WO2024095465A1 - 機械式ブレーキ装置を駆動するブレーキ駆動装置 - Google Patents

機械式ブレーキ装置を駆動するブレーキ駆動装置 Download PDF

Info

Publication number
WO2024095465A1
WO2024095465A1 PCT/JP2022/041209 JP2022041209W WO2024095465A1 WO 2024095465 A1 WO2024095465 A1 WO 2024095465A1 JP 2022041209 W JP2022041209 W JP 2022041209W WO 2024095465 A1 WO2024095465 A1 WO 2024095465A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
brake
positive
negative
side switch
Prior art date
Application number
PCT/JP2022/041209
Other languages
English (en)
French (fr)
Inventor
慶太郎 稲垣
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/041209 priority Critical patent/WO2024095465A1/ja
Publication of WO2024095465A1 publication Critical patent/WO2024095465A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes

Definitions

  • This disclosure relates to a brake drive device that drives a mechanical brake device.
  • non-excitation actuated mechanical brake devices are widely used to brake rotating motors or to fix stopped motors so that they do not rotate.
  • a switch is connected between the brake coil of the mechanical brake device and the power supply. When the switch is turned on, current flows from the power supply to the brake coil, and the brake applied by the mechanical brake device is released. When the switch is turned off, no current flows from the power supply to the brake coil, and the brake of the mechanical brake device is applied.
  • the brake drive device includes a positive switch that closes a positive electric circuit between the positive terminal of the power source and the positive terminal of a non-excitation operating type mechanical brake device by turning on and opens the positive electric circuit by turning off, a negative switch that closes a negative electric circuit between the negative terminal of the power source and the negative terminal of the mechanical brake device by turning on and opens the negative electric circuit by turning off, and a switch control unit that outputs an on signal for turning on the positive switch and an off signal for turning off the negative switch, and when activating the brake by the mechanical brake device, the switch control unit outputs an off signal to the positive switch and the negative switch, and when releasing the brake by the mechanical brake device, outputs an on signal to the positive switch and the negative switch at the start of brake release, and thereafter, while maintaining the release of the brake by the mechanical brake device, alternately switches between outputting PWM-controlled on and off signals to the positive switch and outputting PWM-controlled on and off signals to the negative switch at predetermined time intervals.
  • FIG. 1 is a circuit diagram showing a brake driving device according to a first embodiment of the present disclosure.
  • 1 is a cross-sectional view showing a structure of a mechanical brake device controlled by a brake driving device according to the first and second embodiments of the present disclosure, illustrating a state in which a brake is applied to a motor.
  • FIG. 1 is a cross-sectional view showing a structure of a mechanical brake device controlled by a brake driving device according to the first and second embodiments of the present disclosure, illustrating a state in which the brake for a motor is released.
  • FIG. 5 is a timing chart illustrating activation and release of a brake of a mechanical brake device in the brake drive device according to the first and second embodiments of the present disclosure.
  • FIG. 5 is a timing chart illustrating waveforms when a positive-side switch and a negative-side switch of the brake driving device according to the first and second embodiments of the present disclosure are normal.
  • 4 is a timing chart illustrating waveforms when a short-circuit fault occurs in a positive-side switch of the brake driving device according to the first and second embodiments of the present disclosure.
  • 4 is a timing chart illustrating waveforms when a positive-side switch of the brake driving device according to the first and second embodiments of the present disclosure experiences an open-circuit failure;
  • 4 is a flowchart showing an operation related to a fault diagnosis in the brake driving device according to the first embodiment of the present disclosure.
  • FIG. 4 is a circuit diagram showing a brake driving device according to a second embodiment of the present disclosure.
  • 10 is a flowchart showing an operation related to a fault diagnosis in a brake driving device according to a second embodiment of the present disclosure.
  • a brake drive device that drives a mechanical brake device of an embodiment will be described with reference to the drawings.
  • components having the same or similar functions will be given the same reference numerals. Duplicate descriptions of these components may be omitted.
  • “on” of a switch means that the electric circuit in which the switch is provided is closed; that is, when the switch is turned on, the electric circuit in which the switch is provided is connected and in a closed state.
  • “off” of a switch means that the electric circuit in which the switch is provided is opened; that is, when the switch is turned off, the electric circuit in which the switch is provided is interrupted and in an open state.
  • FIG. 1 is a circuit diagram showing a brake driving device according to a first embodiment of the present disclosure.
  • the mechanical brake device 2 controlled by the brake drive device 1 is a non-excitation actuation type brake device that activates the brake when the brake coil 25 is not excited and no voltage is applied to the brake coil 25, and releases the brake when the brake coil 25 is excited and a voltage is applied to the brake coil 25.
  • Figure 2 is a cross-sectional view showing the structure of the mechanical brake device controlled by the brake drive device according to the first and second embodiments of the present disclosure, showing a state in which a brake is applied to the motor.
  • Figure 3 is a cross-sectional view showing the structure of the mechanical brake device controlled by the brake drive device according to the first and second embodiments of the present disclosure, showing a state in which the brake to the motor is released.
  • the mechanical brake device 2 shown in Figures 2 and 3 is applicable to the first and second embodiments.
  • a friction plate 21 is disposed between the armature 22 and the end plate 23.
  • a hub 32 is splined to the friction plate 21.
  • the hub 32 and the motor shaft 31 are integrated, for example, by shrink fitting, so that the friction plate 21 also rotates in conjunction with the rotation of the motor shaft 31.
  • the end plate 23 and the spacer 27 are connected by a bolt 28, and the armature 22 is connected to the spacer 27 so that it can move toward and away from the friction plate 21.
  • a spring 24 and a brake coil 25 are provided in the core 26. As shown in FIG.
  • the mechanical brake device 2 is controlled by a brake drive device 1.
  • the brake drive device 1 according to the first embodiment of the present disclosure includes a power source 10, a positive switch 11, a negative switch 12, a switch control unit 13, a detection unit 14, a diagnosis unit 15, an alarm output unit 16, and a surge absorber 18.
  • the brake drive device 1 includes a power source 10, a positive switch 11, a negative switch 12, a switch control unit 13, a detection unit 14, a diagnosis unit 15, an alarm output unit 16, and a surge absorber 18.
  • FIG. 1 only the brake coil 25 of the mechanical brake device 2 is shown.
  • the power supply 10 outputs a DC voltage.
  • the power supply 10 is composed of, for example, a rectifier that converts AC voltage to DC voltage, a switching regulator, or a battery.
  • the power supply 10 outputs a DC voltage of 24 V, but it may also be a power supply that outputs a DC voltage of another voltage value (for example, 15 V, 12 V, 5 V, etc.).
  • the positive side switch 11 and the negative side switch 12 are connected in series to the brake coil 25 of the mechanical brake device 2.
  • the positive side switch 11 is provided to open (disconnect) or close (connect) the positive side electric circuit 43P between the positive terminal 41P of the power source 10 and the positive terminal 42P of the mechanical brake device 2.
  • the negative side switch 12 is provided to open (disconnect) or close (connect) the negative side electric circuit 43N between the negative terminal 41N of the power source 10 and the negative terminal 42N of the mechanical brake device 2.
  • one positive side switch 11 and one negative side switch 12 are provided, but as a modified example, two or more of each may be provided.
  • Examples of the positive side switch 11 and the negative side switch 12 include FET, IGBT, thyristor, GTO, transistor, relay, etc.
  • the type of the positive side switch 11 and the negative side switch 12 does not limit this embodiment, and may be a switching element other than the example.
  • the on and off operations of the positive switch 11 and the negative switch 12 are controlled by the switch control unit 13.
  • the switch control unit 13 transmits an on signal to the positive side switch 11 and the negative side switch 12 to control the positive side switch 11 and the negative side switch 12 to turn them on.
  • the positive side switch 11 receives an on signal from the switch control unit 13, it turns on and closes the positive side electrical circuit 43P between the power source 10 and the brake coil 25.
  • the negative side switch 12 receives an on signal from the switch control unit 13, it turns on and closes the negative side electrical circuit 43N between the power source 10 and the brake coil 25.
  • the positive side switch 11 or the negative side switch 12 has an open fault, that switch does not turn on even if it receives an on signal from the switch control unit 13.
  • the switch control unit 13 also transmits an off signal to the positive switch 11 and the negative switch 12 to control the positive switch 11 and the negative switch 12 to turn them off.
  • the positive switch 11 receives an off signal from the switch control unit 13, it turns off and opens the positive electric circuit 43P between the power source 10 and the brake coil 25.
  • the negative switch 12 receives an off signal from the switch control unit 13, it turns off and opens the negative electric circuit 43N between the power source 10 and the brake coil 25.
  • the positive switch 11 or the negative switch 12 has a short circuit failure, that switch does not turn off even if it receives an off signal from the switch control unit 13.
  • FIG. 4 is a timing chart that explains the actuation and release of the brake of the mechanical brake device in the brake drive device according to the first and second embodiments of the present disclosure.
  • the explanation regarding the timing chart shown in FIG. 4 is applicable to the first and second embodiments.
  • the upper part of FIG. 4 shows the on/off state of the positive side switch 11 or the negative side switch 12, and the lower part of FIG. 4 shows the average voltage applied to the brake coil 25.
  • the switch control unit 13 When the mechanical brake device 2 is to apply the brake (for example, from the start to time t1 ), the switch control unit 13 outputs an OFF signal to the positive side switch 11 and the negative side switch 12.
  • the positive side switch 11 and the negative side switch 12 that have received the OFF signal from the switch control unit 13 are turned OFF to open the positive side electric circuit 43P and the negative side electric circuit 43N between the power source 10 and the brake coil 25.
  • the current flowing from the power source 10 to the brake coil 25 is cut off, so that the average voltage of the brake coil 25 becomes 0 (zero), and the electromagnetic force generated in the core 26 disappears.
  • the elastic force of the spring 24 overcomes the electromagnetic force generated in the core 26, so that the armature 22 is pressed strongly against the friction plate 21, and the brake is applied by the mechanical brake device 2 (brake applied state).
  • the switch control unit 13 when the switch control unit 13 releases the brake applied by the mechanical brake device 2, it performs the following series of controls. First, the switch control unit 13 outputs an ON signal to the positive side switch 11 and the negative side switch 12 at time t1 , which is the start of the brake release. The positive side switch 11 and the negative side switch 12, which have received the ON signal from the switch control unit 13, close the positive side electric circuit 43P and the negative side electric circuit 43N. As a result, a current flows from the power source 10 to the brake coil 25, the average voltage of the brake coil 25 becomes V1 , and an electromagnetic force is generated in the core 26 that overcomes the elastic force of the spring 24 that has been pressing the armature 22 against the friction plate 21.
  • the switch control unit 13 alternately switches between outputting PWM (Pulse Width Modulation) controlled on and off signals to the positive side switch 11 and outputting PWM controlled on and off signals to the negative side switch 12 at predetermined intervals.
  • PWM Pulse Width Modulation
  • the upper part of FIG. 4 shows an on/off state of one of the positive side switch 11 and the negative side switch 12 as an example.
  • the switch control unit 13 outputs an on signal to the negative side switch 12 while outputting PWM controlled on and off signals to the positive side switch 11.
  • the switch control unit 13 outputs an on signal to the positive side switch 11 while outputting PWM controlled on and off signals to the negative side switch 12.
  • a current flows from the power source 10 to the brake coil 25, but the magnitude of the current is smaller than the magnitude of the current from time t1 to time t2 , so that the average voltage of the brake coil 25 becomes V2 ( ⁇ V1 ), and the heat generation of the mechanical brake device 2 is reduced.
  • the duty ratio used for the PWM control is set to a magnitude that generates an electromagnetic force that overcomes the elastic force of the spring 24.
  • the friction plate 21 can be maintained in a state released from contact with the armature 22 and the end plate 23, so that the brake release state can be maintained.
  • An example of the duty ratio used for the PWM control may be set to 50%, for example, but the numerical value given here is merely an example, and other numerical values may be used.
  • the switch control unit 13 may switch between outputting PWM-controlled on and off signals to the positive switch 11 and outputting PWM-controlled on and off signals to the negative switch 12, for example, approximately every 500 milliseconds.
  • SBC Safe Brake Control
  • the surge absorber 18 is connected between the positive and negative terminals of the brake coil 25 so as to be connected in parallel to the mechanical brake device 2.
  • the surge absorber 18 removes momentary high voltages such as opening and closing surges and noise of the switches 11 and 12.
  • the detection unit 14 detects electrical information, which is at least one of the voltage applied to the brake coil 25 of the mechanical brake device 2 and the current flowing through the brake coil 25.
  • the electrical information detected by the detection unit 14 is sent to the diagnosis unit 15.
  • the voltage applied to the brake coil 25 may be referred to as the "brake coil voltage”
  • the current flowing through the brake coil 25 may be referred to as the "brake coil current.”
  • the diagnosis unit 15 diagnoses whether or not there is a fault in the positive switch 11 and the negative switch 12 based on the electrical information detected by the detection unit 14 while the switch control unit 13 alternately switches between outputting PWM-controlled on and off signals to the positive switch 11 and outputting PWM-controlled on and off signals to the negative switch 12 at predetermined time intervals.
  • the alarm output unit 16 outputs an alarm when the diagnosis unit 15 determines that at least one of the positive switch 11 and the negative switch 12 is faulty.
  • the diagnosis result by the diagnosis unit 15 may be displayed, for example, on a display device (not shown).
  • the display device include a standalone display device, a display device attached to the brake drive device 1 or a motor drive device equipped with the brake drive device 1, and a display device attached to a personal computer or a mobile terminal.
  • the display device displays, for example, "positive switch is normal”, “negative switch is normal”, “positive switch is faulty", or “negative switch is faulty".
  • the above-mentioned display example by the display device is merely an example, and "positive switch is normal”, “negative switch is normal”, “positive switch is faulty", or “negative switch is faulty” may be displayed based on other expressions or pictures. If the positive switch or negative switch is faulty, a more detailed fault description, such as a short fault or an open fault, may be displayed.
  • the diagnosis result by the diagnosis unit 15 may be output by an audio device (not shown) that emits sounds such as voice, speaker, buzzer, chime, etc.
  • a tone, scale, rhythm, or melody may be set so that the differences between "positive switch is normal”, “negative switch is normal”, “positive switch is faulty”, and “negative switch is faulty” can be distinguished.
  • the audio device may be silent when “positive switch and negative switch are normal", and emit a sound only when "positive switch is faulty” or "negative switch is faulty”. Note that when the positive switch or negative switch is faulty, the audio device may emit a sound that can be identified as a more detailed fault, such as a short fault or an open fault.
  • the results of the diagnosis by the diagnosis unit 15 may be printed out and displayed on paper or the like using a printer.
  • the worker can quickly and reliably grasp the state of the positive switch 11 and the negative switch 12 of the brake drive device 1 based on the notified diagnosis result by the diagnostic unit 15. Therefore, if the worker determines from the diagnosis result of the diagnostic unit 15 that the positive switch 11 or the negative switch 12 is faulty, the worker can take action such as replacing or repairing the positive switch 11 or the negative switch 12.
  • At least one processor which is an arithmetic processing device, is provided in the brake drive device 1 or the motor drive device equipped with the same.
  • arithmetic processing devices include IC, LSI, CPU, MPU, DSP, etc.
  • the arithmetic processing device has a switch control unit 13, a detection unit 14, a diagnosis unit 15, an alarm output unit 16, and other processing circuits.
  • Each of these units of the arithmetic processing device is, for example, a functional module realized by a program executed on the processor.
  • the switch control unit 13, the detection unit 14, the diagnosis unit 15, the alarm output unit 16, and other processing circuits are constructed in a program format, the function of each unit can be realized by operating the arithmetic processing device according to the program.
  • the program for executing each process of the switch control unit 13, the detection unit 14, the diagnosis unit 15, the alarm output unit 16, and other processing circuits may be provided in a form recorded on a computer-readable recording medium such as a semiconductor memory, a magnetic recording medium, or an optical recording medium.
  • a computer-readable recording medium such as a semiconductor memory, a magnetic recording medium, or an optical recording medium.
  • the switch control unit 13, the detection unit 14, the diagnosis unit 15, the alarm output unit 16, and other processing circuits may be realized as a semiconductor integrated circuit in which a program for realizing the function of each unit is written.
  • At least one memory serving as a storage device is provided in the brake drive device 1 or a motor drive device equipped with the same.
  • the memory may be, for example, a non-volatile memory that can be electrically erased and recorded, such as an EEPROM (registered trademark), or a random access memory that can be read and written at high speed, such as a DRAM or SRAM.
  • the storage device may also have a configuration such as an HDD or SSD.
  • the memory may store programs for operating the switch control unit 13, the detection unit 14, the diagnosis unit 15, the alarm output unit 16, and other processing circuits.
  • the memory also stores electrical information acquired by the detection unit 14.
  • the memory also stores the diagnosis results by the diagnosis unit 15.
  • the memory also stores various data related to the brake drive device 1 or a motor drive device equipped with the same.
  • Fig. 5 to Fig. 7 show, from top to bottom, an on signal and an off signal applied to the positive side switch 11, an on signal and an off signal applied to the negative side switch 12, a voltage of the brake coil 25 of the mechanical brake device 2, and a current flowing through the brake coil 25 of the mechanical brake device 2. Also, in Fig. 5 to Fig. 7, as an example, a brake activation process is executed from the start to time t11 , a brake release process is started at time t11 , and the brake release state is maintained after time t11 .
  • FIG. 5 is a timing chart illustrating waveforms when the positive and negative switches of the brake drive device according to the first and second embodiments of the present disclosure are normal.
  • the positive switch 11 and the negative switch 12 are normal, the positive switch 11 and the negative switch 12 are turned on and off according to the on and off signals output from the switch control unit 13.
  • the switch control unit 13 When the mechanical brake device 2 is to apply the brake (for example, from the start to time t11 ), the switch control unit 13 outputs an OFF signal to the positive side switch 11 and the negative side switch 12.
  • the current flowing from the power source 10 to the brake coil 25 is cut off, and the voltage and current of the brake coil 25 become 0 (zero). Since no electromagnetic force is generated in the brake coil 25, the elastic force of the spring 24 presses the armature 22 firmly against the friction plate 21, and the mechanical brake device 2 applies the brake.
  • the brake release process is started.
  • the switch control unit 13 outputs an ON signal to the positive side switch 11 and the negative side switch 12 at time t11 .
  • the positive side switch 11 and the negative side switch 12, which have received the ON signal from the switch control unit 13, close the positive side electric circuit 43P and the negative side electric circuit 43N.
  • the voltage of the brake coil 25 becomes V1
  • a current (maximum value is I1 ) flows from the power source 10 to the brake coil 25, and an electromagnetic force is generated in the core 26 that overcomes the elastic force of the spring 24 that has been pressing the armature 22 against the friction plate 21.
  • the switch control unit 13 alternates between outputting PWM-controlled on and off signals to the positive-side switch 11 and outputting PWM-controlled on and off signals to the negative-side switch 12 every predetermined time T.
  • the predetermined time T for PWM control is set to, for example, about 500 milliseconds, but the numerical value given here is merely an example and other numerical values may be used.
  • the predetermined time T may be stored in a rewritable storage unit (not shown) and rewritable by an external device, so that the predetermined time T can be changed to an appropriate value as necessary even after it has been set.
  • the switch control unit 13 In order to maintain the brake release state, the switch control unit 13 outputs PWM-controlled ON and OFF signals to the positive-side switch 11 and outputs an ON signal to the negative-side switch 12 during the period from time t12 to time t13, from time t14 to time t15 , and from time t16 to time t17 .
  • the positive-side switch 11, which has received the PWM-controlled ON and OFF signals from the switch control unit 13, performs ON/OFF operation to close and open the positive-side electric circuit 43P between the power source 10 and the brake coil 25.
  • the negative-side switch 12 which has received an ON signal from the switch control unit 13, closes the negative-side electric circuit 43N.
  • the voltage of the brake coil 25 oscillates up and down between V1 and 0 (zero).
  • an oscillating current smaller than the maximum value I1 of the brake coil current flows from the power source 10 to the brake coil 25.
  • the duty ratio used in the PWM control is set to a value sufficient to generate an electromagnetic force that overcomes the elastic force of the spring 24, thereby maintaining the friction plate 21 in a brake release state in which it is free from contact with the armature 22 and the end plate 23.
  • the switch control unit 13 In order to maintain the brake release state, from time t13 to time t14 , from time t15 to time t16 , and from time t17 onward, the switch control unit 13 outputs an ON signal to the positive side switch 11 and outputs PWM-controlled ON and OFF signals to the negative side switch 12.
  • the negative side switch 12, which has received PWM-controlled ON and OFF signals from the switch control unit 13, performs ON/OFF operation to close and open the negative side electric circuit 43N between the power source 10 and the brake coil 25. As a result, the voltage of the brake coil 25 oscillates up and down between V1 and 0 (zero).
  • the duty ratio used in the PWM control is set to a value sufficient to generate an electromagnetic force that overcomes the elastic force of the spring 24, thereby maintaining the friction plate 21 in a brake release state in which it is free from contact with the armature 22 and the end plate 23.
  • the switch control unit 13 alternates between outputting PWM-controlled on and off signals to the positive side switch 11 and outputting PWM-controlled on and off signals to the negative side switch 12 every predetermined time T.
  • the positive side switch 11 and the negative side switch 12 When the positive side switch 11 and the negative side switch 12 are normal, the positive side switch 11 and the negative side switch 12 perform on and off operations in accordance with the PWM-controlled on and off signals alternately sent to the positive side switch 11 and the negative side switch 12, so that the voltage and current of the brake coil 25 change in an oscillatory manner.
  • the detection unit 14 detects the voltage applied to the brake coil 25 of the mechanical brake device 2 or the current flowing through the brake coil 25 as electrical information.
  • the diagnosis unit 15 determines that both the positive side switch 11 and the negative side switch 12 are normal.
  • FIG. 6 is a timing chart illustrating waveforms when a short circuit occurs in the positive switch of the brake drive device according to the first and second embodiments of the present disclosure.
  • the positive switch 11 has a short circuit failure and the negative switch 12 is normal, the positive switch 11 remains in an on state regardless of the on and off signals output from the switch control unit 13.
  • the negative switch 12 which is normal, performs on and off operations according to the on and off signals output from the switch control unit 13.
  • the switch control unit 13 When the mechanical brake device 2 applies brakes (for example, from the start to time t11 ), the switch control unit 13 outputs an OFF signal to the positive side switch 11 and the negative side switch 12.
  • the positive side switch 11, which has a short circuit fault, does not turn OFF even when it receives an OFF signal from the switch control unit 13, and keeps the positive side electric circuit 43P between the power source 10 and the brake coil 25 closed.
  • the negative side switch 12 which receives an OFF signal from the switch control unit 13, turns OFF and opens the negative side electric circuit 43N between the power source 10 and the brake coil 25.
  • the brake release process is started.
  • the switch control unit 13 outputs an ON signal to the positive side switch 11 and the negative side switch 12 at time t11 .
  • the positive side switch 11 and the negative side switch 12, which have received the ON signal from the switch control unit 13, close the positive side electric circuit 43P and the negative side electric circuit 43N.
  • the voltage of the brake coil 25 becomes V1
  • a current (maximum value is I1 ) flows from the power source 10 to the brake coil 25, and an electromagnetic force is generated in the core 26 that overcomes the elastic force of the spring 24 that has been pressing the armature 22 against the friction plate 21.
  • the switch control unit 13 After time t12 , in order to maintain the brake release state, the switch control unit 13 alternates between outputting PWM-controlled on and off signals to the positive side switch 11 and outputting PWM-controlled on and off signals to the negative side switch 12 at predetermined intervals T.
  • the switch control unit 13 outputs PWM-controlled ON and OFF signals to the positive-side switch 11 and outputs an ON signal to the negative-side switch 12.
  • the positive-side switch 11 that has received the PWM-controlled ON and OFF signals from the switch control unit 13 has a short-circuit fault, so the positive-side electric circuit 43P between the power source 10 and the brake coil 25 remains closed.
  • the negative-side switch 12 that has received an ON signal from the switch control unit 13 closes the negative-side electric circuit 43N.
  • the positive-side switch 11 and the negative-side switch 12 are both in a closed state, as in the period from time t11 to time t12 , the voltage of the brake coil 25 becomes V1 , and a waveform F1 appears in which a current (maximum value is I1 ) flows from the power source 10 to the brake coil 25.
  • a current maximum value is I1
  • the positive-side switch 11 is normal, the voltage of the brake coil 25 oscillates between V1 and 0 (zero) in response to the PWM-controlled on and off signals, and an oscillating current smaller than the maximum brake coil current I1 should flow from the power source 10 to the brake coil 25.
  • the switch control unit 13 outputs an ON signal to the positive-side switch 11, and outputs PWM-controlled ON and OFF signals to the negative-side switch 12.
  • the positive-side switch 11, which has received an ON signal from the switch control unit 13, closes the positive-side electric circuit 43P.
  • the negative-side switch 12, which has received PWM-controlled ON and OFF signals from the switch control unit 13, performs ON/OFF operation to close and open the negative-side electric circuit 43N between the power source 10 and the brake coil 25.
  • the voltage of the brake coil 25 oscillates up and down between V1 and 0 (zero), and an oscillating current smaller than the maximum value I1 of the brake coil current flows from the power source 10 to the brake coil 25.
  • the duty ratio used in the PWM control is set to a value sufficient to generate an electromagnetic force that overcomes the elastic force of the spring 24, thereby maintaining the friction plate 21 in a brake release state in which it is free from contact with the armature 22 and the end plate 23.
  • diagnosis unit 15 determines that the positive-side switch 11 has a short-circuit fault.
  • the first threshold is set to a value somewhat lower (e.g., about 10% to 20% lower) than the maximum voltage value that the brake coil voltage can take, and if the electrical information is a current, the first threshold is set to a value somewhat lower (e.g., about 10% to 20% lower) than the maximum current value that the brake coil current can take.
  • the numerical examples shown here are merely examples, and other values may be used.
  • the first threshold may be stored in a rewritable storage unit (not shown) and rewritable by an external device, so that even after the first threshold has been set, it can be changed to an appropriate value as necessary.
  • the diagnosing unit 15 determines that the negative-side switch 12 has a short-circuit fault if the electrical information detected by the detecting unit 14 is a substantially constant value equal to or greater than a first threshold value defined in advance while PWM control for controlling the on-off of the negative-side switch 12 is being performed (from time t13 to time t14, from time t15 to time t16 , and after time t17).
  • FIG. 7 is a timing chart illustrating waveforms when the positive switch of the brake drive device according to the first and second embodiments of the present disclosure has an open circuit fault.
  • the positive switch 11 has an open fault and the negative switch 12 is normal, the positive switch 11 remains in the off state regardless of the on and off signals output from the switch control unit 13.
  • the negative switch 12 which is normal, performs on and off operations according to the on and off signals output from the switch control unit 13.
  • the switch control unit 13 When the mechanical brake device 2 is to apply the brake (for example, from the start to time t11 ), the switch control unit 13 outputs an OFF signal to the positive side switch 11 and the negative side switch 12. Since the positive side switch 11 has an open fault, the positive side electric circuit 43P between the power source 10 and the brake coil 25 remains open.
  • the negative side switch 12, which has received an OFF signal from the switch control unit 13, performs an OFF operation to open the negative side electric circuit 43N between the power source 10 and the brake coil 25. Since the negative side electric circuit 43N between the power source 10 and the brake coil 25 is open, the current from the power source 10 to the brake coil 25 is cut off, and therefore the voltage and current of the brake coil 25 become 0 (zero). Since no electromagnetic force is generated in the brake coil 25, the armature 22 is strongly pressed against the friction plate 21 by the elastic force of the spring 24, and the brake is applied by the mechanical brake device 2.
  • the brake release process is started.
  • the switch control unit 13 outputs an ON signal to the positive side switch 11 and the negative side switch 12 at time t11 .
  • the negative side switch 12, which has received the ON signal from the switch control unit 13, closes the negative side electric circuit 43N between the power source 10 and the brake coil 25.
  • the positive side switch 11 since the positive side switch 11 has an open fault, the positive side switch 11 does not turn ON, and the positive side electric circuit 43P between the power source 10 and the brake coil 25 remains open. Therefore, the current from the power source 10 to the brake coil 25 is cut off, and the voltage and current of the brake coil 25 become 0 (zero). Since no electromagnetic force is generated in the brake coil 25, the armature 22 is strongly pressed against the friction plate 21 by the elastic force of the spring 24, and the brake of the mechanical brake device 2 remains activated.
  • the switch control unit 13 After time t12 , the switch control unit 13 alternates between outputting PWM-controlled on and off signals to the positive-side switch 11 and outputting PWM-controlled on and off signals to the negative-side switch 12 at predetermined intervals T.
  • the switch control unit 13 outputs PWM-controlled ON and OFF signals to the positive-side switch 11 and outputs an ON signal to the negative-side switch 12.
  • the positive-side switch 11 that receives the PWM-controlled ON and OFF signals from the switch control unit 13 does not turn ON because it has an open fault, and the positive-side electric circuit 43P between the power source 10 and the brake coil 25 remains open.
  • the negative-side switch 12 that receives an ON signal from the switch control unit 13 closes the negative-side electric circuit 43N between the power source 10 and the brake coil 25. Therefore, during this period, the positive-side switch 11 and the negative-side switch 12 are in an open state, and a waveform F2 appears in which the voltage and current of the brake coil 25 are both zero.
  • the switch control unit 13 outputs an ON signal to the positive-side switch 11, and outputs PWM-controlled ON and OFF signals to the negative-side switch 12.
  • the positive-side switch 11 since the positive-side switch 11 has an open fault, the positive-side electric circuit 43P between the power source 10 and the brake coil 25 remains open. Therefore, during this period, the positive-side switch 11 and the negative-side switch 12 are in an open state, and a waveform F2 appears in which the voltage and current of the brake coil 25 are both zero.
  • the diagnosis unit 15 determines that at least one of the positive side switch 11 and the negative side switch 12 has an open fault when the electrical information detected by the detection unit 14 is a substantially constant value equal to or less than a second threshold value defined in advance during both the period when the switch control unit 13 is outputting PWM-controlled ON and OFF signals to the positive side switch 11 (between time t12 and time t13 , between time t14 and time t15 , and between time t16 and time t17 ) and the period when the switch control unit 13 is outputting PWM-controlled ON and OFF signals to the negative side switch 12 (between time t13 and time t14, between time t15 and time t16, and after time t17).
  • the second threshold value is set to a positive value near 0 volts when the electrical information is a voltage, and is set to a positive value near 0 amperes when the electrical information is a current.
  • the numerical examples shown here are merely examples, and other values may be used.
  • the second threshold value may be stored in a rewritable memory unit (not shown) and may be rewritable by an external device, so that even after the second threshold value has been set, it can be changed to an appropriate value as necessary.
  • FIG. 7 has been described taking as an example a case where the positive switch 11 has an open fault.
  • the explanation for FIG. 7 applies with the positive switch 11 and the negative switch 12 swapped.
  • the diagnosis unit 15 determines that at least one of the positive and negative switches 11 and 12 has an open fault.
  • FIG. 8 is a flowchart showing operations related to fault diagnosis in the brake drive device according to the first embodiment of the present disclosure.
  • the electrical information detected by the detection unit 14 is the voltage applied to the brake coil 25. If the electrical information detected by the detection unit 14 is the current flowing through the brake coil 25, the flowchart shown in FIG. 8 can be applied by replacing "voltage applied to the brake coil 25" with "current flowing through the brake coil 25.”
  • step S101 the switch control unit 13 and the diagnosis unit 15 determine whether or not the mechanical brake device 2 is in a brake release state. If it is determined that the mechanical brake device 2 is in a brake applied state, the process returns to step S101. When it is determined that the mechanical brake device 2 is in a brake release state, the switch control unit 13 first outputs an ON signal to the positive side switch 11 and the negative side switch 12 when brake release begins, and then proceeds to step S102.
  • step S102 the switch control unit 13 alternates between outputting PWM-controlled on and off signals to the positive-side switch 11 and outputting PWM-controlled on and off signals to the negative-side switch 12 at predetermined time intervals.
  • the switch control unit 13 outputs an on signal to the negative-side switch 12 while it is outputting PWM-controlled on and off signals to the positive-side switch 11.
  • the switch control unit 13 outputs an on signal to the positive-side switch 11 while it is outputting PWM-controlled on and off signals to the negative-side switch 12.
  • step S103 the detection unit 14 detects the brake coil voltage. Information about the detected brake coil voltage is sent to the diagnosis unit 15.
  • step S104 the diagnosis unit 15 determines whether the brake coil 25 voltage is a substantially constant value equal to or greater than the first threshold value.
  • step S104 If it is determined in step S104 that the voltage applied to the brake coil 25 is a substantially constant value equal to or greater than the first threshold, the process proceeds to S106.
  • step S106 if the diagnosis unit 15 has determined in step S104 that the brake coil voltage detected by the detection unit 14 while the PWM-controlled on and off signals are being output to the positive switch 11 is a substantially constant value equal to or greater than the first threshold, the diagnosis unit 15 determines that the positive switch 11 has a short circuit failure.
  • step S106 if the diagnosis unit 15 has determined in step S104 that the brake coil voltage detected by the detection unit 14 while the PWM-controlled on and off signals are being output to the negative switch 12 is a substantially constant value equal to or greater than the first threshold, the diagnosis unit 15 determines that the negative switch 12 has a short circuit failure. After step S106, the process returns to step S101.
  • step S104 If it is not determined in step S104 that the voltage applied to the brake coil 25 is an approximately constant value equal to or greater than the first threshold, the process proceeds to S105.
  • step S105 the diagnosis unit 15 determines whether the brake coil 25 voltage is an approximately constant value equal to or less than the second threshold.
  • step S105 If it is determined in step S105 that the brake coil 25 voltage is a substantially constant value equal to or lower than the second threshold value, the process proceeds to step S108.
  • step S108 the diagnostic unit 15 determines that at least one of the positive side switch 11 and the negative side switch 12 has an open circuit fault. After step S108, the process returns to step S101.
  • step S105 If it is not determined in step S105 that the brake coil 25 voltage is a substantially constant value equal to or lower than the second threshold value, the process proceeds to step S107.
  • step S107 the diagnostic unit 15 determines that both the positive side switch 11 and the negative side switch 12 are normal. After step S107, the process returns to step S101.
  • steps S104 and S105 may be reversed.
  • the diagnosis unit 15 can easily diagnose failures in the positive switch 11 and the negative switch 12. Furthermore, by performing PWM control on the positive switch 11 and PWM control on the negative switch in the brake release state, the brake release state is maintained with less power than when the brake release begins, so that the mechanical brake device 2 can be made smaller and generate less heat.
  • FIG. 9 is a circuit diagram showing a brake driving device according to the second embodiment of the present disclosure.
  • the diagnosis unit 15 performs diagnostic processing based on the electrical information detected by the detection unit 14.
  • a display unit 17 that displays the electrical information detected by the detection unit 14 is provided.
  • the brake drive device 1 includes a power source 10, a positive switch 11, a negative switch 12, a switch control unit 13, a detection unit 14, a display unit 17, and a surge absorber 18.
  • a power source 10 a positive switch 11, a negative switch 12, a switch control unit 13, a detection unit 14, a display unit 17, and a surge absorber 18.
  • FIG. 9 only the brake coil 25 is shown for the mechanical brake device 2 controlled by the brake drive device 1.
  • the mechanical brake device 2 power source 10, positive switch 11, negative switch 12, switch control unit 13, detection unit 14, diagnosis unit 15, and surge absorber 18 are as described in the first embodiment with reference to Figures 1 to 9.
  • the display unit 17 displays electrical information detected by the detection unit 14 while the switch control unit 13 alternates between outputting PWM-controlled on and off signals to the positive switch 11 and outputting PWM-controlled on and off signals to the negative switch 12 at predetermined time intervals.
  • Examples of the display unit 17 include a standalone display device, a display device attached to the brake drive device 1 or a motor drive device including the same, and a display device attached to a personal computer or a mobile terminal.
  • FIG. 10 is a flowchart showing operations related to fault diagnosis in a brake drive device according to the second embodiment of the present disclosure.
  • the electrical information detected by the detection unit 14 is the voltage applied to the brake coil 25. If the electrical information detected by the detection unit 14 is the current flowing through the brake coil 25, the flowchart shown in FIG. 10 can be applied by replacing "voltage applied to the brake coil 25" with "current flowing through the brake coil 25.”
  • step S201 the switch control unit 13 and the diagnosis unit 15 determine whether or not the mechanical brake device 2 is in a brake release state. If it is determined that the mechanical brake device 2 is in a brake applied state, the process returns to step S201. When it is determined that the mechanical brake device 2 is in a brake release state, the switch control unit 13 first outputs an ON signal to the positive side switch 11 and the negative side switch 12 when brake release begins, and then proceeds to step S102.
  • step S202 the switch control unit 13 alternates between outputting PWM-controlled on and off signals to the positive-side switch 11 and outputting PWM-controlled on and off signals to the negative-side switch 12 at predetermined time intervals.
  • the switch control unit 13 outputs an on signal to the negative-side switch 12 while it is outputting PWM-controlled on and off signals to the positive-side switch 11.
  • the switch control unit 13 also outputs an on signal to the positive-side switch 11 while it is outputting PWM-controlled on and off signals to the negative-side switch 12.
  • step S203 the detection unit 14 detects the brake coil voltage. Information about the detected brake coil voltage is sent to the display unit 17.
  • step S203 the display unit 17 displays the brake coil voltage.
  • the display unit 17 displays the brake coil voltage detected by the detection unit 14 while the switch control unit 13 alternates between outputting PWM-controlled on and off signals to the positive switch 11 and outputting PWM-controlled on and off signals to the negative switch 12 at predetermined time intervals.
  • the worker can determine whether the positive switch 11 and the negative switch 12 are normal, whether the positive switch 11 has a short circuit fault, whether the negative switch has a short circuit fault, or whether at least one of the positive switch 11 and the negative switch has an open circuit fault.
  • an operator can easily diagnose failures in the positive switch 11 and the negative switch 12 based on the display contents on the display unit 17 regarding electrical information related to the brake coil 25 of the mechanical brake device 2 while PWM control of the positive switch 11 and PWM control of the negative switch are being performed in the brake release state. Furthermore, by performing PWM control of the positive switch 11 and PWM control of the negative switch in the brake release state, the brake release state is maintained with less power than when the brake release begins, so that the mechanical brake device 2 can be made smaller and generate less heat.
  • a positive-side switch 11 that, when turned on, closes a positive-side electric circuit 43P between a positive terminal 41P of a power source 10 and a positive terminal 42P of a non-excitation operation type mechanical brake device 2, and that, when turned off, opens the positive-side electric circuit 43P;
  • a negative-side switch 12 that, when turned on, closes a negative-side electric circuit 43N between a negative terminal 41N of the power source 10 and a negative terminal 42N of the mechanical brake device 2, and that, when turned off, opens the negative-side electric circuit 43N;
  • a switch control unit 13 that outputs an ON signal for turning on the positive-side switch 11 and an OFF signal for turning off the negative-side switch 12; Equipped with The switch control unit 13 is When the mechanical brake device 2 is to apply the brakes, an OFF signal is output to the positive side switch 11 and the negative side switch 12.
  • the brake drive device 1 When releasing the brake by the mechanical brake device 2, the brake drive device 1 outputs an on signal to the positive side switch 11 and the negative side switch 12 when the brake release begins, and thereafter, while the release of the brake by the mechanical brake device 2 is maintained, alternately switches between outputting PWM-controlled on and off signals to the positive side switch 11 and outputting PWM-controlled on and off signals to the negative side switch 12 at predetermined time intervals.
  • Appendix 2 The brake drive device 1 described in Appendix 1, wherein the switch control unit 13 outputs an on signal to the negative side switch 12 while outputting PWM controlled on and off signals to the positive side switch 11, and outputs an on signal to the positive side switch 11 while outputting PWM controlled on and off signals to the negative side switch 12.
  • a detection unit 14 that detects electrical information, which is at least one of a voltage applied to a brake coil 25 of the mechanical brake device 2 and a current flowing through the brake coil 25; a diagnosis unit 15 that diagnoses whether or not the positive side switch 11 and the negative side switch 12 have a fault based on electrical information detected by the detection unit 14 while the switch control unit 13 alternately switches between outputting PWM-controlled on and off signals to the positive side switch 11 and outputting PWM-controlled on and off signals to the negative side switch 12 at predetermined time intervals;
  • the brake drive device 1 according to claim 2, (Appendix 4)
  • the diagnosis unit 15 is If the electrical information detected by the detection unit 14 is a substantially constant value equal to or greater than a first threshold value while the switch control unit 13 is outputting PWM-controlled on and off signals to the positive switch 11, it is determined that the positive switch 11 has a short circuit failure,
  • the brake drive device 1 described in Appendix 3 wherein the diagnosis unit 15 determines that at least one of the positive side switch 11 and the negative side switch 12 has an open fault when the electrical information detected by the detection unit 14 is an approximately constant value equal to or less than a predetermined second threshold value both while the switch control unit 13 is outputting PWM controlled on and off signals to the positive side switch 11 and while the switch control unit 13 is outputting PWM controlled on and off signals to the negative side switch 12.
  • the brake drive device 1 described in Appendix 3 further includes an alarm output unit that outputs an alarm when the diagnosis unit 15 determines that at least one of the positive side switch 11 and the negative side switch 12 is faulty.
  • a detection unit 14 that detects electrical information, which is at least one of a voltage applied to a brake coil 25 of the mechanical brake device 2 and a current flowing through the brake coil 25; a display unit 17 that displays electrical information detected by the detection unit 14 while the switch control unit 13 alternately switches between outputting PWM-controlled on and off signals to the positive-side switch 11 and outputting PWM-controlled on and off signals to the negative-side switch 12 at predetermined time intervals;
  • the brake drive device 1 according to claim 2, (Appendix 8)
  • the mechanical brake device 2 applies a brake to the motor by using the elastic force of a spring 24 to press an armature 22 against a friction plate 21 to which a shaft 31 of the motor is connected, and releases the brake on the motor by pulling the armature 22 away from the friction plate 21 with an electromagnetic force generated by a current flowing through a brake coil 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

ブレーキ駆動装置は、電源と機械式ブレーキ装置との間の正側電路を開閉する正側スイッチと、電源と機械式ブレーキ装置との間の負側電路を開閉する負側スイッチと、ブレーキを作動させる場合は、正側スイッチ及び負側スイッチに対してオフ信号を出力し、ブレーキを解除させる場合は、ブレーキ解除開始時に正側スイッチ及び負側スイッチに対してオン信号を出力し、その後、ブレーキの解除を維持する間は、正側スイッチに対するPWM制御されたオンオフ信号の出力と負側スイッチに対するPWM制御されたオンオフ信号の出力とを所定時間ごとに交互に切り替えて行うスイッチ制御部とを備える。

Description

機械式ブレーキ装置を駆動するブレーキ駆動装置
 本開示は、機械式ブレーキ装置を駆動するブレーキ駆動装置に関する。
 産業用ロボットや工作機械などの機械内のモータを駆動するモータ駆動装置では、回転しているモータにブレーキをかけたり、停止しているモータが回転しないよう固定したりするために、無励磁作動型の機械式ブレーキ装置が広く用いられている。機械式ブレーキ装置のブレーキコイルと電源との間にはスイッチが接続されている。スイッチがオン動作することで電源からブレーキコイルに電流が流れ込み、機械式ブレーキ装置によるブレーキが解除される。また、スイッチがオフ動作することで電源からブレーキコイルに電流が流れ込まないようにすることで、機械式ブレーキ装置のブレーキが作動する。
特開2019-119530号公報 特開2011-195287号公報 特開2007-143311号公報 特開平08-182365号公報
 機械式ブレーキ装置のブレーキコイルと電源との間に設けられるスイッチの故障を容易に診断することができるとともに、機械式ブレーキ装置の小型化及び低発熱化を図ることができるブレーキ駆動装置が望まれている。
 本開示の一態様によれば、ブレーキ駆動装置は、オン動作することで電源の正極端子と無励磁作動型の機械式ブレーキ装置の正極端子との間の正側電路を閉路し、オフ動作することで正側電路を開路する正側スイッチと、オン動作することで電源の負極端子と機械式ブレーキ装置の負極端子との間の負側電路を閉路し、オフ動作することで負側電路を開路する負側スイッチと、正側スイッチ及び負側スイッチに対して、オン動作させるためのオン信号及びオフ動作させるためのオフ信号を出力するスイッチ制御部と、を備え、スイッチ制御部は、機械式ブレーキ装置によるブレーキを作動させる場合は、正側スイッチ及び負側スイッチに対してオフ信号を出力し、機械式ブレーキ装置によるブレーキを解除させる場合は、ブレーキ解除開始時に正側スイッチ及び負側スイッチに対してオン信号を出力し、その後、機械式ブレーキ装置によるブレーキの解除を維持する間は、正側スイッチに対するPWM制御されたオン信号及びオフ信号の出力と負側スイッチに対するPWM制御されたオン信号及びオフ信号の出力とを所定時間ごとに交互に切り替えて行う。
本開示の第1の実施形態によるブレーキ駆動装置を示す回路図である。 本開示の第1及び第2の実施形態によるブレーキ駆動装置が制御する機械式ブレーキ装置の構造を示す断面図であって、モータに対してブレーキを作動させた状態を示す。 本開示の第1及び第2の実施形態によるブレーキ駆動装置が制御する機械式ブレーキ装置の構造を示す断面図であって、モータに対するブレーキが解除させた状態を示す。 本開示の第1及び第2の実施形態によるブレーキ駆動装置における機械式ブレーキ装置のブレーキの作動及び解除を説明するタイミングチャートである。 本開示の第1及び第2の実施形態によるブレーキ駆動装置の正側スイッチ及び負側スイッチが正常である場合における各波形を例示するタイミングチャートである。 本開示の第1及び第2の実施形態によるブレーキ駆動装置の正側スイッチがショート故障している場合における各波形を例示するタイミングチャートである。 本開示の第1及び第2の実施形態によるブレーキ駆動装置の正側スイッチがオープン故障している場合における各波形を例示するタイミングチャートである。 本開示の第1の実施形態によるブレーキ駆動装置における故障診断に関連する動作を示すフローチャートである。 本開示の第2の実施形態によるブレーキ駆動装置を示す回路図である。 本開示の第2の実施形態によるブレーキ駆動装置における故障診断に関連する動作を示すフローチャートである。
 以下、実施形態の機械式ブレーキ装置を駆動するブレーキ駆動装置を、図面を参照して説明する。なお、以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は、省略する場合がある。ここで、スイッチの「オン」は、当該スイッチが設けられた電路の閉(クローズ)を意味し、すなわちスイッチがオン動作することで、当該スイッチが設けられた電路が接続され閉(クローズ)状態になる。また、スイッチの「オフ」とは、当該スイッチが設けられた電路の開(オープン)を意味し、すなわちスイッチがオフ動作することで、当該スイッチが設けられた電路が遮断され開(オープン)状態になる。
<第1の実施形態によるブレーキ駆動装置の構成>
 図1は、本開示の第1の実施形態によるブレーキ駆動装置を示す回路図である。
 本開示の第1の実施形態によるブレーキ駆動装置1が制御する機械式ブレーキ装置2は、ブレーキコイル25に対して電圧の印加がない無励磁時にブレーキを作動し、ブレーキコイル25に対して電圧の印加がある励磁時にブレーキを解除する無励磁作動型のブレーキ装置である。
 本開示の第1の実施形態によるブレーキ駆動装置1を説明するに先立ち、ブレーキ駆動装置1が制御する機械式ブレーキ装置2の構造について図2及び図3を参照して説明する。図2は、本開示の第1及び第2の実施形態によるブレーキ駆動装置が制御する機械式ブレーキ装置の構造を示す断面図であって、モータに対してブレーキを作動させた状態を示す。図3は、本開示の第1及び第2の実施形態によるブレーキ駆動装置が制御する機械式ブレーキ装置の構造を示す断面図であって、モータに対するブレーキが解除させた状態を示す。図2及び図3に示す機械式ブレーキ装置2は、第1及び第2の実施形態に適用可能である。
 図2及び図3に示すように、機械式ブレーキ装置2において、アマチュア22と端板23との間には摩擦板21が配置される。摩擦板21にはハブ32がスプライン結合される。ハブ32とモータのシャフト31とは例えば焼き嵌めにより一体化されているので、モータのシャフト31の回転に連動して摩擦板21も回転する。端板23とスペーサ27とはボルト28によって結合され、アマチュア22が摩擦板21に近づく方向及び遠ざかる方向に移動可能となるようにスペーサ27に結合される。コア26内にはバネ24及びブレーキコイル25が設けられる。図2に示すように、ブレーキコイル25に電圧が印加されていない無励磁状態においては、アマチュア22はバネ24の弾性力により摩擦板21に強く押し付けられ、摩擦板21がアマチュア22と端板23とで挟まれて回転できない。この結果、摩擦板21に結合されたモータのシャフト31も回転できなくなり、モータに対してブレーキが作動した状態となる(ブレーキ作動状態)。一方、図3に示すように、ブレーキコイル25にブレーキ電流が流れる励磁状態においては、アマチュア22を摩擦板21に押し付けていたバネ24の弾性力に打ち勝つ電磁力がコア26に発生し、これによりアマチュア22がコア26に引きつけられて摩擦板21はアマチュア22及び端板23との接触から解放される。この結果、摩擦板21ひいてはモータのシャフト31は自由に回転できるようになり、モータに対するブレーキが解除された状態となる(ブレーキ解除状態)。
 機械式ブレーキ装置2は、ブレーキ駆動装置1によって制御される。図1に示すように、本開示の第1の実施形態によるブレーキ駆動装置1は、電源10と、正側スイッチ11と、負側スイッチ12と、スイッチ制御部13と、検出部14と、診断部15と、アラーム出力部16と、サージアブソーバ18とを備える。図1では、機械式ブレーキ装置2については、ブレーキコイル25のみ図示している。
 電源10は、直流電圧を出力する。電源10は、例えば交流電圧を直流電圧に変換する整流器、スイッチングレギュレータ、あるいはバッテリなどで構成される。一例として、電源10は、電圧値が24Vの直流電圧を出力するが、その他の電圧値(例えば15V、12V、5Vなど)の直流電圧を出力する電源であってもよい。
 正側スイッチ11及び負側スイッチ12は、それぞれ機械式ブレーキ装置2のブレーキコイル25に直列に接続される。図1に示す例では、電源10の正極端子41Pと機械式ブレーキ装置2の正極端子42Pとの間の正側電路43Pを開路(遮断)または閉路(接続)する正側スイッチ11が設けられる。また、電源10の負極端子41Nと機械式ブレーキ装置2の負極端子42Nとの間の負側電路43Nを開路(遮断)または閉路(接続)する負側スイッチ12が設けられる。なお、図1に示す例では正側スイッチ11及び負側スイッチ12をそれぞれ1つずつ設けたが、この変形例としてそれぞれについて2つ以上設けてもよい。正側スイッチ11及び負側スイッチ12の例としては、FET、IGBT、サイリスタ、GTO、トランジスタ、リレーなどがある。正側スイッチ11及び負側スイッチ12の種類自体は本実施形態を限定するものではなく、例示した以外のスイッチング素子であってもよい。
 正側スイッチ11及び負側スイッチ12のオン動作及びオフ動作は、スイッチ制御部13によって制御される。
 すなわち、スイッチ制御部13は、正側スイッチ11及び負側スイッチ12をオン動作させる制御を行うために、正側スイッチ11及び負側スイッチ12へオン信号を送信する。正側スイッチ11は、スイッチ制御部13からオン信号を受信した場合は、オン動作して電源10とブレーキコイル25との間の正側電路43Pを閉路する。また、負側スイッチ12は、スイッチ制御部13からオン信号を受信した場合は、オン動作して電源10とブレーキコイル25との間の負側電路43Nを閉路する。ただし、正側スイッチ11または負側スイッチ12がオープン故障している場合は、当該スイッチはスイッチ制御部13からオン信号を受信してもオン動作しない。
 また、スイッチ制御部13は、正側スイッチ11及び負側スイッチ12をオフ動作させる制御を行うために、正側スイッチ11及び負側スイッチ12へオフ信号を送信する。正側スイッチ11は、スイッチ制御部13からオフ信号を受信した場合は、オフ動作して電源10とブレーキコイル25との間の正側電路43Pを開路する。また、負側スイッチ12は、スイッチ制御部13からオフ信号を受信した場合は、オフ動作して電源10とブレーキコイル25との間の負側電路43Nを開路する。ただし、正側スイッチ11または負側スイッチ12がショート故障している場合は、当該スイッチはスイッチ制御部13からオフ信号を受信してもオフ動作しない。
 ここで、機械式ブレーキ装置2のブレーキの作動及び解除について、図4を参照して説明する。図4は、本開示の第1及び第2の実施形態によるブレーキ駆動装置における機械式ブレーキ装置のブレーキの作動及び解除を説明するタイミングチャートである。図4に示すタイミングチャートに関する説明は、第1及び第2の実施形態に適用可能である。図4の上段は正側スイッチ11または負側スイッチ12のオンオフの状態を示し、図4の下段は、ブレーキコイル25に印加される平均電圧を示す。
 スイッチ制御部13は、機械式ブレーキ装置2によるブレーキを作動させる場合(例えば開始から時刻t1まで)は、正側スイッチ11及び負側スイッチ12に対してオフ信号を出力する。スイッチ制御部13からオフ信号を受信した正側スイッチ11及び負側スイッチ12は、オフ動作して電源10とブレーキコイル25との間の正側電路43P及び負側電路43Nを開路する。これにより、電源10からブレーキコイル25へ向かう電流は遮断されるのでブレーキコイル25の平均電圧は0(ゼロ)になり、コア26に発生する電磁力は無くなる。バネ24の弾性力がコア26に発生する電磁力に打ち勝つことで、アマチュア22は摩擦板21に強く押し付けられ、機械式ブレーキ装置2によるブレーキが作動する(ブレーキ作動状態)。
 また、スイッチ制御部13は、機械式ブレーキ装置2によるブレーキを解除させる場合は、次のような一連の制御を行う。スイッチ制御部13は、まずブレーキ解除開始時である時刻t1に正側スイッチ11及び負側スイッチ12に対してオン信号を出力する。スイッチ制御部13からオン信号を受信した正側スイッチ11及び負側スイッチ12は、正側電路43P及び負側電路43Nを閉路する。これにより、電源10からブレーキコイル25へ電流が流れてブレーキコイル25の平均電圧はV1になり、コア26には、アマチュア22を摩擦板21に押し付けていたバネ24の弾性力に打ち勝つ電磁力が発生する。この電磁力によりアマチュア22がコア26に引きつけられて摩擦板21はアマチュア22及び端板23との接触から解放される。この結果、摩擦板21ひいてはモータのシャフト31は自由に回転できるようになり、モータに対するブレーキが解除された状態となる(ブレーキ解除状態)。
 機械式ブレーキ装置2のブレーキが一旦解除された後は、ブレーキ解除開始時にコア26に発生する電磁力よりもある程度小さい電磁力であってもバネ24の弾性力に打ち勝つことができる。そこで、時刻t2において、当該ブレーキ解除状態を維持するために、スイッチ制御部13は、正側スイッチ11に対するPWM(Pulse Width Modulation:パルス幅変調)制御されたオン信号及びオフ信号の出力と、負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力とを、所定時間ごとに交互に切り替えて行う。図4の上段では、一例として正側スイッチ11または負側スイッチ12の一方のスイッチのオンオフの状態を示している。スイッチ制御部13は、正側スイッチ11に対してPWM制御されたオン信号及びオフ信号を出力している間は負側スイッチ12に対してオン信号を出力する。また、スイッチ制御部13は、負側スイッチ12に対してPWM制御されたオン信号及びオフ信号を出力している間は正側スイッチ11に対してオン信号を出力する。このように正側スイッチ11及び負側スイッチ12のオンオフ動作がPWM制御されている時刻t2以降も、電源10からブレーキコイル25へ電流が流れるが、その大きさ時刻t1から時刻t2までのときの電流の大きさよりも小さくなるので、ブレーキコイル25の平均電圧はV2(<V1)となり、機械式ブレーキ装置2の発熱が低減される。また、機械式ブレーキ装置2を小型化しても問題は生じない。PWM制御に用いられるデューティー比を、バネ24の弾性力に打ち勝つ電磁力が発生する程度の大きさに設定しておく。このようにデューティー比を設定することで、摩擦板21をアマチュア22及び端板23との接触から解放された状態を維持できるので、ブレーキ解除状態を維持することができる。PWM制御に用いられるデューティー比の例としては例えば50%が設定されてもよいが、ここで挙げた数値はあくまでも一例であって、これ以外の数値であってもよい。
 詳細については後述するが、スイッチ制御部13が正側スイッチ11に対するPWM制御と負側スイッチ12に対するPWM制御の切替えを行っている間に、診断部15による正側スイッチ11及び負側スイッチ12の故障診断が行われる。そこで、IEC/EN61800-5-2に準拠するSBC(Safe Brake Control)機能を実現するために、スイッチ制御部13による正側スイッチ11に対するPWM制御されたオン信号及びオフ信号の出力と、負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力との切替えは、例えば約500ミリ秒ごとに切り替えられてもよい。ここで挙げた数値はあくまでも一例であって、これ以外の数値であってもよい。
 説明を図1に戻すと、サージアブソーバ18は、機械式ブレーキ装置2に対して並列接続されるように、ブレーキコイル25の正極端子と負極端子との間に接続される。サージアブソーバ18は、スイッチ11及び12の開閉サージやノイズなどの瞬間的な高電圧を除去する。
 検出部14は、機械式ブレーキ装置2のブレーキコイル25に印加される電圧及びブレーキコイル25に流れる電流のうちの少なくとも1つである電気情報を検出する。検出部14により検出された電気情報は、診断部15に送られる。なお、以下、ブレーキコイル25に印加される電圧を「ブレーキコイル電圧」と称し、ブレーキコイル25に流れる電流を「ブレーキコイル電流」と称することがある。
 診断部15は、スイッチ制御部13が正側スイッチ11に対するPWM制御されたオン信号及びオフ信号の出力と負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力とを所定時間ごとに交互に切り替えて行っている間において検出部14により検出された電気情報に基づいて、正側スイッチ11及び負側スイッチ12の故障の有無を診断する。
 アラーム出力部16は、診断部15により正側スイッチ11及び負側スイッチ12のうちの少なくとも1つが故障していると判定された場合、アラームを出力する。
 アラーム出力部16によるアラームの出力に基づき、診断部15による診断結果を、例えば表示装置(図示せず)に表示させてもよい。表示装置の例としては、単体のディスプレイ装置、ブレーキ駆動装置1またはこれを備えるモータ駆動装置に付属のディスプレイ装置、並びに、パソコン及び携帯端末に付属のディスプレイ装置などがある。例えば、表示装置は、例えば「正側スイッチは正常」、「負側スイッチは正常」、「正側スイッチが故障」、または「負側スイッチが故障」といった表示を行う。表示装置による上述の表示例は、あくまでも一例であって、これ以外の表現や絵に基づいて「正側スイッチは正常」、「負側スイッチは正常」、「正側スイッチが故障」、または「負側スイッチが故障」などを表示してもよい。なお、正側スイッチまたは負側スイッチが故障している場合は、より詳細な故障内容として、ショート故障であるかオープン故障であるかを表示してもよい。
 アラーム出力部16によるアラームの出力に基づき、診断部15による診断結果を、例えば音声、スピーカ、ブザー、チャイムなどのような音を発する音響装置(図示せず)にて出力させてもよい。例えば「正側スイッチは正常」、「負側スイッチは正常」、「正側スイッチが故障」、及び「負側スイッチが故障」の違いが区別できるように、音色、音階、リズム、あるいは曲調などを設定すればよい。また、音響装置は、「正側スイッチ及び負側スイッチが正常」である場合は無音とし、「正側スイッチが故障」または「負側スイッチが故障」の場合のみ音を発するようにしてもよい。なお、正側スイッチまたは負側スイッチが故障している場合は、より詳細な故障内容として、ショート故障であるかオープン故障であるか識別可能な音を音響装置が発するようにしてもよい。
 診断部15による診断結果を、プリンタを用いて紙面等にプリントアウトして表示させる形態をとってもよい。
 以上、診断部15による診断結果の作業者に対する報知の例について述べたが、これらを適宜組み合わせて実現してもよい。また、診断部15による診断結果が得られるたびにメモリに記憶して蓄積していき、データベース化することで故障予知や予防保全に役立ててもよい。
 作業者は、報知された診断部15による診断結果に基づき、ブレーキ駆動装置1の正側スイッチ11及び負側スイッチ12の状態を迅速かつ確実に把握することができる。よって、作業者は、診断部15の診断結果により正側スイッチ11または負側スイッチ12が故障していることが確認できた場合は例えば正側スイッチ11または負側スイッチ12の交換または修理をするといった対応をとることができる。
 ブレーキ駆動装置1またはこれを備えるモータ駆動装置内には、演算処理装置である少なくとも1つのプロセッサが設けられる。演算処理装置としては、例えばIC、LSI、CPU、MPU、DSPなどがある。演算処理装置は、スイッチ制御部13、検出部14、診断部15、アラーム出力部16及びその他の処理回路を有する。演算処理装置が有するこれらの各部は、例えば、プロセッサ上で実行されるプログラムにより実現される機能モジュールである。例えば、スイッチ制御部13、検出部14、診断部15、アラーム出力部16及びその他の処理回路をプログラム形式で構築する場合は、演算処理装置をこのプログラムに従って動作させることで、各部の機能を実現することができる。スイッチ制御部13、検出部14、診断部15、アラーム出力部16及びその他の処理回路の各処理を実行するためのプログラムは、半導体メモリ、磁気記録媒体または光記録媒体といった、コンピュータ読取可能な記録媒体に記録された形で提供されてもよい。またあるいは、スイッチ制御部13、検出部14、診断部15、アラーム出力部16及びその他の処理回路を、各部の機能を実現するプログラムを書き込んだ半導体集積回路として実現してもよい。
 また、ブレーキ駆動装置1またはこれを備えるモータ駆動装置内には、記憶装置である少なくとも1つのメモリが設けられる。メモリとしては、例えばEEPROM(登録商標)などのような電気的に消去・記録可能な不揮発性メモリ、または、例えばDRAM、SRAMなどのような高速で読み書きのできるランダムアクセスメモリなどがある。また、記憶装置は、例えばHDDやSSDなどのような構成を有してもよい。メモリには、スイッチ制御部13、検出部14、診断部15、アラーム出力部16及びその他の処理回路を動作させるためのプログラムが格納されてもよい。また、メモリには、検出部14により取得された電気情報が格納される。また、メモリには、診断部15による診断結果が格納される。また、メモリには、ブレーキ駆動装置1またはこれを備えるモータ駆動装置に関連する各種データが格納される。
<第1の実施形態によるブレーキ駆動装置の動作>
 第1の実施形態によるブレーキ駆動装置の動作について、図5~図7に例示するタイミングチャートを参照して説明する。図5~図7に示すタイミングチャートに関する説明は、第1及び第2の実施形態に適用可能である。図5~図7において、上段から下段に向かって順に、正側スイッチ11に印加されるオン信号およびオフ信号、負側スイッチ12に印加されるオン信号及びオフ信号、機械式ブレーキ装置2のブレーキコイル25の電圧、機械式ブレーキ装置2のブレーキコイル25に流れる電流を示す。また、図5~図7では、一例として、開始から時刻t11まではブレーキ作動処理が実行され、時刻t11でブレーキ解除処理が開始され、時刻t11以降はブレーキ解除状態が維持されるものとする。
 図5は、本開示の第1及び第2の実施形態によるブレーキ駆動装置の正側スイッチ及び負側スイッチが正常である場合における各波形を例示するタイミングチャートである。
 正側スイッチ11及び負側スイッチ12が正常である場合、スイッチ制御部13から出力されるオン信号及びオフ信号に従って、正側スイッチ11及び負側スイッチ12はオン動作及びオフ動作する。
 スイッチ制御部13は、機械式ブレーキ装置2によるブレーキを作動させる場合(例えば開始から時刻t11まで)は、正側スイッチ11及び負側スイッチ12に対してオフ信号を出力する。スイッチ制御部13からオフ信号を受信した正側スイッチ11及び負側スイッチ12は、オフ動作して電源10とブレーキコイル25との間の正側電路43P及び負側電路43Nを開路する。これにより、電源10からブレーキコイル25へ向かう電流は遮断されるのでブレーキコイル25の電圧及び電流は0(ゼロ)になる。ブレーキコイル25には電磁力が発生しないので、バネ24の弾性力によりアマチュア22は摩擦板21に強く押し付けられ、機械式ブレーキ装置2によるブレーキが作動する。
 時刻t11でブレーキ解除処理が開始される。スイッチ制御部13は、時刻t11で正側スイッチ11及び負側スイッチ12に対してオン信号を出力する。スイッチ制御部13からオン信号を受信した正側スイッチ11及び負側スイッチ12は、正側電路43P及び負側電路43Nを閉路する。これにより、ブレーキコイル25の電圧はV1になって電源10からブレーキコイル25へ電流(最大値はI1)が流れ、コア26には、アマチュア22を摩擦板21に押し付けていたバネ24の弾性力に打ち勝つ電磁力が発生する。この電磁力によりアマチュア22がコア26に引きつけられて摩擦板21はアマチュア22及び端板23との接触から解放される。この結果、摩擦板21ひいてはモータのシャフト31は自由に回転できるようになり、モータに対するブレーキが解除された状態となる。
 時刻t12以降は、ブレーキ解除状態を維持するために、スイッチ制御部13は、正側スイッチ11に対するPWM制御されたオン信号及びオフ信号の出力と負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力とを、所定時間Tごとに交互に切り替えて行う。PWM制御を行う所定時間Tとして、例えば約500ミリ秒が設定されるが、ここで挙げた数値はあくまでも一例であって、これ以外の数値であってもよい。所定時間Tについては、書き換え可能な記憶部(図示せず)に記憶されて外部機器によって書き換え可能であってもよく、これによれば、所定時間Tを一旦設定した後であっても、必要に応じて適切な値に変更することができる。
 例えば、正側スイッチ11及び負側スイッチ12のうち故障確率が高い方のスイッチについてPWM制御を行う所定時間Tをより長い時間に設定すれば、当該故障確率の高いスイッチの故障を重点的に監視することができる。また例えば、正側スイッチ11及び負側スイッチ12のうち放熱に優れた方のスイッチについてPWM制御を行う所定時間Tをより長い時間に設定すれば、当該放熱に優れた方のスイッチのスイッチング動作による発熱を抑制することができる。
 ブレーキ解除状態を維持するために、時刻t12から時刻t13までの間、時刻t14から時刻t15までの間、及び時刻t16から時刻t17までの間は、スイッチ制御部13は、正側スイッチ11に対してPWM制御されたオン信号及びオフ信号を出力し、負側スイッチ12に対してオン信号を出力する。スイッチ制御部13によりPWM制御されたオン信号及びオフ信号を受信した正側スイッチ11は、オンオフ動作して電源10とブレーキコイル25との間の正側電路43Pを閉路及び開路する。また、スイッチ制御部13からオン信号を受信した負側スイッチ12は、負側電路43Nを閉路する。これにより、ブレーキコイル25の電圧はV1と0(ゼロ)との間で振動的に上下する。また、電源10からブレーキコイル25へは、ブレーキコイル電流の最大値I1よりは小さい振動的な電流が流れる。PWM制御に用いられるデューティー比は、バネ24の弾性力に打ち勝つ電磁力が発生する程度の大きさに設定されるので、摩擦板21をアマチュア22及び端板23との接触から解放されたブレーキ解除状態を維持することができる。
 ブレーキ解除状態を維持するために、時刻t13から時刻t14までの間、時刻t15から時刻t16までの間、及び時刻t17以降は、スイッチ制御部13は、正側スイッチ11に対してオン信号を出力し、負側スイッチ12に対してPWM制御されたオン信号及びオフ信号を出力する。スイッチ制御部13からオン信号を受信した正側スイッチ11は、正側電路43Pを閉路する。また、スイッチ制御部13によりPWM制御されたオン信号及びオフ信号を受信した負側スイッチ12は、オンオフ動作して電源10とブレーキコイル25との間の負側電路43Nを閉路及び開路する。これにより、ブレーキコイル25の電圧はV1と0(ゼロ)との間で振動的に上下する。また、電源10からブレーキコイル25へは、ブレーキコイル電流の最大値I1よりは小さい振動的な電流が流れる。PWM制御に用いられるデューティー比は、バネ24の弾性力に打ち勝つ電磁力が発生する程度の大きさに設定されるので、摩擦板21をアマチュア22及び端板23との接触から解放されたブレーキ解除状態を維持することができる。
 このように、ブレーキ解除状態が維持される時刻t12以降は、スイッチ制御部13は、正側スイッチ11に対するPWM制御されたオン信号及びオフ信号の出力と負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力とを、所定時間Tごとに交互に切り替えて行う。正側スイッチ11及び負側スイッチ12が正常である場合は、正側スイッチ11及び負側スイッチ12に対して交互に行われるPWM制御されたオン信号及びオフ信号に従って、正側スイッチ11及び負側スイッチ12はオンオフ動作するので、ブレーキコイル25の電圧及び電流は、振動的に変化する。検出部14は、機械式ブレーキ装置2のブレーキコイル25に印加される電圧またはブレーキコイル25に流れる電流を、電気情報として検出する。診断部15は、スイッチ制御部13が正側スイッチ11をオンオフ制御させるPWM制御と負側スイッチ12をオンオフ制御させるPWM制御とを所定時間ごとに交互に切り替えて行っている時刻t12以降において検出部14により検出された電気情報が、常に振動的に変化している場合は、正側スイッチ11及び負側スイッチ12はともに正常であると判定する。
 図6は、本開示の第1及び第2の実施形態によるブレーキ駆動装置の正側スイッチがショート故障している場合における各波形を例示するタイミングチャートである。
 例えば、正側スイッチ11がショート故障しており、負側スイッチ12が正常である場合、スイッチ制御部13から出力されるオン信号及びオフ信号にかかわらず、正側スイッチ11はオン動作したままである。一方、正常である負側スイッチ12は、スイッチ制御部13から出力されるオン信号及びオフ信号に従って、オンオフ動作する。
 スイッチ制御部13は、機械式ブレーキ装置2によるブレーキを作動させる場合(例えば開始から時刻t11まで)は、正側スイッチ11及び負側スイッチ12に対してオフ信号を出力する。ショート故障している正側スイッチ11は、スイッチ制御部13からオフ信号を受信してもオフ動作せず、電源10とブレーキコイル25との間の正側電路43Pを閉路したままである。一方、スイッチ制御部13からオフ信号を受信した負側スイッチ12は、オフ動作して電源10とブレーキコイル25との間の負側電路43Nを開路する。電源10とブレーキコイル25との間の負側電路43Nが開路されているので、電源10からブレーキコイル25へ向かう電流は遮断され、したがってブレーキコイル25の電圧及び電流は0(ゼロ)になる。ブレーキコイル25には電磁力が発生しないので、バネ24の弾性力によりアマチュア22は摩擦板21に強く押し付けられ、機械式ブレーキ装置2によるブレーキが作動する。
 時刻t11でブレーキ解除処理が開始される。スイッチ制御部13は、時刻t11で正側スイッチ11及び負側スイッチ12に対してオン信号を出力する。スイッチ制御部13からオン信号を受信した正側スイッチ11及び負側スイッチ12は、正側電路43P及び負側電路43Nを閉路する。これにより、ブレーキコイル25の電圧はV1になって電源10からブレーキコイル25へ電流(最大値はI1)が流れ、コア26には、アマチュア22を摩擦板21に押し付けていたバネ24の弾性力に打ち勝つ電磁力が発生する。この電磁力によりアマチュア22がコア26に引きつけられて摩擦板21はアマチュア22及び端板23との接触から解放される。この結果、摩擦板21ひいてはモータのシャフト31は自由に回転できるようになり、モータに対するブレーキが解除された状態となる。
 時刻t12以降は、当該ブレーキ解除状態を維持するために、スイッチ制御部13は、正側スイッチ11に対するPWM制御されたオン信号及びオフ信号の出力と負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力とを、所定時間Tごとに交互に切り替えて行う。
 すなわち、時刻t12から時刻t13までの間、時刻t14から時刻t15までの間、及び時刻t16から時刻t17までの間は、スイッチ制御部13は、正側スイッチ11に対してPWM制御されたオン信号及びオフ信号を出力し、負側スイッチ12に対してオン信号を出力する。スイッチ制御部13によりPWM制御されたオン信号及びオフ信号を受信した正側スイッチ11は、ショート故障しているので、電源10とブレーキコイル25との間の正側電路43Pは閉路したままである。また、スイッチ制御部13からオン信号を受信した負側スイッチ12は、負側電路43Nを閉路する。よって、この間は、正側スイッチ11及び負側スイッチ12は、時刻t11から時刻t12までの時と同様に、ともに閉状態となり、ブレーキコイル25の電圧はV1になって電源10からブレーキコイル25へ電流(最大値はI1)が流れる波形F1が現れる。図5を参照して説明したように、正側スイッチ11が正常であれば、PWM制御されたオン信号及びオフ信号に応じてブレーキコイル25の電圧はV1と0(ゼロ)との間で振動的に上下し、電源10からブレーキコイル25へはブレーキコイル電流の最大値I1よりは小さい振動的な電流が流れるはずである。しかしながら、正側スイッチ11はショート故障しているので、ブレーキコイル25には一定の電圧V1が印加され、ブレーキコイル25には一定の電流I1が流れるといった波形F1が現れる。ただし、バネ24の弾性力に打ち勝つ電磁力が発生すので、摩擦板21をアマチュア22及び端板23との接触から解放されたブレーキ解除状態を維持することはできる。
 時刻t13から時刻t14までの間、時刻t15から時刻t16までの間、及び時刻t17以降は、スイッチ制御部13は、正側スイッチ11に対してオン信号を出力し、負側スイッチ12に対してPWM制御されたオン信号及びオフ信号を出力する。スイッチ制御部13からオン信号を受信した正側スイッチ11は、正側電路43Pを閉路する。また、スイッチ制御部13によりPWM制御されたオン信号及びオフ信号を受信した負側スイッチ12は、オンオフ動作して電源10とブレーキコイル25との間の負側電路43Nを閉路及び開路する。これにより、ブレーキコイル25の電圧はV1と0(ゼロ)との間で振動的に上下し、電源10からブレーキコイル25へはブレーキコイル電流の最大値I1よりは小さい振動的な電流が流れる。PWM制御に用いられるデューティー比は、バネ24の弾性力に打ち勝つ電磁力が発生する程度の大きさに設定されるので、摩擦板21をアマチュア22及び端板23との接触から解放されたブレーキ解除状態を維持することができる。
 このように、正側スイッチ11がショート故障している場合は、正側スイッチ11に対するPWM制御されたオン信号及びオフ信号の出力と負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力とを所定時間Tごとに交互に切り替えて行われる時刻t12以降は、ブレーキコイル25には一定の電圧V1が印加され、ブレーキコイル25には一定の電流I1が流れるといった波形F1が現れる。そこで、診断部15は、正側スイッチ11に対してPWM制御されたオン信号及びオフ信号を出力している間(時刻t12から時刻t13までの間、時刻t14から時刻t15までの間、及び時刻t16から時刻t17までの間)において、検出部14により検出された電気情報が予め規定された第1の閾値以上の略一定値である場合は、正側スイッチ11がショート故障していると判定する。ここで、第1の閾値は、電気情報が電圧である場合はブレーキコイル電圧が取り得る最大電圧値よりもある程度低い値(例えば10程度~20%程度低い値)に設定され、電気情報が電流である場合はブレーキコイル電流が取り得る最大電流値よりもある程度低い値(例えば10程度~20%程度低い値)に設定される。ここで示した数値例はあくまでも一例であって、これ以外の値であってもよい。なお、第1の閾値については、書き換え可能な記憶部(図示せず)に記憶されて外部機器によって書き換え可能であってもよく、これによれば、第1の閾値を一旦設定した後であっても、必要に応じて適切な値に変更することができる。
 以上、図6では、正側スイッチ11がショート故障している場合を例にとり説明した。負側スイッチ12のショート故障の説明については、図6の説明において正側スイッチ11と負側スイッチ12とを入れ替えたものが適用される。すなわち、診断部15は、負側スイッチ12をオンオフ制御させるPWM制御を行っている間(時刻t13から時刻t14までの間、時刻t15から時刻t16までの間、及び時刻t17以降)において、検出部14により検出された電気情報が予め規定された第1の閾値以上の略一定値である場合は、負側スイッチ12がショート故障していると判定する。
 図7は、本開示の第1及び第2の実施形態によるブレーキ駆動装置の正側スイッチがオープン故障している場合における各波形を例示するタイミングチャートである。
 例えば、正側スイッチ11がオープン故障しており、負側スイッチ12が正常である場合、スイッチ制御部13から出力されるオン信号及びオフ信号にかかわらず、正側スイッチ11はオフ動作したままである。一方、正常である負側スイッチ12は、スイッチ制御部13から出力されるオン信号及びオフ信号に従って、オンオフ動作する。
 スイッチ制御部13は、機械式ブレーキ装置2によるブレーキを作動させる場合(例えば開始から時刻t11まで)は、正側スイッチ11及び負側スイッチ12に対してオフ信号を出力する。正側スイッチ11は、オープン故障しているので、電源10とブレーキコイル25との間の正側電路43Pは開路したままである。一方、スイッチ制御部13からオフ信号を受信した負側スイッチ12は、オフ動作して電源10とブレーキコイル25との間の負側電路43Nを開路する。電源10とブレーキコイル25との間の負側電路43Nが開路されているので、電源10からブレーキコイル25へ向かう電流は遮断され、したがってブレーキコイル25の電圧及び電流は0(ゼロ)になる。ブレーキコイル25には電磁力が発生しないので、バネ24の弾性力によりアマチュア22は摩擦板21に強く押し付けられ、機械式ブレーキ装置2によるブレーキが作動する。
 時刻t11でブレーキ解除処理が開始される。スイッチ制御部13は、時刻t11で正側スイッチ11及び負側スイッチ12に対してオン信号を出力する。スイッチ制御部13からオン信号を受信した負側スイッチ12は、電源10とブレーキコイル25との間の負側電路43Nを閉路する。しかしながら、正側スイッチ11はオープン故障しているので、正側スイッチ11はオン動作せず、電源10とブレーキコイル25との間の正側電路43Pは開路したままである。よって、電源10からブレーキコイル25へ向かう電流は遮断され、したがってブレーキコイル25の電圧及び電流は0(ゼロ)になる。ブレーキコイル25には電磁力が発生しないので、バネ24の弾性力によりアマチュア22は摩擦板21に強く押し付けられ、機械式ブレーキ装置2はブレーキが作動したままである。
 時刻t12以降は、スイッチ制御部13は、正側スイッチ11に対するPWM制御されたオン信号及びオフ信号の出力と負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力とを、所定時間Tごとに交互に切り替えて行う。
 すなわち、時刻t12から時刻t13までの間、時刻t14から時刻t15までの間、及び時刻t16から時刻t17までの間は、スイッチ制御部13は、正側スイッチ11に対してPWM制御されたオン信号及びオフ信号を出力し、負側スイッチ12に対してオン信号を出力する。スイッチ制御部13によりPWM制御されたオン信号及びオフ信号を受信した正側スイッチ11は、オープン故障しているので、オン動作せず、電源10とブレーキコイル25との間の正側電路43Pは開路したままである。また、スイッチ制御部13からオン信号を受信した負側スイッチ12は、電源10とブレーキコイル25との間の負側電路43Nを閉路する。よって、この間は、正側スイッチ11及び負側スイッチ12は開状態となり、ブレーキコイル25の電圧及び電流がともに0になる波形F2が現れる。
 時刻t13から時刻t14までの間、時刻t15から時刻t16までの間、及び時刻t17以降は、スイッチ制御部13は、正側スイッチ11に対してオン信号を出力し、負側スイッチ12に対してPWM制御されたオン信号及びオフ信号を出力する。スイッチ制御部13によりPWM制御されたオン信号及びオフ信号を受信した負側スイッチ12は、オンオフ動作して電源10とブレーキコイル25との間の負側電路43Nを閉路及び開路する。しかしながら、正側スイッチ11は、オープン故障しているので、電源10とブレーキコイル25との間の正側電路43Pは開路したままである。よって、この間は、正側スイッチ11及び負側スイッチ12は開状態となり、ブレーキコイル25の電圧及び電流がともに0になる波形F2が現れる。
 図5を参照して説明したように、正側スイッチ11が正常であれば、PWM制御されたオン信号及びオフ信号に応じてブレーキコイル25の電圧はV1と0(ゼロ)との間で振動的に上下し、電源10からブレーキコイル25へはブレーキコイル電流の最大値I1よりは小さい振動的な電流が流れるはずである。しかしながら、正側スイッチ11はオープン故障しているので、ブレーキコイル25の電圧及び電流がともに0になる波形F2が常に現れる。そこで、診断部15は、スイッチ制御部13が正側スイッチ11に対してPWM制御されたオン信号及びオフ信号を出力している間(時刻t12から時刻t13までの間、時刻t14から時刻t15までの間、及び時刻t16から時刻t17までの間)、並びに負側スイッチ12に対してPWM制御されたオン信号及びオフ信号を出力している間(時刻t13から時刻t14までの間、時刻t15から時刻t16までの間、及び時刻t17以降)の両方において、検出部14により検出された電気情報が予め規定された第2の閾値以下の略一定値である場合は、正側スイッチ11及び負側スイッチ12のうち少なくとも一方がオープン故障していると判定する。ここで、第2の閾値は、電気情報が電圧である場合は0ボルト近傍の正の値に設定され、電気情報が電流である場合は0アンペア近傍の正の値に設定される。ここで示した数値例はあくまでも一例であって、これ以外の値であってもよい。なお、第2の閾値については、書き換え可能な記憶部(図示せず)に記憶されて外部機器によって書き換え可能であってもよく、これによれば、第2の閾値を一旦設定した後であっても、必要に応じて適切な値に変更することができる。
 以上、図7では、正側スイッチ11がオープン故障している場合を例にとり説明した。負側スイッチ12のオープン故障については、図7に関する説明において正側スイッチ11と負側スイッチ12とを入れ替えたものが適用される。
 負側スイッチ12がオープン故障している場合も、図7に示すようにブレーキコイル25の電圧及び電流がともに0になる波形F2が常に現れる。すなわち、正側スイッチ11がオープン故障している場合と負側スイッチ12がオープン故障している場合とでは、ブレーキコイル25の電圧及び電流がともに0になる波形F2が現れる。よって、ブレーキコイル25の電圧及び電流がともに0になる波形F2からは、正側スイッチ11がオープン故障しているのか、負側スイッチ12がオープン故障しているのか、あるいは正側スイッチ11及び負側スイッチ12の両方がオープン故障しているのか、区別がつかない。診断部15は、検出部14により検出された電気情報が予め規定された第2の閾値以下の略一定値である場合は、正側スイッチ11及び負側スイッチ12のうち少なくとも一方がオープン故障していると判定する。
 図8は、本開示の第1の実施形態によるブレーキ駆動装置における故障診断に関連する動作を示すフローチャートである。ここでは一例として、検出部14が検出する電気情報を、ブレーキコイル25に印加される電圧としている。検出部14が検出する電気情報をブレーキコイル25に流れる電流とする場合は、図8に示すフローチャートは、「ブレーキコイル25に印加される電圧」を「ブレーキコイル25に流れる電流」に読み替えて適用される。
 ステップS101において、スイッチ制御部13及び診断部15は、機械式ブレーキ装置2がブレーキ解除状態にあるか否かを判定する。機械式ブレーキ装置2がブレーキ作動状態にあると判定された場合はステップS101へ戻る。機械式ブレーキ装置2がブレーキ解除状態にあると判定された時点で、スイッチ制御部13は、まずブレーキ解除開始時に正側スイッチ11及び負側スイッチ12に対してオン信号を出力し、その後、ステップS102へ進む。
 ステップS102において、スイッチ制御部13は、正側スイッチ11に対するPWM制御されたオン信号及びオフ信号の出力と、負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力とを、所定時間ごとに交互に切り替えて行う。スイッチ制御部13は、正側スイッチ11に対してPWM制御されたオン信号及びオフ信号を出力している間は負側スイッチ12に対してオン信号を出力する。また、スイッチ制御部13は、負側スイッチ12に対してPWM制御されたオン信号及びオフ信号を出力している間は正側スイッチ11に対してオン信号を出力する。
 ステップS103において、検出部14は、ブレーキコイル電圧を検出する。検出されたブレーキコイル電圧に関する情報は、診断部15に送られる。
 ステップS104において、診断部15は、ブレーキコイル25電圧が第1の閾値以上の略一定値であるか否かを判定する。
 ステップS104においてブレーキコイル25に印加される電圧が第1の閾値以上の略一定値であると判定された場合は、S106へ進む。ステップS106では、診断部15は、正側スイッチ11に対してPWM制御されたオン信号及びオフ信号を出力している間に検出部14により検出されたブレーキコイル電圧が第1の閾値以上の略一定値であるとステップS104において判定していた場合は、正側スイッチ11がショート故障していると判定する。また、ステップS106では、診断部15は、負側スイッチ12に対してPWM制御されたオン信号及びオフ信号を出力している間に検出部14により検出されたブレーキコイル電圧が第1の閾値以上の略一定値であるとステップS104において判定していた場合は、負側スイッチ12がショート故障していると判定する。ステップS106の後は、ステップS101へ戻る。
 ステップS104においてブレーキコイル25に印加される電圧が第1の閾値以上の略一定値であると判定されなかった場合は、S105へ進む。ステップS105において、診断部15は、ブレーキコイル25電圧が第2の閾値以下の略一定値であるか否かを判定する。
 ステップS105においてブレーキコイル25電圧が第2の閾値以下の略一定値であると判定された場合は、ステップS108へ進む。ステップS108では、診断部15は、正側スイッチ11及び負側スイッチ12のうち少なくとも一方がオープン故障していると判定する。ステップS108の後は、ステップS101へ戻る。
 ステップS105においてブレーキコイル25電圧が第2の閾値以下の略一定値であると判定されなかった場合は、ステップS107へ進む。ステップS107では、診断部15は、正側スイッチ11及び負側スイッチ12はともに正常であると判定する。ステップS107の後は、ステップS101へ戻る。
 なお、ステップS104の処理とステップS105の処理とは順序を入れ替えて実行してもよい。
 本開示の第1の実施形態によれば、ブレーキ解除状態において正側スイッチ11に対するPWM制御と負側スイッチにおけるPWM制御を行っている間に、診断部15により正側スイッチ11及び負側スイッチ12の故障を容易に診断することができる。またさらに、ブレーキ解除状態において正側スイッチ11に対するPWM制御と負側スイッチにおけるPWM制御を行うことによって、ブレーキ解除開始時よりも少ない電力にてブレーキ解除状態が維持されるので、機械式ブレーキ装置2の小型化及び低発熱化を図ることができる。
<第2の実施形態によるブレーキ駆動装置の構成>
 図9は、本開示の第2の実施形態によるブレーキ駆動装置を示す回路図である。
 図1~図8を参照して説明した第1の実施形態では、検出部14により検出された電気情報に基づいて、診断部15により診断処理を行った。第2の実施形態では、図1の診断部15及びアラーム出力部16に代えて、検出部14により検出された電気情報を表示する表示部17を設ける。
 図9に示すように、本開示の第2の実施形態によるブレーキ駆動装置1は、電源10と、正側スイッチ11と、負側スイッチ12と、スイッチ制御部13と、検出部14と、表示部17と、サージアブソーバ18とを備える。図9では、ブレーキ駆動装置1によって制御される機械式ブレーキ装置2については、ブレーキコイル25のみ図示している。
 機械式ブレーキ装置2、電源10、正側スイッチ11、負側スイッチ12、スイッチ制御部13、検出部14、診断部15、及びサージアブソーバ18については、第1の実施形態において図1~図9を参照して説明した通りである。
 表示部17は、スイッチ制御部13が正側スイッチ11に対するPWM制御されたオン信号及びオフ信号の出力と負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力とを所定時間ごとに交互に切り替えて行っている間において検出部14により検出された電気情報を表示する。表示部17の例としては、単体のディスプレイ装置、ブレーキ駆動装置1またはこれを備えるモータ駆動装置に付属のディスプレイ装置、並びに、パソコン及び携帯端末に付属のディスプレイ装置などがある。
<第2の実施形態によるブレーキ駆動装置の動作>
 図5~図7に示すタイミングチャートに関する説明は、第2の実施形態においても適用可能である。
 図10は、本開示の第2の実施形態によるブレーキ駆動装置における故障診断に関連する動作を示すフローチャートである。ここでは一例として、検出部14が検出する電気情報をブレーキコイル25に印加される電圧とする。検出部14が検出する電気情報をブレーキコイル25に流れる電流とする場合は、図10に示すフローチャートは、「ブレーキコイル25に印加される電圧」を「ブレーキコイル25に流れる電流」に読み替えて適用される。
 ステップS201において、スイッチ制御部13及び診断部15は、機械式ブレーキ装置2がブレーキ解除状態にあるか否かを判定する。機械式ブレーキ装置2がブレーキ作動状態にあると判定された場合はステップS201へ戻る。機械式ブレーキ装置2がブレーキ解除状態にあると判定された時点で、スイッチ制御部13は、まずブレーキ解除開始時に正側スイッチ11及び負側スイッチ12に対してオン信号を出力し、その後、ステップS102へ進む。
 ステップS202において、スイッチ制御部13は、正側スイッチ11に対するPWM制御されたオン信号及びオフ信号の出力と、負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力とを、所定時間ごとに交互に切り替えて行う。スイッチ制御部13は、正側スイッチ11に対してPWM制御されたオン信号及びオフ信号を出力している間は負側スイッチ12に対してオン信号を出力する。また、スイッチ制御部13は、負側スイッチ12に対してPWM制御されたオン信号及びオフ信号を出力している間は正側スイッチ11に対してオン信号を出力する。
 ステップS203において、検出部14は、ブレーキコイル電圧を検出する。検出されたブレーキコイル電圧に関する情報は、表示部17に送られる。
 ステップS203において、表示部17は、ブレーキコイル電圧を表示する。
 表示部17には、例えば図4~図6に例示されたように、スイッチ制御部13が正側スイッチ11に対するPWM制御されたオン信号及びオフ信号の出力と負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力とを所定時間ごとに交互に切り替えて行っている間において検出部14により検出されたブレーキコイル電圧が表示される。作業者は、表示部17の表示内容を視認することで、正側スイッチ11及び負側スイッチ12が正常であるか、正側スイッチ11がショート故障しているか、負側スイッチがショート故障しているか、正側スイッチ11及び負側スイッチのうちの少なくとも一方がオープン故障しているかを判断することができる。
 本開示の第2の実施形態によれば、作業者は、ブレーキ解除状態において正側スイッチ11に対するPWM制御と負側スイッチにおけるPWM制御を行っている間における機械式ブレーキ装置2のブレーキコイル25に関する電気情報についての表示部17による表示内容に基づいて、正側スイッチ11及び負側スイッチ12の故障を容易に診断することができる。またさらに、ブレーキ解除状態において正側スイッチ11に対するPWM制御と負側スイッチにおけるPWM制御を行うことによって、ブレーキ解除開始時よりも少ない電力にてブレーキ解除状態が維持されるので、機械式ブレーキ装置2の小型化及び低発熱化を図ることができる。
<故障診断と機械式ブレーキ装置の小型化及び低発熱化との両立>
 本開示の第1及び第2の実施形態によれば、ブレーキ解除状態において正側スイッチ11に対するPWM制御と負側スイッチにおけるPWM制御を行うことによって、正側スイッチ11及び負側スイッチ12の故障を容易に診断することができるとともに、機械式ブレーキ装置2の小型化及び低発熱化を図ることができる。
 以上、本開示について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、本開示の要旨を逸脱しない範囲で、または、特許請求の範囲に記載された内容とその均等物から導き出される本開示の趣旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。また、これらの実施形態は、組み合わせて実施することもできる。例えば、上述した実施形態において、各動作の順序や各処理の順序は、一例として示したものであり、これらに限定されるものではない。また、上述した実施形態の説明に数値又は数式が用いられている場合も同様である。
<付記>
 上記実施形態および変形例に関し、更に以下の付記を開示する。
(付記1)
 オン動作することで電源10の正極端子41Pと無励磁作動型の機械式ブレーキ装置2の正極端子42Pとの間の正側電路43Pを閉路し、オフ動作することで正側電路43Pを開路する正側スイッチ11と、
 オン動作することで電源10の負極端子41Nと機械式ブレーキ装置2の負極端子42Nとの間の負側電路43Nを閉路し、オフ動作することで負側電路43Nを開路する負側スイッチ12と、
 正側スイッチ11及び負側スイッチ12に対して、オン動作させるためのオン信号及びオフ動作させるためのオフ信号を出力するスイッチ制御部13と、
を備え、
 スイッチ制御部13は、
 機械式ブレーキ装置2によるブレーキを作動させる場合は、正側スイッチ11及び負側スイッチ12に対してオフ信号を出力し、
 機械式ブレーキ装置2によるブレーキを解除させる場合は、ブレーキ解除開始時に正側スイッチ11及び負側スイッチ12に対してオン信号を出力し、その後、機械式ブレーキ装置2によるブレーキの解除を維持する間は、正側スイッチ11に対するPWM制御されたオン信号及びオフ信号の出力と負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力とを所定時間ごとに交互に切り替えて行う、ブレーキ駆動装置1。
(付記2)
 スイッチ制御部13は、正側スイッチ11に対してPWM制御されたオン信号及びオフ信号を出力している間は負側スイッチ12に対してオン信号を出力し、負側スイッチ12に対してPWM制御されたオン信号及びオフ信号を出力している間は正側スイッチ11に対してオン信号を出力する、付記1に記載のブレーキ駆動装置1。
(付記3)
 機械式ブレーキ装置2のブレーキコイル25に印加される電圧及びブレーキコイル25に流れる電流のうちの少なくとも1つである電気情報を検出する検出部14と、
 スイッチ制御部13が正側スイッチ11に対するPWM制御されたオン信号及びオフ信号の出力と負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力とを所定時間ごとに交互に切り替えて行っている間において検出部14により検出された電気情報に基づいて、正側スイッチ11及び負側スイッチ12の故障の有無を診断する診断部15と、
を備える、付記2に記載のブレーキ駆動装置1。
(付記4)
 診断部15は、
 スイッチ制御部13が正側スイッチ11に対してPWM制御されたオン信号及びオフ信号を出力している間において検出部14により検出された電気情報が予め規定された第1の閾値以上の略一定値である場合は、正側スイッチ11がショート故障していると判定し、
 スイッチ制御部13が負側スイッチ12に対してPWM制御されたオン信号及びオフ信号を出力している間において検出部14により検出された電気情報が第1の閾値以上の略一定値である場合は、負側スイッチ12がショート故障していると判定する、付記3に記載のブレーキ駆動装置1。
(付記5)
 診断部15は、スイッチ制御部13が正側スイッチ11に対してPWM制御されたオン信号及びオフ信号を出力している間及びスイッチ制御部13が負側スイッチ12に対してPWM制御されたオン信号及びオフ信号を出力している間の両方において、検出部14により検出された電気情報が予め規定された第2の閾値以下の略一定値である場合は、正側スイッチ11及び負側スイッチ12のうち少なくとも一方がオープン故障していると判定する、付記3に記載のブレーキ駆動装置1。
(付記6)
 診断部15により正側スイッチ11及び負側スイッチ12のうちの少なくとも1つが故障していると判定された場合、アラームを出力するアラーム出力部を備える、付記3に記載のブレーキ駆動装置1。
(付記7)
 機械式ブレーキ装置2のブレーキコイル25に印加される電圧及びブレーキコイル25に流れる電流のうちの少なくとも1つである電気情報を検出する検出部14と、
 スイッチ制御部13が正側スイッチ11に対するPWM制御されたオン信号及びオフ信号の出力と負側スイッチ12に対するPWM制御されたオン信号及びオフ信号の出力とを所定時間ごとに交互に切り替えて行っている間において検出部14により検出された電気情報を表示する表示部17と、
を備える、付記2に記載のブレーキ駆動装置1。
(付記8)
 機械式ブレーキ装置2は、バネ24の弾性力にてアマチュア22をモータのシャフト31が結合した摩擦板21に押し付けることでモータに対してブレーキをかけ、ブレーキコイル25に電流が流れることで発生する電磁力にて摩擦板21からアマチュア22を引き離してモータへのブレーキを解除する、付記1~7のいずれか1つに記載のブレーキ駆動装置1。
 1  ブレーキ駆動装置
 2  機械式ブレーキ装置
 10  電源
 11  正側スイッチ
 12  負側スイッチ
 13  スイッチ制御部
 14  検出部
 15  診断部
 16  アラーム出力部
 17  表示部
 18  サージアブソーバ
 21  摩擦板
 22  アマチュア
 23  端板
 24  バネ
 25  ブレーキコイル
 26  コア
 27  スペーサ
 28  ボルト
 31  シャフト
 32  ハブ
 41P  電源の正極端子
 41N  電源の負極端子
 42P  機械式ブレーキ装置の正極端子
 42N  機械式ブレーキ装置の負極端子
 43P  正側電路
 43N  負側電路

Claims (8)

  1.  オン動作することで電源の正極端子と無励磁作動型の機械式ブレーキ装置の正極端子との間の正側電路を閉路し、オフ動作することで前記正側電路を開路する正側スイッチと、
     オン動作することで前記電源の負極端子と前記機械式ブレーキ装置の負極端子との間の負側電路を閉路し、オフ動作することで前記負側電路を開路する負側スイッチと、
     前記正側スイッチ及び前記負側スイッチに対して、オン動作させるためのオン信号及びオフ動作させるためのオフ信号を出力するスイッチ制御部と、
    を備え、
     前記スイッチ制御部は、
     前記機械式ブレーキ装置によるブレーキを作動させる場合は、前記正側スイッチ及び前記負側スイッチに対してオフ信号を出力し、
     前記機械式ブレーキ装置によるブレーキを解除させる場合は、ブレーキ解除開始時に前記正側スイッチ及び前記負側スイッチに対してオン信号を出力し、その後、前記機械式ブレーキ装置によるブレーキの解除を維持する間は、前記正側スイッチに対するPWM制御されたオン信号及びオフ信号の出力と前記負側スイッチに対するPWM制御されたオン信号及びオフ信号の出力とを所定時間ごとに交互に切り替えて行う、ブレーキ駆動装置。
  2.  前記スイッチ制御部は、前記正側スイッチに対してPWM制御されたオン信号及びオフ信号を出力している間は前記負側スイッチに対してオン信号を出力し、前記負側スイッチに対してPWM制御されたオン信号及びオフ信号を出力している間は前記正側スイッチに対してオン信号を出力する、請求項1に記載のブレーキ駆動装置。
  3.  前記機械式ブレーキ装置のブレーキコイルに印加される電圧及び前記ブレーキコイルに流れる電流のうちの少なくとも1つである電気情報を検出する検出部と、
     前記スイッチ制御部が前記正側スイッチに対するPWM制御されたオン信号及びオフ信号の出力と前記負側スイッチに対するPWM制御されたオン信号及びオフ信号の出力とを所定時間ごとに交互に切り替えて行っている間において前記検出部により検出された前記電気情報に基づいて、前記正側スイッチ及び前記負側スイッチの故障の有無を診断する診断部と、
    を備える、請求項2に記載のブレーキ駆動装置。
  4.  前記診断部は、
     前記スイッチ制御部が前記正側スイッチに対してPWM制御されたオン信号及びオフ信号を出力している間において前記検出部により検出された前記電気情報が予め規定された第1の閾値以上の略一定値である場合は、前記正側スイッチがショート故障していると判定し、
     前記スイッチ制御部が前記負側スイッチに対してPWM制御されたオン信号及びオフ信号を出力している間において前記検出部により検出された前記電気情報が前記第1の閾値以上の略一定値である場合は、前記負側スイッチがショート故障していると判定する、請求項3に記載のブレーキ駆動装置。
  5.  前記診断部は、前記スイッチ制御部が前記正側スイッチに対してPWM制御されたオン信号及びオフ信号を出力している間及び前記スイッチ制御部が前記負側スイッチに対してPWM制御されたオン信号及びオフ信号を出力している間の両方において、前記検出部により検出された前記電気情報が予め規定された第2の閾値以下の略一定値である場合は、前記正側スイッチ及び前記負側スイッチのうち少なくとも一方がオープン故障していると判定する、請求項3に記載のブレーキ駆動装置。
  6.  前記診断部により前記正側スイッチ及び前記負側スイッチのうちの少なくとも1つが故障していると判定された場合、アラームを出力するアラーム出力部を備える、請求項3に記載のブレーキ駆動装置。
  7.  前記機械式ブレーキ装置のブレーキコイルに印加される電圧及び前記ブレーキコイルに流れる電流のうちの少なくとも1つである電気情報を検出する検出部と、
     前記スイッチ制御部が前記正側スイッチに対するPWM制御されたオン信号及びオフ信号の出力と前記負側スイッチに対するPWM制御されたオン信号及びオフ信号の出力とを所定時間ごとに交互に切り替えて行っている間において前記検出部により検出された前記電気情報を表示する表示部と、
    を備える、請求項2に記載のブレーキ駆動装置。
  8.  前記機械式ブレーキ装置は、バネの弾性力にてアマチュアをモータのシャフトが結合した摩擦板に押し付けることで前記モータに対してブレーキをかけ、ブレーキコイルに電流が流れることで発生する電磁力にて前記摩擦板から前記アマチュアを引き離して前記モータへのブレーキを解除する、請求項1~7のいずれか一項に記載のブレーキ駆動装置。
PCT/JP2022/041209 2022-11-04 2022-11-04 機械式ブレーキ装置を駆動するブレーキ駆動装置 WO2024095465A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041209 WO2024095465A1 (ja) 2022-11-04 2022-11-04 機械式ブレーキ装置を駆動するブレーキ駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041209 WO2024095465A1 (ja) 2022-11-04 2022-11-04 機械式ブレーキ装置を駆動するブレーキ駆動装置

Publications (1)

Publication Number Publication Date
WO2024095465A1 true WO2024095465A1 (ja) 2024-05-10

Family

ID=90929963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041209 WO2024095465A1 (ja) 2022-11-04 2022-11-04 機械式ブレーキ装置を駆動するブレーキ駆動装置

Country Status (1)

Country Link
WO (1) WO2024095465A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014050912A (ja) * 2012-09-06 2014-03-20 Fanuc Ltd スイッチング素子の短絡故障を検出するブレーキ駆動制御回路
WO2014174633A1 (ja) * 2013-04-25 2014-10-30 三菱電機株式会社 ブレーキ付モータ
JP2018126017A (ja) * 2017-02-03 2018-08-09 住友重機械工業株式会社 ブレーキ駆動回路
JP2022086120A (ja) * 2020-11-30 2022-06-09 株式会社協和精工 ブレーキ制御回路、電磁ブレーキの制御装置、電磁ブレーキの制御システム、電磁ブレーキおよび電磁ブレーキの制御方法
WO2022210196A1 (ja) * 2021-03-31 2022-10-06 ファナック株式会社 ブレーキ制御装置及びモータ駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014050912A (ja) * 2012-09-06 2014-03-20 Fanuc Ltd スイッチング素子の短絡故障を検出するブレーキ駆動制御回路
WO2014174633A1 (ja) * 2013-04-25 2014-10-30 三菱電機株式会社 ブレーキ付モータ
JP2018126017A (ja) * 2017-02-03 2018-08-09 住友重機械工業株式会社 ブレーキ駆動回路
JP2022086120A (ja) * 2020-11-30 2022-06-09 株式会社協和精工 ブレーキ制御回路、電磁ブレーキの制御装置、電磁ブレーキの制御システム、電磁ブレーキおよび電磁ブレーキの制御方法
WO2022210196A1 (ja) * 2021-03-31 2022-10-06 ファナック株式会社 ブレーキ制御装置及びモータ駆動装置

Similar Documents

Publication Publication Date Title
JP6285477B2 (ja) ダイナミックブレーキ回路保護機能を有するモータ駆動装置
US8803458B2 (en) Motor drive apparatus equipped with dynamic braking control unit
US7775327B2 (en) Method and system for stopping elevators using AC motors driven by static frequency converters
CN101330251A (zh) 对永磁电动机控制电路的保护
JP6469894B2 (ja) 電力変換装置
JP4418820B2 (ja) 磁気駆動装置を作動するための方法および回路
WO2024095465A1 (ja) 機械式ブレーキ装置を駆動するブレーキ駆動装置
CN101228687B (zh) 电动机以及该电动机作为纺杯单独驱动源的用途
US11223194B2 (en) Motor control apparatus including protection mechanism
JP4771172B2 (ja) 車両用電力変換装置の平滑コンデンサ放電装置
TW202419759A (zh) 驅動機械式制動裝置之制動驅動裝置
JP2007116790A (ja) インバータ装置
JP2006352965A (ja) 電動機の駆動装置及びその装置を用いたエレベータの駆動装置
WO2024089767A1 (ja) 機械式ブレーキ装置を駆動するブレーキ駆動装置
WO2017094839A1 (ja) モータ駆動装置及びモータ駆動装置の制御方法
WO2022210196A1 (ja) ブレーキ制御装置及びモータ駆動装置
JP5047328B2 (ja) 接点出力装置
JP2011032055A (ja) エレベータの電源切り替え制御装置
TW202417288A (zh) 驅動機械式制動裝置之制動驅動裝置
JP4176429B2 (ja) エレベータ音声報知装置
CN110098769B (zh) 电路及电子系统
US11323060B2 (en) Motor control apparatus including protection mechanism
JP7445085B2 (ja) ブレーキ制御装置及びモータ駆動装置
JP7448734B1 (ja) 予備充電スイッチの故障判定を行うモータ駆動装置
JP2007124728A (ja) モータ駆動回路