WO2024095680A1 - Machine tool system, and method for controlling machine tool system - Google Patents
Machine tool system, and method for controlling machine tool system Download PDFInfo
- Publication number
- WO2024095680A1 WO2024095680A1 PCT/JP2023/036305 JP2023036305W WO2024095680A1 WO 2024095680 A1 WO2024095680 A1 WO 2024095680A1 JP 2023036305 W JP2023036305 W JP 2023036305W WO 2024095680 A1 WO2024095680 A1 WO 2024095680A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spindle
- bar
- gripping
- feed arrow
- machining
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000003754 machining Methods 0.000 claims abstract description 81
- 238000005520 cutting process Methods 0.000 claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 230000008569 process Effects 0.000 claims description 27
- 230000008859 change Effects 0.000 claims description 13
- 230000007246 mechanism Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 5
- 230000002950 deficient Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B13/00—Arrangements for automatically conveying or chucking or guiding stock
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B13/00—Arrangements for automatically conveying or chucking or guiding stock
- B23B13/02—Arrangements for automatically conveying or chucking or guiding stock for turning-machines with a single working-spindle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B13/00—Arrangements for automatically conveying or chucking or guiding stock
- B23B13/04—Arrangements for automatically conveying or chucking or guiding stock for turning-machines with a plurality of working-spindles
Definitions
- the present invention relates to a machine tool system and a method for controlling the machine tool system that manufactures multiple products from a single long bar by repeatedly machining the tip of the bar and cutting off the machined portion.
- some machine tool systems include a processing device equipped with a spindle and a tool rest, and a material feeder that supplies long bar stock to the processing device.
- the spindle of the processing device grips and rotates the bar stock in a releasable manner.
- the spindle is configured to be able to move in the axial direction of the bar stock whether it is gripping the bar stock or releasing the grip.
- a first control device is incorporated in the processing device.
- the first control device controls the operation of the tool rest, spindle, etc. according to a processing program (NC program) created by an operator of the machine tool system, etc., and input operations using an operation panel provided on the processing device.
- the first control device controls the operation of the tool rest and spindle according to the processing program, so that the tip of the bar stock is machined into the desired shape, and the machined portion is cut off.
- NC program processing program
- the material feeder is installed alongside the processing device, closer to the rear end of the bar than the processing device.
- the material feeder is equipped with a feed arrow, a feed arrow drive mechanism for moving the feed arrow in the axial direction of the bar, and a second control device for controlling the operation of the feed arrow drive mechanism.
- the feed arrow is equipped with a finger chuck at its tip. The finger chuck grips the rear end of the bar, connecting the feed arrow to the bar. The feed arrow is then sent out towards the tip of the bar by the feed arrow drive mechanism, so that the bar fed into the material feeder is supplied to the processing device.
- the feed arrow urges the bar from the rear end towards the tip of the bar with a predetermined load. This load is set to a relatively weak load that does not cause slippage between the bar and the spindle when the spindle is gripping the bar.
- the bar is re-gripped after the machined portion is cut off.
- the spindle releases its grip on the bar and moves to the rear end of the bar, and then the spindle re-gripping the bar.
- a machine tool system has been proposed that can process multiple products while the spindle maintains its grip on the bar by adjusting the gripping position of the spindle during re-gripping (see, for example, Patent Document 1).
- the length of the bar is measured when the bar is supplied, and the effective machining length of the bar that can be processed into products is calculated from the measurement result. Then, based on the effective machining length and the length of the bar required to process one product, the gripping position at which the spindle can process multiple products while maintaining its grip on the bar during re-gripping is determined in advance for all of the effective machining lengths. According to the machine tool system of Patent Document 1, the number of times the workpiece is regripped is reduced, which shortens the time required for tasks other than machining, such as the time required to release and regrip the spindle during regripping, and the time required to increase and decrease the spindle rotation speed, thereby increasing the productivity of the machine tool system.
- the present invention was made in consideration of the above-mentioned problems, and aims to provide a machine tool system and a control method for a machine tool system that are less prone to accidents.
- the machine tool system of the present invention which solves the above problems comprises: A machine tool system for manufacturing a plurality of products from a single bar by repeatedly machining a tip portion of a long bar and cutting off the machined portion, comprising: a main shaft that, when re-gripping the bar material, releases the grip of the bar material and moves along the axial direction of the bar material to a gripping position to grip the bar material; A feed arrow moving in the axial direction together with the bar;
- the present invention is characterized in that it is provided with a gripping position determination unit that calculates, for each gripping, the number of products that can be processed while the spindle maintains its grip on the bar stock based on the position of the feed arrow, the distance the spindle can move in the axial direction, and the length of the workpiece required to process one of the products, and determines the gripping position corresponding to the number of products.
- the gripping position determination unit determines the gripping position for each gripping operation, so even if the operator manually moves the bar, it is possible to prevent accidents such as the spindle gripping the feed arrow during gripping and damaging the feed arrow or the spindle being damaged.
- the spindle may grip the bar during machining and move forward along the axial direction of the bar.
- the machine may further include a continuous machining feasibility determination unit that determines, for each of the products being machined, whether or not the next product can be machined while the spindle continues to grip the bar stock.
- the continuous machining feasibility determination unit makes the determination, so that even if an operator manually moves the feed arrow and the bar while the spindle is still gripping the bar and machining a number of products, it is possible to prevent accidents caused by the feed arrow and the bar being out of position or problems such as manufacturing products with incorrect lengths.
- the continuous machining feasibility determination unit may determine whether the next product can be machined while the spindle continues to grip the bar material prior to machining the next product.
- the continuous machining feasibility determination unit may also determine whether the next product can be machined without the re-gripping for each product.
- the continuous machining feasibility determination unit may include a machine control unit that causes the spindle to continue to grip the bar material when it determines that the next product can be machined while the spindle continues to grip the bar material.
- the continuous machining feasibility determination unit may include a machine control unit that causes the re-gripping when it determines that the next product cannot be machined while the spindle continues to grip the bar material.
- the feed arrow position determining unit may be provided for determining whether or not the position of the feed arrow coincides with a theoretical position of the feed arrow obtained by calculation for each processing of the product.
- the feed arrow position determination unit makes the determination, so that even if an operator manually moves the feed arrow and the bar while the spindle is still gripping the bar and machining multiple products, it is possible to prevent accidents caused by the feed arrow and the bar being out of position and to prevent defects such as the manufacture of products with incorrect lengths.
- the feed arrow position determination unit may make a determination after the machined portion has been separated and before the start of machining of the next product.
- the theoretical position of the feed arrow may be a position calculated using the length of the workpiece.
- the feed arrow position determination unit may stop the machine tool system when it determines that the position of the feed arrow does not match the theoretical position of the feed arrow.
- the feed arrow position determination unit may display a message indicating that the position of the feed arrow does not match the theoretical position of the feed arrow when it determines that the position of the feed arrow does not match the theoretical position of the feed arrow.
- the machining apparatus may further include a workpiece length calculation unit that calculates the length of the processed workpiece based on a movement distance of the main spindle in the axial direction in a machining program in which machining operations are described.
- the operator does not need to input the workpiece length or data required to calculate the workpiece length, improving the operability of this machine tool.
- the gripping position determination unit may be capable of switching between a multiple-piece mode in which the gripping position determination unit determines the gripping position and performs the gripping change, and a single-piece mode in which the gripping change is performed each time one of the products is processed.
- a back spindle disposed opposite the spindle and to which the machined portion is transferred; a machining restricting portion that restricts machining of the bar held by the spindle until the back spindle is retracted to a safety position;
- the safety position changer may change the safety position.
- the machining regulating unit may regulate machining by regulating the execution of a machining program in which machining operations using the spindle are described, or may regulate machining by regulating the movement of the spindle.
- a method for controlling a machine tool system includes: A method for controlling a machine tool system for manufacturing a plurality of products from a single bar stock by repeatedly machining a tip portion of the bar stock held by a spindle and cutting off the machined portion, comprising: a gripping position determination step for calculating the number of products that can be machined while the spindle is still gripping the bar stock, based on the position of a feed arrow that moves in the axial direction of the bar stock together with the bar stock, the axial movement distance of the spindle, and the length of the workpiece required to process one of the products, and determining a gripping position corresponding to the number of products; and a re-gripping step in which the spindle, which has released the grip of the bar material, moves to the gripping position determined in the gripping position determination step and grips the bar material again.
- the gripping position is determined in the gripping position determination process, so even if the operator manually moves the bar while the spindle is machining multiple products while still holding the bar, it is possible to prevent accidents such as the spindle gripping the feed arrow during re-gripping and damaging the feed arrow or the spindle being damaged.
- the present invention provides a machine tool system and a method for controlling the machine tool system that are less prone to accidents.
- FIG. 1 is a front view of a lathe system according to an embodiment of the present invention.
- FIG. 2 is a plan view showing a simplified internal configuration of the lathe system shown in FIG. 1 .
- FIG. 2 is a block diagram showing a hardware configuration of the lathe system shown in FIG. 1 .
- FIG. 2 is a functional block diagram showing a functional configuration of the lathe system shown in FIG. 1 .
- 2 is a flowchart showing the operation of the lathe system shown in FIG. 1 .
- 6 is a flowchart showing the gripping position determining operation shown in FIG. 5 .
- 7 is a plan view for explaining a positional relationship in the gripping position determining operation shown in FIG. 6 .
- FIG. 4 is a flowchart showing an operation of the lathe system shown in FIG. 1 in a single-piece mode.
- FIG. 5 is a functional block diagram similar to FIG. 4 , illustrating a functional configuration of a lathe system according to a second embodiment.
- 10 is a flowchart similar to FIG. 5 showing the operation of the lathe system shown in FIG. 9.
- FIG. 1 is a front view of the lathe system according to this embodiment.
- the lathe system 1 of this embodiment includes an NC lathe 2, which is a processing device, and a material feeder 4, which is a material supplying device.
- This lathe system 1 corresponds to an example of a machine tool system.
- the NC lathe 2 of this embodiment is a so-called Swiss-type lathe.
- the NC lathe 2 includes a cutting room 22, a spindle room 23, and a lathe operation panel 24.
- the cutting room 22 is a room in which a space is formed for machining the tip portion of the bar material W (see FIG. 2), and is located to the right of the NC lathe 2 when viewed from the front.
- the spindle room 23 is a room in which the spindle 25 (see FIG. 2) is located, and is located to the left of the NC lathe 2 when viewed from the front.
- the lathe operation panel 24 has a lathe operation section 241 and a lathe display screen 242.
- the lathe operation section 241 is composed of a plurality of buttons and keys that accept input operations by the operator of the lathe system 1.
- the lathe operation section 241 may be a touch panel integrated with the lathe display screen 242.
- the operator of the lathe system 1 can store a machining program created using the lathe operation section 241 or an external computer in the storage section 203 (see FIG. 3) described later.
- the operator of the lathe system 1 can also use the lathe operation section 241 to modify the machining program and store the modified machining program in the storage section 203.
- the operator of the lathe system 1 can also use the lathe operation section 241 to operate each component of the lathe system 1 individually or in cooperation with each other.
- the lathe display screen 242 is a display that displays various information related to the lathe system 1, such as the machining program stored in the storage section 203, various setting values of the lathe system 1, and error contents.
- the material feeder 4 supplies long bar material W (see Figure 2) to the NC lathe 2.
- the material feeder 4 is installed alongside the NC lathe 2.
- a plurality of bars W are stored in the material feeder 4.
- the material feeder 4 sends out one of the stored bars W towards the NC lathe 2.
- the material feeder 4 also pulls out and discharges the remaining bar material W, which is a bar material W that has been shortened by processing, from the NC lathe 2. After discharging the remaining bar material, the material feeder 4 sends out a new bar material W from the stored bar material W towards the NC lathe 2.
- the material feeder 4 is provided with a material feeder operation panel 42, which is an input device for operating the material feeder 4.
- Figure 2 is a plan view showing a simplified internal configuration of the lathe system shown in Figure 1.
- the NC lathe 2 is equipped with a spindle 25, a guide bush 26, a first tool rest 27, a back spindle 28, and a second tool rest 29.
- the spindle 25, guide bush 26, first tool rest 27, back spindle 28, and second tool rest 29 are placed on legs that serve as the base.
- the spindle 25, first tool rest 27, back spindle 28, and second tool rest 29 operate according to a machining program that describes machining operations and input from the lathe operation panel 24 (see Figure 1).
- the spindle 25 can move in the Z1-axis direction.
- the spindle 25 moves in the Z1-axis direction together with the spindle head by the spindle stock, but the spindle stock is not shown and the description is also omitted.
- the Z1-axis direction is a horizontal direction, and is the left-right direction in FIG. 2. This Z1-axis direction corresponds to an example of the axial direction of the bar W.
- the spindle 25 has a collet chuck 251 at its tip for releasably gripping the bar W that penetrates its interior.
- the spindle 25 can grip the bar W and rotate around the spindle center line CL.
- the direction of the spindle center line CL coincides with the Z1-axis direction.
- the movement of the spindle 25 toward the tip of the bar W may be referred to as forward movement, and the movement of the spindle 25 toward the rear end of the bar W may be referred to as backward movement.
- the right direction is the forward movement direction
- the left direction is the backward movement direction.
- the guide bush 26 is fixed to the legs, which serve as the base.
- the end face of the guide bush 26 opposite to the side where the spindle 25 is arranged is exposed in the cutting chamber 22 (see FIG. 1).
- the guide bush 26 supports the tip portion of the bar W that penetrates the inside of the spindle 25 so that it can slide freely in the Z1 axis direction.
- the portion of the guide bush 26 that supports the bar W can rotate around the spindle center line CL in synchronization with the spindle 25.
- the tip portion of the bar W that protrudes from the guide bush 26 into the cutting chamber 22 is machined by a first tool T1 attached to a first tool rest 27.
- This first tool T1 corresponds to an example of a machining tool.
- the guide bush 26 suppresses bending of the bar W during machining, so that particularly long and thin bar W can be machined with high precision by the NC lathe 2.
- the first tool rest 27 can move in the X1-axis direction, which is perpendicular to the Z1-axis direction and faces horizontally, and in the Y1-axis direction, which faces vertically.
- This first tool rest 27 corresponds to an example of a tool rest.
- the up-down direction is the X1-axis direction
- the direction perpendicular to the paper surface is the Y1-axis direction.
- multiple types of first tools T1 including cutting tools and cut-off tools, are attached in a comb-like shape lined up in the Y1-axis direction.
- Rotary tools such as end mills and drills can also be attached to the first tool rest 27 as the first tools T1.
- first tool T1 By moving the first tool rest 27 in the Y1-axis direction, an arbitrary first tool T1 is selected from these multiple types of first tools T1. Then, by moving the first tool rest 27 in the X1-axis direction, the selected first tool T1 cuts into the tip of the bar W held by the spindle 25 and supported by the guide bush 26 to process it, or cuts off the processed part of the bar W.
- the tool used to separate the machined parts is called a cut-off tool.
- the back spindle 28 can move in the X2-axis direction and the Z2-axis direction.
- the back spindle 28 moves in the X2-axis direction and the Z2-axis direction together with the back spindle by the back spindle stock, but the back spindle stock is not shown and the description is omitted.
- the X2-axis direction is the same as the X1-axis direction described above
- the Z2-axis direction is the same as the Z1-axis direction described above.
- the Z2-axis direction corresponds to the axial direction of the back spindle 28.
- Figure 2 shows the back spindle 28 in a position facing the spindle 25 across the guide bush 26.
- the back spindle center line which is the center of rotation of the back spindle 28, is arranged on the same line as the spindle center line CL.
- the direction of the back spindle center line coincides with the Z2-axis direction.
- the machined portion of the bar W that has been machined using the spindle 25 is cut off by a cut-off tool and transferred to the back spindle 28.
- the machined portion that has been cut off is referred to as the cut portion.
- the rear spindle 28 holds the cut portion handed over from the spindle 25 in a releasable manner.
- the rear spindle 28 also moves in the X2-axis direction and the Z2-axis direction to transport the held cut portion.
- the second tool rest 29 is movable in the Y2-axis direction.
- the second tool rest 29 may be configured to be movable in the X2-axis direction.
- the Y2-axis direction is the same direction as the Y1-axis direction described above.
- a second tool T2 such as a drill or an end mill, is attached to the second tool rest 29 to process the cut portion.
- a plurality of second tools T2 are attached to the second tool rest 29 in the Y2-axis direction.
- An arbitrary second tool T2 is selected from the plurality of second tools T2 by moving the second tool rest 29 in the Y2-axis direction.
- the back spindle 28 moves in the X2-axis direction or the Z2-axis direction, so that the cut end side of the cut portion held by the back spindle 28 is processed.
- the cut portion after the processing of the cut end side becomes a product manufactured by the lathe system 1.
- the back spindle 28 is not used for processing. In that case, the cut portion becomes a product as it is.
- the second tool rest 29 is provided with a product receiving opening 291 for receiving the product and a shooter (not shown).
- the chute is provided inside the second tool rest 29. After the back spindle 28 inserts the product into the product receiving opening 291, it releases its grip and pushes it out using a cylinder provided on the back spindle 28, dropping the product into the chute.
- the dropped product is transported to a specified position by a conveyor (not shown) and discharged into a product storage section provided outside the lathe system 1.
- the material feeder 4 has, in addition to the above-mentioned material feeder operation panel 42 (see FIG. 1), a feed arrow 44, a feed arrow drive mechanism 45, a feed arrow motor 46, a tip sensor 47, and an origin sensor 48.
- the feed arrow 44 is guided by a guide (not shown) so as to be freely movable in the Z1-axis direction.
- a finger chuck 441 that grips the rear end of the bar W is provided at the tip of the feed arrow 44. This finger chuck 441 is rotatably attached to the other parts of the feed arrow 44, so that it is rotatable about the spindle center line CL as the rotation center axis.
- the finger chuck 441 grips the rear end of the bar W, so that the feed arrow 44 is connected to the bar W. In other words, while the finger chuck 441 is gripping the bar W, the feed arrow 44 moves in the Z1-axis direction together with the bar.
- the feed arrow drive mechanism 45 is composed of pulleys (not shown) provided at the front and rear ends of the material feeder 4, and a drive belt stretched around the pulleys.
- a connecting portion 451 is fixed to the drive belt. This connecting portion 451 connects the drive belt to the rear end of the feed arrow 44.
- the pulley provided at the rear end of the material feeder 4 is fixed to the output shaft of the feed arrow motor 46.
- the feed arrow motor 46 has a feed arrow encoder 461.
- the arrow encoder 461 may be installed separately from the arrow motor 46.
- the arrow encoder 461 detects the number of rotations and the amount of rotation of the arrow motor 46. The detection result of the arrow encoder 461 is transmitted to the second control device 40 (see FIG. 3).
- the tip sensor 47 detects the tip of the bar W.
- the origin sensor 48 detects whether the feed arrow 44 is located at the feed arrow origin.
- the feed arrow origin is located at the rear end of the movement range of the feed arrow 44.
- the origin sensor 48 is a sensor that detects the rear end of the feed arrow 44 at the feed arrow origin.
- the detection results of these tip sensor 47 and origin sensor 48 are sent to the second control device 40 (see Figure 3).
- the second control device 40 determines the position of the tip of the bar W when the bar W is first supplied after power is turned on to the NC lathe 2 or when the bar W is newly supplied, based on the detection results of the tip sensor 47 and the feed arrow encoder 461.
- the second control device 40 also determines the position of the feed arrow 44 based on the detection results of the origin sensor 48 and the feed arrow encoder 461.
- FIG. 3 is a block diagram showing the hardware configuration of the lathe system shown in FIG. 1. Note that in FIG. 3, the hardware configuration of the lathe system 1 that is less relevant to the present invention is omitted from the illustration, even if it operates the components described so far.
- the NC lathe 2 has a first control device 20, the lathe operation panel 24 described above, a Z1-axis motor 252, a spindle motor 253, a spindle actuator 254, and a Z2-axis motor 281.
- the first control device 20 is a so-called NC (Numerical Control) device, and has a CPU 201, a PLC (Programmable Logic Controller) 202, and a memory unit 203.
- the first control device 20 is a computer having a calculation function by the CPU 201.
- the first control device 20 controls the operation of each component such as the spindle 25, the first tool rest 27, the back spindle 28, and the second tool rest 29 shown in FIG.
- the first control device 20 mainly performs numerical control of the servo motors provided in the NC lathe 2.
- the PLC 202 provided in the first control device 20 mainly performs sequence control of the operation of devices other than the servo motors, such as cylinders and valves, provided in the NC lathe 2.
- the memory unit 203 stores various programs such as ladder programs and macro programs in advance. In addition to the machining programs, the operator stores various information in the memory unit 203, such as data on tools, diameter data of the bar W, and product length data.
- the memory unit 203 is composed of non-volatile memory such as ROM, HDD, and SSD, and volatile memory such as RAM.
- the Z1-axis motor 252 is a servo motor that rotates upon receiving a command from the first control device 20. When the Z1-axis motor 252 rotates, the spindle 25 (see FIG. 2) moves in the Z1-axis direction.
- An amplifier (not shown) is provided between the first control device 20 and the Z1-axis motor 252, and the Z1-axis motor 252 is controlled by the first control device 20 sending a command to the amplifier. A description of the amplifier will be omitted below.
- the Z1-axis motor 252 has a Z1-axis encoder 2521. The output of the Z1-axis encoder 2521 is fed back to the first control device 20, so that the first control device 20 constantly knows the position of the spindle 25 (see FIG. 2) in the Z1-axis direction.
- the spindle 25 (see FIG. 2) is provided with a spindle motor 253 such as a built-in motor.
- the spindle motor 253 rotates upon receiving a command from the first control device 20.
- the spindle motor 253 rotates, the spindle 25 and the bar material W (see FIG. 2) held by the spindle 25 rotate around the spindle center line CL (see FIG. 2).
- the back spindle 28 is also provided with a back spindle motor, but the description is omitted.
- the spindle actuator 254 is an actuator such as a hydraulic cylinder for operating the collet chuck 251 (see FIG. 2).
- the spindle actuator 254 moves a chuck sleeve (not shown) in the forward direction
- the collet chuck 251 closes and the bar material W is held by the spindle 25.
- the chuck sleeve moves in the backward direction
- the collet chuck 251 opens and the grip of the bar material W by the spindle 25 is released.
- the Z2-axis motor 281 is a servo motor that rotates in response to a command from the first control device 20.
- the back spindle 28 moves in the Z2-axis direction.
- an X2-axis motor which is a servo motor that moves the back spindle 28 in the X2-axis direction, is also provided, but its description is omitted.
- the Z2-axis motor 281 has a Z2-axis encoder 2811. The output of the Z2-axis encoder 2811 is fed back to the first control device 20, so that the first control device 20 constantly knows the position of the back spindle 28 in the Z2-axis direction.
- the material feeder 4 has the second control device 40 in addition to the above-mentioned material feeder operation panel 42, the feeder motor 46, the tip sensor 47, and the origin sensor 48.
- the second control device 40 is a control device that performs sequence control for each component of the material feeder 4.
- the second control device 40 controls the operation of the feeder motor 46 and an actuator (not shown) provided in the material feeder 4 based on information received from each sensor, the feeder encoder 461, etc.
- the second control device 40 also controls the operation of the material feeder 4 in response to an operation request from the first control device 20.
- the second control device 40 is provided with a material feed memory unit 401.
- the material feed memory unit 401 stores information on the material shortage position indicating that the bar material W needs to be replaced when the feeder 44 advances to that position.
- the material feed memory unit 401 stores the position at which the collet chuck 251 (see FIG. 2) and the feeder 44 do not interfere with each other when the main shaft 25 is at the most retreated end of the movable range as the initial value of the material shortage position. However, the location of the missing material can be rewritten by input operations from the material feeder operation panel 42 or by the processing program.
- the feed arrow motor 46 is a servo motor that rotates upon receiving a command from the second control device 40.
- the feed arrow 44 (see FIG. 2) moves in the Z1-axis direction as the feed arrow motor 46 rotates.
- the second control device 40 constantly grasps the position of the feed arrow 44 in the Z1-axis direction by grasping the movement distance of the feed arrow 44 from the feed arrow origin based on the detection result of the origin sensor 48 and the detection result of the feed arrow encoder 461.
- the second control device 40 then transmits the position information of the feed arrow 44 to the first control device 20 as one piece of information related to the material feeder 4.
- the second control device 40 also transmits to the first control device 20 the position in the Z1-axis direction of the tip of the newly supplied bar material W and the tip of the bar material W that was first sent to the NC lathe 2 after the power was turned on.
- the second control device 40 controls the feed arrow motor 46 to rotate in one direction with a basically constant torque until the remaining material starts to be pulled out.
- the bar W is urged by the feed arrow 44 toward the tip of the bar W with a set load.
- This load is set to a relatively weak load that does not cause any risk of slippage between the bar W and the main shaft 25 when the main shaft 25 is gripping the bar W.
- the material feeder operation panel 42 is a touch panel that combines an operation section and a display screen.
- the material feeder 4 is provided with an emergency stop button and a torque setting switch for the feed arrow motor 46.
- the operator of the lathe system 1 can use the material feeder operation panel 42 to manually move the feed arrow 44 (see Figure 2) in the Z1-axis direction and input various setting values for the material feeder 4.
- the material feeder operation panel 42 also displays various information related to the material feeder 4, such as the various setting values and error contents of the material feeder 4, as well as the operation buttons for the material feeder 4.
- the first control device 20 and the second control device 40 are connected by a signal cable.
- the first control device 20 transmits operation requests and the like to the second control device 40 via the signal cable.
- the second control device 40 also transmits various information related to the material feeder 4, including the position information of the feed arrow 44, to the first control device 20 via the signal cable at any time.
- the second control device 40 also transmits a material shortage signal to the first control device 20 when the feed arrow 44 passes the material shortage position.
- the second control device 40 transmits requested information, such as information on the material shortage position, to the first control device 20 in response to an information transmission request from the first control device 20.
- FIG. 4 is a functional block diagram showing the functional configuration of the lathe system shown in FIG. 1. Note that FIG. 4 also shows only the functional configuration that is particularly relevant to the present invention, and the other functional configurations possessed by the lathe system 1 are not shown or described.
- the first control device 20 comprises a gripping position determination unit 20a, a material length calculation unit 20b, a continuous machining feasibility determination unit 20c, a machining restriction unit 20d, a safety position change unit 20e, a re-gripping feasibility determination unit 20f, and a machine control unit 20g.
- the machine control unit 20g is a functional configuration achieved mainly by the CPU 201, the memory unit 203, and the PLC 202.
- the units other than the machine control unit 20g are functional configurations achieved mainly by the CPU 201 and the memory unit 203 shown in FIG. 3.
- the second control device 40 comprises a material supply control unit 40a and a feed arrow position grasping unit 40b.
- the gripping position determination unit 20a determines the gripping position where the spindle 25 (see FIG. 2) grips the bar W (see FIG. 2) for each gripping.
- the material length calculation unit 20b calculates the processed material length, which is the length of the bar W required to process one product.
- the continuous processing feasibility determination unit 20c compares the movement distance from the position of the spindle 25 to the forward end of the movable range of the spindle 25 at the time of judgment with the processed material length, and determines whether the spindle 25 can process the next product while maintaining its grip on the bar W for each product.
- the processing restriction unit 20d monitors the position of the back spindle 28 and restricts the processing of the bar W gripped by the spindle 25 until the back spindle 28 retreats to a safe position that does not interfere with processing using the spindle 25.
- the safety position change unit 20e changes the safety position used by the processing restriction unit 20d for judgment. This safe position may be a position described in the machining program, a position input by the operator using the lathe operation panel 24, or a position automatically calculated using interference check software.
- the re-gripping possibility determination unit 20f determines whether or not re-gripping is possible based on whether or not the position of the feed arrow 44 at the time of determination exceeds the material shortage position.
- the machine control unit 20g controls the operation of each component of the NC lathe 2.
- the machine control unit 20g may also transmit operation requests and information transmission requests to the second control device 40.
- the material supply control unit 40a is a functional configuration that controls the operation of the feed arrow motor 46 and the like in accordance with the outputs from various sensors provided in the material supply machine 4, the input from the material supply machine operation panel 42, and the operation request from the first control device 20.
- the material supply control unit 40a performs control to pull out and discharge the remaining material, which is the shortened bar material W, from the NC lathe 2 and supply new bar material W to the NC lathe 2, and control to apply a load in the forward direction to the feed arrow 44 (see FIG. 2) to urge the bar material W toward the tip side.
- the feed arrow position grasping unit 40b grasps the position of the feed arrow 44 relative to the feed arrow origin by calculating the forward distance of the feed arrow 44 from the feed arrow origin using the detection result of the origin sensor 48 and the detection result of the feed arrow encoder 461. Since the origin sensor 48 detects the rear end of the feed arrow 44, the position of the feed arrow 44 grasped by the feed arrow position grasping unit 40b is equal to the distance in the Z1 axis direction from the feed arrow origin to the rear end of the feed arrow 44.
- the feed arrow position grasping unit 40b can calculate the distance from the feed arrow origin to the tip of the feed arrow 44 by acquiring information on the length of the feed arrow 44 stored in the material supply memory unit 401 and adding that length to the forward distance of the feed arrow 44.
- FIG. 5 is a flowchart showing the operation of the lathe system shown in FIG. 1.
- the flowchart in Figure 5 shows the operation of the lathe system 1 after the initial operation after power-on is complete, or after the setup work for machining a new product is complete.
- the tip of the bar W is cut off by the cut-off tool.
- the cut-off tool acts as a stopper and the tip of the bar W is in contact with the cut-off tool. In this state, the bar W is pressed against the cut-off tool by being urged toward the tip by the feed arrow 44.
- the machine control unit 20g first determines whether the multiple-piece mode or the single-piece mode has been selected (step S10). Usually, the multiple-piece mode is selected, but the operator can switch to the single-piece mode if necessary. Switching between the multiple-piece mode and the single-piece mode is performed by operation input from the lathe operation panel 24 or by commands written in the machining program. In the multiple-piece mode, the spindle 25 is retracted to a position where two or more products can be machined without re-gripping, and a re-gripping operation is performed to grip the bar W.
- the spindle 25 since the position to which the spindle 25 can be retracted is limited by the position of the feed arrow 44, even in the multiple-piece mode, the spindle may be retracted to a position where only one product can be machined during re-gripping.
- the material length calculation unit 20b checks whether product length data, which is data on the length of the product obtained as a result of processing, is stored in the memory unit 203 (step S11).
- Product length data is often stored in the memory unit 203 by the operator together with the processing program, but there are cases where it is not stored in the memory unit 203. If there is product length data in the memory unit 203 (YES in step S11), the material length calculation unit 20b calculates data on the processed material length L3, which is the length of the bar W required to process one product, from the product length data and the tool width data of the cut-off tool stored in the memory unit 203 (step S12). In this step S12, the material length calculation unit 20b calculates the processed material length L3 by adding the tool width to the product length and stores it in the memory unit 203.
- the workpiece length calculation unit 20b calculates the processed workpiece length L3 data based on the machining program (step S13). Specifically, the workpiece length calculation unit 20b calculates the advance distance of the spindle 25 in one cycle of the machining program, and stores the advance distance in the memory unit 203 as the processed workpiece length L3. This advance distance corresponds to an example of the axial movement distance of the spindle in the machining program. If the spindle 25 retreats during the machining operation, the actual advance distance obtained by subtracting the total retreat distance from the total advance distance is set as the processed workpiece length L3.
- the processed workpiece length L3 is calculated based on the machining program, which eliminates the need for the operator to input the product length data, thereby improving the operability of the lathe system 1.
- the processed workpiece length L3 can be calculated. If there is no product length data in the memory unit 203, the material length calculation unit 20b can also calculate the product length data by subtracting the tool width from the processed material length L3 obtained in step S13 and store the data in the memory unit 203.
- the continuous machining feasibility determination unit 20c compares the spindle distance Zc (an example is shown in FIG. 7), which is the movement distance from the position of the spindle 25 at that time to the forward end of the movable range of the spindle 25, with the workpiece length L3 (step S14).
- the forward end of the movable range of the spindle 25 may be referred to as the Z1-axis forward end. If the spindle distance Zc is equal to or greater than the workpiece length L3 (NO in step S14), the continuous machining feasibility determination unit 20c determines that the next product can be processed without re-gripping while the spindle 25 maintains its grip on the bar material W, and proceeds to step S19.
- step S14 determines that re-gripping is necessary.
- This step S14 corresponds to an example of a continuous machining feasibility determination process. Furthermore, the operations from step S14 onwards are repeated to process the required number of products, resulting in a cyclic operation in which one product is manufactured in one cycle.
- the re-grabbing possibility determination unit 20f determines whether or not a re-grabbing is possible (step S15).
- the re-grabbing possibility determination unit 20f determines whether or not a re-grabbing is possible based on whether or not the feed arrow 44 has passed the material shortage position.
- the re-grabbing possibility determination unit 20f determines that a re-grabbing is impossible if information indicating a material shortage exists in the memory unit 203. On the other hand, the re-grabbing possibility determination unit 20f determines that a re-grabbing is possible if information indicating a material shortage does not exist in the memory unit 203. If the gripping possibility determination unit 20f determines that gripping is not possible (NO in step S15), the machine control unit 20g transmits an operation request to the second control device 40 to have the spindle 25 release the grip of the bar W, then discharge the remaining bar W, which is the shortened bar W, and supply a new bar W (step S16).
- the machine control unit 20g executes a bar supply operation in which the spindle 25 grips the supplied bar W, moves the spindle 25 forward until the tip of the bar W protrudes slightly from the guide bush 26, and cuts off the tip of the bar W.
- step S15 determines that gripping is possible (YES in step S15) or when the supply of new bar material W (step S16) is completed
- step S17 the gripping position determination unit 20a calculates the gripping position and determines the gripping position where the spindle 25 grips the bar material W during gripping (step S17).
- step S17 and steps S171 to S177 shown in Figure 6, which shows the detailed operation thereof, correspond to an example of a gripping position determination process.
- FIG. 6 is a flow chart showing the gripping position determination operation shown in FIG. 5. Also, FIG. 7 is a plan view for explaining the positional relationship in the gripping position determination operation shown in FIG. 6.
- the gripping position determination unit 20a acquires the spindle movable distance Zst, the set movable distance Zp, the processed material length L3 calculated by the material length calculation unit 20b, and the material shortage distance L12 from the memory unit 203 (step S171).
- the distance and length acquired in step S171 will be explained with reference to FIG. 7.
- the distance and length explained with reference to FIG. 7 are the distance and length in the Z1-axis direction.
- the spindle movable distance Zst is the maximum distance that the spindle 25 can move in the Z1-axis direction and is also called the spindle stroke.
- the collet chuck 251 when the spindle 25 is at the most forward Z1-axis forward end is shown with a two-dot chain line
- the spindle 25 when it is at the most backward retracted end is shown with a solid line.
- the distance between these is the spindle movable distance Zst.
- This spindle movable distance Zst is stored in the memory unit 203 when the NC lathe 2 is manufactured.
- FIG. 7 an example of the position of the collet chuck 251 while the spindle 25 is continuously machining multiple products without re-gripping is also shown with a dashed line.
- the set movable distance Zp is the distance that the spindle can move set by the operator, and is the distance that the spindle 25 can retract from the Z1-axis forward end.
- the set movable distance Zp may not be set. In this case, the spindle movable distance Zst is used as the set movable distance Zp in the calculation described below.
- the set movable distance Zp or the spindle movable distance Zst used here corresponds to an example of the movable distance of the spindle 25 in the Z1-axis direction.
- the missing material distance L12 is the advance distance of the feed arrow 44 from the feed arrow origin to the missing material position. Information on the missing material distance L12 is stored in the material supply memory unit 401, but is also sent from the second control device 40 to the first control device 20 when the lathe system 1 is started up, and is stored in the memory unit 203.
- the gripping position determination unit 20a calculates the effective remaining material length L11 by subtracting the feed arrow advance distance L10, which is the position of the feed arrow 44 relative to the feed arrow origin, from the missing material distance L12.
- Information on the feed arrow advance distance L10 is constantly sent from the second control device 40 to the first control device 20, and the gripping position determination unit 20a uses the latest feed arrow advance distance L10 at that time for its calculation.
- the gripping position determination unit 20a also calculates the possible retreat distance Zm by adding the processed material length L3 to the effective remaining material length L11 (step S172). An example of the possible retreat distance Zm is shown in Figure 7.
- the grip position determination unit 20a compares the retreatable distance Zm with the set movable distance Zp (step S173).
- the comparison and calculation are performed using the spindle movable distance Zst instead of the set movable distance Zp, but in the following explanation, the case where the spindle movable distance Zst is used will also be explained as the set movable distance Zp.
- the grip position determination unit 20a determines that the spindle 25 can move to the retreat end of the set movable distance Zp, and sets the set movable distance Zp to the maximum retreat distance Zr (step S174). On the other hand, if the retreatable distance Zm is less than the set movable distance Zp (NO in step S173), the grip position determination unit 20a determines that the spindle 25 cannot move to the retreat end of the set movable distance Zp, and sets the retreatable distance Zm to the maximum retreat distance Zr (step S175).
- the gripping position determination unit 20a obtains the quotient N obtained by dividing the maximum retreat distance Zr by the workpiece length L3 and the remainder ⁇ (step S176).
- This quotient N corresponds to the number of products that the spindle 25 can process while maintaining its grip on the bar W after performing a re-gripping operation in which the spindle 25 moves to the position determined by this gripping position determination operation.
- the gripping position determination unit 20a determines the position where the spindle 25 retreats from the forward end of the Z1 axis by the distance obtained by multiplying the quotient N obtained in step S176 by the workpiece length L3 as the gripping position to be used during the re-gripping operation (step S177). This completes the gripping position determination operation.
- the bar W is in a cantilevered state at the rear end side of the gripping portion where the collet chuck 251 of the spindle 25 grips the bar W, and depending on the length of the rear end side of the bar W and the rotation speed of the spindle 25, the bar W may rotate with a large swing. If the rear end side of the bar W rotates with a large swing, the spindle 25 gripping the bar W vibrates, which reduces the processing quality and may result in a defective product. The swing of the bar W becomes extremely large when the bar W rotates at a dangerous speed (a rotation speed at which resonance occurs). The dangerous speed is determined by the properties of the bar W, such as the material and length.
- the gripping position of the spindle 25 may be determined to be a position that avoids the dangerous speed.
- the operator designates the relative position of the feed arrow 44, which will rotate at a dangerous speed, and the spindle 25 as a dangerous range.
- the above-mentioned gripping position determination operation determines that the spindle is to be moved to a position where four products can be manufactured in succession, but if moving to that position places the spindle 25 in a dangerous range specified by the operator, the gripping position may be determined to a position where three products can be manufactured in order to avoid the dangerous speed.
- the range in which the spindle rotates at a dangerous speed can be specified by the operator based on experience or calculation, but it may also be calculated automatically by the first control device based on the properties of the bar W, such as the material, and the number of rotations of the spindle 25.
- step S17 the machine control unit 20g causes the spindle 25 to release its grip on the bar W, moves the spindle 25 to the gripping position determined in step S17, and then causes the spindle 25 to grip the bar W again (step S18).
- This series of operations in step S18 is the re-gripping of the bar W, and corresponds to an example of a re-gripping process.
- the machining restriction unit 20d restricts machining of the bar W held by the spindle 25 (step S19).
- This step S19 corresponds to an example of a machining restriction process.
- the machining restriction unit 20d restricts the movement of the spindle 25 and the first tool rest 27 by restricting the start of machining of the next cycle on the bar W held by the spindle 25.
- the machining restriction unit 20d may restrict the movement of the spindle 25 and the first tool rest 27 itself.
- the machining restriction unit 20d does not restrict the rotation of the spindle 25 about the spindle center line CL. This reduces the time it takes to increase the rotation speed of the spindle 25 to the rotation speed required for processing, shortening the time until processing begins after the back spindle 28 has retreated to a safe position.
- the safety positions stored in the memory unit 203 are configured to be changeable by the operator.
- the safety position change unit 20e changes the safety position by storing the input safety position in the memory unit 203.
- the safety position change unit 20e reads the safety position from the machining program and stores it in the memory unit 203, thereby changing the safety position.
- the interference check software and the safety position change unit 20e may be linked to store the safety position automatically calculated by the interference check software in the memory unit 203.
- the machine control unit 20g When the back spindle 28 is retracted to a safe position (YES in step S19), the machine control unit 20g starts processing the tip portion of the bar W held by the spindle 25 according to the processing program stored in the memory unit 203 (step S21). After that, when the machined portion machined into the desired shape is cut off by the cut-off tool, the machine control unit 20g determines that one cycle of processing is completed (YES in step S22). The machine control unit 20g counts the number of cycles that have been executed. The number of cycles corresponds to the number of times the machined portion is cut off and also corresponds to the number of products manufactured. The machine control unit 20g stores the number of cycles since the start of the first product processing in the memory unit 203.
- the machine control unit 20g counts up the number of cycles in the memory unit 203 when one cycle of processing is completed. Then, the machine control unit 20g determines whether the number of cycles specified in the processing program has been completed since the start of the first product processing (step S23). If the specified number of cycles has been completed (YES in step S23), the cycle operation ends. If the specified number of cycles has not been completed (NO in step S23), the process returns to step S14 and the next cycle operation begins.
- FIG. 8 is a flowchart showing the operation of the lathe system shown in FIG. 1 in single-piece mode.
- step S10 if the multiple-piece mode is not selected (NO in step S10), the single-piece mode is selected.
- the single-piece mode is a mode in which a gripping change is performed for each cycle. In the single-piece mode, performing steps S31 to S36 once is equivalent to performing one cycle.
- the machine control unit 20g moves the spindle 25, which has released the grip of the bar W, to a designated gripping position designated in the machining program, and then causes the spindle 25 to perform a gripping change to grip the bar W (step S31).
- the designated gripping position used in the single-piece mode may be a position designated by an input operation from the lathe operation panel 24.
- the machine control unit 20g starts machining the tip portion of the bar W gripped by the spindle 25 according to the machining program stored in the memory unit 203 (step S32). After that, when one cycle of processing is completed by cutting off the machined part machined into the desired shape by the cut-off tool (YES in step S33), the gripping possibility determination unit 20f determines whether gripping is possible or not in the same manner as in step S18 (step S34).
- the machine control unit 20g transmits an operation request to the second control device 40 to have the spindle 25 release the grip of the bar material W, and then discharge the remaining material, which is the shortened bar material W, and supply a new bar material W (step S35).
- the machine control unit 20g executes a bar material supply operation in which the spindle 25 grips the supplied bar material W, moves the spindle 25 forward until the tip of the bar material W protrudes slightly from the guide bush 26, and cuts off the tip of the bar material W.
- step S34 determines whether the number of cycles specified in the processing program has been completed since the start of the initial product processing. If the specified number of cycles has been completed (YES in step S36), the cycle operation ends. If the specified number of cycles has not been completed (NO in step S36), the process returns to step S31 and the next cycle operation begins.
- the spindle 25 executes multiple cycles while maintaining its grip on the bar W, thereby shortening the time required for non-machining compared to the case where gripping is performed every cycle, and improving the productivity of the lathe system 1.
- the spindle 25 moves relatively evenly throughout the entire range of its movable range, it is possible to suppress the occurrence of load and wear only on a part of the guide structure of the spindle 25 and the movement mechanism of the spindle 25, which also extends the life of these structures and mechanisms.
- the gripping position determination unit 20a determines the gripping position of the spindle 25 at each gripping. As a result, even if the bar material W is moved by an operator manually moving the feed arrow 44, for example, during a cycle operation, after the supply of the bar material W from the material feeder 4 to the NC lathe 2 is completed, the spindle 25 will not grip the feed arrow 44 during gripping, causing an accident in which the feed arrow 44 is broken or the spindle 25 is damaged.
- the continuous machining feasibility determination unit 20c determines whether the spindle 25 is positioned at a position where the next product can be processed while the spindle 25 continues to grip the bar material W for each product. As a result, even if the operator manually moves the feed arrow 44 and the bar material W while the spindle 25 is processing multiple products while maintaining its grip on the bar material W, it is possible to prevent accidents caused by the position of the feed arrow 44 and the bar material W being shifted, or problems such as the production of a product with a defective length.
- the continuous machining feasibility determination unit 20c determines that the spindle 25 is in a position where it can advance beyond the processed material length L3, the processing continues without re-gripping or alarm stop.
- the number of re-grippings and stop time can be further reduced, the time required for non-machining by the lathe system 1 can be shortened, and a decrease in the operating rate can be suppressed, so that the productivity of the lathe system 1 is greatly improved.
- the machining restriction unit 20d also restricts machining of the bar W held by the spindle 25 until the rear spindle 28 is retracted to a safe position.
- This safe position can be changed by the safety position change unit 20e, so by setting the safety position to an appropriate position, it is possible to minimize the time during which machining is restricted, particularly when machining multiple products while the spindle 25 is holding the bar W. This also increases the productivity of the lathe system 1.
- the convenience of the lathe system 1 is increased because the operator can select between the multiple-piece mode and the single-piece mode depending on the situation.
- the lathe system 1 of this modified example differs from the previous embodiment in that the first control device 20 (see FIG. 3) calculates the missing material distance L12.
- the first control device 20 calculates the missing material distance L12 immediately after calculating the workpiece length L3 in step S12 or step S13 shown in FIG. 5.
- the first control device 20 acquires the spindle movement distance Zst of the spindle 25, the length L6 of the collet chuck 251 in the Z1 axis direction, the distance L7 from the tip of the collet chuck 251 to the rear end of the NC lathe 2 when the spindle 25 is located at the rear end of the spindle movement distance Zst, the distance L8 between the NC lathe 2 and the material feeder 4, and the distance L9 from the tip of the feed arrow 44 to the front end of the material feeder when the feed arrow 44 is located at the feed arrow origin. All of these distances and lengths are stored in the memory unit 203 (see FIG. 3). In FIG. 3). In FIG.
- the feed arrow 44 located at the feed arrow origin is shown by a dashed line.
- the gripping possibility determination unit 20f determines whether or not gripping is possible based on whether or not the feed arrow 44 has advanced beyond the material shortage distance L12 calculated from the feed arrow origin.
- the gripping position determination unit 20a performs calculations using the material shortage distance L12 calculated in step S172 without acquiring the material shortage distance L12 in step S171 shown in FIG. 6.
- This modified lathe system 1 also provides the same effects as the previous embodiment.
- FIG. 9 is a functional block diagram similar to FIG. 4, showing the functional configuration of the lathe system of the second embodiment.
- the lathe system 1 of the second embodiment differs from the previous embodiment in that it does not have a continuous machining feasibility determination unit 20c, but instead has a feed arrow position determination unit 20h.
- the feed arrow position determination unit 20h compares the calculated theoretical position of the feed arrow 44 (see FIG. 2) with the position of the feed arrow 44 received from the second control device 40, and determines whether they match for each machining of a product.
- FIG. 10 is a flowchart similar to FIG. 5 showing the operation of the lathe system shown in FIG. 9.
- step S14 determines whether the position of the feed arrow 44 at that time coincides with the theoretical position of the feed arrow 44 (step S01).
- step S01 corresponds to an example of a feed arrow position determination process.
- step S01 the feed arrow position determination unit 20h calculates the theoretical position of the feed arrow 44 at the completion of machining of the previous cycle from the position of the feed arrow 44 at the start of machining of the previous product, i.e., the start of the previous cycle operation, and the length of the processed material L3. In detail, it calculates the position where the feed arrow 44 has moved forward by the length of the processed material L3 from the start of the previous machining. Note that in the first cycle after power-on or after a new bar material W is supplied, this step S01 is omitted.
- the feed arrow position determination unit 20h determines whether the calculated theoretical position of the feed arrow 44 matches the position of the feed arrow 44 at the time of determination received from the second control device 40. For example, when the lathe system 1 is temporarily stopped or stopped due to a power outage or emergency stop, the operator may manually move the feed arrow 44 and the bar W. In that case, the position of the feed arrow 44 differs from the calculated position.
- step S01 If the position of the feed arrow 44 matches the theoretical position (YES in step S01), proceed to step S21 and start machining. On the other hand, if the position of the feed arrow 44 differs from the theoretical position (NO in step S01), the feed arrow position determination unit 20h stops the lathe system 1 with an alarm and displays on the lathe display screen 242 that the position of the feed arrow 44 differs from the theoretical position (step S02).
- the machine control unit 20g of this second embodiment also stores the number of cycles since the previous gripping in the memory unit 203. That is, when one cycle of processing is completed, the number of cycles since the previous gripping is counted up in the memory unit 203. Each time one cycle of processing is completed (YES in step S22), the machine control unit 20g determines whether N cycles of processing have been completed since the previous gripping (step S03). This N is the quotient N calculated in step S176. If N cycles of processing have been completed (YES in step S03), the machine control unit 20g proceeds to the above-mentioned step S23. If N cycles of processing have not been completed (NO in step S03), the process returns to step S19 and starts the operation of the next cycle.
- the lathe system 1 and the control method for the lathe system 1 of the second embodiment described above have the same effects as the previous embodiment.
- the feed arrow position determination unit 20h determines whether the position of the feed arrow 44 matches the theoretical position for each product being machined, it is possible to prevent the production of defective products and collisions of structures even if the operator manually moves the feed arrow 44 and the bar W.
- the feed arrow position determination unit 20h issues an alarm to stop the lathe system 1 when the position of the bar W shifts, there is a risk that the number of times the workpiece is re-gripped and the downtime will increase compared to the previous embodiment.
- the gripping position determination unit 20a and the continuous machining feasibility determination unit 20c perform calculations using the workpiece length L3, but in this calculation, instead of the workpiece length L3 itself, the length obtained by adding the margin specified by the operator to the workpiece length L3 may be used. In that case, the workpiece length L3 may be used in part of the calculation, and the length obtained by adding the margin to the workpiece length L3 may be used in the remaining calculation. In particular, in the calculation of the retractable distance Zm in step S172, it is preferable to use the length obtained by adding the margin to the workpiece length L3.
- step S01 the determination of whether the tip position of the feed arrow 44 coincides with the theoretical position of the feed arrow 44 is performed immediately before the start of processing, but it may be performed at other times, or may be performed multiple times during one cycle of processing. However, by determining whether the position of the feed arrow 44 is normal at least immediately before the start of machining, it is possible to increase the possibility of preventing the production of defective products and collisions with the structure of the NC lathe 2 or the bar W.
- step S01 if the position of the feed arrow 44 differs from the theoretical position (NO in step S01), instead of stopping with an alarm, the process may proceed to step S15 to perform re-gripping, or the spindle 25 and the feed arrow 44 may be controlled so that the feed arrow 44 moves to the theoretical position, or the lathe system 1 may be restarted.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Numerical Control (AREA)
- Turning (AREA)
Abstract
Provided are a machine tool system and a method for controlling a machine tool system with which accidents are not liable to occur. A lathe system 1 for manufacturing a plurality of products from one elongate rod material W by repeating, a plurality of times, machining of a tip end part of the rod material W and cutting off of a machined part that has been machined, comprises: a main spindle 25 which, when re-gripping the rod material W, releases grasping of the rod material W, moves in a Z1 axis direction to a grasping position, and grasps the rod material W; a pusher 44 which moves together with the rod material W in the Z1 axis direction; and a grasping position determining unit 20a which, each time re-gripping occurs, calculates a number N of products that can be machined while the main spindle 25 maintains its grasp of the rod material W, on the basis of a position of the pusher 44, a set movable distance Zp of the main spindle 25 in the Z1 axis direction, and a machining material length L3 required to machine one product, and determines the grasping position corresponding to the number N of products.
Description
本発明は、長尺状の棒材の先端部分の加工と加工が行われた加工済み部分の切り離しとを複数回繰り返すことで1本の該棒材から複数の製品を製造する工作機械システムおよび工作機械システムの制御方法に関する。
The present invention relates to a machine tool system and a method for controlling the machine tool system that manufactures multiple products from a single long bar by repeatedly machining the tip of the bar and cutting off the machined portion.
従来、工作機械システムには、主軸や刃物台が設けられた加工装置と、加工装置に長尺状の棒材を供給する給材機とを備えたものがある。加工装置の主軸は、把持解除可能に棒材を把持して回転する。主軸は、棒材を把持した状態および把持解除した状態の何れの状態においても棒材の軸心方向に移動可能に構成されている。加工装置には第1制御装置が組み込まれている。第1制御装置は、工作機械システムのオペレータなどが作成した加工プログラム(NCプログラム)や加工装置に設けられた操作パネルを用いた入力操作に従って刃物台や主軸などの動作を制御する。第1制御装置が加工プログラムに従って刃物台や主軸の動作を制御することで、棒材の先端部分が所望の形状に加工され、加工された加工済み部分は切り離される。
Conventionally, some machine tool systems include a processing device equipped with a spindle and a tool rest, and a material feeder that supplies long bar stock to the processing device. The spindle of the processing device grips and rotates the bar stock in a releasable manner. The spindle is configured to be able to move in the axial direction of the bar stock whether it is gripping the bar stock or releasing the grip. A first control device is incorporated in the processing device. The first control device controls the operation of the tool rest, spindle, etc. according to a processing program (NC program) created by an operator of the machine tool system, etc., and input operations using an operation panel provided on the processing device. The first control device controls the operation of the tool rest and spindle according to the processing program, so that the tip of the bar stock is machined into the desired shape, and the machined portion is cut off.
給材機は、加工装置と並んで加工装置よりも棒材の後端側に設置される。給材機は、送り矢と、送り矢を棒材の軸心方向に移動させる送り矢駆動機構と、送り矢駆動機構の動作を制御する第2制御装置とを備えている。送り矢は、先端にフィンガーチャックを備えている。そのフィンガーチャックが棒材の後端部分を掴むことで、送り矢は棒材と連結される。そして、送り矢駆動機構によって送り矢が棒材の先端側に向かって送り出されることで給材機に投入された棒材が加工装置に供給される。送り矢は、加工装置が加工を行っているときには所定の荷重で棒材の後端側から棒材の先端側に向かって棒材を付勢している。この荷重は、主軸が棒材を把持しているときに棒材と主軸の間に滑りが生じない比較的弱い荷重に設定されている。
The material feeder is installed alongside the processing device, closer to the rear end of the bar than the processing device. The material feeder is equipped with a feed arrow, a feed arrow drive mechanism for moving the feed arrow in the axial direction of the bar, and a second control device for controlling the operation of the feed arrow drive mechanism. The feed arrow is equipped with a finger chuck at its tip. The finger chuck grips the rear end of the bar, connecting the feed arrow to the bar. The feed arrow is then sent out towards the tip of the bar by the feed arrow drive mechanism, so that the bar fed into the material feeder is supplied to the processing device. When the processing device is performing processing, the feed arrow urges the bar from the rear end towards the tip of the bar with a predetermined load. This load is set to a relatively weak load that does not cause slippage between the bar and the spindle when the spindle is gripping the bar.
一般的な加工装置では、加工済み部分の切り離しが行われたら棒材の掴みかえを行っている。掴みかえでは、主軸による把持を解除して主軸が棒材の後端側に移動した後、再度主軸が棒材を把持する。加工工具による加工と加工が行われた加工済み部分の切り離しと棒材の掴みかえとを1サイクルとして、複数サイクル繰り返すことで、サイクル数に応じた複数の製品が1本の棒材から製造される。これに対し、掴みかえ時における主軸の把持位置を調整することで、主軸が棒材の把持を維持したまま複数の製品を加工可能な工作機械システムが提案されている(例えば特許文献1参照)。この特許文献1の工作機械システムでは、棒材の供給時に、棒材の長さを計測してその計測結果から棒材のうち製品の加工が可能な有効加工長を演算している。そして、その有効加工長と1つの製品の加工に必要な加工材長とから掴みかえにおいて主軸が棒材の把持を維持したまま複数の製品を加工可能な把持位置を有効加工長の全てに対してあらかじめ決定している。この特許文献1の工作機械システムによれば、掴みかえ回数が減少するので、掴みかえ時に必要な主軸の把持解除と把持に要する時間や主軸の回転数増減時間などの加工以外に要する時間を短縮して工作機械システムの生産性を高めることができる。
In a typical processing device, the bar is re-gripped after the machined portion is cut off. In the re-gripping, the spindle releases its grip on the bar and moves to the rear end of the bar, and then the spindle re-gripping the bar. By repeating multiple cycles of machining with a processing tool, cutting off the machined portion, and re-gripping the bar, a number of products are manufactured from one bar according to the number of cycles. In response to this, a machine tool system has been proposed that can process multiple products while the spindle maintains its grip on the bar by adjusting the gripping position of the spindle during re-gripping (see, for example, Patent Document 1). In the machine tool system of Patent Document 1, the length of the bar is measured when the bar is supplied, and the effective machining length of the bar that can be processed into products is calculated from the measurement result. Then, based on the effective machining length and the length of the bar required to process one product, the gripping position at which the spindle can process multiple products while maintaining its grip on the bar during re-gripping is determined in advance for all of the effective machining lengths. According to the machine tool system of Patent Document 1, the number of times the workpiece is regripped is reduced, which shortens the time required for tasks other than machining, such as the time required to release and regrip the spindle during regripping, and the time required to increase and decrease the spindle rotation speed, thereby increasing the productivity of the machine tool system.
しかしながら、給材機が加工装置に棒材を供給した後、工作機械システムを一時停止させた際や停電や非常停止などで工作機械システムが停止した際にオペレータが手動で送り矢の動作させて棒材を前進させる場合がある。その場合、特許文献1の工作機械システムでは、棒材および送り矢の位置が演算した内容とずれてしまうため、掴みかえにおいて主軸が送り矢を把持して送り矢を破損させてしまったり主軸が傷ついたりする事故が生じる虞がある。
However, after the material feeder supplies the bar material to the processing device, when the machine tool system is temporarily stopped or when the machine tool system is stopped due to a power outage or emergency stop, the operator may manually operate the feed arrow to advance the bar material. In such cases, in the machine tool system of Patent Document 1, the positions of the bar material and the feed arrow will differ from those calculated, and there is a risk of an accident occurring in which the spindle grips the feed arrow during re-gripping, damaging the feed arrow or damaging the spindle.
本発明は上述の課題に鑑みてなされたものであり、事故の生じにくい工作機械システムおよび工作機械システムの制御方法を提供することを目的とする。
The present invention was made in consideration of the above-mentioned problems, and aims to provide a machine tool system and a control method for a machine tool system that are less prone to accidents.
上記課題を解決する本発明の工作機械システムは、
長尺状の棒材の先端部分の加工と加工が行われた加工済み部分の切り離しとを複数回繰り返すことで1本の該棒材から複数の製品を製造する工作機械システムにおいて、
前記棒材の掴みかえ時に該棒材の把持を解除して該棒材の軸心方向に沿って把持位置まで移動して該棒材を把持する主軸と、
前記棒材とともに前記軸心方向に移動する送り矢と、
前記掴みかえごとに、前記送り矢の位置および前記主軸の前記軸心方向への移動可能距離と1つの前記製品の加工に必要な加工材長とに基づいて該主軸が前記棒材の把持を維持したまま加工可能な製品数を演算し、該製品数に対応した前記把持位置を決定する把持位置決定部とを備えたことを特徴とする。 The machine tool system of the present invention which solves the above problems comprises:
A machine tool system for manufacturing a plurality of products from a single bar by repeatedly machining a tip portion of a long bar and cutting off the machined portion, comprising:
a main shaft that, when re-gripping the bar material, releases the grip of the bar material and moves along the axial direction of the bar material to a gripping position to grip the bar material;
A feed arrow moving in the axial direction together with the bar;
The present invention is characterized in that it is provided with a gripping position determination unit that calculates, for each gripping, the number of products that can be processed while the spindle maintains its grip on the bar stock based on the position of the feed arrow, the distance the spindle can move in the axial direction, and the length of the workpiece required to process one of the products, and determines the gripping position corresponding to the number of products.
長尺状の棒材の先端部分の加工と加工が行われた加工済み部分の切り離しとを複数回繰り返すことで1本の該棒材から複数の製品を製造する工作機械システムにおいて、
前記棒材の掴みかえ時に該棒材の把持を解除して該棒材の軸心方向に沿って把持位置まで移動して該棒材を把持する主軸と、
前記棒材とともに前記軸心方向に移動する送り矢と、
前記掴みかえごとに、前記送り矢の位置および前記主軸の前記軸心方向への移動可能距離と1つの前記製品の加工に必要な加工材長とに基づいて該主軸が前記棒材の把持を維持したまま加工可能な製品数を演算し、該製品数に対応した前記把持位置を決定する把持位置決定部とを備えたことを特徴とする。 The machine tool system of the present invention which solves the above problems comprises:
A machine tool system for manufacturing a plurality of products from a single bar by repeatedly machining a tip portion of a long bar and cutting off the machined portion, comprising:
a main shaft that, when re-gripping the bar material, releases the grip of the bar material and moves along the axial direction of the bar material to a gripping position to grip the bar material;
A feed arrow moving in the axial direction together with the bar;
The present invention is characterized in that it is provided with a gripping position determination unit that calculates, for each gripping, the number of products that can be processed while the spindle maintains its grip on the bar stock based on the position of the feed arrow, the distance the spindle can move in the axial direction, and the length of the workpiece required to process one of the products, and determines the gripping position corresponding to the number of products.
この工作機械システムによれば、前記把持位置決定部が前記掴みかえごとに前記把持位置を決定するので、オペレータが手動で棒材を移動させても、掴みかえにおいて主軸が送り矢を把持して送り矢を破損させてしまったり主軸が傷ついたりする事故の発生を防止できる。
In this machine tool system, the gripping position determination unit determines the gripping position for each gripping operation, so even if the operator manually moves the bar, it is possible to prevent accidents such as the spindle gripping the feed arrow during gripping and damaging the feed arrow or the spindle being damaged.
ここで、前記主軸は、加工時に前記棒材を把持して該棒材の軸心方向に沿って前進するものであってもよい。
Here, the spindle may grip the bar during machining and move forward along the axial direction of the bar.
この工作機械システムにおいて、
1つの前記製品の加工ごとに、前記主軸が前記棒材の把持を維持したまま次の該製品の加工が可能か否かを判定する連続加工可否判定部を備えていてもよい。 In this machine tool system,
The machine may further include a continuous machining feasibility determination unit that determines, for each of the products being machined, whether or not the next product can be machined while the spindle continues to grip the bar stock.
1つの前記製品の加工ごとに、前記主軸が前記棒材の把持を維持したまま次の該製品の加工が可能か否かを判定する連続加工可否判定部を備えていてもよい。 In this machine tool system,
The machine may further include a continuous machining feasibility determination unit that determines, for each of the products being machined, whether or not the next product can be machined while the spindle continues to grip the bar stock.
この工作機械システムによれば、前記連続加工可否判定部が判定することで、前記主軸が前記棒材の把持を維持したまま複数の該製品を加工している途中でオペレータが手動で前記送り矢および該棒材を移動させても、該送り矢および該棒材の位置がずれたことで生じる事故や長さ不良の該製品を製造してしまうといった不具合を防止できる。
With this machine tool system, the continuous machining feasibility determination unit makes the determination, so that even if an operator manually moves the feed arrow and the bar while the spindle is still gripping the bar and machining a number of products, it is possible to prevent accidents caused by the feed arrow and the bar being out of position or problems such as manufacturing products with incorrect lengths.
ここで、前記連続加工可否判定部は、次の前記製品の加工に先立って前記主軸が前記棒材の把持を維持したまま次の該製品の加工が可能か否かを判定するものであってもよい。また、前記連続加工可否判定部は、1つの前記製品の加工ごとに、前記掴みかえをすることなく次の該製品の加工が可能か否かを判定するものであってもよい。さらに、前記連続加工可否判定部が前記主軸が前記棒材の把持を維持したまま次の前記製品の加工が可能と判定した場合に該主軸が該棒材の把持を維持したまま次の該製品の加工を実行させる機械制御部を備えていてもよい。加えて、前記連続加工可否判定部が前記主軸が前記棒材の把持を維持したまま次の前記製品の加工が不可能と判定した場合に前記掴みかえを実行させる機械制御部を備えていてもよい。
Here, the continuous machining feasibility determination unit may determine whether the next product can be machined while the spindle continues to grip the bar material prior to machining the next product. The continuous machining feasibility determination unit may also determine whether the next product can be machined without the re-gripping for each product. Furthermore, the continuous machining feasibility determination unit may include a machine control unit that causes the spindle to continue to grip the bar material when it determines that the next product can be machined while the spindle continues to grip the bar material. In addition, the continuous machining feasibility determination unit may include a machine control unit that causes the re-gripping when it determines that the next product cannot be machined while the spindle continues to grip the bar material.
また、この工作機械システムにおいて、
1つの前記製品の加工ごとに、前記送り矢の位置が演算によって得られる理論上の該送り矢の位置と一致しているか否かを判定する送り矢位置判定部を備えていてもよい。 In addition, in this machine tool system,
The feed arrow position determining unit may be provided for determining whether or not the position of the feed arrow coincides with a theoretical position of the feed arrow obtained by calculation for each processing of the product.
1つの前記製品の加工ごとに、前記送り矢の位置が演算によって得られる理論上の該送り矢の位置と一致しているか否かを判定する送り矢位置判定部を備えていてもよい。 In addition, in this machine tool system,
The feed arrow position determining unit may be provided for determining whether or not the position of the feed arrow coincides with a theoretical position of the feed arrow obtained by calculation for each processing of the product.
この工作機械システムによれば、前記送り矢位置判定部が判定することで、前記主軸が前記棒材の把持を維持したまま複数の該製品を加工している途中でオペレータが手動で前記送り矢および該棒材を移動させても、該送り矢および該棒材の位置がずれたことで生じる事故や長さ不良の該製品を製造してしまうといった不具合を防止できる。
In this machine tool system, the feed arrow position determination unit makes the determination, so that even if an operator manually moves the feed arrow and the bar while the spindle is still gripping the bar and machining multiple products, it is possible to prevent accidents caused by the feed arrow and the bar being out of position and to prevent defects such as the manufacture of products with incorrect lengths.
ここで、前記送り矢位置判定部は、前記加工済み部分の切り離し後であって次の前記製品の加工開始前に判定するものであってもよい。また、理論上の前記送り矢の位置は、前記加工材長を用いて演算した位置であってもよい。前記送り矢位置判定部は、前記送り矢の位置が理論上の該送り矢の位置と一致していないと判定した場合にこの工作機械システムを停止させるものであってもよい。また、前記送り矢位置判定部は、前記送り矢の位置が理論上の該送り矢の位置と一致していないと判定した場合に該送り矢の位置が理論上の該送り矢の位置と一致していない旨を表示させるものであってもよい。
Here, the feed arrow position determination unit may make a determination after the machined portion has been separated and before the start of machining of the next product. Also, the theoretical position of the feed arrow may be a position calculated using the length of the workpiece. The feed arrow position determination unit may stop the machine tool system when it determines that the position of the feed arrow does not match the theoretical position of the feed arrow. Also, the feed arrow position determination unit may display a message indicating that the position of the feed arrow does not match the theoretical position of the feed arrow when it determines that the position of the feed arrow does not match the theoretical position of the feed arrow.
また、この工作機械システムにおいて、
加工動作が記述された加工プログラムにおける前記主軸の前記軸心方向の移動距離に基づいて前記加工材長を演算する材長演算部を備えていてもよい。 In addition, in this machine tool system,
The machining apparatus may further include a workpiece length calculation unit that calculates the length of the processed workpiece based on a movement distance of the main spindle in the axial direction in a machining program in which machining operations are described.
加工動作が記述された加工プログラムにおける前記主軸の前記軸心方向の移動距離に基づいて前記加工材長を演算する材長演算部を備えていてもよい。 In addition, in this machine tool system,
The machining apparatus may further include a workpiece length calculation unit that calculates the length of the processed workpiece based on a movement distance of the main spindle in the axial direction in a machining program in which machining operations are described.
オペレータが前記加工材長または該加工材長の演算に必要なデータを入力する必要がないのでこの工作機械の操作性が高まる。
The operator does not need to input the workpiece length or data required to calculate the workpiece length, improving the operability of this machine tool.
また、この工作機械システムにおいて、
前記把持位置決定部が前記把持位置を決定して前記掴みかえを実行する多数個取りモードと、1つの前記製品の加工ごとに前記掴みかえを実行する1個取りモードとを切り替え可能にしてもよい。 In addition, in this machine tool system,
The gripping position determination unit may be capable of switching between a multiple-piece mode in which the gripping position determination unit determines the gripping position and performs the gripping change, and a single-piece mode in which the gripping change is performed each time one of the products is processed.
前記把持位置決定部が前記把持位置を決定して前記掴みかえを実行する多数個取りモードと、1つの前記製品の加工ごとに前記掴みかえを実行する1個取りモードとを切り替え可能にしてもよい。 In addition, in this machine tool system,
The gripping position determination unit may be capable of switching between a multiple-piece mode in which the gripping position determination unit determines the gripping position and performs the gripping change, and a single-piece mode in which the gripping change is performed each time one of the products is processed.
多数個取りモードと1個取りモードを切り替え可能にすることでオペレータの利便性が高まる。
The ability to switch between multiple-piece mode and single-piece mode increases operator convenience.
さらに、この工作機械システムにおいて、
前記主軸に対向して配置され、前記加工済み部分が受け渡される背面主軸と、
前記背面主軸が安全位置に退避するまで前記主軸に把持された前記棒材の加工を規制する加工規制部と、
前記安全位置を変更する安全位置変更部とを備えていてもよい。 Furthermore, in this machine tool system,
a back spindle disposed opposite the spindle and to which the machined portion is transferred;
a machining restricting portion that restricts machining of the bar held by the spindle until the back spindle is retracted to a safety position;
The safety position changer may change the safety position.
前記主軸に対向して配置され、前記加工済み部分が受け渡される背面主軸と、
前記背面主軸が安全位置に退避するまで前記主軸に把持された前記棒材の加工を規制する加工規制部と、
前記安全位置を変更する安全位置変更部とを備えていてもよい。 Furthermore, in this machine tool system,
a back spindle disposed opposite the spindle and to which the machined portion is transferred;
a machining restricting portion that restricts machining of the bar held by the spindle until the back spindle is retracted to a safety position;
The safety position changer may change the safety position.
前記安全位置を適切な位置に変更することで前記加工規制部が加工を規制している時間を短縮できるので、この工作機械システムの生産性が高まる。
By changing the safety position to an appropriate position, the time during which the machining restriction unit restricts machining can be shortened, thereby increasing the productivity of the machine tool system.
ここで、前記加工規制部は、前記主軸を用いた加工動作が記述された加工プログラムの実行を規制することで加工を規制するものであってもよく、前記主軸の移動を規制することで加工を規制するものであってもよい。
Here, the machining regulating unit may regulate machining by regulating the execution of a machining program in which machining operations using the spindle are described, or may regulate machining by regulating the movement of the spindle.
上記課題を解決する本発明の工作機械システムの制御方法は、
主軸に把持された長尺状の棒材の先端部分の加工と加工が行われた加工済み部分の切り離しとを複数回繰り返すことで1本の該棒材から複数の製品を製造する工作機械システムの制御方法において、
前記棒材とともに該棒材の軸心方向に移動する送り矢の位置および前記主軸の該軸心方向の移動可能距離と1つの前記製品の加工に必要な加工材長とに基づいて該主軸が前記棒材の把持を維持したまま加工可能な製品数を演算し、該製品数に対応した把持位置を決定する把持位置決定工程と、
前記把持位置決定工程において決定された前記把持位置に前記棒材の把持を解除した前記主軸が移動して該棒材を把持する掴みかえ工程とを有することを特徴とする。 A method for controlling a machine tool system according to the present invention that solves the above problems includes:
A method for controlling a machine tool system for manufacturing a plurality of products from a single bar stock by repeatedly machining a tip portion of the bar stock held by a spindle and cutting off the machined portion, comprising:
a gripping position determination step for calculating the number of products that can be machined while the spindle is still gripping the bar stock, based on the position of a feed arrow that moves in the axial direction of the bar stock together with the bar stock, the axial movement distance of the spindle, and the length of the workpiece required to process one of the products, and determining a gripping position corresponding to the number of products;
and a re-gripping step in which the spindle, which has released the grip of the bar material, moves to the gripping position determined in the gripping position determination step and grips the bar material again.
主軸に把持された長尺状の棒材の先端部分の加工と加工が行われた加工済み部分の切り離しとを複数回繰り返すことで1本の該棒材から複数の製品を製造する工作機械システムの制御方法において、
前記棒材とともに該棒材の軸心方向に移動する送り矢の位置および前記主軸の該軸心方向の移動可能距離と1つの前記製品の加工に必要な加工材長とに基づいて該主軸が前記棒材の把持を維持したまま加工可能な製品数を演算し、該製品数に対応した把持位置を決定する把持位置決定工程と、
前記把持位置決定工程において決定された前記把持位置に前記棒材の把持を解除した前記主軸が移動して該棒材を把持する掴みかえ工程とを有することを特徴とする。 A method for controlling a machine tool system according to the present invention that solves the above problems includes:
A method for controlling a machine tool system for manufacturing a plurality of products from a single bar stock by repeatedly machining a tip portion of the bar stock held by a spindle and cutting off the machined portion, comprising:
a gripping position determination step for calculating the number of products that can be machined while the spindle is still gripping the bar stock, based on the position of a feed arrow that moves in the axial direction of the bar stock together with the bar stock, the axial movement distance of the spindle, and the length of the workpiece required to process one of the products, and determining a gripping position corresponding to the number of products;
and a re-gripping step in which the spindle, which has released the grip of the bar material, moves to the gripping position determined in the gripping position determination step and grips the bar material again.
この工作機械システムの制御方法によれば、前記把持位置決定工程において前記把持位置を決定するので、主軸が棒材の把持を維持したまま複数の製品を加工している途中でオペレータが手動で棒材を移動させても、掴みかえにおいて主軸が送り矢を把持して送り矢を破損させてしまったり主軸が傷ついたりする事故の発生を防止できる。
According to this control method for the machine tool system, the gripping position is determined in the gripping position determination process, so even if the operator manually moves the bar while the spindle is machining multiple products while still holding the bar, it is possible to prevent accidents such as the spindle gripping the feed arrow during re-gripping and damaging the feed arrow or the spindle being damaged.
本発明によれば、事故の生じにくい工作機械システムおよび工作機械システムの制御方法を提供するこができる。
The present invention provides a machine tool system and a method for controlling the machine tool system that are less prone to accidents.
以下、図面を参照しながら本発明の実施形態を説明する。本実施形態では、本発明をNC旋盤と給材機とを備えた旋盤システムに適用した例を用いて説明する。
Below, an embodiment of the present invention will be described with reference to the drawings. In this embodiment, the present invention will be described using an example in which it is applied to a lathe system equipped with an NC lathe and a material feeder.
図1は、本実施形態にかかる旋盤システムの正面図である。
FIG. 1 is a front view of the lathe system according to this embodiment.
図1に示すように、本実施形態の旋盤システム1は、加工装置であるNC旋盤2と、材料供給装置である給材機4とを備えている。この旋盤システム1が、工作機械システムの一例に相当する。本実施形態のNC旋盤2は、いわゆるスイス型旋盤である。NC旋盤2は、切削室22と、主軸室23と、旋盤操作パネル24とを備えている。切削室22は、棒材W(図2参照)の先端部分を加工する空間が形成された部屋であり、正面側から見てNC旋盤2の右側に配置されている。主軸室23は、主軸25(図2参照)が配置された部屋であり、正面側から見てNC旋盤2の左側に配置されている。
As shown in FIG. 1, the lathe system 1 of this embodiment includes an NC lathe 2, which is a processing device, and a material feeder 4, which is a material supplying device. This lathe system 1 corresponds to an example of a machine tool system. The NC lathe 2 of this embodiment is a so-called Swiss-type lathe. The NC lathe 2 includes a cutting room 22, a spindle room 23, and a lathe operation panel 24. The cutting room 22 is a room in which a space is formed for machining the tip portion of the bar material W (see FIG. 2), and is located to the right of the NC lathe 2 when viewed from the front. The spindle room 23 is a room in which the spindle 25 (see FIG. 2) is located, and is located to the left of the NC lathe 2 when viewed from the front.
旋盤操作パネル24は、旋盤操作部241と旋盤表示画面242とを有している。旋盤操作部241は、旋盤システム1のオペレータによる入力操作を受け付ける複数のボタンやキー等からなる。なお、旋盤操作部241は、旋盤表示画面242と一体化されたタッチパネルであってもよい。旋盤システム1のオペレータは、旋盤操作部241や外部コンピューターを用いて作成した加工プログラムを後述する記憶部203(図3参照)に記憶させることができる。また、旋盤システム1のオペレータは、旋盤操作部241を用いて加工プログラムの修正を行い、修正した加工プログラムを記憶部203に記憶させることもできる。さらに、旋盤システム1のオペレータは、旋盤操作部241を用いて旋盤システム1の各構成要素を個別または連携して動作させることもできる。旋盤表示画面242は、記憶部203に記憶された加工プログラム、旋盤システム1の各種設定値およびエラー内容などの旋盤システム1に関する各種情報を表示するディスプレイである。
The lathe operation panel 24 has a lathe operation section 241 and a lathe display screen 242. The lathe operation section 241 is composed of a plurality of buttons and keys that accept input operations by the operator of the lathe system 1. The lathe operation section 241 may be a touch panel integrated with the lathe display screen 242. The operator of the lathe system 1 can store a machining program created using the lathe operation section 241 or an external computer in the storage section 203 (see FIG. 3) described later. The operator of the lathe system 1 can also use the lathe operation section 241 to modify the machining program and store the modified machining program in the storage section 203. The operator of the lathe system 1 can also use the lathe operation section 241 to operate each component of the lathe system 1 individually or in cooperation with each other. The lathe display screen 242 is a display that displays various information related to the lathe system 1, such as the machining program stored in the storage section 203, various setting values of the lathe system 1, and error contents.
給材機4は、長尺な棒材W(図2参照)をNC旋盤2に供給する。給材機4は、NC旋盤2と並んで設置される。給材機4には、複数の棒材Wが格納されている。給材機4は、格納された棒材Wのうちの1本をNC旋盤2に向かって送り出す。また、給材機4は、加工によって短くなった棒材Wである残材をNC旋盤2から引き抜いて排出する。残材を排出した後、給材機4は、格納された棒材Wからあらたに1本をNC旋盤2に向かって送り出す。給材機4には、給材機4を操作するための入力装置である給材機操作パネル42が設けられている。
The material feeder 4 supplies long bar material W (see Figure 2) to the NC lathe 2. The material feeder 4 is installed alongside the NC lathe 2. A plurality of bars W are stored in the material feeder 4. The material feeder 4 sends out one of the stored bars W towards the NC lathe 2. The material feeder 4 also pulls out and discharges the remaining bar material W, which is a bar material W that has been shortened by processing, from the NC lathe 2. After discharging the remaining bar material, the material feeder 4 sends out a new bar material W from the stored bar material W towards the NC lathe 2. The material feeder 4 is provided with a material feeder operation panel 42, which is an input device for operating the material feeder 4.
図2は、図1に示した旋盤システムの内部構成を簡易的に示す平面図である。
Figure 2 is a plan view showing a simplified internal configuration of the lathe system shown in Figure 1.
図2に示すように、NC旋盤2は、主軸25と、ガイドブッシュ26と、第1刃物台27と、背面主軸28と、第2刃物台29とを備えている。主軸25、ガイドブッシュ26、第1刃物台27、背面主軸28および第2刃物台29は、土台である脚の上に配置されている。主軸25、第1刃物台27、背面主軸28および第2刃物台29は、加工動作が記述された加工プログラムや旋盤操作パネル24(図1参照)からの入力に従って動作する。
As shown in Figure 2, the NC lathe 2 is equipped with a spindle 25, a guide bush 26, a first tool rest 27, a back spindle 28, and a second tool rest 29. The spindle 25, guide bush 26, first tool rest 27, back spindle 28, and second tool rest 29 are placed on legs that serve as the base. The spindle 25, first tool rest 27, back spindle 28, and second tool rest 29 operate according to a machining program that describes machining operations and input from the lathe operation panel 24 (see Figure 1).
主軸25は、Z1軸方向に移動可能である。主軸25は、主軸台によって主軸台とともにZ1軸方向に移動するが、主軸台は図示省略し説明も省略する。Z1軸方向は、水平方向であり、図2においては左右方向である。このZ1軸方向は、棒材Wの軸心方向の一例に相当する。主軸25は、その内部を貫通している棒材Wを把持解除可能に把持するためのコレットチャック251を先端部分に有している。主軸25は、棒材Wを把持して主軸中心線CLを中心として回転可能である。主軸中心線CLの方向はZ1軸方向と一致している。以下、主軸25が棒材Wの先端側に移動することを前進と称し、主軸25が棒材Wの後端側に移動することを後退と称することがある。図2においては、右方向が前進方向であり、左方向が後退方向である。
The spindle 25 can move in the Z1-axis direction. The spindle 25 moves in the Z1-axis direction together with the spindle head by the spindle stock, but the spindle stock is not shown and the description is also omitted. The Z1-axis direction is a horizontal direction, and is the left-right direction in FIG. 2. This Z1-axis direction corresponds to an example of the axial direction of the bar W. The spindle 25 has a collet chuck 251 at its tip for releasably gripping the bar W that penetrates its interior. The spindle 25 can grip the bar W and rotate around the spindle center line CL. The direction of the spindle center line CL coincides with the Z1-axis direction. Hereinafter, the movement of the spindle 25 toward the tip of the bar W may be referred to as forward movement, and the movement of the spindle 25 toward the rear end of the bar W may be referred to as backward movement. In FIG. 2, the right direction is the forward movement direction, and the left direction is the backward movement direction.
ガイドブッシュ26は、土台である脚に固定されている。ガイドブッシュ26の、主軸25が配置された側とは反対側の端面は、切削室22(図1参照)内に露出している。ガイドブッシュ26は、主軸25の内部を貫通した棒材Wの先端側部分をZ1軸方向へ摺動自在に支持する。このガイドブッシュ26の、棒材Wを支持している部分は、主軸25と同期して主軸中心線CLを中心にして回転可能である。ガイドブッシュ26から切削室22内に突出した棒材Wの先端部分が第1刃物台27に取り付けられた第1工具T1によって加工される。この第1工具T1が、加工工具の一例に相当する。ガイドブッシュ26により、加工時の棒材Wの撓みが抑制されるので、特に細長い棒材WをNC旋盤2によって高精度に加工できる。
The guide bush 26 is fixed to the legs, which serve as the base. The end face of the guide bush 26 opposite to the side where the spindle 25 is arranged is exposed in the cutting chamber 22 (see FIG. 1). The guide bush 26 supports the tip portion of the bar W that penetrates the inside of the spindle 25 so that it can slide freely in the Z1 axis direction. The portion of the guide bush 26 that supports the bar W can rotate around the spindle center line CL in synchronization with the spindle 25. The tip portion of the bar W that protrudes from the guide bush 26 into the cutting chamber 22 is machined by a first tool T1 attached to a first tool rest 27. This first tool T1 corresponds to an example of a machining tool. The guide bush 26 suppresses bending of the bar W during machining, so that particularly long and thin bar W can be machined with high precision by the NC lathe 2.
第1刃物台27は、Z1軸方向と直交しかつ水平方向を向いたX1軸方向と、垂直方向を向いたY1軸方向に移動可能である。この第1刃物台27が、刃物台の一例に相当する。図2では、上下方向がX1軸方向であり、紙面に直交する方向がY1軸方向である。第1刃物台27には、切削工具、突切工具などを含む複数種類の第1工具T1がY1軸方向に並んで櫛歯状に取り付けられている。また、第1工具T1として、エンドミルやドリルなどの回転工具を第1刃物台27に取り付けることもできる。第1刃物台27がY1軸方向に移動することで、これらの複数種類の第1工具T1から任意の第1工具T1が選択される。そして、第1刃物台27がX1軸方向に移動することで、選択されている第1工具T1が主軸25に把持されガイドブッシュ26に支持された棒材Wの先端部分に切り込んで加工したり、棒材Wの加工済み部分を切り離したりする。なお、加工済み部分を切り離すための工具が突切工具である。
The first tool rest 27 can move in the X1-axis direction, which is perpendicular to the Z1-axis direction and faces horizontally, and in the Y1-axis direction, which faces vertically. This first tool rest 27 corresponds to an example of a tool rest. In FIG. 2, the up-down direction is the X1-axis direction, and the direction perpendicular to the paper surface is the Y1-axis direction. On the first tool rest 27, multiple types of first tools T1, including cutting tools and cut-off tools, are attached in a comb-like shape lined up in the Y1-axis direction. Rotary tools such as end mills and drills can also be attached to the first tool rest 27 as the first tools T1. By moving the first tool rest 27 in the Y1-axis direction, an arbitrary first tool T1 is selected from these multiple types of first tools T1. Then, by moving the first tool rest 27 in the X1-axis direction, the selected first tool T1 cuts into the tip of the bar W held by the spindle 25 and supported by the guide bush 26 to process it, or cuts off the processed part of the bar W. The tool used to separate the machined parts is called a cut-off tool.
背面主軸28は、X2軸方向およびZ2軸方向に移動可能である。背面主軸28は、背面主軸台によって背面主軸台とともにX2軸方向およびZ2軸方向に移動するが、背面主軸台は図示省略し説明も省略する。X2軸方向は上述したX1軸方向と同一の方向であり、Z2軸方向は上述したZ1軸方向と同一の方向である。また、Z2軸方向は、背面主軸28の軸線方向に相当する。図2には、背面主軸28が、ガイドブッシュ26を挟んで主軸25に対向した位置にある様子が示されている。この位置では背面主軸28の回転中心である背面主軸中心線は、主軸中心線CLと同一線上に配置されている。背面主軸中心線の方向はZ2軸方向と一致している。背面主軸28には、主軸25を用いた加工が完了した棒材Wの加工済み部分が、突切工具によって切り離されて受け渡される。以下、切り離された加工済み部分を切断済み部分と称する。背面主軸28は、主軸25から受け渡された切断済み部分を把持解除可能に把持する。また、背面主軸28は、X2軸方向およびZ2軸方向に移動することで把持した切断済み部分を移送する。
The back spindle 28 can move in the X2-axis direction and the Z2-axis direction. The back spindle 28 moves in the X2-axis direction and the Z2-axis direction together with the back spindle by the back spindle stock, but the back spindle stock is not shown and the description is omitted. The X2-axis direction is the same as the X1-axis direction described above, and the Z2-axis direction is the same as the Z1-axis direction described above. The Z2-axis direction corresponds to the axial direction of the back spindle 28. Figure 2 shows the back spindle 28 in a position facing the spindle 25 across the guide bush 26. In this position, the back spindle center line, which is the center of rotation of the back spindle 28, is arranged on the same line as the spindle center line CL. The direction of the back spindle center line coincides with the Z2-axis direction. The machined portion of the bar W that has been machined using the spindle 25 is cut off by a cut-off tool and transferred to the back spindle 28. Hereinafter, the machined portion that has been cut off is referred to as the cut portion. The rear spindle 28 holds the cut portion handed over from the spindle 25 in a releasable manner. The rear spindle 28 also moves in the X2-axis direction and the Z2-axis direction to transport the held cut portion.
第2刃物台29は、Y2軸方向へ移動可能である。なお、第2刃物台29は、X2軸方向に移動可能に構成されていてもよい。Y2軸方向は上述したY1軸方向と同一の方向である。第2刃物台29には、切断済み部分を加工するドリルやエンドミル等の第2工具T2が取り付けられている。なお、第2工具T2は、Y2軸方向に並んで第2刃物台29に複数取り付けられている。第2刃物台29のY2軸方向への移動によって、これらの複数の第2工具T2から任意の第2工具T2が選択される。そして、背面主軸28がX2軸方向やZ2軸方向に移動することで、背面主軸28に把持された切断済み部分の切断端側が加工される。この切断端側の加工が完了した切断済み部分が旋盤システム1によって製造された製品になる。なお、背面主軸28を用いた加工を行わない場合もある。その場合、切断済み部分がそのまま製品になる。第2刃物台29には、製品を受け入れる製品受入口291と不図示のシューターとが設けられている。シューターは、第2刃物台29内に設けられている。背面主軸28は、製品を製品受入口291に挿入した後、把持を解除して背面主軸28に設けられたシリンダーによって押し出すことでシューターに製品を投下する。投下された製品は、不図示のコンベアによって所定位置まで移送されて旋盤システム1の外部に設けられた製品貯留部に排出される。
The second tool rest 29 is movable in the Y2-axis direction. The second tool rest 29 may be configured to be movable in the X2-axis direction. The Y2-axis direction is the same direction as the Y1-axis direction described above. A second tool T2, such as a drill or an end mill, is attached to the second tool rest 29 to process the cut portion. A plurality of second tools T2 are attached to the second tool rest 29 in the Y2-axis direction. An arbitrary second tool T2 is selected from the plurality of second tools T2 by moving the second tool rest 29 in the Y2-axis direction. Then, the back spindle 28 moves in the X2-axis direction or the Z2-axis direction, so that the cut end side of the cut portion held by the back spindle 28 is processed. The cut portion after the processing of the cut end side becomes a product manufactured by the lathe system 1. There are also cases where the back spindle 28 is not used for processing. In that case, the cut portion becomes a product as it is. The second tool rest 29 is provided with a product receiving opening 291 for receiving the product and a shooter (not shown). The chute is provided inside the second tool rest 29. After the back spindle 28 inserts the product into the product receiving opening 291, it releases its grip and pushes it out using a cylinder provided on the back spindle 28, dropping the product into the chute. The dropped product is transported to a specified position by a conveyor (not shown) and discharged into a product storage section provided outside the lathe system 1.
給材機4は、上述した給材機操作パネル42(図1参照)の他に、送り矢44と、送り矢駆動機構45と、送り矢モータ46と、先端センサ47と、原点センサ48とを有している。送り矢44は、不図示のガイドによってZ1軸方向に移動自在に案内されている。送り矢44の先端には、棒材Wの後端を把持するフィンガーチャック441が設けられている。このフィンガーチャック441は、送り矢44の他の部分に対して回転自在に取り付けられることで、主軸中心線CLを回転中心軸として回転自在になっている。フィンガーチャック441が棒材Wの後端を把持することで、送り矢44は棒材Wに連結される。すなわち、フィンガーチャック441が棒材Wを把持している間、送り矢44は棒材とともにZ1軸方向に移動する。
The material feeder 4 has, in addition to the above-mentioned material feeder operation panel 42 (see FIG. 1), a feed arrow 44, a feed arrow drive mechanism 45, a feed arrow motor 46, a tip sensor 47, and an origin sensor 48. The feed arrow 44 is guided by a guide (not shown) so as to be freely movable in the Z1-axis direction. A finger chuck 441 that grips the rear end of the bar W is provided at the tip of the feed arrow 44. This finger chuck 441 is rotatably attached to the other parts of the feed arrow 44, so that it is rotatable about the spindle center line CL as the rotation center axis. The finger chuck 441 grips the rear end of the bar W, so that the feed arrow 44 is connected to the bar W. In other words, while the finger chuck 441 is gripping the bar W, the feed arrow 44 moves in the Z1-axis direction together with the bar.
送り矢駆動機構45は、給材機4の先端側と後端側それぞれに設けられた不図示のプーリと、そのプーリに掛け渡された駆動ベルトによって構成されている。駆動ベルトには、連結部451が固定されている。この連結部451によって駆動ベルトと送り矢44の後端部分とが連結されている。給材機4の後端側に設けられたプーリは、送り矢モータ46の出力軸に固定されている。
The feed arrow drive mechanism 45 is composed of pulleys (not shown) provided at the front and rear ends of the material feeder 4, and a drive belt stretched around the pulleys. A connecting portion 451 is fixed to the drive belt. This connecting portion 451 connects the drive belt to the rear end of the feed arrow 44. The pulley provided at the rear end of the material feeder 4 is fixed to the output shaft of the feed arrow motor 46.
送り矢モータ46の出力軸が一方向に回転すると、送り矢駆動機構45と連結部451によって送り矢44はZ1軸に沿ってNC旋盤2に向かって移動する。反対に、送り矢モータ46の出力軸が他方向に回転すると、送り矢駆動機構45と連結部451によって送り矢44はZ1軸に沿ってNC旋盤2から離間する方向に移動する。給材機4内に格納された複数の棒材Wのうち軸心が主軸中心線CLと一致した位置にある棒材Wがフィンガーチャック441によって把持される。そして、送り矢44が移動することで、フィンガーチャック441に把持された棒材Wは、棒材Wの軸心方向に移動する。すなわち、送り矢モータ46の出力軸が一方向に回転すると、棒材Wはその先端側に移動し、送り矢モータ46の出力軸が他方向に回転すると、棒材Wはその後端側に移動する。送り矢モータ46は、送り矢エンコーダ461を有している。なお、送り矢エンコーダ461は、送り矢モータ46とは別に設置されていてもよい。送り矢エンコーダ461によって、送り矢モータ46の回転数や回転量が検出される。送り矢エンコーダ461の検出結果は、第2制御装置40(図3参照)に送信される。
When the output shaft of the feed arrow motor 46 rotates in one direction, the feed arrow 44 moves along the Z1 axis toward the NC lathe 2 by the feed arrow drive mechanism 45 and the connecting part 451. Conversely, when the output shaft of the feed arrow motor 46 rotates in the other direction, the feed arrow 44 moves along the Z1 axis away from the NC lathe 2 by the feed arrow drive mechanism 45 and the connecting part 451. Of the multiple bars W stored in the material feeder 4, the bar W whose axis is aligned with the spindle center line CL is gripped by the finger chuck 441. Then, as the feed arrow 44 moves, the bar W gripped by the finger chuck 441 moves in the axial direction of the bar W. That is, when the output shaft of the feed arrow motor 46 rotates in one direction, the bar W moves to its tip side, and when the output shaft of the feed arrow motor 46 rotates in the other direction, the bar W moves to its rear end side. The feed arrow motor 46 has a feed arrow encoder 461. The arrow encoder 461 may be installed separately from the arrow motor 46. The arrow encoder 461 detects the number of rotations and the amount of rotation of the arrow motor 46. The detection result of the arrow encoder 461 is transmitted to the second control device 40 (see FIG. 3).
先端センサ47は、棒材Wの先端を検出する。また、原点センサ48は、送り矢44が送り矢原点に位置しているか否かを検出する。送り矢原点は、送り矢44の移動範囲のうち最も後端側に位置している。原点センサ48は、送り矢原点にある送り矢44の後端を検出するセンサである。これらの先端センサ47と原点センサ48の検出結果は、それぞれ第2制御装置40(図3参照)に送信される。第2制御装置40は、先端センサ47の検出結果と送り矢エンコーダ461の検出結果によって、NC旋盤2に電源投入後最初に棒材Wを供給する際やあらたに棒材Wを供給する際の棒材Wの先端位置がどの位置にあるかを把握する。また、第2制御装置40は、原点センサ48の検出結果と送り矢エンコーダ461の検出結果によって、送り矢44の位置を把握する。
The tip sensor 47 detects the tip of the bar W. The origin sensor 48 detects whether the feed arrow 44 is located at the feed arrow origin. The feed arrow origin is located at the rear end of the movement range of the feed arrow 44. The origin sensor 48 is a sensor that detects the rear end of the feed arrow 44 at the feed arrow origin. The detection results of these tip sensor 47 and origin sensor 48 are sent to the second control device 40 (see Figure 3). The second control device 40 determines the position of the tip of the bar W when the bar W is first supplied after power is turned on to the NC lathe 2 or when the bar W is newly supplied, based on the detection results of the tip sensor 47 and the feed arrow encoder 461. The second control device 40 also determines the position of the feed arrow 44 based on the detection results of the origin sensor 48 and the feed arrow encoder 461.
図3は、図1に示した旋盤システムのハードウェア構成を示すブロック図である。なお、この図3では、旋盤システム1のハードウェア構成のうち本発明との関連性の低いものは、これまで説明した構成要素を動作させるものであっても図示省略している。
FIG. 3 is a block diagram showing the hardware configuration of the lathe system shown in FIG. 1. Note that in FIG. 3, the hardware configuration of the lathe system 1 that is less relevant to the present invention is omitted from the illustration, even if it operates the components described so far.
図3に示すように、NC旋盤2は、第1制御装置20と、上述した旋盤操作パネル24と、Z1軸モータ252と、主軸モータ253と、主軸アクチュエータ254と、Z2軸モータ281とを有している。第1制御装置20は、いわゆるNC(Numerical Control)装置であり、CPU201と、PLC(Programmable Logic Controller)202と、記憶部203とを有している。第1制御装置20は、CPU201による演算機能を有するコンピュータである。第1制御装置20は、記憶部203に記憶されている加工プログラムや旋盤操作パネル24からの入力に従って図2に示した主軸25、第1刃物台27、背面主軸28および第2刃物台29等の各構成要素の動作を制御する。図3には、各構成要素を駆動するモータやアクチュエータのうちの一部が示されている。第1制御装置20は、主にNC旋盤2に設けられたサーボモータに対して数値制御を行う。また、第1制御装置20が有しているPLC202は、主にNC旋盤2に設けられたシリンダーやバルブ等のサーボモータ以外の機器の動作をシーケンス制御する。
As shown in FIG. 3, the NC lathe 2 has a first control device 20, the lathe operation panel 24 described above, a Z1-axis motor 252, a spindle motor 253, a spindle actuator 254, and a Z2-axis motor 281. The first control device 20 is a so-called NC (Numerical Control) device, and has a CPU 201, a PLC (Programmable Logic Controller) 202, and a memory unit 203. The first control device 20 is a computer having a calculation function by the CPU 201. The first control device 20 controls the operation of each component such as the spindle 25, the first tool rest 27, the back spindle 28, and the second tool rest 29 shown in FIG. 2 according to the machining program stored in the memory unit 203 and input from the lathe operation panel 24. Some of the motors and actuators that drive each component are shown in FIG. 3. The first control device 20 mainly performs numerical control of the servo motors provided in the NC lathe 2. In addition, the PLC 202 provided in the first control device 20 mainly performs sequence control of the operation of devices other than the servo motors, such as cylinders and valves, provided in the NC lathe 2.
記憶部203には、ラダープログラムやマクロプログラムなどの各種プログラムがあらかじめ記憶されている。さらに、記憶部203には、加工プログラムの他に、工具に関するデータ、棒材Wの径データおよび製品長データなどの諸情報がオペレータによって記憶される。記憶部203は、ROM、HDDおよびSSD等の不揮発性メモリとRAM等の揮発性メモリとから構成されている。
The memory unit 203 stores various programs such as ladder programs and macro programs in advance. In addition to the machining programs, the operator stores various information in the memory unit 203, such as data on tools, diameter data of the bar W, and product length data. The memory unit 203 is composed of non-volatile memory such as ROM, HDD, and SSD, and volatile memory such as RAM.
Z1軸モータ252は、第1制御装置20からの指令を受けて回転するサーボモータである。Z1軸モータ252が回転することで主軸25(図2参照)はZ1軸方向に移動する。なお、第1制御装置20とZ1軸モータ252の間には不図示のアンプが設けられており、第1制御装置20がアンプに指令を送信することでZ1軸モータ252が制御されている。以下、アンプについては説明を省略する。Z1軸モータ252は、Z1軸エンコーダ2521を有している。Z1軸エンコーダ2521の出力が第1制御装置20にフィードバックされることで、第1制御装置20は、主軸25(図2参照)のZ1軸方向における位置を常時把握している。
The Z1-axis motor 252 is a servo motor that rotates upon receiving a command from the first control device 20. When the Z1-axis motor 252 rotates, the spindle 25 (see FIG. 2) moves in the Z1-axis direction. An amplifier (not shown) is provided between the first control device 20 and the Z1-axis motor 252, and the Z1-axis motor 252 is controlled by the first control device 20 sending a command to the amplifier. A description of the amplifier will be omitted below. The Z1-axis motor 252 has a Z1-axis encoder 2521. The output of the Z1-axis encoder 2521 is fed back to the first control device 20, so that the first control device 20 constantly knows the position of the spindle 25 (see FIG. 2) in the Z1-axis direction.
主軸25(図2参照)には、ビルトインモーター等の主軸モータ253が設けられている。主軸モータ253は、第1制御装置20から指令を受けて回転する。主軸モータ253が回転することで、主軸25および主軸25に把持された棒材W(図2参照)は、主軸中心線CL(図2参照)を中心にして回転する。なお、主軸25と同様に、背面主軸28にも背面主軸モータが設けられているが説明は省略する。主軸アクチュエータ254は、コレットチャック251(図2参照)を動作させるための油圧シリンダー等のアクチュエータである。主軸アクチュエータ254によって不図示のチャックスリーブが前進方向に移動することで、コレットチャック251が閉じて棒材Wが主軸25によって把持される。また、チャックスリーブが後退方向に移動することで、コレットチャック251が開いて主軸25による棒材Wの把持が解除される。
The spindle 25 (see FIG. 2) is provided with a spindle motor 253 such as a built-in motor. The spindle motor 253 rotates upon receiving a command from the first control device 20. When the spindle motor 253 rotates, the spindle 25 and the bar material W (see FIG. 2) held by the spindle 25 rotate around the spindle center line CL (see FIG. 2). Note that, like the spindle 25, the back spindle 28 is also provided with a back spindle motor, but the description is omitted. The spindle actuator 254 is an actuator such as a hydraulic cylinder for operating the collet chuck 251 (see FIG. 2). When the spindle actuator 254 moves a chuck sleeve (not shown) in the forward direction, the collet chuck 251 closes and the bar material W is held by the spindle 25. When the chuck sleeve moves in the backward direction, the collet chuck 251 opens and the grip of the bar material W by the spindle 25 is released.
Z2軸モータ281は、第1制御装置20からの指令を受けて回転するサーボモータである。Z2軸モータ281が回転することで背面主軸28(図2参照)はZ2軸方向に移動する。なお、背面主軸28をX2軸方向に移動させるサーボモータであるX2軸モータも設けられているが説明は省略する。Z2軸モータ281は、Z2軸エンコーダ2811を有している。Z2軸エンコーダ2811の出力が第1制御装置20にフィードバックされることで、第1制御装置20は、背面主軸28のZ2軸方向における位置を常時把握している。
The Z2-axis motor 281 is a servo motor that rotates in response to a command from the first control device 20. When the Z2-axis motor 281 rotates, the back spindle 28 (see FIG. 2) moves in the Z2-axis direction. Note that an X2-axis motor, which is a servo motor that moves the back spindle 28 in the X2-axis direction, is also provided, but its description is omitted. The Z2-axis motor 281 has a Z2-axis encoder 2811. The output of the Z2-axis encoder 2811 is fed back to the first control device 20, so that the first control device 20 constantly knows the position of the back spindle 28 in the Z2-axis direction.
給材機4は、上述した給材機操作パネル42、送り矢モータ46、先端センサ47および原点センサ48の他に第2制御装置40を有している。第2制御装置40は、給材機4の各構成要素についてシーケンス制御を行う制御装置である。第2制御装置40は、各センサや送り矢エンコーダ461等から受信した情報に基づいて送り矢モータ46や給材機4に設けられた不図示のアクチュエータの動作を制御する。また、第2制御装置40は、第1制御装置20からの動作要求に応じて給材機4の動作を制御する。第2制御装置40には、給材記憶部401が設けられている。その給材記憶部401には、送り矢44がその位置まで前進したら棒材Wの交換が必要であることを示す材欠位置の情報などが記憶されいてる。給材記憶部401には、主軸25が移動可能範囲のうち最も後退した後退端にある状態でコレットチャック251(図2参照)と送り矢44とが干渉しない位置が材欠位置の初期値として記憶されている。ただし、材欠位置は、給材機操作パネル42からの入力操作や加工プログラムによって書き換え可能になっている。
The material feeder 4 has the second control device 40 in addition to the above-mentioned material feeder operation panel 42, the feeder motor 46, the tip sensor 47, and the origin sensor 48. The second control device 40 is a control device that performs sequence control for each component of the material feeder 4. The second control device 40 controls the operation of the feeder motor 46 and an actuator (not shown) provided in the material feeder 4 based on information received from each sensor, the feeder encoder 461, etc. The second control device 40 also controls the operation of the material feeder 4 in response to an operation request from the first control device 20. The second control device 40 is provided with a material feed memory unit 401. The material feed memory unit 401 stores information on the material shortage position indicating that the bar material W needs to be replaced when the feeder 44 advances to that position. The material feed memory unit 401 stores the position at which the collet chuck 251 (see FIG. 2) and the feeder 44 do not interfere with each other when the main shaft 25 is at the most retreated end of the movable range as the initial value of the material shortage position. However, the location of the missing material can be rewritten by input operations from the material feeder operation panel 42 or by the processing program.
送り矢モータ46は、第2制御装置40からの指令を受けて回転するサーボモータである。送り矢モータ46が回転することで送り矢44(図2参照)はZ1軸方向に移動する。上述したように、第2制御装置40は、原点センサ48の検出結果と送り矢エンコーダ461の検出結果によって送り矢44の送り矢原点からの移動距離を把握することで、送り矢44のZ1軸方向における位置を常時把握している。そして、第2制御装置40は、その送り矢44の位置情報を給材機4に関する情報の1つとして第1制御装置20に送信する。また、第2制御装置40は、あらたに供給する棒材Wの先端や電源投入後最初にNC旋盤2に送り出した棒材Wの先端のZ1軸方向における位置を第1制御装置20に送信する。NC旋盤2が加工を開始した後、残材の引き抜き開始までは、第2制御装置40によって送り矢モータ46は基本的に一定のトルクで一方向に回転しようとするように制御される。これにより、棒材Wは、設定された荷重で棒材Wの先端側に向かって送り矢44によって付勢される。この荷重は、主軸25が棒材Wを把持しているときに棒材Wと主軸25との間に滑りが生じる虞が無い比較的弱い荷重に設定される。
The feed arrow motor 46 is a servo motor that rotates upon receiving a command from the second control device 40. The feed arrow 44 (see FIG. 2) moves in the Z1-axis direction as the feed arrow motor 46 rotates. As described above, the second control device 40 constantly grasps the position of the feed arrow 44 in the Z1-axis direction by grasping the movement distance of the feed arrow 44 from the feed arrow origin based on the detection result of the origin sensor 48 and the detection result of the feed arrow encoder 461. The second control device 40 then transmits the position information of the feed arrow 44 to the first control device 20 as one piece of information related to the material feeder 4. The second control device 40 also transmits to the first control device 20 the position in the Z1-axis direction of the tip of the newly supplied bar material W and the tip of the bar material W that was first sent to the NC lathe 2 after the power was turned on. After the NC lathe 2 starts processing, the second control device 40 controls the feed arrow motor 46 to rotate in one direction with a basically constant torque until the remaining material starts to be pulled out. As a result, the bar W is urged by the feed arrow 44 toward the tip of the bar W with a set load. This load is set to a relatively weak load that does not cause any risk of slippage between the bar W and the main shaft 25 when the main shaft 25 is gripping the bar W.
給材機操作パネル42は、操作部と表示画面とが一体になったタッチパネルである。なお、給材機4には、給材機操作パネル42の他に非常停止ボタンや送り矢モータ46のトルク設定スイッチ等が設けられている。旋盤システム1のオペレータは、給材機操作パネル42を用いて、送り矢44(図2参照)をZ1軸方向に手動操作で移動させたり、給材機4の各種設定値を入力することができる。また、給材機操作パネル42には、給材機4の各種設定値およびエラー内容などの給材機4に関する各種情報並びに給材機4の操作ボタンが表示される。
The material feeder operation panel 42 is a touch panel that combines an operation section and a display screen. In addition to the material feeder operation panel 42, the material feeder 4 is provided with an emergency stop button and a torque setting switch for the feed arrow motor 46. The operator of the lathe system 1 can use the material feeder operation panel 42 to manually move the feed arrow 44 (see Figure 2) in the Z1-axis direction and input various setting values for the material feeder 4. The material feeder operation panel 42 also displays various information related to the material feeder 4, such as the various setting values and error contents of the material feeder 4, as well as the operation buttons for the material feeder 4.
第1制御装置20と第2制御装置40とは信号ケーブルで接続されている。第1制御装置20は、信号ケーブルを介して第2制御装置40に動作要求などを送信する。また、第2制御装置40は、信号ケーブルを介して第1制御装置20に送り矢44の位置情報を含む給材機4に関する各種情報を随時送信する。また、第2制御装置40は、送り矢44が材欠位置を超えたら、材欠信号を第1制御装置20に送信する。さらに、第2制御装置40は、第1制御装置20からの情報送信要求に応じて材欠位置の情報などの要求された情報を第1制御装置20に送信する。
The first control device 20 and the second control device 40 are connected by a signal cable. The first control device 20 transmits operation requests and the like to the second control device 40 via the signal cable. The second control device 40 also transmits various information related to the material feeder 4, including the position information of the feed arrow 44, to the first control device 20 via the signal cable at any time. The second control device 40 also transmits a material shortage signal to the first control device 20 when the feed arrow 44 passes the material shortage position. Furthermore, the second control device 40 transmits requested information, such as information on the material shortage position, to the first control device 20 in response to an information transmission request from the first control device 20.
図4は、図1に示した旋盤システムの機能構成を示す機能ブロック図である。なお、図4でも、本発明に特に関連性の高い機能構成のみを示し、旋盤システム1が有するその他の機能構成は図示省略し説明も省略する。
FIG. 4 is a functional block diagram showing the functional configuration of the lathe system shown in FIG. 1. Note that FIG. 4 also shows only the functional configuration that is particularly relevant to the present invention, and the other functional configurations possessed by the lathe system 1 are not shown or described.
図4に示すように、第1制御装置20によって、把持位置決定部20aと、材長演算部20bと、連続加工可否判定部20cと、加工規制部20dと、安全位置変更部20eと、掴みかえ可否判定部20fと、機械制御部20gとが構成されている。機械制御部20gは、主にCPU201と記憶部203とPLC202によって達成される機能構成である。機械制御部20g以外は、主に図3に示したCPU201と記憶部203によって達成される機能構成である。また、第2制御装置40によって、給材制御部40aと送り矢位置把握部40bが構成されている。
As shown in FIG. 4, the first control device 20 comprises a gripping position determination unit 20a, a material length calculation unit 20b, a continuous machining feasibility determination unit 20c, a machining restriction unit 20d, a safety position change unit 20e, a re-gripping feasibility determination unit 20f, and a machine control unit 20g. The machine control unit 20g is a functional configuration achieved mainly by the CPU 201, the memory unit 203, and the PLC 202. The units other than the machine control unit 20g are functional configurations achieved mainly by the CPU 201 and the memory unit 203 shown in FIG. 3. In addition, the second control device 40 comprises a material supply control unit 40a and a feed arrow position grasping unit 40b.
把持位置決定部20aは、掴みかえにおいて主軸25(図2参照)が棒材W(図2参照)を把持する把持位置を掴みかえごとに決定するものである。材長演算部20bは、1つの製品を加工するために必要な棒材Wの長さである加工材長を演算するものである。連続加工可否判定部20cは、判定時点における主軸25の位置から主軸25の移動可能範囲の前進端までの移動距離と加工材長とを比較することで、主軸25が棒材Wの把持を維持したまま次の製品の加工が可能か否かを1つの製品の加工ごとに判定するものである。加工規制部20dは、背面主軸28の位置を監視し、主軸25を用いた加工の妨げにならない安全位置に背面主軸28が退避するまで主軸25に把持された棒材Wの加工を規制するものである。安全位置変更部20eは、加工規制部20dが判定に用いる安全位置を変更するものである。この安全位置は、加工プログラムに記述された位置であってもよく、オペレータが旋盤操作パネル24を用いて入力した位置であってもよく、干渉チェックソフトを用いて自動的に演算された位置であってもよい。掴みかえ可否判定部20fは、判定時点における送り矢44の位置が材欠位置を超えているか否かに基づいて掴みかえが可能か否かを判定するものである。機械制御部20gは、NC旋盤2の各構成要素の動作を制御するものである。また、機械制御部20gは、第2制御装置40に動作要求や情報送信要求を送信することもある。
The gripping position determination unit 20a determines the gripping position where the spindle 25 (see FIG. 2) grips the bar W (see FIG. 2) for each gripping. The material length calculation unit 20b calculates the processed material length, which is the length of the bar W required to process one product. The continuous processing feasibility determination unit 20c compares the movement distance from the position of the spindle 25 to the forward end of the movable range of the spindle 25 at the time of judgment with the processed material length, and determines whether the spindle 25 can process the next product while maintaining its grip on the bar W for each product. The processing restriction unit 20d monitors the position of the back spindle 28 and restricts the processing of the bar W gripped by the spindle 25 until the back spindle 28 retreats to a safe position that does not interfere with processing using the spindle 25. The safety position change unit 20e changes the safety position used by the processing restriction unit 20d for judgment. This safe position may be a position described in the machining program, a position input by the operator using the lathe operation panel 24, or a position automatically calculated using interference check software. The re-gripping possibility determination unit 20f determines whether or not re-gripping is possible based on whether or not the position of the feed arrow 44 at the time of determination exceeds the material shortage position. The machine control unit 20g controls the operation of each component of the NC lathe 2. The machine control unit 20g may also transmit operation requests and information transmission requests to the second control device 40.
給材制御部40aは、給材機4に設けられた各種センサからの出力、給材機操作パネル42からの入力および第1制御装置20からの動作要求に従って送り矢モータ46などの動作を制御する機能構成である。この給材制御部40aによって、短くなった棒材Wである残材をNC旋盤2から引き抜いて排出し、新しい棒材WをNC旋盤2に供給する制御や、棒材Wを先端側に向かって付勢するために送り矢44(図2参照)に前進方向に向かう荷重を加える制御が行われる。送り矢位置把握部40bは、原点センサ48の検出結果と送り矢エンコーダ461の検出結果を用いて送り矢原点からの送り矢44の前進距離を演算することで送り矢原点に対する送り矢44の位置を把握する。原点センサ48は送り矢44の後端を検出しているので、送り矢位置把握部40bが把握している送り矢44の位置は、送り矢原点から送り44矢後端までのZ1軸方向の距離に等しい。ただし、送り矢位置把握部40bは、給材記憶部401に記憶されている送り矢44の長さの情報を取得して送り矢44の前進距離にその長さを加算することで送り矢原点から送り矢44先端までの距離を演算することができる。
The material supply control unit 40a is a functional configuration that controls the operation of the feed arrow motor 46 and the like in accordance with the outputs from various sensors provided in the material supply machine 4, the input from the material supply machine operation panel 42, and the operation request from the first control device 20. The material supply control unit 40a performs control to pull out and discharge the remaining material, which is the shortened bar material W, from the NC lathe 2 and supply new bar material W to the NC lathe 2, and control to apply a load in the forward direction to the feed arrow 44 (see FIG. 2) to urge the bar material W toward the tip side. The feed arrow position grasping unit 40b grasps the position of the feed arrow 44 relative to the feed arrow origin by calculating the forward distance of the feed arrow 44 from the feed arrow origin using the detection result of the origin sensor 48 and the detection result of the feed arrow encoder 461. Since the origin sensor 48 detects the rear end of the feed arrow 44, the position of the feed arrow 44 grasped by the feed arrow position grasping unit 40b is equal to the distance in the Z1 axis direction from the feed arrow origin to the rear end of the feed arrow 44. However, the feed arrow position grasping unit 40b can calculate the distance from the feed arrow origin to the tip of the feed arrow 44 by acquiring information on the length of the feed arrow 44 stored in the material supply memory unit 401 and adding that length to the forward distance of the feed arrow 44.
図5は、図1に示した旋盤システムの動作を示すフローチャートである。
FIG. 5 is a flowchart showing the operation of the lathe system shown in FIG. 1.
図5に示すフローチャートは、電源投入後の初期動作が完了した後や新しい製品を加工するための段取り作業が完了した後の旋盤システム1の動作を示している。初期動作や段取り動作では、棒材Wの先端が突切工具で切断される。初期動作や段取り動作が完了した状態は、突切工具がストッパとして作用して棒材Wの先端が突切工具に当接している状態である。この状態では、棒材Wは送り矢44によって先端側に向かって付勢されることで突切工具に押し付けられている。
The flowchart in Figure 5 shows the operation of the lathe system 1 after the initial operation after power-on is complete, or after the setup work for machining a new product is complete. In the initial operation or setup work, the tip of the bar W is cut off by the cut-off tool. When the initial operation or setup work is complete, the cut-off tool acts as a stopper and the tip of the bar W is in contact with the cut-off tool. In this state, the bar W is pressed against the cut-off tool by being urged toward the tip by the feed arrow 44.
図5に示すように、まず機械制御部20gは、まず多数個取りモードと1個取りモードのいずれが選択されているかを判定する(ステップS10)。通常は多数個取りモードが選択されているが、必要に応じてオペレータは1個取りモードに切り替えることができる。多数個取りモードと1個取りモードの切り替えは、旋盤操作パネル24からの操作入力または加工プログラムに記述されたコマンドによって行われる。多数個取りモードでは、掴みかえをすることなく2つ以上の製品が加工可能な位置に主軸25を後退させて棒材Wを把持させる掴みかえを実行する。ただし、送り矢44の位置によって主軸25の後退できる位置が限定されるため、多数個取りモードであっても掴みかえにおいて1つの製品のみを加工可能な位置に主軸を後退させることもある。
As shown in FIG. 5, the machine control unit 20g first determines whether the multiple-piece mode or the single-piece mode has been selected (step S10). Usually, the multiple-piece mode is selected, but the operator can switch to the single-piece mode if necessary. Switching between the multiple-piece mode and the single-piece mode is performed by operation input from the lathe operation panel 24 or by commands written in the machining program. In the multiple-piece mode, the spindle 25 is retracted to a position where two or more products can be machined without re-gripping, and a re-gripping operation is performed to grip the bar W. However, since the position to which the spindle 25 can be retracted is limited by the position of the feed arrow 44, even in the multiple-piece mode, the spindle may be retracted to a position where only one product can be machined during re-gripping.
多数個取りモードである場合(ステップS10でYES)、材長演算部20bは、加工の結果得られる製品の長さデータである製品長データが記憶部203に記憶されているか否かを確認する(ステップS11)。製品長データは、加工プログラムとともにオペレータが記憶部203に記憶させていることが多いデータであるものの、記憶部203に記憶されていない場合もある。記憶部203に製品長データがある場合(ステップS11でYES)、材長演算部20bは、その製品長データと記憶部203に記憶されている突切工具の工具幅データから1つの製品の加工に必要な棒材Wの長さである加工材長L3のデータを演算する(ステップS12)。このステップS12で材長演算部20bは、製品長に工具幅を加算することで加工材長L3を演算して記憶部203に記憶させる。
If the multiple piece mode is selected (YES in step S10), the material length calculation unit 20b checks whether product length data, which is data on the length of the product obtained as a result of processing, is stored in the memory unit 203 (step S11). Product length data is often stored in the memory unit 203 by the operator together with the processing program, but there are cases where it is not stored in the memory unit 203. If there is product length data in the memory unit 203 (YES in step S11), the material length calculation unit 20b calculates data on the processed material length L3, which is the length of the bar W required to process one product, from the product length data and the tool width data of the cut-off tool stored in the memory unit 203 (step S12). In this step S12, the material length calculation unit 20b calculates the processed material length L3 by adding the tool width to the product length and stores it in the memory unit 203.
一方、記憶部203に製品長データがない場合(ステップS11でNO)、材長演算部20bは、加工プログラムに基づいて加工材長L3データを演算する(ステップS13)。具体的には、材長演算部20bは、加工プログラムの1サイクルにおける主軸25の前進距離を演算し、その前進距離を加工材長L3として記憶部203に記憶させる。この前進距離が、加工プログラムにおける主軸の軸心方向の移動距離の一例に相当する。加工動作中に主軸25の後退を伴う場合は、その後退距離の合計を前進距離の合計から減算した実質的な前進距離を加工材長L3とする。また、この演算では、加工動作中の主軸25の移動を対象としているので、掴みかえにおける主軸25の移動は対象外である。このように、記憶部203に製品長データが存在しない場合でも加工プログラムに基づいて加工材長L3を演算するので、オペレータが製品長データを入力する手間を省略でき旋盤システム1の操作性が高まる。また、オペレータが製品長データを入力し忘れた場合でも加工材長L3を演算できる。なお、記憶部203に製品長データが存在しない場合、材長演算部20bは、ステップS13で得られた加工材長L3から工具幅を減算することで製品長データを演算して記憶部203に記憶させることもできる。
On the other hand, if there is no product length data in the memory unit 203 (NO in step S11), the workpiece length calculation unit 20b calculates the processed workpiece length L3 data based on the machining program (step S13). Specifically, the workpiece length calculation unit 20b calculates the advance distance of the spindle 25 in one cycle of the machining program, and stores the advance distance in the memory unit 203 as the processed workpiece length L3. This advance distance corresponds to an example of the axial movement distance of the spindle in the machining program. If the spindle 25 retreats during the machining operation, the actual advance distance obtained by subtracting the total retreat distance from the total advance distance is set as the processed workpiece length L3. In addition, since this calculation targets the movement of the spindle 25 during the machining operation, the movement of the spindle 25 during the gripping is not targeted. In this way, even if there is no product length data in the memory unit 203, the processed workpiece length L3 is calculated based on the machining program, which eliminates the need for the operator to input the product length data, thereby improving the operability of the lathe system 1. In addition, even if the operator forgets to input the product length data, the processed workpiece length L3 can be calculated. If there is no product length data in the memory unit 203, the material length calculation unit 20b can also calculate the product length data by subtracting the tool width from the processed material length L3 obtained in step S13 and store the data in the memory unit 203.
次いで、連続加工可否判定部20cは、その時点における主軸25の位置から主軸25の移動可能範囲の前進端までの移動距離である主軸距離Zc(図7に一例を記載)と加工材長L3とを比較する(ステップS14)。以下、主軸25の移動可能範囲の前進端をZ1軸前進端と称することがある。主軸距離Zcが加工材長L3以上であれば(ステップS14でNO)、連続加工可否判定部20cは、主軸25が棒材Wの把持を維持したまま掴みかえをすることなく次の製品の加工が可能であると判定してステップS19に進む。一方、主軸距離Zcが加工材長L3未満であれば(ステップS14でYES)、連続加工可否判定部20cは掴みかえが必要と判定する。このステップS14が、連続加工可否判定工程の一例に相当する。また、このステップS14以降の動作が、必要な製品数の加工を行うために繰り返し実行され、1サイクルで1つの製品を製造するサイクル動作になる。
Next, the continuous machining feasibility determination unit 20c compares the spindle distance Zc (an example is shown in FIG. 7), which is the movement distance from the position of the spindle 25 at that time to the forward end of the movable range of the spindle 25, with the workpiece length L3 (step S14). Hereinafter, the forward end of the movable range of the spindle 25 may be referred to as the Z1-axis forward end. If the spindle distance Zc is equal to or greater than the workpiece length L3 (NO in step S14), the continuous machining feasibility determination unit 20c determines that the next product can be processed without re-gripping while the spindle 25 maintains its grip on the bar material W, and proceeds to step S19. On the other hand, if the spindle distance Zc is less than the workpiece length L3 (YES in step S14), the continuous machining feasibility determination unit 20c determines that re-gripping is necessary. This step S14 corresponds to an example of a continuous machining feasibility determination process. Furthermore, the operations from step S14 onwards are repeated to process the required number of products, resulting in a cyclic operation in which one product is manufactured in one cycle.
掴みかえが必要と判定されたら(ステップS14でYES)、掴みかえ可否判定部20fが、掴みかえが可能か否かを判定する(ステップS15)。ここで掴みかえ可否判定部20fは、送り矢44が材欠位置を超えているか否かに基づいて掴みかえが可能か否かを判定している。第1制御装置20は、材欠位置を超えたときに第2制御装置40から送信されてくる材欠信号を受信したら材欠を示す情報を記憶部203に記憶させる。また、第1制御装置20は、新しい棒材Wが供給されたら材欠を示す情報を記憶部203から消去している。掴みかえ可否判定部20fは、記憶部203に材欠を示す情報が存在している場合に掴みかえ不能と判定する。一方、掴みかえ可否判定部20fは、記憶部203に材欠を示す情報が存在していない場合には掴みかえ可能と判定する。掴みかえ可否判定部20fが掴みかえ不能と判定した場合(ステップS15でNO)、機械制御部20gは、主軸25に棒材Wの把持を解除させてから、短くなった棒材Wである残材を排出して新しい棒材Wを供給するように第2制御装置40に動作要求を送信する(ステップS16)。新しい棒材Wが供給されたら、機械制御部20gは、供給された棒材Wを主軸25に把持させて棒材Wの先端がガイドブッシュ26から少し突出するまで主軸25を前進させて棒材Wの先端を切り落とす棒材供給動作を実行させる。
If it is determined that a re-grabbing is necessary (YES in step S14), the re-grabbing possibility determination unit 20f determines whether or not a re-grabbing is possible (step S15). Here, the re-grabbing possibility determination unit 20f determines whether or not a re-grabbing is possible based on whether or not the feed arrow 44 has passed the material shortage position. When the first control device 20 receives a material shortage signal transmitted from the second control device 40 when the first control device 20 has passed the material shortage position, the first control device 20 stores information indicating a material shortage in the memory unit 203. In addition, when a new bar material W is supplied, the first control device 20 erases information indicating a material shortage from the memory unit 203. The re-grabbing possibility determination unit 20f determines that a re-grabbing is impossible if information indicating a material shortage exists in the memory unit 203. On the other hand, the re-grabbing possibility determination unit 20f determines that a re-grabbing is possible if information indicating a material shortage does not exist in the memory unit 203. If the gripping possibility determination unit 20f determines that gripping is not possible (NO in step S15), the machine control unit 20g transmits an operation request to the second control device 40 to have the spindle 25 release the grip of the bar W, then discharge the remaining bar W, which is the shortened bar W, and supply a new bar W (step S16). When the new bar W is supplied, the machine control unit 20g executes a bar supply operation in which the spindle 25 grips the supplied bar W, moves the spindle 25 forward until the tip of the bar W protrudes slightly from the guide bush 26, and cuts off the tip of the bar W.
掴みかえ可否判定部20fが掴みかえ可能と判定した場合(ステップS15でYES)又は新しい棒材Wの供給(ステップS16)が完了したら、ステップS17に進んで把持位置決定部20aが把持位置を演算して掴みかえにおいて主軸25が棒材Wを把持する把持位置を決定する(ステップS17)。このステップS17およびその詳細な動作を示した図6に示すステップS171からステップS177が、把持位置決定工程の一例に相当する。
If the gripping possibility determination unit 20f determines that gripping is possible (YES in step S15) or when the supply of new bar material W (step S16) is completed, the process proceeds to step S17, where the gripping position determination unit 20a calculates the gripping position and determines the gripping position where the spindle 25 grips the bar material W during gripping (step S17). This step S17 and steps S171 to S177 shown in Figure 6, which shows the detailed operation thereof, correspond to an example of a gripping position determination process.
図6は、図5に示した把持位置決定動作を示すフローチャートである。また、図7は、図6に示した把持位置決定動作における位置関係を説明するための平面図である。
FIG. 6 is a flow chart showing the gripping position determination operation shown in FIG. 5. Also, FIG. 7 is a plan view for explaining the positional relationship in the gripping position determination operation shown in FIG. 6.
図6に示すように、把持位置決定動作において把持位置決定部20aは、主軸移動可能距離Zstと、設定移動可能距離Zpと、材長演算部20bによって演算された加工材長L3と、材欠距離L12を記憶部203から取得する(ステップS171)。
As shown in FIG. 6, in the gripping position determination operation, the gripping position determination unit 20a acquires the spindle movable distance Zst, the set movable distance Zp, the processed material length L3 calculated by the material length calculation unit 20b, and the material shortage distance L12 from the memory unit 203 (step S171).
ここで、ステップS171で取得する距離や長さ等について図7を用いて説明する。図7を用いて説明する距離や長さは、Z1軸方向における距離や長さである。主軸移動可能距離Zstは、主軸25がZ1軸方向に移動可能な最大距離であり主軸ストロークとも称される。図7には、主軸25が最も前進したZ1軸前進端にあるときのコレットチャック251が二点鎖線で示され、最も後退した後退端にあるときの主軸25が実線で示されている。これらの間隔が主軸移動可能距離Zstになる。この主軸移動可能距離Zstは、NC旋盤2の製造時に記憶部203に記憶されている。図7には、主軸25が掴みかえをすることなく複数の製品を連続加工している途中のコレットチャック251の位置の一例も一点鎖線で示されている。設定移動可能距離Zpは、オペレータが設定した主軸が移動可能な距離であり、Z1軸前進端から主軸25が後退可能な距離である。設定移動可能距離Zpは、設定されていない場合もある。その場合には、後述する演算において設定移動可能距離Zpとして主軸移動可能距離Zstを用いる。ここで用いられる設定移動可能距離Zpまたは主軸移動可能距離Zstが主軸25のZ1軸方向への移動可能距離の一例に相当する。材欠距離L12は、送り矢原点から材欠位置までの送り矢44の前進距離である。材欠距離L12の情報は、給材記憶部401に記憶されているが、旋盤システム1の立ち上げ時などに第2制御装置40から第1制御装置20に送信され記憶部203にも記憶されている。
Here, the distance and length acquired in step S171 will be explained with reference to FIG. 7. The distance and length explained with reference to FIG. 7 are the distance and length in the Z1-axis direction. The spindle movable distance Zst is the maximum distance that the spindle 25 can move in the Z1-axis direction and is also called the spindle stroke. In FIG. 7, the collet chuck 251 when the spindle 25 is at the most forward Z1-axis forward end is shown with a two-dot chain line, and the spindle 25 when it is at the most backward retracted end is shown with a solid line. The distance between these is the spindle movable distance Zst. This spindle movable distance Zst is stored in the memory unit 203 when the NC lathe 2 is manufactured. In FIG. 7, an example of the position of the collet chuck 251 while the spindle 25 is continuously machining multiple products without re-gripping is also shown with a dashed line. The set movable distance Zp is the distance that the spindle can move set by the operator, and is the distance that the spindle 25 can retract from the Z1-axis forward end. The set movable distance Zp may not be set. In this case, the spindle movable distance Zst is used as the set movable distance Zp in the calculation described below. The set movable distance Zp or the spindle movable distance Zst used here corresponds to an example of the movable distance of the spindle 25 in the Z1-axis direction. The missing material distance L12 is the advance distance of the feed arrow 44 from the feed arrow origin to the missing material position. Information on the missing material distance L12 is stored in the material supply memory unit 401, but is also sent from the second control device 40 to the first control device 20 when the lathe system 1 is started up, and is stored in the memory unit 203.
次に、把持位置決定部20aは、送り矢原点に対する送り矢44の位置である送り矢前進距離L10を材欠距離L12から減算することで有効残材長L11を演算する。送り矢前進距離L10の情報は第2制御装置40から第1制御装置20に随時送信されており、把持位置決定部20aは、その時点における最新の送り矢前進距離L10を用いて演算する。また、把持位置決定部20aは、有効残材長L11に加工材長L3を加算することで後退可能距離Zmを演算する(ステップS172)。図7には、後退可能距離Zmの一例が示されている。
Then, the gripping position determination unit 20a calculates the effective remaining material length L11 by subtracting the feed arrow advance distance L10, which is the position of the feed arrow 44 relative to the feed arrow origin, from the missing material distance L12. Information on the feed arrow advance distance L10 is constantly sent from the second control device 40 to the first control device 20, and the gripping position determination unit 20a uses the latest feed arrow advance distance L10 at that time for its calculation. The gripping position determination unit 20a also calculates the possible retreat distance Zm by adding the processed material length L3 to the effective remaining material length L11 (step S172). An example of the possible retreat distance Zm is shown in Figure 7.
その後、把持位置決定部20aは、後退可能距離Zmと設定移動可能距離Zpとを比較する(ステップS173)。上述したように設定移動可能距離Zpが設定されていない場合には設定移動可能距離Zpの代わりに主軸移動可能距離Zstを用いて比較や演算を行うが、以下の説明では主軸移動可能距離Zstを用いる場合も設定移動可能距離Zpとして説明する。後退可能距離Zmが設定移動可能距離Zp以上(ステップS173でYES)であれば、把持位置決定部20aは、設定移動可能距離Zpの後退端まで主軸25は移動可能であると判定し、設定移動可能距離Zpを最大後退距離Zrとする(ステップS174)。一方、後退可能距離Zmが設定移動可能距離Zp未満(ステップS173でNO)であれば、把持位置決定部20aは、設定移動可能距離Zpの後退端まで主軸25が移動することは不可能であると判定し、後退可能距離Zmを最大後退距離Zrとする(ステップS175)。
Then, the grip position determination unit 20a compares the retreatable distance Zm with the set movable distance Zp (step S173). As described above, when the set movable distance Zp is not set, the comparison and calculation are performed using the spindle movable distance Zst instead of the set movable distance Zp, but in the following explanation, the case where the spindle movable distance Zst is used will also be explained as the set movable distance Zp. If the retreatable distance Zm is equal to or greater than the set movable distance Zp (YES in step S173), the grip position determination unit 20a determines that the spindle 25 can move to the retreat end of the set movable distance Zp, and sets the set movable distance Zp to the maximum retreat distance Zr (step S174). On the other hand, if the retreatable distance Zm is less than the set movable distance Zp (NO in step S173), the grip position determination unit 20a determines that the spindle 25 cannot move to the retreat end of the set movable distance Zp, and sets the retreatable distance Zm to the maximum retreat distance Zr (step S175).
そして、把持位置決定部20aは、最大後退距離Zrを加工材長L3で除算した商Nと余りαを取得する(ステップS176)。この商Nは、この把持位置決定動作によって決定された位置に主軸25が移動する掴みかえを実行した後に主軸25が棒材Wの把持を維持したまま加工可能な製品数に相当する。次いで、把持位置決定部20aは、ステップS176で取得した商Nに加工材長L3を乗算した距離だけZ1軸前進端から主軸25が後退した位置を、掴みかえに際して用いる把持位置として決定する(ステップS177)。以上で把持位置決定動作が完了する。
Then, the gripping position determination unit 20a obtains the quotient N obtained by dividing the maximum retreat distance Zr by the workpiece length L3 and the remainder α (step S176). This quotient N corresponds to the number of products that the spindle 25 can process while maintaining its grip on the bar W after performing a re-gripping operation in which the spindle 25 moves to the position determined by this gripping position determination operation. Next, the gripping position determination unit 20a determines the position where the spindle 25 retreats from the forward end of the Z1 axis by the distance obtained by multiplying the quotient N obtained in step S176 by the workpiece length L3 as the gripping position to be used during the re-gripping operation (step S177). This completes the gripping position determination operation.
ところで、主軸25のコレットチャック251が棒材Wを把持している把持部分よりも後端側は棒材Wが片持ち状態になり、棒材Wの後端側の長さと主軸25の回転数によっては棒材Wが大きく振れながら回転してしまうことがある。棒材Wの後端側が大きく振れながら回転すると棒材Wを把持している主軸25が振動するため加工品質が低下して製造した製品が不良品になってしまうことがある。棒材Wの振れは、棒材Wが危険速度(共振が生じる回転数)で回転する場合に極めて大きくなる。危険速度は、棒材Wの材質や長さなどの性状によって定まる。危険速度で棒材Wを回転させることを避けるために、危険速度を避ける位置に主軸25の把持位置を決定するようにしてもよい。例えば、危険速度で回転することになる送り矢44の位置と主軸25の相対的な位置をオペレータが危険範囲として指定しておく。そして、多数個取りモードにおいて上述の把持位置決定動作では連続して4個の製品を製造できる位置に主軸を移動させると決定としたが、その位置に移動させるとオペレータが指定した危険範囲に主軸25が位置する場合には、危険速度を避けるために3個の製品を製造できる位置に把持位置を決定するようにしてもよい。なお、危険速度で回転してしまう範囲は、オペレータの経験則や計算から指定できるが、棒材Wの材質などの性状と主軸25の回転数から第1制御装置が自動で計算してもよい。
However, the bar W is in a cantilevered state at the rear end side of the gripping portion where the collet chuck 251 of the spindle 25 grips the bar W, and depending on the length of the rear end side of the bar W and the rotation speed of the spindle 25, the bar W may rotate with a large swing. If the rear end side of the bar W rotates with a large swing, the spindle 25 gripping the bar W vibrates, which reduces the processing quality and may result in a defective product. The swing of the bar W becomes extremely large when the bar W rotates at a dangerous speed (a rotation speed at which resonance occurs). The dangerous speed is determined by the properties of the bar W, such as the material and length. In order to avoid rotating the bar W at a dangerous speed, the gripping position of the spindle 25 may be determined to be a position that avoids the dangerous speed. For example, the operator designates the relative position of the feed arrow 44, which will rotate at a dangerous speed, and the spindle 25 as a dangerous range. In the multiple-piece mode, the above-mentioned gripping position determination operation determines that the spindle is to be moved to a position where four products can be manufactured in succession, but if moving to that position places the spindle 25 in a dangerous range specified by the operator, the gripping position may be determined to a position where three products can be manufactured in order to avoid the dangerous speed. The range in which the spindle rotates at a dangerous speed can be specified by the operator based on experience or calculation, but it may also be calculated automatically by the first control device based on the properties of the bar W, such as the material, and the number of rotations of the spindle 25.
図5に示すように、把持位置決定部20aが把持位置を決定したら(ステップS17)、機械制御部20gは、主軸25による棒材Wの把持を解除させて、ステップS17において決定した把持位置に主軸25を移動させた後、主軸25に棒材Wを再度把持させる(ステップS18)。このステップS18の一連の動作が棒材Wの掴みかえであり、掴みかえ工程の一例に相当する。
As shown in FIG. 5, once the gripping position determination unit 20a has determined the gripping position (step S17), the machine control unit 20g causes the spindle 25 to release its grip on the bar W, moves the spindle 25 to the gripping position determined in step S17, and then causes the spindle 25 to grip the bar W again (step S18). This series of operations in step S18 is the re-gripping of the bar W, and corresponds to an example of a re-gripping process.
主軸距離Zcが加工材長L3以上である場合(ステップS14でNO)又はステップS18の掴みかえが完了した後、記憶部203に記憶されている安全位置まで背面主軸28が退避していなければ、加工規制部20dが主軸25に把持された棒材Wの加工を規制する(ステップS19)。このステップS19が、加工規制工程の一例に相当する。ステップS19で加工規制部20dは、主軸25に把持された棒材Wに対する次のサイクルの加工開始を規制することで主軸25および第1刃物台27の移動を規制している。ただし、加工規制部20dは、主軸25および第1刃物台27の移動そのものを規制してもよい。加工規制部20dは、主軸25の主軸中心線CLを中心とした回転は規制対象にしていない。これにより、加工に必要な回転数まで主軸25の回転数を上昇させる時間が削減されるので、背面主軸28が安全位置に退避した後、加工開始までの時間を短縮できる。
If the spindle distance Zc is equal to or greater than the workpiece length L3 (NO in step S14) or if the back spindle 28 has not retreated to the safe position stored in the memory unit 203 after the gripping change in step S18 is completed, the machining restriction unit 20d restricts machining of the bar W held by the spindle 25 (step S19). This step S19 corresponds to an example of a machining restriction process. In step S19, the machining restriction unit 20d restricts the movement of the spindle 25 and the first tool rest 27 by restricting the start of machining of the next cycle on the bar W held by the spindle 25. However, the machining restriction unit 20d may restrict the movement of the spindle 25 and the first tool rest 27 itself. The machining restriction unit 20d does not restrict the rotation of the spindle 25 about the spindle center line CL. This reduces the time it takes to increase the rotation speed of the spindle 25 to the rotation speed required for processing, shortening the time until processing begins after the back spindle 28 has retreated to a safe position.
記憶部203に記憶されている安全位置は、オペレータによって変更可能に構成されている。オペレータが旋盤操作パネル24から安全位置の情報を入力したら、安全位置変更部20eは、入力された安全位置を記憶部203に記憶させることで安全位置を変更する。また、加工プログラムに安全位置が指定されている場合、安全位置変更部20eは、加工プログラムから安全位置を読み込んで記憶部203に記憶させることで安全位置を変更する。さらに、干渉チェックソフトと安全位置変更部20eを連携させて干渉チェックソフトが自動的に演算した安全位置を記憶部203に記憶させるようにしてもよい。
The safety positions stored in the memory unit 203 are configured to be changeable by the operator. When the operator inputs safety position information from the lathe operation panel 24, the safety position change unit 20e changes the safety position by storing the input safety position in the memory unit 203. Furthermore, if a safety position is specified in the machining program, the safety position change unit 20e reads the safety position from the machining program and stores it in the memory unit 203, thereby changing the safety position. Furthermore, the interference check software and the safety position change unit 20e may be linked to store the safety position automatically calculated by the interference check software in the memory unit 203.
背面主軸28が安全位置に退避したら(ステップS19でYES)、機械制御部20gは、記憶部203に記憶されている加工プログラムに従って主軸25に把持された棒材Wの先端部分の加工を開始させる(ステップS21)。その後、所望の形状に加工された加工済み部分が突切工具によって切り離されたら、機械制御部20gは、1サイクルの加工が完了したと判定する(ステップS22でYES)。機械制御部20gは、実行したサイクル数をカウントしている。サイクル数は、加工済み部分の切り離し回数と一致し、製造された製品数とも一致する。機械制御部20gは、最初の製品加工開始後からのサイクル数を記憶部203に記憶している。すなわち、機械制御部20gは、1サイクルの加工が完了したら記憶部203のサイクル数をカウントアップしている。そして、機械制御部20gは、最初の製品加工開始から、加工プログラムで指定されたサイクル数の加工が完了したか判定する(ステップS23)。指定されたサイクル数の加工が完了していたら(ステップS23でYES)、サイクル動作を終了する。また、指定サイクル数の加工が完了していない場合(ステップS23でNO)、ステップS14に戻り次のサイクル動作を開始する。
When the back spindle 28 is retracted to a safe position (YES in step S19), the machine control unit 20g starts processing the tip portion of the bar W held by the spindle 25 according to the processing program stored in the memory unit 203 (step S21). After that, when the machined portion machined into the desired shape is cut off by the cut-off tool, the machine control unit 20g determines that one cycle of processing is completed (YES in step S22). The machine control unit 20g counts the number of cycles that have been executed. The number of cycles corresponds to the number of times the machined portion is cut off and also corresponds to the number of products manufactured. The machine control unit 20g stores the number of cycles since the start of the first product processing in the memory unit 203. In other words, the machine control unit 20g counts up the number of cycles in the memory unit 203 when one cycle of processing is completed. Then, the machine control unit 20g determines whether the number of cycles specified in the processing program has been completed since the start of the first product processing (step S23). If the specified number of cycles has been completed (YES in step S23), the cycle operation ends. If the specified number of cycles has not been completed (NO in step S23), the process returns to step S14 and the next cycle operation begins.
図8は、図1に示した旋盤システムの1個取りモードにおける動作を示すフローチャートである。
FIG. 8 is a flowchart showing the operation of the lathe system shown in FIG. 1 in single-piece mode.
ステップS10において、多数個取りモードでない場合(ステップS10でNO)は1個取りモードである。1個取りモードは、1サイクルごとに掴みかえを実行するモードである。1個取りモードでは、ステップS31からS36までを1回実行することが1サイクルを実行することになる。図8に示すように、1個取りモードでは機械制御部20gは、棒材Wの把持を解除させた主軸25を加工プログラムにおいて指定された指定把持位置に移動させた後、主軸25に棒材Wを把持させる掴みかえを実行させる(ステップS31)。なお、1個取りモードで用いられる指定把持位置は、旋盤操作パネル24からの入力操作によって指定された位置であってもよい。次に機械制御部20gは、記憶部203に記憶されている加工プログラムに従って主軸25に把持された棒材Wの先端部分の加工を開始する(ステップS32)。その後、所望の形状に加工された加工済み部分が突切工具によって切り離されることで1サイクルの加工が完了したら(ステップS33でYES)、掴みかえ可否判定部20fが、ステップS18と同様に掴みかえが可能か否かを判定する(ステップS34)。掴みかえ可否判定部20fが掴みかえ不能と判定した場合(ステップS34でNO)、機械制御部20gは、主軸25に棒材Wの把持を解除させてから、短くなった棒材Wである残材を排出して新しい棒材Wを供給するように第2制御装置40に動作要求を送信する(ステップS35)。新しい棒材Wが供給されたら、機械制御部20gは、供給された棒材Wを主軸25に把持させて棒材Wの先端がガイドブッシュ26から少し突出するまで主軸25を前進させて棒材Wの先端を切り落とす棒材供給動作を実行させる。掴みかえが可能である場合(ステップS34でYES)又はステップS35で新しい棒材Wが供給されたら、機械制御部20gは、最初の製品加工開始から、加工プログラムで指定されたサイクル数の加工が完了したか判定する(ステップS36)。指定されたサイクル数の加工が完了していたら(ステップS36でYES)、サイクル動作を終了する。また、指定サイクル数の加工が完了していない場合(ステップS36でNO)はステップS31に戻り、次のサイクル動作を開始する。
In step S10, if the multiple-piece mode is not selected (NO in step S10), the single-piece mode is selected. The single-piece mode is a mode in which a gripping change is performed for each cycle. In the single-piece mode, performing steps S31 to S36 once is equivalent to performing one cycle. As shown in FIG. 8, in the single-piece mode, the machine control unit 20g moves the spindle 25, which has released the grip of the bar W, to a designated gripping position designated in the machining program, and then causes the spindle 25 to perform a gripping change to grip the bar W (step S31). Note that the designated gripping position used in the single-piece mode may be a position designated by an input operation from the lathe operation panel 24. Next, the machine control unit 20g starts machining the tip portion of the bar W gripped by the spindle 25 according to the machining program stored in the memory unit 203 (step S32). After that, when one cycle of processing is completed by cutting off the machined part machined into the desired shape by the cut-off tool (YES in step S33), the gripping possibility determination unit 20f determines whether gripping is possible or not in the same manner as in step S18 (step S34). If the gripping possibility determination unit 20f determines that gripping is not possible (NO in step S34), the machine control unit 20g transmits an operation request to the second control device 40 to have the spindle 25 release the grip of the bar material W, and then discharge the remaining material, which is the shortened bar material W, and supply a new bar material W (step S35). When the new bar material W is supplied, the machine control unit 20g executes a bar material supply operation in which the spindle 25 grips the supplied bar material W, moves the spindle 25 forward until the tip of the bar material W protrudes slightly from the guide bush 26, and cuts off the tip of the bar material W. If re-gripping is possible (YES in step S34) or if a new bar W is supplied in step S35, the machine control unit 20g determines whether the number of cycles specified in the processing program has been completed since the start of the initial product processing (step S36). If the specified number of cycles has been completed (YES in step S36), the cycle operation ends. If the specified number of cycles has not been completed (NO in step S36), the process returns to step S31 and the next cycle operation begins.
以上説明した本実施形態の旋盤システム1および旋盤システム1の制御方法によれば、多数個取りモードにおいて、主軸25が棒材Wの把持を維持したまま複数サイクルを実行することで、1サイクルごとに掴みかえる場合と比較して加工以外に要する時間を短縮して旋盤システム1の生産性が高まる。すなわち、掴みかえにおいて必要になる主軸25の回転停止または主軸25の回転数低下に要する時間、主軸25の回転数を加工に適した回転数に増加させる時間、主軸25による棒材の把持および把持解除に要する時間などを削減できる。また、主軸25の回転の増減に伴う電力も削減できる。さらに、主軸25がその移動可能範囲全長を比較的まんべんなく移動することになるので主軸25の案内構造や主軸25の移動機構の一部のみに荷重や摩耗が生じることが抑制され、これらの構造や機構の長寿命化にもなる。
According to the lathe system 1 and the control method for the lathe system 1 of the present embodiment described above, in the multiple piece mode, the spindle 25 executes multiple cycles while maintaining its grip on the bar W, thereby shortening the time required for non-machining compared to the case where gripping is performed every cycle, and improving the productivity of the lathe system 1. In other words, it is possible to reduce the time required for stopping the rotation of the spindle 25 or reducing the rotation speed of the spindle 25 required for gripping, the time required to increase the rotation speed of the spindle 25 to a rotation speed suitable for machining, and the time required for the spindle 25 to grip and release the grip of the bar. In addition, it is possible to reduce the power required for increasing and decreasing the rotation speed of the spindle 25. Furthermore, since the spindle 25 moves relatively evenly throughout the entire range of its movable range, it is possible to suppress the occurrence of load and wear only on a part of the guide structure of the spindle 25 and the movement mechanism of the spindle 25, which also extends the life of these structures and mechanisms.
加えて、掴みかえごとに把持位置決定部20aが掴みかえにおける主軸25の把持位置を決定する。これにより、給材機4からNC旋盤2への棒材Wの供給が完了した後、例えばサイクル動作の途中などにオペレータが手動で送り矢44を移動させることで棒材が移動しても、掴みかえにおいて主軸25が送り矢44を把持してしまい送り矢44が破損したり主軸25が傷ついたりする事故が生じることがない。
In addition, the gripping position determination unit 20a determines the gripping position of the spindle 25 at each gripping. As a result, even if the bar material W is moved by an operator manually moving the feed arrow 44, for example, during a cycle operation, after the supply of the bar material W from the material feeder 4 to the NC lathe 2 is completed, the spindle 25 will not grip the feed arrow 44 during gripping, causing an accident in which the feed arrow 44 is broken or the spindle 25 is damaged.
さらに、連続加工可否判定部20cが、主軸25が棒材Wの把持を維持したまま次の製品の加工が可能な位置に主軸25が位置しているか否かを1つの製品の加工ごとに判定している。これにより、主軸25が棒材Wの把持を維持したまま複数の製品を加工している途中でオペレータが手動で送り矢44および棒材Wを移動させても、送り矢44および棒材Wの位置がずれたことで生じる事故や長さ不良の該製品を製造してしまうといった不具合を防止できる。さらに、本実施形態では、オペレータが手動で送り矢44および棒材Wを移動させた場合であっても主軸25が加工材長L3以上に前進可能な位置であると連続加工可否判定部20cが判定すれば掴みかえやアラーム停止することなく加工を継続している。これにより、掴みかえの回数や停止時間をより減少させて旋盤システム1の加工以外に要する時間を短縮するとともに稼働率の低下を抑制できるので、この旋盤システム1の生産性が大きく高まる。
Furthermore, the continuous machining feasibility determination unit 20c determines whether the spindle 25 is positioned at a position where the next product can be processed while the spindle 25 continues to grip the bar material W for each product. As a result, even if the operator manually moves the feed arrow 44 and the bar material W while the spindle 25 is processing multiple products while maintaining its grip on the bar material W, it is possible to prevent accidents caused by the position of the feed arrow 44 and the bar material W being shifted, or problems such as the production of a product with a defective length. Furthermore, in this embodiment, even if the operator manually moves the feed arrow 44 and the bar material W, if the continuous machining feasibility determination unit 20c determines that the spindle 25 is in a position where it can advance beyond the processed material length L3, the processing continues without re-gripping or alarm stop. As a result, the number of re-grippings and stop time can be further reduced, the time required for non-machining by the lathe system 1 can be shortened, and a decrease in the operating rate can be suppressed, so that the productivity of the lathe system 1 is greatly improved.
また、加工規制部20dが、安全位置まで背面主軸28が退避するまで主軸25に把持された棒材Wの加工を規制している。そして、その安全位置は安全位置変更部20eによって変更できるので、安全位置を適切な位置に設定することで特に主軸25が棒材Wを把持したまま複数の製品を加工する際に加工を規制する時間を最短にできる。これによっても、この旋盤システム1の生産性が高まる。
The machining restriction unit 20d also restricts machining of the bar W held by the spindle 25 until the rear spindle 28 is retracted to a safe position. This safe position can be changed by the safety position change unit 20e, so by setting the safety position to an appropriate position, it is possible to minimize the time during which machining is restricted, particularly when machining multiple products while the spindle 25 is holding the bar W. This also increases the productivity of the lathe system 1.
またさらに、オペレータが、状況に応じて多数個取りモードと1個取りモードを選択できるので旋盤システム1の利便性が高まる。
Furthermore, the convenience of the lathe system 1 is increased because the operator can select between the multiple-piece mode and the single-piece mode depending on the situation.
続いて、変形例の旋盤システム1について説明する。以下の説明では、これまで説明した構成要素の名称と同じ構成要素、制御および動作には、これまで用いた符号と同じ符号を付して重複する説明は省略することがある。
Next, a modified lathe system 1 will be described. In the following description, components, controls, and operations that have the same names as components described so far will be assigned the same reference numerals as used so far, and duplicate descriptions may be omitted.
この変形例の旋盤システム1は、第1制御装置20(図3参照)が材欠距離L12を演算している点が先の実施形態と異なる。第1制御装置20は、図5に示したステップS12またはステップS13において加工材長L3を演算した直後に材欠距離L12を演算する。第1制御装置20は、図7に示す、主軸25の主軸移動可能距離Zstと、コレットチャック251のZ1軸方向の長さL6と、主軸25が主軸移動可能距離Zstの後退端に位置したときのコレットチャック251の先端からNC旋盤2後端までの距離L7と、NC旋盤2と給材機4の間の距離L8と、送り矢44が送り矢原点に位置しているときの送り矢44の先端から給材機の前端までの距離L9を取得する。これらの距離や長さは何れも記憶部203(図3参照)に記憶されている。図7には、送り矢原点に位置している送り矢44が一点鎖線で示されている。第1制御装置20は、材欠距離L12=L7+L8+L9+Zst-L3-L6を演算する。そして、図5に示したステップS15において、掴みかえ可否判定部20fは、送り矢44が送り矢原点から演算された材欠距離L12を超えて前進しているか否かに基づいて掴みかえが可能か否かを判定する。さらに、把持位置決定部20aは、図6に示したステップS171において材欠距離L12を取得することなく、ステップS172において演算された材欠距離L12を用いて演算を行う。
The lathe system 1 of this modified example differs from the previous embodiment in that the first control device 20 (see FIG. 3) calculates the missing material distance L12. The first control device 20 calculates the missing material distance L12 immediately after calculating the workpiece length L3 in step S12 or step S13 shown in FIG. 5. The first control device 20 acquires the spindle movement distance Zst of the spindle 25, the length L6 of the collet chuck 251 in the Z1 axis direction, the distance L7 from the tip of the collet chuck 251 to the rear end of the NC lathe 2 when the spindle 25 is located at the rear end of the spindle movement distance Zst, the distance L8 between the NC lathe 2 and the material feeder 4, and the distance L9 from the tip of the feed arrow 44 to the front end of the material feeder when the feed arrow 44 is located at the feed arrow origin. All of these distances and lengths are stored in the memory unit 203 (see FIG. 3). In FIG. 7, the feed arrow 44 located at the feed arrow origin is shown by a dashed line. The first control device 20 calculates the material shortage distance L12 = L7 + L8 + L9 + Zst - L3 - L6. Then, in step S15 shown in FIG. 5, the gripping possibility determination unit 20f determines whether or not gripping is possible based on whether or not the feed arrow 44 has advanced beyond the material shortage distance L12 calculated from the feed arrow origin. Furthermore, the gripping position determination unit 20a performs calculations using the material shortage distance L12 calculated in step S172 without acquiring the material shortage distance L12 in step S171 shown in FIG. 6.
この変形例の旋盤システム1においても先の実施形態と同様の効果を奏する。
This modified lathe system 1 also provides the same effects as the previous embodiment.
続いて、第2実施形態の旋盤システム1について説明する。
Next, we will explain the second embodiment of the lathe system 1.
図9は、第2実施形態の旋盤システムの機能構成を示す図4と同様の機能ブロック図である。
FIG. 9 is a functional block diagram similar to FIG. 4, showing the functional configuration of the lathe system of the second embodiment.
図9に示すように、第2実施形態の旋盤システム1は、連続加工可否判定部20cが無い代わりに送り矢位置判定部20hが設けられている点が先の実施形態と異なる。送り矢位置判定部20hは、演算した理論上の送り矢44(図2参照)の位置と第2制御装置40から受信した送り矢44の位置とを比較して一致しているか否かを1つの製品の加工ごとに判定するものである。
As shown in FIG. 9, the lathe system 1 of the second embodiment differs from the previous embodiment in that it does not have a continuous machining feasibility determination unit 20c, but instead has a feed arrow position determination unit 20h. The feed arrow position determination unit 20h compares the calculated theoretical position of the feed arrow 44 (see FIG. 2) with the position of the feed arrow 44 received from the second control device 40, and determines whether they match for each machining of a product.
図10は、図9に示した旋盤システムの動作を示す図5と同様のフローチャートである。
FIG. 10 is a flowchart similar to FIG. 5 showing the operation of the lathe system shown in FIG. 9.
第2実施形態の旋盤システム1には連続加工可否判定部20cが設けられていないので、図10に示すように、先の実施形態と異なりステップS14はない。その代わりに、ステップS21の加工開始直前に、送り矢位置判定部20hが、その時点における送り矢44の位置が理論上の送り矢44の位置と一致しているか否かを判定する(ステップS01)。このステップS01が、送り矢位置判定工程の一例に相当する。ステップS01において送り矢位置判定部20hは、前回の製品の加工開始時すなわち前回のサイクル動作開始時における送り矢44の位置と加工材長L3とから前回1サイクルの加工完了時における送り矢44の理論上の位置を演算する。詳細には、前回加工開始時から送り矢44が加工材長L3分だけ前進方向に移動した位置を演算する。なお、電源投入後や新しい棒材Wが供給された後の最初のサイクルでは、このステップS01は省略される。送り矢位置判定部20hは、演算した理論上の送り矢44の位置と第2制御装置40から受信した判定時点の送り矢44の位置とが一致しているか否かを判定する。例えば、旋盤システム1を一時停止させたり停電や非常停止などで旋盤システム1が停止した際にオペレータが手動で送り矢44および棒材Wを移動させることがある。その場合は送り矢44の位置が演算した位置と異なっている。
Since the lathe system 1 of the second embodiment does not have a continuous machining feasibility determination unit 20c, there is no step S14, as shown in FIG. 10, unlike the previous embodiment. Instead, just before the start of machining in step S21, the feed arrow position determination unit 20h determines whether the position of the feed arrow 44 at that time coincides with the theoretical position of the feed arrow 44 (step S01). This step S01 corresponds to an example of a feed arrow position determination process. In step S01, the feed arrow position determination unit 20h calculates the theoretical position of the feed arrow 44 at the completion of machining of the previous cycle from the position of the feed arrow 44 at the start of machining of the previous product, i.e., the start of the previous cycle operation, and the length of the processed material L3. In detail, it calculates the position where the feed arrow 44 has moved forward by the length of the processed material L3 from the start of the previous machining. Note that in the first cycle after power-on or after a new bar material W is supplied, this step S01 is omitted. The feed arrow position determination unit 20h determines whether the calculated theoretical position of the feed arrow 44 matches the position of the feed arrow 44 at the time of determination received from the second control device 40. For example, when the lathe system 1 is temporarily stopped or stopped due to a power outage or emergency stop, the operator may manually move the feed arrow 44 and the bar W. In that case, the position of the feed arrow 44 differs from the calculated position.
送り矢44の位置が理論上の位置と一致している場合(ステップS01でYES)、ステップS21に進んで加工を開始する。一方、送り矢44の位置が理論上の位置と異なっている場合(ステップS01でNO)、送り矢位置判定部20hは、旋盤システム1をアラーム停止させて、送り矢44の位置が理論上の位置と異なっている旨を旋盤表示画面242に表示させる(ステップS02)。
If the position of the feed arrow 44 matches the theoretical position (YES in step S01), proceed to step S21 and start machining. On the other hand, if the position of the feed arrow 44 differs from the theoretical position (NO in step S01), the feed arrow position determination unit 20h stops the lathe system 1 with an alarm and displays on the lathe display screen 242 that the position of the feed arrow 44 differs from the theoretical position (step S02).
また、この第2実施形態の機械制御部20gは、前回の掴みかえからのサイクル数も記憶部203に記憶している。すなわち、1サイクルの加工が完了したら記憶部203の前回の掴みかえからのサイクル数をカウントアップしている。機械制御部20gは、1サイクルの加工が完了する(ステップS22でYES)ごとに、前回の掴みかえからNサイクルの加工が完了したか否かを判定する(ステップS03)。このNとは、ステップS176で演算した商Nである。Nサイクルの加工が完了していたら(ステップS03でYES)、機械制御部20gは、上述したステップS23に進む。Nサイクルの加工が完了していなければ(ステップS03でNO)、ステップS19に戻って次のサイクルの動作を開始する。
The machine control unit 20g of this second embodiment also stores the number of cycles since the previous gripping in the memory unit 203. That is, when one cycle of processing is completed, the number of cycles since the previous gripping is counted up in the memory unit 203. Each time one cycle of processing is completed (YES in step S22), the machine control unit 20g determines whether N cycles of processing have been completed since the previous gripping (step S03). This N is the quotient N calculated in step S176. If N cycles of processing have been completed (YES in step S03), the machine control unit 20g proceeds to the above-mentioned step S23. If N cycles of processing have not been completed (NO in step S03), the process returns to step S19 and starts the operation of the next cycle.
以上説明した第2実施形態の旋盤システム1および旋盤システム1の制御方法においても先の実施形態と同様の効果を奏する。また、送り矢位置判定部20hが1つの製品の加工ごとに送り矢44の位置が理論上の位置と一致しているか否かを判定しているので、オペレータが手動で送り矢44および棒材Wを移動させても不良品の製造や構造体の衝突を防止することができる。ただし、棒材Wの位置がずれた際に、送り矢位置判定部20hが旋盤システム1をアラーム停止させるので、先の実施形態と比較すれば、掴みかえの回数や停止時間が増加する虞はある。
The lathe system 1 and the control method for the lathe system 1 of the second embodiment described above have the same effects as the previous embodiment. In addition, since the feed arrow position determination unit 20h determines whether the position of the feed arrow 44 matches the theoretical position for each product being machined, it is possible to prevent the production of defective products and collisions of structures even if the operator manually moves the feed arrow 44 and the bar W. However, since the feed arrow position determination unit 20h issues an alarm to stop the lathe system 1 when the position of the bar W shifts, there is a risk that the number of times the workpiece is re-gripped and the downtime will increase compared to the previous embodiment.
本発明は上述の実施形態に限られることなく特許請求の範囲に記載した範囲で種々の変形を行うことができる。例えば、本実施形態では、把持位置決定部20aおよび連続加工可否判定部20cは加工材長L3を用いて演算しているが、その演算において、加工材長L3そのものに代えてオペレータが指定した余裕代を加工材長L3に加えた長さを用いて演算してもよい。その場合、演算の一部においては加工材長L3を用い、残りの演算においては加工材長L3に余裕代を加えた長さを用いてもよい。特に、ステップS172における後退可能距離Zmの演算においては、加工材長L3に余裕代を加えた長さを用いて演算することが好ましい。余裕代を加えることで、後退可能距離Zmを最大後退距離Zrとして把持位置を決定した場合の掴みかえにおいて主軸25のコレットチャック251と送り矢44との干渉を確実に防止できる。また、送り矢44の先端位置が理論上の送り矢44の位置と一致しているか否かの判定(ステップS01)を加工開始直前に実行しているが、他のタイミングで実行してもよく、1サイクルの加工中に複数回実行してもよい。ただし、少なくとも加工開始直前に送り矢44の位置が正常か否かの判定を実行することで、不良品が製造されてしまうことやNC旋盤2の構造体または棒材Wが衝突してしまうことを防止できる可能性が高まる。また、送り矢44の位置が理論上の位置と異なっている場合(ステップS01でNO)、アラーム停止させる代わりに、ステップS15に進んで掴みかえを実行させてもよく、送り矢44が理論上の位置に移動するように主軸25と送り矢44を制御してもよく、旋盤システム1を再起動してもよい。
The present invention is not limited to the above-mentioned embodiment, and various modifications can be made within the scope of the claims. For example, in this embodiment, the gripping position determination unit 20a and the continuous machining feasibility determination unit 20c perform calculations using the workpiece length L3, but in this calculation, instead of the workpiece length L3 itself, the length obtained by adding the margin specified by the operator to the workpiece length L3 may be used. In that case, the workpiece length L3 may be used in part of the calculation, and the length obtained by adding the margin to the workpiece length L3 may be used in the remaining calculation. In particular, in the calculation of the retractable distance Zm in step S172, it is preferable to use the length obtained by adding the margin to the workpiece length L3. By adding the margin, interference between the collet chuck 251 of the spindle 25 and the feed arrow 44 can be reliably prevented during re-gripping when the gripping position is determined with the retractable distance Zm as the maximum retraction distance Zr. In addition, the determination of whether the tip position of the feed arrow 44 coincides with the theoretical position of the feed arrow 44 (step S01) is performed immediately before the start of processing, but it may be performed at other times, or may be performed multiple times during one cycle of processing. However, by determining whether the position of the feed arrow 44 is normal at least immediately before the start of machining, it is possible to increase the possibility of preventing the production of defective products and collisions with the structure of the NC lathe 2 or the bar W. Also, if the position of the feed arrow 44 differs from the theoretical position (NO in step S01), instead of stopping with an alarm, the process may proceed to step S15 to perform re-gripping, or the spindle 25 and the feed arrow 44 may be controlled so that the feed arrow 44 moves to the theoretical position, or the lathe system 1 may be restarted.
なお、以上説明した各実施形態や各変形例の記載それぞれにのみ含まれている構成要件であっても、その構成要件を、他の実施形態や他の変形例に適用してもよい。
Note that even if a component is included only in the description of each of the embodiments and variations described above, that component may be applied to other embodiments or other variations.
1 旋盤システム(工作機械システム)、 20a 把持位置決定部、
25 主軸、 44 送り矢、 L3 加工材長、 W 棒材、
Zp 設定移動可能距離 1 lathe system (machine tool system), 20a gripping position determination unit,
25 spindle, 44 feed shaft, L3 workpiece length, W bar material,
Zp setting movable distance
25 主軸、 44 送り矢、 L3 加工材長、 W 棒材、
Zp 設定移動可能距離 1 lathe system (machine tool system), 20a gripping position determination unit,
25 spindle, 44 feed shaft, L3 workpiece length, W bar material,
Zp setting movable distance
Claims (7)
- 長尺状の棒材の先端部分の加工と加工が行われた加工済み部分の切り離しとを複数回繰り返すことで1本の該棒材から複数の製品を製造する工作機械システムにおいて、
前記棒材の掴みかえ時に該棒材の把持を解除して該棒材の軸心方向に沿って把持位置まで移動して該棒材を把持する主軸と、
前記棒材とともに前記軸心方向に移動する送り矢と、
前記掴みかえごとに、前記送り矢の位置および前記主軸の前記軸心方向への移動可能距離と1つの前記製品の加工に必要な加工材長とに基づいて該主軸が前記棒材の把持を維持したまま加工可能な製品数を演算し、該製品数に対応した前記把持位置を決定する把持位置決定部とを備えたことを特徴とする工作機械システム。 A machine tool system for manufacturing a plurality of products from a single bar by repeatedly machining a tip portion of a long bar and cutting off the machined portion, comprising:
a main shaft that, when re-gripping the bar material, releases the grip of the bar material and moves along the axial direction of the bar material to a gripping position to grip the bar material;
A feed arrow moving in the axial direction together with the bar;
and a gripping position determination unit that calculates, for each gripping change, the number of products that can be machined while the spindle maintains its grip on the bar stock based on the position of the feed arrow, the distance the spindle can move in the axial direction, and the length of the workpiece required to process one of the products, and determines the gripping position corresponding to the number of products. - 1つの前記製品の加工ごとに、前記主軸が前記棒材の把持を維持したまま次の該製品の加工が可能か否かを判定する連続加工可否判定部を備えたことを特徴とする請求項1記載の工作機械システム。 The machine tool system according to claim 1, further comprising a continuous machining feasibility determination unit that determines whether the next product can be machined while the spindle continues to grip the bar material, for each of the products being machined.
- 1つの前記製品の加工ごとに、前記送り矢の位置が演算によって得られる理論上の該送り矢の位置と一致しているか否かを判定する送り矢位置判定部を備えたことを特徴とする請求項1記載の工作機械システム。 The machine tool system according to claim 1, further comprising a feed arrow position determination unit that determines whether the position of the feed arrow coincides with the theoretical position of the feed arrow obtained by calculation for each machining of the product.
- 加工動作が記述された加工プログラムにおける前記主軸の前記軸心方向の移動距離に基づいて前記加工材長を演算する材長演算部を備えたことを特徴とする請求項1記載の工作機械システム。 The machine tool system according to claim 1, further comprising a workpiece length calculation unit that calculates the workpiece length based on the axial movement distance of the spindle in a machining program that describes machining operations.
- 前記把持位置決定部が前記把持位置を決定して前記掴みかえを実行する多数個取りモードと、1つの前記製品の加工ごとに前記掴みかえを実行する1個取りモードとを切り替え可能にしたことを特徴とする請求項1記載の工作機械システム。 The machine tool system according to claim 1, characterized in that it is possible to switch between a multiple-piece mode in which the gripping position determination unit determines the gripping position and performs the gripping, and a single-piece mode in which the gripping is performed each time one of the products is processed.
- 前記主軸に対向して配置され、前記加工済み部分が受け渡される背面主軸と、
前記背面主軸が安全位置に退避するまで前記主軸に把持された前記棒材の加工を規制する加工規制部と、
前記安全位置を変更する安全位置変更部とを備えたことを特徴とする請求項1から5のうちいずれか1項記載の工作機械システム。 a back spindle disposed opposite the spindle and to which the machined portion is transferred;
a machining restricting portion that restricts machining of the bar held by the spindle until the back spindle is retracted to a safety position;
6. The machine tool system according to claim 1, further comprising a safety position changing unit for changing the safety position. - 主軸に把持された長尺状の棒材の先端部分の加工と加工が行われた加工済み部分の切り離しとを複数回繰り返すことで1本の該棒材から複数の製品を製造する工作機械システムの制御方法において、
前記棒材とともに該棒材の軸心方向に移動する送り矢の位置および前記主軸の該軸心方向の移動可能距離と1つの前記製品の加工に必要な加工材長とに基づいて該主軸が前記棒材の把持を維持したまま加工可能な製品数を演算し、該製品数に対応した把持位置を決定する把持位置決定工程と、
前記把持位置決定工程において決定された前記把持位置に前記棒材の把持を解除した前記主軸が移動して該棒材を把持する掴みかえ工程とを有することを特徴とする工作機械システムの制御方法。 A method for controlling a machine tool system for manufacturing a plurality of products from a single bar stock by repeatedly machining a tip portion of the bar stock held by a spindle and cutting off the machined portion, comprising:
a gripping position determination step for calculating the number of products that can be machined while the spindle is still gripping the bar stock, based on the position of a feed arrow that moves in the axial direction of the bar stock together with the bar stock, the axial movement distance of the spindle, and the length of the workpiece required to process one of the products, and determining a gripping position corresponding to the number of products;
a re-gripping process in which the spindle, which has released its grip on the bar material, moves to the gripping position determined in the gripping position determination process and grips the bar material again.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-174001 | 2022-10-31 | ||
JP2022174001A JP2024065253A (en) | 2022-10-31 | 2022-10-31 | Machine tool system and control method of machine tool system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024095680A1 true WO2024095680A1 (en) | 2024-05-10 |
Family
ID=90930431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/036305 WO2024095680A1 (en) | 2022-10-31 | 2023-10-05 | Machine tool system, and method for controlling machine tool system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2024065253A (en) |
TW (1) | TW202419176A (en) |
WO (1) | WO2024095680A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06218603A (en) * | 1992-06-11 | 1994-08-09 | Miyano:Kk | Bar feeder, nc lathe having it connected, and supply method of bar material |
JPH09192902A (en) * | 1996-01-17 | 1997-07-29 | Ikura Seiki Seisakusho:Kk | Automatic bar material feeder |
WO2002034439A1 (en) * | 2000-10-26 | 2002-05-02 | Citizen Watch Co., Ltd. | Control method for bar material feeder of nc lathe and nc lathe |
JP2010052073A (en) * | 2008-08-27 | 2010-03-11 | Star Micronics Co Ltd | Lathe and method of controlling the same |
WO2021210411A1 (en) * | 2020-04-13 | 2021-10-21 | スター精密株式会社 | Lathe |
-
2022
- 2022-10-31 JP JP2022174001A patent/JP2024065253A/en active Pending
-
2023
- 2023-10-05 TW TW112138218A patent/TW202419176A/en unknown
- 2023-10-05 WO PCT/JP2023/036305 patent/WO2024095680A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06218603A (en) * | 1992-06-11 | 1994-08-09 | Miyano:Kk | Bar feeder, nc lathe having it connected, and supply method of bar material |
JPH09192902A (en) * | 1996-01-17 | 1997-07-29 | Ikura Seiki Seisakusho:Kk | Automatic bar material feeder |
WO2002034439A1 (en) * | 2000-10-26 | 2002-05-02 | Citizen Watch Co., Ltd. | Control method for bar material feeder of nc lathe and nc lathe |
JP2010052073A (en) * | 2008-08-27 | 2010-03-11 | Star Micronics Co Ltd | Lathe and method of controlling the same |
WO2021210411A1 (en) * | 2020-04-13 | 2021-10-21 | スター精密株式会社 | Lathe |
Also Published As
Publication number | Publication date |
---|---|
TW202419176A (en) | 2024-05-16 |
JP2024065253A (en) | 2024-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7595602B2 (en) | Apparatus for machine tool feedrate override using limiting parameters corresponding to actual spindle speed | |
US11402822B2 (en) | Numerical controller | |
WO2024095680A1 (en) | Machine tool system, and method for controlling machine tool system | |
US20230033414A1 (en) | Numerical controller | |
JP4947534B2 (en) | Machine tool and method of operating machine tool | |
US6785584B2 (en) | Loader control device | |
JPH11202926A (en) | Method and device for feed speed control in numerical control | |
WO2024070511A1 (en) | Machine tool system, and method for controlling machine tool system | |
WO2024116753A1 (en) | Machine tool system, and control method for machine tool system | |
US20210299732A1 (en) | Rod member feeding device, machine tool including the rod member feeding device and control method for the rod member feeding device | |
JP2024063853A (en) | Machine tool system and control method of machine tool system | |
WO2024111411A1 (en) | Machine tool system, and method for controlling machine tool system | |
JPH0655310A (en) | Nc tail stock and its control method | |
EP4361744A1 (en) | Machine tool system and method of controlling machine tool system | |
US20240109129A1 (en) | Machine tool system | |
JP2024057788A (en) | Machine tool system | |
TW202431046A (en) | Machine tool system | |
JP2004181537A (en) | Run-out removing method of long cylindrical workpiece in numerical control machine tool | |
TW202430296A (en) | Machine tool system | |
KR20230169379A (en) | Machine tools and control methods of machine tools | |
JP2023056367A (en) | Machine tool | |
JPH0682295B2 (en) | Numerically controlled machine tool | |
JPH06344245A (en) | Cross cutting confirming method of mutually opposed double shaft lathe | |
JP2003025151A (en) | Multi-shaft tapping device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23885443 Country of ref document: EP Kind code of ref document: A1 |