WO2017023029A1 - Electrolysis reactor for acidic gas removal with high gas/liquid contact efficiency and method therefor - Google Patents

Electrolysis reactor for acidic gas removal with high gas/liquid contact efficiency and method therefor Download PDF

Info

Publication number
WO2017023029A1
WO2017023029A1 PCT/KR2016/008340 KR2016008340W WO2017023029A1 WO 2017023029 A1 WO2017023029 A1 WO 2017023029A1 KR 2016008340 W KR2016008340 W KR 2016008340W WO 2017023029 A1 WO2017023029 A1 WO 2017023029A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cathode
path
anode
water
Prior art date
Application number
PCT/KR2016/008340
Other languages
French (fr)
Korean (ko)
Inventor
정순관
박기태
강성필
김학주
윤민혜
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2017023029A1 publication Critical patent/WO2017023029A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/02Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention electrolytic reactor and carbonate using the same for the gas-liquid contact efficiency is high acid gas removal (CO 3 2-) or bicarbonate (HCO 3 -) it relates to a process for producing the same.
  • Carbon Dioxide Capture & Storage (CCS) technology isolates carbon dioxide from power plants, steel and cement plants that emit large amounts of carbon dioxide from fossil fuels.
  • carbon dioxide capture technology is a core technology that accounts for 70 to 80% of the total cost. It is mainly a post-combustion technology, a pre-combustion technology, and an oxygen-fuel combustion technology. combustion technology).
  • Post-combustion technology is a technology that absorbs or reacts carbon dioxide (CO 2 ) from fossil fuel combustion by absorbing or reacting it in various solvents. Pre-combustion technology removes carbon dioxide before combustion. By separating and pre-processing through the process of gasifying fossil fuels such as coal and converting to CO 2 and hydrogen, the carbon dioxide (CO 2 ) is separated or mixed in a carbon dioxide (CO 2 ) / hydrogen (H 2 ) mixed gas It is a technology that captures carbon dioxide (CO 2 ) in exhaust gas by burning gas.
  • oxygen-fuel combustion technology is a technology that facilitates the capture of carbon dioxide (CO 2 ) by burning only using oxygen instead of air when burning fossil fuel. Post-combustion capture technology is currently the most widely used.
  • a first aspect of the present invention is an acid gas electrolysis reactor having an anode, a cathode which is a gas-liquid contacting reaction, and an ion exchange membrane positioned between the anode and the cathode, wherein the water (H 2 O) supplied from the cathode to the first path is H Electrolyzed with 2 and OH ⁇ , the NaCl containing aqueous solution supplied from the anode to the second route was electrolyzed with Na + and Cl 2 , Cl 2 dissolved in water in the aqueous solution and discharged through the third route, Na + The ions move to the cathode through an ion exchange membrane to form NaOH, and the NaOH is reacted with an acid gas containing carbon dioxide supplied to the fourth path from the cathode, which is a gas-liquid contact reaction part, to form an aqueous solution containing Na 2 CO 3 and / or NaHCO 3.
  • a method for removing acid gas in an electrochemical cell including an anode, a cathode which is a gas-liquid contacting reaction part, and an ion exchange membrane positioned between the anode and the cathode to distinguish between the anode region and the cathode region.
  • porous gas diffusion layer on a fourth path for supplying the carbon dioxide-containing acidic gas, wherein the porous gas diffusion layer has a fine pore structure and supplies the gas to the gas-liquid contacting reaction part of the cathode in the form of fine bubbles. to provide.
  • a third aspect of the present invention is a carbonate (CO 3 2- ) or bicarbonate in an electrochemical cell comprising an anode, a cathode which is a gas-liquid contacting reaction, and an ion exchange membrane positioned between the anode and the cathode to distinguish between the anode region and the cathode region.
  • porous gas diffusion layer on a fourth path for supplying the carbon dioxide-containing acidic gas, wherein the porous gas diffusion layer has a fine pore structure and supplies the gas to the gas-liquid contacting reaction part of the cathode in the form of fine bubbles. to provide.
  • the acid gas is directly supplied to the cathode of the electrolysis reactor so that the NaOH generated from the cathode and the acid gas react, and the gas / liquid contact efficiency is increased in the cathode region of the electrolysis reactor.
  • a-providing a structure that allows to separate without the need for absorption reactor carbonate (CO 3 2-) or bicarbonate (HCO 3) by removing the acid gases carbon dioxide, at the same time and NaOH production.
  • the present invention provides an acid gas electrolysis reactor having an anode, a cathode, and an ion exchange membrane positioned between the anode and the cathode, wherein the cathode is a gas-liquid contacting part.
  • the water (H 2 O) supplied to the first path was electrolyzed into H 2 and OH ⁇
  • the NaCl-containing aqueous solution supplied from the anode to the second path was electrolyzed to Na + and Cl 2
  • Cl 2 gas was Dissolved in water to form HCl and / or HClO and then discharged through the third path, and Na + ions move to the cathode through the ion exchange membrane to form NaOH
  • the fourth liquid is supplied to the fourth path from the cathode, the gas-liquid contacting reaction part.
  • an electrochemical cell including an anode, a cathode which is a gas-liquid contact reaction part, and an ion exchange membrane positioned between the anode and the cathode to distinguish an anode region and a cathode region.
  • the porous gas diffusion layer is provided on the fourth path for supplying the carbon dioxide-containing acidic gas, and the porous gas diffusion layer has a fine pore structure, so that the gas is supplied to the gas-liquid contact reaction part of the cathode in the form of fine bubbles. .
  • the porous gas diffusion layer is provided on the fourth path for supplying the carbon dioxide-containing acidic gas, and the porous gas diffusion layer has a fine pore structure so that the gas is supplied to the gas-liquid contact reaction part of the cathode in the form of fine bubbles. / Liquid contact efficiency can be maximized.
  • the porous gas diffusion layer may not pass through the liquid phase of the gas-liquid contact reaction portion.
  • the porous gas diffusion layer may have micropores exhibiting water repellency.
  • the porous gas diffusion layer may be water-repellent so as not to pass water but only gas. Water repellent treatment can be confirmed using the contact angle of water droplets.
  • the porous gas diffusion layer may have a gas permeability in which the differential pressure loss for the carbon dioxide-containing acid gas supply ranges from 0.01 to 0.1 atm.
  • the porous gas diffusion layer may be electrically conductive.
  • electrical conductivity it is possible to increase the efficiency of NaOH production by smoothing the movement of electrons in the cathode.
  • the porous gas diffusion layer may be a water repellent carbon paper, but is not limited thereto.
  • the acid gas electrolysis reactor according to the present invention may be mounted on a vessel, wherein the aqueous solution (H 2 O) supplied from the cathode to the first path and the aqueous solution containing NaCl supplied from the anode to the second path are each independently seawater. Can be.
  • the acidic gas electrolysis reactor of the present invention separately provides an inlet for supplying a liquid reactant to a cathode and an inlet for supplying a gaseous reactant.
  • the liquid reactant is supplied to the electrode surface through a separate supply passage and the gaseous reactant is passed to the electrode surface through the porous gas diffusion layer.
  • the gaseous reactant is dispersed in the form of fine bubbles while passing through the porous gas diffusion layer to maximize the gas / liquid contact efficiency by contacting the liquid reactant. Therefore, the NaOH aqueous solution generated from the cathode and carbon dioxide, which is an acid gas, may be contacted with high efficiency to perform a carbon dioxide absorption reaction.
  • the present invention is to supply the acid gas directly to the cathode of the electrolysis reactor to react the NaOH and acid gas produced, at this time provides a structure to increase the gas / liquid contact efficiency in the cathode region of the electrolysis reactor to produce NaOH production and It can be prepared-by at the same time removing the acid gases carbon dioxide, without the need for any separate absorption reactor carbonate (CO 3 2-) or bicarbonate (HCO 3).
  • FIG. 1 is a schematic conceptual diagram of an acid gas electrolysis reactor according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an electrolysis reaction system for acid gas removal prepared in Example 1.
  • Example 3 is a graph showing the NaOH production Faraday efficiency according to the reaction temperature as a result of performing the reaction in the electrolysis reaction system for acid gas removal produced in Example 1.
  • Example 4 is a graph showing the carbon dioxide removal rate according to the reaction temperature as a result of performing the reaction in the electrolytic reaction system for acid gas removal produced in Example 1.
  • the acid gas electrolysis reactor according to an embodiment of the present invention, an anode, a cathode, an ion exchange membrane located between the anode and the cathode, a water supply inlet for supplying water to the cathode, the water supply inlet
  • cathode in generation Na 2 CO 3 and Na for / or discharging a NaHCO 3 aqueous solution containing 2 CO 3 and / or A NaHCO 3 -containing aqueous solution outlet and a fifth path through which Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution moves from the cathode to Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution outlet.
  • the cathode and the anode is not limited as long as the voltage can be applied, but in terms of product selectivity and reaction activity, the cathode is Au, Ag, C, Cd, Co, Cr, Cu , Cu alloy, Ga, Hg, In, Mo, Nb, Ni, Ni alloy and the like can be used.
  • the anode may include Pt, Au, Pd, Ir, Ag, Rh, Ru, Mo, Cr, Cu, Ti, W, alloys thereof, or mixed metal oxides such as Ta 2 0 5 , Ir0 2, and the like. This can be used.
  • the ion exchange membrane may be an anion exchange membrane or a cation exchange membrane (CEM).
  • CEM cation exchange membrane
  • Nafion ® N115 and the like can be used.
  • the carbon dioxide-containing acidic gas is directly supplied from the carbon dioxide-containing acidic gas supply inlet to the cathode through a porous gas diffusion layer located on the fourth path to react with the NaOH-containing aqueous solution generated from the cathode to react with Na 2 CO 3 and / or By conversion to NaHCO 3 it can be treated, ie removed.
  • the acid gas electrolysis reactor is designed to increase the gas / liquid contact efficiency in order to increase the reaction efficiency of the NaOH-containing aqueous solution and the carbon dioxide-containing acidic gas.
  • the inlet for supplying a liquid reactant to the cathode and the inlet for supplying a gaseous reactant are configured separately.
  • the liquid reactant is supplied to the electrode surface through a separate supply passage and the gaseous reactant is passed to the electrode surface through the porous gas diffusion layer.
  • the gaseous reactants may be dispersed in the form of fine bubbles while passing through the porous gas diffusion layer, thereby contacting the liquid reactants to maximize the gas-liquid contact efficiency.
  • the NaOH aqueous solution generated from the cathode and carbon dioxide which is an acid gas, may be contacted with high efficiency to perform a carbon dioxide absorption reaction.
  • the acidic gas electrolysis reactor may be combined with an energy source configured to induce a gas-liquid reaction at the cathode by applying a voltage between the anode and the cathode.
  • Electrical energy for acid gas electrolysis is typically a common source of energy, including nuclear energy sources and alternative energy sources from solar cells or other non-fossil fuel electricity sources (eg, hydro, wind, solar, geothermal, etc.). Can come from. Different voltage values can be adjusted depending on the internal resistance of the battery used.
  • the acid gas electrolysis reactor is connected to the water supply inlet for supplying water to the cathode, NaCl-containing aqueous solution source for supplying NaCl-containing aqueous solution to the anode connected to the NaCl-containing aqueous solution supply inlet, the It may further include a carbon dioxide-containing acid gas supply source connected to the carbon dioxide-containing acid gas supply inlet for supplying carbon dioxide-containing acid gas to the cathode.
  • the acid gas electrolysis reactor electrolyzes water (H 2 O) supplied to the first path from the cathode, which is a gas-liquid contacting reaction part, to H 2 and OH ⁇ , and an aqueous NaCl-containing solution supplied to the second path from the anode to Na +.
  • Cl 2 gas is dissolved in water in aqueous solution to form HCl and / or HClO and then discharged through the third path, Na + ions move to the cathode through the ion exchange membrane to form NaOH
  • the carbon dioxide-containing acid gas supplied to the fourth path may react with the NaOH to form Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution, and then discharged through the fifth path.
  • the cathode receives sodium cations and electrons to reduce water molecules to produce hydrogen gas and NaOH, and carbon dioxide-containing acidic gas injected into the cathode region reacts with NaOH-containing basic water in the cathode region to form carbonate (CO 3 2- ) and / Or bicarbonate salt (HCO 3 ⁇ ).
  • the water (H 2 O) supplied to the cathode through the first path may be pure water, but may be an electrolyte (eg, seawater) that contains salt and has high electrical and / or ionic conductivity.
  • the type and concentration of the salt is not limited.
  • An example of a salt is NaCl, and the water supplied to the first path may be an aqueous NaCl solution.
  • the porous gas diffusion layer must satisfy the following conditions.
  • reaction gas It has a fine pore structure so that the reaction gas can be supplied to the gas-liquid contacting reaction unit in the form of fine bubbles.
  • the porous gas diffusion layer may have a gas permeability in which the differential pressure loss for the carbon dioxide-containing acid gas supply ranges from 0.01 to 0.1 atm.
  • the porous gas diffusion layer may not pass through the liquid phase of the gas-liquid contact reaction portion.
  • the porous gas diffusion layer may have micropores exhibiting water repellency. This is to ensure that the gas is smoothly supplied to the cathode through the porous gas diffusion layer and that the liquid phase including the reaction product of the gas-liquid contact reaction part does not leak through the porous gas diffusion layer.
  • the porous gas diffusion layer may be electrically conductive.
  • the porous gas diffusion layer may be a water repellent carbon paper, but is not limited thereto.
  • an acid gas electrolysis reactor was manufactured, and as shown in FIG. 2, an electrolysis reaction system for acid gas removal was manufactured.
  • the catalyst used for the anode and the cathode is platinum (Pt)
  • the particulate platinum catalyst powder is mixed with alcohol with Nafion ionomer, and the prepared mixed solution is coated on both sides of the ion exchange membrane, respectively, to the anode.
  • a cathode electrode was prepared.
  • a 0.1 mm thick gasket and a current collector are combined, and a 0.1 mm thick gasket, a 0.2 mm thick water-repellent carbon paper and gasket, and a 0.1 mm thick gasket are combined in this order.
  • Each of the gas-liquid contacting reaction unit, gas diffusion layer, and gas supply unit was fabricated, and finally, the current collector plate was combined.
  • the current collector plate uses a graphite or brass plate with excellent electrical conductivity to form a potential difference between the two electrodes when a voltage is applied to the electrolysis reactor, and a flow path is provided to supply reactants to the anode and the cathode and to discharge the product. Formed. NaOH production performance and carbon dioxide removal rate were measured while changing the temperature of the electrolysis reactor from 30 ° C. to 90 ° C. under the condition of applying a voltage of 2.8 V using the manufactured reaction system.
  • Electrolyte Membrane Nafion 115
  • Anode electrolyte NaCl aqueous solution (35g / l)
  • FIG. 3 graph showing the NaOH production Faraday efficiency according to the reaction temperature
  • FIG. 4 carbon dioxide removal rate according to the reaction temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Gas Separation By Absorption (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention relates to an electrolysis reactor for acidic gas removal with high gas/liquid contact efficiency and a method therefor and, more specifically, to a reactor and a method, wherein NaOH, which is produced by directly supplying an acidic gas to a cathode of an electrolysis reactor, is allowed to react with an acidic gas, and here, a cathode region of the electrolysis reactor provides a structure capable of improving the gas/liquid contact efficiency to simultaneously attain the production of NaOH and efficient removal of carbon dioxide as an acidic gas, thereby preparing carbonate (CO3 2-) or bicarbonate (HCO3 -) without the need for a separate absorption reactor.

Description

기액 접촉 효율이 높은 산성가스 제거를 위한 전기분해 반응기 및 방법Electrolysis reactor and method for removing acid gas with high gas-liquid contact efficiency
본 발명은 기액 접촉 효율이 높은 산성가스 제거를 위한 전기분해 반응기 및 이를 이용한 탄산염(CO3 2-) 또는 중탄산염(HCO3 -) 제조 방법에 관한 것이다.The invention electrolytic reactor and carbonate using the same for the gas-liquid contact efficiency is high acid gas removal (CO 3 2-) or bicarbonate (HCO 3 -) it relates to a process for producing the same.
화석연료의 사용에 따라 대기 중에 이산화탄소(CO2), 메탄(CH4), 황화수소(H2S), 카보닐 설파이드(COS) 등 산성가스 농도가 증가하여, 이로 인한 지구 온난화가 문제되고 있다. 특히 대기 중 이산화탄소는 1992년 리우 환경회의 이후 그 저감을 위한 여러 방안이 세계적으로 활발히 논의되고 있다.The use of fossil fuels increases the concentration of acidic gases such as carbon dioxide (CO 2 ), methane (CH 4 ), hydrogen sulfide (H 2 S), carbonyl sulfide (COS), and global warming is a problem. In particular, various measures for reducing carbon dioxide in the atmosphere have been actively discussed worldwide since the 1992 Rio Environmental Conference.
이산화탄소 포집 및 저장(CCS; Carbon Dioxide Capture& Storage) 기술은 화석연료를 사용하여 이산화탄소를 대량 배출하는 발전소, 철강, 시멘트 공장 등에서 배출되는 이산화탄소를 대기로부터 격리시키는 기술이다.Carbon Dioxide Capture & Storage (CCS) technology isolates carbon dioxide from power plants, steel and cement plants that emit large amounts of carbon dioxide from fossil fuels.
CCS 기술 중 이산화탄소 포집기술은 전체 비용의 70 내지 80%를 차지하는 핵심 기술로 크게 연소 후 포집기술(Post-combustion technology), 연소 전 포집기술(Pre-combustion technology) 및 순산소 연소기술(Oxy-fuel combustion technology)로 구분된다.Among the CCS technologies, carbon dioxide capture technology is a core technology that accounts for 70 to 80% of the total cost. It is mainly a post-combustion technology, a pre-combustion technology, and an oxygen-fuel combustion technology. combustion technology).
연소 후 포집기술(Post-combustion technology)은 화석연료 연소에서 나온 이산화탄소(CO2)를 여러 용매에 흡수시키거나 반응시켜 제거하는 기술이며, 연소 전 포집기술(Pre-combustion technology)은 연소 전에 이산화탄소를 분리해 내는 것으로 석탄과 같은 화석연료를 가스화시키는 과정을 통해 사전 처리하여 CO2와 수소로 전환시킨 후에 이산화탄소(CO2)/수소(H2)혼합가스 중에서 이산화탄소(CO2)를 분리하거나 또는 혼합가스를 연소시켜서 배기가스 중의 이산화탄소(CO2)를 포집하는 기술이다. 또한, 순 산소 연소기술(Oxy-fuel combustion technology)은 화석연료를 연소시킬 때 공기 대신 산소만을 이용하여 연소시켜 이산화탄소(CO2) 포집을 용이하게 하는 기술이다. 위 기술 중 연소 후 포집기술이 현재 가장 폭넓게 사용되고 있다.Post-combustion technology is a technology that absorbs or reacts carbon dioxide (CO 2 ) from fossil fuel combustion by absorbing or reacting it in various solvents. Pre-combustion technology removes carbon dioxide before combustion. By separating and pre-processing through the process of gasifying fossil fuels such as coal and converting to CO 2 and hydrogen, the carbon dioxide (CO 2 ) is separated or mixed in a carbon dioxide (CO 2 ) / hydrogen (H 2 ) mixed gas It is a technology that captures carbon dioxide (CO 2 ) in exhaust gas by burning gas. In addition, oxygen-fuel combustion technology is a technology that facilitates the capture of carbon dioxide (CO 2 ) by burning only using oxygen instead of air when burning fossil fuel. Post-combustion capture technology is currently the most widely used.
기존 이산화탄소 발생원에 적용하기 가장 용이한 기술은 연소 후 포집기술이다. 흡수제를 이용하여 이산화탄소를 흡탈착하여 이산화탄소를 분리하는 방법으로 흡수제 성능향상과 이에 따른 공정 개선 등에 초점이 맞추어져 있다. 이 기술은 요소비료 생산, 자동용접, 탄산음료 등에 필요한 이산화탄소를 공급하기 위하여 습식 흡수기술과 건식 흡착기술이 상용화되어 가동되고 있으며, 습식 흡수기술의 효율이 높은 편이다.The easiest technique to apply to existing carbon dioxide sources is post-combustion capture. As a method of absorbing and desorbing carbon dioxide by using an absorbent, the focus is on improving the absorbent performance and the process improvement. In order to supply carbon dioxide for urea fertilizer production, automatic welding, and carbonated beverages, this technology is commercially operated with wet absorption technology and dry adsorption technology, and the efficiency of wet absorption technology is high.
본 발명의 목적은 기/액 접촉 효율을 높여 우수한 효율로 산성가스를 제거할 수 있는 장치 및 이를 이용한 탄산염(CO3 2-) 또는 중탄산염(HCO3 -) 제조 방법을 제공하는 것이다.It is an object of the present invention to provide an apparatus capable of removing acid gas with excellent efficiency by increasing gas / liquid contact efficiency and a method for preparing carbonate (CO 3 2- ) or bicarbonate (HCO 3 ) using the same.
본 발명의 제1양태는 애노드, 기액 접촉반응부인 캐소드 및 상기 애노드와 캐소드 사이에 위치한 이온교환막을 구비한 산성가스 전기분해 반응기로서, 캐소드에서 제1경로로 공급된 물(H2O)을 H2와 OH-로 전기분해시키고, 애노드에서 제2경로로 공급된 NaCl 함유 수용액을 Na+와 Cl2로 전기분해하고, Cl2 는 수용액 내 물에 용해되어 제3경로를 통해 배출하고, Na+ 이온은 이온교환막을 통하여 캐소드로 이동하여 NaOH를 형성하고, 기액 접촉반응부인 캐소드에서 제4경로로 공급된 이산화탄소 함유 산성가스와 상기 NaOH를 반응시켜 Na2CO3 및/또는 NaHCO3 함유 수용액을 형성시킨 후 제5경로를 통해 배출하는 것이 특징인 반응기를 제공한다.A first aspect of the present invention is an acid gas electrolysis reactor having an anode, a cathode which is a gas-liquid contacting reaction, and an ion exchange membrane positioned between the anode and the cathode, wherein the water (H 2 O) supplied from the cathode to the first path is H Electrolyzed with 2 and OH , the NaCl containing aqueous solution supplied from the anode to the second route was electrolyzed with Na + and Cl 2 , Cl 2 dissolved in water in the aqueous solution and discharged through the third route, Na + The ions move to the cathode through an ion exchange membrane to form NaOH, and the NaOH is reacted with an acid gas containing carbon dioxide supplied to the fourth path from the cathode, which is a gas-liquid contact reaction part, to form an aqueous solution containing Na 2 CO 3 and / or NaHCO 3. After providing the reactor characterized in that the discharge through the fifth path.
본 발명의 제2양태는 애노드, 기액 접촉반응부인 캐소드 및 상기 애노드와 캐소드 사이에 위치하여 애노드 영역과 캐소드 영역을 구분해주는 이온교환막을 포함하는 전기화학적 전지 내에서 산성가스를 제거하는 방법으로서, According to a second aspect of the present invention, there is provided a method for removing acid gas in an electrochemical cell including an anode, a cathode which is a gas-liquid contacting reaction part, and an ion exchange membrane positioned between the anode and the cathode to distinguish between the anode region and the cathode region.
캐소드에서 제1경로로 공급된 물(H2O)을 H2와 OH-로 전기분해시키고, 애노드에서 제2경로로 공급된 NaCl 함유 수용액을 Na+와 Cl2로 전기분해하고, Na+ 이온은 이온교환막을 통하여 캐소드로 이동하여 NaOH를 형성하고, 기액 접촉반응부인 캐소드에서 제4경로로 공급된 이산화탄소 함유 산성가스와 상기 NaOH를 반응시켜 Na2CO3 및 NaHCO3 함유 수용액을 형성시키는 제1단계;Water (H 2 O) supplied from the cathode to the first path was electrolyzed to H 2 and OH , and an aqueous NaCl containing solution supplied from the anode to the second path was electrolyzed to Na + and Cl 2 , and Na + ions is the first to form NaOH, go to the cathode through the ion exchange membrane, and by reacting the carbon dioxide containing acid gas and the NaOH fed to the four paths from the wife the gas-liquid contact reaction cathode forms a Na 2 CO 3 and NaHCO 3 aqueous solution containing step;
상기 애노드에서 생성된 Cl2는 수용액 내 물에 용해되어 제3경로를 통해 배출시키는 제2단계; 및Cl 2 generated in the anode is dissolved in water in the aqueous solution and discharged through a third path; And
상기 캐소드에서 생성된 Na2CO3 및/또는 NaHCO3 함유 수용액을 제5경로를 통해 배출시키는 제3단계를 포함하고, A third step of discharging the Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution produced by the cathode through a fifth path,
상기 이산화탄소 함유 산성가스를 공급하는 제4경로 상에 다공성 기체 확산층을 구비하되, 상기 다공성 기체 확산층은 미세 기공 구조를 가지고 있어서 기체를 미세한 기포 형태로 캐소드의 기액 접촉 반응부로 공급하는 것이 특징인 방법을 제공한다.And a porous gas diffusion layer on a fourth path for supplying the carbon dioxide-containing acidic gas, wherein the porous gas diffusion layer has a fine pore structure and supplies the gas to the gas-liquid contacting reaction part of the cathode in the form of fine bubbles. to provide.
본 발명의 제3양태는 애노드, 기액 접촉반응부인 캐소드 및 상기 애노드와 캐소드 사이에 위치하여 애노드 영역과 캐소드 영역을 구분해주는 이온교환막을 포함하는 전기화학적 전지 내에서 탄산염(CO3 2-) 또는 중탄산염(HCO3 -)을 제조하는 방법으로서, A third aspect of the present invention is a carbonate (CO 3 2- ) or bicarbonate in an electrochemical cell comprising an anode, a cathode which is a gas-liquid contacting reaction, and an ion exchange membrane positioned between the anode and the cathode to distinguish between the anode region and the cathode region. As a method of preparing (HCO 3 ),
캐소드에서 제1경로로 공급된 물(H2O)을 H2와 OH-로 전기분해시키고, 애노드에서 제2경로로 공급된 NaCl 함유 수용액을 Na+와 Cl2로 전기분해하고, Na+ 이온은 이온교환막을 통하여 캐소드로 이동하여 NaOH를 형성하고, 기액 접촉반응부인 캐소드에서 제4경로로 공급된 이산화탄소 함유 산성가스와 상기 NaOH를 반응시켜 Na2CO3 및/또는 NaHCO3 함유 수용액을 형성시키는 제1단계;Water (H 2 O) supplied from the cathode to the first path was electrolyzed to H 2 and OH , and an aqueous NaCl containing solution supplied from the anode to the second path was electrolyzed to Na + and Cl 2 , and Na + ions A silver ion is moved to a cathode through an ion exchange membrane to form NaOH, and a Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution is formed by reacting the NaOH with a carbon dioxide-containing acid gas supplied in a fourth path from a cathode, which is a gas-liquid contact reaction part. First step;
상기 애노드에서 생성된 Cl2는 수용액 내 물에 흡수되어 제3경로를 통해 배출시키는 제2단계; 및Cl 2 generated in the anode is absorbed in water in the aqueous solution and discharged through a third path; And
상기 캐소드에서 생성된 Na2CO3 및/또는 NaHCO3 함유 수용액을 제5경로를 통해 배출시키는 제3단계를 포함하고, A third step of discharging the Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution produced by the cathode through a fifth path,
상기 이산화탄소 함유 산성가스를 공급하는 제4경로 상에 다공성 기체 확산층을 구비하되, 상기 다공성 기체 확산층은 미세 기공 구조를 가지고 있어서 기체를 미세한 기포 형태로 캐소드의 기액 접촉 반응부로 공급하는 것이 특징인 방법을 제공한다.And a porous gas diffusion layer on a fourth path for supplying the carbon dioxide-containing acidic gas, wherein the porous gas diffusion layer has a fine pore structure and supplies the gas to the gas-liquid contacting reaction part of the cathode in the form of fine bubbles. to provide.
이하 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.
기존 산성 가스 처리 방법은 NaCl 수용액을 전기분해하여 NaOH 수용액을 생성하고 별도의 기/액 흡수 반응기에서 산성가스와 생성된 NaOH 수용액을 접촉시켜 반응시킴으로써 산성가스인 CO2, SOx, NOx를 흡수함으로써 오염물 배출을 억제하는 방식이었다. 그러나, 이러한 기술은 산성가스가 NaOH 수용액과 반응하는 별도의 흡수 반응기를 필요로 하고 기/액 접촉 면적에 한계가 있어 반응 효율이 떨어지는 단점이 있다. 따라서, 산성가스가 NaOH 수용액 간의 기/액 접촉 효율을 높일 수 있는 구조가 필요하다.Existing acid gas treatment method electrolyzes NaCl aqueous solution to produce NaOH aqueous solution, and absorbs acidic gases CO 2 , SOx and NOx by contacting acid gas with NaOH aqueous solution in a separate gas / liquid absorption reactor. It was a way to suppress emissions. However, this technique requires a separate absorption reactor in which the acidic gas reacts with the NaOH aqueous solution and has a disadvantage in that the reaction efficiency is lowered because of limitation in the gas / liquid contact area. Therefore, there is a need for a structure in which acidic gases can enhance the gas / liquid contact efficiency between NaOH aqueous solutions.
본 발명에서는 도 1에 도시된 바와 같이 산성가스를 전기분해 반응기의 캐소드에 직접 공급하여 캐소드에서 생성된 NaOH와 산성가스가 반응하도록 하고, 이때 전기분해 반응기의 캐소드 영역에서 기/액 접촉 효율을 높일 수 있는 구조를 제공하여 NaOH 생산과 동시에 산성가스인 이산화탄소를 제거함으로써 별도의 흡수 반응기를 필요로 하지 않고 탄산염(CO3 2-) 또는 중탄산염(HCO3 -)을 제조하는 것을 특징으로 한다.In the present invention, as shown in FIG. 1, the acid gas is directly supplied to the cathode of the electrolysis reactor so that the NaOH generated from the cathode and the acid gas react, and the gas / liquid contact efficiency is increased in the cathode region of the electrolysis reactor. It characterized in that for producing a-providing a structure that allows to separate without the need for absorption reactor carbonate (CO 3 2-) or bicarbonate (HCO 3) by removing the acid gases carbon dioxide, at the same time and NaOH production.
전술한 바와 같이, 기/액 접촉 효율을 높일 수 있는 구조로서, 본 발명은 애노드, 캐소드 및 상기 애노드와 캐소드 사이에 위치한 이온교환막을 구비한 산성가스 전기분해 반응기에 있어서, 기액 접촉반응부인 캐소드에서 제1경로로 공급된 물(H2O)을 H2와 OH-로 전기분해시키고, 애노드에서 제2경로로 공급된 NaCl 함유 수용액을 Na+와 Cl2로 전기분해하고, Cl2 기체는 수용액 내 물에 용해되어 HCl 및/또는 HClO을 형성시킨 후 제3경로를 통해 배출하고, Na+ 이온은 이온교환막을 통하여 캐소드로 이동하여 NaOH를 형성하고, 기액 접촉반응부인 캐소드에서 제4경로로 공급된 이산화탄소 함유 산성가스와 상기 NaOH를 반응시켜 Na2CO3 및/또는 NaHCO3 함유 수용액을 형성시킨 후 제5경로를 통해 배출하는 반응기를 제공할 수 있다.As described above, as a structure capable of increasing gas / liquid contact efficiency, the present invention provides an acid gas electrolysis reactor having an anode, a cathode, and an ion exchange membrane positioned between the anode and the cathode, wherein the cathode is a gas-liquid contacting part. The water (H 2 O) supplied to the first path was electrolyzed into H 2 and OH , the NaCl-containing aqueous solution supplied from the anode to the second path was electrolyzed to Na + and Cl 2 , and Cl 2 gas was Dissolved in water to form HCl and / or HClO and then discharged through the third path, and Na + ions move to the cathode through the ion exchange membrane to form NaOH, and the fourth liquid is supplied to the fourth path from the cathode, the gas-liquid contacting reaction part. By reacting the acidic carbon dioxide-containing acidic gas and the NaOH to form an aqueous solution containing Na 2 CO 3 and / or NaHCO 3 It can provide a reactor for discharging through the fifth path.
또한, 본 발명에 따라, 애노드, 기액 접촉반응부인 캐소드 및 상기 애노드와 캐소드 사이에 위치하여 애노드 영역과 캐소드 영역을 구분해주는 이온교환막을 포함하는 전기화학적 전지 내에서 In addition, according to the present invention, an electrochemical cell including an anode, a cathode which is a gas-liquid contact reaction part, and an ion exchange membrane positioned between the anode and the cathode to distinguish an anode region and a cathode region.
산성가스를 제거하는 방법 또는 탄산염(CO3 2-) 또는 중탄산염(HCO3 -)을 제조하는 방법은, How to remove the acid gases or carbonate (CO 3 2-) or bicarbonate (HCO 3 -) is a method for preparing,
캐소드에서 제1경로로 공급된 물(H2O)을 H2와 OH-로 전기분해시키고, 애노드에서 제2경로로 공급된 NaCl 함유 수용액을 Na+와 Cl2로 전기분해하고, Na+ 이온은 이온교환막을 통하여 캐소드로 이동하여 NaOH를 형성하고, 기액 접촉반응부인 캐소드에서 제4경로로 공급된 이산화탄소 함유 산성가스와 상기 NaOH를 반응시켜 Na2CO3 및/또는 NaHCO3 함유 수용액을 형성시키는 제1단계;Water (H 2 O) supplied from the cathode to the first path was electrolyzed to H 2 and OH , and an aqueous NaCl containing solution supplied from the anode to the second path was electrolyzed to Na + and Cl 2 , and Na + ions A silver ion is moved to a cathode through an ion exchange membrane to form NaOH, and a Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution is formed by reacting the NaOH with a carbon dioxide-containing acid gas supplied in a fourth path from a cathode, which is a gas-liquid contact reaction part. First step;
상기 애노드에서 생성된 Cl2 기체는 수용액 내 물에 용해되어 HCl 및/또는 HClO을 형성시킨 후 제3경로를 통해 배출시키는 제2단계; 및A second step of dissolving the Cl 2 gas generated at the anode in water in an aqueous solution to form HCl and / or HClO and then discharging it through a third path; And
상기 캐소드에서 생성된 Na2CO3 및/또는 NaHCO3 함유 수용액을 제5경로를 통해 배출시키는 제3단계를 포함하고, A third step of discharging the Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution produced by the cathode through a fifth path,
이때, 상기 이산화탄소 함유 산성가스를 공급하는 제4경로 상에 다공성 기체 확산층을 구비하되, 상기 다공성 기체 확산층은 미세 기공 구조를 가지고 있어서 기체를 미세한 기포 형태로 캐소드의 기액 접촉 반응부로 공급하는 것이 특징이다.In this case, the porous gas diffusion layer is provided on the fourth path for supplying the carbon dioxide-containing acidic gas, and the porous gas diffusion layer has a fine pore structure, so that the gas is supplied to the gas-liquid contact reaction part of the cathode in the form of fine bubbles. .
즉, 본 발명에서는 이산화탄소 함유 산성가스를 공급하는 제4경로 상에 다공성 기체 확산층을 구비하되, 상기 다공성 기체 확산층은 미세 기공 구조를 가지고 있어서 기체를 미세한 기포 형태로 캐소드의 기액 접촉 반응부로 공급함으로써 기/액 접촉 효율을 극대화시킬 수 있다. That is, in the present invention, the porous gas diffusion layer is provided on the fourth path for supplying the carbon dioxide-containing acidic gas, and the porous gas diffusion layer has a fine pore structure so that the gas is supplied to the gas-liquid contact reaction part of the cathode in the form of fine bubbles. / Liquid contact efficiency can be maximized.
본 발명에서, 다공성 기체 확산층은 기액 접촉 반응부의 액상을 통과시키지 못하는 것일 수 있다. 본 발명에서, 다공성 기체 확산층은 발수성을 발휘하는 미세기공을 가질 수 있다. 또한, 다공성 기체 확산층은 물을 통과시키지 아니하고, 기체만 통과시킬 수 있도록 발수처리된 것일 수 있다. 발수처리는 물방울의 접촉각을 이용하여 확인할 수 있다.In the present invention, the porous gas diffusion layer may not pass through the liquid phase of the gas-liquid contact reaction portion. In the present invention, the porous gas diffusion layer may have micropores exhibiting water repellency. In addition, the porous gas diffusion layer may be water-repellent so as not to pass water but only gas. Water repellent treatment can be confirmed using the contact angle of water droplets.
본 발명에서, 다공성 기체 확산층은 이산화탄소 함유 산성가스 공급에 대한 차압 손실이 0.01 내지 0.1 atm 범위인 기체 투과도를 가질 수 있다.In the present invention, the porous gas diffusion layer may have a gas permeability in which the differential pressure loss for the carbon dioxide-containing acid gas supply ranges from 0.01 to 0.1 atm.
본 발명에서, 다공성 기체 확산층은 전기전도성이 있는 것일 수 있다. 전기 전도성이 있는 경우 캐소드에서 전자의 이동을 원활하게 하여 NaOH 생성 효율을 높일 수 있다.In the present invention, the porous gas diffusion layer may be electrically conductive. In the case of electrical conductivity, it is possible to increase the efficiency of NaOH production by smoothing the movement of electrons in the cathode.
본 발명에서, 다공성 기체 확산층은 발수처리된 탄소 종이일 수 있으며, 이에 제한되는 것은 아니다.In the present invention, the porous gas diffusion layer may be a water repellent carbon paper, but is not limited thereto.
본 발명에 따른 산성가스 전기분해 반응기는 선박에 장착될 수 있으며, 이때, 캐소드에서 제1경로로 공급된 물(H2O) 및 애노드에서 제2경로로 공급된 NaCl 함유 수용액은 각각 독립적으로 해수일 수 있다. The acid gas electrolysis reactor according to the present invention may be mounted on a vessel, wherein the aqueous solution (H 2 O) supplied from the cathode to the first path and the aqueous solution containing NaCl supplied from the anode to the second path are each independently seawater. Can be.
본 발명의 산성가스 전기분해 반응기는 캐소드에 액상의 반응물이 공급되는 주입구와 기상 반응물이 공급되는 주입구를 별도로 제공한다. 이때, 액상 반응물은 별도의 공급로를 통해 전극 표면으로 공급되고 기상 반응물은 다공성 기체 확산층을 통과하여 전극 표면으로 전달된다. 바람직하기로, 기상 반응물은 다공성 기체 확산층을 통과하면서 미세한 기포 형태로 분산되어 액상 반응물과 접촉함으로써 기/액 접촉 효율을 극대화할 수 있다. 따라서, 캐소드에서 생성된 NaOH 수용액과 산성가스인 이산화탄소가 고효율로 접촉하여 이산화탄소 흡수 반응을 수행할 수 있다.The acidic gas electrolysis reactor of the present invention separately provides an inlet for supplying a liquid reactant to a cathode and an inlet for supplying a gaseous reactant. At this time, the liquid reactant is supplied to the electrode surface through a separate supply passage and the gaseous reactant is passed to the electrode surface through the porous gas diffusion layer. Preferably, the gaseous reactant is dispersed in the form of fine bubbles while passing through the porous gas diffusion layer to maximize the gas / liquid contact efficiency by contacting the liquid reactant. Therefore, the NaOH aqueous solution generated from the cathode and carbon dioxide, which is an acid gas, may be contacted with high efficiency to perform a carbon dioxide absorption reaction.
본 발명은 산성가스를 전기분해 반응기의 캐소드에 직접 공급하여 생성된 NaOH와 산성가스가 반응하도록 하고, 이때 전기분해 반응기의 캐소드 영역에서 기/액 접촉 효율을 높일 수 있는 구조를 제공하여 NaOH 생산과 동시에 산성가스인 이산화탄소를 제거함으로써, 별도의 흡수 반응기를 필요로 하지 않고 탄산염(CO3 2-) 또는 중탄산염(HCO3 -)을 제조할 수 있다.The present invention is to supply the acid gas directly to the cathode of the electrolysis reactor to react the NaOH and acid gas produced, at this time provides a structure to increase the gas / liquid contact efficiency in the cathode region of the electrolysis reactor to produce NaOH production and It can be prepared-by at the same time removing the acid gases carbon dioxide, without the need for any separate absorption reactor carbonate (CO 3 2-) or bicarbonate (HCO 3).
도 1은 본 발명의 일 구체예에 따른 산성가스 전기분해 반응기의 개략적인 개념도이다.1 is a schematic conceptual diagram of an acid gas electrolysis reactor according to an embodiment of the present invention.
도 2는 실시예 1에서 제작한, 산성가스 제거를 위한 전기분해 반응 시스템을 도시한 개략도이다.Figure 2 is a schematic diagram showing an electrolysis reaction system for acid gas removal prepared in Example 1.
도 3은 실시예 1에서 제작한 산성가스 제거용 전기분해 반응 시스템에서 반응을 수행한 결과 반응 온도에 따른 NaOH 생성 패러데이 효율을 도시한 그래프이다.3 is a graph showing the NaOH production Faraday efficiency according to the reaction temperature as a result of performing the reaction in the electrolysis reaction system for acid gas removal produced in Example 1.
도 4는 실시예 1에서 제작한 산성가스 제거용 전기분해 반응 시스템에서 반응을 수행한 결과 반응 온도에 따른 이산화탄소 제거율을 도시한 그래프이다.4 is a graph showing the carbon dioxide removal rate according to the reaction temperature as a result of performing the reaction in the electrolytic reaction system for acid gas removal produced in Example 1.
본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 자가 용이하게 실시할 수 있을 정도로 본 발명의 바람직한 실시예를 도면을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily practice the present invention.
이하에서는 본 발명의 실시예에 따른 산성가스 전기분해 반응기의 구성을 설명하도록 한다.Hereinafter will be described the configuration of the acid gas electrolysis reactor according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 구체예에 따른 산성가스 전기분해 반응기는 애노드, 캐소드, 상기 애노드와 캐소드 사이에 위치한 이온교환막, 상기 캐소드에 물을 공급하기 위한 물 공급 주입구, 상기 물 공급 주입구로 공급된 물이 캐소드로 이동하는 제1경로, 상기 애노드에 NaCl 함유 수용액을 공급하기 위한 NaCl 함유 수용액 공급 주입구, 상기 NaCl 함유 수용액 공급 주입구로 공급된 NaCl 함유 수용액이 애노드로 이동하는 제2경로, 애노드에서 생성된 HCl 및/또는 HClO을 배출시키기 위한 배출구, 상기 애노드로부터 HCl 및/또는 HClO 배출구로 HCl 및/또는 HClO이 이동하는 제3경로, 상기 캐소드에 이산화탄소 함유 산성가스를 공급하기 위한 이산화탄소 함유 산성가스 공급 주입구, 상기 이산화탄소 함유 산성가스 공급 주입구로 공급된 이산화탄소 함유 산성가스가 캐소드로 이동하는 제4경로, 상기 제4경로 상에 위치한 다공성 기체 확산층, 기액 접촉반응부인 캐소드에서 생성된 Na2CO3 및/또는 NaHCO3 함유 수용액을 배출시키기 위한 Na2CO3 및/또는 NaHCO3 함유 수용액 배출구, 및 상기 캐소드로부터 Na2CO3 및/또는 NaHCO3 함유 수용액 배출구로 Na2CO3 및/또는 NaHCO3 함유 수용액이 이동하는 제5경로를 포함할 수 있다.Referring to Figure 1, the acid gas electrolysis reactor according to an embodiment of the present invention, an anode, a cathode, an ion exchange membrane located between the anode and the cathode, a water supply inlet for supplying water to the cathode, the water supply inlet A first path through which the water supplied to the cathode moves to the cathode, a NaCl-containing aqueous solution supply inlet for supplying an NaCl-containing aqueous solution to the anode, a second path through which the NaCl-containing aqueous solution supplied to the NaCl-containing aqueous solution supply inlet moves to the anode, An outlet for discharging HCl and / or HClO produced at the anode, a third path through which HCl and / or HClO moves from the anode to an HCl and / or HClO outlet, containing carbon dioxide for supplying carbon dioxide-containing acidic gas to the cathode Acid gas supply inlet, carbon dioxide-containing acid value supplied to the carbon dioxide-containing acid gas supply inlet First moving to the cathode 4, the path and the fourth path to the porous gas diffusion layer located on the gas-liquid contact reaction of Mrs. cathode in generation Na 2 CO 3 and Na for / or discharging a NaHCO 3 aqueous solution containing 2 CO 3 and / or A NaHCO 3 -containing aqueous solution outlet, and a fifth path through which Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution moves from the cathode to Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution outlet.
본 발명에서 캐소드 및 애노드는 전압이 인가될 수 있는 한, 그 종류는 제한되지 아니하나, 생성물의 선택도 및 반응 활성도 측면에서, 상기 캐소드로는 Au, Ag, C, Cd, Co, Cr, Cu, Cu 합금, Ga, Hg, In, Mo, Nb, Ni, Ni 합금 등이 사용될 수 있다. 또한, 상기 애노드로는 Pt, Au, Pd, Ir, Ag, Rh, Ru, Mo, Cr, Cu, Ti, W, 이들의 합금, 또는 혼합 금속 산화물, 예를 들어 Ta205, Ir02 등이 사용될 수 있다.In the present invention, the cathode and the anode is not limited as long as the voltage can be applied, but in terms of product selectivity and reaction activity, the cathode is Au, Ag, C, Cd, Co, Cr, Cu , Cu alloy, Ga, Hg, In, Mo, Nb, Ni, Ni alloy and the like can be used. In addition, the anode may include Pt, Au, Pd, Ir, Ag, Rh, Ru, Mo, Cr, Cu, Ti, W, alloys thereof, or mixed metal oxides such as Ta 2 0 5 , Ir0 2, and the like. This can be used.
상기 이온교환막으로는 음이온 교환막 또는 양이온 교환막(CEM, cation exchange membrane)을 사용할 수 있다. 예를 들어, 나피온® N115 등을 사용할 수 있다.The ion exchange membrane may be an anion exchange membrane or a cation exchange membrane (CEM). For example, Nafion ® N115 and the like can be used.
본 발명에서는 이산화탄소 함유 산성가스를 상기 이산화탄소 함유 산성가스 공급 주입구로부터 상기 제4경로 상에 위치한 다공성 기체 확산층을 통해 캐소드에 직접 공급하여 캐소드에서 생성된 NaOH 함유 수용액과 반응하여 Na2CO3 및/또는 NaHCO3로 전환됨으로써 처리, 즉 제거될 수 있다.In the present invention, the carbon dioxide-containing acidic gas is directly supplied from the carbon dioxide-containing acidic gas supply inlet to the cathode through a porous gas diffusion layer located on the fourth path to react with the NaOH-containing aqueous solution generated from the cathode to react with Na 2 CO 3 and / or By conversion to NaHCO 3 it can be treated, ie removed.
본 발명에서는 상기 NaOH 함유 수용액과 이산화탄소 함유 산성가스의 반응 효율을 높이기 위해 기/액 접촉 효율을 증가시킬 수 있는 구조로 산성가스 전기분해 반응기가 설계된 것이 특징이다. 구체적으로, 본 발명에서는 캐소드에 액상의 반응물이 공급되는 주입구와 기상 반응물이 공급되는 주입구가 별도로 구성되어 있다. 이때, 액상 반응물은 별도의 공급로를 통해 전극 표면으로 공급되고 기상 반응물은 다공성 기체 확산층을 통과하여 전극 표면으로 전달된다. 특히, 기상 반응물은 다공성 기체 확산층을 통과하면서 미세한 기포 형태로 분산되어 액상 반응물과 접촉함으로써 기-액 접촉 효율을 극대화 할 수 있다. 이에 따라 캐소드에서 생성된 NaOH 수용액과 산성가스인 이산화탄소가 고효율로 접촉하여 이산화탄소 흡수 반응을 수행할 수 있다.In the present invention, the acid gas electrolysis reactor is designed to increase the gas / liquid contact efficiency in order to increase the reaction efficiency of the NaOH-containing aqueous solution and the carbon dioxide-containing acidic gas. Specifically, in the present invention, the inlet for supplying a liquid reactant to the cathode and the inlet for supplying a gaseous reactant are configured separately. At this time, the liquid reactant is supplied to the electrode surface through a separate supply passage and the gaseous reactant is passed to the electrode surface through the porous gas diffusion layer. In particular, the gaseous reactants may be dispersed in the form of fine bubbles while passing through the porous gas diffusion layer, thereby contacting the liquid reactants to maximize the gas-liquid contact efficiency. Accordingly, the NaOH aqueous solution generated from the cathode and carbon dioxide, which is an acid gas, may be contacted with high efficiency to perform a carbon dioxide absorption reaction.
상기 산성가스 전기분해 반응기는 상기 애노드 및 상기 캐소드 사이에 전압을 인가하여 상기 캐소드에서 기액반응을 유도하도록 구성된 에너지 공급원과 결합될 수 있다.The acidic gas electrolysis reactor may be combined with an energy source configured to induce a gas-liquid reaction at the cathode by applying a voltage between the anode and the cathode.
산성가스 전기분해를 위한 전기 에너지는 통상 핵 에너지 공급원 및 태양 전지 또는 다른 비-화석 연료 전기 공급원으로부터의 대체 에너지 공급원(예를 들어, 수력, 풍력, 태양열 발전, 지열 등)을 비롯한 통상적인 에너지 공급원으로부터 올 수 있다. 사용되는 전지의 내부 저항에 따라 다른 전압 값을 조정할 수 있다.Electrical energy for acid gas electrolysis is typically a common source of energy, including nuclear energy sources and alternative energy sources from solar cells or other non-fossil fuel electricity sources (eg, hydro, wind, solar, geothermal, etc.). Can come from. Different voltage values can be adjusted depending on the internal resistance of the battery used.
또한, 상기 산성가스 전기분해 반응기는 상기 물 공급 주입구와 연결되어 캐소드에 물을 공급하기 위한 물 공급원, 상기 NaCl 함유 수용액 공급 주입구와 연결되어 애노드에 NaCl 함유 수용액을 공급하기 위한 NaCl 함유 수용액 공급원, 상기 이산화탄소 함유 산성가스 공급 주입구와 연결되어 캐소드에 이산화탄소 함유 산성가스를 공급하기 위한 이산화탄소 함유 산성가스 공급원을 추가로 포함할 수 있다.In addition, the acid gas electrolysis reactor is connected to the water supply inlet for supplying water to the cathode, NaCl-containing aqueous solution source for supplying NaCl-containing aqueous solution to the anode connected to the NaCl-containing aqueous solution supply inlet, the It may further include a carbon dioxide-containing acid gas supply source connected to the carbon dioxide-containing acid gas supply inlet for supplying carbon dioxide-containing acid gas to the cathode.
상기 산성가스 전기분해 반응기는 기액 접촉반응부인 캐소드에서 제1경로로 공급된 물(H2O)을 H2와 OH-로 전기분해시키고, 애노드에서 제2경로로 공급된 NaCl 함유 수용액을 Na+와 Cl2로 전기분해하고, Cl2 기체는 수용액 내 물에 용해되어 HCl 및/또는 HClO을 형성시킨 후 제3경로를 통해 배출하고, Na+ 이온은 이온교환막을 통하여 캐소드로 이동하여 NaOH를 형성하고, 제4경로로 공급된 이산화탄소 함유 산성가스와 상기 NaOH를 반응시켜 Na2CO3 및/또는 NaHCO3 함유 수용액을 형성시킨 후 제5경로를 통해 배출할 수 있다.The acid gas electrolysis reactor electrolyzes water (H 2 O) supplied to the first path from the cathode, which is a gas-liquid contacting reaction part, to H 2 and OH , and an aqueous NaCl-containing solution supplied to the second path from the anode to Na +. And Cl 2 electrolyzed, Cl 2 gas is dissolved in water in aqueous solution to form HCl and / or HClO and then discharged through the third path, Na + ions move to the cathode through the ion exchange membrane to form NaOH In addition, the carbon dioxide-containing acid gas supplied to the fourth path may react with the NaOH to form Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution, and then discharged through the fifth path.
상기 산성가스 전기분해 반응기 내 애노드와 캐소드에 전압이 인가되면 하기 반응식 1과 같이 애노드에서 NaCl이 전기분해되어 나트륨 양이온 및 염소 기체가 발생되고, 상기 나트륨 양이온은 이온교환막을 통해 캐소드로 이동하고, When a voltage is applied to the anode and the cathode in the acidic gas electrolysis reactor, NaCl is electrolyzed at the anode to generate sodium cation and chlorine gas as shown in Scheme 1 below, and the sodium cation moves to the cathode through an ion exchange membrane.
캐소드에서는 나트륨 양이온과 전자를 받아 물 분자가 환원되어 수소기체와 NaOH가 생성되고, 캐소드 영역으로 주입된 이산화탄소 함유 산성가스가 캐소드 영역 내 NaOH 함유 염기성 물과 반응하여 탄산염(CO3 2-) 및/또는 중탄산 염(HCO3 -)을 형성시킨다.The cathode receives sodium cations and electrons to reduce water molecules to produce hydrogen gas and NaOH, and carbon dioxide-containing acidic gas injected into the cathode region reacts with NaOH-containing basic water in the cathode region to form carbonate (CO 3 2- ) and / Or bicarbonate salt (HCO 3 ).
[반응식 1]Scheme 1
애노드 반응 : 2NaCl → 2Na+ + Cl2 + 2e- Anode Reaction: 2NaCl → 2Na + + Cl 2 + 2e -
Cl2 + H2O → HCl + HClOCl 2 + H 2 O → HCl + HClO
애노드 전체 반응 : 2NaCl + H2O → 2Na+ + HCl + HClO + 2e- Anode the overall reaction: 2NaCl + H 2 O → 2Na + + HCl + HClO + 2e -
캐소드 반응 : 2H2O + 2e- → H2 + 2OH- The cathode reaction: 2H 2 O + 2e - → H 2 + 2OH -
Na+ + OH- → NaOHNa + + OH - → NaOH
NaOH + CO2 → NaHCO3 NaOH + CO 2 → NaHCO 3
또는 2NaOH + CO2 → Na2CO3 + H2OOr 2NaOH + CO 2 → Na 2 CO 3 + H 2 O
캐소드 전체 반응 : 2Na+ + 2e- + 2H2O + 2CO2 → H2 + 2NaHCO3 Cathode overall reaction: 2Na + + 2e - + 2H 2 O + 2CO 2 → H 2 + 2NaHCO 3
또는 2Na+ + 2e- + H2O + CO2 → H2 + Na2CO3 Or 2Na + + 2e - + H 2 O + CO 2 → H 2 + Na 2 CO 3
제1경로를 통해 캐소드에 공급되는 물(H2O)은 순수일 수도 있으나, 염(salt)을 함유하여 전기전도도 및/또는 이온전도도가 높은 전해액(예, 해수)일 수 있다. 이때, 본 발명에 따른 산성가스 전기분해 반응기의 작동에 있어서, 염의 종류 및 농도는 제한되지 아니한다. 염의 일례로는 NaCl이 있으며, 제1경로로 공급되는 물은 NaCl 수용액일 수 있다.The water (H 2 O) supplied to the cathode through the first path may be pure water, but may be an electrolyte (eg, seawater) that contains salt and has high electrical and / or ionic conductivity. At this time, in the operation of the acid gas electrolysis reactor according to the present invention, the type and concentration of the salt is not limited. An example of a salt is NaCl, and the water supplied to the first path may be an aqueous NaCl solution.
상기 산성가스 전기분해 반응기 구성에 있어서 다공성 기체 확산층은 다음과 같은 조건을 만족해야 한다.In the acid gas electrolysis reactor configuration, the porous gas diffusion layer must satisfy the following conditions.
1) 미세 기공 구조를 가지고 있어서 반응 기체를 미세한 기포 형태로 기액 접촉 반응부로 공급할 수 있어야 한다.1) It has a fine pore structure so that the reaction gas can be supplied to the gas-liquid contacting reaction unit in the form of fine bubbles.
2) 기체 투과도가 높아서 기체 공급에 대한 차압 손실이 적어야 한다.2) Due to the high gas permeability, the differential pressure loss to the gas supply should be small.
3) 기액 접촉 반응부의 액상은 다공성 기체 확산층을 통과하여 기체 공급부로 투과되지 않아야 한다.3) The liquid phase of the gas-liquid contacting part should not penetrate the gas supply part through the porous gas diffusion layer.
4) 전기전도성이 우수해야 한다. 4) The electrical conductivity must be excellent.
이를 위해 본 발명에서, 다공성 기체 확산층은 이산화탄소 함유 산성가스 공급에 대한 차압 손실이 0.01 내지 0.1 atm 범위인 기체 투과도를 가질 수 있다. 또한, 상기 다공성 기체 확산층은 기액 접촉 반응부의 액상을 통과시키지 못하는 것일 수 있다. 구체적으로, 상기 다공성 기체 확산층은 발수성을 발휘하는 미세기공을 가질 수 있다. 이는 다공성 기체 확산층을 통해 기체가 원활하게 캐소드로 공급되고 기액 접촉 반응부의 반응 생성물을 포함하는 액상이 다공성 기체 확산층을 통해 누출되지 않게 하기 위해서이다. 또한, 상기 다공성 기체 확산층은 전기전도성이 있는 것일 수 있다. 예를 들어, 상기 다공성 기체 확산층은 발수처리된 탄소 종이일 수 있으며, 이에 제한되는 것은 아니다.To this end, in the present invention, the porous gas diffusion layer may have a gas permeability in which the differential pressure loss for the carbon dioxide-containing acid gas supply ranges from 0.01 to 0.1 atm. In addition, the porous gas diffusion layer may not pass through the liquid phase of the gas-liquid contact reaction portion. Specifically, the porous gas diffusion layer may have micropores exhibiting water repellency. This is to ensure that the gas is smoothly supplied to the cathode through the porous gas diffusion layer and that the liquid phase including the reaction product of the gas-liquid contact reaction part does not leak through the porous gas diffusion layer. In addition, the porous gas diffusion layer may be electrically conductive. For example, the porous gas diffusion layer may be a water repellent carbon paper, but is not limited thereto.
이상에서 설명한 것은 본 발명에 따른 산성가스 전기분해 반응기를 구성하기 위한 실시예에 불과한 것으로서, 본 발명은 상기 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명에 속한다고 할 것이다.What has been described above is only an embodiment for constructing the acidic gas electrolysis reactor according to the present invention, and the present invention is not limited to the above embodiment, and as claimed in the following claims, it departs from the gist of the present invention. Without this, anyone with ordinary knowledge in the field of the present invention will be said to belong to the present invention to the extent that various modifications can be made.
이하에서는 구체적인 실시예를 통하여 본 발명의 산성가스 전기분해 반응기를 사용하여 산성 가스를 제거하는 방법을 보다 자세히 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, a method of removing acidic gas using the acidic gas electrolysis reactor of the present invention will be described in more detail with reference to specific examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.
실시예Example 1: 산성가스 전기분해 반응기 제작 및 운전효율 조사 1: Production of acid gas electrolysis reactor and investigation of operation efficiency
도 1에 도시된 바와 같이, 산성가스 전기분해 반응기를 제작하였으며, 도 2에 도시된 바와 같이, 산성가스 제거를 위한 전기분해 반응 시스템을 제작하였다.As shown in FIG. 1, an acid gas electrolysis reactor was manufactured, and as shown in FIG. 2, an electrolysis reaction system for acid gas removal was manufactured.
구체적으로, 애노드와 캐소드에 사용된 촉매는 백금(Pt)으로서 입자상의 백금 촉매 분말을 나피온이오노머(Nafion ionomer)와 함께 알코올에 혼합하고 제조된 혼합용액을 이온교환막의 양쪽 면에 각각 코팅하여 애노드 및 캐소드 전극을 제조하였다. 제조된 애노드 쪽에는 0.1mm 두께의 가스켓과 집전판을 결합하고, 캐노드 쪽에는 0.1mm 두께의 가스켓, 0.2mm 두께의 발수처리된 탄소종이 및 가스켓, 그리고 0.1mm 두께의 가스켓을 순서대로 결합함으로서 각각 기액 접촉 반응부, 기체 확산층, 기체 공급부를 제작하고 마지막으로 집전판을 결합하였다. 집전판은 전기분해 반응기에 전압을 인가했을 때 두 전극 사이에 전위차를 형성할 수 있도록 전기전도도가 우수한 흑연판 또는 황동판을 사용하였고, 애노드와 캐소드에 반응물을 공급하고 생성물을 배출할 수 있도록 유로를 형성하였다. 제작된 반응 시스템을 이용하여 2.8V의 전압을 인가하는 조건에서 전기분해 반응기 온도를 30℃에서 90℃로 변화시키면서 NaOH 제조 성능 및 이산화탄소 제거율을 측정하였다.Specifically, the catalyst used for the anode and the cathode is platinum (Pt), the particulate platinum catalyst powder is mixed with alcohol with Nafion ionomer, and the prepared mixed solution is coated on both sides of the ion exchange membrane, respectively, to the anode. And a cathode electrode was prepared. On the anode side, a 0.1 mm thick gasket and a current collector are combined, and a 0.1 mm thick gasket, a 0.2 mm thick water-repellent carbon paper and gasket, and a 0.1 mm thick gasket are combined in this order. Each of the gas-liquid contacting reaction unit, gas diffusion layer, and gas supply unit was fabricated, and finally, the current collector plate was combined. The current collector plate uses a graphite or brass plate with excellent electrical conductivity to form a potential difference between the two electrodes when a voltage is applied to the electrolysis reactor, and a flow path is provided to supply reactants to the anode and the cathode and to discharge the product. Formed. NaOH production performance and carbon dioxide removal rate were measured while changing the temperature of the electrolysis reactor from 30 ° C. to 90 ° C. under the condition of applying a voltage of 2.8 V using the manufactured reaction system.
구체적인, 실험조건은 하기와 같았다. Specific experimental conditions were as follows.
인가전압 : 2.8VVoltage applied: 2.8V
반응온도 : 30 ~ 90 ℃Reaction temperature: 30 ~ 90 ℃
전해질 막 : Nafion 115Electrolyte Membrane: Nafion 115
애노드 전극촉매 : Pt Anode Electrocatalyst: Pt
캐소드 전극촉매 : Pt Cathode Electrocatalyst: Pt
공급된 CO2 가스의 농도 : 10% (v/v) (N2-balanced)Concentration of CO 2 gas supplied: 10% (v / v) (N 2 -balanced)
애노드 전해액 : NaCl 수용액 (35g/l)Anode electrolyte: NaCl aqueous solution (35g / l)
캐소드 전해액 : NaCl 수용액 (35g/l)Cathode Electrolyte: NaCl aqueous solution (35g / l)
상기 전기분해 반응 시스템 및 상기 실험조건에서 산성 가스 제거 공정을 수행한 후 운전효율을 조사하여 도 3(반응 온도에 따른 NaOH 생성 패러데이 효율을 도시한 그래프) 및 도 4(반응 온도에 따른 이산화탄소 제거율을 도시한 그래프)에 도시하였다. 그 결과, 본 발명에 따른 산성가스 전기분해 반응기가 우수한 효율로 산성가스를 제거할 수 있음을 확인하였다.After performing the acidic gas removal process in the electrolysis reaction system and the experimental conditions, the operating efficiency was investigated, and FIG. 3 (graph showing the NaOH production Faraday efficiency according to the reaction temperature) and FIG. 4 (carbon dioxide removal rate according to the reaction temperature). Graph). As a result, it was confirmed that the acid gas electrolysis reactor according to the present invention can remove acid gas with excellent efficiency.
통상 기체의 용해도는 온도에 반비례한다. 이산화탄소 흡수면에서는 온도가 낮을수록 좋다. 그러나, 이와 상반되는 결과(도 4)가 본 실시예에 따른 산성가스 전기분해 반응기에서 나타나는데, 즉 온도가 높을수록 이산화탄소의 흡수 및 제거가 우수한데, 이는 기액 접촉 반응부인 캐소드에서 기액 접촉이 우수하다는 것을 제시 해준다.Usually the solubility of gas is inversely proportional to temperature. In terms of carbon dioxide absorption, the lower the temperature, the better. However, the opposite result (FIG. 4) is shown in the acidic gas electrolysis reactor according to the present embodiment, that is, the higher the temperature, the better the absorption and removal of carbon dioxide, which means that the gas-liquid contact is excellent in the cathode, the gas-liquid contacting part. Suggest that
도 3에서도 온도가 높을수록 NaOH 형성이 잘 되는 것을 알 수 있다. 이는 온도가 높을수록 기액 접촉 반응부인 캐소드에서 기액 접촉이 우수하여 이산화탄소와 NaOH의 반응이 잘 일어나, 생성물인 NaOH를 계속 소모하기 때문이다.In FIG. 3, it can be seen that the higher the temperature, the better NaOH formation. This is because the higher the temperature, the better the gas-liquid contact in the cathode, which is the gas-liquid contacting reaction part, so that the reaction between carbon dioxide and NaOH occurs and the consumption of the product NaOH continues.

Claims (14)

  1. 애노드, 기액 접촉반응부인 캐소드 및 상기 애노드와 캐소드 사이에 위치한 이온교환막을 구비한 산성가스 전기분해 반응기로서, An acid gas electrolysis reactor having an anode, a cathode which is a gas-liquid contacting reaction part, and an ion exchange membrane positioned between the anode and the cathode,
    캐소드에서 제1경로로 공급된 물(H2O)을 H2와 OH-로 전기분해시키고, 애노드에서 제2경로로 공급된 NaCl 함유 수용액을 Na+와 Cl2로 전기분해하고, Cl2 는 수용액 내 물에 흡수되어 제3경로를 통해 배출하고, Na+ 이온은 이온교환막을 통하여 캐소드로 이동하여 NaOH를 형성하고, 기액 접촉반응부인 캐소드에서 제4경로로 공급된 이산화탄소 함유 산성가스와 상기 NaOH를 반응시켜 Na2CO3 및/또는 NaHCO3 함유 수용액을 형성시킨 후 제5경로를 통해 배출하는 것이 특징인 반응기.The water (H 2 O) fed from the cathode to the first route was electrolyzed to H 2 and OH , the aqueous NaCl containing solution supplied from the anode to the second route was electrolyzed to Na + and Cl 2 , and Cl 2 was Absorbed by water in the aqueous solution and discharged through the third path, Na + ions move to the cathode through the ion exchange membrane to form NaOH, and the carbon dioxide-containing acidic gas and NaOH supplied from the cathode as the gas-liquid contacting reaction unit to the fourth path Reacting to form a Na 2 CO 3 and / or NaHCO 3 containing aqueous solution and then the reactor characterized in that the discharge through the fifth route.
  2. 제1항에 있어서, 이산화탄소 함유 산성가스를 공급하는 제4경로 상에 다공성 기체 확산층을 구비하되, 상기 다공성 기체 확산층은 미세 기공 구조를 가지고 있어서 기체를 미세한 기포 형태로 캐소드의 기액 접촉 반응부로 공급하는 것이 특징인 반응기.The method of claim 1, wherein the porous gas diffusion layer is provided on the fourth path for supplying the carbon dioxide-containing acidic gas, the porous gas diffusion layer has a fine pore structure to supply the gas to the gas-liquid contact reaction of the cathode in the form of fine bubbles Reactor characterized in that.
  3. 제2항에 있어서, 다공성 기체 확산층은 이산화탄소 함유 산성가스 공급에 대한 차압 손실이 0.01 내지 0.1 atm 범위인 기체 투과도를 갖는 것이 특징인 반응기.3. The reactor of Claim 2 wherein the porous gas diffusion layer has a gas permeability with a differential pressure loss for a carbon dioxide containing acid gas supply in the range of 0.01 to 0.1 atm.
  4. 제2항에 있어서, 다공성 기체 확산층은 기액 접촉 반응부의 액상을 통과시키지 못하는 것이 특징인 반응기.The reactor according to claim 2, wherein the porous gas diffusion layer does not allow the liquid phase of the gas-liquid contacting reaction portion to pass therethrough.
  5. 제2항에 있어서, 다공성 기체 확산층은 전기전도성이 있는 것이 특징인 반응기.The reactor of claim 2, wherein the porous gas diffusion layer is electrically conductive.
  6. 제2항에 있어서, 다공성 기체 확산층은 발수성을 발휘하는 미세기공을 갖는 것이 특징인 반응기.The reactor of claim 2, wherein the porous gas diffusion layer has micropores exhibiting water repellency.
  7. 제2항에 있어서, 다공성 기체 확산층은 물을 통과시키지 아니하고, 기체만 통과시킬 수 있도록 발수처리된 것이 특징인 반응기.The reactor of claim 2, wherein the porous gas diffusion layer is water-repellent so that only gas is allowed to pass through without passing water.
  8. 제1항에 있어서, 제1경로로 캐소드에 공급되는 물(H2O), 제2경로로 애노드에 공급되는 NaCl 함유 수용액, 또는 둘다는 해수이고, 선박에 장착되는 것이 특징인 반응기.The reactor according to claim 1, wherein water (H 2 O) supplied to the cathode in the first path, NaCl-containing aqueous solution supplied to the anode in the second path, or both are sea water, and are mounted on a vessel.
  9. 제1항에 있어서, 산성가스 전기분해 반응기는 가압없이 20 ~ 100 ℃에서 작동되는 것이 특징인 반응기.The reactor of Claim 1, wherein the acidic gas electrolysis reactor is operated at 20-100 ° C. without pressurization.
  10. 애노드, 기액 접촉반응부인 캐소드 및 상기 애노드와 캐소드 사이에 위치하여 애노드 영역과 캐소드 영역을 구분해주는 이온교환막을 포함하는 전기화학적 전지 내에서 산성가스를 제거하는 방법으로서, A method of removing acidic gas in an electrochemical cell comprising an anode, a cathode which is a gas-liquid contacting reaction part, and an ion exchange membrane positioned between the anode and the cathode to distinguish between the anode region and the cathode region,
    캐소드에서 제1경로로 공급된 물(H2O)을 H2와 OH-로 전기분해시키고, 애노드에서 제2경로로 공급된 NaCl 함유 수용액을 Na+와 Cl2로 전기분해하고, Na+ 이온은 이온교환막을 통하여 캐소드로 이동하여 NaOH를 형성하고, 기액 접촉반응부인 캐소드에서 제4경로로 공급된 이산화탄소 함유 산성가스와 상기 NaOH를 반응시켜 Na2CO3 및/또는 NaHCO3 함유 수용액을 형성시키는 제1단계;Water (H 2 O) supplied from the cathode to the first path was electrolyzed to H 2 and OH , and an aqueous NaCl containing solution supplied from the anode to the second path was electrolyzed to Na + and Cl 2 , and Na + ions A silver ion is moved to a cathode through an ion exchange membrane to form NaOH, and a Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution is formed by reacting the NaOH with a carbon dioxide-containing acid gas supplied in a fourth path from a cathode, which is a gas-liquid contact reaction part. First step;
    상기 애노드에서 생성된 Cl2는 수용액 내 물에 흡수되어 제3경로를 통해 배출시키는 제2단계; 및Cl 2 generated in the anode is absorbed in water in the aqueous solution and discharged through a third path; And
    상기 캐소드에서 생성된 Na2CO3 및/또는 NaHCO3 함유 수용액을 제5경로를 통해 배출시키는 제3단계를 포함하고, A third step of discharging the Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution produced by the cathode through a fifth path,
    상기 이산화탄소 함유 산성가스를 공급하는 제4경로 상에 다공성 기체 확산층을 구비하되, 상기 다공성 기체 확산층은 미세 기공 구조를 가지고 있어서 기체를 미세한 기포 형태로 캐소드의 기액 접촉 반응부로 공급하는 것이 특징인 방법.And a porous gas diffusion layer on the fourth path for supplying the carbon dioxide-containing acidic gas, wherein the porous gas diffusion layer has a fine pore structure and supplies gas to the gas-liquid contacting reaction part of the cathode in the form of fine bubbles.
  11. 제10항에 있어서, 다공성 기체 확산층은 물을 통과시키지 아니하고, 기체만 통과시킬 수 있도록 발수처리된 것이 특징인 방법.11. The method of claim 10, wherein the porous gas diffusion layer is water repellent so as not to pass water but only gas.
  12. 제10항에 있어서, 제1경로로 캐소드에 공급되는 물(H2O), 제2경로로 애노드에 공급되는 NaCl 함유 수용액, 또는 둘다는 해수인 것이 특징인 방법.The method of claim 10 wherein water (H 2 O) supplied to the cathode in the first path, NaCl containing aqueous solution supplied to the anode in the second path, or both are sea water.
  13. 제10항에 있어서, 산성가스를 제거하는 방법은 가압없이 20 ~ 100 ℃에서 수행되는 것이 특징인 방법.The method of claim 10, wherein the acid gas removing method is performed at 20 to 100 DEG C without pressure.
  14. 애노드, 기액 접촉반응부인 캐소드 및 상기 애노드와 캐소드 사이에 위치하여 애노드 영역과 캐소드 영역을 구분해주는 이온교환막을 포함하는 전기화학적 전지 내에서 탄산염(CO3 2-) 또는 중탄산염(HCO3 -)을 제조하는 방법으로서, Preparation of carbonate (CO 3 2- ) or bicarbonate (HCO 3 ) in an electrochemical cell comprising an anode, a cathode which is a gas-liquid contacting reaction part, and an ion exchange membrane positioned between the anode and the cathode to distinguish between the anode region and the cathode region. As a way to,
    캐소드에서 제1경로로 공급된 물(H2O)을 H2와 OH-로 전기분해시키고, 애노드에서 제2경로로 공급된 NaCl 함유 수용액을 Na+와 Cl2로 전기분해하고, Na+ 이온은 이온교환막을 통하여 캐소드로 이동하여 NaOH를 형성하고, 기액 접촉반응부인 캐소드에서 제4경로로 공급된 이산화탄소 함유 산성가스와 상기 NaOH를 반응시켜 Na2CO3 및/또는 NaHCO3 함유 수용액을 형성시키는 제1단계;Water (H 2 O) supplied from the cathode to the first path was electrolyzed to H 2 and OH , and an aqueous NaCl containing solution supplied from the anode to the second path was electrolyzed to Na + and Cl 2 , and Na + ions A silver ion is moved to a cathode through an ion exchange membrane to form NaOH, and a Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution is formed by reacting the NaOH with a carbon dioxide-containing acid gas supplied in a fourth path from a cathode, which is a gas-liquid contact reaction part. First step;
    상기 애노드에서 생성된 Cl2는 수용액 내 물에 흡수되어 제3경로를 통해 배출시키는 제2단계; 및Cl 2 generated in the anode is absorbed in water in the aqueous solution and discharged through a third path; And
    상기 캐소드에서 생성된 Na2CO3 및/또는 NaHCO3 함유 수용액을 제5경로를 통해 배출시키는 제3단계를 포함하고, A third step of discharging the Na 2 CO 3 and / or NaHCO 3 -containing aqueous solution produced by the cathode through a fifth path,
    상기 이산화탄소 함유 산성가스를 공급하는 제4경로 상에 다공성 기체 확산층을 구비하되, 상기 다공성 기체 확산층은 미세 기공 구조를 가지고 있어서 기체를 미세한 기포 형태로 캐소드의 기액 접촉 반응부로 공급하는 것이 특징인 방법.And a porous gas diffusion layer on the fourth path for supplying the carbon dioxide-containing acidic gas, wherein the porous gas diffusion layer has a fine pore structure and supplies gas to the gas-liquid contacting reaction part of the cathode in the form of fine bubbles.
PCT/KR2016/008340 2015-07-31 2016-07-29 Electrolysis reactor for acidic gas removal with high gas/liquid contact efficiency and method therefor WO2017023029A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150108834 2015-07-31
KR10-2015-0108834 2015-07-31

Publications (1)

Publication Number Publication Date
WO2017023029A1 true WO2017023029A1 (en) 2017-02-09

Family

ID=57943254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008340 WO2017023029A1 (en) 2015-07-31 2016-07-29 Electrolysis reactor for acidic gas removal with high gas/liquid contact efficiency and method therefor

Country Status (2)

Country Link
KR (1) KR101800779B1 (en)
WO (1) WO2017023029A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102606906B1 (en) * 2018-02-08 2023-11-29 한국재료연구원 Stack for carbon dioxide conversion and method for carbon dioxide conversion using the same
KR102305659B1 (en) 2019-11-26 2021-09-29 한국에너지기술연구원 Apparatus and Method for Mineralizing Carbon Dioxide Using Integrated Process
KR102305660B1 (en) 2019-11-26 2021-09-30 한국에너지기술연구원 Apparatus and Method for Mineralizing Carbon Dioxide Based on Integrated Process Using Inorganic Waste
KR102305657B1 (en) 2019-11-26 2021-09-29 한국에너지기술연구원 Apparatus and Method for Mineralizing Carbon Dioxide Using Integrated Process With Low Power Consumption Using Inorganic Waste
KR102305656B1 (en) 2019-11-26 2021-09-29 한국에너지기술연구원 Apparatus and Method for Mineralizing Carbon Dioxide Using Integrated Process With Low Power Consumption
KR102279080B1 (en) * 2019-12-11 2021-07-16 부경대학교 산학협력단 Method and system for converting carbon dioxide using brine electrolysis
KR102492437B1 (en) * 2021-03-31 2023-01-27 주식회사 현진이엔피 Electrochemical processing module for removing VOCs
KR102609097B1 (en) * 2022-12-20 2023-12-04 화우나노텍 주식회사 Carbon dioxide capture system with economic feasibility

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080276803A1 (en) * 2007-05-08 2008-11-13 General Electric Company Methods and systems for reducing carbon dioxide in combustion flue gases
KR20090006934A (en) * 2007-07-13 2009-01-16 한국전기연구원 Co2 solidifying method
US20100140103A1 (en) * 2008-07-16 2010-06-10 Gilliam Ryan J Gas Diffusion Anode and CO2 Cathode Electrolyte System
KR20100115801A (en) * 2004-09-23 2010-10-28 조 데이비드 존스 Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
KR20130015355A (en) * 2011-08-03 2013-02-14 한국전력공사 Apparatus and method for removing carbon dioxide
KR20140032822A (en) * 2012-09-07 2014-03-17 한국전력공사 The removal apparatus of carbon dioxide using concentrated effluent of desalination plant and removing method thereof
US20140286850A1 (en) * 2013-03-20 2014-09-25 New York Synthetics, Inc. Method of making sodium carbonate and/or sodium bicarbonate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014743A (en) * 2012-07-06 2014-01-30 Hitachi Ltd Method and apparatus for treating salt waste water
KR101512459B1 (en) * 2014-03-31 2015-04-16 충남대학교산학협력단 Air pollutants removal equipment with multifunction using high performance gas liquid contact module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100115801A (en) * 2004-09-23 2010-10-28 조 데이비드 존스 Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
US20080276803A1 (en) * 2007-05-08 2008-11-13 General Electric Company Methods and systems for reducing carbon dioxide in combustion flue gases
KR20090006934A (en) * 2007-07-13 2009-01-16 한국전기연구원 Co2 solidifying method
US20100140103A1 (en) * 2008-07-16 2010-06-10 Gilliam Ryan J Gas Diffusion Anode and CO2 Cathode Electrolyte System
KR20130015355A (en) * 2011-08-03 2013-02-14 한국전력공사 Apparatus and method for removing carbon dioxide
KR20140032822A (en) * 2012-09-07 2014-03-17 한국전력공사 The removal apparatus of carbon dioxide using concentrated effluent of desalination plant and removing method thereof
US20140286850A1 (en) * 2013-03-20 2014-09-25 New York Synthetics, Inc. Method of making sodium carbonate and/or sodium bicarbonate

Also Published As

Publication number Publication date
KR20170015851A (en) 2017-02-09
KR101800779B1 (en) 2017-11-28

Similar Documents

Publication Publication Date Title
WO2017023029A1 (en) Electrolysis reactor for acidic gas removal with high gas/liquid contact efficiency and method therefor
WO2017010814A1 (en) Method and apparatus for preparing reduced product of carbon dioxide by electrically reducing carbon dioxide
CN105483747B (en) A kind of method and device of water electrolysis hydrogen production gas
AU2010201005A1 (en) Low-voltage alkaline production using hydrogen and electrocatlytic electrodes
JP2007211268A (en) Water-vapor electrolysis apparatus
US20210123147A1 (en) Process and system for producing carbon monoxide and dihydrogen from a co2-containing gas
Petrov et al. Low temperature removal of hydrogen sulfide from sour gas and its utilization for hydrogen and sulfur production
US11857914B2 (en) Electrochemical apparatus for acid gas removal and hydrogen generation
US20080217176A1 (en) Portable oxygen maintenance and regulation concentrator apparatus
He et al. Advances in electrolyzer design and development for electrochemical CO2 reduction
US10787747B2 (en) Electrolytic cell for generating hydrogen
CN111575725B (en) CO (carbon monoxide)2Method for preparing graphene through electrochemical conversion
JPH02311302A (en) Purification apparatus for hydrogen gas to be supplied to fuel cell
CN103730673B (en) Proton Exchange Membrane Fuel Cells humidification and anode exhaust gas processing unit
WO2013191402A1 (en) Method for generating hydrogen and sulfuric acid from sulfur dioxide gas by using diluted gas
WO2018079965A1 (en) Hybrid power generation system and energy-independent hydrogen-electricity hybrid charging station, which use reverse electrodialysis device capable of efficiently producing hydrogen-electricity
WO2022227146A1 (en) Composition and method for capturing and electrolyzing carbon dioxide
Luo et al. Electrochemical CO2 separation by a shorted membrane
JP2005232525A (en) Apparatus for electrolyzing high-temperature steam
CN110311146B (en) Carbon dioxide mineralization power generation method using organic matter as catalyst
CN112522733A (en) Desulfurization fuel cell and method for producing acid and base through flue gas desulfurization
CN207699678U (en) A kind of hydrogen manufacturing electrolyzer of oxidation solution containing carbon pastes
JP4385424B2 (en) Carbon dioxide concentration method and apparatus
WO2024090780A1 (en) Carbon dioxide conversion system
WO2021096256A1 (en) Water-electrolysis hydrogen purification method using hydrogen separator containing palladium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16833265

Country of ref document: EP

Kind code of ref document: A1