WO2024095856A1 - 基板処理システム、および搬送方法 - Google Patents

基板処理システム、および搬送方法 Download PDF

Info

Publication number
WO2024095856A1
WO2024095856A1 PCT/JP2023/038477 JP2023038477W WO2024095856A1 WO 2024095856 A1 WO2024095856 A1 WO 2024095856A1 JP 2023038477 W JP2023038477 W JP 2023038477W WO 2024095856 A1 WO2024095856 A1 WO 2024095856A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
control unit
substrate
amount
processing system
Prior art date
Application number
PCT/JP2023/038477
Other languages
English (en)
French (fr)
Inventor
俊紀 赤間
秀征 加藤
ギョンミン パク
信峰 佐々木
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024095856A1 publication Critical patent/WO2024095856A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Definitions

  • This disclosure relates to a substrate processing system and a transport method.
  • Patent Document 1 discloses a plasma processing apparatus in which a focus ring (ring) is arranged around a mounting table (substrate support part) provided inside a processing chamber, and plasma processing is performed on a substrate placed on the substrate support part.
  • a substrate processing system having this plasma processing apparatus uses a transfer robot to remove the ring from the substrate support part, cleans the surface on which the ring is placed, and then places the ring back on the substrate support part.
  • This disclosure provides technology that can reduce interference between the ring and other parts when the ring is transported.
  • a substrate processing system including a processing module having a processing chamber, a substrate support part that supports a substrate and a ring disposed around the substrate in the processing chamber, and a lifter configured to raise and lower the ring, a vacuum transfer module connected to the processing module and having a transfer robot that transfers the ring, and a control unit, wherein the control unit performs the steps of: (A) lifting the lifter to separate the ring from the support surface of the substrate support part; (B) obtaining an index relating to the amount of misalignment of the ring after the step (A); and (C) determining whether or not to correct the position of the ring based on the index relating to the amount of misalignment obtained in the step (B).
  • interference between the ring and other parts can be suppressed when the ring is transported.
  • FIG. 1 is a diagram illustrating an example of a substrate processing system according to an embodiment.
  • 1 is a schematic cross-sectional view showing an example of a plasma processing apparatus.
  • FIG. 3 is an enlarged view of a portion of FIG. 2 .
  • 13A and 13B are diagrams for explaining a cause of positional deviation that occurs in the ring when the ring is removed from the substrate support part.
  • Fig. 5(A) is a diagram showing a first example of detecting an index related to the amount of positional deviation of the inner ring
  • Fig. 5(B) is a diagram showing a second example of detecting an index related to the amount of positional deviation of the inner ring
  • Fig. 5(A) is a diagram showing a first example of detecting an index related to the amount of positional deviation of the inner ring
  • Fig. 5(B) is a diagram showing a second example of detecting an index related to the amount of positional deviation of the inner ring
  • FIG. 5(C) is a diagram showing a third example of detecting an index related to the amount of positional deviation of the inner ring.
  • 13 is a flowchart showing an operation procedure when carrying out an edge ring.
  • 11 is a flowchart showing a process flow of a misalignment checking and correcting process in the transport method according to the first example.
  • Fig. 8(A) is a first diagram showing the operation of the misalignment confirmation and correction process.
  • Fig. 8(B) is a second diagram showing the operation following Fig. 8(A).
  • Fig. 8(C) is a third diagram showing the operation following Fig. 8(B).
  • Fig. 8(D) is a fourth diagram showing the operation following Fig. 8(C).
  • Fig. 8(A) is a first diagram showing the operation of the misalignment confirmation and correction process.
  • Fig. 8(B) is a second diagram showing the operation following Fig. 8(A).
  • FIG. 8(E) is a fifth diagram showing the operation following Fig. 8(D).
  • Fig. 8(F) is a sixth diagram showing the operation following Fig. 8(E).
  • 13 is a flowchart showing a process flow of a first example of a misalignment checking and correcting process according to a modified example.
  • 10 is a flowchart showing a process flow of a conveying method according to a second example.
  • FIG. 11 is a schematic cross-sectional view showing another example of a plasma processing apparatus.
  • 13 is a flowchart showing a process flow of a conveying method according to a third example.
  • Fig. 13(A) is a first diagram showing a misalignment eliminating operation, Fig.
  • 13(B) is a second diagram showing an operation subsequent to Fig. 13(A), and Fig. 13(C) is a third diagram showing an operation subsequent to Fig. 13(B).
  • 13 is a flowchart showing a process flow of a conveying method according to a fourth example.
  • 13 is a flowchart showing a process flow of a conveying method according to a fifth example.
  • 13 is a flowchart showing a process flow of a conveying method according to a sixth example.
  • 13A and 13B are diagrams illustrating an example of capturing an image of a tilted edge ring by a camera.
  • FIG. 13 is a diagram showing a modified example of a configuration for performing a gas leak check as an index related to the amount of positional misalignment of the edge ring.
  • FIG. 13 is a flowchart showing an operation procedure of transporting an edge ring according to a modified example.
  • Fig. 20A is a diagram showing the relationship between the position of the edge ring and the position of the position detection sensor
  • Fig. 20B is a diagram showing a change in the sensor output of the position detection sensor when the edge ring is transported from position to position.
  • FIG. 1 is a diagram showing an example of a substrate processing system PS according to an embodiment.
  • the substrate processing system PS is a system capable of performing various processes, such as plasma processing, on a substrate W.
  • the substrate W may be, for example, a semiconductor wafer.
  • the substrate processing system PS has a vacuum transfer module TM, multiple processing modules PM1 to PM7, a ring storage module RSM, multiple load lock modules LL1 to LL3, an atmospheric transfer module LM, load ports LP1 to LP4, an aligner AN, and a control unit CU.
  • the vacuum transfer module TM is also called a transfer module.
  • the processing modules PM1 to PM7 are also called process modules.
  • the ring storage module RSM is also called a ring stocker module.
  • the atmospheric transfer module LM is also called a loader module.
  • the vacuum transfer module TM has a rectangular shape in a plan view.
  • the vacuum transfer module TM is connected to the processing modules PM1 to PM7, the load lock modules LL1 to LL3, and the ring storage module RSM.
  • the vacuum transfer module TM has a vacuum transfer chamber. The interior of the vacuum transfer chamber is maintained in a vacuum atmosphere.
  • a transfer robot TR1 is provided in the vacuum transfer chamber (inside the vacuum transfer module TM).
  • the transport robot TR1 is configured to be able to rotate, extend, retract, and rise and fall freely.
  • the transport robot TR1 has an upper fork FK1 and a lower fork FK2.
  • the upper fork FK1 and the lower fork FK2 of the transport robot TR1 are configured to be able to hold substrates W and rings 113 (inner ring 113a and outer ring 113b), respectively.
  • the transport robot TR1 holds and transports substrates W and rings 113 between the processing modules PM1-PM7, the load lock modules LL1-LL3, and the ring storage module RSM.
  • the upper fork FK1 is provided with a position detection sensor S1.
  • the lower fork FK2 is provided with a position detection sensor S2.
  • the position detection sensors S1 and S2 detect the positions of the inner ring 113a and the outer ring 113b placed on the processing modules PM1 to PM7.
  • the position detection sensors S1 and S2 may be, for example, optical displacement sensors, cameras, etc.
  • the vacuum transport module TM may be provided with position detection sensors S11 and S12.
  • the position detection sensors S11 and S12 are provided on the transport path of the substrate W and ring 113 (inner ring 113a) transported from the vacuum transport module TM to the processing module PM1.
  • the position detection sensors S11 and S12 are used when transporting the substrate W or ring 113 from the vacuum transport module TM to the processing module PM1, and when transporting the substrate W or ring 113 from the processing module PM1 to the vacuum transport module TM.
  • the position detection sensors S11 and S12 are provided, for example, near a gate valve (not shown) that separates the vacuum transport module TM and the processing module PM1.
  • the position detection sensors S11 and S12 are arranged, for example, so that the distance between them is smaller than the outer diameter of the substrate W and smaller than the inner diameter of the inner ring 113a.
  • the vacuum transfer module TM may be provided with position detection sensors S21, S22, S31, S32, S41, S42, S51, S52, S61, S62, S71, and S72, as well as position detection sensors S11 and S12.
  • the processing modules PM1 to PM7 are connected to a vacuum transfer module TM.
  • the processing modules PM1 to PM7 have a vacuum processing chamber.
  • a substrate support 11 (see Figure 2) is provided inside the vacuum processing chamber. After a substrate W is placed on the substrate support 11, the processing modules PM1 to PM7 reduce the pressure inside, introduce a processing gas, apply RF power to generate plasma, and use the plasma to perform plasma processing on the substrate W.
  • the vacuum transfer module TM and the processing modules PM1 to PM7 are separated by a gate valve (not shown) that can be opened and closed freely.
  • the ring storage module RSM is an example of a device that stores the ring 113, and is connected to the vacuum transfer module TM.
  • the ring storage module RSM stores, for example, the inner ring 113a and the outer ring 113b that make up the ring 113.
  • the ring storage module RSM may be configured to store only the inner ring 113a.
  • the ring storage module RSM may be configured to store only the outer ring 113b.
  • the inner ring 113a and the outer ring 113b are transported between the processing modules PM1 to PM7 and the ring storage module RSM by the transport robot TR1.
  • the vacuum transfer module TM and the ring storage module RSM are separated by a gate valve (not shown) that can be opened and closed freely.
  • the load lock modules LL1 to LL3 are provided between the vacuum transfer module TM and the atmospheric transfer module LM.
  • the load lock modules LL1 to LL3 are connected to the vacuum transfer module TM and the atmospheric transfer module LM.
  • the load lock modules LL1 to LL3 have an internal pressure variable chamber that can be switched between vacuum and atmospheric pressure.
  • the internal pressure variable chamber is provided with a stage (not shown) on which a substrate W can be placed.
  • the load lock modules LL1 to LL3 transfer a substrate W from the vacuum transfer module TM to the atmospheric transfer module LM, they receive the substrate W from the vacuum transfer module TM while maintaining the internal pressure variable chamber at a vacuum, and then they pressurize the internal pressure variable chamber to atmospheric pressure and transfer the substrate W to the atmospheric transfer module LM.
  • the load lock modules LL1 to LL3 and the vacuum transfer module TM are separated by a gate valve (not shown) that can be opened and closed.
  • the load lock modules LL1 to LL3 and the atmospheric transfer module LM are separated by a gate valve (not shown) that can be opened and closed.
  • the atmospheric transfer module LM is disposed opposite the vacuum transfer module TM.
  • the atmospheric transfer module LM may be, for example, an EFEM (Equipment Front End Module).
  • the atmospheric transfer module LM has a rectangular shape in a plan view.
  • the atmospheric transfer module LM has an atmospheric transfer chamber. The interior of the atmospheric transfer chamber is maintained at atmospheric pressure.
  • a transfer robot TR2 is disposed inside the atmospheric transfer chamber. The transfer robot TR2 holds and transfers the substrate W between the load ports LP1 to LP4, the aligner AN, and the load lock modules LL1 to LL3.
  • the atmospheric transfer module LM may have an FFU (Fan Filter Unit).
  • the load ports LP1 to LP4 are connected to an atmospheric transfer module LM.
  • Multiple substrate storage containers CS1 are placed on the load ports LP1 to LP4.
  • the substrate storage container CS1 may be, for example, a FOUP (Front-Opening Unified Pod) that stores multiple (e.g., 25) substrates W.
  • FOUP Front-Opening Unified Pod
  • the aligner AN is connected to the atmospheric transfer module LM.
  • the aligner AN is configured to adjust the position of the substrate W.
  • the aligner AN may be provided inside the atmospheric transfer chamber.
  • the control unit CU controls each part of the substrate processing system PS.
  • the control unit CU controls, for example, the operation of the transport robot TR1 provided in the vacuum transport module TM, the operation of the transport robot TR2 provided in the atmospheric transport module LM, and the opening and closing of the gate valve.
  • the control unit CU may be, for example, a computer.
  • the control unit CU has a processor such as a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), and an auxiliary storage device.
  • the CPU operates based on a program stored in the ROM or the auxiliary storage device, and controls each part of the substrate processing system PS.
  • Fig. 2 is a schematic cross-sectional view showing the example of the plasma processing apparatus 1.
  • Fig. 3 is an enlarged view of a part of Fig. 2.
  • the plasma processing apparatus 1 includes a plasma processing chamber 10 (processing chamber), a gas supply unit 20, an RF power supply unit 30, an exhaust system 40, a lifter 50, and a control unit 90.
  • the plasma processing chamber 10 includes a substrate support 11 and an upper electrode 12.
  • the substrate support 11 is disposed in a lower region of the plasma processing space 10s in the plasma processing chamber 10.
  • the upper electrode 12 is disposed above the substrate support 11 and functions as part of the top plate of the plasma processing chamber 10.
  • the substrate support 11 supports the substrate W in the plasma processing space 10s.
  • the substrate support 11 includes a lower electrode 111, an electrostatic chuck 112, a ring 113 (hereinafter also referred to as the ring assembly 113), and an insulating member 115.
  • the electrostatic chuck 112 is disposed on the lower electrode 111.
  • the electrostatic chuck 112 has an upper surface including a substrate support surface 112a and a ring support surface 112b.
  • the electrostatic chuck 112 supports the substrate W on the substrate support surface 112a.
  • the electrostatic chuck 112 supports the inner ring 113a on the ring support surface 112b.
  • the electrostatic chuck 112 has an insulating member 112c, a first adsorption electrode 112d, and a second adsorption electrode 112e.
  • the first adsorption electrode 112d and the second adsorption electrode 112e are embedded in the insulating member 112c.
  • the first adsorption electrode 112d is located below the substrate support surface 112a.
  • the electrostatic chuck 112 adsorbs and holds the substrate W on the substrate support surface 112a by applying a voltage to the first adsorption electrode 112d.
  • the second adsorption electrode 112e is located below the ring support surface 112b.
  • the electrostatic chuck 112 has a ring support surface 112b, which is supported by applying a voltage to the second attraction electrode 112e.
  • the electrostatic chuck 112 includes a monopolar electrostatic chuck that attracts and holds the substrate W, and a bipolar electrostatic chuck that attracts and holds the inner ring 113a.
  • a bipolar electrostatic chuck may be used instead of the monopolar electrostatic chuck, and a monopolar electrostatic chuck may be used instead of the bipolar electrostatic chuck.
  • the ring assembly 113 includes an inner ring 113a and an outer ring 113b.
  • the inner ring 113a has a circular ring shape.
  • the inner ring 113a is placed on the ring support surface 112b so as to surround the substrate W.
  • the inner ring 113a improves the uniformity of the plasma processing on the substrate W.
  • the inner ring 113a is formed of a conductive material such as silicon (Si) or silicon carbide (SiC).
  • the inner ring 113a may be formed of an insulating material such as quartz.
  • the outer ring 113b has a circular ring shape.
  • the outer ring 113b is disposed on the outer periphery of the inner ring 113a.
  • the outer ring 113b protects the upper surface of the insulating member 115 from, for example, plasma.
  • the outer ring 113b is formed of an insulating material such as quartz.
  • the outer ring 113b may be formed of a conductive material such as silicon or silicon carbide.
  • the inner circumference of the outer ring 113b is located inside the outer circumference of the inner ring 113a, and the outer circumference of the inner ring 113a is located outside the inner circumference of the outer ring 113b, so that the inner ring 113a and the outer ring 113b partially overlap when viewed from above.
  • the insulating member 115 is disposed so as to surround the lower electrode 111.
  • the insulating member 115 is fixed to the bottom of the plasma processing chamber 10 and supports the lower electrode 111.
  • the upper electrode 12 and the insulating member 13 constitute the plasma processing chamber 10.
  • the upper electrode 12 supplies one or more types of processing gas from the gas supply unit 20 to the plasma processing space 10s.
  • the upper electrode 12 includes a top plate 121 and a support 122.
  • the lower surface of the top plate 121 defines the plasma processing space 10s.
  • the top plate 121 is provided with a plurality of gas inlets 121a. Each of the plurality of gas inlets 121a penetrates the top plate 121 in the plate thickness direction (vertical direction).
  • the support 122 supports the top plate 121 in a removable manner.
  • a gas diffusion chamber 122a is provided inside the support 122.
  • a plurality of gas inlets 122b extend downward from the gas diffusion chamber 122a.
  • the plurality of gas inlets 122b are each connected to the plurality of gas inlets 121a.
  • the support 122 is provided with a gas supply port 122c.
  • the upper electrode 12 supplies one or more processing gases from the gas supply port 122c through the gas diffusion chamber 122a, the multiple gas inlets 122b, and the multiple gas inlets 121a to the plasma processing space 10s.
  • a loading/unloading port 10p is provided on the side wall of the plasma processing chamber 10.
  • the substrate W is transported between the plasma processing space 10s and the outside of the plasma processing chamber 10 via the loading/unloading port 10p.
  • the loading/unloading port 10p is opened and closed by a gate valve.
  • the gas supply unit 20 includes one or more gas sources 21 and one or more flow controllers 22.
  • the gas supply unit 20 supplies one or more types of process gas from each gas source 21 to the gas supply port 122c via each flow controller 22.
  • the flow controller 22 may include, for example, a mass flow controller or a pressure-controlled flow controller.
  • the gas supply unit 20 may include one or more flow modulation devices that modulate or pulse the flow rate of one or more process gases.
  • the RF power supply unit 30 includes two RF power sources (first RF power source 31a, second RF power source 31b) and two matchers (first matcher 32a, second matcher 32b).
  • the first RF power source 31a supplies the first RF power to the lower electrode 111 via the first matcher 32a.
  • the frequency of the first RF power may be, for example, 13 MHz to 150 MHz.
  • the second RF power source 31b supplies the second RF power to the lower electrode 111 via the second matcher 32b.
  • the frequency of the second RF power may be, for example, 400 kHz to 13.56 MHz.
  • a DC power source may be used instead of the second RF power source 31b.
  • the exhaust system 40 is connected to a gas exhaust port 10e provided, for example, at the bottom of the plasma processing chamber 10.
  • the exhaust system 40 may include a pressure regulating valve and a vacuum pump.
  • the pressure in the plasma processing space 10s is adjusted by the pressure regulating valve.
  • the vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.
  • the lifter 50 includes a first lifter 51 and a second lifter 52.
  • the first lifter 51 includes a plurality of support pins 511 and an actuator 512.
  • the plurality of support pins 511 are inserted into through holes H1 formed in the lower electrode 111 and the electrostatic chuck 112, and can be protruded and retracted from the upper surface of the electrostatic chuck 112.
  • the plurality of support pins 511 protrude from the upper surface of the electrostatic chuck 112, and support the substrate W by abutting their upper ends against the lower surface of the substrate W.
  • the actuator 512 raises and lowers the plurality of support pins 511.
  • the actuator 512 for example, a motor such as a DC motor, a stepping motor, or a linear motor, an air drive mechanism such as an air cylinder, a piezoelectric actuator, or the like can be used.
  • the first lifter 51 raises and lowers the plurality of support pins 511, for example, when transferring the substrate W between the transport robot TR1 and the substrate support unit 11.
  • the second lifter 52 includes a plurality of support pins 521 and an actuator 522.
  • the support pin 521 is a stepped support pin formed from a cylindrical (solid rod-like) member.
  • the support pin 521 has a lower pin 523 and an upper pin 524.
  • the upper pin 524 is provided on the lower pin 523.
  • the outer diameter of the lower pin 523 is larger than the outer diameter of the upper pin 524.
  • a step is formed by the upper end surface 523a of the lower pin 523.
  • the lower pin 523 and the upper pin 524 are, for example, molded as a single unit.
  • the support pin 521 is inserted through a through hole H11 formed in the lower electrode 111, a through hole H12 formed in the insulating member 115, and a through hole H13 formed in the outer ring 113b, and can protrude and retract relative to the upper surface of the insulating member 115 and the upper surface of the outer ring 113b.
  • the inner diameters of the through holes H11 and H12 are slightly larger than the outer diameter of the lower pin 523.
  • the inner diameter of the through hole H13 is slightly larger than the outer diameter of the upper pin 524 and smaller than the outer diameter of the lower pin 523.
  • the support pin 521 can be displaced between a standby position, a first support position, and a second support position.
  • the standby position is a position where the upper end surface 524a of the upper pin 524 is lower than the lower surface of the inner ring 113a.
  • the first support position is a position above the standby position.
  • the first support position is a position where the upper end surface 524a of the upper pin 524 protrudes above the upper surface of the outer ring 113b and the upper end surface 523a of the lower pin 523 is below the lower surface of the outer ring 113b.
  • the support pin 521 supports the inner ring 113a by abutting the upper end surface 524a of the upper pin 524 against a recess formed in the lower surface of the inner ring 113a.
  • the second support position is a position above the first support position.
  • the second support position is a position where the upper end surface 523a of the lower pin 523 protrudes above the upper surface of the insulating member 115.
  • the support pin 521 abuts the upper end surface 524a of the upper pin 524 against the recess to support the inner ring 113a, and also abuts the upper end surface 523a of the lower pin 523 against the lower surface of the outer ring 113b to support the outer ring 113b.
  • Actuator 522 raises and lowers the multiple support pins 521. Actuator 522 may be configured similarly to actuator 512.
  • the second lifter 52 moves the multiple support pins 521 to the first support position to lift the inner ring 113a.
  • the second lifter 52 moves the multiple support pins 521 to the second support position to lift the inner ring 113a and the outer ring 113b.
  • the multiple support pins 521 are moved to the second support position to lift the outer ring 113b.
  • the control unit 90 controls each part of the plasma processing apparatus 1.
  • the control unit 90 includes, for example, a computer 91.
  • the computer 91 includes, for example, a CPU 911 which is a processor, a memory unit 912, and a communication interface 913.
  • the CPU 911 is configured to perform various control operations based on programs stored in the memory unit 912.
  • the memory unit 912 includes at least one memory type selected from a group consisting of auxiliary storage devices such as RAM, ROM, HDD (Hard Disk Drive), and SSD (Solid State Drive).
  • the communication interface 913 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
  • the control unit 90 may be provided separately from the control unit CU, or may be included in the control unit CU.
  • the processing modules PM1 to PM7 (for example, the plasma processing apparatus 1 in FIG. 2) electrostatically attract and fix the substrate W on the electrostatic chuck 112.
  • the plasma processing apparatus 1 electrostatically attracts and fixes a ring 113 (inner ring 113a) around the substrate W using the electrostatic chuck 112.
  • the plasma processing apparatus 1 reduces the charge in the electrostatic chuck 112 by performing a charge removal process (gas charge removal, plasma charge removal, etc.).
  • the electrostatic force on the substrate support surface 112a and the ring support surface 112b may be reduced by applying a DC voltage of a different polarity to that during plasma processing to the electrostatic chuck 112 of the substrate support portion 11.
  • the inner ring 113a may shift horizontally (sideways). As a result, when the inner ring 113a is handed over to the transport robot TR1, the transport robot TR1 holds the inner ring 113a in a shifted position.
  • the shifted inner ring 113a may cause problems such as interference with other parts and damage when transported by the transport robot TR1.
  • residual suction may cause the inner ring 113a to shift significantly in position, causing it to come off some of the support pins 521 and tilt diagonally.
  • the transport robot TR1 sliding horizontally above the substrate support 11 may collide with the inner ring 113a, damaging the transport robot TR1 or the inner ring 113a.
  • the substrate processing system PS is required to suppress the shift in position of the inner ring 113a and perform the transport robot TR1's transport in or out.
  • conventional substrate processing systems when removing the inner ring (edge ring) from the substrate support, it is not possible to recognize whether the transport robot is holding the inner ring in the correct position.
  • the control unit CU of the substrate processing system PS acquires an index relating to the amount of misalignment of the inner ring 113a when the inner ring 113a is removed. If the position of the inner ring 113a is misaligned, a correction is made to eliminate the misalignment.
  • the configuration for acquiring the index relating to the amount of misalignment of the inner ring 113a will be described with reference to Figures 5(A) to 5(C).
  • the substrate processing system PS uses the detection result of the position of the inner ring 113a by the position detection sensor S1 installed on the upper fork FK1 (or the position detection sensor S2 installed on the lower fork FK2) as an index related to the amount of misalignment.
  • the position detection sensors S1 and S2 may be installed on the lower surface (opposite the surface that holds the substrate W) of the upper fork FK1 or the lower fork FK2 facing the substrate support portion 11.
  • the position detection sensor S1 may be provided in multiple locations on the upper fork FK1 or the lower fork FK2.
  • the position detection sensor S1 may be provided on each of the forked portions of the upper fork FK1.
  • the installation location of the position detection sensor S1 or S2 is not limited to the lower surface (opposite the surface that holds the substrate W) facing the substrate support portion 11, and may be provided on the side of the upper fork FK1 or the lower fork FK2.
  • the position detection sensors S1 and S2 may be, for example, optical detectors (e.g., displacement sensors) capable of detecting changes in the shape of an object.
  • the position detection sensor S1 or S2 detects the edge of the substrate support surface 112a by detecting the step between the substrate support surface 112a and the ring support surface 112b as the upper fork FK1 or the lower fork FK2 moves in the horizontal direction (arrow on the left side of S1 in FIG. 5A).
  • the upper surface of the inner ring 113a has an inner portion 113a1 that is lower than the substrate support surface 112a on the radially inner side, and an outer portion 113a2 that is higher than the inner portion 113a1 on the radially outer side of the inner portion 113a1.
  • the position detection sensor S1 or S2 detects the edge of the inner ring 113a by detecting the step between the inner portion 113a1 and the outer portion 113a2 as the upper fork FK1 or the lower fork FK2 moves in the horizontal direction (arrow on the right side of S1 in FIG. 5A).
  • the control unit CU can obtain the gap between the substrate support surface 112a and the inner ring 113a based on the horizontal position (X coordinate, Y coordinate) of the edge of the substrate support surface 112a and the horizontal position (X coordinate, Y coordinate) of the edge of the inner ring 113a.
  • the gap is the horizontal length of the gap between the sidewall between the substrate support surface 112a and the ring support surface 112b and the inner peripheral surface of the inner portion 113a1 of the inner ring 113a.
  • the gap is calculated as a value decomposed into the amount in the X-axis direction and the amount in the Y-axis direction.
  • the amount of gap is predefined according to the outer diameter of the substrate support surface 112a and the inner diameter of the inner ring 113a. If there is any part of the annular gap where the absolute value of the gap amount is greater than the defined value, the amount of positional deviation of the inner ring 113a will be large. In this way, the control unit CU can accurately calculate the amount of positional deviation of the inner ring 113a based on the detection result of the position detection sensor S1 or S2 (an example of an index related to the amount of positional deviation).
  • FIG. 5(B) is a diagram showing a second example of detecting an indicator related to the amount of misalignment of the inner ring 113a.
  • the substrate processing system PS may perform a gas leak check between the ring support surface 112b and the inner ring 113a as an indicator related to the amount of misalignment.
  • a gas supply port 61a is formed on the ring support surface 112b at the periphery of the electrostatic chuck 112.
  • the gas supply port 61a supplies gas to a gap between the back surface of the inner ring 113a placed on the ring support surface 112b and the ring support surface 112b.
  • the gas may be the same as the heat transfer gas supplied to the lower surface of the inner ring 113a during plasma processing.
  • An example of this gas is He gas.
  • the end of the gas flow passage 61 communicating with the gas supply port 61a on the opposite side to the ring support surface 112b is connected to a gas supply unit 66 via a pipe 62.
  • the gas supply unit 66 may include one or more gas sources 661 and one or more flow rate controllers 662. In one embodiment, the gas supply unit 66 is configured to supply gas from the gas source 661 to the gas supply port 61a via the flow rate controller 662. Each flow rate controller 662 may include, for example, a mass flow controller or a pressure-controlled flow rate controller.
  • the gas flow path 61 and the piping 62 can function as at least a part of a supply path that supplies gas between the ring support surface 112b and the back surface of the inner ring 113a.
  • the end of the gas flow passage 61 opposite the ring support surface 112b is connected to an exhaust system 64 via a pipe 62.
  • the gas supply port 61a can function as an exhaust hole that exhausts the periphery of the ring support surface 112b. Therefore, in one embodiment, the gas flow passage 61 and the pipe 62 can function as at least a part of an exhaust path that exhausts the space between the ring support surface 112b and the back surface of the inner ring 113a.
  • the electrostatic chuck 112 is provided with a pressure sensor 67 that measures the pressure in the gap between the inner ring 113a electrostatically attracted to the ring support surface 112b and the ring support surface 112b.
  • the pressure sensor 67 is provided, for example, in the piping 62.
  • the piping 62 may also be provided with a switching valve 65 that switches between starting and stopping the supply of gas by the gas supply unit 66.
  • the piping 62 may be provided with a switching valve 63 that switches between starting and stopping the exhaust of the area around the ring support surface 112b by the exhaust system 64.
  • the control unit CU of the substrate processing system PS When performing a leak check, the control unit CU of the substrate processing system PS operates the gas check mechanism 60 and the electrostatic chuck 112, for example, according to the procedure described below.
  • the control unit CU applies a voltage to the second chucking electrode 112e of the electrostatic chuck 112 when there is no substrate W in the plasma processing chamber 10, the inner ring 113a is placed on the ring support surface 112b, and exhaust is being performed by the exhaust system 64 through the gas flow path 61.
  • This applies a DC voltage (for example, DC voltages of opposite polarity in the case of a bipolar second chucking electrode 112e) to the second chucking electrode 112e of the electrostatic chuck 112.
  • the control unit CU supplies gas to the gas flow path 61 so that the pressure in the gas flow path 61 is maintained higher than the pressure in the plasma processing chamber 10.
  • the control unit CU closes the switching valve 63 and stops exhausting through the gas flow path 61 by the exhaust system 64.
  • the control unit CU opens the switching valve 65 and supplies gas by the gas supply unit 66. Gas is supplied to the gap between the back surface of the inner ring 113a and the ring support surface 112b via the piping 62 and the gas flow path 61.
  • the control unit CU closes the switching valve 65 to stop the supply of gas.
  • the target pressure is, for example, the same as the pressure in the gap during plasma processing.
  • the control unit CU measures the pressure of the flow passage including the gas flow passage 61 by the pressure sensor 67.
  • the pressure sensor 67 measures the pressure of the pipe 62 after a predetermined time has elapsed since the gas supply was stopped. The measured pressure is approximately equal to the pressure in the gap between the ring support surface 112b and the inner ring 113a. Therefore, the control unit CU can determine gas leakage from the gap (an index of the amount of misalignment of the inner ring 113a) based on the pressure of the pressure sensor 67. More specifically, the control unit CU determines whether the measured pressure is less than the pressure threshold value to determine gas leakage from the gap.
  • This pressure threshold value is set to, for example, 90% to 98% of the target pressure, and the information is stored in advance in the storage unit 912. If the measured pressure is less than the pressure threshold value, the control unit CU determines that gas is leaking from the gap between the ring support surface 112b and the inner ring 113a, that is, that the inner ring 113a is misaligned.
  • FIG. 5(C) is a diagram showing a third example of detecting an indicator related to the amount of misalignment of the inner ring 113a.
  • the control unit CU acquires imaging information from the camera CM installed on the upper fork FK1 or the camera CM installed on the lower fork FK2 as an indicator related to the amount of misalignment.
  • the camera CM is installed, for example, on the underside of the upper fork FK1 or the lower fork FK2 facing the substrate support part 11 instead of the position detection sensors S1, S2.
  • the camera CM may also be installed on the side of the upper fork FK1 or the lower fork FK2.
  • the imaging information includes, for example, the gap between the edge of the substrate support surface 112a and the edge of the inner ring 113a as information on hue and contrast. Therefore, the control unit CU can accurately calculate the amount of gap (amount of misalignment) by acquiring the imaging information captured by the camera CM (one example of an index related to the amount of misalignment) and performing appropriate image processing on this imaging information.
  • amount of gap amount of misalignment
  • the control unit CU of the substrate processing system PS determines the need to replace the inner ring 113a based on triggers such as user instructions, the number of substrate processing times, the quality of the substrates W, the sensor values of each processing module PM1-PM7, and the occurrence of an error. If it is determined that replacement is necessary, the control unit CU collects the inner ring 113a of the processing module to be replaced and replaces it with a replacement inner ring 113a stored in the ring storage module RSM.
  • the replacement inner ring 113a may be new (unused) or may be one that has been used and is not significantly worn.
  • control unit CU removes the inner ring 113a from the processing module to be replaced, it recognizes whether or not there is any misalignment in the inner ring 113a by acquiring an index related to the amount of positional misalignment of the inner ring 113a as described above. This enables the substrate processing system PS to correct the misalignment of the inner ring 113a, and prevents damage to parts, etc.
  • FIG. 6 is a flowchart showing the operation procedure when the edge ring ER is unloaded. Next, with reference to Fig. 6, the operation up to unloading the edge ring ER will be described.
  • the edge ring ER corresponds to the inner ring 113a shown in Figs. 3 to 5. Note that, in the following, a case where the inner ring 113a is transported between the processing module PM1 and the ring storage module RSM will be described.
  • the processing module to be replaced is one of the other processing modules PM2 to PM7, the same method as when the processing module to be replaced is the processing module PM1 can be used.
  • the operating procedure includes steps S1 to S6. Steps S1 to S6 are performed by the control unit CU and/or the control unit 90 controlling each part of the substrate processing system PS.
  • the control unit CU is described as being separate from the control unit 90, but the control unit CU may have the functions of the control unit 90 and control all processing, or the control unit 90 may have the functions of the control unit CU and control all processing.
  • step S1 the control unit CU causes the plasma processing device 1 constituting the processing module PM1 to perform plasma processing (substrate processing) on the substrate W in the plasma processing chamber 10.
  • the control unit 90 of the plasma processing device 1 applies a DC voltage to the first adsorption electrode 112d and the second adsorption electrode 112e of the electrostatic chuck 112 to adsorb the substrate W and edge ring ER.
  • the control unit CU uses the transport robot TR1 to remove the substrate W from the plasma processing device 1.
  • the control unit 90 stops the application of the DC voltage to the first chucking electrode 112d (or applies a DC voltage of a different polarity) to allow the substrate W to be removed.
  • the control unit 90 raises the substrate W using the first lifter 51 and hands it over to the transport robot TR1 that has entered the plasma processing chamber 10.
  • the transport robot TR1 removes the substrate W from the plasma processing device 1 and transports it to the next processing module or load lock modules LL1 to LL3.
  • step S2 the control unit CU controls the plasma processing apparatus 1 to transition to an idle mode after the substrate W is removed.
  • the idle mode is a mode in which the substrate W is plasma-processed and no plasma processing is performed.
  • the control unit CU judges whether the edge ring ER needs to be replaced and whether the edge ring ER can be replaced. The necessity of replacing the ring 113 may be judged based on the above-mentioned trigger.
  • the control unit CU judges whether the replacement can be performed based on the presence or absence of the substrate W in the processing module PM1 to be replaced, the transport schedule of the transport robot TR1, etc.
  • the control unit 90 continues to attract the inner ring 113a by applying a DC voltage to the second attraction electrode 112e.
  • the judgment of whether to replace the edge ring ER is not limited to the idle mode, and may be performed at another timing such as during plasma processing.
  • the control unit CU When it is determined that the inner ring 113a is to be replaced, the control unit CU performs a charge removal process on the inner ring 113a by the plasma processing device 1 in step S3.
  • the plasma processing device 1 supplies an inert gas such as N2 gas into the plasma processing chamber 10 by the gas supply unit 20, and exhausts the gas in the plasma processing chamber 10 by the exhaust system 40, thereby controlling the inside of the plasma processing chamber 10 to a predetermined pressure.
  • the plasma processing device 1 applies a DC voltage of a different polarity from that during plasma processing to the second attraction electrode 112e of the electrostatic chuck 112 for a predetermined time and stops the application. Then, the plasma processing device 1 stops the pressure control and ends the gas charge removal.
  • the control unit CU transports the edge ring ER from the processing module PM1 to the ring storage module RSM.
  • the edge ring ER is checked for status and transported using the position detection sensor S1 or S2 of the transport robot TR1 shown in FIG. 5(A) (hereinafter also referred to as the first example transport method) will be described.
  • step S4 when the control unit CU raises the inner ring 113a from the substrate support unit 11, if any misalignment of the inner ring 113a is detected, the control unit CU performs a misalignment confirmation and correction process to correct the misalignment.
  • FIG. 7 is a flowchart showing the process flow of the misalignment confirmation and correction process.
  • FIGS. 8(A) to 8(F) are diagrams showing the operation of the misalignment confirmation and correction process.
  • the control unit CU first raises each support pin 521 of the plasma processing device 1 to separate the edge ring ER from the ring support surface 112b of the substrate support unit 11 (step S101 in FIG. 7). If there is residual adhesion between the ring support surface 112b and the edge ring ER, as shown in FIG. 8(A), there is a possibility that the edge ring ER will be misaligned during the lift.
  • the control unit CU lowers each support pin 521 of the plasma processing device 1 to temporarily place the edge ring ER on the ring support surface 112b of the substrate support unit 11 (step S102 in FIG. 7). If the edge ring ER is misaligned, as shown in FIG. 8(B), the edge ring ER is positioned misaligned with respect to the substrate support surface 112a.
  • the control unit CU operates the transport robot TR1 to detect the position of the edge ring ER (one example of an index related to the amount of misalignment) using the position detection sensor S1 or S2 (step S103 in FIG. 7).
  • the transport robot TR1 moves horizontally within the plasma processing space 10s to position the position detection sensor S1 or S2 at a position where it can detect the edge of the substrate support surface 112a and the edge of the edge ring ER.
  • This allows the control unit CU to receive the detection result of the position detection sensor S1 or S2 and obtain the amount of gap (amount of misalignment) between the substrate support surface 112a and the edge ring ER.
  • the control unit CU compares the positional deviation of the edge ring ER with a threshold stored in advance, and determines whether the positional deviation of the edge ring ER is equal to or greater than the threshold (step S104).
  • the threshold may be set to an appropriate value depending on the dimensions of the substrate support surface 112a and the edge ring ER, and may be set to a value in the range of, for example, 0.1 mm to 0.4 mm. In this embodiment, it is set to 0.15 mm.
  • step S104 If the amount of positional deviation is less than the threshold (step S104: NO), it can be said that the edge ring ER is not misaligned (or the amount of positional deviation is sufficiently small). Therefore, the control unit CU ends the deviation confirmation and correction process (step S4 in FIG. 6) and proceeds to step S5. On the other hand, if the amount of positional deviation is equal to or greater than the threshold (step S104: YES), it can be said that the edge ring ER is misaligned (the amount of positional deviation is large). In this case, the control unit CU detects an error in the edge ring ER and proceeds to step S105 in FIG. 7.
  • step S105 the control unit CU raises the edge ring ER using each support pin 521 of the plasma processing device 1, and causes the transport robot TR1 to enter the plasma processing space 10s and hand over the edge ring ER.
  • the edge ring ER is held by the transport robot TR1 in a misaligned state, as shown in FIG. 8(D).
  • the control unit CU performs a correction movement to correct the misalignment of the edge ring ER by the transport robot TR1 holding the edge ring ER (step S106 in FIG. 7).
  • the control unit CU sets the movement amount in the correction movement of the transport robot TR1 based on the acquired amount of positional misalignment, and moves the transport robot TR1 horizontally by this movement amount.
  • the transport robot TR1 is moved horizontally to the right by the movement amount.
  • the edge ring ER is returned to its normal position above the substrate support part 11.
  • the control unit CU receives the edge ring ER from the transport robot TR1 using each support pin 521, and after the transport robot TR1 retreats, lowers each support pin 521 to place the edge ring ER again on the ring support surface 112b (step S107 in FIG. 7). As a result, as shown in FIG. 8(F), the edge ring ER is supported on the ring support surface 112b with the positional deviation eliminated. When this step S107 ends, the deviation confirmation and correction process (process S4) ends. Note that after receiving the edge ring ER using each support pin 521, the control unit CU may proceed to the removal process of removing the edge ring ER from the processing module PM1 without lowering each support pin 521.
  • step S5 the control unit CU performs a carry-out process to carry out the edge ring ER from the processing module PM1. Specifically, the control unit CU raises the edge ring ER using each support pin 521 of the plasma processing device 1, and the transfer robot TR1 receives the edge ring ER. After the edge ring ER is placed (after step S107), electrostatic adsorption by the electrostatic chuck 112 is not performed. Therefore, when the edge ring ER is raised by each support pin 521, the edge ring ER can be positioned without being shifted relative to the holding position of the transfer robot TR1.
  • the transfer robot TR1 receives the edge ring ER without any shifting, and after the support pins 521 are lowered, carries out the edge ring ER from the processing module PM1. At this time, the transfer robot TR1 can smoothly carry out the edge ring ER without interfering with other parts.
  • step S6 the control unit CU performs a loading process in which the edge ring ER is transported by the transport robot TR1 and the edge ring ER is loaded into the ring storage module RSM.
  • the transport robot TR1 holds the edge ring ER without any misalignment, so that the edge ring ER can be stably transported into the ring storage module RSM without interfering with other parts such as the ring storage module RSM.
  • the substrate processing system PS and transport method checks for misalignment of the edge ring ER when transporting the edge ring ER from the processing module PM1, and corrects any misalignment, thereby enabling the edge ring ER to be transported without interfering with other components. This makes it possible to prevent the edge ring ER from falling from the transport robot TR1 and damage to the edge ring ER or other components. Therefore, the substrate processing system PS can reduce the number of times the substrate processing system PS needs to be stopped for maintenance.
  • the substrate processing system PS and the transport method are not limited to the above embodiment, and various modifications are possible.
  • the transport method shown in FIG. 6 has been described for the case where only the edge ring ER is replaced, but it can also be applied to the case where the covering ring CR (outer ring 113b) is replaced.
  • the covering ring CR outer ring 113b
  • a misalignment confirmation and correction process is performed, making it possible to transport the covering ring CR stably.
  • the substrate support 11 of each processing module PM1 to PM7 is not limited to a configuration in which the substrate W and ring 113 are electrostatically attracted by the electrostatic chuck 112.
  • the substrate support 11 may employ a mechanism that exerts an attractive force on the substrate W and ring 113, or a mechanism that mechanically engages and fixes the ring 113.
  • the ring 113 may be displaced when each support pin 521 is raised due to the ring 113 coming into close contact with the ring support surface 112b or other structure. Therefore, the substrate processing system PS can transport the ring 113 while suppressing displacement by performing the transport method according to the embodiment.
  • an index related to the amount of misalignment of the edge ring ER is obtained by the position detection sensor S1 or S2 of the transport robot TR1.
  • an index related to the amount of misalignment of the edge ring ER may be obtained by the position detection sensor S1 or S2 of the transport robot TR1 while the edge ring ER is still supported (raised) by each support pin 521.
  • step S111 the control unit CU lifts the edge ring ER with the support pins 521, stops the support pins 521 when the edge ring ER peels off from the ring support surface 112b, and acquires the amount of positional deviation with the position detection sensors S1 and S2 while the support pins 521 are stopped.
  • the control unit CU may acquire the amount of positional deviation with the position detection sensors S1 and S2 at an arbitrary pin height position that is higher than the position where the edge ring ER peels off from the ring support surface 112b and where the top surface of the edge ring ER is lower than the position detection sensors S1 and S2 of the transport robot TR1.
  • step S112 the control unit CU detects the amount of positional deviation of the edge ring ER with the position detection sensor S1 or S2, and in step S113, determines whether the amount of positional deviation of the edge ring ER is equal to or greater than a threshold value. Then, when the positional deviation amount is equal to or greater than the threshold (step S113: YES), the control unit CU raises the edge ring ER to the transport height by the support pins 521, and causes the transport robot TR1 to enter the plasma processing space 10s to hand over the edge ring ER (step S114). In step S115, the control unit CU performs a correction movement to correct the deviation of the edge ring ER by the transport robot TR1 holding the edge ring ER.
  • step S116 the control unit CU receives the edge ring ER from the transport robot TR1 by the support pins 521, and after the transport robot TR1 retreats, lowers the support pins 521 to place the edge ring ER on the ring support surface 112b again.
  • step S115 the control unit CU may correct the movement of the transport robot TR1 by taking into account the amount of positional deviation of the edge ring ER, and may then receive the edge ring ER and transport it away as is. This allows step S116 to be omitted.
  • the transport robot TR1 may be moved in advance by the amount of positional misalignment to correct the positional misalignment, and then the edge ring ER may be handed over to the transport robot TR1. This may, for example, omit steps S106 and S107 in FIG. 7, making the process even more efficient.
  • the substrate processing system PS may also stop at a predetermined height while the edge ring ER is being raised by each support pin 521 in the misalignment confirmation and correction process (step S4) and perform a cleaning process in the plasma processing chamber 10, or may perform a cleaning process in the plasma processing chamber 10 after the pins are raised to the transport height, or may perform a cleaning process in the plasma processing chamber 10 while the edge ring ER is being raised.
  • the cleaning process may stop at a predetermined height while the edge ring ER is being raised by each support pin 521 during the unloading process from the processing modules PM1 to PM7 (step S5) and perform a cleaning process in the plasma processing chamber 10, or may perform a cleaning process in the plasma processing chamber 10 after the pins are raised to the transport height, or may perform a cleaning process in the plasma processing chamber 10 while the edge ring ER is being raised.
  • This cleaning process can be, for example, wafer-less dry cleaning (WLDC: Wafer-Less Dry Cleaning) or dry cleaning (WWDC: Wafer With Dry Cleaning) in which a dummy wafer having a smaller diameter than the substrate W and a diameter equivalent to the substrate support surface 112a is placed on the substrate support part 11.
  • WLDC wafer-Less Dry Cleaning
  • WWDC Wafer With Dry Cleaning
  • the substrate processing system PS may perform waferless dry cleaning after the substrate processing in step S1 and before the discharge processing in step S3, or may perform dry cleaning by placing a dummy wafer having a diameter equal to that of the substrate W, or a dummy wafer smaller than the substrate W and having a diameter equal to that of the substrate support surface 112a.
  • the substrate processing system PS may perform waferless dry cleaning after step S5 and before the replacement ring is brought in, or may perform dry cleaning by placing a dummy wafer having a diameter equal to that of the substrate W, or a dummy wafer smaller than the substrate W and having a diameter equal to that of the substrate support surface 112a.
  • the edge ring ER By performing the cleaning process during the misalignment confirmation and correction process or the unloading process, the edge ring ER can be cleaned before being unloaded into the vacuum transfer chamber, and contamination of the vacuum transfer chamber by deposits adhering to the edge ring ER can be suppressed. Also, by performing the cleaning process when the edge ring ER is rising, deposits adhering to the ring support surface 112b can be removed. Furthermore, by cleaning the edge ring ER during the unloading operation, the substrate processing system PS can improve the throughput of the entire process compared to when a separate cleaning process is performed. Also, by cleaning before the replacement edge ring is loaded after the edge ring is unloaded and removing deposits that have accumulated on the ring mounting surface, poor adhesion of the replacement edge ring can be suppressed.
  • FIG. 10 is a flowchart showing the transport method of the second example.
  • the transport method of the second example also uses the position detection sensor S1 or S2 of the transport robot TR1 to check the state of the edge ring ER and transport it.
  • the transport method of the second example will also be explained in detail for the case where the ring 113 is transported between the ring storage module RSM and the processing module PM1.
  • the processing module to be replaced is one of the other processing modules PM2 to PM7, the same method as when the processing module to be replaced is processing module PM1 can be used.
  • Step S201 to S210 are performed by the control unit CU controlling each part of the substrate processing system PS.
  • Steps S201 to S204 may be the same as steps S101 to S104. However, if the amount of positional deviation of the edge ring ER is equal to or greater than the threshold in step S204 (step S204: YES), the control unit CU proceeds to step S205, and if the amount of positional deviation of the edge ring ER is less than the threshold (step S204: NO), the control unit CU proceeds to step S208.
  • step S205 the control unit CU raises the edge ring ER using each support pin 521, and then moves the transport robot TR1 into the plasma processing space 10s, and then lowers each support pin 521 to hand over the edge ring ER to the transport robot TR1. As a result, the edge ring ER is held by the transport robot TR1 in a misaligned state.
  • control unit CU performs an unloading process to unload the edge ring ER from the processing module PM1 (step S206).
  • the transport robot TR1 unloads the edge ring ER from the processing module PM1 while holding the edge ring ER in a shifted state.
  • the control unit CU performs a loading process in which the edge ring ER is transported by the transport robot TR1 and loaded into the ring storage module RSM (step S207).
  • the control unit CU sets the movement amount of the transport robot TR1 based on the positional deviation amount acquired in step S203, and performs corrective movement.
  • the edge ring ER is returned to its normal position by the transport robot TR1 without interfering with the ring storage module RSM. Therefore, the control unit CU can smoothly store the edge ring ER without interfering with other components.
  • the control unit CU performs normal transport (without movement correction) in steps S208 to S210.
  • control unit CU raises the edge ring ER by using each support pin 521 of the plasma processing apparatus 1, and causes the transport robot TR1 to enter the plasma processing space 10s to hand over the edge ring ER (step S208). Then, the control unit CU performs a carry-out process to carry the edge ring ER out of the processing module PM1 (step S209). Furthermore, the control unit CU transports the edge ring ER by the transport robot TR1, and carries the edge ring ER into the ring storage module RSM (step S210). When carrying the edge ring ER into the ring storage module RSM, the transport robot TR1 can store the edge ring ER in the storage module without moving it. That is, the carry-in process of steps S206 and S209 corresponds to the carry-out process of step S5 in FIG. 6, and the carry-in process of steps S207 and S210 corresponds to the carry-in process of step S6 in FIG. 6.
  • the edge ring ER can be prevented from interfering with other components by performing a movement correction when the edge ring ER is carried into the ring storage module RSM.
  • the transport method of the second example can also be modified in various ways. For example, in the deviation confirmation and correction process, while the edge ring ER is supported by each support pin 521, an index related to the amount of deviation of the edge ring ER may be obtained by the position detection sensor S1 or S2 of the transport robot TR1.
  • control unit CU may stop the support pin 521 at the position where the edge ring ER is peeled off from the ring support surface 112b and obtain the amount of deviation by the position detection sensor S1 or S2, or may obtain the amount of deviation by the position detection sensor S1 or S2 at any pin height that is higher than the peeled off position and where the upper surface of the edge ring ER is lower than the position detection sensor S1 or S2 of the transport robot TR1 (see also FIG. 9).
  • the control unit CU may also select between the first example transport method and the second example transport method based on the amount of positional deviation of the edge ring ER.
  • the control unit CU may have a threshold for selecting the transport method, and when the amount of positional deviation is equal to or greater than the selection threshold, the control unit CU may determine the first example transport method, and when the amount of positional deviation is less than the selection threshold, the control unit CU may determine the second example transport method.
  • the selection threshold is a value greater than the threshold for determining movement correction.
  • the substrate processing system PS is not limited to a configuration in which the rings 113 (edge rings ER) of the processing modules PM1 to PM7 are directly transferred to the ring storage module RSM by the transfer robot TR1.
  • the substrate processing system PS may transfer the upper ring 222 of the ring 220 to the atmospheric transfer module LM.
  • FIG. 11 is a schematic cross-sectional view showing another example of a plasma processing apparatus.
  • the plasma processing apparatus 1A shown in FIG. 11 differs from the plasma processing apparatus 1 in that it has a substrate support portion 16 instead of the substrate support portion 11, and a ring assembly 220 (ring 220) instead of the ring assembly 113.
  • the rest of the configuration may be the same as that of the plasma processing apparatus 1. The following description will focus on the differences from the plasma processing apparatus 1.
  • the plasma processing apparatus 1A has a substrate support part 16.
  • the substrate support part 16 is provided inside the plasma processing chamber 10.
  • the substrate support part 16 supports the substrate W.
  • the substrate support part 16 is supported by a support part 17.
  • the support part 17 extends upward from the bottom of the plasma processing chamber 10.
  • the support part 17 has a cylindrical shape.
  • the support part 17 is formed from an insulating material such as quartz.
  • the substrate support 16 has a first region 161 and a second region 162.
  • the first region 161 supports the substrate W.
  • the first region 161 is a substantially circular region in a plan view.
  • the first region 161 may include a base 18 and an electrostatic chuck 19.
  • the first region 161 may be formed of a portion of the base 18 and a portion of the electrostatic chuck 19.
  • the base 18 and the electrostatic chuck 19 are provided inside the plasma processing chamber 10.
  • the base 18 is formed of a conductive material such as aluminum.
  • the base 18 has a substantially disc shape.
  • the base 18 constitutes a lower electrode.
  • the substrate support section 16 has a main body section 2 and a ring assembly 220.
  • the main body section 2 has a base 18 and an electrostatic chuck 19.
  • the main body section 2 has a substrate support region 2a for supporting the substrate W, an annular region 2b for supporting the ring assembly 220, and a sidewall 2c extending in the vertical direction between the substrate support region 2a and the annular region 2b.
  • the annular region 2b surrounds the substrate support region 2a.
  • the annular region 2b is located lower than the substrate support region 2a. Therefore, the upper end of the sidewall 2c is connected to the substrate support region 2a, and the lower end of the sidewall 2c is connected to the annular region 2b.
  • a flow path 18f is formed within the base 18.
  • the flow path 18f is a flow path through which a heat exchange medium flows.
  • a heat exchange medium e.g., freon
  • a heat exchange medium supply device e.g., a chiller unit
  • the supply device is provided outside the plasma processing chamber 10.
  • the heat exchange medium is supplied from the supply device to the flow path 18f.
  • the heat exchange medium supplied to the flow path 18f is returned to the supply device.
  • the electrostatic chuck 19 is provided on the base 18. When the substrate W is processed in the plasma processing chamber 10, it is placed on the first region 161 and on the electrostatic chuck 19.
  • the second region 162 extends radially outward from the first region 161 and surrounds the first region 161.
  • the second region 162 is a region that is approximately ring-shaped in a plan view.
  • a ring assembly 220 is placed on the second region 162.
  • the second region 162 may include a base 18.
  • the second region 162 may also include an electrostatic chuck 19.
  • the second region 162 may be composed of another part of the base 18 and another part of the electrostatic chuck 19.
  • the substrate W is placed within the region surrounded by the ring assembly 220 and on the electrostatic chuck 19. Details of the ring assembly 220 will be described later.
  • a through hole 162h is formed in the second region 162.
  • the main body 2 has a through hole 162h formed between the annular region 2b and the lower surface 2d of the main body 2.
  • the through hole 162h is formed in the second region 162 so as to extend along the vertical direction.
  • a plurality of through holes 162h are formed in the second region 162.
  • the number of through holes 162h may be the same as the number of lift pins 72 of the lift mechanism 70 described below.
  • Each through hole 162h is arranged so as to be aligned in a straight line with a corresponding lift pin 72.
  • the electrostatic chuck 19 has a body 19m and an electrode 19e.
  • the body 19m is formed of a dielectric material such as aluminum oxide or aluminum nitride.
  • the body 19m has an approximately disk shape.
  • the electrode 19e is provided inside the body 19m.
  • the electrode 19e has a film shape.
  • a DC power supply is electrically connected to the electrode 19e via a switch. When a voltage from the DC power supply is applied to the electrode 19e, an electrostatic attractive force is generated between the electrostatic chuck 19 and the substrate W. Due to the generated electrostatic attractive force, the substrate W is attracted to the electrostatic chuck 19 and held by the electrostatic chuck 19.
  • the plasma processing apparatus 1A further has an outer peripheral member 27.
  • the outer peripheral member 27 extends circumferentially radially outward from the substrate support portion 16 so as to surround the substrate support portion 16.
  • the outer peripheral member 27 may also extend circumferentially radially outward from the support portion 17 so as to surround the support portion 17.
  • the outer peripheral member 27 may be composed of one or more parts.
  • the outer peripheral member 27 may be formed from an insulating material such as quartz.
  • the ring assembly 220 and the substrate support 16 will now be described in more detail.
  • the ring assembly 220 includes a lower ring 221 and an upper ring 222.
  • the lower ring 221 and the upper ring 222 each have a circular ring shape.
  • the lower ring 221 and the upper ring 222 each are made of a material appropriately selected depending on the plasma processing performed in the plasma processing apparatus 1A.
  • the lower ring 221 and the upper ring 222 each are made of, for example, silicon or silicon carbide.
  • the lower ring 221 is disposed on the annular region 2b.
  • the lower ring 221 can be placed on the second region 162 and on the electrostatic chuck 19.
  • the lower ring 221 may also be placed on a component other than the electrostatic chuck 19 in the second region 162.
  • the lower surface of the upper ring 222 is generally flat.
  • the lower surface of the upper ring 222 includes a tapered surface and defines a recess.
  • the lower surface of the upper ring 222 defines a plurality of recesses.
  • the number of tapered surfaces and the number of recesses of the upper ring 222 can be the same as the number of lift pins 72 of the lift mechanism 70.
  • Each recess has a size such that the tip of the second columnar portion 722 of the corresponding lift pin 72 fits into it.
  • the upper ring 222 is positioned on the lower ring 221 such that each recess is aligned in a straight line with the corresponding lift pin 72 and the corresponding through hole 221h.
  • the upper ring 222 is accommodated in a recess in the lower ring 221.
  • the lower ring 221 and the upper ring 222 are configured so that when placed on the annular region 2b, the upper surface of the outer portion of the lower ring 221 and the upper surface of the upper ring 222 are at approximately the same height as the upper surface of the substrate W on the substrate support region 2a.
  • the upper ring 222 has an inner peripheral surface 222a that faces the edge surface of the substrate W on the substrate support region 2a when the lower ring 221 and the upper ring 222 are placed on the annular region 2b.
  • the substrate support 16 has a lift mechanism 70.
  • the lift mechanism 70 includes lift pins 72 and is configured to raise and lower the lower ring 221 and the upper ring 222.
  • the lift mechanism 70 includes a plurality of lift pins 72.
  • the number of lift pins 72 can be any number as long as it is possible to support and raise and lower the ring assembly 220.
  • the number of lift pins 72 can be, for example, three.
  • Each lift pin 72 may be formed from an insulating material. Each lift pin 72 may be formed from, for example, sapphire, alumina, quartz, silicon nitride, aluminum nitride, or resin. Each lift pin 72 includes a first columnar portion 721 and a second columnar portion 722. The first columnar portion 721 extends in the vertical direction. The first columnar portion 721 has a first upper end surface 721t. The first upper end surface 721t is capable of abutting against the lower surface of the lower ring 221.
  • the second columnar portion 722 extends vertically above the first columnar portion 721.
  • the second columnar portion 722 is narrowed relative to the first columnar portion 721 so as to expose the first upper end surface 721t.
  • the first columnar portion 721 and the second columnar portion 722 each have a cylindrical shape.
  • the diameter of the first columnar portion 721 is larger than the diameter of the second columnar portion 722.
  • the second columnar portion 722 can move up and down through the through hole 221h.
  • the vertical length of the second columnar portion 722 is longer than the vertical thickness of the area of the lower ring 221 on which the upper ring 222 is placed.
  • the second columnar portion 722 has a second upper end surface 722t.
  • the second upper end surface 722t can abut against the upper ring 222.
  • the tip of the second columnar portion 722, including the second upper end surface 722t, may be tapered so as to fit into a corresponding recess in the upper ring 222.
  • the second columnar portion 722 may include a first portion 722a and a second portion 722b.
  • the first portion 722a is columnar and extends upward from the first columnar portion 721.
  • the second portion 722b is columnar and extends above the first portion 722a.
  • the second portion 722b includes a second upper end surface 722t.
  • the width of the first portion 722a is greater than the width of the second portion 722b.
  • Each of the first columnar portion 721, the first portion 722a, and the second portion 722b may have a cylindrical shape.
  • the diameter of the first columnar portion 721 is larger than the diameter of the first portion 722a, and the diameter of the first portion 722a is larger than the diameter of the second portion 722b.
  • the second columnar portion 722 may include a third portion 722c.
  • the third portion 722c extends between the first portion 722a and the second portion 722b.
  • the third portion 722c has a tapered surface.
  • the lift mechanism 70 includes one or more drive devices 74.
  • the one or more drive devices 74 are configured to raise and lower the plurality of lift pins 72.
  • Each of the one or more drive devices 74 may include, for example, a motor.
  • the upper ring 222 is stored in a ring storage container CS2 placed on the load port LP4 of the atmospheric transfer module LM.
  • the ring storage container CS2 corresponds to a ring storage module.
  • the control unit CU transfers the upper ring 222 of the processing modules PM1 to PM7 to the vacuum transfer module TM, and moves the upper ring 222 to one of the load lock modules LL1 to LL3. Then, the control unit CU transfers the upper ring 222 from the load lock modules LL1 to LL3 using the transfer robot TR2 of the atmospheric transfer module LM, and then transfers the upper ring 222 into the ring storage container CS2 and stores it there.
  • the correction movement may be performed within the processing modules PM1 to PM7, or when the transfer robot TR1 loads and places the upper ring 222 into the load lock modules LL1 to LL3.
  • the correction movement may be performed when the transfer robot TR2 of the atmospheric transfer module LM loads the upper ring 222 into the ring storage container CS2.
  • the same processing may be performed when the lower ring 221 is transferred in addition to the upper ring 222 in the transfer method.
  • the processing modules PM1 to PM7 of the substrate processing system PS are not limited to the ring assemblies 113 and 220 that are a combination of multiple members, and may be configured to use a ring made of a single member. Even in this case, the transfer methods of the first and second examples above can be applied, and the transfer methods of the third to fifth examples described below can also be applied.
  • FIG. 12 is a flowchart showing the process flow of the transport method of the third example. Note that the explanation of the transport method of the third example will also be given in detail for the case where the ring 113 is transported between the ring storage module RSM and the processing module PM1.
  • the processing module to be replaced is one of the other processing modules PM2 to PM7, the same method as when the processing module to be replaced is the processing module PM1 can be used.
  • Step S3 When the control unit CU of the substrate processing system PS has performed step S3 in the operational procedure of FIG. 6, it performs steps S301 to S308 as a third example of the transfer method. Steps S301 to S308 are performed by the control unit CU controlling each part of the substrate processing system PS.
  • Steps S301 and S302 may be the same as steps S101 and S102.
  • the control unit CU performs a process of electrostatically adsorbing the edge ring ER to the ring support surface 112b in order to perform a leak check.
  • step S303 the control unit CU performs a leak check using the plasma processing device 1 to obtain an index related to the amount of positional deviation of the edge ring ER.
  • the control unit 90 of the plasma processing device 1 supplies gas to the gap between the electrostatically attracted ring support surface 112b and the edge ring ER, and stops the gas supply when the pressure in this gap reaches the target pressure.
  • the control unit 90 uses the pressure sensor 67 to measure the pressure in the flow passage a predetermined time after the supply is stopped.
  • the control unit CU acquires the measurement result of the pressure sensor 67 after a predetermined time has elapsed as an index related to the amount of positional misalignment of the edge ring ER, and judges the positional misalignment of the edge ring ER (step S304 in FIG. 12). For example, the control unit CU judges that the edge ring ER is not misaligned (normal) when the pressure is equal to or greater than a pre-stored pressure threshold, and judges that the edge ring ER is misaligned (abnormal) when the pressure is less than the pressure threshold. Then, if the edge ring ER is not misaligned (step S304: YES), the process proceeds to step S305, and if the edge ring ER is misaligned (step S304: NO), the process proceeds to step S308.
  • step S305 the control unit CU ends the leak check and misalignment confirmation and correction process.
  • step S306 the control unit CU performs an unloading process to unload the edge ring ER from the processing module PM1 using the transport robot TR1.
  • step S306 corresponds to step S5 in FIG. 6.
  • the control unit CU may perform a de-electrification process on the edge ring ER before step S306 (or step S308 described later).
  • step S307 the control unit CU performs an inloading process to load the edge ring ER into the ring storage module RSM using the transport robot TR1.
  • step S307 corresponds to step S6 in FIG. 6.
  • the control unit CU performs a misalignment elimination operation to eliminate the misalignment of the edge ring ER in step S308.
  • This misalignment elimination operation can utilize the configuration of the recess 114 provided in the edge ring ER and each support pin 521, as shown in Figures 13(A) to 13(C), for example.
  • each recess 114 of the edge ring ER are provided on the underside of the edge ring ER in a number that corresponds to the number of each support pin 521.
  • each recess 114 includes a flat bottom 114a and a tapered portion 114b that surrounds the periphery of the bottom 114a and whose inner diameter widens toward the open portion.
  • the bottom 114a is formed to be wider than the outer diameter of the upper pin 524 of the support pin 521, and has a diameter of, for example, about 2 mm.
  • the tapered portion 114b is smoothly connected to the bottom 114a and the underside of the edge ring ER via an R portion.
  • the control unit CU performs an operation to lift each support pin 521 using the plasma processing device 1 as an operation to eliminate the misalignment.
  • step S308 after performing the misalignment elimination operation in step S308, the control unit CU returns to step S303 and performs a leak check again. This is to check whether the misalignment of the edge ring ER has been eliminated by the misalignment elimination operation. If the measured pressure is less than the pressure threshold, the misalignment of the edge ring ER has not been eliminated, and the misalignment elimination operation (step S308) is repeated. On the other hand, if the measured pressure is equal to or greater than the pressure threshold, the control unit CU proceeds to step S305, thereby terminating the misalignment confirmation and correction process.
  • the substrate processing system PS and the transport method can check for misalignment of the edge ring ER by performing a leak check.
  • the substrate processing system PS and the transport method can also correct the misalignment of the edge ring ER by utilizing the recess 114 of the edge ring ER and the shape of the support pin 521.
  • the transport robot TR1 can transport the edge ring ER without interfering with other parts.
  • FIG. 14 is a flowchart showing the transport method of the fourth example.
  • a leak check is also performed in processing module PM1, and the state of the edge ring ER is confirmed and transported.
  • the transport method of the fourth example will also be explained in detail for the case where the ring 113 is transported between the ring storage module RSM and processing module PM1.
  • the processing module to be replaced is one of the other processing modules PM2 to PM7, the same method as when the processing module to be replaced is processing module PM1 can be used.
  • Step S401 to S410 are performed by the control unit CU controlling each part of the substrate processing system PS.
  • Steps S401 to S404 may be the same as steps S301 to S304.
  • the control unit CU After step S402 (before step S403), the control unit CU performs a process of electrostatically adsorbing the edge ring ER to the ring support surface 112b in order to perform a leak check. If the pressure of the pressure sensor 67 is less than the pressure threshold in step S404 (step S404: NO), the control unit CU proceeds to step S405, and if the pressure of the pressure sensor 67 is equal to or greater than the threshold (step S404: YES), the control unit CU skips steps S405 to S408 and proceeds to step S409.
  • step S405 the control unit CU operates the transport robot TR1 to detect the position of the edge ring ER (an index related to the amount of misalignment) using the position detection sensor S1 or S2. As a result, the control unit CU receives the detection result of the position detection sensor S1 or S2 and can obtain the amount of gap (amount of misalignment) between the substrate support surface 112a and the edge ring ER.
  • control unit CU can use this positional deviation amount to perform the correction movement shown in FIG. 8(D) to FIG. 8(F). Since the above leak check is performed with the edge ring ER electrostatically adsorbed, the control unit CU may perform a de-electrification process on the edge ring ER after the YES determination in step S404 and before step S406. Therefore, in step S406, the control unit CU raises the edge ring ER by each support pin 521 in a state where the adsorption between the ring support surface 112b and the edge ring ER is released.
  • step S407 may be the same operation as step S106 in FIG. 7, and step S408 may be the same operation as step S107 in FIG. 7.
  • step S409 the control unit CU performs an unloading process to unload the edge ring ER from the processing module PM1 using the transport robot TR1.
  • step S409 corresponds to step S5 in FIG. 6.
  • step S410 the control unit CU performs an unloading process to unload the edge ring ER into the ring storage module RSM using the transport robot TR1.
  • step S410 corresponds to step S6 in FIG. 6.
  • the transport method of the fourth example if a misalignment of the edge ring ER is detected during a leak check, the position of the edge ring ER is detected by the position detection sensor S1 or S2 of the transport robot TR1.
  • This allows the control unit CU to reliably grasp the amount of misalignment of the edge ring ER, making it possible to accurately correct and move the edge ring ER.
  • the transport method allows the edge ring ER to be transported without interfering with other parts.
  • FIG. 15 is a flowchart showing a fifth example of a transport method.
  • the fifth example of the transport method also involves performing a leak check in processing module PM1, and then checking and transporting the state of the edge ring ER.
  • the fifth example of the transport method also details the case where the ring 113 is transported between the ring storage module RSM and processing module PM1.
  • the processing module to be replaced is one of the other processing modules PM2 to PM7, the same method as when the processing module to be replaced is processing module PM1 can be used.
  • control unit CU performs steps S501 to S511 after performing step S3 in the operation procedure of FIG. 6. Steps S501 to S511 are performed by the control unit CU controlling each part of the substrate processing system PS.
  • Steps S501 to S504 may be the same as steps S301 to S304.
  • the control unit CU After step S502 (before step S503), the control unit CU performs a process of electrostatically adsorbing the edge ring ER to the ring support surface 112b in order to perform a leak check. If the pressure of the pressure sensor 67 is less than the pressure threshold in step S504 (step S504: NO), the control unit CU proceeds to step S505, and if the pressure is equal to or greater than the threshold (step S504: YES), the control unit CU proceeds to step S509.
  • Steps S505 and S506 may be the same as steps S205 and S206 in the second example of the transport method. Note that since the above leak check is performed with the edge ring ER electrostatically adsorbed, the control unit CU may perform a static elimination process on the edge ring ER before step S505 (or step S509 described below).
  • step S507 the control unit CU detects the amount of positional deviation of the edge ring ER using the position detection sensors S11 and S12 installed in the vacuum transfer module TM near the gate valve (not shown) that separates the processing module PM1. For example, when the edge ring ER is transferred by the transfer robot TR1, the control unit CU performs detection using the position detection sensors S11 and S12, and calculates the position of the edge ring ER based on the position and time at which the edge ring ER blocks light. The control unit CU also calculates the amount of positional deviation (an index related to the amount of positional deviation) of the edge ring ER from the reference position based on the position of the edge ring ER and a predetermined reference position.
  • the amount of positional deviation an index related to the amount of positional deviation
  • the control unit CU After calculating the amount of positional deviation during removal, the control unit CU performs a loading process in which the transport robot TR1 loads the edge ring ER into the ring storage module RSM (step S508).
  • the control unit CU sets the amount of movement of the transport robot TR1 based on the amount of positional deviation acquired in step S507 and moves to correct the movement. This allows the edge ring ER to be returned to its normal position by the transport robot TR1 without interfering with the ring storage module RSM. Therefore, the control unit CU can store the edge ring ER smoothly without interfering with other components.
  • steps S509 to S511 may be similar to steps S208 to S210.
  • the control unit CU can reliably grasp the amount of deviation of the edge ring ER, and can accurately correct and move the edge ring ER when it is loaded into the ring storage module RSM.
  • the edge ring ER when the position of the edge ring ER is detected by the position detection sensors S11 and S12 of the vacuum transport module TM, after detection, the edge ring ER may not be transported to the ring storage module RSM, but may be temporarily returned to the processing module PM1 and movement correction may be performed within the processing module PM1.
  • FIG. 16 is a flowchart showing the process flow of the transport method of the sixth example. Note that the explanation of the transport method of the sixth example also details the case where the ring 113 is transported between the ring storage module RSM and the processing module PM1.
  • the processing module to be replaced is one of the other processing modules PM2 to PM7, the same method as when the processing module to be replaced is the processing module PM1 can be used.
  • Step S3 When the control unit CU of the substrate processing system PS has performed step S3 in the operational procedure of FIG. 6, it performs steps S601 to S609. Steps S601 to S609 are performed by the control unit CU controlling each part of the substrate processing system PS.
  • Steps S601 and S602 may be similar to steps S101 and S102 of the transport method of the first example.
  • step S603 the control unit CU operates the transport robot TR1 to capture images of the substrate support surface 112a and the edge ring ER using the camera CM, and obtains image information that is an index of the amount of misalignment.
  • the control unit CU processes the image information, and can extract the amount of gap (amount of misalignment) between the substrate support surface 112a and the edge ring ER from the hue and contrast information.
  • the control unit CU therefore determines whether the amount of positional deviation of the edge ring ER is equal to or greater than a threshold based on the amount of positional deviation extracted from the imaging information and a threshold stored in advance (step S604). If the amount of positional deviation is less than the threshold (step S604: NO), it can be said that the edge ring ER is not misaligned (or the amount of positional deviation is sufficiently small). For this reason, the control unit CU skips steps S605 to S607 and proceeds directly to step S608. On the other hand, if the amount of positional deviation is equal to or greater than the threshold (step S604: YES), it can be said that the edge ring ER is misaligned (the amount of positional deviation is large). In this case, the control unit CU detects an error in the edge ring ER and proceeds to step S605 in FIG. 16.
  • steps S605 to S607 may be similar to steps S105 to S107 in the first example of the conveying method.
  • step S608 the control unit CU performs an unloading process to unload the edge ring ER from the processing module PM1 using the transport robot TR1.
  • step S608 corresponds to step S5 in FIG. 6.
  • step S609 the control unit CU performs an unloading process to unload the edge ring ER into the ring storage module RSM using the transport robot TR1.
  • step S609 corresponds to step S6 in FIG. 6.
  • the transport method of the sixth example can obtain the amount of positional deviation of the edge ring ER by capturing an image of the edge ring ER with the camera of the transport robot TR1. Therefore, the control unit CU can transport the edge ring ER without interfering with other parts by operating the transport robot TR1 based on the amount of positional deviation of the captured image information.
  • the transport method in the configuration in which the camera CM is applied to the transport robot TR1 is not limited to the transport method of the sixth example above, and can be used in combination with a leak check, or in combination with the position detection sensors S11 and S12 of the vacuum transport module TM, for example.
  • the imaging information of the camera CM or the detection results of the position detection sensors S1 or S2
  • the detection results of the position detection sensors S11 and S12 to determine the amount of positional deviation of the edge ring ER, it is possible to further improve the accuracy of detection and the accuracy of correction movement.
  • detection can be performed while the edge ring ER is supported by each support pin 521.
  • control unit CU may stop the support pin 521 at the position where the edge ring ER has peeled off from the ring support surface 112b and obtain the amount of misalignment with the position detection sensor S1 or S2, or may obtain the amount of misalignment with the position detection sensor S1 or S2 at any pin height that is higher than the peeled position and where the top surface of the edge ring ER is lower than the position detection sensor S1 or S2 of the transport robot TR1 (see also FIG. 9).
  • the camera CM can be used to image the edge ring ER that has come off some of the support pins 521 and is supported at an angle.
  • the camera CM can also be used to image the edge ring ER that has come off all of the support pins 521 and is supported on the electrostatic chuck 112.
  • the control unit CU can recognize that the edge ring ER is slanted or that the edge ring ER has come off all of the support pins by processing and analyzing the image information. For example, the camera CM captures multiple images of image information when the transport robot TR1 moves, and the control unit CU performs calculations by matching the edge ring ER in the multiple images of image information with the position of the transport robot TR1. This allows the control unit CU to accurately calculate the three-dimensional shape (posture, position) of the edge ring ER.
  • the control unit CU may accumulate image information acquired for each image of the edge ring ER, and may learn to recognize the edge ring ER from the images of the edge ring ER included in the accumulated multiple images of image information.
  • the control unit CU may be configured to issue an alarm when it recognizes that the edge ring ER is slanted or that the edge ring ER has come off all of the support pins.
  • FIG. 18 is a diagram showing a modified example of FIG. 5(B) which shows a configuration for performing a gas leak check as an indicator related to the amount of positional misalignment of the edge ring.
  • the configuration for performing the leak check may be a configuration in which the ring support surface 112b at the peripheral portion of the electrostatic chuck 112 is provided with a groove 61ag which is recessed downward and communicates with the gas supply port 61a.
  • the groove 61ag is formed in an annular shape going around the circumferential direction of the ring support surface 112b. With this configuration, the groove 61ag may supply a gas such as He gas to the entire circumferential direction of the back surface of the inner ring 113a to perform a gas leak check.
  • FIG. 19 is a flowchart showing the operation procedure for transporting the edge ring ER according to a modified example.
  • the substrate processing system PS and transport method may detect the amount of deviation of the edge ring ER using the position detection sensors S11, S12 of the vacuum transport module TM when transporting the edge ring ER out of the processing module PM1.
  • the substrate processing system PS then transports the edge ring ER into the ring storage module RSM while correcting the position of the edge ring ER based on the amount of deviation of the edge ring ER detected by the position detection sensors S11, S12.
  • the processing module to be replaced is one of the other processing modules PM2 to PM7, the same method as when the processing module to be replaced is the processing module PM1 may be used.
  • the position detection sensors may be used in positions adjacent to each processing module.
  • FIG. 20(A) is a diagram showing the relationship between the position of the edge ring ER and the positions of the position detection sensors S11 and S12.
  • FIG. 20(B) is a diagram showing the change in the sensor output of the position detection sensors S11 and S12 when the edge ring ER is transported from position P21 to position P24.
  • the time at position P21 is indicated as t21
  • the time at position P22 as t22
  • the time at position P23 as t23
  • the time at position P24 as t24.
  • the control unit CU calculates the amount of deviation of the edge ring ER from the reference position based on the position of the edge ring ER detected by the position detection sensors S11 and S12 and a predetermined reference position.
  • the control unit CU causes the transport robot TR1 to place the edge ring ER on the ring storage module RSM so as to correct the calculated amount of deviation. This allows the edge ring ER to be placed in a specified position in the ring storage module RSM even if the position of the edge ring ER held by the upper fork FK1 or the lower fork FK2 is shifted from the reference position.
  • the position of the edge ring ER held by the upper fork FK1 or the lower fork FK2 can be calculated based on the change in output of the position detection sensors S11, S12 caused by the inner periphery of the edge ring ER passing through the position detection sensors S11, S12. For example, as shown in FIG. 20A, when the edge ring ER is transported from position P21 to position P24, it can be calculated based on the time T2 that it takes for the edge ring ER to move from position P22 to position P23.
  • Position P22 is the position where the sensor output of the position detection sensors S11, S12 changes from low (L) level to high (H) level
  • position P23 is the position where the sensor output of the position detection sensors S11, S12 changes from high (H) level to low (L) level.
  • T2 t23-t22 using time t22 at position P22 and time t23 at position P23. Note that, although FIG. 20 shows a case where the position detection sensor S11 is shaded by the edge ring ER at the same position as the position detection sensor S12 is shaded by the edge ring ER, these positions may be different.
  • the control unit CU controls steps S701 to S706 in FIG. 19.
  • the control unit CU first raises each support pin 521 of the plasma processing device 1 to separate the edge ring ER from the ring support surface 112b of the substrate support unit 11 (step S701 in FIG. 19). If there is residual adhesion between the ring support surface 112b and the edge ring ER, there is a possibility that the edge ring ER will become misaligned when it is raised.
  • the control unit CU then moves the transport robot TR1 below the edge ring ER in the plasma processing space 10s and lowers each support pin 521 to hand over the edge ring ER to the transport robot TR1 (step S702 in FIG. 19).
  • the control unit CU removes the transport robot TR1 from the processing module PM1, and detects the position of the edge ring ER held by the position detection sensors S11 and S12 (step S703). At this time, the transport robot TR1 moves so as to pass through the middle between the position detection sensors S11 and S12, and if the edge ring ER is not misaligned, the center of the edge ring ER will pass through this middle. On the other hand, if the edge ring ER is misaligned, the position detection sensors S11 and S12 can calculate the misalignment of the edge ring ER (the amount and direction of misalignment of the center of the edge ring ER relative to the reference position of the transport robot TR).
  • the control unit CU compares the positional deviation of the edge ring ER with a threshold value stored in advance, and determines whether the positional deviation of the edge ring ER is equal to or greater than the threshold value (step S704). If the positional deviation is less than the threshold value (step S704: NO), it can be said that the edge ring ER is not shifted (or the positional deviation is sufficiently small). In this case, the control unit CU proceeds to step S105.
  • step S105 the control unit CU transports the edge ring ER without correcting the movement of the transport robot TR1, and loads the edge ring ER into the ring storage module. This allows the substrate processing system PS to smoothly load the edge ring ER into the ring storage module RSM.
  • step S704 YES
  • the control unit CU proceeds to step S106 in FIG. 19, and transports the edge ring ER into the ring storage module while correcting the movement of the transport robot TR1 based on the deviation of the edge ring ER calculated from the detection results of the position detection sensors S11 and S12.
  • the control unit CU sets the movement amount and movement direction in the corrective movement of the transport robot TR1 based on the acquired deviation amount and deviation direction, and corrects the movement of the transport robot TR1. Therefore, even if the edge ring ER is misaligned, the substrate processing system PS can smoothly transport the edge ring ER into the ring storage module RSM.
  • the transfer method of FIG. 19 can also be applied when the cover ring CR is transferred from the processing modules PM1 to PM7 to the vacuum transfer module TM and then transferred to the ring storage module RSM.
  • the transfer method of FIG. 19 can also be applied when the upper ring 222 or the lower ring 221 of FIG. 11 is transferred from the processing modules PM1 to PM7 to the vacuum transfer module TM and then transferred to the load lock module LLM.
  • the transfer method of FIG. 19 can also be applied when the upper ring 222 or the lower ring 221 of FIG. 11 is transferred from the processing modules PM1 to PM7 to the vacuum transfer module TM and then transferred to the ring storage module RSM.
  • the substrate processing system PS and the transport method may raise the edge ring ER using each support pin 521, then lower the edge ring ER to place it on the ring support surface 112b, detect the position of the edge ring ER using the position detection sensors S1 and S2, and if the amount of positional deviation is smaller than a threshold, raise the edge ring ER again using each support pin 521, transfer the edge ring ER to the transport robot TR1, perform the unloading process from the processing module PM1 (unloading while detecting the position of the edge ring ER using the position detection sensors S11, S12, etc.), and perform the loading process into the ring storage module RSM (corrective movement based on the amount of positional deviation).
  • the process flow shown in FIG. 19 may be performed.
  • the substrate processing system PS and the transport method may issue an alarm, open the plasma processing chamber 10 to the atmosphere, and perform the process of removing the edge ring ER.
  • a processing module including a processing chamber, a substrate support configured to support a substrate and a ring disposed around the substrate in the processing chamber, and a lifter configured to raise and lower the ring; a vacuum transfer module connected to the processing module and having a transfer robot for transferring the ring;
  • a control unit The control unit is (A) raising the lifter to move the ring away from a support surface of the substrate support; (B) after the step (A), acquiring an index relating to the amount of positional deviation of the ring; (C) determining whether or not to correct the position of the ring based on the index related to the amount of positional deviation acquired in the step (B); Substrate processing system.
  • step (B) the control unit acquires a position of the ring detected by a position detection sensor provided in the transport robot as an index related to the amount of positional deviation. 2.
  • the substrate processing system of claim 1. (Appendix 3) In the step (B), the control unit acquires a horizontal gap amount of the ring relative to the substrate supporting surface based on a position of the substrate supporting surface of the substrate supporting part detected by the position detection sensor and a position of the ring. 3.
  • step (B) the control unit supplies gas between a ring support surface of the substrate support unit and a rear surface of the ring while the ring is electrostatically attracted to the ring support surface, and acquires an amount of leakage of the gas as an index related to the amount of positional deviation. 4.
  • the substrate processing system according to claim 1 (Appendix 5)
  • the control unit acquires image information of the ring captured by a camera provided in the transport robot as an index related to the amount of positional deviation. 5.
  • the substrate processing system according to claim 1 is .
  • step (B) the control unit acquires, as an index related to the amount of positional deviation, a position of the ring detected by a position detection sensor installed in the vacuum transfer module when the transfer robot transfers the ring from the processing module. 6.
  • the substrate processing system according to claim 1 (Appendix 7)
  • the control unit is When it is determined in the step (C) that the correction is to be performed, a correction movement is performed by the transport robot to move the ring in accordance with the amount of positional deviation; When it is determined in the step (C) that the correction is not to be performed, the ring is transported by the transport robot without performing the correction movement. 7.
  • the substrate processing system according to claim 1 is
  • control unit 11 When the control unit determines to perform the correction in the step (C), the control unit causes the conveying robot to convey the ring in which the deviation has occurred to a ring storage module that stores the ring while performing the correction movement. 8.
  • the substrate processing system of claim 7. (Appendix 12) In the step (B), the control unit lowers the lifter to place the ring on the substrate support unit, and acquires an index related to the amount of positional deviation. 6.
  • the control unit keeps the ring elevated by the lifter in the step (A), and obtains an index related to the amount of positional deviation in the step (B). 6.
  • the substrate processing system according to claim 1 (Appendix 14) a first ring storage module connected to the vacuum transfer module and configured to store the ring; the control unit causes the transfer robot to directly transfer the ring removed from the processing module into the first ring storage module. 14.
  • the substrate processing system according to claim 1 (Appendix 15) an atmospheric transfer module connected to the vacuum transfer module via a load lock module; a second ring storage module connected to the atmospheric transfer module and configured to store the ring; the control unit transfers the ring, which has been transferred from the processing module by the transfer robot, into the second ring storage module via the load lock module and the atmospheric transfer module. 14.
  • the substrate processing system according to claim 1 .
  • (Appendix 16) the processing module performs substrate processing while electrostatically attracting the ring;
  • the control unit is Prior to the step (A), a step of neutralizing the ring is performed.
  • the control unit generates plasma during the step (A) or before or after the step (A) to clean the inside of the processing chamber.
  • (Appendix 18) cleaning of the inside of the processing chamber during or after the step (A) is performed in a state in which the ring is separated from the support surface of the substrate support part; 18.
  • the lifter has a support pin and an actuator that moves the support pin up and down. 19.
  • the present invention is not limited to the configurations shown here, including combinations of the configurations and other elements in the above embodiments. These aspects can be modified without departing from the spirit of the present invention, and can be appropriately determined according to the application form. Furthermore, the matters described in the multiple embodiments can take on other configurations as long as they are not inconsistent, and can be combined as long as they are not inconsistent.
  • a capacitively coupled plasma device has been described as an example, but the present invention is not limited to this and may be applied to other plasma devices.
  • an inductively-coupled plasma (ICP) device may be used instead of the capacitively coupled plasma device.
  • the inductively coupled plasma device includes an antenna and a lower electrode.
  • the lower electrode is disposed within the substrate support, and the antenna is disposed at the top or upper part of the chamber.
  • the RF generator is coupled to the antenna, and the DC generator is coupled to the lower electrode.
  • the RF generator is coupled to the upper electrode of the capacitively coupled plasma device or the antenna of the inductively coupled plasma device. That is, the RF generator is coupled to the plasma processing chamber 10.
  • Substrate support unit 113 Ring 521 Support pin CU Control units PM1 to PM7 Processing module PS Substrate processing system TM Vacuum transfer modules TR1 and TR2 Transfer robot W Substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

基板処理システムは、処理チャンバ、基板支持部およびリフタを有する処理モジュールと、前記処理モジュールに接続され、リングを搬送する搬送ロボットを有する真空搬送モジュールと、制御部と、を含む。前記制御部は、(A)前記複数の支持ピンを上昇させて前記基板支持部の支持面から前記リングを離す工程と、(B)前記(A)の工程の後に、前記リングの位置ずれ量に関わる指標を取得する工程と、(C)前記(B)の工程で取得した前記位置ずれ量に関わる指標に基づき、前記リングの位置を補正するか否かを判定する工程と、を行う。

Description

基板処理システム、および搬送方法
 本開示は、基板処理システム、および搬送方法に関する。
 特許文献1には、処理室の内部に設けられる載置台(基板支持部)の周囲にフォーカスリング(リング)を配置し、基板支持部に載置した基板に対してプラズマ処理を行うプラズマ処理装置が開示されている。このプラズマ処理装置を有する基板処理システムは、リングを交換する際に、搬送ロボットにより基板支持部からリングを取り出して、リングが載置される面をクリーニング処理し、基板支持部にリングを再び載置する作業を行う。
特開2018-010992号公報
 本開示は、リングの搬送時に、リングと他の部品の干渉を抑制できる技術を提供する。
 本開示の一態様によれば、処理チャンバと、前記処理チャンバ内にて基板および当該基板の周囲に配置されるリングを支持する基板支持部と、前記リングを昇降させるように構成されるリフタと、を有する処理モジュールと、前記処理モジュールに接続され、前記リングを搬送する搬送ロボットを有する真空搬送モジュールと、制御部と、を含み、前記制御部は、(A)前記リフタを上昇させて前記基板支持部の支持面から前記リングを離す工程と、(B)前記(A)の工程の後に、前記リングの位置ずれ量に関わる指標を取得する工程と、(C)前記(B)の工程で取得した前記位置ずれ量に関わる指標に基づき、前記リングの位置を補正するか否かを判定する工程と、を行う、基板処理システムが提供される。
 一態様によれば、リングの搬送時に、リングと他の部品の干渉を抑制できる。
実施形態に係る基板処理システムの一例を示す図である。 プラズマ処理装置の一例を示す概略断面図である。 図2の一部を拡大して示す図である。 基板支持部からリングを取り出す際にリングに生じる位置ずれの原因を説明するための図である。 図5(A)は、内側リングの位置ずれ量に関わる指標を検出する第1例を示す図である。図5(B)は、内側リングの位置ずれ量に関わる指標を検出する第2例を示す図である。図5(C)は、内側リングの位置ずれ量に関わる指標を検出する第3例を示す図である。 エッジリングを搬出する際の動作手順を示すフローチャートである。 第1例の搬送方法のずれ確認補正処理の処理フローを示すフローチャートである。 図8(A)は、ずれ確認補正処理の動作を示す第1図である。図8(B)は、図8(A)に続く動作を示す第2図である。図8(C)は、図8(B)に続く動作を示す第3図である。図8(D)は、図8(C)に続く動作を示す第4図である。図8(E)は、図8(D)に続く動作を示す第5図である。図8(F)は、図8(E)に続く動作を示す第6図である。 変形例に係る第1例のずれ確認補正処理の処理フローを示すフローチャートである。 第2例の搬送方法の処理フローを示すフローチャートである。 プラズマ処理装置の別の一例を示す概略断面図である。 第3例の搬送方法の処理フローを示すフローチャートである。 図13(A)は、ずれ解消動作を示す第1図である。図13(B)は、図13(A)に続く動作を示す第2図である。図13(C)は、図13(B)に続く動作を示す第3図である。 第4例の搬送方法の処理フローを示すフローチャートである。 第5例の搬送方法の処理フローを示すフローチャートである。 第6例の搬送方法の処理フローを示すフローチャートである。 傾いたエッジリングをカメラにより撮像する例を示す図である。 エッジリングの位置ずれ量に関わる指標としてガスのリークチェックを行う構成の変形例を示す図である。 変形例に係るエッジリングの搬送の動作手順を示すフローチャートである。 図20(A)は、エッジリングの位置と位置検出センサの位置との関係を示す図である。図20(B)は、位置から位置までエッジリングを搬送したときの位置検出センサのセンサ出力の変化を示す図である。
 以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
 [基板処理システム]
 図1を参照し、実施形態に係る基板処理システムPSについて説明する。図1は、実施形態に係る基板処理システムPSの一例を示す図である。図1に示されるように、基板処理システムPSは、プラズマ処理等の各種処理を基板Wに施すことが可能なシステムである。基板Wは、例えば半導体ウエハであってよい。
 基板処理システムPSは、真空搬送モジュールTMと、複数の処理モジュールPM1~PM7と、リング収納モジュールRSMと、複数のロードロックモジュールLL1~LL3と、大気搬送モジュールLMと、ロードポートLP1~LP4と、アライナANと、制御部CUとを有する。真空搬送モジュールTMは、トランスファモジュールとも称される。処理モジュールPM1~PM7は、プロセスモジュールとも称される。リング収納モジュールRSMは、リングストッカモジュールとも称される。大気搬送モジュールLMは、ローダモジュールとも称される。
 真空搬送モジュールTMは、平面視において四角形状を有する。真空搬送モジュールTMには、処理モジュールPM1~PM7と、ロードロックモジュールLL1~LL3と、リング収納モジュールRSMとが接続される。真空搬送モジュールTMは、真空搬送室を有する。真空搬送室の内部は、真空雰囲気に維持される。真空搬送室(真空搬送モジュールTMの内部)には、搬送ロボットTR1が設けられる。
 搬送ロボットTR1は、旋回、伸縮、昇降自在に構成される。搬送ロボットTR1は、上フォークFK1と、下フォークFK2とを有する。搬送ロボットTR1の上フォークFK1および下フォークFK2は、基板Wおよびリング113(内側リング113aおよび外側リング113b)の各々を保持可能に構成される。搬送ロボットTR1は、処理モジュールPM1~PM7と、ロードロックモジュールLL1~LL3と、リング収納モジュールRSMとの間で、基板Wおよびリング113を保持して搬送する。
 上フォークFK1には、位置検出センサS1が設けられる。下フォークFK2には、位置検出センサS2が設けられる。位置検出センサS1、S2は、処理モジュールPM1~PM7に載置される内側リング113a、外側リング113bの位置を検出する。位置検出センサS1、S2は、例えば光学式の変位センサ、カメラ等であってもよい。
 真空搬送モジュールTMには、位置検出センサS11、S12が設けられてもよい。位置検出センサS11、S12は、真空搬送モジュールTMから処理モジュールPM1へ搬送される基板Wおよびリング113(内側リング113a)の搬送経路上に設けられる。位置検出センサS11、S12は、真空搬送モジュールTMから処理モジュールPM1に基板Wまたはリング113を搬入する際、および処理モジュールPM1から真空搬送モジュールTMに基板Wまたはリング113を搬出する際に用いられる。位置検出センサS11、S12は、例えば真空搬送モジュールTMと処理モジュールPM1とを仕切るゲートバルブ(不図示)の近傍に設けられる。位置検出センサS11、S12は、例えば互いの距離が基板Wの外径よりも小さく、かつ内側リング113aの内径よりも小さくなるように配置される。真空搬送モジュールTMには、位置検出センサS11、S12と同様に、位置検出センサS21、S22、S31、S32、S41、S42、S51、S52、S61、S62、S71、S72が設けられてもよい。
 処理モジュールPM1~PM7は、真空搬送モジュールTMに接続される。処理モジュールPM1~PM7は、真空処理室を有する。真空処理室の内部には、基板支持部11(図2参照)が設けられる。処理モジュールPM1~PM7は、基板支持部11の上に基板Wが載置された後、内部を減圧して処理ガスを導入し、RF電力を印加してプラズマを生成し、プラズマによって基板Wにプラズマ処理を施す。真空搬送モジュールTMと処理モジュールPM1~PM7とは、開閉自在なゲートバルブ(不図示)で仕切られる。
 リング収納モジュールRSMは、リング113を収納する装置の一例であり、真空搬送モジュールTMに接続される。リング収納モジュールRSMは、例えば、リング113を構成する内側リング113aおよび外側リング113bを収納する。リング収納モジュールRSMは、内側リング113aのみを収納するように構成されてもよい。リング収納モジュールRSMは、外側リング113bのみを収納するように構成されてもよい。内側リング113aおよび外側リング113bは、搬送ロボットTR1により、処理モジュールPM1~PM7とリング収納モジュールRSMとの間で搬送される。真空搬送モジュールTMとリング収納モジュールRSMとは、開閉自在なゲートバルブ(不図示)で仕切られる。
 ロードロックモジュールLL1~LL3は、真空搬送モジュールTMと大気搬送モジュールLMとの間に設けられる。ロードロックモジュールLL1~LL3は、真空搬送モジュールTMおよび大気搬送モジュールLMに接続される。ロードロックモジュールLL1~LL3は、真空と大気圧との間で切り換え可能な内圧可変室を内部に有する。内圧可変室には、基板Wを載置可能なステージ(不図示)が設けられる。ロードロックモジュールLL1~LL3は、大気搬送モジュールLMから真空搬送モジュールTMへ基板Wを搬送する場合、内圧可変室を大気圧に維持して大気搬送モジュールLMから基板Wを受け取り、その後に内圧可変室を減圧して真空搬送モジュールTMへ基板Wを渡す。ロードロックモジュールLL1~LL3は、真空搬送モジュールTMから大気搬送モジュールLMへ基板Wを搬送する場合、内圧可変室を真空に維持して真空搬送モジュールTMから基板Wを受け取り、その後に内圧可変室を大気圧まで昇圧して大気搬送モジュールLMへ基板Wを渡す。ロードロックモジュールLL1~LL3と真空搬送モジュールTMとは、開閉自在なゲートバルブ(不図示)で仕切られる。ロードロックモジュールLL1~LL3と大気搬送モジュールLMとは、開閉自在なゲートバルブ(不図示)で仕切られる。
 大気搬送モジュールLMは、真空搬送モジュールTMに対向して設けられる。大気搬送モジュールLMは、例えばEFEM(Equipment Front End Module)であってよい。大気搬送モジュールLMは、平面視において四角形状を有する。大気搬送モジュールLMは、大気搬送室を有する。大気搬送室の内部は、大気圧雰囲気に保持される。大気搬送室の内部には、搬送ロボットTR2が設けられる。搬送ロボットTR2は、ロードポートLP1~LP4と、アライナANと、ロードロックモジュールLL1~LL3との間で、基板Wを保持して搬送する。大気搬送モジュールLMは、FFU(Fan Filter Unit)を有してもよい。
 ロードポートLP1~LP4は、大気搬送モジュールLMに接続される。ロードポートLP1~LP4には、複数の基板収納容器CS1が載置される。基板収納容器CS1は、例えば複数(例えば25枚)の基板Wを収納するFOUP(Front-Opening Unified Pod)であってよい。
 アライナANは、大気搬送モジュールLMに接続される。アライナANは、基板Wの位置の調整を行うように構成される。アライナANは、大気搬送室の内部に設けられてもよい。
 制御部CUは、基板処理システムPSの各部を制御する。制御部CUは、例えば真空搬送モジュールTMに設けられる搬送ロボットTR1の動作、大気搬送モジュールLMに設けられる搬送ロボットTR2の動作、ゲートバルブの開閉を制御する。制御部CUは、例えばコンピュータであってよい。制御部CUは、プロセッサであるCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置等を有する。CPUは、ROMまたは補助記憶装置に格納されたプログラムに基づいて動作し、基板処理システムPSの各部を制御する。
 [プラズマ処理装置]
 図2および図3を参照し、図1の処理モジュールPM1~PM7に適用されるプラズマ処理装置1の一例について説明する。図2は、プラズマ処理装置1の一例を示す概略断面図である。図3は、図2の一部を拡大して示す図である。
 プラズマ処理装置1は、プラズマ処理チャンバ10(処理チャンバ)と、ガス供給部20と、RF電力供給部30と、排気システム40と、リフタ50と、制御部90とを含む。
 プラズマ処理チャンバ10は、基板支持部11と、上部電極12とを含む。基板支持部11は、プラズマ処理チャンバ10内のプラズマ処理空間10sの下部領域に配置される。上部電極12は、基板支持部11の上方に配置され、プラズマ処理チャンバ10の天板の一部として機能する。
 基板支持部11は、プラズマ処理空間10sにおいて基板Wを支持する。基板支持部11は、下部電極111と、静電チャック112と、リング113(以下、リングアセンブリ113とも言う。)と、絶縁部材115とを含む。
 静電チャック112は、下部電極111上に配置される。静電チャック112は、基板支持面112aおよびリング支持面112bを含む上面を有する。静電チャック112は、基板支持面112aで基板Wを支持する。静電チャック112は、リング支持面112bで内側リング113aを支持する。静電チャック112は、絶縁部材112cと、第1の吸着電極112dと、第2の吸着電極112eとを有する。第1の吸着電極112dおよび第2の吸着電極112eは、絶縁部材112cに埋め込まれる。第1の吸着電極112dは、基板支持面112aの下方に位置する。静電チャック112は、第1の吸着電極112dに電圧を印加することにより、基板支持面112aの上に基板Wを吸着保持する。第2の吸着電極112eは、リング支持面112bの下方に位置する。静電チャック112は、第2の吸着電極112eに電圧を印加することにより、リング支持面112b
の上に内側リング113aを吸着保持する。図2および図3の例では、静電チャック112は、基板Wを吸着保持する単極型の静電チャックと、内側リング113aを吸着保持する双極型の静電チャックとを含む。ただし、単極型の静電チャックに代えて双極型の静電チャックを用いてもよく、双極型の静電チャックに代えて単極型の静電チャックを用いてもよい。
 リングアセンブリ113は、内側リング113aと、外側リング113bとを含む。内側リング113aは、円環状を有する。内側リング113aは、基板Wを囲むようにリング支持面112bに載置される。内側リング113aは、基板Wに対するプラズマ処理の均一性を向上させる。内側リング113aは、例えば珪素(Si)、炭化珪素(SiC)等の導電性材料により形成される。なお、内側リング113aは、石英等の絶縁材料により形成されてもよい。外側リング113bは、円環状を有する。外側リング113bは、内側リング113aの外周部に配置される。外側リング113bは、例えばプラズマから絶縁部材115の上面を保護する。外側リング113bは、例えば石英等の絶縁材料により形成される。なお、外側リング113bは、珪素、炭化珪素等の導電性材料により形成されてもよい。図示例では、外側リング113bの内周部が内側リング113aの外周部よりも内側にあり、内側リング113aの外周部が外側リング113bの内周部よりも外側にあって、内側リング113aと外側リング113bが上面視で一部重複する。これにより、後述する複数の支持ピン521が昇降すると、外側リング113bと内側リング113aとが昇降する。絶縁部材115は、下部電極111を囲むように配置される。絶縁部材115は、プラズマ処理チャンバ10の底部に固定され、下部電極111を支持する。
 上部電極12は、絶縁部材13と共にプラズマ処理チャンバ10を構成する。上部電極12は、ガス供給部20からの1種類以上の処理ガスをプラズマ処理空間10sに供給する。上部電極12は、天板121と、支持体122とを含む。天板121の下面は、プラズマ処理空間10sを画成する。天板121には、複数のガス導入口121aが設けられる。複数のガス導入口121aの各々は、天板121の板厚方向(鉛直方向)に貫通する。支持体122は、天板121を着脱自在に支持する。支持体122の内部には、ガス拡散室122aが設けられる。ガス拡散室122aからは、複数のガス導入口122bが下方に延びる。複数のガス導入口122bは、複数のガス導入口121aにそれぞれ連通する。支持体122には、ガス供給口122cが設けられる。上部電極12は、1または2以上の処理ガスをガス供給口122cからガス拡散室122a、複数のガス導入口122bおよび複数のガス導入口121aを介してプラズマ処理空間10sに供給する。
 プラズマ処理チャンバ10の側壁には、搬入出口10pが設けられる。基板Wは、搬入出口10pを介して、プラズマ処理空間10sとプラズマ処理チャンバ10の外部との間で搬送される。搬入出口10pは、ゲートバルブにより開閉される。
 ガス供給部20は、1以上のガスソース21と、1以上の流量制御器22とを含む。ガス供給部20は、1種類以上の処理ガスを、各々のガスソース21から各々の流量制御器22を介してガス供給口122cに供給する。流量制御器22は、例えばマスフローコントローラまたは圧力制御式の流量制御器を含んでもよい。ガス供給部20は、1以上の処理ガスの流量を変調またはパルス化する1以上の流量変調デバイスを含んでもよい。
 RF電力供給部30は、2つのRF電源(第1のRF電源31a、第2のRF電源31b)と、2つの整合器(第1の整合器32a、第2の整合器32b)とを含む。第1のRF電源31aは、第1のRF電力を第1の整合器32aを介して下部電極111に供給する。第1のRF電力の周波数は、例えば13MHz~150MHzであってよい。第2のRF電源31bは、第2のRF電力を第2の整合器32bを介して下部電極111に供給する。第2のRF電力の周波数は、例えば400kHz~13.56MHzであってよい。第2のRF電源31bに代えて、DC電源を用いてもよい。
 排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられるガス排気口10eに接続される。排気システム40は、圧力調整弁と、真空ポンプとを含んでもよい。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプまたはこれらの組み合わせを含んでもよい。
 リフタ50は、第1のリフタ51と、第2のリフタ52とを含む。
 第1のリフタ51は、複数の支持ピン511と、アクチュエータ512とを含む。複数の支持ピン511は、下部電極111および静電チャック112に形成された貫通孔H1に挿通されて静電チャック112の上面に対して突没可能となっている。複数の支持ピン511は、静電チャック112の上面に対して突出することにより、上端を基板Wの下面に当接させて基板Wを支持する。アクチュエータ512は、複数の支持ピン511を昇降させる。アクチュエータ512としては、例えばDCモータ、ステッピングモータ、リニアモータ等のモータ、エアシリンダ等のエア駆動機構、ピエゾアクチュエータ等を利用できる。第1のリフタ51は、例えば搬送ロボットTR1と基板支持部11との間で基板Wの受け渡しをする際、複数の支持ピン511を昇降させる。
 第2のリフタ52は、複数の支持ピン521と、アクチュエータ522とを含む。支持ピン521は、円柱形状(中実の棒状)の部材により形成された段付きの支持ピンである。支持ピン521は、下部ピン523と、上部ピン524とを有する。上部ピン524は、下部ピン523の上に設けられる。下部ピン523の外径は、上部ピン524の外径よりも大きい。これにより、下部ピン523の上端面523aにより段部が形成される。下部ピン523および上部ピン524は、例えば一体成形される。
 支持ピン521は、下部電極111に形成された貫通孔H11、絶縁部材115に形成された貫通孔H12および外側リング113bに形成された貫通孔H13に挿通されて絶縁部材115の上面および外側リング113bの上面に対して突没可能となっている。貫通孔H11、H12の内径は、下部ピン523の外径よりも僅かに大きい。貫通孔H13の内径は、上部ピン524の外径よりも僅かに大きく、かつ下部ピン523の外径よりも小さい。
 支持ピン521は、待機位置と、第1の支持位置と、第2の支持位置との間で変位可能である。
 待機位置は、上部ピン524の上端面524aが内側リング113aの下面よりも下方にある位置である。支持ピン521が待機位置にある場合、内側リング113aおよび外側リング113bは、支持ピン521によって持ち上げられることなく、それぞれ静電チャック112上および絶縁部材115上に支持される。
 第1の支持位置は、待機位置よりも上方の位置である。第1の支持位置は、上部ピン524の上端面524aが外側リング113bの上面よりも上方に突出し、かつ下部ピン523の上端面523aが外側リング113bの下面よりも下方にある位置である。支持ピン521は、第1の支持位置に移動することにより、上部ピン524の上端面524aを内側リング113aの下面に形成された凹部に当接させて内側リング113aを支持する。
 第2の支持位置は、第1の支持位置よりも上方の位置である。第2の支持位置は、下部ピン523の上端面523aが絶縁部材115の上面よりも上方に突出する位置である。支持ピン521は、第2の支持位置に移動することにより、上部ピン524の上端面524aを凹部に当接させて内側リング113aを支持し、かつ下部ピン523の上端面523aを外側リング113bの下面に当接させて外側リング113bを支持する。
 アクチュエータ522は、複数の支持ピン521を昇降させる。アクチュエータ522は、アクチュエータ512と同様に構成されてよい。
 第2のリフタ52は、搬送ロボットTR1と基板支持部11との間で内側リング113aの受け渡しをする場合、複数の支持ピン521を第1の支持位置に移動させることにより、内側リング113aを持ち上げる。第2のリフタ52は、搬送ロボットTR1と基板支持部11との間で内側リング113aおよび外側リング113bの受け渡しをする場合、複数の支持ピン521を第2の支持位置に移動させることにより、内側リング113aおよび外側リング113bを持ち上げる。あるいは、内側リング113aが無い状態で搬送ロボットTR1と基板支持部11との間で外側リング113bの受け渡しをする場合も、複数の支持ピン521を第2の支持位置に移動させることにより、外側リング113bを持ち上げる。
 制御部90は、プラズマ処理装置1の各部を制御する。制御部90は、例えばコンピュータ91を含む。コンピュータ91は、例えばプロセッサであるCPU911と、記憶部912と、通信インターフェース913とを含む。CPU911は、記憶部912に格納されたプログラムに基づいて種々の制御動作を行うように構成される。記憶部912は、RAM、ROM、HDD(Hard Disk Drive)、SSD(Solid State Drive)等の補助記憶装置からなるグループから選択される少なくとも1つのメモリタイプを含む。通信インターフェース913は、LAN(Local Area Network)等の通信回線を介してプラズマ処理装置1との間で通信してもよい。制御部90は、制御部CUと別に設けられてもよく、制御部CUに含まれてもよい。
 [リングの位置ずれ]
 次に、図4を参照して、基板支持部11からリング113を取り出す際に、リング113に生じる位置ずれの原因について説明する。
 処理モジュールPM1~PM7(例えば、図2のプラズマ処理装置1)は、基板Wを処理する際に、静電チャック112において基板Wを静電吸着して固定している。また、プラズマ処理装置1は、基板Wの周囲において、静電チャック112によりリング113(内側リング113a)を静電吸着して固定している。
 プラズマ処理装置1は、プラズマ処理後に、除電処理(ガス除電、プラズマ除電等)により、静電チャック112内の電荷を低減させる。また、基板支持部11の静電チャック112には、プラズマ処理時と異なる極性の直流電圧を印加することにより、基板支持面112aおよびリング支持面112bの静電力を低減させてもよい。
 ただし、上記の除電処理を行っても、基板支持面112aおよびリング支持面112bには、電荷が多少残ることがある。このため、除電処理後も、リング支持面112bに対する内側リング113aの吸着が多少起こり得る(以下、残留吸着ともいう)。内側リング113aを交換するために各支持ピン521を上昇させ、内側リング113aをリング支持面112bから離す際に、内側リング113aの残留吸着によって内側リング113aが振動するため、各支持ピン521上で内側リング113aの正常な位置からずれた状態で載置される。これにより、搬送ロボットTR1が保持する本来の保持箇所(各支持ピン521)に対して、内側リング113aの位置がずれて載置される現象が生じる。
 例えば、図4の右上図に示すように、内側リング113aは、水平方向(横方向)にずれる場合がある。これにより、搬送ロボットTR1に内側リング113aを受け渡した場合に、搬送ロボットTR1は、内側リング113aをずれた位置で保持するようになる。ずれが生じている内側リング113aは、搬送ロボットTR1の搬送時に、他の部品と干渉して破損する等の不都合を発生させる可能性がある。
 また例えば、図4の右下図に示すように、残留吸着により内側リング113aが大きく位置ずれすることで、各支持ピン521のうち一部の支持ピン521から外れて内側リング113aが斜めに傾いた状態になる可能性もある。この場合、基板支持部11の上方を水平方向にスライドする搬送ロボットTR1は、内側リング113aに衝突し、搬送ロボットTR1または内側リング113aが破損する場合がある。つまり、基板処理システムPSでは、内側リング113aの位置ずれを抑えて、搬送ロボットTR1による搬出または搬入を行うことが求められる。しかしながら、従来の基板処理システムでは、基板支持部から内側リング(エッジリング)を取り出す際に、搬送ロボットが内側リングを正常な位置で保持しているか否かを認識してはいなかった。
 本実施形態に係る基板処理システムPSの制御部CUは、内側リング113aを搬出する際に、内側リング113aの位置ずれ量に関わる指標を取得する。そして、内側リング113aの位置がずれている場合には、その位置ずれを解消する補正を行う。次に、内側リング113aの位置ずれ量に関わる指標を取得する構成について、図5(A)~図5(C)を参照しながら説明していく。
 図5(A)は、内側リング113aの位置ずれ量に関わる指標を検出する第1例を示す図である。基板処理システムPSは、位置ずれ量に関わる指標として、上フォークFK1に設置されている位置検出センサS1(または下フォークFK2に設置されている位置検出センサS2)による内側リング113aの位置の検出結果を利用する。位置検出センサS1、S2は、上フォークFK1または下フォークFK2の基板支持部11に対向する下面(基板Wを保持する面と反対面)に設置されていてもよい。また、位置検出センサS1は、上フォークFK1または下フォークFK2に複数設けられてもよい。例えば上フォークFK1の二股部分の各々に、位置検出センサS1が設けられてもよい。なお、位置検出センサS1またはS2の設置場所は、基板支持部11に対向する下面(基板Wを保持する面と反対面)に限定されず、上フォークFK1または下フォークFK2の側面に設けられてもよい。
 位置検出センサS1、S2は、例えば、対象物の形状変化を検出可能な光学式の検出器(例えば、変位センサ)を適用しうる。位置検出センサS1またはS2は、上フォークFK1または下フォークFK2の水平方向の移動に伴って、基板支持面112aとリング支持面112bとの段差を検出することにより、基板支持面112aのエッジを検出(図5(A)S1の左側の矢印)する。また、内側リング113aの上面は、径方向内側に基板支持面112aより低い内側部分113a1を有すると共に、内側部分113a1の径方向外側に内側部分113a1より高い外側部分113a2を有する。位置検出センサS1またはS2は、上フォークFK1または下フォークFK2の水平方向の移動に伴って、内側部分113a1と外側部分113a2との段差を検出することにより、内側リング113aのエッジを検出(図5(A)S1の右側の矢印)する。制御部CUは、基板支持面112aのエッジの水平位置(X座標、Y座標)と、内側リング113aのエッジの水平位置(X座標、Y座標)とに基づき、基板支持面112aと内側リング113aの隙間量を得ることができる。隙間量とは、基板支持面112aとリング支持面112bの間の側壁と、内側リング113aの内側部分113a1の内周面との間隙における水平方向の長さである。例えば、隙間量は、X軸方向の量とY軸方向の量とに分解した値で算出される。
 隙間量は、基板支持面112aの外径と、内側リング113aの内径に応じて予め規定されている。環状の隙間のうち隙間量の絶対値が規定値よりも大きい部分があれば、内側リング113aの位置ずれ量が大きいことになる。このように、制御部CUは、位置検出センサS1またはS2の検出結果(位置ずれ量に関わる指標の一例)に基づき、内側リング113aの位置ずれ量を精度よく算出することができる。
 図5(B)は、内側リング113aの位置ずれ量に関わる指標を検出する第2例を示す図である。基板処理システムPSは、位置ずれ量に関わる指標として、リング支持面112bと内側リング113aとの間のガスのリークチェックを行ってもよい。
 すなわち、静電チャック112の周縁部のリング支持面112bには、ガス供給口61aが形成されている。ガス供給口61aは、リング支持面112bに載置された内側リング113aの裏面と当該リング支持面112bとの間の隙間に、ガスを供給する。ガスは、プラズマ処理時に内側リング113aの下面に供給される伝熱ガスと同じであってよい。このガスの一例としては、Heガスを適用することがあげられる。また、ガス供給口61aに連通するガス流路61においてリング支持面112bとは反対側の端部は、配管62を介してガス供給部66に接続されている。ガス供給部66は、1以上のガスソース661、および1以上の流量制御器662を含んでもよい。一実施形態において、ガス供給部66は、例えば、ガスをガスソース661から流量制御器662を介してガス供給口61aに供給するように構成される。各流量制御器662は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。ガス流路61および配管62は、リング支持面112bと内側リング113aの裏面との間にガスを供給する供給路の少なくとも一部として機能し得る。
 また、ガス流路61におけるリング支持面112bとは反対側の端部は、配管62を介して排気システム64に接続されている。これにより、ガス供給口61aを介して静電チャック112のリング支持面112bの周囲を排気することができる。すなわち、リング支持面112bの周囲を排気する排気孔としてガス供給口61aを機能させることができる。したがって、一実施形態において、ガス流路61および配管62は、リング支持面112bと内側リング113aの裏面との間を排気する排気路の少なくとも一部として機能しうる。
 さらに、静電チャック112に対しては、リング支持面112bに静電吸着されている内側リング113aと当該リング支持面112bとの間の隙間の圧力を測定する圧力センサ67が設けられている。圧力センサ67は例えば配管62設けられている。また、配管62には、ガス供給部66によるガスの供給の実行・停止を切り換える切換弁65が設けられていてもよい。同様に、配管62には、排気システム64によるリング支持面112bの周囲の排気について実行・停止を切り換える切換弁63が設けられていてもよい。
 基板処理システムPSの制御部CUは、リークチェックにおいて、例えば、以下に説明する手順に沿ってガスチェック機構部60および静電チャック112を動作させる。まず、制御部CUは、プラズマ処理チャンバ10内に基板Wが存在せず、リング支持面112bに内側リング113aが載置され、かつ排気システム64によりガス流路61を介して排気が行われている状態で、静電チャック112の第2の吸着電極112eに電圧を印加する。これにより、静電チャック112の第2の吸着電極112eに対して直流電圧(例えば、双極型の第2の吸着電極112eの場合は互いに極性が異なる直流電圧)が印加される。
 続いて、制御部CUは、ガス流路61の圧力がプラズマ処理チャンバ10内の圧力よりも高く保持されるよう、ガス流路61にガスを供給する。具体的には、制御部CUは、切換弁63を閉状態とし、排気システム64によるガス流路61を介した排気を停止する。その一方で、制御部CUは、切換弁65を開状態とし、ガス供給部66によりガスを供給する。ガスは、配管62およびガス流路61を介して内側リング113aの裏面とリング支持面112bの隙間に供給される。制御部CUは、この隙間の圧力が目標圧力になると(例えば、圧力センサ67による測定結果が目標圧力になると)、切換弁65を閉状態としてガスの供給を停止する。目標圧力は、例えば、プラズマ処理時における隙間の圧力と同一である。
 その後、制御部CUは、ガス流路61を含む流通路の圧力を圧力センサ67により測定する。具体的には、圧力センサ67は、ガスの供給停止から所定時間経過後の配管62の圧力を測定する。測定される圧力は、リング支持面112bと内側リング113aの隙間の圧力と略一致する。よって、制御部CUは、圧力センサ67の圧力に基づいて、隙間からのガスの漏れ(内側リング113aの位置ずれ量の指標)を判定できる。より詳細には、制御部CUは、隙間からのガスの漏れの判定として、測定された圧力が圧力閾値未満であるか否かを判定する。この圧力閾値は、例えば、目標圧力の90%~98%に設定され、その情報は予め記憶部912に記憶されている。制御部CUは、測定された圧力が圧力閾値未満であれば、リング支持面112bと内側リング113aの隙間からガスが漏れている、すなわち内側リング113aが位置ずれしていると判定する。
 図5(C)は、内側リング113aの位置ずれ量に関わる指標を検出する第3例を示す図である。制御部CUは、位置ずれ量に関わる指標として、上フォークFK1に設置されたカメラCM、または下フォークFK2に設置されているカメラCMの撮像情報を取得する。カメラCMは、例えば、位置検出センサS1、S2の代わりに上フォークFK1または下フォークFK2の基板支持部11に対向する下面に設置されている。なお、カメラCMは、上フォークFK1または下フォークFK2の側面に設置されてもよい。
 撮像情報には、例えば、基板支持面112aのエッジと内側リング113aのエッジとの間の隙間が、色相やコントラストの情報として含まれている。したがって、制御部CUは、カメラCMが撮像した撮像情報(位置ずれ量に関わる指標の一例)を取得して、この撮像情報に対して適宜の画像処理を行うことでも、隙間量(位置ずれ量)を精度よく算出することができる。
 図1に戻り、基板処理システムPSの制御部CUは、ユーザによる指示、基板処理の回数、基板Wの品質、各処理モジュールPM1~PM7のセンサ値、エラーの発生等のトリガに基づき、内側リング113aの交換の必要性を判定する。交換が必要であることを判定した場合に、制御部CUは、交換対象の処理モジュールの内側リング113aを回収して、リング収納モジュールRSMに収納されている交換用の内側リング113aと交換する処理を行う。交換用の内側リング113aは、新品(未使用)であってもよく、使用済みであまり消耗していないものであってもよい。
 そして、制御部CUは、交換対象の処理モジュールから内側リング113aを搬出する際に、上記のように内側リング113aの位置ずれ量に関わる指標を取得することで、内側リング113aにずれが生じているか否かを認識する。これにより、基板処理システムPSは、内側リング113aのずれを補正することが可能となり、部品の破損等を回避できる。
[搬送方法]
 図6は、エッジリングERを搬出する際の動作手順を示すフローチャートである。次に図6を参照しながら、エッジリングERを搬出する際までの動作について説明する。エッジリングERは、図3~図5に示される内側リング113aに相当する。なお、以下では、処理モジュールPM1とリング収納モジュールRSMとの間で内側リング113aを搬送する場合について説明する。交換対象の処理モジュールが他の処理モジュールPM2~PM7である場合も、交換対象の処理モジュールが処理モジュールPM1である場合と同様の方法をとりうる。
 動作手順は、工程S1~工程S6を有する。工程S1~工程S6は、制御部CUおよび/または制御部90が基板処理システムPSの各部を制御することにより実施される。制御部CUは、制御部90と別体として説明するが、制御部CUが制御部90の機能を有し、全処理を制御してもよいし、制御部90が制御部CUの機能を有し、全処理を制御してもよい。
 工程S1において、制御部CUは、処理モジュールPM1を構成するプラズマ処理装置1により、プラズマ処理チャンバ10内の基板Wにプラズマ処理(基板処理)を実施させる。プラズマ処理時に、プラズマ処理装置1の制御部90は、静電チャック112の第1の吸着電極112dおよび第2の吸着電極112eに直流電圧を印加することにより、基板WおよびエッジリングERを吸着する。
 そして、プラズマ処理後に、制御部CUは、搬送ロボットTR1によりプラズマ処理装置1の基板Wを搬出する。この際、制御部90は、第1の吸着電極112dへの直流電圧の印加を停止する(または異なる極性の直流電圧を印加する)ことにより、基板Wを取り出し可能とする。制御部90は、第1のリフタ51により基板Wを上昇させて、プラズマ処理チャンバ10内に進入した搬送ロボットTR1に基板Wを受け渡す。搬送ロボットTR1は、プラズマ処理装置1から基板Wを搬出し、次の処理モジュールまたはロードロックモジュールLL1~LL3に搬送する。
 工程S2において、制御部CUは、基板Wを搬出した後、プラズマ処理装置1をアイドルモードに移行するよう制御する。アイドルモードとは、基板Wをプラズマ処理した後のモードであって、プラズマ処理を行わないモードである。アイドルモード時に、制御部CUは、エッジリングERの交換の必要性を判定し、またエッジリングERの交換について実施可能か否かを判定する。リング113の交換の必要性は、上記したトリガに基づき判定することがあげられる。交換が実施可能か否かについて、制御部CUは、交換対象である処理モジュールPM1の基板Wの有無、搬送ロボットTR1の搬送スケジュール等に基づき判定する。また工程S2において、制御部90は、第2の吸着電極112eに直流電圧を印加することにより内側リング113aの吸着を継続している。なお、エッジリングERの交換の判定は、アイドルモード時に限らず、プラズマ処理時等の別のタイミングで実施してもよい。
 内側リング113aの交換を行うことを判定すると、制御部CUは、工程S3において、プラズマ処理装置1により内側リング113aの除電処理を行う。例えば、除電処理においてガス除電を行う場合、プラズマ処理装置1は、ガス供給部20によりプラズマ処理チャンバ10内にNガス等の不活性ガスを供給すると共に、排気システム40によりプラズマ処理チャンバ10内のガスを排気し、プラズマ処理チャンバ10内を所定の圧力に制御する。また、プラズマ処理装置1は、静電チャック112の第2の吸着電極112eにプラズマ処理時とは異なる極性の直流電圧を所定時間印加し停止する。そして、プラズマ処理装置1は、圧力制御を停止し、ガス除電を終了する。
 そして、制御部CUは、工程S4~工程S6において、処理モジュールPM1からリング収納モジュールRSMにエッジリングERを搬送する。まず図5(A)に示される搬送ロボットTR1の位置検出センサS1またはS2を用いて、エッジリングERの状態確認および搬送を行う場合(以下、第1例の搬送方法ともいう。)について説明する。
 工程S4において、制御部CUは、内側リング113aを基板支持部11から上昇させた際に、内側リング113aのずれを確認した場合にそのずれを補正するずれ確認補正処理を行う。
 図7は、ずれ確認補正処理の処理フローを示すフローチャートである。図8(A)~図8(F)は、ずれ確認補正処理の動作を示す図である。制御部CUは、ずれ確認補正処理において、まずプラズマ処理装置1の各支持ピン521を上昇させることにより、基板支持部11のリング支持面112bからエッジリングERを離隔させる(図7のステップS101)。リング支持面112bとエッジリングERとの間に残留吸着があると、図8(A)に示すように、上昇時にエッジリングERにずれが生じる可能性がある。
 制御部CUは、プラズマ処理装置1の各支持ピン521を下降させることにより、基板支持部11のリング支持面112bにエッジリングERを一旦載置させる(図7のステップS102)。エッジリングERにずれが生じた場合、図8(B)に示すように、エッジリングERは、基板支持面112aに対してずれて配置される。
 次に、制御部CUは、搬送ロボットTR1を動作させて、位置検出センサS1またはS2によりエッジリングERの位置(位置ずれ量に関わる指標の一例)を検出する(図7のステップS103)。例えば、図8(C)に示すように、搬送ロボットTR1は、プラズマ処理空間10s内を水平方向に移動して、基板支持面112aのエッジと、エッジリングERのエッジとを検出できる位置に位置検出センサS1またはS2を配置する。これにより、制御部CUは、位置検出センサS1またはS2の検出結果を受信して、基板支持面112aとエッジリングERとの隙間量(位置ずれ量)を得ることができる。
 次に、制御部CUは、予め保有している閾値とエッジリングERの位置ずれ量とを比較し、エッジリングERの位置ずれ量が閾値以上か否かを判定する(ステップS104)。閾値は、基板支持面112aやエッジリングERの寸法に応じて適宜の値に設定されればよく、例えば、0.1mm~0.4mm程度の範囲の値に設定されるとよい。本実施形態では、0.15mmに設定している。
 位置ずれ量が閾値未満の場合(ステップS104:NO)には、エッジリングERがずれていない(または位置ずれ量が充分に小さい)と言える。このため、制御部CUは、ずれ確認補正処理(図6の工程S4)を終了して、工程S5に移行する。一方、位置ずれ量が閾値以上の場合(ステップS104:YES)には、エッジリングERがずれている(位置ずれ量が大きい)と言える。この場合、制御部CUは、エッジリングERのエラーを検知して、図7のステップS105に進む。
 ステップS105において、制御部CUは、プラズマ処理装置1の各支持ピン521によりエッジリングERを上昇させると共に、プラズマ処理空間10sに搬送ロボットTR1を進入させて、エッジリングERを受け渡す。これにより、図8(D)に示すように、エッジリングERは、ずれている状態で搬送ロボットTR1に保持される。
 その後、制御部CUは、エッジリングERを保持している搬送ロボットTR1により、エッジリングERのずれを補正する補正移動を実施する(図7のステップS106)。位置検出センサS1またはS2によりエッジリングERのずれを検出する構成では、上記のステップS103において、エッジリングERの位置ずれ量を既に取得している。このため図8(E)に示すように、制御部CUは、取得している位置ずれ量に基づいて搬送ロボットTR1の補正移動における移動量を設定し、この移動量だけ搬送ロボットTR1を水平に移動させる。図8(E)の例では、搬送ロボットTR1を移動量だけ右方向に水平に移動させている。この結果、エッジリングERは、基板支持部11の上方において正常な位置に戻される。
 制御部CUは、各支持ピン521によりエッジリングERを搬送ロボットTR1から受け取り、搬送ロボットTR1の退避後に各支持ピン521を下降させて、エッジリングERをリング支持面112bに再び載置させる(図7のステップS107)。これにより図8(F)に示されるように、エッジリングERは、位置ずれが解消された状態でリング支持面112bに支持される。このステップS107が終了すると、ずれ確認補正処理(工程S4)が終了する。なお、制御部CUは、各支持ピン521によりエッジリングERを受け取った後に、各支持ピン521を下降させずに、処理モジュールPM1からエッジリングERを搬出する搬出処理に移行してもよい。
 図6に戻り、工程S5において、制御部CUは、処理モジュールPM1からエッジリングERを搬出する搬出処理を行う。具体的には、制御部CUは、プラズマ処理装置1の各支持ピン521によりエッジリングERを上昇させて、搬送ロボットTR1によりエッジリングERを受け取る。エッジリングERを載置して以降(ステップS107以降)、静電チャック112による静電吸着を行っていない。よって、各支持ピン521によるエッジリングERの上昇時には、搬送ロボットTR1の保持箇所に対してエッジリングERをずらすことなく配置させることができる。搬送ロボットTR1は、ずれが生じていないエッジリングERを受け取り、各支持ピン521の下降後に処理モジュールPM1からエッジリングERを搬出する。この際、搬送ロボットTR1は、エッジリングERを他の部品に干渉させずに、スムーズに搬出させることができる。
 工程S6において、制御部CUは、搬送ロボットTR1により、エッジリングERを搬送し、リング収納モジュールRSMにエッジリングERを搬入する搬入処理を行う。搬送ロボットTR1は、ずれが生じていないエッジリングERを保持していることで、エッジリングERをリング収納モジュールRSM等の他の部品に干渉させることなく、リング収納モジュールRSM内に安定的に搬送できる。
 以上のように、基板処理システムPSおよび搬送方法は、処理モジュールPM1からエッジリングERを搬出する際に、エッジリングERのずれを確認して、ずれがある場合に補正を行うことで、エッジリングERを他の部品に干渉させることなく搬送できる。これにより、搬送ロボットTR1からのエッジリングERの落下、エッジリングERまたは他の部品の破損等を抑制できる。よって、基板処理システムPSは、基板処理システムPSを停止してメンテナンスを行う機会を低減することが可能となる。
 なお、基板処理システムPSおよび搬送方法は、上記の実施形態に限定されず、種々の変形例をとりうる。例えば、図6に示される搬送方法は、エッジリングERのみを交換する場合について説明したが、カバーリングCR(外側リング113b)を交換する場合にも適用できる。カバーリングCRを搬出する際にも、ずれ確認補正処理を行うことで、カバーリングCRの搬送を安定的に行うことが可能となる。
 各処理モジュールPM1~PM7の基板支持部11は、静電チャック112により基板Wおよびリング113を静電吸着する構成に限定されない。例えば、基板支持部11は、基板Wおよびリング113に吸引力を付与する機構、リング113を機械的に係合して固定する機構等を採用してよい。この場合でも、リング支持面112bまたは他の構成にリング113が密着することにより、各支持ピン521の上昇時にリング113をずらす可能性がある。したがって、基板処理システムPSは、実施形態に係る搬送方法を行うことで、リング113のずれを抑制して搬送することができる。
 また、上記のずれ確認補正処理では、ステップS102においてエッジリングERをリング支持面112bに載置した後、搬送ロボットTR1の位置検出センサS1またはS2によりエッジリングERの位置ずれ量に関わる指標を取得した。しかしながら、ずれ確認補正処理では、各支持ピン521によりエッジリングERを支持したまま(上昇したまま)の状態で、搬送ロボットTR1の位置検出センサS1またはS2により、エッジリングERの位置ずれ量に関わる指標を取得してもよい。
 例えば、図9に示すように、制御部CUは、ステップS111において、支持ピン521によりエッジリングERを持ち上げて、リング支持面112bから剥がれたタイミングで支持ピン521を停止させ、この支持ピン521の停止状態で、位置検出センサS1、S2により位置ずれ量を取得する。あるいは、制御部CUは、リング支持面112bから剥がれた位置よりも高い位置、かつ搬送ロボットTR1の位置検出センサS1、S2よりエッジリングERの上面が下にある任意のピン高さ位置で、位置検出センサS1、S2により位置ずれ量を取得してもよい。その後のステップS112において、制御部CUは、位置検出センサS1またはS2によりエッジリングERの位置ずれ量を検出し、ステップS113において、エッジリングERの位置ずれ量が閾値以上か否かを判定する。そして位置ずれ量が閾値以上の場合(ステップS113:YES)に、制御部CUは、各支持ピン521によりエッジリングERを搬送高さまで上昇させると共に、プラズマ処理空間10sに搬送ロボットTR1を進入させて、エッジリングERを受け渡す(ステップS114)。ステップS115において、制御部CUは、エッジリングERを保持している搬送ロボットTR1により、エッジリングERのずれを補正する補正移動を実施する。さらにステップS116において、制御部CUは、各支持ピン521によりエッジリングERを搬送ロボットTR1から受け取り、搬送ロボットTR1の退避後に各支持ピン521を下降させて、エッジリングERをリング支持面112bに再び載置させる。これにより、図7のステップS102においてエッジリングERを下降し、ステップS105においてエッジリングERを上昇させる動作を省くことができるので、処理をより効率化させることができる。なお、ステップS115において、制御部CUは、エッジリングERの位置ずれ量を加味して搬送ロボットTR1を移動補正して、エッジリングERを受け取りそのまま搬出してもよい。これにより、ステップS116を省略できる。
 さらに、上記のずれ確認補正処理では、搬送ロボットTR1によりエッジリングERを受け取った後、補正移動を行ってエッジリングERのずれを解消した。しかしながら、ずれ確認補正処理では、図7のステップS105において各支持ピン521が保持しているエッジリングERを搬送ロボットTR1が受け取る前に、搬送ロボットTR1を位置ずれ量だけ予め補正移動させて、その後にエッジリングERを搬送ロボットTR1に受け渡してもよい。これにより例えば、図7のステップS106やステップS107を省くことができ、処理を一層効率化させることができる。
 また、基板処理システムPSは、ずれ確認補正処理(工程S4)で各支持ピン521によりエッジリングERを上昇させている間の所定の高さで停止し、プラズマ処理チャンバ10内のクリーニング処理を実施してもよく、搬送高さまでピンアップ後に、プラズマ処理チャンバ10内のクリーニング処理を実施してもよく、エッジリングERを上昇させながらプラズマ処理チャンバ10内のクリーニング処理を実施してもよい。あるいは、クリーニング処理は、処理モジュールPM1~PM7からの搬出処理(工程S5)時に、各支持ピン521によりエッジリングERを上昇させている間の所定の高さで停止し、プラズマ処理チャンバ10内のクリーニング処理を実施してもよく、搬送高さまでピンアップ後に、プラズマ処理チャンバ10内のクリーニング処理を実施してもよく、エッジリングERを上昇させながらプラズマ処理チャンバ10内のクリーニング処理を実施してもよい。このクリーニング処理は、例えば、ウエハレスドライクリーニング(WLDC:Wafer-Less Dry Cleaning)、または基板Wより直径が小さく、基板支持面112aと同等の直径を有するダミーウエハを基板支持部11に載置して行うドライクリーニング(WWDC:Wafer With Dry Cleaning)等の方法をとりうる。WWDCの場合は、S4、S5の工程前までに基板支持面112aと同等の直径を有するダミーウエハを基板支持部11に載置する。
 なお、基板処理システムPSは、工程S1の基板処理後から工程S3の除電処理までに、ウエハレスドライクリーニングを実施してもよいし、基板Wと同等の直径を有するダミーウエハ、または基板Wより直径が小さく基板支持面112aと同等の直径を有するダミーウエハを載置してドライクリーニングを実施してもよい。また、基板処理システムPSは、工程S5の後で交換用のリングを搬入する前に、ウエハレスドライクリーニングを実施してもよいし、基板Wと同等の直径を有するダミーウエハ、または基板Wより直径が小さく基板支持面112aと同等の直径を有するダミーウエハを載置してドライクリーニングを実施してもよい。
 ずれ確認補正処理または搬出処理においてクリーニング処理を行うことで、エッジリングERを真空搬送室に搬出する前にクリーニングでき、エッジリングERに付着した堆積物により真空搬送室が汚染されることを抑制できる。また、エッジリングERが上昇しているタイミングでクリーニング処理を行うことで、リング支持面112bに付着した堆積物を除去することもできる。さらに、基板処理システムPSは、搬出動作の中でエッジリングERをクリーニング処理することによって、別にクリーニング処理を行う場合よりも、処理全体としてのスループットを向上させることができる。また、エッジリング搬出後、交換用エッジリングの搬入前にクリーニングし、リング載置面に堆積した堆積物を除去することで、交換用エッジリングの吸着不良を抑制することができる。
 図10は、第2例の搬送方法を示すフローチャートである。第2例の搬送方法も、搬送ロボットTR1の位置検出センサS1またはS2を用いて、エッジリングERの状態確認および搬送を行う。また、第2例の搬送方法の説明も、リング収納モジュールRSMと処理モジュールPM1との間でリング113を搬送する場合について詳述する。交換対象の処理モジュールが他の処理モジュールPM2~PM7である場合も、交換対象の処理モジュールが処理モジュールPM1である場合と同様の方法をとりうる。
 基板処理システムPSの制御部CUは、図6の動作手順において工程S3まで実施すると、第2例の搬送方法として、ステップS201~ステップS210を行う。ステップS201~ステップS210は、制御部CUが基板処理システムPSの各部を制御することにより実施される。
 ステップS201~ステップS204は、ステップS101~ステップS104と同様であってよい。ただし、制御部CUは、ステップS204においてエッジリングERの位置ずれ量が閾値以上である場合(ステップS204:YES)に、ステップS205に進み、エッジリングERの位置ずれ量が閾値未満である場合(ステップS204:NO)、ステップS208に進む。
 ステップS205において、制御部CUは、各支持ピン521によりエッジリングERを上昇させ、またプラズマ処理空間10sに搬送ロボットTR1を進入させた後、各支持ピン521を下降させることで、搬送ロボットTR1にエッジリングERを受け渡す。これにより、エッジリングERは、ずれている状態で搬送ロボットTR1に保持される。
 その後、制御部CUは、処理モジュールPM1からエッジリングERを搬出する搬出処理を行う(ステップS206)。ステップS205の後に搬出処理を行うことで、搬送ロボットTR1は、エッジリングERをずれた状態で保持したまま、処理モジュールPM1からエッジリングERを搬出する。
 そして、制御部CUは、搬送ロボットTR1により、エッジリングERを搬送し、リング収納モジュールRSMにエッジリングERを搬入する搬入処理を行う(ステップS207)。搬入処理において、制御部CUは、リング収納モジュールRSMの収納モジュール(例えば、図示しないカセット)にエッジリングERを搬入する際に、ステップS203で取得した位置ずれ量に基づいて搬送ロボットTR1の移動量を設定し、補正移動する。これにより、エッジリングERは、リング収納モジュールRSMと干渉することなく、搬送ロボットTR1により正常な位置に戻される。したがって、制御部CUは、エッジリングERを他の部品に干渉することなくスムーズに収納することができる。
 一方、位置ずれ量が閾値未満である場合には、エッジリングERがずれていない(または位置ずれ量が充分に小さい)と言えるため、制御部CUは、ステップS208~ステップS210において通常の(移動補正を行わない)搬送を実施する。
 具体的には、制御部CUは、プラズマ処理装置1の各支持ピン521によりエッジリングERを上昇させると共に、プラズマ処理空間10sに搬送ロボットTR1を進入させて、エッジリングERを受け渡す(ステップS208)。そして、制御部CUは、処理モジュールPM1からエッジリングERを搬出する搬出処理を行う(ステップS209)。さらに、制御部CUは、搬送ロボットTR1により、エッジリングERを搬送し、リング収納モジュールRSMにエッジリングERを搬入する(ステップS210)。リング収納モジュールRSMへの搬入において、搬送ロボットTR1は、エッジリングERを移動補正することなく、収納モジュールに収納することができる。すなわち、ステップS206およびステップS209の搬入処理は、図6の工程S5の搬出処理に相当し、ステップS207およびステップS210の搬入処理は、図6の工程S6の搬入処理に相当する。
 このように、第2例の搬送方法は、エッジリングERにずれがある場合に、リング収納モジュールRSMへのエッジリングERの搬入時に移動補正を行うことでも、エッジリングERと他の部品の干渉を抑制できる。なお、第2例の搬送方法も種々の変形例をとりうる。例えば、ずれ確認補正処理では、各支持ピン521によりエッジリングERを支持したままの状態で、搬送ロボットTR1の位置検出センサS1またはS2により、エッジリングERの位置ずれ量に関わる指標を取得してもよい。すなわち、制御部CUは、ステップS201において、リング支持面112bからエッジリングERが剥がれた位置で支持ピン521を停止させて、位置検出センサS1またはS2で位置ずれ量を取得してもよいし、剥がれた位置よりも高く、かつ搬送ロボットTR1の位置検出センサS1またはS2よりもエッジリングERの上面が下にある任意のピン高さにおいて、位置検出センサS1またはS2により位置ずれ量を取得してもよい(図9も参照)。
 また、制御部CUは、エッジリングERの位置ずれ量に基づき、第1例の搬送方法の実施と、第2例の搬送方法の実施とを選択してもよい。例えば、制御部CUは、搬送方法の選択用閾値を有し、選択用閾値以上の位置ずれ量の場合には、第1例の搬送方法を判定し、選択用閾値未満の位置ずれ量の場合には、第2例の搬送方法を判定してもよい。選択用閾値は、移動補正を判定するための閾値よりも大きな値である。これにより、エッジリングERの位置ずれ量が大きい場合には、処理モジュールPM1内でエッジリングERのずれを直すことで、より安定的な搬送が可能となる。一方、移動補正は必要ではあるがエッジリングERの位置ずれ量が小さい場合には、リング収納モジュールRSMへ搬送する際にエッジリングERのずれを直すことで、搬送効率を向上させることができる。
 基板処理システムPSは、搬送ロボットTR1により、処理モジュールPM1~PM7のリング113(エッジリングER)をリング収納モジュールRSMに直接搬入する構成に限定されない。基板処理システムPSは、例えば、図11に示すプラズマ処理装置1Aを適用した場合に、リング220の上側リング222を大気搬送モジュールLMに搬送してもよい。図11は、プラズマ処理装置の別の一例を示す概略断面図である。
 図11に示されるプラズマ処理装置1Aは、基板支持部11の代わりに基板支持部16を有し、リングアセンブリ113の代わりにリングアセンブリ220(リング220)を有する点で、プラズマ処理装置1と異なる。その他の構成については、プラズマ処理装置1と同様であってよい。以下、プラズマ処理装置1と異なる点を中心に説明する。
 プラズマ処理装置1Aは、基板支持部16を有する。基板支持部16は、プラズマ処理チャンバ10の内部に設けられる。基板支持部16は、基板Wを支持する。基板支持部16は、支持部17により支持される。支持部17は、プラズマ処理チャンバ10の底部から上方に延在する。支持部17は、円筒形状を有する。支持部17は、石英などの絶縁材料により形成される。
 基板支持部16は、第1の領域161と、第2の領域162とを有する。第1の領域161は、基板Wを支持する。第1の領域161は、平面視において略円形の領域である。第1の領域161は、基台18と、静電チャック19とを含んでよい。第1の領域161は、基台18の一部と、静電チャック19の一部とにより構成されうる。基台18及び静電チャック19は、プラズマ処理チャンバ10の内部に設けられる。基台18は、アルミニウムなどの導電性材料により形成される。基台18は、略円盤形状を有する。基台18は、下部電極を構成する。
 基板支持部16は、本体部2と、リングアセンブリ220とを有する。本体部2は、基台18と、静電チャック19とを有する。本体部2は、基板Wを支持するための基板支持領域2aと、リングアセンブリ220を支持するための環状領域2bと、基板支持領域2aと環状領域2bとの間において上下方向に延在する側壁2cとを有する。環状領域2bは、基板支持領域2aを囲む。環状領域2bは、基板支持領域2aよりも低い位置にある。従って、側壁2cの上端は基板支持領域2aに接続され、側壁2cの下端は環状領域2bに接続される。
 基台18内には、流路18fが形成される。流路18fは、熱交換媒体を通流させる流路である。熱交換媒体としては、液状の冷媒、又は、液状の冷媒の気化によって基台18を冷却する冷媒(例えばフロン)が用いられる。流路18fには、熱交換媒体の供給装置(例えばチラーユニット)が接続される。供給装置は、プラズマ処理チャンバ10の外部に設けられる。流路18fには、供給装置から熱交換媒体が供給される。流路18fに供給された熱交換媒体は、供給装置に戻される。
 静電チャック19は、基台18上に設けられる。基板Wは、プラズマ処理チャンバ10内で処理される際に、第1の領域161上かつ静電チャック19上に載置される。
 第2の領域162は、第1の領域161に対して径方向外側で延在して、第1の領域161を囲む。第2の領域162は、平面視において略環形状の領域である。第2の領域162上には、リングアセンブリ220が載置される。第2の領域162は、基台18を含みうる。第2の領域162は、静電チャック19を含んでもよい。第2の領域162は、基台18の別の一部及び静電チャック19の別の一部から構成されうる。基板Wは、リングアセンブリ220により囲まれた領域内、かつ、静電チャック19上に載置される。リングアセンブリ220の詳細については後述する。
 第2の領域162には、貫通孔162hが形成される。本体部2は、環状領域2bと本体部2の下面2dとの間に形成された貫通孔162hを有する。貫通孔162hは、鉛直方向に沿って延びるように第2の領域162に形成される。複数の貫通孔162hは、第2の領域162に形成される。貫通孔162hの個数は、後述するリフト機構70のリフトピン72の個数と同数でありうる。各貫通孔162hは、対応のリフトピン72と一直線上で並ぶように配置される。
 静電チャック19は、本体19mと、電極19eとを有する。本体19mは、酸化アルミニウム又は窒化アルミニウムなどの誘電体により形成される。本体19mは、略円盤形状を有する。電極19eは、本体19m内に設けられる。電極19eは、膜形状を有する。電極19eには、直流電源がスイッチを介して電気的に接続される。直流電源からの電圧が電極19eに印加されると、静電チャック19と基板Wとの間で静電引力が発生する。発生した静電引力により、基板Wは静電チャック19に引き付けられ、静電チャック19によって保持される。
 プラズマ処理装置1Aは、外周部材27を更に有する。外周部材27は、基板支持部16を囲むように基板支持部16に対して径方向外側で周方向に延在する。外周部材27は、支持部17を囲むように支持部17に対して径方向外側で周方向に延在してもよい。外周部材27は、一つ以上の部品から構成されうる。外周部材27は、石英などの絶縁材料により形成されうる。
 リングアセンブリ220及び基板支持部16についてより詳細に説明する。リングアセンブリ220は、下側リング221と、上側リング222とを含む。
 下側リング221及び上側リング222の各々は、円環状を有する。下側リング221及び上側リング222の各々は、プラズマ処理装置1Aで実行されるプラズマ処理に応じて適宜選択される材料により形成される。下側リング221及び上側リング222の各々は、例えば珪素又は炭化珪素により形成される。
 下側リング221は、環状領域2b上に配置される。下側リング221は、第2の領域162上かつ静電チャック19上に載置されうる。下側リング221は、第2の領域162における静電チャック19以外の部品上に載置されてもよい。
 上側リング222の下面は、概ね平坦である。上側リング222の下面は、テーパ状の面を含み、凹部を画成する。上側リング222の下面は、複数の凹部を画成する。上側リング222のテーパ状の面の個数及び凹部の個数は、リフト機構70のリフトピン72の個数と同数でありうる。各凹部は、対応のリフトピン72の第2の柱状部722の先端がそれに嵌まるサイズを有する。上側リング222は、各凹部が対応のリフトピン72及び対応の貫通孔221hと一直線上で並ぶように、下側リング221上に配置される。
 上側リング222は、下側リング221の凹部に収容される。下側リング221及び上側リング222は、環状領域2b上に配置されるときに下側リング221の外側部分の上面及び上側リング222の上面が基板支持領域2a上の基板Wの上面と略同一の高さになるように構成される。上側リング222は、下側リング221及び上側リング222が環状領域2b上に配置されるときに基板支持領域2a上の基板Wの端面に対面する内周面222aを有する。
 基板支持部16は、リフト機構70を有する。リフト機構70は、リフトピン72を含み、下側リング221及び上側リング222を昇降させるように構成される。リフト機構70は、複数のリフトピン72を含む。リフトピン72の本数は、リングアセンブリ220を支持して昇降させることが可能である限り、任意の本数でありうる。リフトピン72の本数は、例えば3本であってよい。
 各リフトピン72は、絶縁材料により形成されうる。各リフトピン72は、例えばサファイア、アルミナ、石英、窒化シリコン、窒化アルミニウム、又は樹脂により形成されうる。各リフトピン72は、第1の柱状部721と、第2の柱状部722とを含む。第1の柱状部721は、鉛直方向に延びる。第1の柱状部721は、第1の上端面721tを有する。第1の上端面721tは、下側リング221の下面に当接可能である。
 第2の柱状部722は、第1の柱状部721の上方で鉛直方向に延びる。第2の柱状部722は、第1の上端面721tを露出させるように第1の柱状部721に対して狭められる。第1の柱状部721と第2の柱状部722の各々は、円柱形状を有する。第1の柱状部721の直径は、第2の柱状部722の直径よりも大きい。第2の柱状部722は、貫通孔221hを通って上下に移動可能である。第2の柱状部722の鉛直方向における長さは、下側リング221における上側リング222が載置される領域の鉛直方向の厚さよりも長い。
 第2の柱状部722は、第2の上端面722tを有する。第2の上端面722tは、上側リング222に当接可能である。第2の上端面722tを含む第2の柱状部722の先端は、上側リング222における対応の凹部に嵌まるよう、テーパ状に形成されてもよい。
 第2の柱状部722は、第1の部分722aと、第2の部分722bとを含んでもよい。第1の部分722aは、柱状をなし、第1の柱状部721から上方に延びる。第2の部分722bは、柱状をなし、第1の部分722aの上方で延在する。第2の部分722bは、第2の上端面722tを含む。第1の部分722aの幅は、第2の部分722bの幅よりも大きい。
 第1の柱状部721、第1の部分722a及び第2の部分722bの各々は、円柱形状を有してもよい。第1の柱状部721の直径は第1の部分722aの直径よりも大きく、第1の部分722aの直径は第2の部分722bの直径よりも大きい。
 第2の柱状部722は、第3の部分722cを含んでもよい。第3の部分722cは、第1の部分722aと第2の部分722bとの間で延在する。第3の部分722cは、テーパ状の表面を有する。
 リフト機構70は、一つ以上の駆動装置74を含む。一つ以上の駆動装置74は、複数のリフトピン72を昇降させるように構成される。一つ以上の駆動装置74の各々は、例えばモータを含みうる。
 例えば、上側リング222は、大気搬送モジュールLMのロードポートLP4に載置されるリング収納容器CS2に保管される。リング収納容器CS2は、リング収納モジュールに相当する。制御部CUは、処理モジュールPM1~PM7の上側リング222を真空搬送モジュールTMに搬出し、ロードロックモジュールLL1~LL3のいずれかに上側リング222を移送する。そして、制御部CUは、大気搬送モジュールLMの搬送ロボットTR2によりロードロックモジュールLL1~LL3から上側リング222を搬出すると、リング収納容器CS2に上側リング222を搬入して収納する。
 上側リング222に位置ずれが生じた際の補正移動は、処理モジュールPM1~PM7内で行ってもよく、搬送ロボットTR1がロードロックモジュールLL1~LL3に上側リング222を搬入および載置する際に行ってもよい。あるいは、大気搬送モジュールLMの搬送ロボットTR2がリング収納容器CS2に上側リング222を搬入する際に、補正移動を行ってもよい。なお、搬送方法では、上側リング222の他に下側リング221を搬送する場合も、上記と同様の処理を行ってよい。また例えば、基板処理システムPSの処理モジュールPM1~PM7は、複数の部材の組み合わせたリングアセンブリ113、220に限定されず、1つの部材から構成されるリングを使用する構成でもよい。この場合でも、上記の第1例および第2例の搬送方法を適用でき、また後記の第3~第5例の搬送方法を適用できる。
 次に図5(B)に示されるリークチェックにより、エッジリングERの状態確認および搬送を行う場合の搬送方法について説明する。図12は、第3例の搬送方法の処理フローを示すフローチャートである。なお、第3例の搬送方法の説明も、リング収納モジュールRSMと処理モジュールPM1との間でリング113を搬送する場合について詳述する。交換対象の処理モジュールが他の処理モジュールPM2~PM7である場合も、交換対象の処理モジュールが処理モジュールPM1である場合と同様の方法をとりうる。
 基板処理システムPSの制御部CUは、図6の動作手順において工程S3まで実施すると、第3例の搬送方法として、ステップS301~ステップS308を行う。ステップS301~ステップS308は、制御部CUが基板処理システムPSの各部を制御することにより実施される。
 ステップS301、ステップS302は、ステップS101、ステップS102と同様であってよい。なお、制御部CUは、ステップS302の後(ステップS303の前)に、リークチェックを行うために、リング支持面112bにエッジリングERを静電吸着する処理を行う。
 ステップS303において、制御部CUは、エッジリングERの位置ずれ量に関わる指標を取得するために、プラズマ処理装置1によりリークチェックを行う。プラズマ処理装置1の制御部90は、図5(B)に示すように、リークチェックにおいて、静電吸着しているリング支持面112bとエッジリングERの隙間にガスを供給し、この隙間の圧力が目標圧力に達すると、ガスの供給を停止する。そして、制御部90は、供給停止から所定時間経過後の流通路の圧力を圧力センサ67により測定する。
 制御部CUは、エッジリングERの位置ずれ量に関わる指標として、所定時間経過後の圧力センサ67の測定結果を取得し、エッジリングERの位置ずれを判定する(図12のステップS304)。例えば、制御部CUは、予め保有している圧力閾値以上の圧力の場合に、エッジリングERがずれていないこと(正常)を判定する一方で、圧力閾値未満の圧力の場合に、エッジリングERがずれていること(異常)を判定する。そして、エッジリングERがずれていない場合(ステップS304:YES)にはステップS305に進み、エッジリングERがずれている場合(ステップS304:NO)にはステップS308に進む。
 ステップS305において、制御部CUは、リークチェックおよびずれ確認補正処理を終了する。そして、制御部CUは、ステップS306において、搬送ロボットTR1により処理モジュールPM1からエッジリングERを搬出する搬出処理を行う。このステップS306は、図6の工程S5に相当する。なお、上記のリークチェックではエッジリングERを静電吸着させた状態で行うことから、制御部CUは、ステップS306(または後述するステップS308)の前に、エッジリングERの除電処理を行うとよい。さらに、制御部CUは、ステップS307において、搬送ロボットTR1により、リング収納モジュールRSMにエッジリングERを搬入する搬入処理を行う。このステップS307は、図6の工程S6に相当する。
 一方、エッジリングERにずれが生じている場合、制御部CUは、ステップS308において、エッジリングERのずれを解消するためのずれ解消動作を行う。このずれ解消動作では、例えば図13(A)~図13(C)に示すように、エッジリングERに設けられた凹部114と、各支持ピン521との構成を利用することができる。
 具体的には、エッジリングERの凹部114は、エッジリングERの下面において、各支持ピン521に一致する数だけ設けられている。図13(A)に示すように、各凹部114は、平坦状の底部114aと、この底部114aの周囲を囲うと共に開放部に向かって内径が広がるテーパ部114bと、を含む。底部114aは、支持ピン521の上部ピン524の外径よりも広く形成され、例えば、2mm程度の直径を有する。テーパ部114bは、底部114aおよびエッジリングERの下面に対してR部分を介して滑らかに連なっている。
 このような凹部114を有するエッジリングERは、位置ずれが生じた場合、例えば、支持ピン521の上端面524aとテーパ部114bが対向した状態となる。この場合、制御部CUは、ずれ解消動作として、プラズマ処理装置1により各支持ピン521を上昇させる動作を実施する。
 すなわち、図13(B)に示すように、支持ピン521を上昇させると、その上端面524aがエッジリングERのテーパ部114bに接触する。そのため、支持ピン521に対してテーパ部114bがその傾斜に沿って滑る。結果的に図13(C)に示すように、エッジリングERは、底部114aの略中央部に支持ピン521を誘導するように、水平方向に移動する。この水平方向に移動によって、エッジリングERのずれが解消される。
 図12に戻り、ステップS308のずれ解消動作を行うと、制御部CUは、ステップS303に戻り、再びリークチェックを実施する。ずれ解消動作によって、エッジリングERのずれが解消されたか否かを確認するためである。仮に、測定された圧力が圧力閾値未満である場合には、エッジリングERのずれが解消されていないことになるため、ずれ解消動作(ステップS308)を繰り返す。一方、測定された圧力が圧力閾値以上となった場合には、制御部CUは、ステップS305に進むことで、ずれ確認補正処理を終了する。
 以上のように、基板処理システムPSおよび搬送方法は、リークチェックを行うことでも、エッジリングERのずれを確認できる。そして、基板処理システムPSおよび搬送方法は、エッジリングERの凹部114と、支持ピン521の形状を利用することでもエッジリングERのずれを補正することができる。その結果、搬送ロボットTR1は、エッジリングERを他の部品に干渉させることなく搬送できる。
 図14は、第4例の搬送方法を示すフローチャートである。第4例の搬送方法も、処理モジュールPM1においてリークチェックを行い、エッジリングERの状態確認および搬送を行う。また、第4例の搬送方法の説明も、リング収納モジュールRSMと処理モジュールPM1との間でリング113を搬送する場合について詳述する。交換対象の処理モジュールが他の処理モジュールPM2~PM7である場合も、交換対象の処理モジュールが処理モジュールPM1である場合と同様の方法をとりうる。
 基板処理システムPSの制御部CUは、図6の動作手順において工程S3まで実施すると、第4例の搬送方法として、ステップS401~ステップS410を行う。ステップS401~ステップS410は、制御部CUが基板処理システムPSの各部を制御することにより実施される。
 ステップS401~ステップS404は、ステップS301~ステップS304と同様であってよい。なお、制御部CUは、ステップS402の後(ステップS403の前)に、リークチェックを行うために、リング支持面112bにエッジリングERを静電吸着する処理を行う。また、制御部CUは、ステップS404において圧力センサ67の圧力が圧力閾値未満である場合(ステップS404:NO)に、ステップS405に進み、圧力センサ67の圧力が閾値以上である場合(ステップS404:YES)、制御部CUは、ステップS405~ステップS408を省略してステップS409に進む。
 ステップS405において、制御部CUは、搬送ロボットTR1を動作させて、位置検出センサS1またはS2によりエッジリングERの位置(位置ずれ量に関わる指標)を検出する。これにより、制御部CUは、位置検出センサS1またはS2の検出結果を受信して、基板支持面112aとエッジリングERとの隙間量(位置ずれ量)を得ることができる。
 そして、制御部CUは、この位置ずれ量を用いることで、図8(D)~図8(F)に示す補正移動を実施できる。なお、上記のリークチェックではエッジリングERを静電吸着させた状態で行うことから、制御部CUは、ステップS404のYESの判定の後からステップS406の前に、エッジリングERの除電処理を行うとよい。したがって、ステップS406において、制御部CUは、リング支持面112bとエッジリングERとの吸着が解消された状態で、各支持ピン521によりエッジリングERを上昇させる。つまり、位置ずれ量の検出以降は、エッジリングERがさらに位置ずれすることを防いで、搬送ロボットTR1にエッジリングERを受け渡すことができる。その後のステップS407は図7のステップS106と同様の動作であってよく、ステップS408は図7のステップS107と同様の動作であってよい。
 また、制御部CUは、ステップS409において、搬送ロボットTR1により処理モジュールPM1からエッジリングERを搬出する搬出処理を行う。このステップS409は、図6の工程S5に相当する。さらに、制御部CUは、ステップS410において、搬送ロボットTR1により、リング収納モジュールRSMにエッジリングERを搬入する搬入処理を行う。このステップS410は、図6の工程S6に相当する。
 以上のように、第4例の搬送方法は、リークチェック時にエッジリングERのずれを認識した場合に、搬送ロボットTR1の位置検出センサS1またはS2によりエッジリングERの位置を検出する。このため、制御部CUは、エッジリングERの位置ずれ量を確実に把握することができ、エッジリングERを精度よく補正移動させることが可能となる。その結果、搬送方法は、エッジリングERを他の部品に干渉させることなく搬送できる。
 図15は、第5例の搬送方法を示すフローチャートである。第5例の搬送方法も、処理モジュールPM1においてリークチェックを行い、エッジリングERの状態確認および搬送を行う方法である。また、第5例の搬送方法の説明も、リング収納モジュールRSMと処理モジュールPM1との間でリング113を搬送する場合について詳述する。交換対象の処理モジュールが他の処理モジュールPM2~PM7である場合も、交換対象の処理モジュールが処理モジュールPM1である場合と同様の方法をとりうる。
 制御部CUは、第5例の搬送方法として、図6の動作手順において工程S3まで実施すると、ステップS501~ステップS511を行う。ステップS501~ステップS511は、制御部CUが基板処理システムPSの各部を制御することにより実施される。
 ステップS501~ステップS504は、ステップS301~ステップS304と同様であってよい。なお、制御部CUは、ステップS502の後(ステップS503の前)に、リークチェックを行うために、リング支持面112bにエッジリングERを静電吸着する処理を行う。また、制御部CUは、ステップS504において圧力センサ67の圧力が圧力閾値未満である場合(ステップS504:NO)に、ステップS505に進み、圧力が閾値以上である場合(ステップS504:YES)、ステップS509に進む。
 ステップS505およびステップS506は、第2例の搬送方法のステップS205およびステップS206と同様であってよい。なお、上記のリークチェックではエッジリングERを静電吸着させた状態で行うことから、制御部CUは、ステップS505(または後述するステップS509)の前に、エッジリングERの除電処理を行うとよい。
 ステップS507において、制御部CUは、真空搬送モジュールTMにおいて、処理モジュールPM1を仕切るゲートバルブ(不図示)の近傍に設けられた位置検出センサS11、S12により、エッジリングERの位置ずれ量を検出する。例えば、制御部CUは、搬送ロボットTR1によるエッジリングERの搬送時に、位置検出センサS11、S12による検出を行いエッジリングERにより遮光される位置および時間に基づいて、エッジリングERの位置を算出する。また、制御部CUは、エッジリングERの位置と予め定められた基準位置とに基づいて、エッジリングERの基準位置からの位置ずれ量(位置ずれ量に関わる指標)を算出する。
 搬出時に位置ずれ量を算出した後、制御部CUは、搬送ロボットTR1により、リング収納モジュールRSMにエッジリングERを搬入する搬入処理を行う(ステップS508)。搬入処理において、制御部CUは、リング収納モジュールRSMの収納モジュール(例えば、図示しないカセット)にエッジリングERを搬入する際に、ステップS507で取得した位置ずれ量に基づいて搬送ロボットTR1の移動量を設定し、補正移動する。これにより、エッジリングERは、リング収納モジュールRSMと干渉することなく、搬送ロボットTR1により正常な位置に戻される。したがって、制御部CUは、エッジリングERを他の部品に干渉することなくスムーズに収納することができる。
 一方、リーク量が閾値未満である場合には、エッジリングERがずれていない(または位置ずれ量が充分に小さい)と言えるため、制御部CUは、ステップS509~ステップS511において通常の(移動補正を行わない)搬送を実施する。このステップS509~ステップS511は、ステップS208~ステップS210と同様であってよい。
 以上のように、第5例の搬送方法は、リークチェック時にエッジリングERのずれを認識した場合に、真空搬送モジュールTMの位置検出センサS11、S12によってエッジリングERの位置を検出する。この場合でも、制御部CUは、エッジリングERの位置ずれ量を確実に把握することができ、リング収納モジュールRSMへの搬入時にエッジリングERを精度よく補正移動させることが可能となる。
 なお、真空搬送モジュールTMの位置検出センサS11、S12によりエッジリングERの位置を検出する場合、検出後、リング収納モジュールRSMにエッジリングERを搬送せずに、処理モジュールPM1に一旦戻して処理モジュールPM1内で移動補正を行ってもよい。
 次に図5(C)に示される搬送ロボットTR1のカメラCMにより、エッジリングERの状態確認および搬送を行う場合の搬送方法について説明する。図16は、第6例の搬送方法の処理フローを示すフローチャートである。なお、第6例の搬送方法の説明も、リング収納モジュールRSMと処理モジュールPM1との間でリング113を搬送する場合について詳述する。交換対象の処理モジュールが他の処理モジュールPM2~PM7である場合も、交換対象の処理モジュールが処理モジュールPM1である場合と同様の方法をとりうる。
 基板処理システムPSの制御部CUは、図6の動作手順において工程S3まで実施すると、ステップS601~ステップS609を行う。ステップS601~ステップS609は、制御部CUが基板処理システムPSの各部を制御することにより実施される。
 ステップS601およびステップS602は、第1例の搬送方法のステップS101およびステップS102と同様であってよい。
 ステップS603において、制御部CUは、搬送ロボットTR1を動作させて、カメラCMにより基板支持面112aおよびエッジリングERを撮像して、位置ずれ量の指標である撮像情報を取得する。制御部CUは、撮像情報を画像処理することで、色相やコントラストの情報から基板支持面112aとエッジリングERとの隙間量(位置ずれ量)を抽出できる。
 したがって、制御部CUは、撮像情報から抽出した位置ずれ量と、予め保有している閾値とに基づき、エッジリングERの位置ずれ量が閾値以上か否かを判定する(ステップS604)。位置ずれ量が閾値未満の場合(ステップS604:NO)には、エッジリングERがずれていない(または位置ずれ量が充分に小さい)と言える。このため、制御部CUは、ステップS605~S607をスキップし、直ちにステップS608に進む。一方、位置ずれ量が閾値以上の場合(ステップS604:YES)には、エッジリングERがずれている(位置ずれ量が大きい)と言える。この場合、制御部CUは、エッジリングERのエラーを検知して、図16のステップS605に進む。
 また、ステップS605~ステップS607は、第1例の搬送方法のステップS105~S107と同様であってよい。
 また、制御部CUは、ステップS608において、搬送ロボットTR1により処理モジュールPM1からエッジリングERを搬出する搬出処理を行う。このステップS608は、図6の工程S5に相当する。さらに、制御部CUは、ステップS609において、搬送ロボットTR1により、リング収納モジュールRSMにエッジリングERを搬入する搬入処理を行う。このステップS609は、図6の工程S6に相当する。
 以上のように、第6例の搬送方法は、搬送ロボットTR1のカメラによってエッジリングERを撮像することで、エッジリングERの位置ずれ量を得ることができる。したがって、制御部CUは、撮像情報の位置ずれ量に基づき、搬送ロボットTR1を動作させることで、エッジリングERを他の部品に干渉させることなく搬送できる。
 なお、搬送ロボットTR1にカメラCMを適用した構成における搬送方法は、上記の第6例の搬送方法に限定されず、例えば、リークチェックと併用する、または真空搬送モジュールTMの位置検出センサS11、S12と併用することができる。エッジリングERの位置ずれ量について、カメラCMの撮像情報(あるいは位置検出センサS1またはS2の検出結果)と、位置検出センサS11、S12の検出結果とを用いることで、検出の精度や補正移動の精度を一層高めることが可能となる。また、第6例の搬送方法でも、搬送ロボットTR1の位置検出センサS1またはS2によるエッジリングERの位置ずれ量に関わる指標の取得時に、各支持ピン521によりエッジリングERを支持したまま検出を行ってもよい。すなわち、制御部CUは、ステップS601において、リング支持面112bからエッジリングERが剥がれた位置で支持ピン521を停止させて、位置検出センサS1またはS2で位置ずれ量を取得してもよいし、剥がれた位置よりも高く、かつ搬送ロボットTR1の位置検出センサS1またはS2よりもエッジリングERの上面が下にある任意のピン高さにおいて、位置検出センサS1またはS2により位置ずれ量を取得してもよい(図9も参照)。
 なお、搬送ロボットTR1にカメラCMを適用した構成では、図17に示すように、カメラCMの撮像方向を適宜調整することで、下方の基板支持面112aやエッジリングERを撮像するだけでなく、搬送方向前方も撮像することが可能となる。したがって、エッジリングERが一部の支持ピン521から外れて傾斜して支持されていることを、カメラCMを用いて撮像できる。また、エッジリングERが全ての支持ピン521から外れて静電チャック112上に支持されていることを、カメラCMを用いて撮像できる。
 制御部CUは、これらの撮像情報を画像処理および解析することで、エッジリングERが斜めとなっていること、またはエッジリングERが全ての支持ピンから外れていることを認識することができる。例えば、カメラCMは、搬送ロボットTR1の移動時に複数枚の撮像情報を撮像し、制御部CUは、複数枚の撮像情報のエッジリングERと搬送ロボットTR1の位置とを対応させて計算を行う。これにより、制御部CUは、エッジリングERの三次元の形態(姿勢、位置)等を精度よく算出することができる。なお、制御部CUは、エッジリングERの撮像毎に取得した撮像情報を蓄積すると共に、蓄積した複数の撮像情報に含まれるエッジリングERの画像からエッジリングERの認識を学習してもよい。これにより、次に撮像情報を取得した際に、その撮像情報からエッジリングERの抽出精度を高めることができる。制御部CUは、エッジリングERが斜めとなっていること、またはエッジリングERが全ての支持ピンから外れていることを認識した場合、アラームを発報するよう構成されてもよい。
 図18は、エッジリングの位置ずれ量に関わる指標としてガスのリークチェックを行う構成である図5(B)の変形例を示す図である。図18に示すように、リークチェックを行う構成は、静電チャック112の周縁部のリング支持面112bに、下方に凹むと共に、ガス供給口61aに連通する溝61agを備えた構成でもよい。溝61agは、リング支持面112bの周方向に周回する環状に形成されている。このような構成により、溝61agは、内側リング113aの裏面の周方向全体にHeガス等のガスを供給して、ガスのリークチェックを行ってもよい。
 図19は、変形例に係るエッジリングERの搬送の動作手順を示すフローチャートである。図19に示す変形例のように、基板処理システムPSおよび搬送方法は、処理モジュールPM1からエッジリングERを搬出する場合に真空搬送モジュールTMの位置検出センサS11、S12においてエッジリングERのずれ量を検出してもよい。そして、基板処理システムPSは、位置検出センサS11、S12で検出したエッジリングERのずれ量に基づき、エッジリングERの位置を補正しながらリング収納モジュールRSMにエッジリングERを搬入する。なお、交換対象の処理モジュールが他の処理モジュールPM2~PM7である場合も、交換対象の処理モジュールが処理モジュールPM1である場合と同様の方法をとってよい。この場合、位置検出センサは各処理モジュールの隣接位置にあるものを使用すればよい。
 位置検出センサS11、S12によるエッジリングERの検出は、例えば、図20に示す方法により実行することができる。図20(A)は、エッジリングERの位置と位置検出センサS11、S12の位置との関係を示す図である。図20(B)は、位置P21から位置P24までエッジリングERを搬送したときの位置検出センサS11、S12のセンサ出力の変化を示す図である。なお、図20(B)において、位置P21での時刻をt21、位置P22での時刻をt22、位置P23での時刻をt23、位置P24での時刻をt24で示している。制御部CUは、位置検出センサS11、S12により検出されるエッジリングERの位置と予め定められた基準位置とに基づいて、エッジリングERの基準位置からのずれ量を算出する。続いて、制御部CUは、搬送ロボットTR1により、算出されたずれ量を補正するようにリング収納モジュールRSMにエッジリングERを載置する。これにより、上フォークFK1または下フォークFK2に保持されたエッジリングERの位置が基準位置からずれていた場合であっても、リング収納モジュールRSMの所定の位置にエッジリングERを載置することができる。
 上フォークFK1または下フォークFK2に保持されたエッジリングERの位置は、エッジリングERの内周縁部が位置検出センサS11、S12を通過することにより生じる位置検出センサS11、S12の出力の変化に基づいて算出することができる。例えば図20(A)に示されるように、位置P21から位置P24までエッジリングERを搬送する場合、位置P22から位置P23までエッジリングERが移動する時間T2に基づいて算出することができる。位置P22は、位置検出センサS11、S12のセンサ出力がロー(L)レベルからハイ(H)レベルに変化する位置であり、位置P23は、位置検出センサS11、S12のセンサ出力がハイ(H)レベルからロー(L)レベルに変化する位置である。具体的には、図20(B)に示されるように、位置P22での時刻t22及び位置P23での時刻t23を用いて、T2=t23-t22により算出することができる。なお、図20では、エッジリングERにより位置検出センサS11が遮光される位置と位置検出センサS12が遮光される位置とが同じ場合を示しているが、これらの位置は異なっていてもよい。
 制御部CUは、図19のステップS701~ステップS706を制御する。制御部CUは、まずプラズマ処理装置1の各支持ピン521を上昇させることにより、基板支持部11のリング支持面112bからエッジリングERを離隔させる(図19のステップS701)。リング支持面112bとエッジリングERとの間に残留吸着があると、上昇時にエッジリングERにずれが生じる可能性がある。
 次に、制御部CUは、プラズマ処理空間10s内のエッジリングERの下方に搬送ロボットTR1を進入させ、各支持ピン521を下降させることで搬送ロボットTR1にエッジリングERを受け渡す(図19のステップS702)。
 その後、制御部CUは、搬送ロボットTR1を処理モジュールPM1から搬出し、この際に位置検出センサS11、S12により保持しているエッジリングERの位置を検出する(ステップS703)。この際、搬送ロボットTR1は、位置検出センサS11、S12の中間を通過するように移動し、エッジリングERがずれていない場合にはエッジリングERの中心がこの中間を通過することになる。一方、エッジリングERがずれている場合には、位置検出センサS11、S12によりエッジリングERのずれ(搬送ロボットTRの基準位置に対するエッジリングERの中心の位置ずれ量、位置ずれ方向)を算出できる。
 次に、制御部CUは、予め保有している閾値とエッジリングERの位置ずれ量とを比較し、エッジリングERの位置ずれ量が閾値以上か否かを判定する(ステップS704)。位置ずれ量が閾値未満の場合(ステップS704:NO)には、エッジリングERがずれていない(または位置ずれ量が充分に小さい)と言える。この場合、制御部CUは、ステップS105に移行する。
 ステップS105において、制御部CUは、搬送ロボットTR1の移動を補正せずにエッジリングERを搬送し、エッジリングERをリング収納モジュールに搬入する。これにより、基板処理システムPSは、リング収納モジュールRSMにエッジリングERをスムーズに搬入できる。
 一方、位置ずれ量が閾値以上の場合(ステップS704:YES)には、エッジリングERがずれている(位置ずれ量が大きい)と言える。この場合、制御部CUは、図19のステップS106に進み、位置検出センサS11、S12の検出結果から算出したエッジリングERのずれに基づき搬送ロボットTR1の移動を補正しながら、エッジリングERをリング収納モジュールに搬入する。この際、制御部CUは、取得しているずれ量、ずれ方向に基づいて搬送ロボットTR1の補正移動における移動量、移動方向を設定し、搬送ロボットTR1の移動を補正する。そのためエッジリングERにずれが生じている場合でも、基板処理システムPSは、リング収納モジュールRSMにエッジリングERをスムーズに搬入できる。
 なお、図19の搬送方法は、カバーリングCRを処理モジュールPM1~PM7から真空搬送モジュールTMに搬出し、リング収納モジュールRSMに搬送する場合にも適用できる。また、図19の搬送方法は、図11の上側リング222または下側リング221を処理モジュールPM1~PM7から真空搬送モジュールTMに搬出し、ロードロックモジュールLLMに搬送する場合にも適用できる。さらに、図19の搬送方法は、図11の上側リング222または下側リング221を処理モジュールPM1~PM7から真空搬送モジュールTMに搬出し、リング収納モジュールRSMに搬送する場合にも適用できる。
 あるいは別の変形例として、基板処理システムPSおよび搬送方法は、各支持ピン521によりエッジリングERを上昇した後にエッジリングERを下降してリング支持面112bに載置し、位置検出センサS1、S2によりエッジリングERの位置を検出し、この位置ずれ量が閾値より小さい場合には、再度、各支持ピン521によりエッジリングERを上昇させ、搬送ロボットTR1にエッジリングERを受け渡し、処理モジュールPM1からの搬出処理(位置検出センサS11、S12等でエッジリングERの位置を検出しながら搬出)を行い、リング収納モジュールRSMへの搬入処理(位置ずれ量に基づく補正移動)を行ってもよい。このエッジリングERの処理モジュールPM1からの搬出処理およびリング収納モジュールRSMへの搬入処理では、上記の図19で示した処理フローを行ってもよい。その一方でエッジリングERの位置ずれ量が閾値以上の場合、基板処理システムPSおよび搬送方法は、アラームを発報し、プラズマ処理チャンバ10を大気開放してエッジリングERを取り出す処理を行ってもよい。
 以上に開示された実施形態は、例えば、以下の態様を含む。
(付記1)
 処理チャンバと、前記処理チャンバ内にて基板および当該基板の周囲に配置されるリングを支持する基板支持部と、前記リングを昇降させるように構成されるリフタと、を有する処理モジュールと、
 前記処理モジュールに接続され、前記リングを搬送する搬送ロボットを有する真空搬送モジュールと、
 制御部と、を含み、
 前記制御部は、
 (A)前記リフタを上昇させて前記基板支持部の支持面から前記リングを離す工程と、
 (B)前記(A)の工程の後に、前記リングの位置ずれ量に関わる指標を取得する工程と、
 (C)前記(B)の工程で取得した前記位置ずれ量に関わる指標に基づき、前記リングの位置を補正するか否かを判定する工程と、を行う、
 基板処理システム。
(付記2)
 前記(B)の工程において、前記制御部は、前記位置ずれ量に関わる指標として、前記搬送ロボットが備える位置検出センサにより検出した前記リングの位置を取得する、
 付記1に記載の基板処理システム。
(付記3)
 前記(B)の工程において、前記制御部は、前記位置検出センサにより検出した前記基板支持部の基板支持面の位置と前記リングの位置とに基づき、前記基板支持面に対する前記リングの水平方向の隙間量を取得する、
 付記2に記載の基板処理システム。
(付記4)
 前記(B)の工程において、前記制御部は、前記位置ずれ量に関わる指標として、前記基板支持部のリング支持面に前記リングを静電吸着した状態で、前記リング支持面と前記リングの裏面との間にガスを供給し、前記ガスのリーク量を取得する、
 付記1乃至3のいずれか1項に記載の基板処理システム。
(付記5)
 前記(B)の工程において、前記制御部は、前記位置ずれ量に関わる指標として、前記搬送ロボットが備えるカメラにより撮像した前記リングの撮像情報を取得する、
 付記1乃至4のいずれか1項に記載の基板処理システム。
(付記6)
 前記(B)の工程において、前記制御部は、前記位置ずれ量に関わる指標として、前記搬送ロボットにより前記処理モジュールから前記リングを搬出する際に、前記真空搬送モジュールに設置された位置検出センサにより検出した前記リングの位置を取得する、
 付記1乃至5のいずれか1項に記載の基板処理システム。
(付記7)
 前記制御部は、
 前記(C)の工程で前記補正の実施を判定した場合に、前記搬送ロボットにより、前記位置ずれ量に応じて前記リングを移動させる補正移動を行い、
 前記(C)の工程で前記補正の非実施を判定した場合に、前記補正移動を行わずに前記搬送ロボットにより前記リングを搬送する、
 付記1乃至6のいずれか1項に記載の基板処理システム。
(付記8)
 前記制御部は、前記(C)の工程で前記補正の実施を判定した場合に、前記処理モジュール内において前記搬送ロボットにより前記補正移動を行う、
 付記7に記載の基板処理システム。
(付記9)
 前記制御部は、前記補正移動において、ずれが生じている前記リングを前記リフタから前記搬送ロボットにより受け取る工程と、前記位置ずれ量に応じて前記搬送ロボットを移動させる工程と、前記搬送ロボットから前記リフタに前記リングを受け渡す工程と、をこの順に行う、
 付記8に記載の基板処理システム。
(付記10)
 前記制御部は、前記補正移動において、前記リフタから前記搬送ロボットに前記リングを受け取る前に、前記位置ずれ量に応じて前記搬送ロボットを移動させる、
 付記8に記載の基板処理システム。
(付記11)
 前記制御部は、前記(C)の工程で前記補正の実施を判定した場合に、ずれが生じている前記リングを前記搬送ロボットにより、前記補正移動を行いながら前記リングを収納するリング収納モジュールに搬送する、
 付記7に記載の基板処理システム。
(付記12)
 前記制御部は、前記(B)の工程において、前記リフタを下降して前記基板支持部に前記リングを載置した状態にして、前記位置ずれ量に関わる指標を取得する、
 付記1乃至3、5のいずれかに記載の基板処理システム。
(付記13)
 前記制御部は、前記(A)の工程で前記リフタにより前記リングを上昇させたまま、前記(B)の工程で前記位置ずれ量に関わる指標を取得する、
 付記1乃至3、5のいずれか1項に記載の基板処理システム。
(付記14)
 前記真空搬送モジュールに接続され、前記リングを収納する第1リング収納モジュールを有し、
 前記制御部は、前記搬送ロボットにより前記処理モジュールから搬出した前記リングを前記第1リング収納モジュールに直接搬入する、
 付記1乃至13のいずれか1項に記載の基板処理システム。
(付記15)
 ロードロックモジュールを介して前記真空搬送モジュールに接続される大気搬送モジュールと、
 前記大気搬送モジュールに接続され、前記リングを収納する第2リング収納モジュールと、を有し、
 前記制御部は、前記搬送ロボットにより前記処理モジュールから搬出された前記リングを、前記ロードロックモジュールおよび前記大気搬送モジュールを経由して前記第2リング収納モジュールに搬入する、
 付記1乃至13のいずれか1項に記載の基板処理システム。
(付記16)
 前記処理モジュールは、前記リングを静電吸着した状態で基板処理を行い、
 前記制御部は、
 前記(A)の工程の前に、前記リングを除電する工程を行う、
 付記1乃至15のいずれか1項に記載の基板処理システム。
(付記17)
 前記制御部は、前記(A)の工程中または前記(A)の工程前後にプラズマを生成し前記処理チャンバ内のクリーニングを行う、
 付記1乃至16のいずれか1項に記載の基板処理システム。
(付記18)
 前記(A)の工程中または前記(A)の工程後の前記処理チャンバ内のクリーニングは、前記リングが前記基板支持部の前記支持面から離れた状態で行われる、
 付記17に記載の基板処理システム。
(付記19)
 前記リフタは、支持ピンと、前記支持ピンを上下動するアクチュエータと、を有する、
 付記1乃至18のいずれか1項に記載の基板処理システム。
(付記20)
 処理チャンバと、前記処理チャンバ内にて基板および当該基板の周囲に配置されるリングを支持する基板支持部と、前記リングを昇降させるように構成されるリフタと、を有する処理モジュールから、当該処理モジュールに接続される真空搬送モジュールの搬送ロボットにより前記リングを搬出する搬送方法であって、
 (A)前記リフタを上昇させて前記基板支持部の支持面から前記リングを離す工程と、
 (B)前記(A)の工程の後に、前記リングの位置ずれ量に関わる指標を取得する工程と、
 (C)前記(B)の工程で取得した前記位置ずれ量に関わる指標に基づき、前記リングの位置を補正するか否かを判定する工程と、を行う、
 搬送方法。
 なお、上記実施形態に挙げた構成等に、その他の要素との組み合わせ等、ここで示した構成に本発明が限定されるものではない。これらの点に関しては、本発明の趣旨を逸脱しない範囲で変更することが可能であり、その応用形態に応じて適切に定めることができる。また、複数の実施形態に記載された事項は、矛盾しない範囲で他の構成も取りうることができ、また、矛盾しない範囲で組み合わせることができる。
 例えば、上記実施形態では、容量結合型のプラズマ装置を例に説明したが、これに限定されるものではなく、他のプラズマ装置に適用されてもよい。例えば、容量結合型のプラズマ装置に代えて、誘導結合型のプラズマ(Inductively-coupled plasma:ICP)装置が用いられてもよい。この場合、誘導結合型のプラズマ装置は、アンテナおよび下部電極を含む。下部電極は、基板支持部内に配置され、アンテナは、チャンバの上部または上方に配置される。そして、RF生成器は、アンテナに結合され、DC生成器は、下部電極に結合される。従って、RF生成器は、容量結合型のプラズマ装置の上部電極、または、誘導結合型のプラズマ装置のアンテナに結合される。すなわち、RF生成器は、プラズマ処理チャンバ10に結合される。
 本願は、日本特許庁に2022年10月31日に出願された基礎出願2022-174836号の優先権を主張するものであり、その全内容を参照によりここに援用する。
11      基板支持部
113     リング
521     支持ピン
CU      制御部
PM1~PM7 処理モジュール
PS      基板処理システム
TM      真空搬送モジュール
TR1、TR2 搬送ロボット
W       基板

Claims (20)

  1.  処理チャンバと、前記処理チャンバ内にて基板および当該基板の周囲に配置されるリングを支持する基板支持部と、前記リングを昇降させるように構成されるリフタと、を有する処理モジュールと、
     前記処理モジュールに接続され、前記リングを搬送する搬送ロボットを有する真空搬送モジュールと、
     制御部と、を含み、
     前記制御部は、
     (A)前記リフタを上昇させて前記基板支持部の支持面から前記リングを離す工程と、
     (B)前記(A)の工程の後に、前記リングの位置ずれ量に関わる指標を取得する工程と、
     (C)前記(B)の工程で取得した前記位置ずれ量に関わる指標に基づき、前記リングの位置を補正するか否かを判定する工程と、を行う、
     基板処理システム。
  2.  前記(B)の工程において、前記制御部は、前記位置ずれ量に関わる指標として、前記搬送ロボットが備える位置検出センサにより検出した前記リングの位置を取得する、
     請求項1に記載の基板処理システム。
  3.  前記(B)の工程において、前記制御部は、前記位置検出センサにより検出した前記基板支持部の基板支持面の位置と前記リングの位置とに基づき、前記基板支持面に対する前記リングの水平方向の隙間量を取得する、
     請求項2に記載の基板処理システム。
  4.  前記(B)の工程において、前記制御部は、前記位置ずれ量に関わる指標として、前記基板支持部の前記支持面に前記リングを静電吸着した状態で、前記支持面と前記リングの裏面との間にガスを供給し、前記ガスのリーク量を取得する、
     請求項1に記載の基板処理システム。
  5.  前記(B)の工程において、前記制御部は、前記位置ずれ量に関わる指標として、前記搬送ロボットが備えるカメラにより撮像した前記リングの撮像情報を取得する、
     請求項1に記載の基板処理システム。
  6.  前記(B)の工程において、前記制御部は、前記位置ずれ量に関わる指標として、前記搬送ロボットにより前記処理モジュールから前記リングを搬出する際に、前記真空搬送モジュールに設置された位置検出センサにより検出した前記リングの位置を取得する、
     請求項1に記載の基板処理システム。
  7.  前記制御部は、
     前記(C)の工程で前記補正の実施を判定した場合に、前記搬送ロボットにより、前記位置ずれ量に応じて前記リングを移動させる補正移動を行い、
     前記(C)の工程で前記補正の非実施を判定した場合に、前記補正移動を行わずに前記搬送ロボットにより前記リングを搬送する、
     請求項1乃至6のいずれか1項に記載の基板処理システム。
  8.  前記制御部は、前記(C)の工程で前記補正の実施を判定した場合に、前記処理モジュール内において前記搬送ロボットにより前記補正移動を行う、
     請求項7に記載の基板処理システム。
  9.  前記制御部は、前記補正移動において、ずれが生じている前記リングを前記リフタから前記搬送ロボットにより受け取る工程と、前記位置ずれ量に応じて前記搬送ロボットを移動させる工程と、前記搬送ロボットから前記リフタに前記リングを受け渡す工程と、をこの順に行う、
     請求項8に記載の基板処理システム。
  10.  前記制御部は、前記補正移動において、前記リフタから前記搬送ロボットに前記リングを受け取る前に、前記位置ずれ量に応じて前記搬送ロボットを移動させる、
     請求項8に記載の基板処理システム。
  11.  前記制御部は、前記(C)の工程で前記補正の実施を判定した場合に、ずれが生じている前記リングを前記搬送ロボットにより、前記補正移動を行いながら前記リングを収納するリング収納モジュールに搬送する、
     請求項7に記載の基板処理システム。
  12.  前記制御部は、前記(B)の工程において、前記リフタを下降して前記基板支持部に前記リングを載置した状態にして、前記位置ずれ量に関わる指標を取得する、
     請求項1乃至3、5のいずれかに記載の基板処理システム。
  13.  前記制御部は、前記(A)の工程で前記リフタにより前記リングを上昇させたまま、前記(B)の工程で前記位置ずれ量に関わる指標を取得する、
     請求項1乃至3、5のいずれか1項に記載の基板処理システム。
  14.  前記真空搬送モジュールに接続され、前記リングを収納する第1リング収納モジュールを有し、
     前記制御部は、前記搬送ロボットにより前記処理モジュールから搬出した前記リングを前記第1リング収納モジュールに搬入する、
     請求項1乃至6のいずれか1項に記載の基板処理システム。
  15.  ロードロックモジュールを介して前記真空搬送モジュールに接続される大気搬送モジュールと、
     前記大気搬送モジュールに接続され、前記リングを収納する第2リング収納モジュールと、を有し、
     前記制御部は、前記搬送ロボットにより前記処理モジュールから搬出された前記リングを、前記ロードロックモジュールおよび前記大気搬送モジュールを経由して前記第2リング収納モジュールに搬入する、
     請求項1乃至6のいずれか1項に記載の基板処理システム。
  16.  前記処理モジュールは、前記リングを静電吸着した状態で基板処理を行い、
     前記制御部は、
     前記(A)の工程の前に、前記リングを除電する工程を行う、
     請求項1乃至6のいずれか1項に記載の基板処理システム。
  17.  前記制御部は、前記(A)の工程中または前記(A)の工程前後にプラズマを生成し前記処理チャンバ内のクリーニングを行う、
     請求項1乃至6のいずれか1項に記載の基板処理システム。
  18.  前記(A)の工程中または前記(A)の工程後の前記処理チャンバ内のクリーニングは、前記リングが前記基板支持部の前記支持面から離れた状態で行われる、
     請求項17に記載の基板処理システム。
  19.  前記リフタは、支持ピンと、前記支持ピンを上下動するアクチュエータと、を有する、
     請求項1乃至6のいずれか1項に記載の基板処理システム。
  20.  処理チャンバと、前記処理チャンバ内にて基板および当該基板の周囲に配置されるリングを支持する基板支持部と、前記リングを昇降させるように構成されるリフタと、を有する処理モジュールから、当該処理モジュールに接続される真空搬送モジュールの搬送ロボットにより前記リングを搬出する搬送方法であって、
     (A)前記リフタを上昇させて前記基板支持部の支持面から前記リングを離す工程と、
     (B)前記(A)の工程の後に、前記リングの位置ずれ量に関わる指標を取得する工程と、
     (C)前記(B)の工程で取得した前記位置ずれ量に関わる指標に基づき、前記リングの位置を補正するか否かを判定する工程と、を行う、
     搬送方法。
PCT/JP2023/038477 2022-10-31 2023-10-25 基板処理システム、および搬送方法 WO2024095856A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022174836 2022-10-31
JP2022-174836 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024095856A1 true WO2024095856A1 (ja) 2024-05-10

Family

ID=90930400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038477 WO2024095856A1 (ja) 2022-10-31 2023-10-25 基板処理システム、および搬送方法

Country Status (1)

Country Link
WO (1) WO2024095856A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200013657A1 (en) * 2018-07-04 2020-01-09 Samsung Electronics Co., Ltd. Apparatus and methods for edge ring replacement, inspection and alignment using image sensors
JP2021136359A (ja) * 2020-02-28 2021-09-13 東京エレクトロン株式会社 部品運搬装置および処理システム
JP2022070212A (ja) * 2020-10-26 2022-05-12 東京エレクトロン株式会社 処理システム及び搬送方法
JP2022111771A (ja) * 2021-01-20 2022-08-01 東京エレクトロン株式会社 プラズマ処理システム及びプラズマ処理方法
JP2022140585A (ja) * 2018-09-06 2022-09-26 東京エレクトロン株式会社 基板処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200013657A1 (en) * 2018-07-04 2020-01-09 Samsung Electronics Co., Ltd. Apparatus and methods for edge ring replacement, inspection and alignment using image sensors
JP2022140585A (ja) * 2018-09-06 2022-09-26 東京エレクトロン株式会社 基板処理装置
JP2021136359A (ja) * 2020-02-28 2021-09-13 東京エレクトロン株式会社 部品運搬装置および処理システム
JP2022070212A (ja) * 2020-10-26 2022-05-12 東京エレクトロン株式会社 処理システム及び搬送方法
JP2022111771A (ja) * 2021-01-20 2022-08-01 東京エレクトロン株式会社 プラズマ処理システム及びプラズマ処理方法

Similar Documents

Publication Publication Date Title
US10770339B2 (en) Automated replacement of consumable parts using interfacing chambers
US10062590B2 (en) Front opening ring pod
US10427307B2 (en) Automated replacement of consumable parts using end effectors interfacing with plasma processing system
JP6635888B2 (ja) プラズマ処理システム
US11538706B2 (en) System and method for aligning a mask with a substrate
JP2022117671A (ja) 収納容器及び処理システム
TW202232624A (zh) 處理系統及搬運方法
WO2024095856A1 (ja) 基板処理システム、および搬送方法
US11637004B2 (en) Alignment module with a cleaning chamber
JP2022070212A (ja) 処理システム及び搬送方法
US20220148857A1 (en) Detection device, processing system, and transfer method
WO2024071020A1 (ja) 基板処理システム及び搬送方法
JP2022077966A (ja) 検出装置、処理システム及び搬送方法
KR20210027647A (ko) 기판 처리 장치 및 핸드 위치 티칭 방법