 저장된 제2 전해액(155)이 제2 반응 공간(151)으로 유동한다. 제1 순환관(184)은 제2 반응 공간(151)에서 애노드(158)에 형성된 제1 관통구(1581)과 직접 연결된다. 그에 따라, 전해액 저장 공간(181)으로부터 제1 순환관(184)을 통해 유동하는 제2 전해액(155)은 제1 관통구(1581)를 통해 제2 반응 공간(151)으로 배출된다.The first circulation pipe 184 communicates the electrolyte storage space 181 and the second reaction space 151. The second electrolyte 155 stored in the electrolyte storage container 182 flows through the first circulation pipe 184 to the second reaction space 151. The first circulation pipe 184 is directly connected to the first through hole 1581 formed in the anode 158 in the second reaction space 151. Accordingly, the second electrolyte 155 flowing through the first circulation pipe 184 from the electrolyte storage space 181 is discharged to the second reaction space 151 through the first through hole 1581.
제2 순환관(185)은 전해액 저장 공간(181)과 제2 반응 공간(151)을 연통시킨다. 제2 순환관(185)을 통해서 제2 반응 공간(151)에 저장된 제2 전해액(155)이 전해액 저장 용기(182)로 유동한다. 제2 순환관(185)은 제2 반응 공간(151)에서 애노드(158)에 형성된 제2 관통구(1582)와 직접 연결된다. 그에 따라, 제2 반응 공간(151)의 제2 전해액(155)은 애노드(158)의 제2 관통구(1582)와 제2 순환관(185)을 차례대로 거쳐서 전해액 저장 용기(182)로 유동한다.The second circulation pipe 185 communicates the electrolyte storage space 181 and the second reaction space 151. The second electrolyte 155 stored in the second reaction space 151 flows through the second circulation pipe 185 to the electrolyte storage container 182. The second circulation pipe 185 is directly connected to the second through hole 1582 formed in the anode 158 in the second reaction space 151. Accordingly, the second electrolyte solution 155 of the second reaction space 151 flows through the second through hole 1582 of the anode 158 and the second circulation tube 185 in sequence to the electrolyte storage container 182. do.
순환 펌프(188)는 전해액 저장 공간(181)과 제2 반응 공간(151) 사이에서 제2 전해액(155)이 순환하도록 제2 전해액(155)을 유동시킨다. 본 실시예에서는 순환 펌프(188)가 제1 순환관(184)에 설치되는 것을 설명하는데, 이와는 달리 제2 순환관(185) 등 다른 적절한 위치에 설치될 수 있으며, 이 또한 본 기술의 범위에 속하는 것이다.The circulation pump 188 flows the second electrolyte 155 such that the second electrolyte 155 circulates between the electrolyte storage space 181 and the second reaction space 151. In this embodiment, the circulation pump 188 is described as being installed in the first circulation pipe 184. Alternatively, the second circulation pipe 185 may be installed at another suitable location, which is also within the scope of the present technology. Belong.
전해액 순환부(180)에 의해 전해액 저장 공간(181)과 제2 반응 공간(151) 사이에서 제2 전해액(155)이 애노드(158)의 두 관통구(1581, 1582)를 통과하면서 순환함에 따라, 애노드(158)의 부식을 늦출 수 있으며, 애노드(158)의 표면에 부식되어 쌓여있던 금속 산화물이 씻겨짐으로써 방전 용량이 크게 증가된다.As the second electrolyte 155 passes through the two through holes 1581 and 1582 of the anode 158 between the electrolyte storage space 181 and the second reaction space 151 by the electrolyte circulation unit 180 , It is possible to slow the corrosion of the anode 158, and the discharge capacity is greatly increased by washing away the metal oxide that has been accumulated by corrosion on the surface of the anode 158.
도 14는 본 기술의 또 다른 일 실시예에 따른 이산화탄소를 이용하여 수소를 생산하는 이차전지를 구비하는 복합 발전 시스템의 개략적인 구성을 도시한 도면이다. 도 14를 참조하면, 본 기술의 일 실시예에 따른 복합 발전 시스템(1000)은 방전과정에서 이산화탄소 기체(CO2)를 원료로 하여 수소 기체(H2)를 발생시키는 이차전지(100)와, 수소함유 연료로부터 수소가 풍부한 개질 가스를 생산하고 부가적으로 이산화탄소 기체(CO2)를 발생시키는 개질기(400)와, 수소와 산소를 이용하여 전기를 생산하는 연료전지(300)와, 개질기(400)에서 발생한 이산화탄소 기체를 이차전지(100)로 공급하는 이산화탄소 공급부(500)와, 이차전지(100)에서 발생한 수소 기체를 연료전지로 공급하는 수소 공급부(600)와, 개질기(400)에서 생산된 개질 가스를 연료전지(300)로 공급하는 개질 가스 공급부(700)를 포함한다.14 is a view showing a schematic configuration of a complex power generation system having a secondary battery for producing hydrogen using carbon dioxide according to another embodiment of the present technology. Referring to FIG. 14, the combined power generation system 1000 according to an embodiment of the present technology includes a secondary battery 100 that generates hydrogen gas (H 2 ) using carbon dioxide gas (CO 2 ) as a raw material during a discharge process, A reformer 400 for producing hydrogen-rich reformed gas from hydrogen-containing fuel and additionally generating carbon dioxide gas (CO 2 ), a fuel cell 300 for producing electricity using hydrogen and oxygen, and a reformer 400 ) Produced by the carbon dioxide supply unit 500 for supplying the carbon dioxide gas generated in the secondary battery 100, the hydrogen supply unit 600 for supplying hydrogen gas generated in the secondary battery 100 to the fuel cell, and the reformer 400 It includes a reforming gas supply unit 700 for supplying the reformed gas to the fuel cell 300.
이차전지(100)는 앞서서 도 1을 통해 설명된 이차전지(100)로서, 도 1을 참고하여 상세하게 설명된 바와 같이 방전 과정에서 이산화탄소 기체를 원료로 사용하고 수소 기체를 발생시킨다. 이차전지(100)로 공급되는 이산화탄소 가스는 개질기(400)에서 발생하여 이산화탄소 공급부(500)를 통해 공급되는 이산화탄소 기체이다. 이차전지(100)에서 발생한 수소 기체는 수소 공급부(600)에 의해 연료전지(300)로 공급된다. 본 실시예에서는 도 1에 도시된 이차전지(100)가 복합 발전 시스템에 사용되는 것으로 설명하지만, 이와는 달리 도 6 내지 도 13에 도시된 실시예의 이차전지가 사용될 수 있으며, 이 또한 본 기술의 범위에 속하는 것이다. The secondary battery 100 is a secondary battery 100 previously described with reference to FIG. 1, and uses carbon dioxide gas as a raw material in the discharge process and generates hydrogen gas as described in detail with reference to FIG. 1. The carbon dioxide gas supplied to the secondary battery 100 is carbon dioxide gas generated from the reformer 400 and supplied through the carbon dioxide supply unit 500. The hydrogen gas generated in the secondary battery 100 is supplied to the fuel cell 300 by the hydrogen supply unit 600. In this embodiment, the secondary battery 100 illustrated in FIG. 1 is described as being used in a combined power generation system, but unlike this, the secondary batteries of the embodiments illustrated in FIGS. 6 to 13 may be used, which is also the scope of the present technology. It belongs to.
개질기(400)는 수소함유 연료로부터 수소가 풍부한 개질 가스를 생산하고 부가적으로 이산화탄소 가스를 발생시킨다. 이를 위하여, 본 실시예에서는 개질기(400)가 메탄(CH4)과 수증기(H2O)의 개질 반응에 의해 수소(H2)를 생산하는 메탄-수증기 개질기인 것으로 설명한다. The reformer 400 produces hydrogen-rich reformed gas from the hydrogen-containing fuel and additionally generates carbon dioxide gas. To this end, in this embodiment, the reformer 400 is described as a methane-steam reformer that produces hydrogen (H 2 ) by a reforming reaction of methane (CH 4 ) and water vapor (H 2 O).
메탄-수증기 개질기(400)는 공정 가격이 저렴하고 대량 생산이 가능한 장점들 때문에 수소 생산 공정 중 상당히 많은 부분을 차지하고 있다. 다음의 [반응식 8]는 메탄-수증기 개질기(400)의 개질 반응에 관한 것이다. The methane-steam reformer 400 occupies a considerable portion of the hydrogen production process because of the advantages of low process cost and mass production. The following [Scheme 8] relates to the reforming reaction of the methane-steam reformer 400.
[반응식 8] [Scheme 8]
CH4 + H2O -> CO + 3H2 CH 4 + H 2 O -> CO + 3H 2
CO + H2O -> CO2 + H2 CO + H 2 O -> CO 2 + H 2
즉 메탄과 수증기의 화학반응에 의해 일산화탄소(CO)와 수소가 생성되며, 연속적으로 일산화탄소와 수증기의 화학반응에 의해 최종적으로 수소가 생산될 수 있다. 메탄-수증기 개질기(400)에서 생산된 수소는 개질 가스 공급부(700)에 의해 연료전지(300) 등의 연료로 공급된다.That is, carbon monoxide (CO) and hydrogen are generated by the chemical reaction between methane and water vapor, and hydrogen can be finally produced by the chemical reaction between carbon monoxide and water vapor. Hydrogen produced in the methane-steam reformer 400 is supplied to the fuel, such as the fuel cell 300, by the reforming gas supply unit 700.
그런데 상기 메탄-수증기 개질기(400)는 상술한 많은 장점을 갖고 있지만, 상기 [반응식 8]에서 알 수 있는 바와 같이 그 공정의 운영을 위해 외부에서 수증기를 공급해줘야 하며, 수소 생산의 부산물로서 지구 온난화 환경문제의 주원인이 되는 이산화탄소가 발생될 수 밖에 없다는 문제점이 있다. 하지만 본 기술의 경우, 메탄-수증기 개질기(400)에서 발생되는 이산화탄소는 대기 중으로 방출되거나 별도의 이산화탄소 포집, 저장 공정으로 전달되는 대신, 이차전지(100)의 방전 반응을 위해 이산화탄소 공급부(500)에 의해 수계 이차전지(100)에 전달됨으로써 메탄-수증기 개질기(400)의 운영에 있어 필요악인 이산화탄소 발생 문제까지 해결될 수 있을 뿐만 아니라 이차전지(100)와 메탄-수증기 개질기(400)를 연계하는 시스템을 구축함에 따라 중복 공정이 생략될 수 있다. 메탄-수증기 개질기(400)는 공지된 기술이므로, 여기서 이에 대한 상세한 설명은 생략한다.However, the methane-steam reformer 400 has many of the above-mentioned advantages, but as can be seen from [Scheme 8], it is necessary to supply water vapor from the outside for the operation of the process, and global warming as a by-product of hydrogen production. There is a problem that carbon dioxide, which is a main cause of environmental problems, is forced to be generated. However, in the case of the present technology, carbon dioxide generated from the methane-steam reformer 400 is discharged into the atmosphere or transferred to a separate carbon dioxide capture and storage process, instead of being supplied to the carbon dioxide supply unit 500 for the discharge reaction of the secondary battery 100 By being delivered to the water-based secondary battery 100, a system for linking the secondary battery 100 and the methane-steam reformer 400 can be solved as well as solving the problem of generating carbon dioxide, which is a necessary evil in the operation of the methane-steam reformer 400. By constructing the, duplicate process can be omitted. Since the methane-steam reformer 400 is a known technique, detailed description thereof is omitted here.
연료전지(300)는 수소와 산소의 화학반응에 의해 물이 생성됨과 아울러 전기에너지를 발생시키는 것이다. 연료전지(300)는 친환경적인 측면에서 많은 장점을 가지고 있지만, 상기 메탄-수증기 개질기(400) 등으로부터 추출된 수소를 공급받아야 한다. 하지만 본 기술의 경우, 연료전지(300)는 이차전지(100)와 하나의 시스템으로 구축됨으로써 이차전지(100)의 방전 과정에서 발생하는 수소 기체를 공급받음으로써, 효율이 현저하게 향상될 수 있다.In the fuel cell 300, water is generated by a chemical reaction between hydrogen and oxygen, and electric energy is generated. The fuel cell 300 has many advantages in terms of eco-friendliness, but must be supplied with hydrogen extracted from the methane-steam reformer 400 and the like. However, in the case of the present technology, the fuel cell 300 is constructed as one system with the secondary battery 100, so that hydrogen gas generated in the process of discharging the secondary battery 100 is supplied, so that efficiency can be significantly improved. .
이산화탄소 공급부(500)는 개질기(400)에서 부산물로 발생한 이산화탄소 기체를 이차전지(100)로 공급한다.The carbon dioxide supply unit 500 supplies carbon dioxide gas generated as a by-product in the reformer 400 to the secondary battery 100.
수소 공급부(600)는 이차전지(100)의 방전 과정에서 부산물로 발생하는 수소 기체를 연료전지(300)의 연료로 공급한다.The hydrogen supply unit 600 supplies hydrogen gas generated as a by-product in the discharge process of the secondary battery 100 as fuel of the fuel cell 300.
개질 가스 공급부(700)는 개질기(400)에서 생산된 개질 가스를 연료전지(300)의 연료로 공급한다.The reforming gas supply unit 700 supplies the reformed gas produced by the reformer 400 as fuel of the fuel cell 300.
도 15 내지 도 21에는 도 13에 도시된 실시예의 이차전지(100)를 대신하여 도 21의 시스템에 사용될 수 있는 이차전지들 각각에 대한 구성들이 도시되어 있다.15 to 21 show configurations for each of the secondary batteries that can be used in the system of FIG. 21 in place of the secondary battery 100 of the embodiment shown in FIG. 13.
도 15는 본 기술의 또 다른 일 실시예에 따른 이차전지의 방전과정을 도시한 모식도이다. 도 15를 참조하면, 이차전지(100)는 캐소드부(110)와, 애노드부(150)와, 애노드부(150)와 연결되는 전해액 순환부(180)와, 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190)와, 이산화탄소 처리부(120)와, 이산화탄소 순환 공급부(130)와, 캐소드부(110)와 이산화탄소 처리부(120)를 연통시키는 연결관(140)을 포함한다. 캐소드부(110), 애노드부(150), 전해액 순환부(180) 및 연결부(190)는 도 13에 도시된 실시예에서 설명된 것과 동일하므로 이에 대한 상세한 설명은 생략한다.15 is a schematic diagram showing a discharge process of a secondary battery according to another embodiment of the present technology. Referring to FIG. 15, the secondary battery 100 includes a cathode unit 110, an anode unit 150, an electrolyte circulation unit 180 connected to the anode unit 150, a cathode unit 110, and an anode unit It includes a connecting portion 190 for connecting the 150, the carbon dioxide processing unit 120, the carbon dioxide circulation supply unit 130, the cathode 110 and the connection pipe 140 for communicating the carbon dioxide processing unit 120. The cathode unit 110, the anode unit 150, the electrolyte circulation unit 180, and the connection unit 190 are the same as those described in the embodiment illustrated in FIG. 13, and thus detailed description thereof will be omitted.
이산화탄소 처리부(120)는, 내부에 수용 공간(121)을 제공하는 수용 용기(120a)와, 수용 공간(121)에 수용되고 캐소드부(110)의 제1 전해액(115)과 동일한 전애액인 제1 전해액(115)을 구비한다. 수용 용기(120a)에는 수용 공간(121)으로 이산화탄소 기체가 유입되는 제2 유입구(122)와, 연결관(140)이 연결되는 연통구(123)와, 수용 공간(121)의 상부에 위치하는 제2 배출구(124)가 형성된다. The carbon dioxide processing unit 120 is made of a storage container 120a that provides a storage space 121 therein, and an agent that is accommodated in the storage space 121 and is the same as the first electrolyte solution 115 of the cathode 110. 1 The electrolyte 115 is provided. The receiving container 120a is located at the upper portion of the receiving space 121, the second inlet 122 through which carbon dioxide gas flows into the receiving space 121, the communication port 123 to which the connecting pipe 140 is connected, and the receiving space 121. The second outlet 124 is formed.
제2 유입구(122)는 수용 공간(121)에서 연통구(123)보다 위에 위치하고, 제2 배출구(124) 및 제1 전해액(115)의 수면보다 아래에 위치한다. 제2 유입구(122)를 통해 방전과정에서 원료로 사용되는 이산화탄소 기체가 수용 공간(121)으로 유입된다. 제2 유입구(122)를 통해 필요에 따라 제1 전해액(115)도 공급될 수 있다. 제2 유입구(122)와 제1 배출구(113)는 충전 및 방전시 밸브 등에 의해 선택적으로 적절한 시기에 맞춰서 개폐될 수 있다.The second inlet 122 is positioned above the communication port 123 in the accommodation space 121, and is located below the water surface of the second outlet 124 and the first electrolyte 115. Carbon dioxide gas used as a raw material in the discharge process is introduced into the receiving space 121 through the second inlet 122. The first electrolyte 115 may also be supplied as needed through the second inlet 122. The second inlet 122 and the first outlet 113 may be selectively opened and closed at appropriate times by a valve or the like during charging and discharging.
연통구(123)는 수용 공간(121)에서 제2 유입구(122)보다 아래에 위치하며, 연통구(123)에는 연결관(140)이 연결된다. 연통구(123)를 통해 수용 공간(121)은 제1 반응 공간(111)과 연통된다.The communication port 123 is located below the second inlet port 122 in the accommodation space 121, and a connection pipe 140 is connected to the communication port 123. The accommodation space 121 communicates with the first reaction space 111 through the communication port 123.
제2 배출구(124)는 수용 공간(121)에서 제2 유입구(122) 및 제1 전해액(115)의 수면보다 위에 위치한다. 제2 배출구(124)를 통해 수용 공간(121)에서 제1 전ㄴ해액(115)에 용해되지 않아서 이온화되지 않은 이산화탄소 기체가 외부로 배출된다. 제2 배출구(124)를 통해 배출된 이산화탄소 가스는 이산화탄소 순환 공급부(130)를 통해 제2 유입구(122)로 공급된다.The second outlet 124 is positioned above the water surface of the second inlet 122 and the first electrolyte 115 in the accommodation space 121. Carbon dioxide gas that is not ionized because it is not dissolved in the first electrolytic solution 115 in the receiving space 121 is discharged to the outside through the second outlet 124. The carbon dioxide gas discharged through the second outlet 124 is supplied to the second inlet 122 through the carbon dioxide circulation supply unit 130.
이산화탄소 순환 공급부(130)는 제2 배출구(224)를 통해 배출되는 이산화탄소 가스를 제 2유입구(122)로 순환시켜서 재공급한다. The carbon dioxide circulation supply unit 130 recirculates the carbon dioxide gas discharged through the second outlet 224 to the second inlet 122 to re-supply it.
연결관(140)은 제1 반응 공간(111)의 제1 유입구(112)와 수용 공간(121)의 연통구(123)을 연결한다. 연결관(140)의 내부에 형성되는 연결 통로(141)를 통해 제1 반응 공간(111)과 수용 공간(121)이 연통된다.The connector 140 connects the first inlet port 112 of the first reaction space 111 and the communication port 123 of the receiving space 121. The first reaction space 111 and the accommodation space 121 communicate with each other through a connection passage 141 formed inside the connection pipe 140.
제2 유입구(122)를 통해 이산화탄소 처리부(120)의 수용 공간(121)으로 유입된 이산화탄소 중 제1 전해액(115)에 용해되지 않아서 이온화되지 않은 이산화탄소 기체는 캐소드부(110)의 제1 반응 공간(111)으로 이동하지 못하고 상승하여 수용 공간(121) 내 제1 전해액(115)의 수면 위 공간에 모인 후 제2 배출구(124)를 통해 배출되고 제2 배출구(124)를 통해 배출된 이산화탄소 기체는 이산화탄소 순환 공급부(130)에 의해 제2 유입구(122)를 통해 수용 공간(121)으로 공급되어서 재활용된다. 또한, 이산화탄소 처리부(120)의 수용 공간(121)으로 유입된 이산화탄소 중 제1 전해액(115)에 용해되지 않아서 이온화되지 않은 이산화탄소 기체는 캐소드부(110)의 제1 반응 공간(111)으로 이동하지 못하므로, 제1 배출구(113)를 통해서 이산화탄소가 섞이지 않은 고순도의 수소가 배출될 수 있다.Carbon dioxide gas that is not ionized because it is not dissolved in the first electrolyte 115 among the carbon dioxide introduced into the accommodation space 121 of the carbon dioxide processing unit 120 through the second inlet 122 is the first reaction space of the cathode 110 The carbon dioxide gas discharged through the second outlet 124 and discharged through the second outlet 124 after being collected in the space above the water surface of the first electrolyte 115 in the accommodation space 121 without being able to move to (111) Is supplied to the receiving space 121 through the second inlet 122 by the carbon dioxide circulation supply unit 130 is recycled. In addition, carbon dioxide gas that is not ionized because it is not dissolved in the first electrolyte 115 among the carbon dioxide introduced into the accommodation space 121 of the carbon dioxide processing unit 120 does not move to the first reaction space 111 of the cathode 110. Since it is not possible, high-purity hydrogen in which carbon dioxide is not mixed may be discharged through the first outlet 113.
도 15에서 설명되지 않은 도면부호의 구성은 도 13에 도시된 실시예에서 같은 도면부호로 지시된 구성과 동일하다.The configuration of reference numerals not illustrated in FIG. 15 is the same as the configuration indicated by the same reference numerals in the embodiment illustrated in FIG. 13.
도 16는 본 기술의 또 다른 일 실시예에 따른 이차전지의 방전과정을 설명하는 모식도이다. 도 16를 참조하면, 이차전지(300)는 캐소드부(210)와, 애노드부(250)와, 애노드부(250)와 연결되는 전해액 순환부(180), 캐소드부(210)와 애노드부(250)를 연결하는 연결부(290)를 포함한다.16 is a schematic diagram illustrating a discharge process of a secondary battery according to another embodiment of the present technology. Referring to FIG. 16, the secondary battery 300 includes a cathode unit 210, an anode unit 250, an electrolyte circulating unit 180 connected to the anode unit 250, a cathode unit 210, and an anode unit ( 250) includes a connecting portion 290 for connecting.
캐소드부(210)는, 내부에 제1 반응 공간(111)을 제공하는 제1 반응 용기(110a)와, 제1 반응 공간(111)에 담긴 제1 전해액(215)과, 제1 전해액(215)에 적어도 일부가 잠기는 캐소드(cathode)(118)를 구비한다. 제1 전해액(215)으로는 수산화칼륨 수용액(본 실시예에서는 1M KOH의 강염기성 용액에서 CO2를 용리시킨 것이 사용됨)이 사용된다. 제1 반응 용기(110a)와 캐소드(118)의 구성은 도 13에 도시된 실시예에서 대응하는 구성과 동일하므로 이에 대한 상세한 설명은 생략한다.The cathode unit 210 includes a first reaction vessel 110a providing a first reaction space 111 therein, a first electrolyte solution 215 contained in the first reaction space 111, and a first electrolyte solution 215. ) Is provided with a cathode (118) at least partially submerged. As the first electrolyte solution 215, an aqueous potassium hydroxide solution (in this embodiment, an elution of CO 2 in a strong basic solution of 1M KOH is used) is used. Since the configuration of the first reaction vessel 110a and the cathode 118 is the same as the corresponding configuration in the embodiment illustrated in FIG. 13, detailed description thereof will be omitted.
애노드부(150)는, 내부에 제2 반응 공간(151)을 제공하는 제2 반응 용기(150a)와, 제2 반응 공간(151)에 담긴 제2 전해액(155)과, 제2 전해액(155)에 적어도 일부가 잠기는 애노드(anode)(158)를 구비한다. 제2 전해액(155)으로는 수산화칼륨 수용액이 사용되는 것으로 설명하며, 예를 들어 1M KOH 또는 6M KOH가 사용될 수 있다. 제2 반응 용기(150a)와 애노드(158)의 구성은 도 13에 도시된 실시예에서 대응하는 구성과 동일하므로 이에 대한 상세한 설명은 생략한다.The anode unit 150 includes a second reaction container 150a providing a second reaction space 151 therein, a second electrolyte solution 155 contained in the second reaction space 151, and a second electrolyte solution 155 ) Is provided with an anode 158 in which at least a part is locked. As the second electrolyte solution 155, an aqueous potassium hydroxide solution is described, and for example, 1M KOH or 6M KOH may be used. Since the configuration of the second reaction vessel 150a and the anode 158 is the same as the corresponding configuration in the embodiment illustrated in FIG. 13, detailed description thereof will be omitted.
전해액 순환부(180)는 도 13에 도시된 전해액 순환부(180)와 동일하므로 이에 대한 상세한 설명은 생략한다.Since the electrolyte circulating portion 180 is the same as the electrolyte circulating portion 180 illustrated in FIG. 13, detailed description thereof will be omitted.
연결부(290)는 캐소드부(110)와 애노드부(150)를 연결하는 연결 통로(191)와, 연결 통로(191)의 내부에 설치되는 이온 교환 멤브레인(membrane)(192)를 구비한다.The connection part 290 includes a connection passage 191 connecting the cathode part 110 and the anode part 150, and an ion exchange membrane 192 installed inside the connection passage 191.
연결 통로(191)는 도 13에 도시된 연결 통로(191)와 동일한 구성으로서, 연결 통로(191)의 내부에 이온 교환 멤브레인(192)이 설치된다.The connection passage 191 has the same configuration as the connection passage 191 shown in FIG. 13, and an ion exchange membrane 192 is installed inside the connection passage 191.
이온 교환 멤브레인(192)은 연결 통로(191)의 내부를 막는 형태로 설치된다. 이온 교환 멤브레인(192)은 캐소드부(110)와 애노드부(150)의 사이에 이온의 이동만을 허용한다. 이온 교환 멤브레인(192)에 의해 제2 전해액(155)에 포함된 칼륨 이온(K+)이 제1 전해액(115)으로 이동한다. 본 실시예에서는 이온 교환 멤브레인(192)으로서, 미국의 듀퐁사에서 개발된 불소 수지계의 카티온 교환막인 내피온(Nafion)이 사용되는 것으로 설명하는데, 본 기술은 이에 제한되는 것은 아니며, 칼륨 이온(K+)의 이동만을 허용하는 것이면 모두 가능하다. 이온 교환 멤브레인(192)은 이온만 전달시킴으로써 방전과정에서 생기는 이온 불균형을 해소하게 된다.The ion exchange membrane 192 is installed in a form that blocks the inside of the connection passage 191. The ion exchange membrane 192 allows only the movement of ions between the cathode portion 110 and the anode portion 150. The potassium ion (K + ) contained in the second electrolyte solution 155 is moved to the first electrolyte solution 115 by the ion exchange membrane 192. In this embodiment, as the ion exchange membrane 192, a fluorine resin-based cation exchange membrane developed by DuPont, USA, is used to describe that Nafion is used, but the present technology is not limited thereto, and potassium ion ( Anything that allows only the movement of K + ) is possible. The ion exchange membrane 192 eliminates ion imbalance generated in the discharge process by transferring only ions.
도 16에서 설명되지 않은 도면부호의 구성은 도 13에 도시된 실시예에서 같은 도면부호로 지시된 구성과 동일하다.The configuration of reference numerals not described in FIG. 16 is the same as the configuration indicated by the same reference numerals in the embodiment illustrated in FIG. 13.
도 17은 본 기술의 또 다른 일 실시예에 따른 이차전지의 방전과정을 도시한 모식도이다. 도 17을 참조하면, 이차전지(100)는 캐소드부(110)와, 애노드부(150)와, 애노드부(150)와 연결되는 전해액 순환부(180)와, 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190)와, 이산화탄소 처리부(120)와, 이산화탄소 순환 공급부(130)와, 캐소드부(110)와 이산화탄소 처리부(120)를 연통시키는 연결관(140)을 포함한다. 캐소드부(110), 애노드부(150), 전해액 순환부(180) 및 연결부(190)는 도 16에 도시된 실시예에서 설명된 것과 동일하며, 이산화탄소 처리부(120), 이산화탄소 순환 공급부(130) 및 연결관(140)은 도 15에 도시된 대응하는 구성과 동일하므로 이에 대한 상세한 설명은 생략한다.17 is a schematic diagram showing a discharge process of a secondary battery according to another embodiment of the present technology. Referring to FIG. 17, the secondary battery 100 includes a cathode unit 110, an anode unit 150, an electrolyte circulating unit 180 connected to the anode unit 150, a cathode unit 110, and an anode unit It includes a connecting portion 190 for connecting the 150, the carbon dioxide processing unit 120, the carbon dioxide circulation supply unit 130, the cathode 110 and the connection pipe 140 for communicating the carbon dioxide processing unit 120. The cathode unit 110, the anode unit 150, the electrolyte circulation unit 180, and the connection unit 190 are the same as described in the embodiment illustrated in FIG. 16, and the carbon dioxide processing unit 120 and the carbon dioxide circulation supply unit 130 And the connector 140 is the same as the corresponding configuration shown in Figure 15, a detailed description thereof will be omitted.
도 17에서 설명되지 않은 도면부호의 구성은 도 15에 도시된 실시예에서 같은 도면부호로 지시된 구성과 동일하다.The configuration of reference numerals not illustrated in FIG. 17 is the same as the configuration indicated by the same reference numerals in the embodiment illustrated in FIG. 15.
도 18은 본 기술의 또 다른 일 실시예에 따른 이차전지의 방전과정을 설명하는 모식도이다. 도 18을 참조하면, 이차전지(100)는 캐소드부(110)와, 애노드부(150)와, 애노드부(150)와 연결되는 전해액 순환부(180)와, 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190)를 포함한다. 캐소드부(110), 애노드부(150) 및 전해액 순환부(180)는 도 16에 도시된 실시예의 대응하는 구성과 동일하므로 이에 대한 상세한 설명은 생략한다.18 is a schematic diagram illustrating a discharge process of a secondary battery according to another embodiment of the present technology. Referring to FIG. 18, the secondary battery 100 includes a cathode unit 110, an anode unit 150, an electrolyte circulation unit 180 connected to the anode unit 150, a cathode unit 110, and an anode unit It includes a connecting portion 190 for connecting the (150). The cathode unit 110, the anode unit 150, and the electrolyte circulation unit 180 are the same as the corresponding configurations of the embodiment illustrated in FIG. 16, and thus detailed descriptions thereof will be omitted.
연결부(190)는 캐소드부(110)와 애노드부(150)를 연결하는 연결 통로(191)와, 연결 통로(191)의 내부에 설치되는 이온 교환 멤브레인(membrane)(192)를 구비한다.The connection part 190 includes a connection passage 191 connecting the cathode part 110 and the anode part 150 and an ion exchange membrane 192 installed inside the connection passage 191.
연결 통로(191)는 도 16에 도시된 실시예의 연결 통로(191)와 동일하며, 연결 통로(191)의 내부에 이온 교환 멤브레인(192)이 설치된다.The connection passage 191 is the same as the connection passage 191 of the embodiment shown in FIG. 16, and an ion exchange membrane 192 is installed inside the connection passage 191.
이온 교환 멤브레인(192)은 연결 통로(191)의 내부를 막는 형태로 설치된다. 이온 교환 멤브레인(192)은 캐소드부(110)와 애노드부(150)의 사이에 이온의 이동만을 허용한다. 이온 교환 멤브레인(192)를 통해 제1 전해액(115)에 포함된 수산화 이온(OH-)이 제2 전해액(155)으로 이동한다. 본 실시예에서는 이온 교환 멤브레인(192)으로서, 미국의 듀퐁사에서 개발된 불소 수지계의 카티온 교환막인 내피온(Nafion)이 사용되는 것으로 설명하는데, 본 기술은 이에 제한되는 것은 아니며, 수산화 이온(OH-)의 이동만을 허용하는 것이면 모두 가능하다. 이온 교환 멤브레인(192)에 의해 수산화 이온(OH-)이 캐소드부(110)로부터 애노드부(150)로 전달됨으써 방전과정에서 생기는 이온 불균형을 해소하게 된다.The ion exchange membrane 192 is installed in a form that blocks the inside of the connection passage 191. The ion exchange membrane 192 allows only the movement of ions between the cathode portion 110 and the anode portion 150. Through the ion exchange membrane 192, the hydroxide ions contained in the first electrolyte solution (115) (OH -) is moved in the second electrolyte 155. In this embodiment, as the ion exchange membrane 192, it is described that a fluorine resin-based cation exchange membrane Nafion developed by DuPont of the United States is used, but the present technology is not limited thereto, and hydroxide ions ( all as long as it is possible that only) movement of the - OH. Hydroxide ions by an ion exchange membrane (192) (OH -) is written doemeu delivered from the cathode 110 to the anode 150, thereby eliminating the ion imbalance caused in the discharge process.
도 18에서 설명되지 않은 도면부호의 구성은 도 16에 도시된 실시예에서 같은 도면부호로 지시된 구성과 동일하다.The configuration of reference numerals not illustrated in FIG. 18 is the same as the configuration indicated by the same reference numerals in the embodiment illustrated in FIG. 16.
도 19는 본 기술의 또 다른 일 실시예에 따른 이차전지의 방전과정을 도시한 모식도이다. 도 19를 참조하면, 이차전지(100)는 캐소드부(110)와, 애노드부(150)와, 애노드부(150)와 연결되는 전해액 순환부(180)와, 캐소드부(110)와 애노드부(150)를 연결하는 연결부(190)와, 이산화탄소 처리부(120)와, 이산화탄소 순환 공급부(130)와, 캐소드부(110)와 이산화탄소 처리부(120)를 연통시키는 연결관(140)을 포함한다. 캐소드부(110), 애노드부(150), 전해액 순환부(180) 및 연결부(190)는 도 18에 도시된 실시예에서 설명된 것과 동일하며, 이산화탄소 처리부(120), 이산화탄소 순환 공급부(130) 및 연결관(140)은 도 16에 도시된 대응하는 구성과 동일하므로 이에 대한 상세한 설명은 생략한다.19 is a schematic diagram showing a discharge process of a secondary battery according to another embodiment of the present technology. Referring to FIG. 19, the secondary battery 100 includes a cathode unit 110, an anode unit 150, an electrolyte circulating unit 180 connected to the anode unit 150, a cathode unit 110, and an anode unit It includes a connecting portion 190 for connecting the 150, the carbon dioxide processing unit 120, the carbon dioxide circulation supply unit 130, the cathode 110 and the connection pipe 140 for communicating the carbon dioxide processing unit 120. The cathode unit 110, the anode unit 150, the electrolyte circulation unit 180, and the connection unit 190 are the same as described in the embodiment illustrated in FIG. 18, and the carbon dioxide processing unit 120 and the carbon dioxide circulation supply unit 130 And the connector 140 is the same as the corresponding configuration shown in Figure 16, detailed description thereof will be omitted.
도 19에서 설명되지 않은 도면부호의 구성은 도 17에 도시된 실시예에서 같은 도면부호로 지시된 구성과 동일하다.The configuration of reference numerals not illustrated in FIG. 19 is the same as the configuration indicated by the same reference numerals in the embodiment illustrated in FIG. 17.
도 13과 도 15에 도시된 실시예에서 연결부(190) 대신에 제1 전해액(115)과 제2 전해액(155)을 연결하는 염다리(salt bridge)가 사용될 수 있으며, 이 또한 본 기술의 범위에 속하는 것이다. 염다리가 사용되는 경우, 염다리의 내부 용액으로는 염화칼륨(KCl), 염화나트륨(NaCl) 등 통상적으로 사용되는 염다리 내부 용액이 사용될 수 있다. 염다리가 사용되는 경우에, 방전이 진행되면서 제1 전해액(115)에는 HCO3 -(중탄산이온)이 생성되는데, 염다리의 내부 용액이 염화나트륨(NaCl)과 같이 나트륨 이온(Na+)을 포함하는 경우, 이온 균형을 맞추기 위하여 염다리로부터 나트륨 이온이 확산되어서 탄산수소나트륨(NaHCO3) 수용액 형태의 이온으로 존재하게 된다. 이 용액을 건조하면 베이킹소다 형태의 탄산나트륨 고체 생성물이 부가적으로 획득된다.In the embodiment shown in FIGS. 13 and 15, a salt bridge connecting the first electrolyte 115 and the second electrolyte 155 may be used instead of the connecting portion 190, which is also within the scope of the present technology. Belong. When a salt bridge is used, an internal solution of a salt bridge that is commonly used, such as potassium chloride (KCl) or sodium chloride (NaCl), may be used as the internal solution of the salt bridge. When a salt bridge is used, as discharge proceeds, HCO 3 (bicarbonate ions) is generated in the first electrolyte 115, when the solution inside the salt bridge contains sodium ions (Na + ) such as sodium chloride (NaCl). , In order to balance the ions, sodium ions are diffused from the salt bridge and exist as ions in the form of an aqueous sodium hydrogen carbonate (NaHCO 3 ) solution. When the solution is dried, a sodium carbonate solid product in the form of baking soda is additionally obtained.
도 20은 본 기술의 또 다른 일 실시예에 따른 이차전지-금속 회수 시스템의 금속 회수부(800)를 도시한 모식도이다. 도 20를 참조하면, 본 기술의 이차전지(100)는 금속 회수부(800)와 연결될 수 있다. 상기 금속 회수부(800)는 애노드부(150)의 제2 전해액(155) 또는 반응 공간(211)의 수용액(215)과 동일한 수용액을 구비한다. 상기 금속 회수부(800)는 애노드부(150) 사용된 제2 전해액(155) 또는 반응 공간(211)에서 사용된 수용액(215)을 공급받는 공급부(810), 공급 받은 수용액(155 또는 215)으로부터 금속을 회수하는 제2 캐소드(820), 전기 회로를 형성하기 위한 제2 애노드(830) 및 상기 제2 캐소드(820)와 제2 애노드(830)로 전력을 공급하는 전원공급부(840)를 포함할 수 있다. 이차전지(100)은 도 1 및 도 6 내지 12에 도시된 실시예에서 설명된 것과 동일하므로 이에 대한 상세한 설명은 생략한다.20 is a schematic diagram showing a metal recovery unit 800 of a secondary battery-metal recovery system according to another embodiment of the present technology. Referring to FIG. 20, the secondary battery 100 of the present technology may be connected to the metal recovery unit 800. The metal recovery part 800 includes the same aqueous solution as the second electrolyte solution 155 of the anode part 150 or the aqueous solution 215 of the reaction space 211. The metal recovery part 800 is a supply part 810 that receives the second electrolyte solution 155 used as the anode part 150 or the aqueous solution 215 used in the reaction space 211, and the supplied aqueous solution 155 or 215. A second cathode 820 for recovering metal from, a second anode 830 for forming an electrical circuit, and a power supply 840 for supplying power to the second cathode 820 and the second anode 830 It can contain. Since the secondary battery 100 is the same as that described in the embodiments shown in FIGS. 1 and 6 to 12, detailed description thereof will be omitted.
상기 공급부(810)는 금속 이온이 용해되어 있는 수용액(155 또는 215)을 이차전지(100)로부터 금속 회수부(800)로 공급한다. 상기 공급부(810)는 필요에 따라 밸브 등에 의해 선택적으로 적절한 시기에 맞춰서 개폐될 수 있다. The supply unit 810 supplies an aqueous solution 155 or 215 in which metal ions are dissolved from the secondary battery 100 to the metal recovery unit 800. The supply unit 810 may be selectively opened and closed at a suitable time by a valve or the like as necessary.
제2 캐소드(820)는 회수 공간(850)에 수용된 수용액(155 또는 215)에 적어도 일부가 잠기며, 애노드(158)와 동일한 재질로 이루어진다. 이차전지(100)의 애노드(158)가 아연(Zn)인 경우에는 상기 공급받은 수용액(155 또는 215)에는 Zn(OH)4 2-가 존재하게 된다. 그리고, 회수 공간(850)의 제2 캐소드(820)에서는 다음 [반응식 9]와 같은 환원 반응이 이루어질 수 있다.The second cathode 820 is at least partially submerged in the aqueous solution 155 or 215 accommodated in the recovery space 850, and is made of the same material as the anode 158. When the anode 158 of the secondary battery 100 is zinc (Zn), Zn(OH) 4 2- is present in the supplied aqueous solution (155 or 215). Then, in the second cathode 820 of the recovery space 850, a reduction reaction such as the following [Reaction Scheme 9] may be performed.
[반응식 9][Scheme 9]
Zn(OH)4 2- + 2e- → Zn + 4OH- Zn (OH) 4 2- + 2e - → Zn + 4OH -
만일, 애노드(158)가 알루미늄(Al)인 경우에는 상기 공급받은 수용액(155 또는 215)에는 Al(OH)3 2-가 존재하게 된다. 그리고, 회수 공간(850)의 제2 캐소드(820)에서는 다음 [반응식 9]와 같은 환원 반응이 이루어질 수 있다.If, when the anode 158 is aluminum (Al), Al(OH) 3 2- is present in the supplied aqueous solution (155 or 215). Then, in the second cathode 820 of the recovery space 850, a reduction reaction such as the following [Reaction Scheme 9] may be performed.
[반응식 10][Scheme 10]
Al(OH)3 2- + 3e- → Al + 3OH- Al (OH) 3 2- + 3e - → Al + 3OH -
[반응식 9]와 [반응식 10]을 통해 알 수 있는 바와 같이, 이차전지(100)로부터 공급받은 수용액(155 또는 215)에 용해되어 있는 금속 이온은 제2 캐소드(820)로부터 전자를 받아서 금속으로 환원될 수 있다. As can be seen from [Scheme 9] and [Scheme 10], the metal ions dissolved in the aqueous solution (155 or 215) supplied from the secondary battery 100 receive electrons from the second cathode 820 to become a metal. Can be reduced.
제2 애노드(830)는 회수 공간(850)에 수용된 수용액에 적어도 일부가 잠기며, 전기 회로를 형성하기 위한 전극이다. 상기 제2 애노드(830)의 재질은 탄소 페이퍼, 탄소 섬유, 탄소 펠트, 탄소 천, 금속 폼, 금속박막, 또는 이들의 조합일 수 있으며, 백금 촉매도 사용될 수 있다. 촉매의 경우, 백금 촉매 외에 탄소 계열 촉매, 탄소-금속 계열 복합 촉매, 페로브스카이트 산화물 촉매 등 일반적으로 산소발생반응(HER) 촉매로 사용될 수 있는 다른 모든 촉매도 포함한다.The second anode 830 is at least partially submerged in an aqueous solution accommodated in the recovery space 850, and is an electrode for forming an electrical circuit. The material of the second anode 830 may be carbon paper, carbon fiber, carbon felt, carbon cloth, metal foam, metal thin film, or a combination thereof, and a platinum catalyst may also be used. In the case of the catalyst, in addition to the platinum catalyst, all other catalysts that can be generally used as an oxygen generating reaction (HER) catalyst, such as a carbon-based catalyst, a carbon-metal-based composite catalyst, and a perovskite oxide catalyst, are also included.
회수 공간(850)의 제2 애노드(830)에서는 다음 [반응식 10]과 같은 금속 회수 반응이 이루어진다. 다음 [반응식 10]과 같은 산화 반응이 이루어질 수 있다.In the second anode 830 of the recovery space 850, a metal recovery reaction as shown in the following [Reaction Scheme 10] is performed. Oxidation reaction as shown in [Reaction Scheme 10] may be made.
[반응식 10][Scheme 10]
4OH- → 2H2O + O2 + 4e- 4OH - → 2H 2 O + O 2 + 4e -
전원공급부(840)는 제2 캐소드(820) 및 제2 애노드(830)와 전기적으로 연결되어 전기를 제공한다. 전원공급부(840)의 음극은 금속 회수부(800)의 제2 캐소드(820)와 전기적으로 연결되고 전원공급부(840)의 양극은 금속 회수부(800)의 제2 애노드(830)와 전기적으로 연결된다. 상기 전원공급부(840)는 이에 제한되는 것은 아니나, 일반적인 전지나 발전기뿐만 아니라 태양전지, 풍력발전 등의 신재생 에너지가 사용될 수 있다.The power supply unit 840 is electrically connected to the second cathode 820 and the second anode 830 to provide electricity. The negative electrode of the power supply unit 840 is electrically connected to the second cathode 820 of the metal recovery unit 800, and the positive electrode of the power supply unit 840 is electrically connected to the second anode 830 of the metal recovery unit 800. Connected. The power supply unit 840 is not limited thereto, and renewable energy such as solar cells and wind power generation may be used as well as general cells and generators.
이상 실시예를 통해 본 기술을 설명하였으나, 본 기술은 이에 제한되는 것은 아니다. 상기 실시예는 본 기술의 취지 및 범위를 벗어나지 않고 수정되거나 변경될 수 있으며, 본 기술분야의 통상의 기술자는 이러한 수정과 변경도 본 기술에 속하는 것임을 알 수 있을 것이다.Although the present technology has been described through the above embodiments, the present technology is not limited thereto. The above embodiments may be modified or changed without departing from the spirit and scope of the present technology, and those skilled in the art will recognize that such modifications and changes also belong to the present technology.
본 기술의 이차전지는 수계전해질인 전해액에 잠긴 캐소드와 금속 애노드를 포함하며, 방전 과정에서 전해액으로 이산화탄소 기체가 유입되어서 수소 기체를 발생시키는 이차전지에서 전해액의 온도가 실온보다 약 2배의 최대 전류밀도를 보여주는 60℃ 내지 80℃의 최적 온도로 유지됨으로써, 이차전지 및 이차전지를 구비하는 복합 발전 시스템의 성능이 크게 향상시킬 수 있다. 또한, 제2 반응 공간에 수용되는 제2 전해액이 전해액 순환부에 의해 순환함으로써, 제2 반응 공간의 애노드 금속의 부식을 늦추고, 애노드 금속의 표면에 부식되어 쌓인 금속 산화물이 씻겨짐으로써 방전 용량이 크게 증가시킬 수 있다. 또한, 추가적으로 금속 회수부를 포함함으로써, 상기 이차전지에서 소모되어 이온 형태로 남은 금속을 고순도로 다시 회수할 수 있다.The secondary battery of the present technology includes a cathode and a metal anode immersed in an electrolyte, which is an aqueous electrolyte, and the maximum current of the electrolyte in the secondary battery generating hydrogen gas by introducing carbon dioxide gas into the electrolyte during the discharge process is about twice the maximum current than room temperature. By being maintained at an optimum temperature of 60°C to 80°C showing the density, the performance of the secondary battery and the combined power generation system including the secondary battery can be greatly improved. In addition, the second electrolytic solution accommodated in the second reaction space is circulated by the electrolyte circulating portion, thereby slowing corrosion of the anode metal in the second reaction space, and washing the metal oxide which has been corroded and accumulated on the surface of the anode metal, thereby discharging capacity Can be greatly increased. In addition, by additionally including a metal recovery unit, it is possible to recover the metal consumed in the secondary battery and remain in ionic form again with high purity.

Claims (36)

  1. 충전과 방전이 가능한 이차전지에 있어서,In the secondary battery capable of charging and discharging,
    제1 반응 공간에 수용되는 수계전해질인 제1 전해액과, 상기 제1 전해액에 적어도 일부가 잠기는 캐소드를 구비하는 캐소드부; 및A cathode unit including a first electrolyte solution that is an aqueous electrolyte accommodated in a first reaction space and a cathode at least partially submerged in the first electrolyte solution; And
    제2 반응 공간에 수용되는 수계전해질인 제2 전해액과, 상기 제2 전해액에 적어도 일부가 잠기는 애노드를 구비하는 애노드부를 포함하며,And an anode portion having a second electrolyte solution that is an aqueous electrolyte accommodated in the second reaction space, and an anode at least partially submerged in the second electrolyte solution,
    방전 과정에서, 상기 제1 전해액과 상기 제2 전해액의 온도는 60℃ 내지 80℃로 유지되며, 상기 제1 전해액으로 이산화탄소 기체가 유입되고, 상기 제1 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되며, 상기 수소이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하는 이차전지.In the discharge process, the temperature of the first electrolyte solution and the second electrolyte solution is maintained at 60°C to 80°C, and carbon dioxide gas flows into the first electrolyte solution, and is reacted by the reaction of water and the carbon dioxide gas in the first electrolyte solution. A secondary battery in which hydrogen ions and bicarbonate ions are generated, and hydrogen gas is generated by combining electrons of the hydrogen ions and the cathode.
  2. 충전과 방전이 가능한 이차전지에 있어서,In the secondary battery capable of charging and discharging,
    제1 반응 공간에 수용되는 수계전해질인 제1 전해액과, 상기 제1 전해액에 적어도 일부가 잠기는 캐소드를 구비하는 캐소드부;A cathode unit including a first electrolyte solution that is an aqueous electrolyte accommodated in a first reaction space and a cathode at least partially submerged in the first electrolyte solution;
    상기 제1 반응 공간과 연통되는 수용 공간에 수용되는 상기 제1 전해액을 구비하는 이산화탄소 처리부; 및A carbon dioxide treatment unit having the first electrolyte solution accommodated in an accommodation space communicating with the first reaction space; And
    제2 반응 공간에 수용되는 수계전해질인 제2 전해액과, 상기 제2 전해액에 적어도 일부가 잠기는 애노드를 구비하는 애노드부를 포함하며,And an anode portion having a second electrolyte solution that is an aqueous electrolyte accommodated in the second reaction space, and an anode at least partially submerged in the second electrolyte solution,
    방전 과정에서, 상기 제1 전해액과 상기 제2 전해액의 온도는 60℃ 내지 80℃로 유지되며, 상기 수용 공간의 상기 제1 전해액으로 이산화탄소 기체가 유입되고, 상기 제1 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되며, 상기 캐소드부에서 상기 수소이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하며,During the discharge process, the temperature of the first electrolyte and the second electrolyte is maintained at 60°C to 80°C, carbon dioxide gas is introduced into the first electrolyte solution in the accommodation space, and water and the carbon dioxide gas of the first electrolyte solution Hydrogen ions and bicarbonate ions are generated by the reaction of, and hydrogen gas is generated by combining the hydrogen ions and electrons of the cathode at the cathode,
    상기 이산화탄소 처리부는 상기 수용 공간의 상기 제1 전해액으로 유입되는 이산화탄소 기체 중 이온화되지 않은 이산화탄소 기체를 상기 제1 전해액으로부터 분리하여 상기 캐소드부로 공급되지 않도록 하는 이차전지.The carbon dioxide processing unit is a secondary battery to prevent the non-ionized carbon dioxide gas among the carbon dioxide gas flowing into the first electrolyte in the receiving space from being separated from the first electrolyte and supplied to the cathode.
  3. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or claim 2,
    방전 과정에서, 상기 제1 전해액 및 상기 제2 전해액의 온도는 70℃로 유지되는 이차전지.In the discharge process, the temperature of the first electrolyte and the second electrolyte is maintained at 70 ℃ secondary battery.
  4. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or claim 2,
    상기 제1 반응 공간과 상기 제2 반응 공간을 연통시키는 연결 통로와, 상기 연결 통로에 설치되어서 상기 제1 전해액과 상기 제2 전해액 사이에 이온의 이동만을 허용하는 다공성 구조의 이온 전달 부재를 더 포함하는 이차전지.Further comprising a connection passage communicating the first reaction space and the second reaction space, and an ion transfer member having a porous structure installed in the connection passage to allow only ions to move between the first electrolyte solution and the second electrolyte solution Secondary battery.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 이온 전달 부재의 재질은 유리인 이차전지.The material of the ion transfer member is a secondary battery made of glass.
  6. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or claim 2,
    상기 제1 반응 공간과 상기 제2 반응 공간을 연통시키는 연결 통로와, 상기 연결 통로에 설치되어서 상기 제1 전해액과 상기 제2 전해액 사이에 이온의 이동만을 허용하는 이온 교환 멤브레인을 더 포함하는 이차전지.A secondary battery further comprising a connection passage communicating the first reaction space and the second reaction space, and an ion exchange membrane installed in the connection passage to allow only ions to move between the first electrolyte solution and the second electrolyte solution. .
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 제1 전해액과 상기 제2 전해액은 수산화칼륨 수용액이며,The first electrolyte solution and the second electrolyte solution are aqueous potassium hydroxide solutions,
    상기 이온 교환 멤브레인은 칼륨 이온이 상기 제2 반응 공간으로부터 상기 제1 반응 공간으로 이동하는 것을 허용하는 이차전지.The ion exchange membrane is a secondary battery that allows potassium ions to move from the second reaction space to the first reaction space.
  8. 청구항 6에 있어서,The method according to claim 6,
    상기 제1 전해액과 상기 제2 전해액은 수산화칼륨 수용액이며,The first electrolyte solution and the second electrolyte solution are aqueous potassium hydroxide solutions,
    상기 이온 교환 멤브레인은 수산화 이온이 상기 제1 반응 공간으로부터 상기 제2 반응 공간으로 이동하는 것을 허용하는 이차전지.The ion exchange membrane is a secondary battery that allows hydroxide ions to move from the first reaction space to the second reaction space.
  9. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or claim 2,
    상기 애노드의 재질은 아연, 알루미늄, 바나듐, 크롬, 망간, 철, 코발트, 니켈 및 구리로 이루어진 군으로부터 선택된 하나 이상의 금속을 포함하는 이차전지.The anode material is a secondary battery including at least one metal selected from the group consisting of zinc, aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, and copper.
  10. 충전과 방전이 가능한 이차전지에 있어서,In the secondary battery capable of charging and discharging,
    반응 공간에 수용되는 수계전해질인 전해액;An electrolyte that is an aqueous electrolyte accommodated in the reaction space;
    상기 전해액에 적어도 일부가 잠긴 캐소드; 및A cathode immersed in at least a portion of the electrolyte solution; And
    상기 전해액에 적어도 일부가 잠긴 애노드를 포함하며,It includes an anode at least partially submerged in the electrolyte,
    방전 과정에서, 상기 전해액의 온도는 60℃ 내지 80℃로 유지되며, 상기 전해액으로 이산화탄소 기체가 유입되고, 상기 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되며, 상기 수소 이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하는 이차전지.During the discharge process, the temperature of the electrolyte is maintained at 60°C to 80°C, carbon dioxide gas is introduced into the electrolyte, and hydrogen ions and bicarbonate ions are generated by the reaction of water and the carbon dioxide gas in the electrolyte, and the hydrogen A secondary battery in which hydrogen gas is generated by combining ions and electrons of the cathode.
  11. 충전과 방전이 가능한 이차전지에 있어서,In the secondary battery capable of charging and discharging,
    반응 공간 및 상기 반응 공간과 연통되는 수용 공간에 수용되는 수계전해질인 전해액;An electrolyte that is an aqueous electrolyte accommodated in a reaction space and a receiving space communicating with the reaction space;
    상기 반응 공간에서 상기 전해액에 적어도 일부가 잠기는 캐소드; 및A cathode in which at least a part is immersed in the electrolyte solution in the reaction space; And
    상기 반응 공간에서 상기 전해액에 적어도 일부가 잠기는 애노드를 포함하며,In the reaction space includes an anode at least partially submerged in the electrolyte,
    방전 과정에서, 상기 전해액의 온도는 60℃ 내지 80℃로 유지되며, 상기 수용 공간의 상기 전해액으로 이산화탄소 기체가 유입되어서 상기 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되고, 상기 반응 공간에서 상기 수소이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하며,During the discharge process, the temperature of the electrolyte is maintained at 60°C to 80°C, and carbon dioxide gas is introduced into the electrolyte solution in the receiving space, whereby hydrogen ions and bicarbonate ions are generated by reaction of water and the carbon dioxide gas in the electrolyte solution, , In the reaction space, the hydrogen ions and electrons of the cathode are combined to generate hydrogen gas,
    상기 수용 공간의 상기 수계 전해질로 유입되는 이산화탄소 기체 중 이온화되지 않은 이산화탄소 기체는 상기 수용 공간에서 상기 전해액으로부터 분리되어서 상기 반응 공간으로 공급되지 않도록 하는 이차전지.Among the carbon dioxide gas flowing into the aqueous electrolyte in the receiving space, the non-ionized carbon dioxide gas is separated from the electrolyte in the receiving space and is not supplied to the reaction space.
  12. 청구항 10 또는 청구항 11에 있어서,The method according to claim 10 or claim 11,
    방전 과정에서 상기 전해액의 온도는 70℃로 유지되는 이차전지.In the discharge process, the temperature of the electrolyte solution is maintained at 70 ℃ secondary battery.
  13. 청구항 10 또는 청구항 11에 있어서,The method according to claim 10 or claim 11,
    상기 애노드의 재질은 아연, 알루미늄, 바나듐, 크롬, 망간, 철, 코발트, 니켈 및 구리로 이루어진 군으로부터 선택된 하나 이상의 금속을 포함하는 이차전지.The anode material is a secondary battery including at least one metal selected from the group consisting of zinc, aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, and copper.
  14. 충전과 방전이 가능한 이차전지에 있어서,In the secondary battery capable of charging and discharging,
    제1 반응 공간에 수용되는 수계전해질인 제1 전해액과, 상기 제1 전해액에 적어도 일부가 잠긴 캐소드를 구비하는 캐소드부;A cathode unit including a first electrolyte solution that is an aqueous electrolyte accommodated in a first reaction space and a cathode at least partially submerged in the first electrolyte solution;
    제2 반응 공간에 수용되는 수계전해질인 제2 전해액과, 상기 제2 전해액에 적어도 일부가 잠긴 애노드를 구비하는 애노드부; 및An anode unit including a second electrolyte solution that is an aqueous electrolyte accommodated in a second reaction space, and an anode at least partially submerged in the second electrolyte solution; And
    상기 제2 반응 공간과 연통되는 전해액 저장 공간에 저장되는 상기 제2 전해액과, 상기 전해액 저장 공간과 상기 제2 반응 공간 사이에서 상기 제2 전해액을 순환시키는 순환 펌프를 구비하는 전해액 순환부를 포함하며,And an electrolyte circulator having a second electrolyte solution stored in an electrolyte storage space in communication with the second reaction space, and a circulation pump circulating the second electrolyte solution between the electrolyte storage space and the second reaction space,
    방전 과정에서 상기 제1 전해액으로 이산화탄소 기체가 유입되고, 상기 제1 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되며, 상기 수소이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하는 이차전지.In the discharge process, carbon dioxide gas is introduced into the first electrolyte solution, and hydrogen ions and bicarbonate ions are generated by the reaction of water and the carbon dioxide gas in the first electrolyte solution, and electrons of the hydrogen ion and the cathode are combined to generate hydrogen gas. Secondary battery that occurs.
  15. 충전과 방전이 가능한 이차전지에 있어서,In the secondary battery capable of charging and discharging,
    제1 반응 공간에 수용되는 수계전해질인 제1 전해액과, 상기 제1 전해액에 적어도 일부가 잠긴 캐소드를 구비하는 캐소드부;A cathode unit including a first electrolyte solution that is an aqueous electrolyte accommodated in a first reaction space and a cathode at least partially submerged in the first electrolyte solution;
    상기 제1 반응 공간과 연통되는 수용 공간에 수용되는 상기 제1 전해액을 구비하는 이산화탄소 처리부;A carbon dioxide treatment unit having the first electrolyte solution accommodated in an accommodation space communicating with the first reaction space;
    제2 반응 공간에 수용되는 수계전해질인 제2 전해액과, 상기 제2 전해액에 적어도 일부가 잠긴 애노드를 구비하는 애노드부; 및An anode unit including a second electrolyte solution that is an aqueous electrolyte accommodated in a second reaction space, and an anode at least partially submerged in the second electrolyte solution; And
    상기 제2 전해액이 저장되는 전해액 저장 공간과, 상기 전해액 저장 공간과 상기 제2 반응 공간 사이에서 상기 제2 전해액을 순환시키는 순환 펌프를 구비하는 전해액 순환부를 포함하며,And an electrolyte circulating portion having a circulation pump for circulating the second electrolyte between the electrolyte storage space and the second reaction space, in which the second electrolyte is stored,
    방전 과정에서 상기 수용 공간의 상기 제1 전해액으로 이산화탄소 기체가 유입되고, 상기 제1 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되며, 상기 캐소드부에서 상기 수소이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하며,In the discharge process, carbon dioxide gas is introduced into the first electrolyte solution in the receiving space, and hydrogen ions and bicarbonate ions are generated by the reaction of water and the carbon dioxide gas in the first electrolyte solution, and the hydrogen ions and the The electrons of the cathode are combined to generate hydrogen gas,
    상기 이산화탄소 처리부는 상기 수용 공간의 상기 제1 전해액으로 유입되는 이산화탄소 기체 중 이온화되지 않은 이산화탄소 기체를 상기 제1 전해액으로부터 분리하여 상기 캐소드부로 공급되지 않도록 하는 이차전지.The carbon dioxide processing unit is a secondary battery to prevent the non-ionized carbon dioxide gas among the carbon dioxide gas flowing into the first electrolyte in the receiving space from being separated from the first electrolyte and supplied to the cathode.
  16. 청구항 14 또는 청구항 15에 있어서,The method according to claim 14 or claim 15,
    상기 전해액 순환부는, 상기 전해액 저장 공간과 상기 제2 반응 공간을 각각 연통시키는 제1 순환관 및 제2 순환관을 더 구비하며,The electrolyte circulation unit further includes a first circulation tube and a second circulation tube communicating the electrolyte storage space and the second reaction space, respectively.
    상기 제1 순환관을 통해 상기 전해액 저장 공간의 상기 제2 전해액이 상기 제2 반응 공간으로 유동하며,The second electrolyte in the electrolyte storage space flows into the second reaction space through the first circulation pipe,
    상기 제2 순환관을 통해 상기 제2 반응 공간의 상기 제2 전해액이 상기 전해액 저장 공간으로 유동하는 이차전지.A secondary battery in which the second electrolyte in the second reaction space flows into the electrolyte storage space through the second circulation pipe.
  17. 청구항 16에 있어서,The method according to claim 16,
    상기 애노드에는 상기 제2 전해액이 통과하는 제1 관통구와 제2 관통구가 형성되는 이차전지.A secondary battery in which the first through hole and the second through hole through which the second electrolyte passes are formed in the anode.
  18. 청구항 17에 있어서,The method according to claim 17,
    상기 제1 순환관은 상기 제2 반응 공간에서 상기 제1 관통구와 연결되며,The first circulation pipe is connected to the first through hole in the second reaction space,
    상기 제2 순환관은 상기 제2 반응 공간에서 상기 제2 관통구와 연결되는 이차전지.The second circulation tube is a secondary battery connected to the second through hole in the second reaction space.
  19. 청구항 14 또는 청구항 15에 있어서,The method according to claim 14 or claim 15,
    상기 제1 반응 공간과 상기 제2 반응 공간을 연통시키는 연결 통로와, 상기 연결 통로에 설치되어서 상기 제1 전해액과 상기 제2 전해액 사이에 이온의 이동만을 허용하는 다공성 구조의 이온 전달 부재를 더 포함하는 이차전지.Further comprising a connection passage communicating the first reaction space and the second reaction space, and an ion transfer member having a porous structure installed in the connection passage to allow only ions to move between the first electrolyte solution and the second electrolyte solution Secondary battery.
  20. 청구항 19에 있어서,The method according to claim 19,
    상기 이온 전달 부재의 재질은 유리인 이차전지.The material of the ion transfer member is a secondary battery made of glass.
  21. 청구항 14 또는 청구항 15에 있어서,The method according to claim 14 or claim 15,
    상기 제1 반응 공간과 상기 제2 반응 공간을 연통시키는 연결 통로와, 상기 연결 통로에 설치되어서 상기 제1 전해액과 상기 제2 전해액 사이에 이온의 이동만을 허용하는 이온 교환 멤브레인을 더 포함하는 이차전지.A secondary battery further comprising a connection passage communicating the first reaction space and the second reaction space, and an ion exchange membrane installed in the connection passage to allow only ions to move between the first electrolyte solution and the second electrolyte solution. .
  22. 청구항 21에 있어서,The method according to claim 21,
    상기 제1 전해액과 상기 제2 전해액은 수산화칼륨 수용액이며,The first electrolyte solution and the second electrolyte solution are aqueous potassium hydroxide solutions,
    상기 이온 교환 멤브레인은 칼륨 이온이 상기 제2 반응 공간으로부터 상기 제1 반응 공간으로 이동하는 것을 허용하는 이차전지.The ion exchange membrane is a secondary battery that allows potassium ions to move from the second reaction space to the first reaction space.
  23. 청구항 21에 있어서,The method according to claim 21,
    상기 제1 전해액과 상기 제2 전해액은 수산화칼륨 수용액이며,The first electrolyte solution and the second electrolyte solution are aqueous potassium hydroxide solutions,
    상기 이온 교환 멤브레인은 수산화 이온이 상기 제1 반응 공간으로부터 상기 제2 반응 공간으로 이동하는 것을 허용하는 이차전지.The ion exchange membrane is a secondary battery that allows hydroxide ions to move from the first reaction space to the second reaction space.
  24. 방전 과정에서 이산화탄소를 연료로 사용하여 수소를 발생시키는 이차전지;A secondary battery that generates hydrogen by using carbon dioxide as a fuel in the discharge process;
    수소함유 연료로부터 수소가 풍부한 개질 가스를 생산하고 부산물로 이산화탄소를 발생시키는 개질기;A reformer for producing hydrogen-rich reformed gas from hydrogen-containing fuel and generating carbon dioxide as a by-product;
    상기 개질기로부터 생산된 개질 가스를 연료로 공급받는 연료전지; 및A fuel cell receiving the reformed gas produced from the reformer as fuel; And
    상기 개질기에서 발생한 이산화탄소를 상기 이차전지로 공급하는 이산화탄소 공급부를 포함하며,It includes a carbon dioxide supply for supplying the carbon dioxide generated in the reformer to the secondary battery,
    상기 이차전지는 청구항 1, 청구항 2, 청구항 10, 청구항 11, 청구항 14 및 청구항 15 중 어느 하나의 청구항에 기재된 이차전지인 복합 발전 시스템.The secondary battery is a composite power generation system that is a secondary battery according to any one of claims 1, 2, 10, 11, 14 and 15.
  25. 청구항 24에 있어서,The method according to claim 24,
    상기 이차전지에서 발생한 수소를 상기 연료전지의 연료로 공급하는 수소 공급부를 더 포함하는 복합 발전 시스템.Combined power generation system further comprises a hydrogen supply for supplying the hydrogen generated in the secondary battery to the fuel of the fuel cell.
  26. 방전 과정에서 이산화탄소를 연료로 사용하여 수소를 발생시키는 이차전지;A secondary battery that generates hydrogen by using carbon dioxide as a fuel in the discharge process;
    수소함유 연로로부터 수소가 풍부한 개질 가스를 생산하는 개질기;A reformer producing a reforming gas rich in hydrogen from a hydrogen-containing furnace;
    상기 개질기로부터 생산된 개질 가스를 연료로 공급받는 연료전지; 및A fuel cell receiving the reformed gas produced from the reformer as fuel; And
    상기 이차전지에서 발생한 수소를 상기 연료전지의 연료로 추가로 공급하는 수소 공급부를 포함하며,It includes a hydrogen supply for additionally supplying the hydrogen generated in the secondary battery to the fuel of the fuel cell,
    상기 이차전지는 청구항 1, 청구항 2, 청구항 10, 청구항 11, 청구항 14 및 청구항 15 중 어느 하나의 청구항에 기재된 이차전지인 복합 발전 시스템.The secondary battery is a composite power generation system that is a secondary battery according to any one of claims 1, 2, 10, 11, 14 and 15.
  27. 방전 과정에서 이산화탄소를 연료로 사용하여 수소를 발생시키는 이차전지;A secondary battery that generates hydrogen by using carbon dioxide as a fuel in the discharge process;
    수소함유 연료로부터 수소가 풍부한 개질 가스를 생산하고 부산물로 이산화탄소를 발생시키는 개질기;A reformer for producing hydrogen-rich reformed gas from hydrogen-containing fuel and generating carbon dioxide as a by-product;
    상기 개질기로부터 생산된 개질 가스를 연료로 공급받는 연료전지;A fuel cell receiving the reformed gas produced from the reformer as fuel;
    상기 개질기에서 발생한 이산화탄소를 상기 이차전지로 공급하는 이산화탄소 공급부; 및A carbon dioxide supply unit supplying carbon dioxide generated in the reformer to the secondary battery; And
    상기 이차전지에서 발생한 수소를 상기 연료전지의 연료로 추가로 공급하는 수소 공급부를 포함하며,It includes a hydrogen supply for additionally supplying the hydrogen generated in the secondary battery to the fuel of the fuel cell,
    상기 이차전지는 청구항 1, 청구항 2, 청구항 10, 청구항 11, 청구항 14 및 청구항 15 중 어느 하나의 청구항에 기재된 이차전지인 복합 발전 시스템.The secondary battery is a composite power generation system that is a secondary battery according to any one of claims 1, 2, 10, 11, 14 and 15.
  28. 청구항 27에 있어서,The method according to claim 27,
    상기 개질기는 메탄(CH4)과 수증기(H2O)의 개질 반응에 의해 수소를 생산하는 메탄-수증기 개질기인 복합 발전 시스템.The reformer is a combined power generation system that is a methane-steam reformer that produces hydrogen by the reforming reaction of methane (CH 4 ) and water vapor (H 2 O).
  29. 이차전지 및 금속 회수부를 포함하고, It includes a secondary battery and a metal recovery unit,
    상기 이차전지는 제1 반응 공간에 수용되는 수계전해질인 제1 전해액과, 상기 제1 전해액에 적어도 일부가 잠기는 캐소드를 구비하는 캐소드부; 및 제2 반응 공간에 수용되는 수계전해질인 제2 전해액과, 상기 제2 전해액에 적어도 일부가 잠기는 애노드를 구비하는 애노드부;를 포함하며, The secondary battery may include a cathode unit including a first electrolyte that is an aqueous electrolyte accommodated in a first reaction space and a cathode that is at least partially submerged in the first electrolyte; And an anode portion including a second electrolyte solution that is an aqueous electrolyte accommodated in the second reaction space, and an anode at least partially submerged in the second electrolyte solution.
    상기 제1 전해액으로 이산화탄소 기체가 유입되고, 상기 제1 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되며, 상기 수소이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하고, Carbon dioxide gas is introduced into the first electrolytic solution, and hydrogen ions and bicarbonate ions are generated by the reaction of water and the carbon dioxide gas in the first electrolytic solution, and hydrogen ions are generated by combining electrons of the hydrogen ions and the cathode. ,
    상기 금속 회수부는 상기 애노드에서 산화된 금속 이온이 용해된 제2 전해액을 공급받는 공급부; 상기 공급받은 제2 전해액을 수용하는 회수 공간; 상기 회수 공간에 수용된 제2 전해액에 적어도 일부가 잠기는 상기 애노드와 동일한 재질의 제2 캐소드;, 상기 회수 공간에 수용된 제2 전해액에 적어도 일부가 잠기는 제2 애노드; 및 상기 제2 캐소드와 상기 제2 애노드에 전원을 공급하는 전원공급부;를 포함하며, 상기 공급받은 제2 전해액으로부터 산화된 금속 이온을 회수하는 이차전지.The metal recovery part is a supply part receiving a second electrolyte solution in which metal ions oxidized at the anode are dissolved; A recovery space accommodating the supplied second electrolyte; A second cathode made of the same material as the anode at least partially immersed in the second electrolyte contained in the recovery space; a second anode immersed in the second electrolyte contained in the recovery space; And a power supply unit supplying power to the second cathode and the second anode. A secondary battery for recovering oxidized metal ions from the supplied second electrolyte.
  30. 청구항 29에 있어서,The method according to claim 29,
    상기 제1 반응 공간과 상기 제2 반응 공간을 연통시키는 연결 통로와, 상기 연결 통로에 설치되어서 상기 제1 전해액과 상기 제2 전해액 사이에 이온의 이동만을 허용하는 다공성 구조의 이온 전달 부재를 더 포함하는 이차전지.Further comprising a connection passage communicating the first reaction space and the second reaction space, and an ion transfer member having a porous structure installed in the connection passage to allow only the movement of ions between the first electrolyte solution and the second electrolyte solution Secondary battery.
  31. 청구항 30에 있어서,The method according to claim 30,
    상기 이온 전달 부재의 재질은 유리인 이차전지.The material of the ion transfer member is a secondary battery made of glass.
  32. 청구항 29에 있어서,The method according to claim 29,
    상기 제1 반응 공간과 상기 제2 반응 공간을 연통시키는 연결 통로와, 상기 연결 통로에 설치되어서 상기 제1 전해액과 상기 제2 전해액 사이에 이온의 이동만을 허용하는 이온 교환 멤브레인을 더 포함하는 이차전지.A secondary battery further comprising a connection passage communicating the first reaction space and the second reaction space, and an ion exchange membrane installed in the connection passage to allow only ions to move between the first electrolyte solution and the second electrolyte solution. .
  33. 청구항 32에 있어서,The method according to claim 32,
    상기 제1 전해액과 상기 제2 전해액은 수산화칼륨 수용액이며,The first electrolyte solution and the second electrolyte solution are aqueous potassium hydroxide solutions,
    상기 이온 교환 멤브레인은 칼륨 이온이 상기 제2 반응 공간으로부터 상기 제1 반응 공간으로 이동하는 것을 허용하는 이차전지.The ion exchange membrane is a secondary battery that allows potassium ions to move from the second reaction space to the first reaction space.
  34. 청구항 32에 있어서,The method according to claim 32,
    상기 제1 전해액과 상기 제2 전해액은 수산화칼륨 수용액이며,The first electrolyte solution and the second electrolyte solution are aqueous potassium hydroxide solutions,
    상기 이온 교환 멤브레인은 수산화 이온이 상기 제1 반응 공간으로부터 상기 제2 반응 공간으로 이동하는 것을 허용하는 이차전지.The ion exchange membrane is a secondary battery that allows hydroxide ions to move from the first reaction space to the second reaction space.
  35. 이차전지 및 금속 회수부를 포함하고, It includes a secondary battery and a metal recovery unit,
    상기 이차전지는 반응 공간에 수용되는 수계전해질인 전해액; 상기 전해액에 적어도 일부가 잠긴 캐소드; 및 상기 전해액에 적어도 일부가 잠긴 애노드를 포함하며, The secondary battery includes an electrolyte that is an aqueous electrolyte accommodated in a reaction space; A cathode immersed in at least a portion of the electrolyte solution; And an anode at least partially submerged in the electrolyte solution,
    상기 전해액으로 이산화탄소 기체가 유입되고, 상기 전해액의 물과 상기 이산화탄소 기체의 반응에 의해 수소이온과 중탄산이온이 생성되며, 상기 수소 이온과 상기 캐소드의 전자가 결합되어서 수소 기체가 발생하고, Carbon dioxide gas is introduced into the electrolytic solution, and hydrogen ions and bicarbonate ions are generated by the reaction of water and the carbon dioxide gas in the electrolytic solution, and hydrogen gas is generated by combining electrons of the hydrogen ions and the cathode,
    상기 금속 회수부는 상기 애노드에서 산화된 금속 이온이 용해된 전해액을 공급받는 공급부; 상기 공급받은 전해액을 수용하는 회수 공간; 상기 회수 공간에 수용된 수용액에 적어도 일부가 잠기는 상기 애노드와 동일한 재질의 제2 캐소드;, 상기 회수 공간에 수용된 수용액에 적어도 일부가 잠기는 제2 애노드; 및 상기 제2 캐소드와 상기 제2 애노드에 전원을 공급하는 전원공급부;를 포함하며, 상기 공급받은 전해액으로부터 산화된 금속 이온을 회수하는 이차전지-금속 회수 시스템.The metal recovery part is a supply part receiving an electrolyte solution in which metal ions oxidized at the anode are dissolved; A recovery space accommodating the supplied electrolyte solution; A second cathode made of the same material as at least a part of which is at least partially submerged in the aqueous solution accommodated in the recovery space; a second anode at least partially submerged in the aqueous solution accommodated in the recovery space; And a power supply unit supplying power to the second cathode and the second anode; and a secondary battery-metal recovery system for recovering oxidized metal ions from the supplied electrolyte.
  36. 청구항 35 또는 청구항 36에 있어서,The method according to claim 35 or claim 36,
    상기 애노드의 재질은 아연, 알루미늄, 바나듐, 크롬, 망간, 철, 코발트, 니켈 및 구리로 이루어진 군으로부터 선택된 하나 이상의 금속을 포함하는 이차전지-금속 회수 시스템.The anode material is a secondary battery-metal recovery system comprising at least one metal selected from the group consisting of zinc, aluminum, vanadium, chromium, manganese, iron, cobalt, nickel and copper.
PCT/KR2019/013460 2018-12-27 2019-10-15 Secondary battery generating hydrogen by using carbon dioxide and complex power generation system having same WO2020138668A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2018-0170838 2018-12-27
KR1020180170838A KR102042683B1 (en) 2018-12-27 2018-12-27 Carbon dioxide utilization system
KR10-2019-0007609 2019-01-21
KR1020190007608A KR102205629B1 (en) 2019-01-21 2019-01-21 Secondary battery using carbon dioxide and complex electric power generation system having the same
KR1020190007609A KR102163935B1 (en) 2019-01-21 2019-01-21 Secondary battery using carbon dioxide and complex electric power generation system having the same
KR10-2019-0007608 2019-01-21

Publications (1)

Publication Number Publication Date
WO2020138668A1 true WO2020138668A1 (en) 2020-07-02

Family

ID=71129836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013460 WO2020138668A1 (en) 2018-12-27 2019-10-15 Secondary battery generating hydrogen by using carbon dioxide and complex power generation system having same

Country Status (1)

Country Link
WO (1) WO2020138668A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114908361A (en) * 2022-05-30 2022-08-16 华中科技大学 Secondary battery and electrocatalysis electrolytic cell mixing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111182A (en) * 2002-09-18 2004-04-08 Sumitomo Electric Ind Ltd Re-activation method of electrode for redox flow battery
KR20110114816A (en) * 2010-04-14 2011-10-20 삼성중공업 주식회사 Apparatus for capturing carbon dioxide using fuel cell power generation system in a ship and method thereof
JP2011528407A (en) * 2008-07-16 2011-11-17 カレラ コーポレイション Use of CO2 in electrochemical systems
KR20150091984A (en) * 2014-02-04 2015-08-12 국립대학법인 울산과학기술대학교 산학협력단 Sea water secondary battery for manufacturing desalinated water
KR20180020763A (en) * 2016-08-19 2018-02-28 서강대학교산학협력단 Electrochemical reduction apparatus of carbon dioxide and/or carbon monoxide and electrochemical reduction method of carbon dioxide and/or carbon monoxide using the apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111182A (en) * 2002-09-18 2004-04-08 Sumitomo Electric Ind Ltd Re-activation method of electrode for redox flow battery
JP2011528407A (en) * 2008-07-16 2011-11-17 カレラ コーポレイション Use of CO2 in electrochemical systems
KR20110114816A (en) * 2010-04-14 2011-10-20 삼성중공업 주식회사 Apparatus for capturing carbon dioxide using fuel cell power generation system in a ship and method thereof
KR20150091984A (en) * 2014-02-04 2015-08-12 국립대학법인 울산과학기술대학교 산학협력단 Sea water secondary battery for manufacturing desalinated water
KR20180020763A (en) * 2016-08-19 2018-02-28 서강대학교산학협력단 Electrochemical reduction apparatus of carbon dioxide and/or carbon monoxide and electrochemical reduction method of carbon dioxide and/or carbon monoxide using the apparatus

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Killing Three Birds with One Stone", PRODUCING ELECTRICITY AND HYDROGEN ELIMINATING, 10 December 2018 (2018-12-10) *
DISCUSSING ON PRODUCING ELECTRICITY AND HYDROGEN WITH C02 ON A COMMERCIAL SCALE, 11 December 2018 (2018-12-11) *
KIM, C. ET AL.: "Efficient CO2 Utilization via a Hybrid Na-CO2System Based on C02 Dissolution", SCIENCE, vol. 9, 30 November 2018 (2018-11-30), pages 278 - 285, XP055721943 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114908361A (en) * 2022-05-30 2022-08-16 华中科技大学 Secondary battery and electrocatalysis electrolytic cell mixing device

Similar Documents

Publication Publication Date Title
WO2011138988A1 (en) Electricity generating device of lng carrier and method thereof
KR101955693B1 (en) Aqueous secondary battery using carbon dioxide and complex battery system having the same
WO2019182284A1 (en) Carbon dioxide utilization system, and complex power generation system comprising same
KR101955696B1 (en) Secondary battery using carbon dioxide and complex electric power generation system having the same
WO2017023029A1 (en) Electrolysis reactor for acidic gas removal with high gas/liquid contact efficiency and method therefor
KR20100095338A (en) Apparatus and method for producing electricity of liquefied natural gas carrier
WO2020138668A1 (en) Secondary battery generating hydrogen by using carbon dioxide and complex power generation system having same
KR101997780B1 (en) Secondary battery using carbon dioxide and complex electric power generation system having the same
AU4813199A (en) A fuel cell
KR20200090504A (en) Secondary battery using carbon dioxide and complex electric power generation system having the same
WO2020145642A2 (en) Carbon dioxide utilization system, and hybrid system using same
WO2023210874A1 (en) Carbon dioxide capture, carbon resource utilization, and hydrogen production system for steel mill
KR20210101958A (en) Seawater battery system and seawater battery discharge method using the same
KR101955697B1 (en) Secondary battery using carbon dioxide and complex electric power generation system having the same
KR101997781B1 (en) Secondary battery using carbon dioxide and complex electric power generation system having the same
KR101986642B1 (en) Fuel cell systme having hydrogen generation apparatus using carbon dioxide
WO2019156415A1 (en) Aqueous secondary battery using carbon dioxide and complex system having same
US20220209269A1 (en) Energy system using byproducts generated from seawater electrolyzer
WO2017171115A1 (en) Formic acid preparation apparatus and formic acid preparation method
KR101955695B1 (en) Secondary battery using carbon dioxide and complex electric power generation system having the same
WO2022197009A1 (en) Secondary battery for producing hydrogen by using carbon dioxide, and combined cycle power system comprising same
WO2020045945A1 (en) Hydrogen generating apparatus using carbon dioxide, and fuel cell system having same
Ringuedé et al. Prospects of hydrogen and its derivative as energy vector for electricity production at high temperature-fuel cells and electrolysers
WO2024014593A1 (en) System for generation of blue hydrogen through natural gas reforming, carbon dioxide capture, carbon resource utilization, and reaction product storage, and method therefor
WO2016003011A1 (en) Direct carbon fuel cell system having excellent fuel efficiency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904094

Country of ref document: EP

Kind code of ref document: A1