WO2024095603A1 - Power supply device and laser processing device provided with same - Google Patents

Power supply device and laser processing device provided with same Download PDF

Info

Publication number
WO2024095603A1
WO2024095603A1 PCT/JP2023/032404 JP2023032404W WO2024095603A1 WO 2024095603 A1 WO2024095603 A1 WO 2024095603A1 JP 2023032404 W JP2023032404 W JP 2023032404W WO 2024095603 A1 WO2024095603 A1 WO 2024095603A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
supply device
circuit
command
Prior art date
Application number
PCT/JP2023/032404
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 黒崎
真史 三溝
陣 松坂
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024095603A1 publication Critical patent/WO2024095603A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present disclosure relates to a power supply device that supplies current to a light-emitting circuit for laser processing having at least one laser diode, and a laser processing device equipped with the same.
  • Patent Document 1 discloses a power supply device that supplies current to a light-emitting circuit for laser processing having at least one laser diode.
  • This power supply device includes an inverter circuit that has at least one switching element and generates a first AC voltage using power output from an AC power source by the switching operation of the switching element, an isolation transformer that converts the first AC voltage generated by the inverter circuit into a second AC voltage and outputs it, a rectifier circuit that supplies DC current to the light-emitting circuit based on the second AC voltage output by the isolation transformer, a current detection unit that detects the DC current, and a control means that controls the conduction rate, which is the proportion of the period during which voltage is supplied to the isolation transformer, so that the difference between the detection value of the current detection unit and a predetermined command current is small.
  • Patent Document 1 there is a demand for a power supply device such as that disclosed in Patent Document 1 that can be used to supply current to multiple types of light-emitting circuits that have different numbers of laser diodes connected in series.
  • the present disclosure has been made in consideration of these points, and its purpose is to make it possible to use a power supply device to supply current to multiple types of light-emitting circuits that have different numbers of laser diodes connected in series.
  • the present disclosure provides a power supply device for supplying current to a light-emitting circuit for laser processing having one laser diode or a plurality of laser diodes connected in series with each other, the power supply device comprising: an inverter circuit having at least one switching element, which generates a first AC voltage using power from an AC power source by the switching operation of the switching element; an isolation transformer which converts the first AC voltage generated by the inverter circuit into a second AC voltage and outputs it; a rectifier circuit which supplies a DC current to the light-emitting circuit based on the second AC voltage output by the isolation transformer; a current detection unit which detects the DC current; a drive control unit which controls the switching element of the inverter circuit based on a command voltage; and a command voltage generation unit which controls the command voltage based on the difference between the detection value of the current detection unit and a predetermined command current so that the difference is small, and which can select a response gain for the control of the command voltage from a plurality
  • the command voltage generating unit allows the command voltage generating unit to select a response gain suitable for the light-emitting circuit. For example, when the number of laser diodes in the light-emitting circuit is relatively large, the response gain for the command voltage control can be made relatively large, and when the number of laser diodes in the light-emitting circuit is relatively small, the response gain for the command voltage control can be made relatively small. This makes it easier to use the power supply device to supply current to multiple types of light-emitting circuits that have different numbers of laser diodes connected in series.
  • This disclosure makes it easier to use a power supply device to supply current to multiple types of light-emitting circuits that have different numbers of laser diodes connected in series.
  • FIG. 1 is a schematic diagram showing the configuration of a laser processing apparatus including a power supply device according to a first embodiment of the present disclosure.
  • FIG. 2 is a circuit diagram of the power supply device according to the first embodiment of the present disclosure.
  • FIG. 3 is a block diagram of the command voltage generating unit.
  • FIG. 4 is a block diagram of the scaler.
  • FIG. 5 is a view corresponding to FIG.
  • (Embodiment 1) 1 shows the configuration of a laser processing apparatus 100.
  • This laser processing apparatus 100 is used to perform cutting, welding, and the like of a workpiece W.
  • the laser processing apparatus 100 includes a galvano scanning type laser head 10, a controller 20, a light emitting circuit 30 for laser processing, a power supply device 40 according to the first embodiment of the present disclosure, and an optical fiber 90.
  • the galvano scanning laser head 10 irradiates the workpiece W with laser light LB emitted by the light emitting circuit 30 and passing through the optical fiber 90.
  • the controller 20 controls the irradiation position of the laser light LB by moving multiple galvanometer mirrors (not shown) built into the galvanometer scanning laser head 10.
  • the light-emitting circuit 30 includes one or more laser diodes 31 connected between the first and second nodes N1, N2.
  • FIG. 2 illustrates one laser diode 31, the number of laser diodes 31 is not limited to one, and multiple laser diodes 31 may be connected in series between the first and second nodes N1, N2.
  • the cathode side of the laser diode 31 faces the second node N2.
  • the laser light LB emitted by the light-emitting circuit 30 passes through the optical fiber 90 and is irradiated onto the workpiece W by the galvano scanning laser head 10.
  • the power supply device 40 supplies a DC current to the light-emitting circuit 30 between the first and second nodes N1 and N2.
  • the power supply device 40 has a first rectifier circuit 41, an inverter circuit 42, a capacitor 43, an isolation transformer 44, a second rectifier circuit 45, a reactor 46, a current detector 47, a voltage detector 48, and a control device 50.
  • the first rectifier circuit 41 converts the power supply voltage output from the AC power supply 200 into a DC voltage and outputs it from a pair of output nodes ON1 and ON2.
  • the first rectifier circuit 41 is configured, for example, as a diode bridge.
  • the inverter circuit 42 generates a first AC voltage according to the voltages of the output nodes ON1 and ON2 of the first rectifier circuit 41.
  • the inverter circuit 42 has a first upper arm switching element 42a and a first lower arm switching element 42b connected in series between a pair of output nodes ON1 and ON2 of the first rectifier circuit 41, and a second upper arm switching element 42c and a second lower arm switching element 42d connected in series between a pair of output nodes ON1 and ON2 of the first rectifier circuit 41.
  • a freewheel diode 42e is connected in parallel to each of the switching elements 42a to 42d.
  • the inverter circuit 42 generates a first AC voltage using the power output from the AC power source 200 by the switching operation of these switching elements 42a to 42d.
  • an inverter circuit 42 having four switching elements 42a to 42d is used, but an inverter circuit having a number of switching elements other than four may be used as long as it has at least one switching element.
  • the capacitor 43 is connected between the first rectifier circuit 41 and the inverter circuit 42 in parallel with the first rectifier circuit 41 and the inverter circuit 42.
  • the capacitor 43 is connected between a pair of output nodes ON1, ON2 of the first rectifier circuit 41.
  • the isolation transformer 44 converts the first AC voltage generated by the inverter circuit 42 into a second AC voltage and outputs it.
  • the isolation transformer 44 has a primary coil 44a and a secondary coil 44b.
  • the voltage of the primary coil 44a becomes the first AC voltage
  • the voltage of the secondary coil 44b becomes the second AC voltage.
  • the primary coil 44a is connected between the connection point of the first upper arm switching element 42a and the first lower arm switching element 42b and the connection point of the second upper arm switching element 42c and the second lower arm switching element 42d.
  • the second rectifier circuit 45 supplies a DC current to the laser diode 31 of the light-emitting circuit 30 based on the second AC voltage output by the isolation transformer 44.
  • the second rectifier circuit 45 has first and second diodes 45a and 45b.
  • the anode of the first diode 45a is connected to one end of the secondary coil 44b, and the anode of the second diode 45b is connected to the other end of the secondary coil 44b.
  • the cathodes of the first and second diodes 45a and 45b are connected to the first node N1.
  • the reactor 46 is connected between the middle of the secondary coil 44b and the second node N2.
  • the current detection unit 47 detects the supply current flowing through the laser diode 31 of the light emission circuit 30.
  • the voltage detection unit 48 detects the voltage of the light emission circuit 30.
  • the control device 50 has a drive control unit 51, a command voltage generation unit 52, and a voltage abnormality detection unit 55.
  • the drive control unit 51 controls the switching elements 42a to 42d of the inverter circuit 42 based on a command voltage Vc generated by a command voltage generation unit 52, which will be described later in detail.
  • the command voltage Vc corresponds to the duty ratio of the first AC voltage.
  • the duty ratio of the first AC voltage is the duty ratio of the period during which the inverter circuit 42 supplies a voltage to the isolation transformer 44, or in other words, the ratio of the period during which the first AC voltage is at a high level to the period of the first AC voltage.
  • the higher the command voltage Vc the higher the duty ratio of the first AC voltage.
  • the greater the number of laser diodes 31 connected in series between the first and second nodes N1 and N2 the higher the required duty ratio.
  • the drive control unit 51 is configured with a hardware circuit.
  • the command voltage generating unit 52 controls the command voltage Vc based on the difference between the detection value Im of the current detecting unit 47 and a predetermined command current Ic so that the difference becomes small.
  • the command voltage generating unit 52 can select the response gain of the control of the command voltage Vc from multiple types of response gains in response to the selection signal Ssel.
  • the command voltage generating unit 52 is configured as a hardware circuit. As shown in FIG. 3, the command voltage generating unit 52 has a conduction control unit 53 and a scale changing unit 54.
  • the conduction control unit 53 outputs a control voltage Vdif based on the difference between the detection value Im of the current detection unit and a predetermined command current Ic.
  • the conduction control unit 53 has a differential amplifier 531 and first and second inverting amplifiers 532 and 533.
  • the differential amplifier 531 amplifies the difference between the detection value Im of the current detection unit and a predetermined command current Ic, and outputs a first amplified signal.
  • the differential amplifier 531 has first to fourth resistors 531a to 531d and a first operational amplifier 531e.
  • One end of the first resistor 531a is connected to an input terminal to which the detection value Im is input, and the other end of the first resistor 531a is connected to an inverting input terminal of the first operational amplifier 531e.
  • One end of the second resistor 531b is connected to the inverting input terminal of the first operational amplifier 531e, and the other end of the second resistor 531b is connected to the output terminal of the first operational amplifier 531e.
  • One end of the third resistor 531c is connected to the input terminal to which the command current Ic is input, and the other end of the third resistor 531c is connected to the non-inverting input terminal of the first operational amplifier 531e.
  • One end of the fourth resistor 531d is connected to the non-inverting input terminal of the first operational amplifier 531e, and the other end of the fourth resistor 531d is grounded.
  • the output of the first operational amplifier 531e becomes the first amplified signal.
  • the first inverting amplifier 532 inverts the polarity of the first amplified signal, amplifies it, and integrates it to output a second amplified signal.
  • the first inverting amplifier 532 has fifth and sixth resistors 532a and 532b, a capacitor 532c, and a second operational amplifier 532d.
  • One end of the fifth resistor 532a is connected to the output of the first operational amplifier 531e, and the other end of the fifth resistor 532a is connected to the inverting input terminal of the second operational amplifier 532d.
  • the sixth resistor 532b and the capacitor 532c are connected in series between the inverting input terminal of the second operational amplifier 532d and the output terminal of the second operational amplifier 532d.
  • the non-inverting input terminal of the second operational amplifier 532d is grounded.
  • the output of the second operational amplifier 532d becomes the second amplified signal.
  • the second inverting amplifier 533 inverts the polarity of the second amplified signal, amplifies it, and outputs the control voltage Vdif.
  • the second inverting amplifier 533 has seventh and eighth resistors 533a and 533b, and a third operational amplifier 533c.
  • One end of the seventh resistor 533a is connected to the output of the second operational amplifier 532d, and the other end of the seventh resistor 533a is connected to the inverting input terminal of the third operational amplifier 533c.
  • One end of the eighth resistor 533b is connected to the inverting input terminal of the third operational amplifier 533c, and the other end of the eighth resistor 533b is connected to the output terminal of the third operational amplifier 533c.
  • the non-inverting input terminal of the third operational amplifier 533c is grounded.
  • the output of the third operational amplifier 533c becomes the control voltage Vdif.
  • the scale change unit 54 has first and second non-inverting amplifiers 541 and 542, and a multiplexer 543.
  • the first non-inverting amplifier 541 has ninth and tenth resistors 541a and 541b, and a fourth operational amplifier 541c.
  • One end of the ninth resistor 541a is connected to the inverting input terminal of the fourth operational amplifier 541c, and the other end of the ninth resistor 541a is grounded.
  • One end of the tenth resistor 541b is connected to the inverting input terminal of the fourth operational amplifier 541c, and the other end of the tenth resistor 541b is connected to the output terminal of the fourth operational amplifier 541c.
  • the control voltage Vdif based on the difference between the detection value Im of the current detection unit and the command current Ic is input to the non-inverting input terminal of the fourth operational amplifier 541c.
  • the fourth operational amplifier 541c amplifies the control voltage Vdif and outputs the first control amplified signal Sda1 from the output terminal.
  • the second non-inverting amplifier 542 has eleventh and twelfth resistors 542a, 542b and a fifth operational amplifier 542c.
  • One end of the eleventh resistor 542a is connected to the inverting input terminal of the fifth operational amplifier 542c, and the other end of the eleventh resistor 542a is grounded.
  • One end of the twelfth resistor 542b is connected to the inverting input terminal of the fifth operational amplifier 542c, and the other end of the twelfth resistor 542b is connected to the output terminal of the fifth operational amplifier 542c.
  • the control voltage Vdif is input to the non-inverting input terminal of the fifth operational amplifier 542c.
  • the fifth operational amplifier 542c amplifies the control voltage Vdif and outputs the second control amplified signal Sda2 from its output terminal.
  • the gains (amplification rates) of the first and second non-inverting amplifiers 541, 542 are different values greater than 1.
  • the gain of the first non-inverting amplifier 541 is set to a first gain greater than 1
  • the gain of the second non-inverting amplifier 542 is set to a second gain greater than the first gain.
  • the multiplexer 543 selects and outputs the command voltage Vc from the control voltage Vdif, the first control amplification signal Sda1, and the second control amplification signal Sda2 (multiple types of voltages based on the control voltage Vdif) according to the 2-bit selection signal Ssel.
  • the voltage abnormality detection unit 55 receives an input of a threshold update signal Sth.
  • the voltage abnormality detection unit 55 detects a voltage abnormality based on a voltage threshold corresponding to this threshold update signal Sth and the detection value Vm of the voltage detection unit 48.
  • the voltage abnormality detection unit 55 detects a voltage abnormality when the detection value Vm of the voltage detection unit 48 in a current supply state falls below the voltage threshold. If a voltage abnormality is detected, the laser diode 31 may be malfunctioning.
  • the voltage threshold is set to an appropriate value for malfunction detection by the threshold update signal Sth according to the number of laser diodes 31 connected between the first and second nodes N1, N2.
  • the function of the voltage abnormality detection unit 55 may be realized by having a computer execute a program (software).
  • the command voltage Vc is the control voltage Vdif
  • the response gains of the control of the command voltage Vc are different from one another. Therefore, the command voltage generating unit 52 can select the response gain of the control of the command voltage Vc from a plurality of response gains in response to the selection signal Ssel.
  • the first control amplified signal Sda1 is a first gain multiplied by the control voltage Vdif
  • the second control amplified signal Sda2 is a second gain multiplied by the control voltage Vdif. Therefore, the relationship of second control amplified signal Sda2>first control amplified signal Sda1>control voltage Vdif holds.
  • the power supply device 40 can be used to supply current to a light-emitting circuit 30 having an output of, for example, 400 W, 800 W, or 1200 W.
  • a selection signal Ssel is input to the command voltage generating unit 52 so that in a mode in which the output of the light-emitting circuit 30 is 400 W, the control voltage Vdif is selected as the command voltage Vc, in a mode in which the output of the light-emitting circuit 30 is 800 W, the first control amplification signal Sda1 is selected as the command voltage Vc, and in a mode in which the output of the light-emitting circuit 30 is 1200 W, the second control amplification signal Sda2 is selected as the command voltage Vc.
  • the first and second gains are set so that the ratio of the maximum possible values of the command voltage Vc in each mode, where the output of the light-emitting circuit 30 is 400 W, 800 W, and 1200 W, is the ratio of the output of the light-emitting circuit 30 in these three modes, i.e., 1:2:3.
  • the first gain is set to 2 and the second gain is set to 3.
  • the threshold update signal Sth is input to the voltage abnormality detection unit 55 so that the voltage threshold in the mode in which the output of the light-emitting circuit 30 is 800 W is smaller than the voltage threshold in the mode in which the output of the light-emitting circuit 30 is 1200 W, and the voltage threshold in the mode in which the output of the light-emitting circuit 30 is 400 W is smaller than the voltage threshold in the mode in which the output of the light-emitting circuit 30 is 800 W.
  • the maximum possible value of the control voltage Vdif does not change in response to the selection signal Ssel.
  • the maximum possible value of the first control amplified signal Sda1 is the first gain multiplied by the maximum possible value of the control voltage Vdif. In other words, the maximum possible value of the first control amplified signal Sda1 is greater than the maximum possible value of the control voltage Vdif.
  • the maximum possible value of the second control amplified signal Sda2 is the second gain multiplied by the maximum possible value of the control voltage Vdif. In other words, the maximum possible value of the second control amplified signal Sda2 is greater than the maximum possible value of the first control amplified signal Sda1 and the maximum possible value of the control voltage Vdif. In this way, the maximum possible value of the command voltage Vc switches in response to the selection signal Ssel.
  • the maximum possible value of the duty ratio of the first AC voltage also switches according to the selection signal Ssel. Specifically, in a mode in which the output of the light-emitting circuit 30 is 800 W, the maximum possible value of the duty ratio of the first AC voltage is lower than in a mode in which the output of the light-emitting circuit 30 is 1200 W. In a mode in which the output of the light-emitting circuit 30 is 400 W, the maximum possible value of the duty ratio of the first AC voltage is lower than in a mode in which the output of the light-emitting circuit 30 is 800 W.
  • the maximum value of the duty ratio of the first AC voltage can be used, and in a mode in which the output of the light-emitting circuit 30 is 800 W or 400 W, the duty ratio of the first AC voltage is limited to 2/3 or 1/3 or less of the maximum value.
  • the maximum possible value of the effective value of the first AC voltage also switches according to the selection signal Ssel.
  • the ratio of the maximum possible values of the command voltage Vc in the above three modes is the ratio of the output of the light-emitting circuit 30 in the three modes
  • the ratio of the maximum possible values of the duty ratio of the first AC voltage in the three modes is also the ratio of the output of the light-emitting circuit 30 in the three modes.
  • the control voltage generating unit 52 by inputting an appropriate selection signal Ssel to the control voltage generating unit 52, it is possible to cause the control voltage generating unit 52 to select a response gain suitable for the light-emitting circuit 30.
  • the response gain for the control of the command voltage Vc can be made relatively large, and when the number of laser diodes 31 in the light-emitting circuit 30 is relatively small, the response gain for the control of the command voltage Vc can be made relatively small. Therefore, the power supply device 40 can be easily used to supply current to multiple types of light-emitting circuits 30 having different numbers of laser diodes 31 connected in series.
  • the voltage threshold used for detecting a voltage abnormality by the voltage abnormality detection unit 55 can be set to a value suitable for the light-emitting circuit 30.
  • the voltage threshold can be set relatively high, and when the number of laser diodes 31 in the light-emitting circuit 30 is relatively small, the voltage threshold can be set relatively low. This makes it easier to use the power supply device 40 to supply current to multiple types of light-emitting circuits 30 that have different numbers of laser diodes 31 connected in series.
  • the drive control unit 51 and the command voltage generation unit 52 are configured as hardware circuits, the response of the operation of the inverter circuit 42 can be made faster and the time it takes for the supply current flowing through the light emission circuit 30 to approach the command current Ic can be shortened compared to when the functions of the drive control unit 51 and the command voltage generation unit 52 are realized by having a computer execute a program. Therefore, a high-speed current response can be realized, and by applying this to a galvano scanning type laser head 10 that can control the laser light LB at high speed, advanced laser processing can be realized.
  • (Embodiment 2) 5 is a diagram corresponding to FIG 4 of embodiment 2.
  • the scale change section 54 includes first to fourth voltage dividing resistors 544a to 544d and a selection circuit 545.
  • the control voltage Vdif is input to one end of the first voltage dividing resistor 544a.
  • the voltage at the other end of the first voltage dividing resistor 544a becomes the command voltage Vc.
  • One end of the second to fourth voltage dividing resistors 544b to 544d is connected to the other end of the first voltage dividing resistor 544a.
  • the selection circuit 545 selects 0 to 3 voltage dividing resistors 544b to 544d from the second to fourth voltage dividing resistors 544b to 544d (multiple voltage dividing resistors) in response to a selection signal Ssel to be used to obtain the command voltage Vc.
  • the selection circuit 545 has first to third switches 545a to 545c. The on/off of the first to third switches 545a to 545c is controlled by the 3-bit selection signal Ssel.
  • the first switch 545a is connected between the other end of the second voltage dividing resistor 544b and the reference potential point (ground).
  • the second switch 545b is connected between the other end of the third voltage dividing resistor 544c and the reference potential point (ground).
  • the third switch 545c is connected between the other end of the fourth voltage dividing resistor 544d and the reference potential point (ground).
  • the scale change unit 54 can obtain the command voltage Vc by dividing the control voltage Vdif using the first voltage dividing resistor 544a and the voltage dividing resistors 544b to 544d selected by the selection circuit 545 out of the first to fourth voltage dividing resistors 544a to 544d.
  • the second embodiment there is no need to provide an operational amplifier in the scale change unit 54, which reduces the manufacturing costs of the command voltage generation unit 52.
  • the response gain can be adjusted more flexibly by changing the combination of resistance values of the voltage-dividing resistors 544a to 544d.
  • the scale change unit 54 is provided with the fourth and fifth operational amplifiers 541c and 542c, but it is also possible to provide only the fourth operational amplifier 541c, and have the multiplexer 543 select one of the control voltage Vdif and the first control amplification signal Sda1 as the command voltage Vc.
  • the response gain of the command voltage Vc can be selected from three response gains, but it may be selected from two or four or more response gains.
  • the command voltage Vc can be selected from three, the control voltage Vdif, the first control amplification signal Sda1, and the second control amplification signal Sda2, but it may be selected from two, the control voltage Vdif and the first control amplification signal Sda1.
  • the command voltage Vc can be selected from two, the first control amplification signal Sda1 and the second control amplification signal Sda2.
  • the power supply device 40 may be adapted to supply current only to light-emitting circuits 30 with outputs of 400 W and 800 W.
  • the power supply device 40 may be adapted to supply current to light-emitting circuits 30 other than 400 W, 800 W, and 1200 W.
  • the power supply device and laser processing device equipped with the same disclosed herein can be easily used to supply current to multiple types of light-emitting circuits having different numbers of laser diodes connected in series, and are useful as a power supply device that supplies current to a light-emitting circuit for laser processing having at least one laser diode, and as a laser processing device equipped with the same.
  • Galvano scanning type laser head 30 Light emission circuit 31 Laser diode 40 Power supply device 42 Inverter circuits 42a to 42d Switching element 44 Isolation transformer 45 Second rectifier circuit 47 Current detection unit 48 Voltage detection unit 51 Drive control unit 52 Command voltage generation unit 55 Voltage abnormality detection unit 90 Optical fiber 100 Laser processing device 200 AC power supply 541c Fourth operational amplifier 542c Fifth operational amplifier 543 Multiplexer 544b Second voltage dividing resistor 544c Third voltage dividing resistor 544d Fourth voltage dividing resistor 545 Selection circuit LB Laser light W Work Im Detection value Ic Command current Vc Command voltage Vm Detection value Vdif Control voltage Ssel Selection signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

A power supply device 40 is provided with: a drive control unit 51 that controls the switching elements 42a-42d of an inverter circuit 42 on the basis of a command voltage Vc; and a command voltage generation unit 52 that controls, on the basis of the difference between a detection value Im of a current detection unit 47 and a predetermined command current Ic, the command voltage Vc so that the difference becomes small and can select a response gain for the control of the command voltage Vc from a plurality of types of response gains in accordance with a selection signal Ssel.

Description

電源装置及びそれを備えたレーザ加工装置Power supply device and laser processing device equipped with the same
 本開示は、少なくとも1つのレーザダイオードを有するレーザ加工用の発光回路に電流を流す電源装置、及びそれを備えたレーザ加工装置に関する。 The present disclosure relates to a power supply device that supplies current to a light-emitting circuit for laser processing having at least one laser diode, and a laser processing device equipped with the same.
 特許文献1には、少なくとも1つのレーザダイオードを有するレーザ加工用の発光回路に電流を流す電源装置が開示されている。この電源装置は、少なくとも1つのスイッチング素子を有し、前記スイッチング素子のスイッチング動作により、交流電源から出力される電力を用いて第1交流電圧を生成するインバータ回路と、前記インバータ回路によって生成された前記第1交流電圧を、第2交流電圧に変換して出力する絶縁トランスと、前記絶縁トランスによって出力された前記第2交流電圧に基づいて、直流電流を前記発光回路に電流を流す整流回路と、前記直流電流を検出する電流検出部と、前記電流検出部の検出値と、所定の指令電流との差分が小さくなるように、前記絶縁トランスに電圧を供給する期間の割合である導通率を制御する制御手段とを備えている。 Patent Document 1 discloses a power supply device that supplies current to a light-emitting circuit for laser processing having at least one laser diode. This power supply device includes an inverter circuit that has at least one switching element and generates a first AC voltage using power output from an AC power source by the switching operation of the switching element, an isolation transformer that converts the first AC voltage generated by the inverter circuit into a second AC voltage and outputs it, a rectifier circuit that supplies DC current to the light-emitting circuit based on the second AC voltage output by the isolation transformer, a current detection unit that detects the DC current, and a control means that controls the conduction rate, which is the proportion of the period during which voltage is supplied to the isolation transformer, so that the difference between the detection value of the current detection unit and a predetermined command current is small.
国際公開第2018/186082号International Publication No. 2018/186082
 ところで、特許文献1に開示されたような電源装置を、直列に接続されたレーザダイオードの個数が異なる複数種類の発光回路への電流供給に採用できるようにしたいという要望がある。 However, there is a demand for a power supply device such as that disclosed in Patent Document 1 that can be used to supply current to multiple types of light-emitting circuits that have different numbers of laser diodes connected in series.
 しかしながら、発光回路において直列に接続されるレーザダイオードの個数が多くなると、各レーザダイオードを発光させるのに必要な発光回路の電圧が高くなり、電流立ち上がり時間が長くなる。したがって、レーザ加工の品質を悪化させる虞がある。 However, if the number of laser diodes connected in series in the light-emitting circuit is increased, the voltage of the light-emitting circuit required to make each laser diode emit light increases, and the current rise time becomes longer. This may result in a deterioration in the quality of the laser processing.
 一方で、発光回路において直列に接続されるレーザダイオードの個数が多いときにも電流立ち上がり時間を十分短くできるように、制御手段の応答ゲインを大きくすると、発光回路におけるレーザダイオードの個数を減らしたときに、発光回路を流れる直流電流のオーバーシュートや発振が生じてしまう。 On the other hand, if the response gain of the control means is increased so that the current rise time can be sufficiently short even when there are a large number of laser diodes connected in series in the light-emitting circuit, an overshoot or oscillation of the direct current flowing through the light-emitting circuit occurs when the number of laser diodes in the light-emitting circuit is reduced.
 本開示は、かかる点に鑑みてなされたものであり、その目的とするところは、電源装置を、直列に接続されたレーザダイオードの個数が異なる複数種類の発光回路への電流供給に採用できるようにすることにある。 The present disclosure has been made in consideration of these points, and its purpose is to make it possible to use a power supply device to supply current to multiple types of light-emitting circuits that have different numbers of laser diodes connected in series.
 上記の目的を達成するため、本開示は、1個のレーザダイオード、又は互いに直列に接続された複数のレーザダイオードを有するレーザ加工用の発光回路に電流を流す電源装置であって、少なくとも1つのスイッチング素子を有し、前記スイッチング素子のスイッチング動作により、交流電源からの電力を用いて第1交流電圧を生成するインバータ回路と、前記インバータ回路によって生成された前記第1交流電圧を、第2交流電圧に変換して出力する絶縁トランスと、前記絶縁トランスによって出力された前記第2交流電圧に基づいて、直流電流を前記発光回路に流す整流回路と、前記直流電流を検出する電流検出部と、指令電圧に基づいて、前記インバータ回路の前記スイッチング素子を制御する駆動制御部と、前記電流検出部の検出値と所定の指令電流との差分に基づいて、当該差分が小さくなるように前記指令電圧を制御し、かつ当該指令電圧の制御の応答ゲインを、複数種類の応答ゲインから選択信号に応じて選択できる指令電圧生成部とを備えたことを特徴とする。 In order to achieve the above object, the present disclosure provides a power supply device for supplying current to a light-emitting circuit for laser processing having one laser diode or a plurality of laser diodes connected in series with each other, the power supply device comprising: an inverter circuit having at least one switching element, which generates a first AC voltage using power from an AC power source by the switching operation of the switching element; an isolation transformer which converts the first AC voltage generated by the inverter circuit into a second AC voltage and outputs it; a rectifier circuit which supplies a DC current to the light-emitting circuit based on the second AC voltage output by the isolation transformer; a current detection unit which detects the DC current; a drive control unit which controls the switching element of the inverter circuit based on a command voltage; and a command voltage generation unit which controls the command voltage based on the difference between the detection value of the current detection unit and a predetermined command current so that the difference is small, and which can select a response gain for the control of the command voltage from a plurality of response gains in response to a selection signal.
 これにより、指令電圧生成部に、発光回路に適した応答ゲインを選択させることができる。例えば、発光回路のレーザダイオードの個数が比較的多いときには、指令電圧の制御の応答ゲインを比較的大きくし、発光回路のレーザダイオードの個数が比較的少ないときには、指令電圧の制御の応答ゲインを比較的小さくできる。したがって、電源装置を、直列に接続されたレーザダイオードの個数が異なる複数種類の発光回路への電流供給に採用しやすくなる。  This allows the command voltage generating unit to select a response gain suitable for the light-emitting circuit. For example, when the number of laser diodes in the light-emitting circuit is relatively large, the response gain for the command voltage control can be made relatively large, and when the number of laser diodes in the light-emitting circuit is relatively small, the response gain for the command voltage control can be made relatively small. This makes it easier to use the power supply device to supply current to multiple types of light-emitting circuits that have different numbers of laser diodes connected in series.
 本開示によれば、電源装置を、直列に接続されたレーザダイオードの個数が異なる複数種類の発光回路への電流供給に採用しやすくなる。 This disclosure makes it easier to use a power supply device to supply current to multiple types of light-emitting circuits that have different numbers of laser diodes connected in series.
図1は、本開示の実施形態1に係る電源装置を備えたレーザ加工装置の構成を示す概略図である。FIG. 1 is a schematic diagram showing the configuration of a laser processing apparatus including a power supply device according to a first embodiment of the present disclosure. 図2は、本開示の実施形態1に係る電源装置の回路図である。FIG. 2 is a circuit diagram of the power supply device according to the first embodiment of the present disclosure. 図3は、指令電圧生成部のブロック図である。FIG. 3 is a block diagram of the command voltage generating unit. 図4は、スケール変更部のブロック図である。FIG. 4 is a block diagram of the scaler. 図5は、実施形態2の図4相当図である。FIG. 5 is a view corresponding to FIG.
 以下、本開示の実施形態について図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。 Below, embodiments of the present disclosure are described with reference to the drawings. The following description of the preferred embodiment is merely exemplary in nature and is in no way intended to limit the present invention, its applications, or its uses.
 (実施形態1)
 図1は、レーザ加工装置100の構成を示す。このレーザ加工装置100は、ワークWの切断や溶接加工等を行うのに使用される。レーザ加工装置100は、ガルバノスキャニング式レーザーヘッド10と、コントローラ20と、レーザ加工用の発光回路30と、本開示の実施形態1に係る電源装置40と、光ファイバ90とを備えている。
(Embodiment 1)
1 shows the configuration of a laser processing apparatus 100. This laser processing apparatus 100 is used to perform cutting, welding, and the like of a workpiece W. The laser processing apparatus 100 includes a galvano scanning type laser head 10, a controller 20, a light emitting circuit 30 for laser processing, a power supply device 40 according to the first embodiment of the present disclosure, and an optical fiber 90.
 ガルバノスキャニング式レーザーヘッド10は、発光回路30により出射されて光ファイバ90を通過したレーザ光LBをワークWに照射する。 The galvano scanning laser head 10 irradiates the workpiece W with laser light LB emitted by the light emitting circuit 30 and passing through the optical fiber 90.
 コントローラ20は、ガルバノスキャニング式レーザーヘッド10に内蔵された複数のガルバノミラー(図示せず)を動かすことにより、レーザ光LBの照射位置を制御する。 The controller 20 controls the irradiation position of the laser light LB by moving multiple galvanometer mirrors (not shown) built into the galvanometer scanning laser head 10.
 発光回路30は、図2に示すように、第1及び第2のノードN1,N2間に接続された1個以上のレーザダイオード31を備えている。なお、図2では、1個のレーザダイオード31を図示しているが、レーザダイオード31の個数は1個に限らず、複数のレーザダイオード31を第1及び第2のノードN1,N2間に互いに直列に接続してもよい。レーザダイオード31は、そのカソード側を第2のノードN2側に向けている。発光回路30により出射されたレーザ光LBは、光ファイバ90を通過し、ガルバノスキャニング式レーザーヘッド10によりワークWに照射される。 As shown in FIG. 2, the light-emitting circuit 30 includes one or more laser diodes 31 connected between the first and second nodes N1, N2. Although FIG. 2 illustrates one laser diode 31, the number of laser diodes 31 is not limited to one, and multiple laser diodes 31 may be connected in series between the first and second nodes N1, N2. The cathode side of the laser diode 31 faces the second node N2. The laser light LB emitted by the light-emitting circuit 30 passes through the optical fiber 90 and is irradiated onto the workpiece W by the galvano scanning laser head 10.
 電源装置40は、第1及び第2のノードN1,N2間の発光回路30に直流の供給電流を流す。具体的には、電源装置40は、第1整流回路41と、インバータ回路42と、コンデンサ43と、絶縁トランス44と、第2整流回路45と、リアクトル46と、電流検出部47と、電圧検出部48と、制御装置50とを有している。 The power supply device 40 supplies a DC current to the light-emitting circuit 30 between the first and second nodes N1 and N2. Specifically, the power supply device 40 has a first rectifier circuit 41, an inverter circuit 42, a capacitor 43, an isolation transformer 44, a second rectifier circuit 45, a reactor 46, a current detector 47, a voltage detector 48, and a control device 50.
 第1整流回路41は、交流電源200から出力される電源電圧を直流電圧に変換して1対の出力ノードON1,ON2から出力する。第1整流回路41は、例えばダイオードブリッジで構成される。 The first rectifier circuit 41 converts the power supply voltage output from the AC power supply 200 into a DC voltage and outputs it from a pair of output nodes ON1 and ON2. The first rectifier circuit 41 is configured, for example, as a diode bridge.
 インバータ回路42は、第1整流回路41の出力ノードON1,ON2の電圧に応じて第1交流電圧を生成する。具体的には、インバータ回路42は、第1整流回路41の1対の出力ノードON1,ON2間に互いに直列に接続された第1の上アームスイッチング素子42a、及び第1の下アームスイッチング素子42bと、第1整流回路41の1対の出力ノードON1,ON2間に互いに直列に接続された第2の上アームスイッチング素子42c、及び第2の下アームスイッチング素子42dとを有している。各スイッチング素子42a~42dには、還流ダイオード42eが並列に接続されている。インバータ回路42は、これらスイッチング素子42a~42dのスイッチング動作により、交流電源200から出力される電力を用いて第1交流電圧を生成する。なお、本実施形態1では、インバータ回路42として、4つのスイッチング素子42a~42dを有するものを使用したが、少なくとも1つのスイッチング素子を有するものであれば、4つ以外の個数のスイッチング素子を有するものを使用してもよい。 The inverter circuit 42 generates a first AC voltage according to the voltages of the output nodes ON1 and ON2 of the first rectifier circuit 41. Specifically, the inverter circuit 42 has a first upper arm switching element 42a and a first lower arm switching element 42b connected in series between a pair of output nodes ON1 and ON2 of the first rectifier circuit 41, and a second upper arm switching element 42c and a second lower arm switching element 42d connected in series between a pair of output nodes ON1 and ON2 of the first rectifier circuit 41. A freewheel diode 42e is connected in parallel to each of the switching elements 42a to 42d. The inverter circuit 42 generates a first AC voltage using the power output from the AC power source 200 by the switching operation of these switching elements 42a to 42d. In this embodiment 1, an inverter circuit 42 having four switching elements 42a to 42d is used, but an inverter circuit having a number of switching elements other than four may be used as long as it has at least one switching element.
 コンデンサ43は、第1整流回路41とインバータ回路42との間に、これら第1整流回路41とインバータ回路42と並列に接続されている。コンデンサ43は、第1整流回路41の1対の出力ノードON1,ON2間に接続されている。 The capacitor 43 is connected between the first rectifier circuit 41 and the inverter circuit 42 in parallel with the first rectifier circuit 41 and the inverter circuit 42. The capacitor 43 is connected between a pair of output nodes ON1, ON2 of the first rectifier circuit 41.
 絶縁トランス44は、インバータ回路42によって生成された前記第1交流電圧を、第2交流電圧に変換して出力する。絶縁トランス44は、一次コイル44aと、二次コイル44bとを有している。一次コイル44aの電圧が、第1交流電圧となり、二次コイル44bの電圧が、第2交流電圧となる。一次コイル44aは、第1の上アームスイッチング素子42a、及び第1の下アームスイッチング素子42bの接続点と、第2の上アームスイッチング素子42c、及び第2の下アームスイッチング素子42dの接続点との間に接続されている。 The isolation transformer 44 converts the first AC voltage generated by the inverter circuit 42 into a second AC voltage and outputs it. The isolation transformer 44 has a primary coil 44a and a secondary coil 44b. The voltage of the primary coil 44a becomes the first AC voltage, and the voltage of the secondary coil 44b becomes the second AC voltage. The primary coil 44a is connected between the connection point of the first upper arm switching element 42a and the first lower arm switching element 42b and the connection point of the second upper arm switching element 42c and the second lower arm switching element 42d.
 第2整流回路45は、絶縁トランス44によって出力された第2交流電圧に基づいて、直流の供給電流を発光回路30のレーザダイオード31に流す。具体的には、第2整流回路45は、第1及び第2のダイオード45a,45bを有している。第1のダイオード45aのアノードは、二次コイル44bの一端部に接続され、第2のダイオード45bのアノードは、二次コイル44bの他端部に接続されている。第1及び第2のダイオード45a,45bのカソードは、第1のノードN1に接続されている。 The second rectifier circuit 45 supplies a DC current to the laser diode 31 of the light-emitting circuit 30 based on the second AC voltage output by the isolation transformer 44. Specifically, the second rectifier circuit 45 has first and second diodes 45a and 45b. The anode of the first diode 45a is connected to one end of the secondary coil 44b, and the anode of the second diode 45b is connected to the other end of the secondary coil 44b. The cathodes of the first and second diodes 45a and 45b are connected to the first node N1.
 リアクトル46は、二次コイル44bの中途部と第2のノードN2との間に接続されている。 The reactor 46 is connected between the middle of the secondary coil 44b and the second node N2.
 電流検出部47は、発光回路30のレーザダイオード31を流れる供給電流を検出する。 The current detection unit 47 detects the supply current flowing through the laser diode 31 of the light emission circuit 30.
 電圧検出部48は、発光回路30の電圧を検出する。 The voltage detection unit 48 detects the voltage of the light emission circuit 30.
 制御装置50は、駆動制御部51と、指令電圧生成部52と、電圧異常検出部55とを有している。 The control device 50 has a drive control unit 51, a command voltage generation unit 52, and a voltage abnormality detection unit 55.
 駆動制御部51は、後で詳述する指令電圧生成部52によって生成される指令電圧Vcに基づいて、インバータ回路42のスイッチング素子42a~42dを制御する。ここで、指令電圧Vcは、第1交流電圧のデューティ比に対応する。第1交流電圧のデューティ比とは、インバータ回路42が絶縁トランス44に電圧を供給する期間のデューティ比であり、言い換えると、第1交流電圧の周期に対する第1交流電圧がハイレベルとなる期間の割合である。指令電圧Vcが高くなるほど、第1交流電圧のデューティ比は高くなる。また、第1及び第2のノードN1,N2間に直列に接続されるレーザダイオード31の個数が多くなるほど、必要とされるデューティ比は高くなる。駆動制御部51は、ハードウェア回路で構成されている。 The drive control unit 51 controls the switching elements 42a to 42d of the inverter circuit 42 based on a command voltage Vc generated by a command voltage generation unit 52, which will be described later in detail. Here, the command voltage Vc corresponds to the duty ratio of the first AC voltage. The duty ratio of the first AC voltage is the duty ratio of the period during which the inverter circuit 42 supplies a voltage to the isolation transformer 44, or in other words, the ratio of the period during which the first AC voltage is at a high level to the period of the first AC voltage. The higher the command voltage Vc, the higher the duty ratio of the first AC voltage. Also, the greater the number of laser diodes 31 connected in series between the first and second nodes N1 and N2, the higher the required duty ratio. The drive control unit 51 is configured with a hardware circuit.
 指令電圧生成部52は、前記電流検出部47の検出値Imと、所定の指令電流Icとの差分に基づいて、当該差分が小さくなるように前記指令電圧Vcを制御する。また、指令電圧生成部52は、指令電圧Vcの制御の応答ゲインを、複数種類の応答ゲインから選択信号Sselに応じて選択できる。 The command voltage generating unit 52 controls the command voltage Vc based on the difference between the detection value Im of the current detecting unit 47 and a predetermined command current Ic so that the difference becomes small. In addition, the command voltage generating unit 52 can select the response gain of the control of the command voltage Vc from multiple types of response gains in response to the selection signal Ssel.
 具体的には、指令電圧生成部52は、ハードウェア回路で構成されている。指令電圧生成部52は、図3にも示すように、導通制御部53及びスケール変更部54を有している。 Specifically, the command voltage generating unit 52 is configured as a hardware circuit. As shown in FIG. 3, the command voltage generating unit 52 has a conduction control unit 53 and a scale changing unit 54.
 導通制御部53は、電流検出部の検出値Imと、所定の指令電流Icとの差分に基づき、制御電圧Vdifを出力する。導通制御部53は、差動増幅器531と、第1及び第2の反転増幅器532,533とを有している。 The conduction control unit 53 outputs a control voltage Vdif based on the difference between the detection value Im of the current detection unit and a predetermined command current Ic. The conduction control unit 53 has a differential amplifier 531 and first and second inverting amplifiers 532 and 533.
 差動増幅器531は、電流検出部の検出値Imと、所定の指令電流Icとの差分を増幅して第1増幅信号を出力する。差動増幅器531は、第1~第4の抵抗531a~531dと第1のオペアンプ531eとを有している。 The differential amplifier 531 amplifies the difference between the detection value Im of the current detection unit and a predetermined command current Ic, and outputs a first amplified signal. The differential amplifier 531 has first to fourth resistors 531a to 531d and a first operational amplifier 531e.
 第1の抵抗531aの一端は、検出値Imが入力される入力端子に接続され、第1の抵抗531aの他端は、第1のオペアンプ531eの反転入力端子に接続されている。 One end of the first resistor 531a is connected to an input terminal to which the detection value Im is input, and the other end of the first resistor 531a is connected to an inverting input terminal of the first operational amplifier 531e.
 第2の抵抗531bの一端は、第1のオペアンプ531eの反転入力端子に接続され、第2の抵抗531bの他端は、第1のオペアンプ531eの出力端子に接続されている。 One end of the second resistor 531b is connected to the inverting input terminal of the first operational amplifier 531e, and the other end of the second resistor 531b is connected to the output terminal of the first operational amplifier 531e.
 第3の抵抗531cの一端は、指令電流Icが入力される入力端子に接続され、第3の抵抗531cの他端は、第1のオペアンプ531eの非反転入力端子に接続されている。 One end of the third resistor 531c is connected to the input terminal to which the command current Ic is input, and the other end of the third resistor 531c is connected to the non-inverting input terminal of the first operational amplifier 531e.
 第4の抵抗531dの一端は、第1のオペアンプ531eの非反転入力端子に接続され、第4の抵抗531dの他端は、接地されている。 One end of the fourth resistor 531d is connected to the non-inverting input terminal of the first operational amplifier 531e, and the other end of the fourth resistor 531d is grounded.
 第1のオペアンプ531eの出力は、前記第1増幅信号となる。 The output of the first operational amplifier 531e becomes the first amplified signal.
 第1の反転増幅器532は、前記第1増幅信号の極性を反転させて増幅するとともに積分し、第2増幅信号を出力する。第1の反転増幅器532は、第5及び第6の抵抗532a,532bと、コンデンサ532cと、第2のオペアンプ532dとを有している。 The first inverting amplifier 532 inverts the polarity of the first amplified signal, amplifies it, and integrates it to output a second amplified signal. The first inverting amplifier 532 has fifth and sixth resistors 532a and 532b, a capacitor 532c, and a second operational amplifier 532d.
 第5の抵抗532aの一端は、第1のオペアンプ531eの出力に接続され、第5の抵抗532aの他端は、第2のオペアンプ532dの反転入力端子に接続されている。 One end of the fifth resistor 532a is connected to the output of the first operational amplifier 531e, and the other end of the fifth resistor 532a is connected to the inverting input terminal of the second operational amplifier 532d.
 第6の抵抗532b及びコンデンサ532cは、第2のオペアンプ532dの反転入力端子と、第2のオペアンプ532dの出力端子との間に互いに直列に接続されている。 The sixth resistor 532b and the capacitor 532c are connected in series between the inverting input terminal of the second operational amplifier 532d and the output terminal of the second operational amplifier 532d.
 第2のオペアンプ532dの非反転入力端子は、接地されている。第2のオペアンプ532dの出力は、前記第2増幅信号となる。 The non-inverting input terminal of the second operational amplifier 532d is grounded. The output of the second operational amplifier 532d becomes the second amplified signal.
 第2の反転増幅器533は、前記第2増幅信号の極性を反転させて増幅し、前記制御電圧Vdifを出力する。第2の反転増幅器533は、第7及び第8の抵抗533a,533bと、第3のオペアンプ533cとを有している。 The second inverting amplifier 533 inverts the polarity of the second amplified signal, amplifies it, and outputs the control voltage Vdif. The second inverting amplifier 533 has seventh and eighth resistors 533a and 533b, and a third operational amplifier 533c.
 第7の抵抗533aの一端は、第2のオペアンプ532dの出力に接続され、第7の抵抗533aの他端は、第3のオペアンプ533cの反転入力端子に接続されている。 One end of the seventh resistor 533a is connected to the output of the second operational amplifier 532d, and the other end of the seventh resistor 533a is connected to the inverting input terminal of the third operational amplifier 533c.
 第8の抵抗533bの一端は、第3のオペアンプ533cの反転入力端子に接続され、第8の抵抗533bの他端は、第3のオペアンプ533cの出力端子に接続されている。 One end of the eighth resistor 533b is connected to the inverting input terminal of the third operational amplifier 533c, and the other end of the eighth resistor 533b is connected to the output terminal of the third operational amplifier 533c.
 第3のオペアンプ533cの非反転入力端子は、接地されている。第3のオペアンプ533cの出力は、前記制御電圧Vdifとなる。 The non-inverting input terminal of the third operational amplifier 533c is grounded. The output of the third operational amplifier 533c becomes the control voltage Vdif.
 スケール変更部54は、図4に示すように、第1及び第2の非反転増幅器541,542と、マルチプレクサ543とを有している。 As shown in FIG. 4, the scale change unit 54 has first and second non-inverting amplifiers 541 and 542, and a multiplexer 543.
 第1の非反転増幅器541は、第9及び第10の抵抗541a,541bと、第4のオペアンプ541cとを有している。 The first non-inverting amplifier 541 has ninth and tenth resistors 541a and 541b, and a fourth operational amplifier 541c.
 第9の抵抗541aの一端は、第4のオペアンプ541cの反転入力端子に接続され、第9の抵抗541aの他端は、接地されている。 One end of the ninth resistor 541a is connected to the inverting input terminal of the fourth operational amplifier 541c, and the other end of the ninth resistor 541a is grounded.
 第10の抵抗541bの一端は、第4のオペアンプ541cの反転入力端子に接続され、第10の抵抗541bの他端は、第4のオペアンプ541cの出力端子に接続されている。 One end of the tenth resistor 541b is connected to the inverting input terminal of the fourth operational amplifier 541c, and the other end of the tenth resistor 541b is connected to the output terminal of the fourth operational amplifier 541c.
 第4のオペアンプ541cの非反転入力端子には、電流検出部の検出値Imと指令電流Icとの差分に基づく前記制御電圧Vdifが入力される。第4のオペアンプ541cは、制御電圧Vdifを増幅して第1制御増幅信号Sda1を出力端子から出力する。 The control voltage Vdif based on the difference between the detection value Im of the current detection unit and the command current Ic is input to the non-inverting input terminal of the fourth operational amplifier 541c. The fourth operational amplifier 541c amplifies the control voltage Vdif and outputs the first control amplified signal Sda1 from the output terminal.
 第2の非反転増幅器542は、第11及び第12の抵抗542a,542bと、第5のオペアンプ542cとを有している。 The second non-inverting amplifier 542 has eleventh and twelfth resistors 542a, 542b and a fifth operational amplifier 542c.
 第11の抵抗542aの一端は、第5のオペアンプ542cの反転入力端子に接続され、第11の抵抗542aの他端は、接地されている。 One end of the eleventh resistor 542a is connected to the inverting input terminal of the fifth operational amplifier 542c, and the other end of the eleventh resistor 542a is grounded.
 第12の抵抗542bの一端は、第5のオペアンプ542cの反転入力端子に接続され、第12の抵抗542bの他端は、第5のオペアンプ542cの出力端子に接続されている。 One end of the twelfth resistor 542b is connected to the inverting input terminal of the fifth operational amplifier 542c, and the other end of the twelfth resistor 542b is connected to the output terminal of the fifth operational amplifier 542c.
 第5のオペアンプ542cの非反転入力端子には、前記制御電圧Vdifが入力される。第5のオペアンプ542cは、制御電圧Vdifを増幅して第2制御増幅信号Sda2を出力端子から出力する。 The control voltage Vdif is input to the non-inverting input terminal of the fifth operational amplifier 542c. The fifth operational amplifier 542c amplifies the control voltage Vdif and outputs the second control amplified signal Sda2 from its output terminal.
 ここで、第1及び第2の非反転増幅器541,542のゲイン(増幅率)は、互いに異なる1より大きい値である。詳しくは、第1の非反転増幅器541のゲインは、1より大きい第1のゲインに設定され、第2の非反転増幅器542のゲインは、第1のゲインより大きい第2のゲインに設定される。 Here, the gains (amplification rates) of the first and second non-inverting amplifiers 541, 542 are different values greater than 1. In detail, the gain of the first non-inverting amplifier 541 is set to a first gain greater than 1, and the gain of the second non-inverting amplifier 542 is set to a second gain greater than the first gain.
 マルチプレクサ543は、制御電圧Vdif、第1制御増幅信号Sda1、及び第2制御増幅信号Sda2(制御電圧Vdifに基づく複数種類の電圧)から、指令電圧Vcを、2ビットの選択信号Sselに応じて選択して出力する。 The multiplexer 543 selects and outputs the command voltage Vc from the control voltage Vdif, the first control amplification signal Sda1, and the second control amplification signal Sda2 (multiple types of voltages based on the control voltage Vdif) according to the 2-bit selection signal Ssel.
 電圧異常検出部55は、閾値更新信号Sthの入力を受け付ける。電圧異常検出部55は、この閾値更新信号Sthに応じた電圧閾値と、電圧検出部48の検出値Vmとに基づいて、電圧異常を検出する。詳しくは、電圧異常検出部55は、電流供給状態における電圧検出部48の検出値Vmが電圧閾値を下回ったときに、電圧異常を検出する。電圧異常が検出される場合、レーザダイオード31が故障している可能性がある。電圧閾値は、第1及び第2のノードN1,N2間に接続されるレーザダイオード31の個数に応じて、閾値更新信号Sthによって故障検出に適切な値に設定される。電圧異常検出部55の機能は、コンピュータにプログラム(ソフトウェア)を実行させることによって実現されてもよい。 The voltage abnormality detection unit 55 receives an input of a threshold update signal Sth. The voltage abnormality detection unit 55 detects a voltage abnormality based on a voltage threshold corresponding to this threshold update signal Sth and the detection value Vm of the voltage detection unit 48. In detail, the voltage abnormality detection unit 55 detects a voltage abnormality when the detection value Vm of the voltage detection unit 48 in a current supply state falls below the voltage threshold. If a voltage abnormality is detected, the laser diode 31 may be malfunctioning. The voltage threshold is set to an appropriate value for malfunction detection by the threshold update signal Sth according to the number of laser diodes 31 connected between the first and second nodes N1, N2. The function of the voltage abnormality detection unit 55 may be realized by having a computer execute a program (software).
 上述のように構成された電源装置40では、制御電圧Vdifと、制御電圧Vdifを互いに異なるゲインで増幅させた第1制御増幅信号Sda1及び第2制御増幅信号Sda2とのうちのいずれかを選択して指令電圧Vcとして使用する。指令電圧Vcを制御電圧Vdifとする場合、第1制御増幅信号Sda1とする場合及び第2制御増幅信号Sda2とする場合で、指令電圧Vcの制御の応答ゲインは互いに異なる。したがって、指令電圧生成部52は、指令電圧Vcの制御の応答ゲインを、複数種類の応答ゲインから選択信号Sselに応じて選択できる。詳しくは、第1制御増幅信号Sda1は、制御電圧Vdifの第1のゲイン倍、第2制御増幅信号Sda2は、制御電圧Vdifの第2のゲイン倍となる。したがって、第2制御増幅信号Sda2>第1制御増幅信号Sda1>制御電圧Vdifの関係が成り立つ。 In the power supply device 40 configured as described above, one of the control voltage Vdif and the first control amplified signal Sda1 and the second control amplified signal Sda2, which are obtained by amplifying the control voltage Vdif with different gains, is selected and used as the command voltage Vc. When the command voltage Vc is the control voltage Vdif, when it is the first control amplified signal Sda1, and when it is the second control amplified signal Sda2, the response gains of the control of the command voltage Vc are different from one another. Therefore, the command voltage generating unit 52 can select the response gain of the control of the command voltage Vc from a plurality of response gains in response to the selection signal Ssel. In more detail, the first control amplified signal Sda1 is a first gain multiplied by the control voltage Vdif, and the second control amplified signal Sda2 is a second gain multiplied by the control voltage Vdif. Therefore, the relationship of second control amplified signal Sda2>first control amplified signal Sda1>control voltage Vdif holds.
 本実施形態1では、電源装置40を、例えば、出力が400W、800W、1200Wの発光回路30への電流供給に採用可能である。発光回路30の出力が大きくなるほど、第1及び第2のノードN1,N2間に接続されるレーザダイオード31の個数は多くなる。発光回路30の出力を400Wとするモードでは、制御電圧Vdifを指令電圧Vcとして選択し、発光回路30の出力を800Wとするモードでは、第1制御増幅信号Sda1を指令電圧Vcとして選択し、発光回路30の出力を1200Wとするモードでは、第2制御増幅信号Sda2を指令電圧Vcとして選択するように、選択信号Sselを指令電圧生成部52に入力する。第1及び第2のゲインは、例えば、発光回路30の出力を400W、800W、1200Wとする各モードでの指令電圧Vcのとり得る最高値の比が、これら3つのモードでの発光回路30の出力の比、すなわち1:2:3となるように設定される。例えば、第1のゲインは2、第2のゲインは3に設定される。 In this embodiment 1, the power supply device 40 can be used to supply current to a light-emitting circuit 30 having an output of, for example, 400 W, 800 W, or 1200 W. The larger the output of the light-emitting circuit 30, the greater the number of laser diodes 31 connected between the first and second nodes N1, N2. A selection signal Ssel is input to the command voltage generating unit 52 so that in a mode in which the output of the light-emitting circuit 30 is 400 W, the control voltage Vdif is selected as the command voltage Vc, in a mode in which the output of the light-emitting circuit 30 is 800 W, the first control amplification signal Sda1 is selected as the command voltage Vc, and in a mode in which the output of the light-emitting circuit 30 is 1200 W, the second control amplification signal Sda2 is selected as the command voltage Vc. The first and second gains are set so that the ratio of the maximum possible values of the command voltage Vc in each mode, where the output of the light-emitting circuit 30 is 400 W, 800 W, and 1200 W, is the ratio of the output of the light-emitting circuit 30 in these three modes, i.e., 1:2:3. For example, the first gain is set to 2 and the second gain is set to 3.
 また、発光回路30の出力を800Wとするモードでの前記電圧閾値が、発光回路30の出力を1200Wとするモードでの前記電圧閾値よりも小さく、かつ発光回路30の出力を400Wとするモードでの前記電圧閾値が、発光回路30の出力を800Wとするモードでの前記電圧閾値よりも小さくなるように、閾値更新信号Sthを電圧異常検出部55に入力する。 The threshold update signal Sth is input to the voltage abnormality detection unit 55 so that the voltage threshold in the mode in which the output of the light-emitting circuit 30 is 800 W is smaller than the voltage threshold in the mode in which the output of the light-emitting circuit 30 is 1200 W, and the voltage threshold in the mode in which the output of the light-emitting circuit 30 is 400 W is smaller than the voltage threshold in the mode in which the output of the light-emitting circuit 30 is 800 W.
 制御電圧Vdifのとり得る最高値は、選択信号Sselに応じて変化しない。しかし、第1制御増幅信号Sda1のとり得る最高値は、制御電圧Vdifのとり得る最高値の第1のゲイン倍となる。つまり、第1制御増幅信号Sda1のとり得る最高値は、制御電圧Vdifのとり得る最高値よりも大きくなる。同様に、第2制御増幅信号Sda2のとり得る最高値は、制御電圧Vdifのとり得る最高値の第2のゲイン倍となる。つまり、第2制御増幅信号Sda2のとり得る最高値は、第1制御増幅信号Sda1のとり得る最高値、及び制御電圧Vdifのとり得る最高値よりも大きくなる。このように、指令電圧Vcのとり得る最大値は、選択信号Sselに応じて切り換わる。 The maximum possible value of the control voltage Vdif does not change in response to the selection signal Ssel. However, the maximum possible value of the first control amplified signal Sda1 is the first gain multiplied by the maximum possible value of the control voltage Vdif. In other words, the maximum possible value of the first control amplified signal Sda1 is greater than the maximum possible value of the control voltage Vdif. Similarly, the maximum possible value of the second control amplified signal Sda2 is the second gain multiplied by the maximum possible value of the control voltage Vdif. In other words, the maximum possible value of the second control amplified signal Sda2 is greater than the maximum possible value of the first control amplified signal Sda1 and the maximum possible value of the control voltage Vdif. In this way, the maximum possible value of the command voltage Vc switches in response to the selection signal Ssel.
 指令電圧Vcは、第1交流電圧のデューティ比が高くなるほど高くなる。したがって、第1交流電圧のデューティ比のとり得る最高値も、選択信号Sselに応じて切り換わる。具体的には、発光回路30の出力を800Wとするモードでは、発光回路30の出力を1200Wとするモードよりも、第1交流電圧のデューティ比のとり得る最高値が低くなる。また、発光回路30の出力を400Wとするモードでは、発光回路30の出力を800Wとするモードよりも、第1交流電圧のデューティ比のとり得る最高値が低くなる。発光回路30の出力を1200Wとするモードでは、第1交流電圧のデューティ比の最高値を使用可能であり、発光回路30の出力を800W、400Wとするモードでは、第1交流電圧のデューティ比が、最高値の2/3、1/3以下に制限される。また、第1交流電圧の実効値のとり得る最高値も、選択信号Sselに応じて切り換わる。上記3つのモードで指令電圧Vcのとり得る最高値の比が、3つのモードでの発光回路30の出力の比となる場合、3つのモードで第1交流電圧のデューティ比のとり得る最高値の比も、3つのモードでの発光回路30の出力の比となる。 The higher the duty ratio of the first AC voltage, the higher the command voltage Vc. Therefore, the maximum possible value of the duty ratio of the first AC voltage also switches according to the selection signal Ssel. Specifically, in a mode in which the output of the light-emitting circuit 30 is 800 W, the maximum possible value of the duty ratio of the first AC voltage is lower than in a mode in which the output of the light-emitting circuit 30 is 1200 W. In a mode in which the output of the light-emitting circuit 30 is 400 W, the maximum possible value of the duty ratio of the first AC voltage is lower than in a mode in which the output of the light-emitting circuit 30 is 800 W. In a mode in which the output of the light-emitting circuit 30 is 1200 W, the maximum value of the duty ratio of the first AC voltage can be used, and in a mode in which the output of the light-emitting circuit 30 is 800 W or 400 W, the duty ratio of the first AC voltage is limited to 2/3 or 1/3 or less of the maximum value. In addition, the maximum possible value of the effective value of the first AC voltage also switches according to the selection signal Ssel. If the ratio of the maximum possible values of the command voltage Vc in the above three modes is the ratio of the output of the light-emitting circuit 30 in the three modes, the ratio of the maximum possible values of the duty ratio of the first AC voltage in the three modes is also the ratio of the output of the light-emitting circuit 30 in the three modes.
 したがって、本実施形態1によると、適切な選択信号Sselを指令電圧生成部52に入力することにより、指令電圧生成部52に、発光回路30に適した応答ゲインを選択させることができる。例えば、発光回路30のレーザダイオード31の個数が比較的多いときには、指令電圧Vcの制御の応答ゲインを比較的大きくし、発光回路30のレーザダイオード31の個数が比較的少ないときには、指令電圧Vcの制御の応答ゲインを比較的小さくできる。したがって、電源装置40を、直列に接続されたレーザダイオード31の個数が異なる複数種類の発光回路30への電流供給に採用しやすくなる。 Therefore, according to the first embodiment, by inputting an appropriate selection signal Ssel to the control voltage generating unit 52, it is possible to cause the control voltage generating unit 52 to select a response gain suitable for the light-emitting circuit 30. For example, when the number of laser diodes 31 in the light-emitting circuit 30 is relatively large, the response gain for the control of the command voltage Vc can be made relatively large, and when the number of laser diodes 31 in the light-emitting circuit 30 is relatively small, the response gain for the control of the command voltage Vc can be made relatively small. Therefore, the power supply device 40 can be easily used to supply current to multiple types of light-emitting circuits 30 having different numbers of laser diodes 31 connected in series.
 また、適切な閾値更新信号Sthを電圧異常検出部55に入力することにより、電圧異常検出部55による電圧異常の検出に用いる電圧閾値を、発光回路30に適した値に設定できる。例えば、発光回路30のレーザダイオード31の個数が比較的多いときには、電圧閾値を比較的高くし、発光回路30のレーザダイオード31の個数が比較的少ないときには、電圧閾値を比較的低くできる。したがって、電源装置40を、直列に接続されたレーザダイオード31の個数が異なる複数種類の発光回路30への電流供給に採用しやすくなる。 In addition, by inputting an appropriate threshold update signal Sth to the voltage abnormality detection unit 55, the voltage threshold used for detecting a voltage abnormality by the voltage abnormality detection unit 55 can be set to a value suitable for the light-emitting circuit 30. For example, when the number of laser diodes 31 in the light-emitting circuit 30 is relatively large, the voltage threshold can be set relatively high, and when the number of laser diodes 31 in the light-emitting circuit 30 is relatively small, the voltage threshold can be set relatively low. This makes it easier to use the power supply device 40 to supply current to multiple types of light-emitting circuits 30 that have different numbers of laser diodes 31 connected in series.
 また、駆動制御部51及び指令電圧生成部52をハードウェア回路で構成したので、駆動制御部51及び指令電圧生成部52の機能を、コンピュータにプログラムを実行させることにより実現する場合に比べ、インバータ回路42の動作の応答を高速化でき、発光回路30を流れる供給電流が指令電流Icに近づくのにかかる時間を短縮できる。したがって、高速な電流応答を実現でき、レーザ光LBを高速に制御可能なガルバノスキャニング式レーザーヘッド10に適用することで高度なレーザ加工が実現可能になる。 In addition, because the drive control unit 51 and the command voltage generation unit 52 are configured as hardware circuits, the response of the operation of the inverter circuit 42 can be made faster and the time it takes for the supply current flowing through the light emission circuit 30 to approach the command current Ic can be shortened compared to when the functions of the drive control unit 51 and the command voltage generation unit 52 are realized by having a computer execute a program. Therefore, a high-speed current response can be realized, and by applying this to a galvano scanning type laser head 10 that can control the laser light LB at high speed, advanced laser processing can be realized.
 (実施形態2)
 図5は、実施形態2の図4相当図である。本実施形態2では、スケール変更部54が、第1~第4の分圧抵抗544a~544dと、選択回路545とを備えている。
(Embodiment 2)
5 is a diagram corresponding to FIG 4 of embodiment 2. In embodiment 2, the scale change section 54 includes first to fourth voltage dividing resistors 544a to 544d and a selection circuit 545.
 第1の分圧抵抗544aの一端には、前記制御電圧Vdifが入力されている。第1の分圧抵抗544aの他端の電圧が、前記指令電圧Vcとなる。 The control voltage Vdif is input to one end of the first voltage dividing resistor 544a. The voltage at the other end of the first voltage dividing resistor 544a becomes the command voltage Vc.
 第2~第4の分圧抵抗544b~544dの一端は、第1の分圧抵抗544aの他端に接続されている。 One end of the second to fourth voltage dividing resistors 544b to 544d is connected to the other end of the first voltage dividing resistor 544a.
 選択回路545は、第2~第4の分圧抵抗544b~544d(複数の分圧抵抗)から、指令電圧Vcを取得するために使用する0~3個の分圧抵抗544b~544dを選択信号Sselに応じて選択する。選択回路545は、第1~第3のスイッチ545a~545cを有している。第1~第3のスイッチ545a~545cのオンオフは、3ビットの選択信号Sselによって制御される。 The selection circuit 545 selects 0 to 3 voltage dividing resistors 544b to 544d from the second to fourth voltage dividing resistors 544b to 544d (multiple voltage dividing resistors) in response to a selection signal Ssel to be used to obtain the command voltage Vc. The selection circuit 545 has first to third switches 545a to 545c. The on/off of the first to third switches 545a to 545c is controlled by the 3-bit selection signal Ssel.
 第1のスイッチ545aは、第2の分圧抵抗544bの他端と、基準電位点(グランド)との間に接続される。 The first switch 545a is connected between the other end of the second voltage dividing resistor 544b and the reference potential point (ground).
 第2のスイッチ545bは、第3の分圧抵抗544cの他端と、基準電位点(グランド)との間に接続される。 The second switch 545b is connected between the other end of the third voltage dividing resistor 544c and the reference potential point (ground).
 第3のスイッチ545cは、第4の分圧抵抗544dの他端と、基準電位点(グランド)との間に接続される。 The third switch 545c is connected between the other end of the fourth voltage dividing resistor 544d and the reference potential point (ground).
 したがって、スケール変更部54は、第1~第4の分圧抵抗544a~544dのうち、第1の分圧抵抗544aと、選択回路545によって選択された分圧抵抗544b~544dとを使用して制御電圧Vdifを分圧することによって前記指令電圧Vcを取得できる。 Therefore, the scale change unit 54 can obtain the command voltage Vc by dividing the control voltage Vdif using the first voltage dividing resistor 544a and the voltage dividing resistors 544b to 544d selected by the selection circuit 545 out of the first to fourth voltage dividing resistors 544a to 544d.
 その他の構成及び効果は、実施形態1と同じであるので、同一の構成には同一の符号を付してその詳細な説明を省略する。 The other configurations and effects are the same as those of the first embodiment, so the same components are given the same reference numerals and detailed descriptions are omitted.
 本実施形態2によると、スケール変更部54にオペアンプを設けなくてよいので、指令電圧生成部52の製造コストを削減できる。また、実施形態1のように制御電圧Vdifを増幅する複数のオペアンプ541c,542cを設ける場合に比べ、分圧抵抗544a~544dの抵抗値の組み合わせを変更することにより、より柔軟に応答ゲインを調整できる。 According to the second embodiment, there is no need to provide an operational amplifier in the scale change unit 54, which reduces the manufacturing costs of the command voltage generation unit 52. In addition, compared to the first embodiment, which provides multiple operational amplifiers 541c, 542c that amplify the control voltage Vdif, the response gain can be adjusted more flexibly by changing the combination of resistance values of the voltage-dividing resistors 544a to 544d.
 なお、上記実施形態1では、スケール変更部54に第4及び第5のオペアンプ541c,542cを設けたが、第4のオペアンプ541cだけを設け、マルチプレクサ543が、制御電圧Vdifと、第1制御増幅信号Sda1とのうちの一方を指令電圧Vcとして選択するようにしてもよい。 In the above embodiment 1, the scale change unit 54 is provided with the fourth and fifth operational amplifiers 541c and 542c, but it is also possible to provide only the fourth operational amplifier 541c, and have the multiplexer 543 select one of the control voltage Vdif and the first control amplification signal Sda1 as the command voltage Vc.
 また、上記実施形態1では、指令電圧Vcの応答ゲインを3種類の応答ゲインから選択できるようにしたが、2種類又は4種類以上の応答ゲインから選択できるようにしてもよい。上記実施形態1では、指令電圧Vcを、制御電圧Vdif、第1制御増幅信号Sda1、及び第2制御増幅信号Sda2の3つから選択できるようにしたが、制御電圧Vdif及び第1制御増幅信号Sda1の2つから選択できるようにしてもよい。あるいは、指令電圧Vcを、第1制御増幅信号Sda1、及び第2制御増幅信号Sda2の2つから選択できるようにしてもよい。また、電源装置40を、出力が400W、800Wの発光回路30への電流供給だけに採用できるようにしてもよい。また、電源装置40を、400W、800W、1200W以外の発光回路30への電流供給に採用できるようにしてもよい。 In the above embodiment 1, the response gain of the command voltage Vc can be selected from three response gains, but it may be selected from two or four or more response gains. In the above embodiment 1, the command voltage Vc can be selected from three, the control voltage Vdif, the first control amplification signal Sda1, and the second control amplification signal Sda2, but it may be selected from two, the control voltage Vdif and the first control amplification signal Sda1. Alternatively, the command voltage Vc can be selected from two, the first control amplification signal Sda1 and the second control amplification signal Sda2. The power supply device 40 may be adapted to supply current only to light-emitting circuits 30 with outputs of 400 W and 800 W. The power supply device 40 may be adapted to supply current to light-emitting circuits 30 other than 400 W, 800 W, and 1200 W.
 本開示の電源装置及びそれを備えたレーザ加工装置は、電源装置を、直列に接続されたレーザダイオードの個数が異なる複数種類の発光回路への電流供給に採用しやすくでき、少なくとも1つのレーザダイオードを有するレーザ加工用の発光回路に電流を流す電源装置、及びそれを備えたレーザ加工装置として有用である。 The power supply device and laser processing device equipped with the same disclosed herein can be easily used to supply current to multiple types of light-emitting circuits having different numbers of laser diodes connected in series, and are useful as a power supply device that supplies current to a light-emitting circuit for laser processing having at least one laser diode, and as a laser processing device equipped with the same.
10   ガルバノスキャニング式レーザーヘッド
30   発光回路
31   レーザダイオード
40   電源装置
42   インバータ回路
42a~42d   スイッチング素子
44   絶縁トランス
45   第2整流回路
47   電流検出部
48   電圧検出部
51   駆動制御部
52   指令電圧生成部
55   電圧異常検出部
90   光ファイバ
100   レーザ加工装置
200   交流電源
541c   第4のオペアンプ
542c   第5のオペアンプ
543   マルチプレクサ
544b   第2の分圧抵抗
544c   第3の分圧抵抗
544d   第4の分圧抵抗
545   選択回路
LB   レーザ光
W   ワーク
Im   検出値
Ic   指令電流
Vc   指令電圧
Vm   検出値
Vdif   制御電圧
Ssel   選択信号
10 Galvano scanning type laser head 30 Light emission circuit 31 Laser diode 40 Power supply device 42 Inverter circuits 42a to 42d Switching element 44 Isolation transformer 45 Second rectifier circuit 47 Current detection unit 48 Voltage detection unit 51 Drive control unit 52 Command voltage generation unit 55 Voltage abnormality detection unit 90 Optical fiber 100 Laser processing device 200 AC power supply 541c Fourth operational amplifier 542c Fifth operational amplifier 543 Multiplexer 544b Second voltage dividing resistor 544c Third voltage dividing resistor 544d Fourth voltage dividing resistor 545 Selection circuit LB Laser light W Work Im Detection value Ic Command current Vc Command voltage Vm Detection value Vdif Control voltage Ssel Selection signal

Claims (7)

  1.  1個のレーザダイオード、又は互いに直列に接続された複数のレーザダイオードを有するレーザ加工用の発光回路に電流を流す電源装置であって、
     少なくとも1つのスイッチング素子を有し、前記スイッチング素子のスイッチング動作により、交流電源からの電力を用いて第1交流電圧を生成するインバータ回路と、
     前記インバータ回路によって生成された前記第1交流電圧を、第2交流電圧に変換して出力する絶縁トランスと、
     前記絶縁トランスによって出力された前記第2交流電圧に基づいて、直流電流を前記発光回路に流す整流回路と、
     前記直流電流を検出する電流検出部と、
     指令電圧に基づいて、前記インバータ回路の前記スイッチング素子を制御する駆動制御部と、
     前記電流検出部の検出値と所定の指令電流との差分に基づいて、当該差分が小さくなるように前記指令電圧を制御し、かつ当該指令電圧の制御の応答ゲインを、複数種類の応答ゲインから選択信号に応じて選択できる指令電圧生成部とを備えたことを特徴とする電源装置。
    A power supply device for supplying current to a light emitting circuit for laser processing having one laser diode or a plurality of laser diodes connected in series with each other,
    an inverter circuit having at least one switching element and configured to generate a first AC voltage using power from an AC power source by a switching operation of the switching element;
    an isolation transformer that converts the first AC voltage generated by the inverter circuit into a second AC voltage and outputs the second AC voltage;
    a rectifier circuit that causes a DC current to flow through the light-emitting circuit based on the second AC voltage output by the isolation transformer;
    A current detection unit that detects the DC current;
    A drive control unit that controls the switching elements of the inverter circuit based on a command voltage;
    a command voltage generating unit that controls the command voltage based on a difference between a detection value of the current detection unit and a predetermined command current so as to reduce the difference, and that can select a response gain for control of the command voltage from a plurality of response gains in response to a selection signal.
  2.  請求項1に記載の電源装置において、
     前記第1交流電圧のデューティ比のとり得る最高値が、前記選択信号に応じて切り換わることを特徴とする電源装置。
    2. The power supply device according to claim 1,
    A power supply device, characterized in that the maximum value that the duty ratio of the first AC voltage can take is switched in response to the selection signal.
  3.  請求項1に記載の電源装置において、
     前記発光回路の電圧を検出する電圧検出部と、
     入力に応じた電圧閾値と、前記電圧検出部の検出値とに基づいて、電圧異常を検出する電圧異常検出部とをさらに備えた電源装置。
    2. The power supply device according to claim 1,
    a voltage detection unit that detects a voltage of the light emission circuit;
    The power supply device further includes a voltage abnormality detection unit that detects a voltage abnormality based on a voltage threshold value according to an input and a detection value of the voltage detection unit.
  4.  請求項1に記載の電源装置において、
     前記指令電圧生成部は、ハードウェア回路で構成されていることを特徴とする電源装置。
    2. The power supply device according to claim 1,
    The power supply device, wherein the command voltage generating unit is configured with a hardware circuit.
  5.  請求項1に記載の電源装置において、
     前記指令電圧生成部は、
     前記差分に基づく制御電圧を増幅して出力する少なくとも1つのオペアンプと、
     前記少なくとも1つのオペアンプの出力電圧を含む前記制御電圧に基づく複数種類の電圧から、前記指令電圧を前記選択信号に応じて選択するマルチプレクサとを備えたことを特徴とする電源装置。
    2. The power supply device according to claim 1,
    The command voltage generating unit is
    at least one operational amplifier that amplifies and outputs a control voltage based on the difference;
    a multiplexer that selects the command voltage from a plurality of voltages based on the control voltage including an output voltage of the at least one operational amplifier in response to the selection signal.
  6.  請求項1に記載の電源装置において、
     前記指令電圧生成部は、
     複数の分圧抵抗と、
     前記指令電圧を取得するために使用する分圧抵抗を、前記複数の分圧抵抗から前記選択信号に応じて選択する選択回路とを有し、
     前記差分に基づく制御電圧を、前記選択回路によって選択された分圧抵抗を使用して分圧することによって前記指令電圧を取得することを特徴とする電源装置。
    2. The power supply device according to claim 1,
    The command voltage generating unit is
    A plurality of voltage dividing resistors;
    a selection circuit that selects a voltage dividing resistor to be used for obtaining the command voltage from the plurality of voltage dividing resistors in response to the selection signal;
    a control voltage based on the difference is divided by a voltage dividing resistor selected by the selection circuit, thereby obtaining the command voltage.
  7.  請求項1~6のいずれか1項に記載の電源装置と、
     前記発光回路と、
     前記発光回路により出射されたレーザ光を通過させる光ファイバと、
     前記光ファイバを通過したレーザ光を出射するガルバノスキャニング式レーザーヘッドとを備えたレーザ加工装置。
    A power supply device according to any one of claims 1 to 6;
    The light emitting circuit;
    an optical fiber through which the laser light emitted by the light emitting circuit passes;
    a galvano scanning type laser head that emits laser light that has passed through the optical fiber.
PCT/JP2023/032404 2022-11-02 2023-09-05 Power supply device and laser processing device provided with same WO2024095603A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-176620 2022-11-02
JP2022176620 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024095603A1 true WO2024095603A1 (en) 2024-05-10

Family

ID=90930165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032404 WO2024095603A1 (en) 2022-11-02 2023-09-05 Power supply device and laser processing device provided with same

Country Status (1)

Country Link
WO (1) WO2024095603A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130708A (en) * 2008-11-25 2010-06-10 Mitsubishi Electric Corp Switching power supply device
JP2012152053A (en) * 2011-01-20 2012-08-09 Murata Mfg Co Ltd Switching power supply and led illumination device
WO2018193506A1 (en) * 2017-04-17 2018-10-25 三菱電機株式会社 Laser diode driving power source device and laser machining apparatus
JP2021069242A (en) * 2019-10-28 2021-04-30 三菱電機株式会社 Power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130708A (en) * 2008-11-25 2010-06-10 Mitsubishi Electric Corp Switching power supply device
JP2012152053A (en) * 2011-01-20 2012-08-09 Murata Mfg Co Ltd Switching power supply and led illumination device
WO2018193506A1 (en) * 2017-04-17 2018-10-25 三菱電機株式会社 Laser diode driving power source device and laser machining apparatus
JP2021069242A (en) * 2019-10-28 2021-04-30 三菱電機株式会社 Power conversion device

Similar Documents

Publication Publication Date Title
JP4308812B2 (en) Light emitting element driving device
US10224686B2 (en) Laser apparatus, EUV light generation system, and method of controlling laser apparatus
JP2009049018A (en) X-ray generator
US6330258B1 (en) Laser apparatus
WO2024095603A1 (en) Power supply device and laser processing device provided with same
JP2008117751A (en) Electron beam system for material processing, amplifier for carrying out high-speed drive of induction element, and image generating device for electron beam system for material processing
JP6917566B2 (en) Drive circuit and processing equipment
US11316429B2 (en) Switching regulator circuit to convert input DC voltage to output DC voltage with setting a switching frequency according to load current
JP2009135281A (en) Semiconductor device, semiconductor laser driving device using the semiconductor device, and image forming apparatus
WO2015145742A1 (en) Laser-diode drive circuit and laser device
KR100453493B1 (en) Solid-state laser device
JP2021082958A (en) Drive circuit
JP2016021506A (en) Laser light source controller and laser pointer
US20230098998A1 (en) Drive circuit and light source device
JP2007287936A (en) Optical output control circuit, optical communication device, and method and program for controlling optical output
JP2009239032A (en) Laser diode driving circuit and laser welding power source
JP4170998B2 (en) Temperature control device
JP7407410B2 (en) Laser oscillator and direct diode laser processing equipment equipped with it
JP7393982B2 (en) Light-emitting element drive circuit, light-emitting device, and light-emitting element driving method
US10761470B2 (en) Printing apparatus and light-emitting element driving device
JPH01183044A (en) Probe current stabilizing device
JP2006324124A (en) Electron beam generating device and tft array substrate inspection device
JP2004119973A (en) Light-emitting diode driver and image forming device including same
JP2011210961A (en) Semiconductor light-emitting element control circuit
JP2005123536A (en) Laser driving circuit