WO2024095903A1 - Electric power conversion device, motor module, and method for manufacturing electric power conversion device - Google Patents

Electric power conversion device, motor module, and method for manufacturing electric power conversion device Download PDF

Info

Publication number
WO2024095903A1
WO2024095903A1 PCT/JP2023/038815 JP2023038815W WO2024095903A1 WO 2024095903 A1 WO2024095903 A1 WO 2024095903A1 JP 2023038815 W JP2023038815 W JP 2023038815W WO 2024095903 A1 WO2024095903 A1 WO 2024095903A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
shield
conversion device
power conversion
shield core
Prior art date
Application number
PCT/JP2023/038815
Other languages
French (fr)
Japanese (ja)
Inventor
智史 町野
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2024095903A1 publication Critical patent/WO2024095903A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device, a motor module, and a method for manufacturing a power conversion device.
  • a power conversion device that supplies power to a motor, as described in Patent Document 1, includes a bus bar and a sensor (Hall IC) that detects the value of the current flowing through the bus bar inside a shield core that collects the magnetic field generated by the current flowing through the bus bar.
  • a sensor Hap IC
  • the dimensional tolerance of the shield core is likely to be large. Therefore, when the shield core is fixed to a resin support part or the like by press-fitting, depending on the dimensional tolerance of the shield core, it may be difficult to easily press the shield core into the support part, etc., and there is a risk that the manufacturing labor and manufacturing costs of the power conversion device will increase.
  • one aspect of the present invention aims to provide a power conversion device and a motor module that can easily fix a shield core to a support part.
  • Another aspect of the present invention aims to provide a method for manufacturing a power conversion device that can easily fix a shield core to a support part.
  • One embodiment of the power conversion device of the present invention includes a bus bar extending in a first direction, a sensor that detects a magnetic field generated by a current flowing through the bus bar, a magnetic shield core that surrounds the bus bar and the sensor from both sides in a second direction perpendicular to the first direction and from at least one side in a third direction perpendicular to the first direction and the second direction, a core sealing portion that seals at least a portion of the shield core with resin, and a support portion.
  • the shield core is fixed to the support portion via the core sealing portion.
  • One embodiment of the motor module of the present invention includes the above-mentioned power conversion device and a motor driven by the above-mentioned power conversion device.
  • One aspect of the method for manufacturing a power conversion device of the present invention is a method for manufacturing a power conversion device that includes a magnetic shield core, a resin core sealing part, and a support part, and includes a positioning step for determining the position of the shield core relative to the support part within a mold, and a molding step for sealing at least a portion of the shield core with resin by injection molding using the support part and the shield core as insert members, and molding the core sealing part that is fixed to the support part.
  • the shield core in a power conversion device and a motor module, can be easily fixed to the support part. Also, according to one aspect of the present invention, in a method for manufacturing a power conversion device, the shield core can be easily fixed to the support part.
  • FIG. 1 is a schematic diagram showing a motor module according to an embodiment.
  • FIG. 2 is a perspective view showing a part of the power conversion device of the embodiment.
  • FIG. 3A is a top view showing a portion of a power conversion device according to one embodiment.
  • FIG. 3B is a cross-sectional view showing the power conversion device of the embodiment.
  • FIG. 4 is a top view showing the support portion and shield core of one embodiment.
  • FIG. 5A is a flowchart showing a method for manufacturing a power conversion device according to one embodiment.
  • FIG. 5B is a first cross-sectional view illustrating a method for manufacturing the power converter according to the embodiment.
  • FIG. 5C is a second cross-sectional view showing the method for manufacturing the power converter according to the embodiment.
  • FIG. 5A is a flowchart showing a method for manufacturing a power conversion device according to one embodiment.
  • FIG. 5B is a first cross-sectional view illustrating a method for manufacturing the power converter according to the embodiment
  • FIG. 5D is a third cross-sectional view illustrating the method for manufacturing the power converter according to the embodiment.
  • FIG. 6A is a top view illustrating a portion of a power conversion device according to a first modification of the embodiment.
  • FIG. 6B is a cross-sectional view illustrating a power conversion device according to the first modification of the embodiment.
  • FIG. 7A is a top view illustrating a portion of a power conversion device according to a second modification of the embodiment.
  • FIG. 7B is a cross-sectional view illustrating a power conversion device according to a second modification of the embodiment.
  • FIG. 8A is a top view illustrating a portion of a power conversion device according to a third modification of the embodiment.
  • FIG. 8B is a cross-sectional view illustrating a power conversion device according to a third modification of the embodiment.
  • FIG. 9A is a top view illustrating a portion of a power conversion device according to a fourth modified example of the embodiment.
  • FIG. 9B is a cross-sectional view illustrating a power conversion device according to a fourth modified example of the embodiment.
  • the first direction D1 is shown in each figure as appropriate.
  • the first direction D1 is the direction in which the busbars in the embodiment described below extend.
  • the first direction D1 is the front-to-rear direction of the power conversion device.
  • the side toward which the arrow of the first direction D1 points (+D1 side) is referred to as "one side of the first direction D1" or "rear side.”
  • the side opposite to the side toward which the arrow of the first direction D1 points (-D1 side) is referred to as "the other side of the first direction D1" or "front side.”
  • the second direction D2 is shown in each figure as appropriate.
  • the second direction D2 is the direction in which multiple bus bars are arranged side by side, and is a direction perpendicular to the first direction D1.
  • the second direction D2 is the left-right direction of the power conversion device.
  • the side toward which the arrow of the second direction D2 points (+D2 side) is referred to as "one side of the second direction D2" or "left side.”
  • the side opposite to the side toward which the arrow of the second direction D2 points (-D2 side) is referred to as "the other side of the second direction D2" or "right side.”
  • the third direction D3 is shown in each figure as appropriate.
  • the third direction D3 is a direction perpendicular to the first direction D1 and the second direction D2.
  • the third direction D3 is the up-down direction of the power conversion device.
  • the side toward which the arrow of the third direction D3 points (the +D3 side) is referred to as "one side of the third direction D3" or "lower side.”
  • the side opposite to the side toward which the arrow of the third direction D3 points (the -D2 side) is referred to as "the other side of the third direction D3" or "upper side.”
  • FIG. 1 is a schematic diagram showing a motor module 1 of the present embodiment.
  • the motor module 1 is a drive device mounted on a vehicle to rotate the axle of the vehicle.
  • the vehicle on which the motor module 1 is mounted is a vehicle that uses a motor as a power source, such as a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHV), or an electric vehicle (EV).
  • the motor module 1 includes a motor 2 and a power conversion device 10.
  • Motor 2 rotates the axle of the vehicle (not shown).
  • motor 2 is a three-phase motor.
  • the three phases are U-phase, V-phase, and W-phase.
  • Motor 2 has U-phase coil, V-phase coil, and W-phase coil (not shown).
  • the power conversion device 10 generates a current to be supplied to the motor 2, and supplies a current to each of the U-phase coil, the V-phase coil, and the W-phase coil of the motor 2.
  • the power conversion device 10 is connected to the motor 2, the control unit 3, and the external power source 4.
  • the control unit 3 controls the operation of the vehicle.
  • the control unit 3 transmits a control signal including instructions related to the operation of the motor 2 to the power conversion device 10.
  • the external power source 4 supplies a direct current to the power conversion device 10.
  • the external power source 4 is a battery.
  • the power conversion device 10 Based on a control signal transmitted from the control unit 3, the power conversion device 10 generates a current of a predetermined waveform from the DC current supplied by the external power source 4, and supplies the current to the motor 2. More specifically, the power conversion device 10 generates phase currents (U-phase current, V-phase current, and W-phase current) to be supplied to the U-phase coil, V-phase coil, and W-phase coil of the motor 2, respectively.
  • the power conversion device 10 is an inverter that converts DC current to AC current.
  • the power conversion device 10 and the motor 2 are connected by three connection lines 6. Each of the connection lines 6 is connected to one of the U-phase coil, V-phase coil, and W-phase coil of the motor 2, and current is supplied to each of the U-phase coil, V-phase coil, and W-phase coil via each connection line 6.
  • the power conversion device 10 includes a case 11, a support portion 12, an IGBT (Insulated Gate Bipolar Transistor) module 16, a circuit board 20, a sensor 25, a bus bar 30, a shield core 40, and a core sealing portion 50.
  • IGBT Insulated Gate Bipolar Transistor
  • the case 11 houses the support portion 12, the IGBT module 16, the circuit board 20, the sensor 25, the bus bar 30, the shield core 40, and the core sealing portion 50 inside.
  • the case 11 is a hollow box.
  • the case 11 is made of metal.
  • the case 11 is grounded.
  • the case 11 has a bottom wall portion 11a.
  • the bottom wall portion 11a is a plate-like member that extends in a direction perpendicular to the third direction D3.
  • the plate surface of the bottom wall portion 11a faces the third direction D3.
  • the IGBT module 16 generates phase currents to be supplied to the U-phase coil, V-phase coil, and W-phase coil of the motor 2 from the direct current supplied by the external power supply 4.
  • the IGBT module 16 has a plurality of electronic elements (not shown), such as a plurality of insulated gate bipolar transistors (IGBTs). Although not shown, the IGBT module 16 is connected to the control unit 3 and external power supply 4 shown in FIG. 1. The IGBT module 16 is fixed to the bottom wall portion 11a.
  • the circuit board 20 is a printed circuit board that extends in a direction perpendicular to the third direction D3. When viewed in the third direction D3, the circuit board 20 is substantially rectangular. Although not shown, the circuit board 20 is connected to the control unit 3 and external power supply 4 shown in FIG. 1. Although not shown, a plurality of pins of the IGBT module 16 are connected to the circuit board 20. In this way, the circuit board 20 is electrically connected to the IGBT module 16. A plurality of electronic elements and sensors 25 (not shown) are mounted on the circuit board 20. As shown in FIG. 2, the circuit board 20 is provided with a hole 20b. The circuit board 20 has a board protrusion 20d.
  • the holes 20b are holes that penetrate the circuit board 20 in the third direction D3. In this embodiment, ten holes 20b are provided. When the screws 90 are passed through each hole 20b in the third direction D3 and tightened into screw holes (not shown) of the IGBT module 16, the circuit board 20 is fixed to the IGBT module 16.
  • the board protrusion 20d is a portion of the circuit board 20 that protrudes toward the front (-D1 side). When viewed in the third direction D3, the board protrusion 20d is substantially rectangular. In this embodiment, three board protrusions 20d are provided. Each board protrusion 20d is disposed at a distance from the others along the second direction D2.
  • the support portion 12 is a substantially rectangular parallelepiped extending in the third direction D3. As shown in FIG. 3A, when viewed in the third direction D3, the support portion 12 is a substantially rectangular shape with its long sides extending in the second direction D2. In this embodiment, the support portion 12 is made of metal. In this embodiment, the support portion 12 is fixed to the surface facing the upper side of the bottom wall portion 11a by a screw or the like (not shown). As a result, the support portion 12 is grounded via the case 11. The support portion 12 may be connected to the bottom wall portion 11a. In this case, the support portion 12 is a part of the case 11. As shown in FIG. 3B, the support portion 12 is provided with a storage portion 12c.
  • the support portion 12 has an upper surface 12a, a support surface 12d, and a plurality of positioning portions 13.
  • the upper surface 12a is the surface of the outer surface of the support portion 12 facing upward, i.e., the other side (-D3 side) of the third direction D3.
  • the accommodation portion 12c is a hole recessed downward from the upper surface 12a, i.e., toward one side (+D3 side) in the third direction D3. As shown in FIG. 4, the accommodation portion 12c is generally rectangular with its long side extending in the second direction D2. As shown in FIG. 3B, the left end (+D2 side) of the accommodation portion 12c is located to the left of the leftmost board protrusion 20d. The right end (-D2 side) of the accommodation portion 12c is located to the right of the rightmost board protrusion 20d.
  • the support surface 12d is the inner surface of the storage section 12c that faces the other side (-D3 side) of the third direction D3.
  • the support surface 12d is the bottom surface of the storage section 12c.
  • the multiple positioning portions 13 are rectangular parallelepipeds that protrude upward from the support surface 12d. As shown in FIG. 4, when viewed in the third direction D3, each positioning portion 13 is rectangular with its long side extending in the first direction D1. In this embodiment, six positioning portions 13 are provided. The positioning portions 13 are arranged at intervals from one another along the second direction D2.
  • the positioning portions 13 are arranged in three sets in the second direction D2, with two adjacent positioning portions 13 in each set.
  • the left side of the right positioning portion 13, i.e., the surface facing one side (+D2 side) of the second direction D2 is the positioning surface 13a.
  • the right side of the left positioning portion 13, i.e., the surface facing the other side of the second direction D2 is the positioning surface 13b.
  • the positioning surface 13a and the positioning surface 13b face each other in the second direction D2.
  • the positioning surface 13a and the positioning surface 13b facing each other in the second direction D2 are referred to as a "pair of positioning surfaces 13a, 13b.”
  • the support portion 12 has three pairs of positioning surfaces 13a, 13b.
  • a gap is provided between each of the positioning portions 13 and the inner surface of the storage portion 12c. That is, in the first direction D1, a gap is provided between each of the pair of positioning surfaces 13a, 13b and the inner surface of the storage portion 12c.
  • the busbar 30 is a path through which the current generated in the IGBT module 16 flows. As shown in FIG. 2, the busbar 30 is in the shape of a plate extending in the first direction D1. The busbar 30 is made of metal. A portion of the busbar 30 is disposed below the circuit board 20 (on the +D3 side). Although not shown in the figure, one end of the busbar 30 is fixed to an electrode (not shown) of the IGBT module 16 by a screw (not shown). This allows a phase current to flow through the busbar 30. The other end of the busbar 30 is located forward (on the -D1 side) of the circuit board 20. Although not shown in the figure, the other end of the busbar 30 is electrically connected to the connection line 6 (see FIG. 1).
  • the power conversion device 10 includes a plurality of busbars 30.
  • Each busbar 30 carries one of the U-phase current, the V-phase current, and the W-phase current.
  • the bus bars 30 are arranged side by side in the second direction D2.
  • each of the board protrusions 20d of the circuit board 20 overlaps with each of the bus bars 30.
  • the sensor 25 is a magnetic detection sensor that detects a magnetic field generated by the current flowing through the busbar 30.
  • the sensor 25 is a Hall IC.
  • the sensor 25 converts the magnetic field into a voltage and outputs it.
  • the magnitude of the voltage output from the sensor 25 correlates with the magnitude of the current flowing through the busbar 30. This allows the sensor 25 to detect the magnitude of the current flowing through the busbar 30.
  • three sensors 25 are provided. That is, the power conversion device 10 is equipped with a plurality of sensors 25. Each sensor 25 is mounted on a different board protrusion 20d. As shown in FIG. 3B, the sensors 25 are arranged side by side in the second direction D2.
  • Each sensor 25 is arranged on the upper side (-D3 side) of the busbar 30. When viewed in the third direction D3, each sensor 25 overlaps with approximately the center of the busbar 30 in the second direction D2. Each sensor 25 detects the current values of the U-phase current, V-phase current, and W-phase current flowing through each busbar 30.
  • the output voltage of each sensor 25 is transmitted to a computing element (not shown) mounted on the circuit board 20, and the magnitude of the current generated by the above-mentioned multiple electronic elements (not shown) is adjusted based on the output voltage of each sensor 25. This makes it possible to stabilize the current supplied to the motor 2 at a desired current value, and to stabilize the operation of the power conversion device 10 and the motor module 1.
  • the shield core 40 collects the magnetic field generated by the current flowing through the bus bar 30 and blocks external magnetic fields.
  • the shield core 40 is magnetic.
  • the shield core 40 is composed of multiple magnetic metal plates stacked in the plate thickness direction.
  • the shield core 40 is composed of multiple magnetic metal plates stacked in the first direction D1.
  • Metal materials with high magnetic permeability such as ferrite and permalloy can be used as materials for the shield core 40.
  • the shield core 40 has a first wall portion 40a, a second wall portion 40b, and a third wall portion 40c.
  • the first wall portion 40a is a plate extending in a direction perpendicular to the third direction D3.
  • the plate surface of the first wall portion 40a faces the third direction D3.
  • the first wall portion 40a is a rectangle whose long side extends in the second direction D2.
  • the first wall portion 40a is disposed below the sensor 25 and the bus bar 30 (+D3 side).
  • the surface of the first wall portion 40a facing the lower side (+D3 side) contacts the support surface 12d. That is, the shield core 40 contacts the support surface 12d.
  • the first wall portion 40a is disposed between a pair of positioning surfaces 13a, 13b.
  • the second wall portion 40b and the third wall portion 40c are connected to both ends of the first wall portion 40a in the second direction D2, respectively.
  • the second wall portion 40b is a plate-like member that protrudes upward (towards -D3) from the left end (+D2 side) of the first wall portion 40a.
  • the plate surface of the second wall portion 40b faces the second direction D2.
  • the upper end of the second wall portion 40b is located above the sensor 25.
  • the second wall portion 40b is disposed between a pair of positioning surfaces 13a, 13b.
  • the third wall portion 40c is a plate-like member that protrudes upward (toward -D3) from the right end (-D2 side) of the first wall portion 40a.
  • the plate surface of the third wall portion 40c faces the second direction D2.
  • the upper end of the third wall portion 40c is located above the sensor 25.
  • the third wall portion 40c is disposed between the pair of positioning surfaces 13a, 13b.
  • the first wall portion 40a and the second wall portion 40b are disposed between the pair of positioning surfaces 13a, 13b. Therefore, the shield core 40 is disposed between the pair of positioning surfaces 13a, 13b.
  • the second wall portion 40b and the third wall portion 40c sandwich the bus bar 30, the board protruding portion 20d, and the sensor 25 mounted on the board protruding portion 20d from both sides in the second direction D2.
  • the power conversion device 10 includes a plurality of shield cores 40.
  • the shield cores 40 are arranged in line in the second direction D2.
  • One sensor 25 and one bus bar 30 are arranged inside one shield core 40.
  • Each of the plurality of shield cores 40 surrounds one sensor 25 and one bus bar 30 from both sides (+D2 side and -D2 side) of the second direction D2 and one side (+D3 side) of the third direction D3. Therefore, according to this embodiment, the magnetic field generated by the current flowing through one bus bar 30 is collected by the shield core 40 surrounding the bus bar 30. Therefore, it is possible to prevent the magnetic field generated by the current flowing through one bus bar 30 from passing through the sensor 25 that detects the current value flowing through the other bus bar 30. Therefore, it is possible to improve the accuracy with which each sensor 25 detects the current value flowing through each bus bar 30, and therefore the operation of the power conversion device 10 and the motor module 1 can be stabilized.
  • the support portion 12 has a support surface 12d facing upward, i.e., the other side (-D3 side) of the third direction D3, and the shield core 40 contacts the support surface 12d. Therefore, the position of the shield core 40 in the third direction D3 relative to the support portion 12 can be determined with high precision. Therefore, since the position of each shield core 40 relative to the sensor 25 and the bus bar 30 in the third direction D3 can be determined with high precision, the precision with which each sensor 25 detects the value of the current flowing through each bus bar 30 can be more suitably improved.
  • the support portion 12 is grounded via the case 11 as described above. Therefore, in this embodiment, the radiation noise radiated from each bus bar 30 can be suitably transmitted to the earth via each shield core 40. This makes it possible to suppress radiation noise from being radiated from each shield core 40. Therefore, it is possible to suppress the superposition of radiation noise on each sensor 25, and it is possible to improve the accuracy with which each sensor 25 detects the current value flowing through each bus bar 30. Therefore, it is possible to stabilize the operation of the power conversion device 10 and the motor module 1. Furthermore, it is possible to suppress the superposition of radiation noise on each of the circuit board 20 and the IGBT module 16, so it is possible to stabilize the operation of each of the circuit board 20 and the IGBT module 16.
  • the surface of the first wall portion 40a of the shield core 40 facing the lower side (+D3 side) is in contact with the support surface 12d.
  • the shield core 40 and the support portion 12 are in surface contact, the contact area between the shield core 40 and the support portion 12 can be increased, and the impedance between the shield core 40 and the earth can be reduced. Therefore, the radiated noise radiated from the bus bar 30 and the radiated noise radiated from the electrical equipment arranged around the power conversion device 10 can be suitably transmitted to the earth via the shield core 40. Therefore, the radiated noise can be prevented from being superimposed on each sensor 25, and the operation of the power conversion device 10 and the motor module 1 can be stabilized.
  • the shape of the shield core 40 as viewed in the first direction D1 is not limited to that of this embodiment, and may be another shape, such as a U-shape protruding downward (+D3 side).
  • the shield core 40 may be structured to surround the sensor 25 and bus bar 30 not only on both sides in the second direction D2 and one side in the third direction D3 (+D3 side), but also from the other side in the third direction (-D3 side).
  • the shield core 40 is, for example, rectangular as viewed in the first direction D1.
  • the core sealing portion 50 is disposed inside the housing portion 12c of the support portion 12.
  • the core sealing portion 50 is made of resin.
  • the core sealing portion 50 seals the lower portion of the shield core 40 with resin. That is, the core sealing portion 50 seals at least a part of the shield core 40 with resin. At least a part of the shield core 40 is embedded inside the core sealing portion 50.
  • the core sealing portion 50 contacts each of the inner surfaces of the housing portion 12c, the surface facing the first direction D1 and the surface facing the second direction D2.
  • the core sealing portion 50 contacts a part of the support surface 12d, the inner surface of the housing portion 12c, facing the third direction D3.
  • the core sealing portion 50 is fixed to the housing portion 12c. Therefore, each shield core 40 is fixed to the support portion 12 via the core sealing portion 50.
  • seal means to fill a gap or to embed an object. Therefore, the word “seal” is also used when the passage of liquids such as moisture is not permitted.
  • the power conversion device 10 and the motor module 1 of this embodiment include a magnetic shield core 40 that surrounds the bus bar 30 and the sensor 25 from both sides in the second direction D2 and one side (+D3 side) in the third direction D3, a core sealing portion 50 that seals at least a portion of the shield core 40 with resin, and a support portion 12, and the shield core 40 is fixed to the support portion 12 via the core sealing portion 50.
  • the shield core in a configuration in which the shield core is assembled to a resin support portion or the like by press-fitting, depending on the dimensional tolerance of the shield core, the shield core may not be assembled to the support portion or the like. In this case, the shield core must be discarded, and the manufacturing cost of the power conversion device increases.
  • the shield core 40 at least a portion of which is sealed in the core sealing portion 50, is fixed to the support portion 12 via the core sealing portion 50, so that even a shield core with a large dimensional tolerance can be easily fixed to the support portion 12. Therefore, it is possible to use a shield core 40 with a large dimensional tolerance, which helps prevent an increase in the manufacturing steps and manufacturing costs of the power conversion device 10 and motor module 1.
  • the shield core 40 at least a portion of which is sealed in the core sealing part 50, is fixed to the support part 12 via the core sealing part 50, so that the shield core 40 can be easily fixed to the support part 12. Therefore, it is possible to more suitably suppress an increase in the labor hours for fixing the shield core 40 to the support part 12, and it is possible to suppress an increase in the labor hours for manufacturing the power conversion device 10 and the motor module 1.
  • the upper side of the support portion 12, i.e., the surface facing the other side (-D3 side) of the third direction D3, is provided with a housing portion 12c recessed toward the lower side, i.e., toward one side (+D3 side) of the third direction D3, and the core sealing portion 50 contacts the inner surface of the housing portion 12c.
  • This makes it possible to more firmly fix the shield core 40 to the support portion 12 via the core sealing portion 50, and therefore the position of each shield core 40 relative to each sensor 25 and each bus bar 30 can be stabilized. This makes it possible to more suitably improve the accuracy with which each sensor 25 detects the current value flowing through each bus bar 30.
  • the shield core fixing process Ps is part of the manufacturing process of the power conversion device 10 and the motor module 1.
  • the shield core fixing process Ps includes a positioning step S1 for determining the position of the shield core 40 relative to the support portion 12 in a mold 80, and a molding step S2 for sealing at least a part of the shield core 40 with resin by injection molding using the support portion 12 and the shield core 40 as insert members, and for molding the core sealing portion 50 fixed to the support portion 12.
  • the term "workers, etc.” includes workers who perform each task and assembly equipment, etc. Each task may be performed only by a worker, only by an assembly equipment, or by a worker and an assembly equipment.
  • the worker or the like determines the position of the shield core 40 relative to the support portion 12 within the mold 80. As shown in FIG. 5B, the worker or the like first places each shield core 40 between a pair of positioning surfaces 13a, 13b of the support portion 12. This determines the position of each shield core 40 in the second direction D2 relative to the support portion 12. In addition, the surface of each shield core 40 facing the lower side (+D3 side) of the first wall portion 40a contacts the support surface 12d, so the position of each shield core 40 in the third direction D3 relative to the support portion 12 is determined.
  • the mold 80 is composed of an upper mold 81 and a lower mold 82.
  • the lower mold 82 is a roughly rectangular parallelepiped with a lower storage section 82a that is recessed downward (+D3 side) from the surface facing upward (-D3 side).
  • the worker or the like inserts the lower part of the support part 12 into the lower storage section 82a, and attaches the lower mold 82 to the support part 12.
  • the upper mold 81 is a generally rectangular parallelepiped with a first storage portion 81b recessed upward from its downward surface.
  • the outer edge of the downward surface of the first storage portion 81b contacts the upper surface 12a of the support portion 12 in the third direction D3. This determines the position of the upper mold 81 in the third direction D3 relative to the support portion 12.
  • the other part of the downward surface of the first storage portion 81b faces the support surface 12d and the multiple positioning portions 13 at intervals in the third direction D3.
  • the upper mold 81 is provided with an injection port 81a and multiple second storage portions 81c.
  • the injection port 81a is a hole that penetrates the upper mold 81 in the third direction D3.
  • the injection port 81a is provided at approximately the center of the upper mold 81 in the second direction D2.
  • the injection port 81a is located above approximately the center of the support portion 12 in the second direction D2.
  • Each of the multiple second storage portions 81c is a hole recessed upward (towards -D3) from the downward facing surface of the first storage portion 81b.
  • six second storage portions 81c are provided.
  • the multiple second storage portions 81c are provided at intervals along the second direction D2.
  • the upper mold 81 has six pairs of opposing parts that face each other in the first direction D1. Between each pair of opposing parts, one of the second wall part 40b or the third wall part 40c of each shield core 40 is disposed. This determines the position of each shield core 40 in the first direction D1 relative to the support part 12 and the mold 80, and the positioning step S1 is completed.
  • the worker or the like performs injection molding using the support portion 12 and the shield core 40 as insert members to mold the core sealing portion 50.
  • the worker or the like pours the thermally melted molten resin MR into the interior of the mold 80 from the injection port 81a of the upper mold 81.
  • the resin is an acrylate-based thermosetting resin.
  • the resin may be other resins such as epoxy-based thermosetting resins.
  • the injection pressure for pouring the molten resin MR into the mold 80 is a low pressure of about 0.5 to 15.0 MPa. The molten resin MR poured into the mold 80 flows toward both sides in the second direction D2 inside the accommodation portion 12c.
  • the worker or the like stops the injection of the molten resin MR. After that, the worker heats the molten resin MR to a predetermined temperature using a heater (not shown) or the like to harden the resin, and then removes the mold 80 from the support portion 12. As a result, as shown in FIG. 5D, the core sealing portion 50 is formed, which seals at least a portion of each shield core 40 with resin. In addition, the outer surface of the core sealing portion 50 contacts the inner surface of the housing portion 12c, so that the core sealing portion 50 is fixed to the support portion 12.
  • the manufacturing method for the power conversion device of this embodiment includes a positioning step S1 in which the position of the shield core 40 is determined relative to the support portion 12 in the mold 80, and a molding step S2 in which at least a portion of the shield core 40 is sealed with resin by injection molding using the support portion 12 and the shield core 40 as insert members, and a core sealing portion 50 is molded to be fixed to the support portion 12. Therefore, the shield core 40 can be fixed to the support portion 12 via the core sealing portion 50.
  • the shield core may not be assembled to the support portion or the like, and the shield core may have to be discarded.
  • the shield core 40 at least a portion of which is sealed in the core sealing portion 50 by injection molding using the support portion 12 and the shield core 40 as insert members, is fixed to the support portion 12 via the core sealing portion 50, so that even a shield core 40 with a large dimensional tolerance can be easily fixed to the support portion 12. Therefore, it is possible to use a shield core 40 with a large dimensional tolerance, which helps prevent an increase in the manufacturing steps and manufacturing costs of the power conversion device 10 and motor module 1.
  • the shield core 40 is fixed to the support portion 12 by injection molding using the support portion 12 and the shield core 40 as insert members, so that the shield core 40 can be easily fixed to the support portion 12. Therefore, an increase in the labor required for the shield core fixing process Ps can be more effectively suppressed.
  • the support portion 12 has a pair of positioning surfaces 13a, 13b facing each other in the second direction D2, and the shield core 40 is disposed between the pair of positioning surfaces 13a, 13b. Therefore, in molding step S2, it is possible to prevent each shield core 40 from moving in the second direction D2 due to the pressure from the resin flowing into the mold 80.
  • This increases the positional accuracy of each shield core 40 relative to the support portion 12, thereby increasing the positional accuracy of each shield core 40 relative to each sensor 25 and each bus bar 30. This makes it possible to more suitably increase the accuracy with which each sensor 25 detects the value of the current flowing through the bus bar 30.
  • a gap is provided between each of the pair of positioning surfaces 13a, 13b and the inner surface of the accommodating portion 12c in the first direction D1. Therefore, in the molding step S2, the molten resin MR can flow stably through the gap toward both sides in the second direction D2. Also, in this embodiment, a gap is provided between each shield core 40 and the inner surface of the accommodating portion 12c in the first direction D1. Therefore, the molten resin MR can easily flow in the second direction D2 through between the shield core 40 and the inner surface of the accommodating portion 12c.
  • the molten resin MR can be stably filled into the entire inside of the accommodating portion 12c, so that a part of the shield core 40 can be stably sealed by the core sealing portion 50. Also, since the contact area between the core sealing portion 50 and the inner surface of the accommodating portion 12c can be stabilized, the core sealing portion 50 can be firmly fixed to the support portion 12. Therefore, each shield core 40 can be firmly fixed to the support portion 12, so the positional accuracy of each shield core 40 relative to each sensor 25 and each bus bar 30 can be stabilized, and the accuracy with which each sensor 25 detects the current value flowing through the bus bar 30 can be more suitably improved.
  • the injection pressure for pouring the molten resin MR into the mold 80 in the molding step S2 is low, at 0.5 to 15.0 MPa, so that the load applied to the shield core 40 by the resin flowing into the mold 80 can be reduced. Therefore, fluctuations in the magnetic properties of the shield core 40 can be suppressed, and the strength of the magnetic field collected by the shield core 40 can be stabilized. This makes it possible to more suitably improve the accuracy with which each sensor 25 detects the value of the current flowing through the bus bar 30.
  • Fig. 6A is a top view showing a power conversion device 210 and a part of a motor module 201 according to the first modification of the first embodiment described above.
  • Fig. 6B is a cross-sectional view showing the power conversion device 210 according to the first modification of the first embodiment.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof will be omitted.
  • the support portion 212 does not have a storage portion, and the upper surface 212a, which is the surface of the support portion 212 facing upward (-D3 side), is flat and extends in a direction perpendicular to the third direction D3.
  • the surface of the first wall portion 40a of each shield core 40 facing downward (+D3 side) comes into contact with the upper surface 212a.
  • the upper surface 212a faces upward, i.e., the other side of the third direction D3, and serves as the support surface 212d that comes into contact with the shield core 40.
  • the core sealing portion 250 of this modified example is substantially rectangular.
  • the core sealing portion 250 seals at least a portion of each shield core 40 with resin.
  • the core sealing portion 250 covers the entire support surface 212d.
  • the surface of the core sealing portion 250 facing downward is in contact with the support surface 212d.
  • the core sealing portion 250 is fixed to the support portion 212, and the shield core 40 is fixed to the support portion 212 via the core sealing portion 250. Therefore, according to this modified example, even a shield core with a large dimensional tolerance can be easily fixed to the support portion 212. Therefore, it is possible to suppress an increase in the manufacturing man-hours and manufacturing costs of the power conversion device 210 and the motor module 201.
  • the support portion 212 is connected to the bottom wall portion 211a of the case 211.
  • the support portion 212 is a part of the case 211. Therefore, according to this modified example, it is possible to suppress an increase in the manufacturing labor and number of parts of the power conversion device 210 compared to a case in which the support portion 212 is provided separately from the case 211 and fixed to the case 211 by screws or the like.
  • Fig. 7A is a top view showing a power conversion device 310 and a part of a motor module 301 according to Modification 2 of the first embodiment described above.
  • Fig. 7B is a cross-sectional view showing a power conversion device 310 according to Modification 2 of the first embodiment.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof will be omitted.
  • the core sealing portion 350 of this modified example seals at least a portion of each of the multiple shield cores 40 with resin.
  • the core sealing portion 350 contacts the inner surface of the accommodating portion 12c and is fixed to the support portion 12.
  • each shield core 40 is fixed to the support portion 12 via the core sealing portion 350.
  • the core sealing portion 350 is provided with a notch 350a.
  • the notch 350a is provided in the core sealing portion 350 in a portion between adjacent shield cores 40 in the second direction D2. That is, the notch 350a is provided in the core sealing portion 350 in a portion between multiple shield cores 40.
  • the notch 350a is provided by configuring the shape of the inner surface of the mold used in the above-mentioned shield core fixing process Ps to a shape corresponding to the shape of the notch 350a.
  • the notch 350a is configured by a first notch 350b and a second notch 350c.
  • the first cutout 350b is the rear (+D1) portion of the cutout 350a. As shown in FIG. 7B, the first cutout 350b is recessed downward from the surface of the core sealing portion 350 facing the upper side (-D3 side), that is, toward one side (+D3 side) in the third direction D3.
  • the second notch 350c is the front (-D1 side) portion of the notch 350a.
  • the second notch 350c is connected to the first notch 350b in the first direction D1.
  • the second notch 350c is recessed from the surface of the core sealing part 350 facing the front to the rear, i.e., to one side (+D1 side) in the first direction D1.
  • the lower end of the second notch 350c is connected to the surface of the core sealing part 350 facing downward.
  • a second notch (notch) 350c recessed in the first direction D1 and a first notch (notch) 350b recessed in the third direction D3 are provided in the portion of the core sealing portion 350 between the multiple shield cores 40. This allows the volume of the core sealing portion 350 to be reduced, thereby reducing the material cost of the resin that constitutes the core sealing portion 350. This allows the manufacturing costs of the power conversion device 310 and the motor module 301 to be reduced.
  • the shape of the cutout is not limited to that of this modified example, and for example, the first cutout recessed in the third direction D3 may be provided further forward (-D1 side) than the second cutout recessed in the first direction D1. Also, either the first cutout or the second cutout may not be provided. In this case, the cutout is recessed in either the first direction D1 or the third direction D3.
  • Fig. 8A is a top view showing a power conversion device 410 and a part of a motor module 401 according to Modification 3 of the first embodiment described above.
  • Fig. 8B is a cross-sectional view showing the power conversion device 410 according to Modification 3 of the first embodiment.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof will be omitted.
  • the core sealing portion 450 of this modified example seals at least a portion of each of the multiple shield cores 40 with resin.
  • the core sealing portion 450 contacts the inner surface and upper surface 12a of the accommodating portion 12c and is fixed to the support portion 12.
  • each shield core 40 is fixed to the support portion 12 via the core sealing portion 450.
  • the core sealing portion 450 of this modified example is composed of a first portion 450a, a second portion 450b, multiple third portions 450c, and multiple fourth portions 450d.
  • the surface of the second wall portion 40b of each shield core 40 facing the left side (+D2 side) is referred to as the outer surface of the second wall portion 40b
  • the surface of the third wall portion 40c of each shield core 40 facing the right side (-D2 side) is referred to as the outer surface of the third wall portion 40c
  • the surface of the second wall portion 40b of each shield core 40 facing to the right is called the inner surface of the second wall portion 40b
  • the surface of the third wall portion 40c of each shield core 40 facing to the left is called the inner surface of the third wall portion 40c.
  • the outer surface of the second wall portion 40b and the outer surface of the third wall portion 40c of each shield core 40 are the outer surfaces of each shield core 40.
  • the inner surface of the second wall portion 40b and the inner surface of the third wall portion 40c of each shield core 40 are the inner surfaces of each shield core 40.
  • the first portion 450a is a portion of the core sealing portion 450 that is located to the left of the outer surface of the second wall portion 40b of the shield core 40D that is located on the leftmost side (+D2 side).
  • the position of the upper end portion (-D3 side) of the first portion 450a is the same as the position of the upper end portion of the second wall portion 40b.
  • the first portion 450a contacts the entire outer surface of the second wall portion 40b of the shield core 40D. In other words, the first portion 450a contacts the outer surface of the shield core 40D.
  • the second portion 450b is a portion of the core sealing portion 450 located to the right of the outer surface of the third wall portion 40c of the shield core 40E that is located at the rightmost side (-D2 side).
  • the position of the upper end portion (-D3 side) of the second portion 450b is the same as the position of the upper end portion of the third wall portion 40c.
  • the second portion 450b contacts the entire outer surface of the third wall portion 40c of the shield core 40E. In other words, the second portion 450b contacts the outer surface of the shield core 40E.
  • each of the multiple third parts 450c is a part of the core sealing portion 450 located between the shield cores 40 adjacent to each other in the second direction D2.
  • two third parts 450c are provided.
  • the position of the upper end (-D3 side) of each third part 450c is the same as the position of the upper end of the second wall portion 40b and the upper end of the third wall portion 40c.
  • One third part 450c contacts the entire outer surface of the third wall portion 40c of the shield core 40D and the entire outer surface of the second wall portion 40b of the shield core 40F arranged adjacent to the shield core 40D in the second direction D2.
  • the other third part 450c contacts the entire outer surface of the third wall portion 40c of the shield core 40F and the entire outer surface of the second wall portion 40b of the shield core 40E. That is, the multiple third portions 450c come into contact with the outer surface of the shield core 40.
  • each of the multiple fourth portions 450d is a portion located between the outer surface of the second wall portion 40b and the outer surface of the third wall portion 40c of each shield core 40.
  • three fourth portions 450d are provided.
  • the position of the upper end (-D3 side) of each fourth portion 450d is located lower (+D3 side) than the positions of the upper end of the second wall portion 40b and the upper end of the third wall portion 40c.
  • Each fourth portion 450d is disposed below the bus bar 30. Therefore, the upper ends of the first portion 450a, the second portion 450b, and the third portion 450c are located higher than the upper end of the fourth portion 450d.
  • Each fourth portion 450d contacts the lower portion of the inner surface of the second wall portion 40b and the lower portion of the inner surface of the third wall portion 40c of each shield core 40. That is, the multiple fourth portions 450d come into contact with the inner surface of the shield core 40.
  • the upper ends of the first portion 450a, the second portion 450b, and the third portion 450c which are the portions of the core sealing portion 450 that contact the outer surfaces of the multiple shield cores 40, i.e., the ends on the other side (-D3 side) of the third direction D3, are located higher than the upper end of the fourth portion 450d that contacts the inner surfaces of the multiple shield cores 40.
  • Fig. 9A is a top view showing a power conversion device 510 and a part of a motor module 501 according to Modification 4 of the first embodiment described above.
  • Fig. 9B is a cross-sectional view showing a power conversion device 510 according to Modification 4 of the first embodiment.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof will be omitted.
  • each shield core 40 is disposed at a distance from the support surface 12d in the third direction D3. Also, the second wall portion 40b and the third wall portion 40c of each shield core 40 are disposed at a distance from the pair of positioning surfaces 13a, 13b in the second direction D2. In other words, each shield core 40 is disposed at a distance from the support portion 12.
  • the first wall portion 40a can be fixed to the support surface 12d via a portion of the core sealing portion 550 that is located between the first wall portion 40a of each shield core 40 and the support surface 12d of the support portion 12 in the third direction D3. Therefore, each shield core 40 can be more firmly fixed to the support portion 12 via the core sealing portion 550, and the accuracy with which each sensor 25 detects the value of the current flowing through each bus bar 30 can be stabilized.
  • the use of the power conversion device of this embodiment is not limited to generating power to be supplied to a motor that drives a vehicle, but may also generate power to be supplied to a motor mounted on an electrical appliance or the like.
  • the power conversion device may be an inverter that generates AC current of a predetermined waveform from DC current supplied from an external power source, or a converter that generates DC current from AC current supplied from an external power source.
  • the configuration of the support part is not limited to that of this embodiment, and for example, the support part does not need to be provided with a pair of positioning surfaces.
  • a pair of positioning surfaces can be provided on the inner surface of the mold used in the shield core fixing process Ps, and the position of the shield core relative to the support part can be determined by the pair of positioning surfaces.
  • a portion of the busbar may be embedded inside the core sealing portion.
  • the busbar in the shield core fixing process, is injection molded as a part of the insert member, so that a portion of the busbar can be embedded inside the core sealing portion.
  • a hole may be provided in the core sealing portion after molding, and the busbar may be passed through the hole.
  • the number of bus bars, sensors, and shield cores included in the power conversion device is not limited to three, but may be one or two, or four or more.
  • a case has been described in which a sensor is mounted on a board protrusion that protrudes in one direction from an edge of a circuit board, and the board protrusion is disposed between the second wall and the third wall of the shield core.
  • a pair of holes for inserting the second wall and the third wall of the shield core, respectively, may be provided in the circuit board, and the sensor may be mounted between the pair of holes.
  • a power conversion device including a bus bar extending in a first direction, a sensor that detects a magnetic field generated by a current flowing through the bus bar, a magnetic shield core that surrounds the bus bar and the sensor from both sides in a second direction perpendicular to the first direction and from at least one side in a third direction perpendicular to the first direction and the second direction, a core sealing portion that seals at least a part of the shield core with resin, and a support portion, wherein the shield core is fixed to the support portion via the core sealing portion.
  • the power conversion device according to any one of (1) to (4), wherein the support portion has a support surface facing the other side of the third direction, and the shield core is in contact with the support surface.
  • the shield core is arranged with a gap between it and the support portion.
  • the power conversion device comprising: a plurality of the bus bars, a plurality of the sensors, and a plurality of the shield cores arranged side by side in the second direction, and each of the plurality of the shield cores surrounds one of the sensors and one of the bus bars from both sides in the second direction and at least one side in the third direction.
  • the power conversion device in which the core sealing portion seals a portion of each of the plurality of shield cores with resin, and a notch recessed in the first direction or the third direction is provided in a portion of the core sealing portion between the plurality of shield cores.
  • the power conversion device in which the core sealing portion seals a portion of each of the plurality of shield cores with resin, and an end portion on the other side in the third direction of a portion of the core sealing portion that contacts an outer surface of each of the plurality of shield cores is located on the other side in the third direction of an end portion on the other side in the third direction of a portion of the core sealing portion that contacts an inner surface of each of the plurality of shield cores.
  • a method for manufacturing a power conversion device that includes a magnetic shield core, a resin core sealing part, and a support part, the method including a positioning step for determining the position of the shield core relative to the support part in a mold, and a molding step for molding the core sealing part that is fixed to the support part and at least a part of the shield core is sealed with resin by injection molding using the support part and the shield core as insert members.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

The present invention comprises: a busbar that extends in a first direction; a sensor that detects a magnetic field generated by a current flowing in the busbar; a shield core having magnetic properties, the shield core surrounding the busbar and the sensor from both sides in a second direction orthogonal to the first direction and from at least one side in a third direction orthogonal to both the first direction and the second direction; a core-sealing part that seals at least part of the shield core using resin; and a support part. The shield core is fixed to the support part via the core-sealing part.

Description

電力変換装置、モータモジュール、および電力変換装置の製造方法Power conversion device, motor module, and method for manufacturing power conversion device
 本発明は、電力変換装置、モータモジュール、および電力変換装置の製造方法に関する。 The present invention relates to a power conversion device, a motor module, and a method for manufacturing a power conversion device.
 モータに電力を供給する電力変換装置として、例えば、特許文献1に記載のように、バスバーに流れる電流によって発生する磁界を収集するシールドコアの内部に、バスバー、およびバスバーを流れる電流値を検出するセンサ(ホールIC)と、を備える電力変換装置が知られている。 As an example of a power conversion device that supplies power to a motor, as described in Patent Document 1, a power conversion device is known that includes a bus bar and a sensor (Hall IC) that detects the value of the current flowing through the bus bar inside a shield core that collects the magnetic field generated by the current flowing through the bus bar.
特開2010-8050号公報JP 2010-8050 A
 シールドコアが、板厚方向に積層される複数枚の磁性金属板によって構成される場合、シールドコアの寸法公差が大きくなり易い。したがって、樹脂製の支持部等に対してシールドコアを圧入によって固定する場合、シールドコアの寸法公差によっては、支持部等にシールドコアを容易に圧入しづらくなるため、電力変換装置の製造工数および製造コストが増大する虞があった。 When the shield core is made up of multiple magnetic metal plates stacked in the thickness direction, the dimensional tolerance of the shield core is likely to be large. Therefore, when the shield core is fixed to a resin support part or the like by press-fitting, depending on the dimensional tolerance of the shield core, it may be difficult to easily press the shield core into the support part, etc., and there is a risk that the manufacturing labor and manufacturing costs of the power conversion device will increase.
 本発明の一つの態様は、上記事情に鑑みて、シールドコアを支持部に容易に固定することができる電力変換装置、およびモータモジュールを提供することを目的の一つとする。また、本発明の一つの態様は、シールドコアを支持部に容易に固定することができる電力変換装置の製造方法を提供することを目的の一つとする。 In view of the above circumstances, one aspect of the present invention aims to provide a power conversion device and a motor module that can easily fix a shield core to a support part. Another aspect of the present invention aims to provide a method for manufacturing a power conversion device that can easily fix a shield core to a support part.
 本発明の電力変換装置の一つの態様は、第1方向に延びるバスバーと、前記バスバーを流れる電流によって発生する磁界を検出するセンサと、磁性を有し、前記第1方向と直交する第2方向の両側と、前記第1方向および前記第2方向と直交する第3方向の少なくとも一方側とから、前記バスバーおよび前記センサを囲むシールドコアと、前記シールドコアの少なくとも一部を樹脂で封止するコア封止部と、支持部と、を備える。前記シールドコアは、前記コア封止部を介して、前記支持部に固定される。 One embodiment of the power conversion device of the present invention includes a bus bar extending in a first direction, a sensor that detects a magnetic field generated by a current flowing through the bus bar, a magnetic shield core that surrounds the bus bar and the sensor from both sides in a second direction perpendicular to the first direction and from at least one side in a third direction perpendicular to the first direction and the second direction, a core sealing portion that seals at least a portion of the shield core with resin, and a support portion. The shield core is fixed to the support portion via the core sealing portion.
 本発明のモータモジュールの一つの態様は、上記の電力変換装置と、上記の電力変換装置によって駆動されるモータとを備える。 One embodiment of the motor module of the present invention includes the above-mentioned power conversion device and a motor driven by the above-mentioned power conversion device.
 本発明の電力変換装置の製造方法の一つの態様は、磁性を有するシールドコアと、樹脂製のコア封止部と、支持部と、を備える電力変換装置の製造方法であって、金型内において、前記支持部に対する前記シールドコアの位置を決める位置決めステップと、前記支持部および前記シールドコアをインサート部材とする射出成形によって、前記シールドコアの少なくとも一部を樹脂で封止し、かつ、前記支持部と固定される前記コア封止部を成形する成形ステップと、を有する。 One aspect of the method for manufacturing a power conversion device of the present invention is a method for manufacturing a power conversion device that includes a magnetic shield core, a resin core sealing part, and a support part, and includes a positioning step for determining the position of the shield core relative to the support part within a mold, and a molding step for sealing at least a portion of the shield core with resin by injection molding using the support part and the shield core as insert members, and molding the core sealing part that is fixed to the support part.
 本発明の一つの態様によれば、電力変換装置、およびモータモジュールにおいて、シールドコアを支持部に容易に固定することができる。また、本発明の一つの態様によれば、電力変換装置の製造方法において、シールドコアを支持部に容易に固定することができる。 According to one aspect of the present invention, in a power conversion device and a motor module, the shield core can be easily fixed to the support part. Also, according to one aspect of the present invention, in a method for manufacturing a power conversion device, the shield core can be easily fixed to the support part.
図1は、一実施形態のモータモジュールを示す模式図である。FIG. 1 is a schematic diagram showing a motor module according to an embodiment. 図2は、一実施形態の電力変換装置の一部を示す斜視図である。FIG. 2 is a perspective view showing a part of the power conversion device of the embodiment. 図3Aは、一実施形態の電力変換装置の一部を示す上面図である。FIG. 3A is a top view showing a portion of a power conversion device according to one embodiment. 図3Bは、一実施形態の電力変換装置を示す断面図である。FIG. 3B is a cross-sectional view showing the power conversion device of the embodiment. 図4は、一実施形態の支持部およびシールドコアを示す上面図である。FIG. 4 is a top view showing the support portion and shield core of one embodiment. 図5Aは、一実施形態の電力変換装置の製造方法を示すフローチャートである。FIG. 5A is a flowchart showing a method for manufacturing a power conversion device according to one embodiment. 図5Bは、一実施形態の電力変換装置の製造方法を示す第1の断面図である。FIG. 5B is a first cross-sectional view illustrating a method for manufacturing the power converter according to the embodiment. 図5Cは、一実施形態の電力変換装置の製造方法を示す第2の断面図である。FIG. 5C is a second cross-sectional view showing the method for manufacturing the power converter according to the embodiment. 図5Dは、一実施形態の電力変換装置の製造方法を示す第3の断面図である。FIG. 5D is a third cross-sectional view illustrating the method for manufacturing the power converter according to the embodiment. 図6Aは、一実施形態の変形例1の電力変換装置の一部を示す上面図である。FIG. 6A is a top view illustrating a portion of a power conversion device according to a first modification of the embodiment. 図6Bは、一実施形態の変形例1の電力変換装置を示す断面図である。FIG. 6B is a cross-sectional view illustrating a power conversion device according to the first modification of the embodiment. 図7Aは、一実施形態の変形例2の電力変換装置の一部を示す上面図である。FIG. 7A is a top view illustrating a portion of a power conversion device according to a second modification of the embodiment. 図7Bは、一実施形態の変形例2の電力変換装置を示す断面図である。FIG. 7B is a cross-sectional view illustrating a power conversion device according to a second modification of the embodiment. 図8Aは、一実施形態の変形例3の電力変換装置の一部を示す上面図である。FIG. 8A is a top view illustrating a portion of a power conversion device according to a third modification of the embodiment. 図8Bは、一実施形態の変形例3の電力変換装置を示す断面図である。FIG. 8B is a cross-sectional view illustrating a power conversion device according to a third modification of the embodiment. 図9Aは、一実施形態の変形例4の電力変換装置の一部を示す上面図である。FIG. 9A is a top view illustrating a portion of a power conversion device according to a fourth modified example of the embodiment. 図9Bは、一実施形態の変形例4の電力変換装置を示す断面図である。FIG. 9B is a cross-sectional view illustrating a power conversion device according to a fourth modified example of the embodiment.
 以下、図面を参照しながら、本発明の実施形態に係る電力変換装置およびモータモジュールについて説明する。なお、本発明の範囲は、以下の実施形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面では、各構成をわかりやすくするために、実際の構造と縮尺や数等を異ならせる場合がある。 Below, a power conversion device and a motor module according to an embodiment of the present invention will be described with reference to the drawings. Note that the scope of the present invention is not limited to the following embodiment, and can be modified as desired within the scope of the technical concept of the present invention. Also, in the following drawings, the scale and number of components may differ from the actual structure in order to make each component easier to understand.
 以下の説明において、各図には適宜、第1方向D1を示す。第1方向D1は、以下に説明する実施形態のバスバーが延びる方向である。第1方向D1は、電力変換装置の前後方向である。以下の説明では、第1方向D1の矢印が向く側(+D1側)を「第1方向D1の一方側」または「後側」と呼ぶ。第1方向D1の矢印が向く側と反対側(-D1側)を「第1方向D1の他方側」または「前側」と呼ぶ。 In the following description, the first direction D1 is shown in each figure as appropriate. The first direction D1 is the direction in which the busbars in the embodiment described below extend. The first direction D1 is the front-to-rear direction of the power conversion device. In the following description, the side toward which the arrow of the first direction D1 points (+D1 side) is referred to as "one side of the first direction D1" or "rear side." The side opposite to the side toward which the arrow of the first direction D1 points (-D1 side) is referred to as "the other side of the first direction D1" or "front side."
 以下の説明において、各図には適宜、第2方向D2を示す。本実施形態において、第2方向D2は、複数のバスバーが並んで配置される方向であり、第1方向D1と直交する方向である。第2方向D2は、電力変換装置の左右方向である。以下の説明では、第2方向D2の矢印が向く側(+D2側)を「第2方向D2の一方側」または「左側」と呼ぶ。第2方向D2の矢印が向く側と反対側(-D2側)を「第2方向D2の他方側」または「右側」と呼ぶ。 In the following description, the second direction D2 is shown in each figure as appropriate. In this embodiment, the second direction D2 is the direction in which multiple bus bars are arranged side by side, and is a direction perpendicular to the first direction D1. The second direction D2 is the left-right direction of the power conversion device. In the following description, the side toward which the arrow of the second direction D2 points (+D2 side) is referred to as "one side of the second direction D2" or "left side." The side opposite to the side toward which the arrow of the second direction D2 points (-D2 side) is referred to as "the other side of the second direction D2" or "right side."
 以下の説明において、各図には適宜、第3方向D3を示す。本実施形態において、第3方向D3は、第1方向D1および第2方向D2と直交する方向である。第3方向D3は、電力変換装置の上下方向である。以下の説明では、第3方向D3の矢印が向く側(+D3側)を「第3方向D3の一方側」または「下側」と呼ぶ。第3方向D3の矢印が向く側と反対側(-D2側)を「第3方向D3の他方側」または「上側」と呼ぶ。 In the following description, the third direction D3 is shown in each figure as appropriate. In this embodiment, the third direction D3 is a direction perpendicular to the first direction D1 and the second direction D2. The third direction D3 is the up-down direction of the power conversion device. In the following description, the side toward which the arrow of the third direction D3 points (the +D3 side) is referred to as "one side of the third direction D3" or "lower side." The side opposite to the side toward which the arrow of the third direction D3 points (the -D2 side) is referred to as "the other side of the third direction D3" or "upper side."
 なお、上側、下側、前側、後側、左側、右側は、単に各部の相対位置関係を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。 Note that the terms "upper", "lower", "front", "rear", "left" and "right" are merely names used to describe the relative positions of the various parts, and the actual positional relationships may be other than those indicated by these names.
<第1実施形態>
 図1は、本実施形態のモータモジュール1を示す模式図である。
 モータモジュール1は、車両に搭載され、車両の車軸を回転させる駆動装置である。モータモジュール1が搭載される車両は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)などのモータを動力源とする車両である。モータモジュール1は、モータ2と、電力変換装置10と、を備える。
First Embodiment
FIG. 1 is a schematic diagram showing a motor module 1 of the present embodiment.
The motor module 1 is a drive device mounted on a vehicle to rotate the axle of the vehicle. The vehicle on which the motor module 1 is mounted is a vehicle that uses a motor as a power source, such as a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHV), or an electric vehicle (EV). The motor module 1 includes a motor 2 and a power conversion device 10.
 モータ2は、図示しない車両の車軸を回転させる。本実施形態において、モータ2は、3相モータである。3相とは、U相、V相、およびW相である。モータ2は、図示しないU相コイル、V相コイル、およびW相コイルを有する。 Motor 2 rotates the axle of the vehicle (not shown). In this embodiment, motor 2 is a three-phase motor. The three phases are U-phase, V-phase, and W-phase. Motor 2 has U-phase coil, V-phase coil, and W-phase coil (not shown).
 電力変換装置10は、モータ2に供給する電流を生成するとともに、モータ2のU相コイル、V相コイル、およびW相コイルのそれぞれに電流を供給する。電力変換装置10は、モータ2、制御ユニット3、および外部電源4と接続される。 The power conversion device 10 generates a current to be supplied to the motor 2, and supplies a current to each of the U-phase coil, the V-phase coil, and the W-phase coil of the motor 2. The power conversion device 10 is connected to the motor 2, the control unit 3, and the external power source 4.
 制御ユニット3は、車両の動作を制御する。制御ユニット3は、モータ2の動作に関する指令内容を含む制御信号を電力変換装置10に送信する。外部電源4は、電力変換装置10に直流電流を供給する。本実施形態において、外部電源4は、バッテリである。 The control unit 3 controls the operation of the vehicle. The control unit 3 transmits a control signal including instructions related to the operation of the motor 2 to the power conversion device 10. The external power source 4 supplies a direct current to the power conversion device 10. In this embodiment, the external power source 4 is a battery.
 電力変換装置10は、制御ユニット3から送信された制御信号に基づいて、外部電源4によって供給される直流電流から所定波形の電流を生成するとともに、電流をモータ2に供給する。より詳細には、電力変換装置10は、モータ2のU相コイル、V相コイル、およびW相コイルのそれぞれに供給する相電流(U相電流、V相電流、およびW相電流)を生成する。本実施形態において、電力変換装置10は、直流電流を交流電流に変換するインバータである。電力変換装置10とモータ2とは、3本の接続線6によって接続される。各接続線6のそれぞれは、モータ2のU相コイル、V相コイル、およびW相コイルのいずれか一つと接続され、各接続線6を介して、U相コイル、V相コイル、およびW相コイルのそれぞれに電流が供給される。 Based on a control signal transmitted from the control unit 3, the power conversion device 10 generates a current of a predetermined waveform from the DC current supplied by the external power source 4, and supplies the current to the motor 2. More specifically, the power conversion device 10 generates phase currents (U-phase current, V-phase current, and W-phase current) to be supplied to the U-phase coil, V-phase coil, and W-phase coil of the motor 2, respectively. In this embodiment, the power conversion device 10 is an inverter that converts DC current to AC current. The power conversion device 10 and the motor 2 are connected by three connection lines 6. Each of the connection lines 6 is connected to one of the U-phase coil, V-phase coil, and W-phase coil of the motor 2, and current is supplied to each of the U-phase coil, V-phase coil, and W-phase coil via each connection line 6.
 図2に示すように、電力変換装置10は、ケース11と、支持部12と、IGBT(Insulated Gate Bipolar Transistor)モジュール16と、回路基板20と、センサ25と、バスバー30と、シールドコア40と、コア封止部50と、を備える。 As shown in FIG. 2, the power conversion device 10 includes a case 11, a support portion 12, an IGBT (Insulated Gate Bipolar Transistor) module 16, a circuit board 20, a sensor 25, a bus bar 30, a shield core 40, and a core sealing portion 50.
 ケース11は、支持部12、IGBTモジュール16、回路基板20、センサ25、バスバー30、シールドコア40、およびコア封止部50を内部に収容する。図示は省略するが、ケース11は、中空の箱状である。本実施形態において、ケース11は、金属製である。本実施形態において、ケース11は、接地される。ケース11は、底壁部11aを有する。 The case 11 houses the support portion 12, the IGBT module 16, the circuit board 20, the sensor 25, the bus bar 30, the shield core 40, and the core sealing portion 50 inside. Although not shown in the figure, the case 11 is a hollow box. In this embodiment, the case 11 is made of metal. In this embodiment, the case 11 is grounded. The case 11 has a bottom wall portion 11a.
 底壁部11aは、第3方向D3と直交する方向に広がる板状である。底壁部11aの板面は、第3方向D3を向く。 The bottom wall portion 11a is a plate-like member that extends in a direction perpendicular to the third direction D3. The plate surface of the bottom wall portion 11a faces the third direction D3.
 IGBTモジュール16は、外部電源4によって供給される直流電流からモータ2のU相コイル、V相コイル、およびW相コイルのそれぞれに供給する相電流を生成する。IGBTモジュール16は、複数の絶縁ゲート型バイポーラトランジスタ(IGBT)等の図示しない複数の電子素子を有する。図示は省略するが、IGBTモジュール16は、図1に示す制御ユニット3および外部電源4と接続される。IGBTモジュール16は、底壁部11aに固定される。 The IGBT module 16 generates phase currents to be supplied to the U-phase coil, V-phase coil, and W-phase coil of the motor 2 from the direct current supplied by the external power supply 4. The IGBT module 16 has a plurality of electronic elements (not shown), such as a plurality of insulated gate bipolar transistors (IGBTs). Although not shown, the IGBT module 16 is connected to the control unit 3 and external power supply 4 shown in FIG. 1. The IGBT module 16 is fixed to the bottom wall portion 11a.
 図2に示すように、回路基板20は、第3方向D3と直交する方向に広がるプリント実装基板である。第3方向D3に見て、回路基板20は、略長方形状である。図示は省略するが、回路基板20は、図1に示す制御ユニット3および外部電源4と接続される。図示は省略するが、回路基板20にはIGBTモジュール16が有する複数のピンが接続される。これにより、回路基板20は、IGBTモジュール16と電気的に接続される。回路基板20には、図示しない複数の電子素子およびセンサ25が実装される。図2に示すように、回路基板20には、孔部20bが設けられる。回路基板20は、基板突出部20dを有する。 As shown in FIG. 2, the circuit board 20 is a printed circuit board that extends in a direction perpendicular to the third direction D3. When viewed in the third direction D3, the circuit board 20 is substantially rectangular. Although not shown, the circuit board 20 is connected to the control unit 3 and external power supply 4 shown in FIG. 1. Although not shown, a plurality of pins of the IGBT module 16 are connected to the circuit board 20. In this way, the circuit board 20 is electrically connected to the IGBT module 16. A plurality of electronic elements and sensors 25 (not shown) are mounted on the circuit board 20. As shown in FIG. 2, the circuit board 20 is provided with a hole 20b. The circuit board 20 has a board protrusion 20d.
 孔部20bは、回路基板20を第3方向D3に貫通する孔である。本実施形態において、孔部20bは、10個設けられる。ねじ90が、各孔部20bを第3方向D3に通され、IGBTモジュール16の図示しないねじ穴に締め込まれると、回路基板20は、IGBTモジュール16に固定される。 The holes 20b are holes that penetrate the circuit board 20 in the third direction D3. In this embodiment, ten holes 20b are provided. When the screws 90 are passed through each hole 20b in the third direction D3 and tightened into screw holes (not shown) of the IGBT module 16, the circuit board 20 is fixed to the IGBT module 16.
 基板突出部20dは、回路基板20のうち、前側(-D1側)に突出する部分である。第3方向D3に見て、基板突出部20dは、略矩形状である。本実施形態において、基板突出部20dは、3個設けられる。各基板突出部20dは、第2方向D2に沿って互いに間隔をあけて配置される。 The board protrusion 20d is a portion of the circuit board 20 that protrudes toward the front (-D1 side). When viewed in the third direction D3, the board protrusion 20d is substantially rectangular. In this embodiment, three board protrusions 20d are provided. Each board protrusion 20d is disposed at a distance from the others along the second direction D2.
 支持部12は、第3方向D3に延びる略直方体状である。図3Aに示すように、第3方向D3に見て、支持部12は、長辺が第2方向D2に延びる略長方形状である。本実施形態において、支持部12は金属製である。本実施形態において、支持部12は、底壁部11aの上側を向く面に図示しないねじ等によって固定される。これにより、支持部12は、ケース11を介して接地される。なお、支持部12は、底壁部11aと繋がっていてもよい。この場合、支持部12は、ケース11の一部である。図3Bに示すように、支持部12には、収容部12cが設けられる。支持部12は、上方面12aと、支持面12dと、複数の位置決め部13と、を有する。上方面12aは、支持部12の外側面のうち、上側、すなわち、第3方向D3の他方側(-D3側)を向く面である。 The support portion 12 is a substantially rectangular parallelepiped extending in the third direction D3. As shown in FIG. 3A, when viewed in the third direction D3, the support portion 12 is a substantially rectangular shape with its long sides extending in the second direction D2. In this embodiment, the support portion 12 is made of metal. In this embodiment, the support portion 12 is fixed to the surface facing the upper side of the bottom wall portion 11a by a screw or the like (not shown). As a result, the support portion 12 is grounded via the case 11. The support portion 12 may be connected to the bottom wall portion 11a. In this case, the support portion 12 is a part of the case 11. As shown in FIG. 3B, the support portion 12 is provided with a storage portion 12c. The support portion 12 has an upper surface 12a, a support surface 12d, and a plurality of positioning portions 13. The upper surface 12a is the surface of the outer surface of the support portion 12 facing upward, i.e., the other side (-D3 side) of the third direction D3.
 収容部12cは、上方面12aから、下側、すなわち第3方向D3の一方側(+D3側)に向けて窪む穴である。図4に示すように、収容部12cは、長辺が第2方向D2に延びる略長方形状である。図3Bに示すように、収容部12cの左側(+D2側)の端部は、最も左側に位置する基板突出部20dよりも左側に位置する。収容部12cの右側(-D2側)の端部は、最も右側に位置する基板突出部20dよりも右側に位置する。 The accommodation portion 12c is a hole recessed downward from the upper surface 12a, i.e., toward one side (+D3 side) in the third direction D3. As shown in FIG. 4, the accommodation portion 12c is generally rectangular with its long side extending in the second direction D2. As shown in FIG. 3B, the left end (+D2 side) of the accommodation portion 12c is located to the left of the leftmost board protrusion 20d. The right end (-D2 side) of the accommodation portion 12c is located to the right of the rightmost board protrusion 20d.
 支持面12dは、収容部12cの内側面のうち、第3方向D3の他方側(-D3側)を向く面である。支持面12dは、収容部12cの底面である。 The support surface 12d is the inner surface of the storage section 12c that faces the other side (-D3 side) of the third direction D3. The support surface 12d is the bottom surface of the storage section 12c.
 複数の位置決め部13は、支持面12dから上側に突出する直方体状である。図4に示すように、第3方向D3に見て、各位置決め部13は、長辺が第1方向D1に延びる長方形状である。本実施形態において、位置決め部13は、6個設けられる。各位置決め部13は、第2方向D2に沿って互いに間隔をあけて配置される。 The multiple positioning portions 13 are rectangular parallelepipeds that protrude upward from the support surface 12d. As shown in FIG. 4, when viewed in the third direction D3, each positioning portion 13 is rectangular with its long side extending in the first direction D1. In this embodiment, six positioning portions 13 are provided. The positioning portions 13 are arranged at intervals from one another along the second direction D2.
 図3Bに示すように、複数の位置決め部13は、第2方向D2に隣り合う2個を一組として、3組が第2方向D2に並ぶ。各組の2個の位置決め部13のうち、右側の位置決め部13それぞれの左側、すなわち第2方向D2の一方側(+D2側)を向く面は、位置決め面13aである。同様に、各組の2個の位置決め部13のうち、左側の位置決め部13それぞれの右側、すなわち第2方向D2の他方側を向く面は、位置決め面13bである。位置決め面13aと位置決め面13bとは、第2方向D2に互いに向き合う。以下の説明において、第2方向D2に互いに向き合う位置決め面13aおよび位置決め面13bを、「一対の位置決め面13a,13b」と呼ぶ。本実施形態において、支持部12は、3個の一対の位置決め面13a,13bを有する。図4に示すように、第1方向D1において、複数の位置決め部13のそれぞれと、収容部12cの内側面との間には隙間が設けられる。すなわち、第1方向D1において、一対の位置決め面13a,13bのそれぞれと、収容部12cの内側面との間には隙間が設けられる。 As shown in FIG. 3B, the positioning portions 13 are arranged in three sets in the second direction D2, with two adjacent positioning portions 13 in each set. Of the two positioning portions 13 in each set, the left side of the right positioning portion 13, i.e., the surface facing one side (+D2 side) of the second direction D2, is the positioning surface 13a. Similarly, of the two positioning portions 13 in each set, the right side of the left positioning portion 13, i.e., the surface facing the other side of the second direction D2, is the positioning surface 13b. The positioning surface 13a and the positioning surface 13b face each other in the second direction D2. In the following description, the positioning surface 13a and the positioning surface 13b facing each other in the second direction D2 are referred to as a "pair of positioning surfaces 13a, 13b." In this embodiment, the support portion 12 has three pairs of positioning surfaces 13a, 13b. As shown in FIG. 4, in the first direction D1, a gap is provided between each of the positioning portions 13 and the inner surface of the storage portion 12c. That is, in the first direction D1, a gap is provided between each of the pair of positioning surfaces 13a, 13b and the inner surface of the storage portion 12c.
 バスバー30は、IGBTモジュール16において生成される電流が流れる経路である。図2に示すように、バスバー30は、第1方向D1に延びる板状である。バスバー30は、金属製である。バスバー30の一部は、回路基板20の下側(+D3側)に配置される。図示は省略するが、バスバー30の一端は、図示しないねじによって、IGBTモジュール16の図示しない電極に固定される。これにより、バスバー30に相電流が流れる。バスバー30の他端は、回路基板20よりも前側(-D1側)に位置する。図示は省略するが、バスバー30の他端は、接続線6(図1参照)と電気的に接続される。本実施形態において、バスバー30は、3個設けられる。すなわち、電力変換装置10は、複数のバスバー30を備える。各バスバー30のそれぞれには、U相電流、V相電流、およびW相電流のいずれか一つの電流が流れる。図3Bに示すように、各バスバー30は、第2方向D2に並んで配置される。第3方向D3に見て、回路基板20の基板突出部20dのそれぞれは、各バスバー30のそれぞれと重なる。 The busbar 30 is a path through which the current generated in the IGBT module 16 flows. As shown in FIG. 2, the busbar 30 is in the shape of a plate extending in the first direction D1. The busbar 30 is made of metal. A portion of the busbar 30 is disposed below the circuit board 20 (on the +D3 side). Although not shown in the figure, one end of the busbar 30 is fixed to an electrode (not shown) of the IGBT module 16 by a screw (not shown). This allows a phase current to flow through the busbar 30. The other end of the busbar 30 is located forward (on the -D1 side) of the circuit board 20. Although not shown in the figure, the other end of the busbar 30 is electrically connected to the connection line 6 (see FIG. 1). In this embodiment, three busbars 30 are provided. That is, the power conversion device 10 includes a plurality of busbars 30. Each busbar 30 carries one of the U-phase current, the V-phase current, and the W-phase current. As shown in FIG. 3B, the bus bars 30 are arranged side by side in the second direction D2. When viewed in the third direction D3, each of the board protrusions 20d of the circuit board 20 overlaps with each of the bus bars 30.
 センサ25は、バスバー30を流れる電流によって発生する磁界を検出する磁気検出センサである。本実施形態において、センサ25は、ホールICである。センサ25は、該磁界を電圧に変換して出力する。センサ25から出力される電圧の大きさは、バスバー30を流れる電流の大きさと相関する。これにより、センサ25によって、バスバー30を流れる電流の大きさを検出できる。図2に示すように、本実施形態において、センサ25は、3個設けられる。すなわち、電力変換装置10は、複数のセンサ25を備える。各センサ25は、それぞれ、互いに異なる基板突出部20dに実装される。図3Bに示すように、各センサ25は、第2方向D2に並んで配置される。各センサ25は、それぞれ、バスバー30の上側(-D3側)に配置される。第3方向D3に見て、各センサ25は、バスバー30の第2方向D2の略中央と重なる。各センサ25は、各バスバー30を流れるU相電流、V相電流、およびW相電流の電流値を検出する。各センサ25の出力電圧は回路基板20に実装される図示しない演算素子等に伝送され、各センサ25の出力電圧に基づいて、図示しない上述の複数の電子素子によって生成される電流の大きさが調整される。これにより、モータ2に供給される電流を所望の電流値に安定させることができ、電力変換装置10およびモータモジュール1の動作を安定させることができる。 The sensor 25 is a magnetic detection sensor that detects a magnetic field generated by the current flowing through the busbar 30. In this embodiment, the sensor 25 is a Hall IC. The sensor 25 converts the magnetic field into a voltage and outputs it. The magnitude of the voltage output from the sensor 25 correlates with the magnitude of the current flowing through the busbar 30. This allows the sensor 25 to detect the magnitude of the current flowing through the busbar 30. As shown in FIG. 2, in this embodiment, three sensors 25 are provided. That is, the power conversion device 10 is equipped with a plurality of sensors 25. Each sensor 25 is mounted on a different board protrusion 20d. As shown in FIG. 3B, the sensors 25 are arranged side by side in the second direction D2. Each sensor 25 is arranged on the upper side (-D3 side) of the busbar 30. When viewed in the third direction D3, each sensor 25 overlaps with approximately the center of the busbar 30 in the second direction D2. Each sensor 25 detects the current values of the U-phase current, V-phase current, and W-phase current flowing through each busbar 30. The output voltage of each sensor 25 is transmitted to a computing element (not shown) mounted on the circuit board 20, and the magnitude of the current generated by the above-mentioned multiple electronic elements (not shown) is adjusted based on the output voltage of each sensor 25. This makes it possible to stabilize the current supplied to the motor 2 at a desired current value, and to stabilize the operation of the power conversion device 10 and the motor module 1.
 シールドコア40は、バスバー30を流れる電流によって発生する磁界を収集するとともに、外部からの磁界を遮蔽する。シールドコア40は、磁性を有する。シールドコア40は、板厚方向に積層される複数枚の磁性金属板によって構成される。本実施形態において、シールドコア40は、複数枚の磁性金属板が第1方向D1に積層されて構成される。シールドコア40を構成する材料としては、フェライト、パーマアロイ等の高い透磁率を有する金属材料を用いることができる。本実施形態において、シールドコア40は、第1壁部40aと、第2壁部40bと、第3壁部40cと、を有する。 The shield core 40 collects the magnetic field generated by the current flowing through the bus bar 30 and blocks external magnetic fields. The shield core 40 is magnetic. The shield core 40 is composed of multiple magnetic metal plates stacked in the plate thickness direction. In this embodiment, the shield core 40 is composed of multiple magnetic metal plates stacked in the first direction D1. Metal materials with high magnetic permeability such as ferrite and permalloy can be used as materials for the shield core 40. In this embodiment, the shield core 40 has a first wall portion 40a, a second wall portion 40b, and a third wall portion 40c.
 第1壁部40aは、第3方向D3と直交する方向に延びる板状である。第1壁部40aの板面は、第3方向D3を向く。図4に示すように、第3方向D3に見て、第1壁部40aは、長辺が第2方向D2に延びる長方形状である。図3Bに示すように、第1壁部40aは、センサ25およびバスバー30の下側(+D3側)に配置される。本実施形態において、第1壁部40aの下側(+D3側)を向く面は、支持面12dと接触する。すなわち、シールドコア40は、支持面12dと接触する。第1壁部40aは、1対の位置決め面13a,13bの間に配置される。第1壁部40aの第2方向D2の両端部には第2壁部40bと第3壁部40cとがそれぞれ接続される。 The first wall portion 40a is a plate extending in a direction perpendicular to the third direction D3. The plate surface of the first wall portion 40a faces the third direction D3. As shown in FIG. 4, when viewed in the third direction D3, the first wall portion 40a is a rectangle whose long side extends in the second direction D2. As shown in FIG. 3B, the first wall portion 40a is disposed below the sensor 25 and the bus bar 30 (+D3 side). In this embodiment, the surface of the first wall portion 40a facing the lower side (+D3 side) contacts the support surface 12d. That is, the shield core 40 contacts the support surface 12d. The first wall portion 40a is disposed between a pair of positioning surfaces 13a, 13b. The second wall portion 40b and the third wall portion 40c are connected to both ends of the first wall portion 40a in the second direction D2, respectively.
 第2壁部40bは、第1壁部40aの左側(+D2側)の端部から上側(-D3側)に突出する板状である。第2壁部40bの板面は、第2方向D2を向く。第2壁部40bの上側の端部は、センサ25よりも上側に位置する。第2壁部40bは、1対の位置決め面13a,13bの間に配置される。 The second wall portion 40b is a plate-like member that protrudes upward (towards -D3) from the left end (+D2 side) of the first wall portion 40a. The plate surface of the second wall portion 40b faces the second direction D2. The upper end of the second wall portion 40b is located above the sensor 25. The second wall portion 40b is disposed between a pair of positioning surfaces 13a, 13b.
 第3壁部40cは、第1壁部40aの右側(-D2側)の端部から上側(-D3側)に突出する板状である。第3壁部40cの板面は、第2方向D2を向く。第3壁部40cの上側の端部は、センサ25よりも上側に位置する。第3壁部40cは、1対の位置決め面13a,13bの間に配置される。上述のように、第1壁部40aおよび第2壁部40bは、1対の位置決め面13a,13bの間に配置される。したがって、シールドコア40は一対の位置決め面13a,13bの間に配置される。第2壁部40bと第3壁部40cとは、第2方向D2の両側からバスバー30、基板突出部20d、および当該基板突出部20dに実装されるセンサ25を挟み込む。 The third wall portion 40c is a plate-like member that protrudes upward (toward -D3) from the right end (-D2 side) of the first wall portion 40a. The plate surface of the third wall portion 40c faces the second direction D2. The upper end of the third wall portion 40c is located above the sensor 25. The third wall portion 40c is disposed between the pair of positioning surfaces 13a, 13b. As described above, the first wall portion 40a and the second wall portion 40b are disposed between the pair of positioning surfaces 13a, 13b. Therefore, the shield core 40 is disposed between the pair of positioning surfaces 13a, 13b. The second wall portion 40b and the third wall portion 40c sandwich the bus bar 30, the board protruding portion 20d, and the sensor 25 mounted on the board protruding portion 20d from both sides in the second direction D2.
 本実施形態において、シールドコア40は、3個設けられる。すなわち、電力変換装置10は、複数のシールドコア40を備える。各シールドコア40は、第2方向D2に並んで配置される。1つのシールドコア40の内部には、1つのセンサ25および1つのバスバー30が配置される。複数のシールドコア40のそれぞれは、第2方向D2の両側(+D2側および-D2側)と、第3方向D3の一方側(+D3側)とから、1つのセンサ25および1つのバスバー30を囲む。よって、本実施形態によれば、1つのバスバー30を流れる電流によって発生する磁界が、該バスバー30を囲むシールドコア40によって収集される。そのため、1つのバスバー30を流れる電流によって発生する磁界が、他のバスバー30を流れる電流値を検出するセンサ25を通過することを抑制できる。よって、各センサ25が各バスバー30を流れる電流値を検出する精度を高めることができるため、電力変換装置10およびモータモジュール1の動作を安定させることができる。 In this embodiment, three shield cores 40 are provided. That is, the power conversion device 10 includes a plurality of shield cores 40. The shield cores 40 are arranged in line in the second direction D2. One sensor 25 and one bus bar 30 are arranged inside one shield core 40. Each of the plurality of shield cores 40 surrounds one sensor 25 and one bus bar 30 from both sides (+D2 side and -D2 side) of the second direction D2 and one side (+D3 side) of the third direction D3. Therefore, according to this embodiment, the magnetic field generated by the current flowing through one bus bar 30 is collected by the shield core 40 surrounding the bus bar 30. Therefore, it is possible to prevent the magnetic field generated by the current flowing through one bus bar 30 from passing through the sensor 25 that detects the current value flowing through the other bus bar 30. Therefore, it is possible to improve the accuracy with which each sensor 25 detects the current value flowing through each bus bar 30, and therefore the operation of the power conversion device 10 and the motor module 1 can be stabilized.
 本実施形態よれば、支持部12は、上側、すなわち第3方向D3の他方側(-D3側)を向く支持面12dを有し、シールドコア40は、支持面12dと接触する。よって、支持部12に対するシールドコア40の第3方向D3の位置を精度よく決めることができる。したがって、第3方向D3において、センサ25およびバスバー30に対する各シールドコア40の位置を精度よく決めることができるため、各センサ25が各バスバー30を流れる電流値を検出する精度をより好適に高めることができる。 In this embodiment, the support portion 12 has a support surface 12d facing upward, i.e., the other side (-D3 side) of the third direction D3, and the shield core 40 contacts the support surface 12d. Therefore, the position of the shield core 40 in the third direction D3 relative to the support portion 12 can be determined with high precision. Therefore, since the position of each shield core 40 relative to the sensor 25 and the bus bar 30 in the third direction D3 can be determined with high precision, the precision with which each sensor 25 detects the value of the current flowing through each bus bar 30 can be more suitably improved.
 また、本実施形態では、上述のように支持部12は、ケース11を介して接地される。よって、本実施形態では、各バスバー30から放射される放射ノイズを、各シールドコア40を介してアースへ好適に伝送できる。これにより、各シールドコア40のそれぞれから放射ノイズが放射されることを抑制できる。そのため、各センサ25に放射ノイズが重畳することを抑制でき、各センサ25が各バスバー30を流れる電流値を検出する精度を高めることができる。したがって、電力変換装置10およびモータモジュール1の動作を安定させることができる。また、回路基板20およびIGBTモジュール16のそれぞれに放射ノイズが重畳することを抑制できるため、回路基板20およびIGBTモジュール16それぞれの動作を安定させることができる。 Furthermore, in this embodiment, the support portion 12 is grounded via the case 11 as described above. Therefore, in this embodiment, the radiation noise radiated from each bus bar 30 can be suitably transmitted to the earth via each shield core 40. This makes it possible to suppress radiation noise from being radiated from each shield core 40. Therefore, it is possible to suppress the superposition of radiation noise on each sensor 25, and it is possible to improve the accuracy with which each sensor 25 detects the current value flowing through each bus bar 30. Therefore, it is possible to stabilize the operation of the power conversion device 10 and the motor module 1. Furthermore, it is possible to suppress the superposition of radiation noise on each of the circuit board 20 and the IGBT module 16, so it is possible to stabilize the operation of each of the circuit board 20 and the IGBT module 16.
 また、本実施形態では、上述のように、シールドコア40の第1壁部40aの下側(+D3側)を向く面は、支持面12dと接触する。つまり、シールドコア40と支持部12とは面接触するため、シールドコア40と支持部12との接触面積を広くでき、シールドコア40とアースとの間のインピーダンスを低減できる。そのため、バスバー30から放射される放射ノイズ、および電力変換装置10の周りに配置される電気機器から放射される放射ノイズを、シールドコア40を介して好適にアースに伝送できる。したがって、係る放射ノイズが各センサ25に重畳することを抑制できるため、電力変換装置10およびモータモジュール1の動作を安定させることができる。 Furthermore, in this embodiment, as described above, the surface of the first wall portion 40a of the shield core 40 facing the lower side (+D3 side) is in contact with the support surface 12d. In other words, since the shield core 40 and the support portion 12 are in surface contact, the contact area between the shield core 40 and the support portion 12 can be increased, and the impedance between the shield core 40 and the earth can be reduced. Therefore, the radiated noise radiated from the bus bar 30 and the radiated noise radiated from the electrical equipment arranged around the power conversion device 10 can be suitably transmitted to the earth via the shield core 40. Therefore, the radiated noise can be prevented from being superimposed on each sensor 25, and the operation of the power conversion device 10 and the motor module 1 can be stabilized.
 なお、第1方向D1に見たシールドコア40の形状は、本実施形態の形状に限定されず、例えば、下側(+D3側)に突出するU字状等の他の形状であってもよい。また、シールドコア40は、第2方向D2の両側、および第3方向D3の一方側(+D3側)に加えて、第3方向の他方側(-D3側)からも、センサ25およびバスバー30を囲む構造であってもよい。この場合、シールドコア40は、例えば、第1方向D1から見て矩形状である。 The shape of the shield core 40 as viewed in the first direction D1 is not limited to that of this embodiment, and may be another shape, such as a U-shape protruding downward (+D3 side). The shield core 40 may be structured to surround the sensor 25 and bus bar 30 not only on both sides in the second direction D2 and one side in the third direction D3 (+D3 side), but also from the other side in the third direction (-D3 side). In this case, the shield core 40 is, for example, rectangular as viewed in the first direction D1.
 図3Aおよび図3Bに示すように、本実施形態において、コア封止部50は、支持部12の収容部12cの内部に配置される。コア封止部50は、樹脂製である。コア封止部50は、シールドコア40の下側の部分を樹脂で封止する。すなわち、コア封止部50は、シールドコア40の少なくとも一部を樹脂で封止する。シールドコア40の少なくとも一部は、コア封止部50の内部に埋め込まれている。図3Aに示すように、コア封止部50は、収容部12cの内側面のうち、第1方向D1を向く面および第2方向D2を向く面のそれぞれと接触する。また、図3Bに示すように、コア封止部50は、収容部12cの内側面のうち、第3方向D3を向く支持面12dの一部と接触する。これらにより、コア封止部50は、収容部12cに固定される。したがって、各シールドコア40は、コア封止部50を介して、支持部12に固定される。 3A and 3B, in this embodiment, the core sealing portion 50 is disposed inside the housing portion 12c of the support portion 12. The core sealing portion 50 is made of resin. The core sealing portion 50 seals the lower portion of the shield core 40 with resin. That is, the core sealing portion 50 seals at least a part of the shield core 40 with resin. At least a part of the shield core 40 is embedded inside the core sealing portion 50. As shown in FIG. 3A, the core sealing portion 50 contacts each of the inner surfaces of the housing portion 12c, the surface facing the first direction D1 and the surface facing the second direction D2. Also, as shown in FIG. 3B, the core sealing portion 50 contacts a part of the support surface 12d, the inner surface of the housing portion 12c, facing the third direction D3. As a result, the core sealing portion 50 is fixed to the housing portion 12c. Therefore, each shield core 40 is fixed to the support portion 12 via the core sealing portion 50.
 なお、本明細書において、「封止する」とは、隙間を塞ぐように充填する、または対象物を埋め込むことを意味している。したがって、「封止する」の語は、水分等の液体の通過を許容しない場合にも用いるものとする。 In this specification, "seal" means to fill a gap or to embed an object. Therefore, the word "seal" is also used when the passage of liquids such as moisture is not permitted.
 本実施形態の電力変換装置10およびモータモジュール1によれば、磁性を有し、第2方向D2の両側と、第3方向D3の一方側(+D3側)とから、バスバー30およびセンサ25を囲むシールドコア40と、シールドコア40の少なくとも一部を樹脂で封止するコア封止部50と、支持部12と、を備え、シールドコア40は、コア封止部50を介して、支持部12に固定される。ここで、本実施形態の構成と異なり、シールドコアを樹脂製の支持部等に圧入等によって組み付ける構成では、シールドコアの寸法公差によっては、シールドコアを支持部等に組み付けることができない場合がある。この場合、該シールドコアを廃棄せざるを得ず、電力変換装置の製造コストが増大する。しかしながら、本実施形態では、上述のように、少なくとも一部がコア封止部50に封止されたシールドコア40がコア封止部50を介して支持部12に固定されるため、寸法公差が大きなシールドコアであっても支持部12に容易に固定することができる。したがって、寸法公差が大きなシールドコア40を使用することができるため、電力変換装置10およびモータモジュール1の製造工数および製造コストが増大することを抑制できる。 The power conversion device 10 and the motor module 1 of this embodiment include a magnetic shield core 40 that surrounds the bus bar 30 and the sensor 25 from both sides in the second direction D2 and one side (+D3 side) in the third direction D3, a core sealing portion 50 that seals at least a portion of the shield core 40 with resin, and a support portion 12, and the shield core 40 is fixed to the support portion 12 via the core sealing portion 50. Here, unlike the configuration of this embodiment, in a configuration in which the shield core is assembled to a resin support portion or the like by press-fitting, depending on the dimensional tolerance of the shield core, the shield core may not be assembled to the support portion or the like. In this case, the shield core must be discarded, and the manufacturing cost of the power conversion device increases. However, in this embodiment, as described above, the shield core 40, at least a portion of which is sealed in the core sealing portion 50, is fixed to the support portion 12 via the core sealing portion 50, so that even a shield core with a large dimensional tolerance can be easily fixed to the support portion 12. Therefore, it is possible to use a shield core 40 with a large dimensional tolerance, which helps prevent an increase in the manufacturing steps and manufacturing costs of the power conversion device 10 and motor module 1.
 また、上述のシールドコアを樹脂製の支持部等に圧入等によって組み付ける構成では、支持部等にバリが発生し易い。そのため、シールドコアを支持部等に組み付ける際にバリを噛み込み易い。この場合、支持部等にシールドコアを組み付けづらいため、係る組み付け作業の工数が増大する。しかしながら、本実施形態では、上述のように、少なくとも一部がコア封止部50に封止されたシールドコア40がコア封止部50を介して支持部12に固定されるため、シールドコア40を支持部12に容易に固定することができる。したがって、シールドコア40を支持部12に固定する工数が増大することをより好適に抑制でき、電力変換装置10およびモータモジュール1の製造工数が増大することを抑制できる。 In addition, in a configuration in which the above-mentioned shield core is assembled to a resin support part or the like by press-fitting or the like, burrs are likely to occur on the support part or the like. Therefore, when assembling the shield core to the support part or the like, the burrs are likely to get caught. In this case, since it is difficult to assemble the shield core to the support part or the like, the labor hours of the assembly work increase. However, in this embodiment, as described above, the shield core 40, at least a portion of which is sealed in the core sealing part 50, is fixed to the support part 12 via the core sealing part 50, so that the shield core 40 can be easily fixed to the support part 12. Therefore, it is possible to more suitably suppress an increase in the labor hours for fixing the shield core 40 to the support part 12, and it is possible to suppress an increase in the labor hours for manufacturing the power conversion device 10 and the motor module 1.
 本実施形態によれば、支持部12の上側、すなわち第3方向D3の他方側(-D3側)を向く面には、下側、すなわち第3方向D3の一方側(+D3側)に向けて窪む収容部12cが設けられ、コア封止部50は、収容部12cの内側面と接触する。よって、コア封止部50と支持部12との接触面積を広くできるため、より強固にコア封止部50を支持部12に固定できる。これにより、コア封止部50を介して、より強固にシールドコア40を支持部12に固定できるため、各センサ25および各バスバー30に対する各シールドコア40の位置を安定させることができる。したがって、各センサ25が各バスバー30を流れる電流値を検出する精度をより好適に高めることができる。 According to this embodiment, the upper side of the support portion 12, i.e., the surface facing the other side (-D3 side) of the third direction D3, is provided with a housing portion 12c recessed toward the lower side, i.e., toward one side (+D3 side) of the third direction D3, and the core sealing portion 50 contacts the inner surface of the housing portion 12c. This makes it possible to increase the contact area between the core sealing portion 50 and the support portion 12, and therefore the core sealing portion 50 can be more firmly fixed to the support portion 12. This makes it possible to more firmly fix the shield core 40 to the support portion 12 via the core sealing portion 50, and therefore the position of each shield core 40 relative to each sensor 25 and each bus bar 30 can be stabilized. This makes it possible to more suitably improve the accuracy with which each sensor 25 detects the current value flowing through each bus bar 30.
 次に、本実施形態において、支持部12にシールドコア40を固定するシールドコア固定工程Psについて説明する。シールドコア固定工程Psは、電力変換装置10およびモータモジュール1の製造工程の一部である。図5Aに示すように、シールドコア固定工程Psは、金型80内において、支持部12に対するシールドコア40の位置を決める位置決めステップS1と、支持部12およびシールドコア40をインサート部材とする射出成形によって、シールドコア40の少なくとも一部を樹脂で封止し、かつ、支持部12と固定されるコア封止部50を成形する成形ステップS2と、を有する。なお、本明細書において「作業者等」とは、各作業を行う作業者および組立装置等を含む。各作業は、作業者のみによって行われてもよいし、組立装置のみによって行われてもよいし、作業者と組立装置とによって行われてもよい。 Next, the shield core fixing process Ps for fixing the shield core 40 to the support portion 12 in this embodiment will be described. The shield core fixing process Ps is part of the manufacturing process of the power conversion device 10 and the motor module 1. As shown in FIG. 5A, the shield core fixing process Ps includes a positioning step S1 for determining the position of the shield core 40 relative to the support portion 12 in a mold 80, and a molding step S2 for sealing at least a part of the shield core 40 with resin by injection molding using the support portion 12 and the shield core 40 as insert members, and for molding the core sealing portion 50 fixed to the support portion 12. In this specification, the term "workers, etc." includes workers who perform each task and assembly equipment, etc. Each task may be performed only by a worker, only by an assembly equipment, or by a worker and an assembly equipment.
 位置決めステップS1では、作業者等は、金型80内において、支持部12に対するシールドコア40の位置を決める。図5Bに示すように、作業者等は、まず、支持部12の一対の位置決め面13a,13bそれぞれの間に、各シールドコア40を配置する。これにより、支持部12に対する各シールドコア40の第2方向D2の位置が決まる。また、各シールドコア40の第1壁部40aの下側(+D3側)を向く面は、支持面12dと接触するため、支持部12に対する各シールドコア40の第3方向D3の位置が決まる。 In the positioning step S1, the worker or the like determines the position of the shield core 40 relative to the support portion 12 within the mold 80. As shown in FIG. 5B, the worker or the like first places each shield core 40 between a pair of positioning surfaces 13a, 13b of the support portion 12. This determines the position of each shield core 40 in the second direction D2 relative to the support portion 12. In addition, the surface of each shield core 40 facing the lower side (+D3 side) of the first wall portion 40a contacts the support surface 12d, so the position of each shield core 40 in the third direction D3 relative to the support portion 12 is determined.
 次に、作業者等は、支持部12に金型80を装着する。本実施形態において、金型80は、上側金型81と下側金型82によって構成される。下側金型82は、上側(-D3側)を向く面から下側(+D3側)に窪む下側収容部82aが設けられる略直方体状である。作業者等は、支持部12の下側の部分を下側収容部82aの内部に挿入し、下側金型82を支持部12に装着する。 Next, the worker or the like attaches the mold 80 to the support part 12. In this embodiment, the mold 80 is composed of an upper mold 81 and a lower mold 82. The lower mold 82 is a roughly rectangular parallelepiped with a lower storage section 82a that is recessed downward (+D3 side) from the surface facing upward (-D3 side). The worker or the like inserts the lower part of the support part 12 into the lower storage section 82a, and attaches the lower mold 82 to the support part 12.
 上側金型81は、下側を向く面から上側に窪む第1収容部81bが設けられる略直方体状である。第1収容部81bの下側を向く面の外縁は、支持部12の上方面12aと第3方向D3に接触する。これにより、支持部12に対する上側金型81の第3方向D3の位置が決まる。第1収容部81bの下側を向く面の他の部分は、支持面12dおよび複数の位置決め部13と第3方向D3に間隔をあけて対向する。上側金型81には、注入口81aと、複数の第2収容部81cと、が設けられる。 The upper mold 81 is a generally rectangular parallelepiped with a first storage portion 81b recessed upward from its downward surface. The outer edge of the downward surface of the first storage portion 81b contacts the upper surface 12a of the support portion 12 in the third direction D3. This determines the position of the upper mold 81 in the third direction D3 relative to the support portion 12. The other part of the downward surface of the first storage portion 81b faces the support surface 12d and the multiple positioning portions 13 at intervals in the third direction D3. The upper mold 81 is provided with an injection port 81a and multiple second storage portions 81c.
 注入口81aは、上側金型81を第3方向D3に貫通する孔である。注入口81aは、上側金型81の第2方向D2の略中央に設けられる。注入口81aは、支持部12の第2方向D2の略中央の上側に位置する。複数の第2収容部81cは、それぞれ、第1収容部81bの下側を向く面から上側(-D3側)に窪む穴である。本実施形態において、第2収容部81cは、6個設けられる。複数の第2収容部81cは、第2方向D2に沿って間隔をあけて設けられる。作業者等は、支持部12の上側の部分を第1収容部81bに挿入し、各シールドコア40の第2壁部40bおよび第3壁部40cそれぞれの上側の部分を、各第2収容部81cに挿入し、上側金型81を支持部12に装着する。なお、図示は省略するが、上側金型81は、第1方向D1に対向する一対の対向部を6対有する。各一対の対向部の間には、各シールドコア40の第2壁部40bまたは第3壁部40cの一方が配置される。これにより、支持部12および金型80に対する各シールドコア40の第1方向D1の位置が決まり、位置決めステップS1は終了する。 The injection port 81a is a hole that penetrates the upper mold 81 in the third direction D3. The injection port 81a is provided at approximately the center of the upper mold 81 in the second direction D2. The injection port 81a is located above approximately the center of the support portion 12 in the second direction D2. Each of the multiple second storage portions 81c is a hole recessed upward (towards -D3) from the downward facing surface of the first storage portion 81b. In this embodiment, six second storage portions 81c are provided. The multiple second storage portions 81c are provided at intervals along the second direction D2. An operator inserts the upper portion of the support portion 12 into the first storage portion 81b, inserts the upper portions of the second wall portion 40b and the third wall portion 40c of each shield core 40 into each second storage portion 81c, and attaches the upper mold 81 to the support portion 12. Although not shown in the figure, the upper mold 81 has six pairs of opposing parts that face each other in the first direction D1. Between each pair of opposing parts, one of the second wall part 40b or the third wall part 40c of each shield core 40 is disposed. This determines the position of each shield core 40 in the first direction D1 relative to the support part 12 and the mold 80, and the positioning step S1 is completed.
 成形ステップS2では、作業者等は、支持部12およびシールドコア40をインサート部材とする射出成形を行い、コア封止部50を成形する。図5Cに示すように、作業者等は、熱溶融した溶融樹脂MRを上側金型81の注入口81aから金型80の内部に流し込む。本実施形態において、樹脂はアクリレート系の熱硬化性樹脂である。樹脂は、エポキシ系等の熱硬化性樹脂等の他の樹脂であってもよい。また、本実施形態において、溶融樹脂MRを金型80内に流し込む射出圧力は、0.5~15.0MPa程度と低い圧力である。金型80内に流し込まれた溶融樹脂MRは、収容部12cの内部において第2方向D2の両側に向けて流れる。収容部12cの内部全体に溶融樹脂MRが充填されると、作業者等は、溶融樹脂MRの射出を停止する。その後、作業者等は、図示しないヒータ等によって、溶融樹脂MRを所定温度で加熱して樹脂を硬化させた後に、支持部12から金型80を取り外す。これにより、図5Dに示すように、各シールドコア40それぞれの少なくとも一部を樹脂で封止するコア封止部50が成形される。また、コア封止部50の外側面は、収容部12cの内側面と接触するため、コア封止部50は、支持部12に固定される。 In the molding step S2, the worker or the like performs injection molding using the support portion 12 and the shield core 40 as insert members to mold the core sealing portion 50. As shown in FIG. 5C, the worker or the like pours the thermally melted molten resin MR into the interior of the mold 80 from the injection port 81a of the upper mold 81. In this embodiment, the resin is an acrylate-based thermosetting resin. The resin may be other resins such as epoxy-based thermosetting resins. In addition, in this embodiment, the injection pressure for pouring the molten resin MR into the mold 80 is a low pressure of about 0.5 to 15.0 MPa. The molten resin MR poured into the mold 80 flows toward both sides in the second direction D2 inside the accommodation portion 12c. When the molten resin MR fills the entire interior of the accommodation portion 12c, the worker or the like stops the injection of the molten resin MR. After that, the worker heats the molten resin MR to a predetermined temperature using a heater (not shown) or the like to harden the resin, and then removes the mold 80 from the support portion 12. As a result, as shown in FIG. 5D, the core sealing portion 50 is formed, which seals at least a portion of each shield core 40 with resin. In addition, the outer surface of the core sealing portion 50 contacts the inner surface of the housing portion 12c, so that the core sealing portion 50 is fixed to the support portion 12.
 本実施形態の電力変換装置の製造方法によれば、金型80内において、支持部12に対するシールドコア40の位置を決める位置決めステップS1と、支持部12およびシールドコア40をインサート部材とする射出成形によって、シールドコア40の少なくとも一部を樹脂で封止し、かつ、支持部12と固定されるコア封止部50を成形する成形ステップS2と、を有する。よって、コア封止部50を介して、シールドコア40を支持部12に固定できる。本実施形態の製造方法と異なり、シールドコアを樹脂製の支持部等に組み付ける構成では、上述のように、シールドコアの寸法公差によっては、シールドコアを支持部等に組み付けることができず、シールドコアを廃棄せざるを得ない場合がある。しかしながら、本実施形態では、上述のように、支持部12およびシールドコア40をインサート部材とする射出成形によって、少なくとも一部がコア封止部50に封止されたシールドコア40を、コア封止部50を介して支持部12に固定するため、寸法公差が大きなシールドコア40であっても容易に支持部12に固定できる。したがって、寸法公差が大きなシールドコア40を使用することができるため、電力変換装置10およびモータモジュール1の製造工数および製造コストが増大することを抑制できる。 The manufacturing method for the power conversion device of this embodiment includes a positioning step S1 in which the position of the shield core 40 is determined relative to the support portion 12 in the mold 80, and a molding step S2 in which at least a portion of the shield core 40 is sealed with resin by injection molding using the support portion 12 and the shield core 40 as insert members, and a core sealing portion 50 is molded to be fixed to the support portion 12. Therefore, the shield core 40 can be fixed to the support portion 12 via the core sealing portion 50. Unlike the manufacturing method of this embodiment, in a configuration in which the shield core is assembled to a resin support portion or the like, as described above, depending on the dimensional tolerance of the shield core, the shield core may not be assembled to the support portion or the like, and the shield core may have to be discarded. However, in this embodiment, as described above, the shield core 40, at least a portion of which is sealed in the core sealing portion 50 by injection molding using the support portion 12 and the shield core 40 as insert members, is fixed to the support portion 12 via the core sealing portion 50, so that even a shield core 40 with a large dimensional tolerance can be easily fixed to the support portion 12. Therefore, it is possible to use a shield core 40 with a large dimensional tolerance, which helps prevent an increase in the manufacturing steps and manufacturing costs of the power conversion device 10 and motor module 1.
 また、本実施形態の構成と異なり、シールドコアを樹脂製の支持部等に圧入等によって組み付ける構成では、上述のように、樹脂製の支持部等にバリが発生し易く、係る組み付け作業の工数が増大する場合がある。しかしながら、本実施形態では、上述のように、支持部12およびシールドコア40をインサート部材とする射出成形によって、シールドコア40を支持部12に固定するため、シールドコア40を容易に支持部12に固定できる。したがって、シールドコア固定工程Psの工数が増大することをより好適に抑制できる。 Furthermore, unlike the configuration of this embodiment, in a configuration in which the shield core is assembled to a resin support portion or the like by press-fitting, etc., as described above, burrs are likely to occur on the resin support portion or the like, and the labor required for the assembly work may increase. However, in this embodiment, as described above, the shield core 40 is fixed to the support portion 12 by injection molding using the support portion 12 and the shield core 40 as insert members, so that the shield core 40 can be easily fixed to the support portion 12. Therefore, an increase in the labor required for the shield core fixing process Ps can be more effectively suppressed.
 本実施形態によれば、支持部12は、第2方向D2に互いに向き合う一対の位置決め面13a,13bを有し、シールドコア40は一対の位置決め面13a,13bの間に配置される。そのため、成形ステップS2において、金型80の内部に流れ込む樹脂から受ける圧力によって、各シールドコア40が第2方向D2に移動することを抑制できる。よって、支持部12に対する各シールドコア40の位置精度を高めることができるため、各センサ25および各バスバー30に対する各シールドコア40の位置精度を高めることができる。したがって、各センサ25がバスバー30を流れる電流値を検出する精度をより好適に高めることができる。 According to this embodiment, the support portion 12 has a pair of positioning surfaces 13a, 13b facing each other in the second direction D2, and the shield core 40 is disposed between the pair of positioning surfaces 13a, 13b. Therefore, in molding step S2, it is possible to prevent each shield core 40 from moving in the second direction D2 due to the pressure from the resin flowing into the mold 80. This increases the positional accuracy of each shield core 40 relative to the support portion 12, thereby increasing the positional accuracy of each shield core 40 relative to each sensor 25 and each bus bar 30. This makes it possible to more suitably increase the accuracy with which each sensor 25 detects the value of the current flowing through the bus bar 30.
 本実施形態によれば、図4に示すように、第1方向D1において、一対の位置決め面13a,13bのそれぞれと、収容部12cの内側面との間には隙間が設けられる。そのため、成形ステップS2において、該隙間を介して、溶融樹脂MRを第2方向D2の両側に向けて安定して流すことができる。また、本実施形態では、各シールドコア40は、第1方向D1において収容部12cの内側面との間に隙間が設けられる。このため、シールドコア40と収容部12cの内側面との間を通って溶融樹脂MRを第2方向D2に流しやすい。よって、成形ステップS2において、溶融樹脂MRを収容部12cの内部全体に安定して充填できるため、コア封止部50によってシールドコア40の一部を安定して封止できる。また、コア封止部50と収容部12cの内側面との接触面積を安定させることができるため、コア封止部50を支持部12に強固に固定できる。したがって、各シールドコア40を支持部12に強固に固定強度できるため、各センサ25および各バスバー30に対する各シールドコア40の位置精度を安定させることができ、各センサ25がバスバー30を流れる電流値を検出する精度をより好適に高めることができる。 According to this embodiment, as shown in FIG. 4, a gap is provided between each of the pair of positioning surfaces 13a, 13b and the inner surface of the accommodating portion 12c in the first direction D1. Therefore, in the molding step S2, the molten resin MR can flow stably through the gap toward both sides in the second direction D2. Also, in this embodiment, a gap is provided between each shield core 40 and the inner surface of the accommodating portion 12c in the first direction D1. Therefore, the molten resin MR can easily flow in the second direction D2 through between the shield core 40 and the inner surface of the accommodating portion 12c. Therefore, in the molding step S2, the molten resin MR can be stably filled into the entire inside of the accommodating portion 12c, so that a part of the shield core 40 can be stably sealed by the core sealing portion 50. Also, since the contact area between the core sealing portion 50 and the inner surface of the accommodating portion 12c can be stabilized, the core sealing portion 50 can be firmly fixed to the support portion 12. Therefore, each shield core 40 can be firmly fixed to the support portion 12, so the positional accuracy of each shield core 40 relative to each sensor 25 and each bus bar 30 can be stabilized, and the accuracy with which each sensor 25 detects the current value flowing through the bus bar 30 can be more suitably improved.
 また、本実施形態では、上述のように、成形ステップS2において、溶融樹脂MRを金型80内に流し込む射出圧力は0.5~15.0MPaと低い圧力であるため、金型80内部に流れ込む樹脂によって、シールドコア40に加わる負荷を低減できる。したがって、シールドコア40の磁気特性が変動することを抑制できるため、シールドコア40によって収集される磁界の強度を安定させることができる。よって、各センサ25がバスバー30を流れる電流値を検出する精度をより好適に高めることができる。 In addition, in this embodiment, as described above, the injection pressure for pouring the molten resin MR into the mold 80 in the molding step S2 is low, at 0.5 to 15.0 MPa, so that the load applied to the shield core 40 by the resin flowing into the mold 80 can be reduced. Therefore, fluctuations in the magnetic properties of the shield core 40 can be suppressed, and the strength of the magnetic field collected by the shield core 40 can be stabilized. This makes it possible to more suitably improve the accuracy with which each sensor 25 detects the value of the current flowing through the bus bar 30.
<変形例1>
 図6Aは、上述の第1実施形態の変形例1の電力変換装置210およびモータモジュール201の一部を示す上面図である。図6Bは、第1実施形態の変形例1の電力変換装置210を示す断面図である。以下の説明において、上述の第1実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
<Modification 1>
Fig. 6A is a top view showing a power conversion device 210 and a part of a motor module 201 according to the first modification of the first embodiment described above. Fig. 6B is a cross-sectional view showing the power conversion device 210 according to the first modification of the first embodiment. In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof will be omitted.
 図6Bに示すように、本変形例において、支持部212には収容部が設けられず、支持部212の上側(-D3側)を向く面である上方面212aは、第3方向D3と直交する方向に広がる平面状である。各シールドコア40の第1壁部40aの下側(+D3側)を向く面は、上方面212aと接触する。本変形例において、上方面212aは、上側、すなわち第3方向D3の他方側を向き、シールドコア40と接触する支持面212dの役割を担う。 As shown in FIG. 6B, in this modified example, the support portion 212 does not have a storage portion, and the upper surface 212a, which is the surface of the support portion 212 facing upward (-D3 side), is flat and extends in a direction perpendicular to the third direction D3. The surface of the first wall portion 40a of each shield core 40 facing downward (+D3 side) comes into contact with the upper surface 212a. In this modified example, the upper surface 212a faces upward, i.e., the other side of the third direction D3, and serves as the support surface 212d that comes into contact with the shield core 40.
 図6Aおよび図6Bに示すように、本変形例のコア封止部250は、略直方体状である。コア封止部250は、各シールドコア40の少なくとも一部を樹脂で封止する。図6Aに示すように、コア封止部250は、支持面212d全体を覆う。図6Bに示すように、コア封止部250の下側を向く面は、支持面212dと接触する。これにより、コア封止部250は、支持部212に固定され、シールドコア40は、コア封止部250を介して、支持部212に固定される。よって、本変形例によれば、寸法公差が大きなシールドコアであっても支持部212に容易に固定することができる。したがって、電力変換装置210およびモータモジュール201の製造工数および製造コストが増大することを抑制できる。 As shown in Figures 6A and 6B, the core sealing portion 250 of this modified example is substantially rectangular. The core sealing portion 250 seals at least a portion of each shield core 40 with resin. As shown in Figure 6A, the core sealing portion 250 covers the entire support surface 212d. As shown in Figure 6B, the surface of the core sealing portion 250 facing downward is in contact with the support surface 212d. As a result, the core sealing portion 250 is fixed to the support portion 212, and the shield core 40 is fixed to the support portion 212 via the core sealing portion 250. Therefore, according to this modified example, even a shield core with a large dimensional tolerance can be easily fixed to the support portion 212. Therefore, it is possible to suppress an increase in the manufacturing man-hours and manufacturing costs of the power conversion device 210 and the motor module 201.
 また、本変形例では、支持部212の製造工程において、収容部を設ける必要が無いため、支持部212の製造工数を低減できる。 In addition, in this modified example, there is no need to provide a storage section in the manufacturing process of the support section 212, which reduces the number of manufacturing steps for the support section 212.
 本変形例において、支持部212は、ケース211の底壁部211aと繋がる。すなわち、支持部212は、ケース211の一部である。よって、本変形例によれば、支持部212がケース211と別個に設けられ、支持部212がねじ等によってケース211と固定される場合と比較して、電力変換装置210の製造工数および部品点数が増大することを抑制できる。 In this modified example, the support portion 212 is connected to the bottom wall portion 211a of the case 211. In other words, the support portion 212 is a part of the case 211. Therefore, according to this modified example, it is possible to suppress an increase in the manufacturing labor and number of parts of the power conversion device 210 compared to a case in which the support portion 212 is provided separately from the case 211 and fixed to the case 211 by screws or the like.
<変形例2>
 図7Aは、上述の第1実施形態の変形例2の電力変換装置310およびモータモジュール301の一部を示す上面図である。図7Bは、第1実施形態の変形例2の電力変換装置310を示す断面図である。以下の説明において、上述の第1実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
<Modification 2>
Fig. 7A is a top view showing a power conversion device 310 and a part of a motor module 301 according to Modification 2 of the first embodiment described above. Fig. 7B is a cross-sectional view showing a power conversion device 310 according to Modification 2 of the first embodiment. In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof will be omitted.
 図7Aおよび図7Bに示すように、本変形例のコア封止部350は、複数のシールドコア40それぞれの少なくとも一部を樹脂で封止する。コア封止部350は、収容部12cの内側面と接触し、支持部12に固定される。これらにより、各シールドコア40は、コア封止部350を介して、支持部12に固定される。本変形例において、コア封止部350には切欠部350aが設けられる。 As shown in Figures 7A and 7B, the core sealing portion 350 of this modified example seals at least a portion of each of the multiple shield cores 40 with resin. The core sealing portion 350 contacts the inner surface of the accommodating portion 12c and is fixed to the support portion 12. As a result, each shield core 40 is fixed to the support portion 12 via the core sealing portion 350. In this modified example, the core sealing portion 350 is provided with a notch 350a.
 切欠部350aは、コア封止部350のうち、第2方向D2に互いに隣り合うシールドコア40同士の間の部分に設けられる。すなわち、切欠部350aは、コア封止部350のうち、複数のシールドコア40同士の間の部分に設けられる。本変形において、切欠部350aは、上述のシールドコア固定工程Psにおいて用いられる金型の内側面の形状を、切欠部350aの形状と対応する形状に構成することによって、設けられる。本変形例において、切欠部350aは、第1切欠部350bおよび第2切欠部350cによって構成される。 The notch 350a is provided in the core sealing portion 350 in a portion between adjacent shield cores 40 in the second direction D2. That is, the notch 350a is provided in the core sealing portion 350 in a portion between multiple shield cores 40. In this modification, the notch 350a is provided by configuring the shape of the inner surface of the mold used in the above-mentioned shield core fixing process Ps to a shape corresponding to the shape of the notch 350a. In this modification, the notch 350a is configured by a first notch 350b and a second notch 350c.
 図7Aに示すように、第1切欠部350bは、切欠部350aのうち後側(+D1側)の部分である。図7Bに示すように、第1切欠部350bは、コア封止部350の上側(-D3側)を向く面から下側、すなわち第3方向D3の一方側(+D3側)に窪む。 As shown in FIG. 7A, the first cutout 350b is the rear (+D1) portion of the cutout 350a. As shown in FIG. 7B, the first cutout 350b is recessed downward from the surface of the core sealing portion 350 facing the upper side (-D3 side), that is, toward one side (+D3 side) in the third direction D3.
 図7Aに示すように、第2切欠部350cは、切欠部350aのうち、前側(-D1側)の部分である。第2切欠部350cは、第1切欠部350bと第1方向D1に繋がる。第2切欠部350cは、コア封止部350の前側を向く面から後側、すなわち第1方向D1の一方側(+D1側)に窪む。第2切欠部350cの下側の端部は、コア封止部350の下側を向く面と繋がる。 As shown in FIG. 7A, the second notch 350c is the front (-D1 side) portion of the notch 350a. The second notch 350c is connected to the first notch 350b in the first direction D1. The second notch 350c is recessed from the surface of the core sealing part 350 facing the front to the rear, i.e., to one side (+D1 side) in the first direction D1. The lower end of the second notch 350c is connected to the surface of the core sealing part 350 facing downward.
 本変形例によれば、コア封止部350のうち複数のシールドコア40同士の間の部分には、第1方向D1に窪む第2切欠部(切欠部)350c、および第3方向D3に窪む第1切欠部(切欠部)350bが設けられる。そのため、コア封止部350の体積を低減できるため、コア封止部350を構成する樹脂の材料費を抑制できる。したがって、電力変換装置310およびモータモジュール301の製造コストを抑制できる。 According to this modified example, a second notch (notch) 350c recessed in the first direction D1 and a first notch (notch) 350b recessed in the third direction D3 are provided in the portion of the core sealing portion 350 between the multiple shield cores 40. This allows the volume of the core sealing portion 350 to be reduced, thereby reducing the material cost of the resin that constitutes the core sealing portion 350. This allows the manufacturing costs of the power conversion device 310 and the motor module 301 to be reduced.
 なお、切欠部の形状は、本変形例の形状に限定されず、例えば、第3方向D3に窪む第1切欠部が、第1方向D1に窪む第2切欠部よりも前側(-D1側)に設けられてもよい。また、第1切欠部または第2切欠部の一方は設けられなくてもよい。この場合、切欠部は、第1方向D1または第3方向D3のいずれか一方向に窪む。 The shape of the cutout is not limited to that of this modified example, and for example, the first cutout recessed in the third direction D3 may be provided further forward (-D1 side) than the second cutout recessed in the first direction D1. Also, either the first cutout or the second cutout may not be provided. In this case, the cutout is recessed in either the first direction D1 or the third direction D3.
<変形例3>
 図8Aは、上述の第1実施形態の変形例3の電力変換装置410およびモータモジュール401の一部を示す上面図である。図8Bは、第1実施形態の変形例3の電力変換装置410を示す断面図である。以下の説明において、上述の第1実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
<Modification 3>
Fig. 8A is a top view showing a power conversion device 410 and a part of a motor module 401 according to Modification 3 of the first embodiment described above. Fig. 8B is a cross-sectional view showing the power conversion device 410 according to Modification 3 of the first embodiment. In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof will be omitted.
 図8Aおよび図8Bに示すように、本変形例のコア封止部450は、複数のシールドコア40それぞれの少なくとも一部を樹脂で封止する。コア封止部450は、収容部12cの内側面および上方面12aと接触し、支持部12に固定される。これらにより、各シールドコア40は、コア封止部450を介して、支持部12に固定される。本変形例のコア封止部450は、第1部分450a、第2部分450b、複数の第3部分450c、および複数の第4部分450dによって構成される。なお、以下の説明において、各シールドコア40の第2壁部40bの左側(+D2側)を向く面を、第2壁部40bの外側面と呼び、各シールドコア40の第3壁部40cの右側(-D2側)を向く面を、第3壁部40cの外側面と呼ぶ。また、各シールドコア40の第2壁部40bの右側を向く面を、第2壁部40bの内側面と呼び、各シールドコア40の第3壁部40cの左側を向く面を、第3壁部40cの内側面と呼ぶ。各シールドコア40の第2壁部40bの外側面および第3壁部40cの外側面は、各シールドコア40の外側面である。各シールドコア40の第2壁部40bの内側面および第3壁部40cの内側面は、各シールドコア40の内側面である。 8A and 8B, the core sealing portion 450 of this modified example seals at least a portion of each of the multiple shield cores 40 with resin. The core sealing portion 450 contacts the inner surface and upper surface 12a of the accommodating portion 12c and is fixed to the support portion 12. As a result, each shield core 40 is fixed to the support portion 12 via the core sealing portion 450. The core sealing portion 450 of this modified example is composed of a first portion 450a, a second portion 450b, multiple third portions 450c, and multiple fourth portions 450d. In the following description, the surface of the second wall portion 40b of each shield core 40 facing the left side (+D2 side) is referred to as the outer surface of the second wall portion 40b, and the surface of the third wall portion 40c of each shield core 40 facing the right side (-D2 side) is referred to as the outer surface of the third wall portion 40c. In addition, the surface of the second wall portion 40b of each shield core 40 facing to the right is called the inner surface of the second wall portion 40b, and the surface of the third wall portion 40c of each shield core 40 facing to the left is called the inner surface of the third wall portion 40c. The outer surface of the second wall portion 40b and the outer surface of the third wall portion 40c of each shield core 40 are the outer surfaces of each shield core 40. The inner surface of the second wall portion 40b and the inner surface of the third wall portion 40c of each shield core 40 are the inner surfaces of each shield core 40.
 図8Bに示すように、第1部分450aは、コア封止部450のうち、最も左側(+D2側)に配置されるシールドコア40Dの第2壁部40bの外側面よりも左側に位置する部分である。第1部分450aの上側(-D3側)の端部の位置は、第2壁部40bの上側の端部の位置と同じ位置である。第1部分450aは、シールドコア40Dの第2壁部40bの外側面全体と接触する。すなわち、第1部分450aは、シールドコア40Dの外側面と接触する。 As shown in FIG. 8B, the first portion 450a is a portion of the core sealing portion 450 that is located to the left of the outer surface of the second wall portion 40b of the shield core 40D that is located on the leftmost side (+D2 side). The position of the upper end portion (-D3 side) of the first portion 450a is the same as the position of the upper end portion of the second wall portion 40b. The first portion 450a contacts the entire outer surface of the second wall portion 40b of the shield core 40D. In other words, the first portion 450a contacts the outer surface of the shield core 40D.
 図8Bに示すように、第2部分450bは、コア封止部450のうち、最も右側(-D2側)に配置されるシールドコア40Eの第3壁部40cの外側面よりも右側に位置する部分である。第3方向D3において、第2部分450bの上側(-D3側)の端部の位置は、第3壁部40cの上側の端部の位置と同じ位置である。第2部分450bは、シールドコア40Eの第3壁部40cの外側面全体と接触する。すなわち、第2部分450bは、シールドコア40Eの外側面と接触する。 As shown in FIG. 8B, the second portion 450b is a portion of the core sealing portion 450 located to the right of the outer surface of the third wall portion 40c of the shield core 40E that is located at the rightmost side (-D2 side). In the third direction D3, the position of the upper end portion (-D3 side) of the second portion 450b is the same as the position of the upper end portion of the third wall portion 40c. The second portion 450b contacts the entire outer surface of the third wall portion 40c of the shield core 40E. In other words, the second portion 450b contacts the outer surface of the shield core 40E.
 図8Bに示すように、複数の第3部分450cのそれぞれは、コア封止部450のうち、互いに第2方向D2に隣り合うシールドコア40同士の間に位置する部分である。本変形例において、第3部分450cは、2個設けられる。第3方向D3において、各第3部分450cの上側(-D3側)の端部の位置は、第2壁部40bの上側の端部および第3壁部40cの上側の端部の位置と同じ位置である。一方の第3部分450cは、シールドコア40Dの第3壁部40cの外側面全体、およびシールドコア40Dと第2方向D2に隣り合って配置されるシールドコア40Fの第2壁部40bの外側面全体と接触する。また、他方の第3部分450cは、シールドコア40Fの第3壁部40cの外側面全体、およびシールドコア40Eの第2壁部40bの外側面全体と接触する。すなわち、複数の第3部分450cは、シールドコア40の外側面と接触する。 8B, each of the multiple third parts 450c is a part of the core sealing portion 450 located between the shield cores 40 adjacent to each other in the second direction D2. In this modified example, two third parts 450c are provided. In the third direction D3, the position of the upper end (-D3 side) of each third part 450c is the same as the position of the upper end of the second wall portion 40b and the upper end of the third wall portion 40c. One third part 450c contacts the entire outer surface of the third wall portion 40c of the shield core 40D and the entire outer surface of the second wall portion 40b of the shield core 40F arranged adjacent to the shield core 40D in the second direction D2. The other third part 450c contacts the entire outer surface of the third wall portion 40c of the shield core 40F and the entire outer surface of the second wall portion 40b of the shield core 40E. That is, the multiple third portions 450c come into contact with the outer surface of the shield core 40.
 図8Bに示すように、複数の第4部分450dのそれぞれは、各シールドコア40それぞれの第2壁部40bの外側面と第3壁部40cの外側面との間に位置する部分である。本変形例において、第4部分450dは、3個設けられる。第3方向D3において、各第4部分450dの上側(-D3側)の端部の位置は、第2壁部40bの上側の端部および第3壁部40cの上側の端部の位置よりも下側(+D3側)に位置する。各第4部分450dは、バスバー30よりも下側に配置される。したがって、第1部分450a、第2部分450b、および第3部分450cの上側の端部は、第4部分450dの上側の端部よりも、上側に位置する。各第4部分450dは、各シールドコア40の第2壁部40bの内側面の下側の部分および第3壁部40cの内側面の下側の部分と接触する。すなわち、複数の第4部分450dは、シールドコア40の内側面と接触する。 As shown in FIG. 8B, each of the multiple fourth portions 450d is a portion located between the outer surface of the second wall portion 40b and the outer surface of the third wall portion 40c of each shield core 40. In this modified example, three fourth portions 450d are provided. In the third direction D3, the position of the upper end (-D3 side) of each fourth portion 450d is located lower (+D3 side) than the positions of the upper end of the second wall portion 40b and the upper end of the third wall portion 40c. Each fourth portion 450d is disposed below the bus bar 30. Therefore, the upper ends of the first portion 450a, the second portion 450b, and the third portion 450c are located higher than the upper end of the fourth portion 450d. Each fourth portion 450d contacts the lower portion of the inner surface of the second wall portion 40b and the lower portion of the inner surface of the third wall portion 40c of each shield core 40. That is, the multiple fourth portions 450d come into contact with the inner surface of the shield core 40.
 よって、本変形例によれば、コア封止部450のうち複数のシールドコア40それぞれの外側面と接触する部分である第1部分450a、第2部分450b、および第3部分450cの上側、すなわち第3方向D3の他方側(-D3側)の端部は、複数のシールドコア40それぞれの内側面と接触する第4部分450dの上側の端部よりも、上側に位置する。よって、各シールドコア40が空気と接触する面積を低減できるため、空気中に含まれる水分等によって、シールドコア40が錆びることを抑制できる。したがって、シールドコア40の磁気特性が変動することを抑制できるため、シールドコア40によって収集される磁界の強度を安定させることができる。よって、各センサ25が各バスバー30を流れる電流値を検出する精度を安定させることができる。 According to this modified example, the upper ends of the first portion 450a, the second portion 450b, and the third portion 450c, which are the portions of the core sealing portion 450 that contact the outer surfaces of the multiple shield cores 40, i.e., the ends on the other side (-D3 side) of the third direction D3, are located higher than the upper end of the fourth portion 450d that contacts the inner surfaces of the multiple shield cores 40. This reduces the area of contact between each shield core 40 and the air, thereby preventing the shield core 40 from rusting due to moisture contained in the air. This prevents the magnetic characteristics of the shield core 40 from fluctuating, thereby stabilizing the strength of the magnetic field collected by the shield core 40. This stabilizes the accuracy with which each sensor 25 detects the current value flowing through each bus bar 30.
<変形例4>
 図9Aは、上述の第1実施形態の変形例4の電力変換装置510およびモータモジュール501の一部を示す上面図である。図9Bは、第1実施形態の変形例4の電力変換装置510を示す断面図である。以下の説明において、上述の第1実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
<Modification 4>
Fig. 9A is a top view showing a power conversion device 510 and a part of a motor module 501 according to Modification 4 of the first embodiment described above. Fig. 9B is a cross-sectional view showing a power conversion device 510 according to Modification 4 of the first embodiment. In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof will be omitted.
 図9Bに示すように、本変形例において、各シールドコア40の第1壁部40aは、支持面12dと第3方向D3に間隔をあけて配置される。また、各シールドコア40の第2壁部40bおよび第3壁部40cのそれぞれは、一対の位置決め面13a,13bと第2方向D2に間隔をあけて配置される。すなわち、各シールドコア40は、支持部12と間隔をあけて配置される。 As shown in FIG. 9B, in this modified example, the first wall portion 40a of each shield core 40 is disposed at a distance from the support surface 12d in the third direction D3. Also, the second wall portion 40b and the third wall portion 40c of each shield core 40 are disposed at a distance from the pair of positioning surfaces 13a, 13b in the second direction D2. In other words, each shield core 40 is disposed at a distance from the support portion 12.
 本変形例によれば、コア封止部550のうち、第3方向D3において各シールドコア40の第1壁部40aと支持部12の支持面12dとの間に位置する部分を介して、第1壁部40aを支持面12dに固定することができる。したがって、コア封止部550を介して、より強固に各シールドコア40を支持部12に固定できるため、各センサ25が各バスバー30を流れる電流値を検出する精度を安定させることができる。 According to this modified example, the first wall portion 40a can be fixed to the support surface 12d via a portion of the core sealing portion 550 that is located between the first wall portion 40a of each shield core 40 and the support surface 12d of the support portion 12 in the third direction D3. Therefore, each shield core 40 can be more firmly fixed to the support portion 12 via the core sealing portion 550, and the accuracy with which each sensor 25 detects the value of the current flowing through each bus bar 30 can be stabilized.
 本発明は上述の実施形態に限られず、本発明の技術的思想の範囲内において、他の構成および他の方法を採用することもできる。 The present invention is not limited to the above-described embodiment, and other configurations and methods may be adopted within the scope of the technical concept of the present invention.
 本実施形態の電力変換装置の用途は、車両を駆動するモータに供給する電力の生成に限定されず、電化製品等に搭載されるモータに供給する電力を生成してもよい。また、電力変換装置は、外部電源から供給される直流電流から所定の波形の交流電流を生成するインバータであってもよいし、外部電源から供給される交流電流から直流電流を生成するコンバータであってもよい。 The use of the power conversion device of this embodiment is not limited to generating power to be supplied to a motor that drives a vehicle, but may also generate power to be supplied to a motor mounted on an electrical appliance or the like. In addition, the power conversion device may be an inverter that generates AC current of a predetermined waveform from DC current supplied from an external power source, or a converter that generates DC current from AC current supplied from an external power source.
 支持部に対するシールドコアの位置を精度よく決めることができるならば、支持部の構成は本実施形態の構成に限定されず、例えば、支持部には一対の位置決め面が設けられなくてもよい。この場合、シールドコア固定工程Psにおいて用いられる金型の内側面に、一対の位置決め面を設け、該一対の位置決め面によって、支持部に対するシールドコアの位置を決めることができる。 As long as the position of the shield core relative to the support part can be determined with high precision, the configuration of the support part is not limited to that of this embodiment, and for example, the support part does not need to be provided with a pair of positioning surfaces. In this case, a pair of positioning surfaces can be provided on the inner surface of the mold used in the shield core fixing process Ps, and the position of the shield core relative to the support part can be determined by the pair of positioning surfaces.
 また、バスバーの一部はコア封止部の内部に埋め込まれていてもよい。この場合、シールドコア固定工程において、バスバーをインサート部材の一部として射出成形を行うことにより、バスバーの一部をコア封止部の内部に埋め込むことができる。また、成形後のコア封止部に孔を設け、該孔にバスバーを通してもよい。 Furthermore, a portion of the busbar may be embedded inside the core sealing portion. In this case, in the shield core fixing process, the busbar is injection molded as a part of the insert member, so that a portion of the busbar can be embedded inside the core sealing portion. Also, a hole may be provided in the core sealing portion after molding, and the busbar may be passed through the hole.
 電力変換装置が備える、バスバー、センサ、およびシールドコアそれぞれの個数は、3個に限定されず、1個および2個であってもよいし、4個以上であってもよい。 The number of bus bars, sensors, and shield cores included in the power conversion device is not limited to three, but may be one or two, or four or more.
 上述の実施形態および変形例では、回路基板の縁部から一方向に突出する基板突出部にセンサを実装し、当該基板突出部をシールドコアの第2壁部および第3壁部の間に配置する場合について説明した。しかしながら、回路基板にシールドコアの第2壁部および第3壁部のそれぞれを挿入するための一対の孔部を設け、一対の孔部の間にセンサを実装してもよい。 In the above-described embodiment and modified examples, a case has been described in which a sensor is mounted on a board protrusion that protrudes in one direction from an edge of a circuit board, and the board protrusion is disposed between the second wall and the third wall of the shield core. However, a pair of holes for inserting the second wall and the third wall of the shield core, respectively, may be provided in the circuit board, and the sensor may be mounted between the pair of holes.
 以上に、本発明の実施形態を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 The above describes an embodiment of the present invention, but each configuration and their combinations in the embodiment are merely examples, and additions, omissions, substitutions, and other modifications of configurations are possible without departing from the spirit of the present invention. Furthermore, the present invention is not limited to the embodiment.
 なお、本技術は以下のような構成をとることが可能である。(1) 第1方向に延びるバスバーと、前記バスバーを流れる電流によって発生する磁界を検出するセンサと、磁性を有し、前記第1方向と直交する第2方向の両側と、前記第1方向および前記第2方向と直交する第3方向の少なくとも一方側とから、前記バスバーおよび前記センサを囲むシールドコアと、前記シールドコアの少なくとも一部を樹脂で封止するコア封止部と、支持部と、を備え、前記シールドコアは、前記コア封止部を介して、前記支持部に固定される、電力変換装置。(2) 前記支持部は、前記第1方向または前記第2方向に互いに向き合う一対の位置決め面を有し、前記シールドコアは前記一対の位置決め面の間に配置される、(1)に記載の電力変換装置。(3) 前記支持部の前記第3方向の他方側を向く面には、前記第3方向の一方側に向けて窪む収容部が設けられ、前記コア封止部は、前記収容部の内側面と接触する、(2)に記載の電力変換装置。(4) 前記一対の位置決め面は、前記第2方向に互いに向き合い、前記第1方向において、前記一対の位置決め面のそれぞれと、前記収容部の内側面との間には隙間が設けられる、(3)に記載の電力変換装置。(5) 前記支持部は、前記第3方向の他方側を向く支持面を有し、前記シールドコアは、前記支持面と接触する、(1)から(4)のいずれか一項に記載の電力変換装置。(6) 前記シールドコアは、前記支持部と隙間をあけて配置される、(1)から(4)のいずれか一項に記載の電力変換装置。(7) 前記第2方向に並んで配置される複数の前記バスバーと、複数の前記センサと、複数の前記シールドコアと、を備え、複数の前記シールドコアのぞれぞれは、前記第2方向の両側と、前記第3方向の少なくとも一方側とから、1つの前記センサおよび1つの前記バスバーを囲む、(1)から(6)のいずれか一項に記載の電力変換装置。(8) 前記コア封止部は、複数の前記シールドコアそれぞれの一部を樹脂で封止し、前記コア封止部のうち複数の前記シールドコア同士の間の部分には、第1方向または前記第3方向に窪む切欠部が設けられる、(7)に記載の電力変換装置。(9) 前記コア封止部は、複数の前記シールドコアそれぞれの一部を樹脂で封止し、前記コア封止部のうち複数の前記シールドコアそれぞれの外側面と接触する部分の前記第3方向の他方側の端部は、複数の前記シールドコアそれぞれの内側面と接触する部分の前記第3方向の他方側の端部よりも、前記第3方向の他方側に位置する、(7)に記載の電力変換装置。(10) 前記バスバー、前記センサ、前記シールドコア、および前記コア封止部が前記電力変換装置のケースに収容され、前記支持部は、前記ケースの一部である、(1)から(9)のいずれか一項に記載の電力変換装置。(11) (1)から(10)のいずれか一項に記載の電力変換装置と、前記電力変換装置によって駆動されるモータとを備えた、モータモジュール。(12) 磁性を有するシールドコアと、樹脂製のコア封止部と、支持部と、を備える電力変換装置の製造方法であって、金型内において、前記支持部に対する前記シールドコアの位置を決める位置決めステップと、前記支持部および前記シールドコアをインサート部材とする射出成形によって、前記シールドコアの少なくとも一部を樹脂で封止し、かつ、前記支持部と固定される前記コア封止部を成形する成形ステップと、を有する電力変換装置の製造方法。 The present technology can be configured as follows: (1) A power conversion device including a bus bar extending in a first direction, a sensor that detects a magnetic field generated by a current flowing through the bus bar, a magnetic shield core that surrounds the bus bar and the sensor from both sides in a second direction perpendicular to the first direction and from at least one side in a third direction perpendicular to the first direction and the second direction, a core sealing portion that seals at least a part of the shield core with resin, and a support portion, wherein the shield core is fixed to the support portion via the core sealing portion. (2) The power conversion device according to (1), wherein the support portion has a pair of positioning surfaces that face each other in the first direction or the second direction, and the shield core is disposed between the pair of positioning surfaces. (3) The power conversion device according to (2), wherein a surface of the support portion facing the other side in the third direction is provided with an accommodation portion that is recessed toward one side in the third direction, and the core sealing portion contacts an inner surface of the accommodation portion. (4) The power conversion device according to (3), wherein the pair of positioning surfaces face each other in the second direction, and a gap is provided between each of the pair of positioning surfaces and an inner surface of the accommodating portion in the first direction. (5) The power conversion device according to any one of (1) to (4), wherein the support portion has a support surface facing the other side of the third direction, and the shield core is in contact with the support surface. (6) The power conversion device according to any one of (1) to (4), wherein the shield core is arranged with a gap between it and the support portion. (7) The power conversion device according to any one of (1) to (6), comprising: a plurality of the bus bars, a plurality of the sensors, and a plurality of the shield cores arranged side by side in the second direction, and each of the plurality of the shield cores surrounds one of the sensors and one of the bus bars from both sides in the second direction and at least one side in the third direction. (8) The power conversion device according to (7), in which the core sealing portion seals a portion of each of the plurality of shield cores with resin, and a notch recessed in the first direction or the third direction is provided in a portion of the core sealing portion between the plurality of shield cores. (9) The power conversion device according to (7), in which the core sealing portion seals a portion of each of the plurality of shield cores with resin, and an end portion on the other side in the third direction of a portion of the core sealing portion that contacts an outer surface of each of the plurality of shield cores is located on the other side in the third direction of an end portion on the other side in the third direction of a portion of the core sealing portion that contacts an inner surface of each of the plurality of shield cores. (10) The power conversion device according to any one of (1) to (9), in which the bus bar, the sensor, the shield core, and the core sealing portion are housed in a case of the power conversion device, and the support portion is a part of the case. (11) A motor module comprising the power conversion device according to any one of (1) to (10) and a motor driven by the power conversion device. (12) A method for manufacturing a power conversion device that includes a magnetic shield core, a resin core sealing part, and a support part, the method including a positioning step for determining the position of the shield core relative to the support part in a mold, and a molding step for molding the core sealing part that is fixed to the support part and at least a part of the shield core is sealed with resin by injection molding using the support part and the shield core as insert members.

Claims (12)

  1.  第1方向に延びるバスバーと、
     前記バスバーを流れる電流によって発生する磁界を検出するセンサと、
     磁性を有し、前記第1方向と直交する第2方向の両側と、前記第1方向および前記第2方向と直交する第3方向の少なくとも一方側とから、前記バスバーおよび前記センサを囲むシールドコアと、
     前記シールドコアの少なくとも一部を樹脂で封止するコア封止部と、
     支持部と、
     を備え、
     前記シールドコアは、前記コア封止部を介して、前記支持部に固定される、電力変換装置。
    A bus bar extending in a first direction;
    a sensor for detecting a magnetic field generated by a current flowing through the bus bar;
    a shield core having magnetism and surrounding the bus bar and the sensor from both sides in a second direction perpendicular to the first direction and from at least one side in a third direction perpendicular to the first direction and the second direction;
    a core sealing portion that seals at least a portion of the shield core with resin;
    A support portion;
    Equipped with
    The shield core is fixed to the support portion via the core sealing portion.
  2.  前記支持部は、前記第1方向または前記第2方向に互いに向き合う一対の位置決め面を有し、前記シールドコアは前記一対の位置決め面の間に配置される、請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein the support portion has a pair of positioning surfaces that face each other in the first direction or the second direction, and the shield core is disposed between the pair of positioning surfaces.
  3.  前記支持部の前記第3方向の他方側を向く面には、前記第3方向の一方側に向けて窪む収容部が設けられ、
     前記コア封止部は、前記収容部の内側面と接触する、請求項2に記載の電力変換装置。
    a receiving portion recessed toward one side in the third direction is provided on a surface of the support portion facing the other side in the third direction,
    The power conversion device according to claim 2 , wherein the core sealing portion is in contact with an inner surface of the housing portion.
  4.  前記一対の位置決め面は、前記第2方向に互いに向き合い、
     前記第1方向において、前記一対の位置決め面のそれぞれと、前記収容部の内側面との間には隙間が設けられる、請求項3に記載の電力変換装置。
    The pair of positioning surfaces face each other in the second direction,
    The power conversion device according to claim 3 , wherein a gap is provided between each of the pair of positioning surfaces and an inner side surface of the accommodating portion in the first direction.
  5.  前記支持部は、前記第3方向の他方側を向く支持面を有し、
     前記シールドコアは、前記支持面と接触する、請求項1に記載の電力変換装置。
    The support portion has a support surface facing the other side in the third direction,
    The power converter of claim 1 , wherein the shield core contacts the support surface.
  6.  前記シールドコアは、前記支持部と隙間をあけて配置される、請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein the shield core is disposed with a gap between it and the support portion.
  7.  前記第2方向に並んで配置される複数の前記バスバーと、複数の前記センサと、複数の前記シールドコアと、を備え、
     複数の前記シールドコアのぞれぞれは、前記第2方向の両側と、前記第3方向の少なくとも一方側とから、1つの前記センサおよび1つの前記バスバーを囲む、請求項1から6のいずれか一項に記載の電力変換装置。
    a plurality of the bus bars, a plurality of the sensors, and a plurality of the shield cores arranged in the second direction;
    The power conversion device according to claim 1 , wherein each of the plurality of shield cores surrounds one of the sensors and one of the bus bars from both sides in the second direction and from at least one side in the third direction.
  8.  前記コア封止部は、複数の前記シールドコアそれぞれの一部を樹脂で封止し、
     前記コア封止部のうち複数の前記シールドコア同士の間の部分には、第1方向または前記第3方向に窪む切欠部が設けられる、請求項7に記載の電力変換装置。
    the core sealing portion seals a portion of each of the plurality of shield cores with resin,
    The power conversion device according to claim 7 , wherein a notch recessed in the first direction or the third direction is provided in a portion of the core sealing portion between the plurality of shield cores.
  9.  前記コア封止部は、複数の前記シールドコアそれぞれの一部を樹脂で封止し、
     前記コア封止部のうち複数の前記シールドコアそれぞれの外側面と接触する部分の前記第3方向の他方側の端部は、複数の前記シールドコアそれぞれの内側面と接触する部分の前記第3方向の他方側の端部よりも、前記第3方向の他方側に位置する、請求項7に記載の電力変換装置。
    the core sealing portion seals a portion of each of the plurality of shield cores with resin,
    8. The power conversion device of claim 7, wherein an end portion of the core sealing portion that contacts the outer surfaces of each of the plurality of shield cores on the other side in the third direction is located on the other side in the third direction of an end portion of the core sealing portion that contacts the inner surfaces of each of the plurality of shield cores on the other side in the third direction.
  10.  前記バスバー、前記センサ、前記シールドコア、および前記コア封止部が前記電力変換装置のケースに収容され、
     前記支持部は、前記ケースの一部である、請求項1から6のいずれか一項に記載の電力変換装置。
    the bus bar, the sensor, the shield core, and the core sealing portion are housed in a case of the power conversion device;
    The power conversion device according to claim 1 , wherein the support portion is a part of the case.
  11.  請求項1から6のいずれか一項に記載の電力変換装置と、前記電力変換装置によって駆動されるモータとを備えた、モータモジュール。 A motor module comprising a power conversion device according to any one of claims 1 to 6 and a motor driven by the power conversion device.
  12.  磁性を有するシールドコアと、樹脂製のコア封止部と、支持部と、を備える電力変換装置の製造方法であって、
     金型内において、前記支持部に対する前記シールドコアの位置を決める位置決めステップと、
     前記支持部および前記シールドコアをインサート部材とする射出成形によって、前記シールドコアの少なくとも一部を樹脂で封止し、かつ、前記支持部と固定される前記コア封止部を成形する成形ステップと、
     を有する電力変換装置の製造方法。
    A method for manufacturing a power converter including a magnetic shield core, a resin core sealing portion, and a support portion, comprising:
    a positioning step of determining a position of the shield core relative to the support portion in a mold;
    a molding step of molding the core sealing portion by injection molding using the support portion and the shield core as insert members, whereby at least a portion of the shield core is sealed with resin and the core sealing portion is fixed to the support portion;
    A method for manufacturing a power conversion device having the above structure.
PCT/JP2023/038815 2022-10-31 2023-10-27 Electric power conversion device, motor module, and method for manufacturing electric power conversion device WO2024095903A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-174484 2022-10-31
JP2022174484 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024095903A1 true WO2024095903A1 (en) 2024-05-10

Family

ID=90930449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038815 WO2024095903A1 (en) 2022-10-31 2023-10-27 Electric power conversion device, motor module, and method for manufacturing electric power conversion device

Country Status (1)

Country Link
WO (1) WO2024095903A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865945A (en) * 1994-08-26 1996-03-08 Aqueous Res:Kk Motor driver
JPH09304447A (en) * 1996-05-10 1997-11-28 Denso Corp Current-detecting apparatus
JP2015049184A (en) * 2013-09-03 2015-03-16 Tdk株式会社 Inverter device
WO2018159229A1 (en) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 Current detector
WO2022024610A1 (en) * 2020-07-28 2022-02-03 アルプスアルパイン株式会社 Electric current sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865945A (en) * 1994-08-26 1996-03-08 Aqueous Res:Kk Motor driver
JPH09304447A (en) * 1996-05-10 1997-11-28 Denso Corp Current-detecting apparatus
JP2015049184A (en) * 2013-09-03 2015-03-16 Tdk株式会社 Inverter device
WO2018159229A1 (en) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 Current detector
WO2022024610A1 (en) * 2020-07-28 2022-02-03 アルプスアルパイン株式会社 Electric current sensor

Similar Documents

Publication Publication Date Title
US8564161B1 (en) Motorized equipment
KR100592978B1 (en) Electric current sensor having magnetic gap
US10634702B2 (en) Current sensor
KR102106723B1 (en) Electric drive and electric power steering
US10962573B2 (en) Current sensor device
KR101729809B1 (en) Electronic control device
US9543802B2 (en) Motor drive apparatus
WO2015178478A1 (en) Current-sensor-equipped busbar module
US20140140119A1 (en) Power Inverter
WO2015194370A1 (en) Current detection device
JP5225878B2 (en) Current detector assembly structure
CN110546520B (en) Current sensor
CN112816755B (en) Fixing structure of electronic component and current detection device
JP2018207641A (en) Electric drive device, and electric power steering device
JP6962144B2 (en) Electric drive device and electric power steering device
JP2017099175A (en) Motor and electric power steering device
WO2024095903A1 (en) Electric power conversion device, motor module, and method for manufacturing electric power conversion device
JP6007878B2 (en) Rotating electric machine for vehicles
JP6922435B2 (en) Electric drive device and electric power steering device
JP2024065564A (en) Power conversion device and motor module
JP2019004569A (en) Electric driving device and electric power steering device
WO2013027424A1 (en) Current detection device
JP2005308526A (en) Current sensor
JP2013032972A (en) Current detecting device
CN113541507A (en) Power conversion device