WO2024095424A1 - 波長ロッカー及び波長ロッカー内蔵型波長可変光源 - Google Patents

波長ロッカー及び波長ロッカー内蔵型波長可変光源 Download PDF

Info

Publication number
WO2024095424A1
WO2024095424A1 PCT/JP2022/041079 JP2022041079W WO2024095424A1 WO 2024095424 A1 WO2024095424 A1 WO 2024095424A1 JP 2022041079 W JP2022041079 W JP 2022041079W WO 2024095424 A1 WO2024095424 A1 WO 2024095424A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
etalon
wavelength
wavelength locker
transmittance
Prior art date
Application number
PCT/JP2022/041079
Other languages
English (en)
French (fr)
Inventor
修平 山本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/041079 priority Critical patent/WO2024095424A1/ja
Publication of WO2024095424A1 publication Critical patent/WO2024095424A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Definitions

  • This disclosure relates to a wavelength locker and a wavelength tunable light source with a built-in wavelength locker.
  • a wavelength monitor and a wavelength-tunable light source with a built-in tunable light source have been proposed in which light is split into two by an optical system, the optical axis is tilted to shift the light relative to the etalon by a phase difference of ⁇ /2, and each light is received by a light-receiving element (see, for example, Patent Document 1).
  • This allows two signals to be obtained from the etalon alone, and the direction of wavelength change can be recognized with high resolution over a wide band.
  • This disclosure has been made to solve the problems described above, and its purpose is to obtain a compact wavelength locker and a wavelength tunable light source with a built-in wavelength locker that are capable of wideband, high-precision wavelength control.
  • the wavelength locker according to the present disclosure includes a beam splitter that splits a laser beam to generate a first light, an etalon that transmits a portion of the first light and reflects the remainder of the first light at an end face to generate a reflected light, a reflector that reflects the reflected light and makes it incident on the etalon as a second light, and a light receiving element that receives the first light and the second light that have transmitted through the etalon, and is characterized in that the first light and the second light have different angles of incidence with respect to the etalon and different optical path lengths inside the etalon.
  • a first light and a second light having different angles of incidence on the etalon are used. This widens the range in which the slope of the etalon's transmittance with respect to changes in the wavelength of the light is large, which can be used to expand the controllable range of wavelength locking of the laser light source. Therefore, the controllable range can be secured even if the finesse of the etalon is increased. By increasing the finesse, the slope of the transmittance with respect to the wavelength and temperature can be increased, enabling highly accurate wavelength control. In addition, the optical system and etalon can be made smaller because the second light is obtained using the reflected light of the etalon.
  • FIG. 1 is a diagram showing a wavelength tunable light source with a built-in wavelength locker according to a first embodiment
  • FIG. 1 is a diagram showing frequency dependence of transmittance of a typical etalon.
  • FIG. 1 is a diagram showing frequency dependence of the slope of the transmittance of a typical etalon.
  • FIG. 1 is a diagram showing the temperature dependence of the transmittance of a typical etalon.
  • FIG. 1 is a diagram showing the temperature dependence of the transmittance of a typical etalon.
  • FIG. 13 is a diagram illustrating a wavelength locker according to a comparative example.
  • FIG. 13 is a diagram showing the frequency dependence of the transmittance of an etalon of a comparative example.
  • FIG. 13 is a diagram showing frequency dependence of the slope of the transmittance of an etalon of a comparative example.
  • 1 is a diagram showing the relationship between the angle of incidence of light to an etalon and the transmittance of the etalon.
  • 4 is a diagram showing the frequency dependence of the transmittance of the etalon of the first embodiment.
  • FIG. 4 is a diagram showing frequency dependence of the slope of the transmittance of the etalon of the first embodiment.
  • FIG. 4 is a diagram showing the frequency dependence of the transmittance of the etalon of the first embodiment.
  • FIG. 4 is a diagram showing frequency dependence of the slope of the transmittance of the etalon of the first embodiment.
  • FIG. 4 is a diagram showing the relationship between the angle of incidence of light to the etalon in the first embodiment and the transmittance of the etalon.
  • FIG. 4 is a diagram showing the frequency dependence of the transmittance of the etalon of the first embodiment.
  • FIG. 4 is a diagram showing frequency dependence of the slope of the transmittance of the etalon of the first embodiment.
  • FIG. 4 is a diagram showing the frequency dependence of the transmittance of the etalon of the first embodiment.
  • FIG. 4 is a diagram showing frequency dependence of the slope of the transmittance of the etalon of the first embodiment.
  • FIG. 4 is a diagram showing the frequency dependence of the transmittance of the etalon of the first embodiment.
  • FIG. 11 is a diagram showing a wavelength tunable light source with a built-in wavelength locker according to a second embodiment.
  • FIG. 11 is a diagram showing a wavelength tunable light source with a built-in wavelength locker according to a third embodiment.
  • the wavelength locker and wavelength locker-integrated tunable light source according to the embodiment will be described with reference to the drawings.
  • the same or corresponding components will be given the same reference numerals, and repeated description may be omitted.
  • Embodiment 1. 1 is a diagram showing a wavelength tunable light source with a built-in wavelength locker according to embodiment 1.
  • Laser light 2 is emitted from a laser light source 1.
  • the output of the laser light source 1 is controlled.
  • the beam splitter 3 splits the laser light 2 into an output light 4 and a first light 5.
  • the output light 4 passes through the beam splitter 3 and is output to the outside.
  • the first light 5 is reflected by the beam splitter 3 in a direction different from that of the output light 4.
  • the reflection angle is, for example, 90°, but is not limited to this.
  • the etalon 6 has end faces 6a and 6b that are parallel to each other.
  • the first light 5 is incident on the etalon 6 from the end face 6a.
  • the etalon 6 transmits a portion of the first light 5 and reflects the remainder of the first light 5 at the end face 6b to generate reflected light 7.
  • the highly reflective mirror 8 reflects the reflected light 7 and makes it enter the etalon 6 again at an angle as second light 9.
  • the light receiving elements 10 and 11 are, for example, photodiodes, and receive the first light 5 and second light 9 that have passed through the etalon 6, respectively.
  • the first light 5 and the second light 9 have different angles of incidence with respect to the etalon 6 by angle ⁇ , and therefore different optical path lengths within the etalon 6. Therefore, the first light 5 and the second light 9 have different transmission wavelengths through the etalon 6 and different transparent temperatures of the etalon 6.
  • the temperature adjustment unit 12 adjusts the temperature of the laser light source 1 based on the output signal of the light receiving element 10 or the output signal of the light receiving element 11, and controls it so that the oscillation wavelength of the laser light source 1 is constant.
  • the etalon 6 is disposed on the temperature adjustment unit 13.
  • the temperature adjustment unit 13 adjusts the temperature of the etalon 6.
  • the temperature adjustment units 12 and 13 are, for example, thermoelectric coolers that use Peltier elements.
  • a temperature measurement unit such as a thermistor or thermocouple that measures the temperature of the etalon 6 is disposed on the etalon 6 or in the vicinity of the etalon 6 on the temperature adjustment unit 13.
  • a temperature measurement unit is also provided in the laser light source 1.
  • Figure 2 shows the frequency dependence of the transmittance of a typical etalon.
  • Figure 3 shows the frequency dependence of the slope of the transmittance of a typical etalon.
  • FWHM is the half-width of the peak of the etalon's transmission waveform.
  • FSR is the period of the etalon's transmission waveform.
  • the maximum transmittance gradient becomes large, so that the current of the light receiving element changes with a slight change in wavelength, allowing for highly accurate wavelength control.
  • the wavelength lock needs to be controlled within a region where the gradient of the transmittance with respect to the wavelength change is large, but when the finesse is high, the region where the gradient of the transmittance is large becomes narrow, making it easier for the wavelength lock to be released.
  • Figures 4 and 5 show the temperature dependence of the transmittance of a typical etalon.
  • Figure 4 shows the case where the finesse is constant and the frequency of the light is different.
  • Figure 5 shows the case where the frequency of the light is constant and the finesse is different.
  • the transmittance of the etalon changes when the temperature of the etalon is changed.
  • the frequency of the light is different, the peak position of the transmittance with respect to the etalon temperature changes. Therefore, in order to lock the wavelength at the desired wavelength, the temperature of the etalon is changed to set it to a temperature where the slope of the transmittance is steep.
  • FIG. 6 is a diagram showing a wavelength locker according to a comparative example.
  • the light receiving element 11 directly receives the reflected light 7 of the etalon 6.
  • FIG. 7 is a diagram showing the frequency dependence of the transmittance of the etalon of the comparative example.
  • FIG. 8 is a diagram showing the frequency dependence of the slope of the transmittance of the etalon of the comparative example.
  • the positive and negative slopes of the slope of the transmittance of the etalon 6 are reversed for the first light 5 and the reflected light 7. However, the region where the slope of the transmittance that can be controlled by the wavelength lock is large does not expand.
  • the first light 5 and the second light 9, which have different angles of incidence on the etalon 6, are used to expand the region in which the gradient of the transmittance that can be controlled by wavelength locking is large. This will be described in detail below.
  • Figure 9 shows the relationship between the angle of incidence of light into the etalon and the transmittance of the etalon.
  • the material of the etalon is synthetic quartz, the FSR is 100 GHz, and the ⁇ /2 angle is 1.9 deg.
  • the data on the left and right are for cases where there is a shift of 1/2 FSR in the frequency of the emitted light from the laser light source 1 or the temperature of the etalon 6.
  • FIGS. 10 and 12 are diagrams showing the frequency dependence of the transmittance of the etalon of embodiment 1.
  • FIGS. 11 and 13 are diagrams showing the frequency dependence of the slope of the transmittance of the etalon of embodiment 1.
  • FIGS. 10 to 13 show the case where the difference ⁇ in the angles of incidence between the first light 5 and the second light 9 is ⁇ /2 angles.
  • FIGS. 10 and 11 show the case where the light receiving elements 10, 11 are separated.
  • FIGS. 12 and 13 show the case where the light is received collectively by one light receiving element.
  • FIG. 14 is a diagram showing the relationship between the angle of incidence of light on the etalon of embodiment 1 and the transmittance of the etalon.
  • the material of the etalon is synthetic quartz, the FRS is 100 GHz, and the ⁇ /4 angle is 1.3 deg.
  • the data on the left and right are for cases where there is a shift of 1/4 FSR in the frequency of the emitted light from the laser light source 1 or the temperature of the etalon 6.
  • the difference ⁇ in the angles of incidence between the first light 5 and the second light 9 to ⁇ /4 angle
  • the characteristics of the etalon 6 for the second light 9 are shifted by 1/4 period compared to the characteristics of the etalon 6 for the first light 5.
  • By adjusting the difference ⁇ in the angles of incidence in this way it is possible to obtain the characteristics of the etalon 6 with an arbitrary peak position.
  • Figures 15 and 17 are diagrams showing the frequency dependence of the transmittance of the etalon of embodiment 1.
  • Figures 16 and 18 are diagrams showing the frequency dependence of the slope of the transmittance of the etalon of embodiment 1.
  • Figures 15 to 18 show the case where the difference ⁇ in the angles of incidence between the first light 5 and the second light 9 is ⁇ /4 angles.
  • Figures 15 and 16 show the case where the light receiving elements 10 and 11 are separated.
  • Figures 17 and 18 show the case where all the light is received at once by a single light receiving element. Compared to the case where the difference ⁇ in the angles of incidence is ⁇ /2 angles, the controllable range of wavelength locking can be concentrated.
  • FSR is inversely proportional to the length d of the etalon.
  • the first light 5 and the second light 9 having different angles of incidence on the etalon 6 are used. This widens the range in which the gradient of the transmittance of the etalon 6 with respect to the change in the wavelength of the light is large, and this can be used to widen the controllable range of the wavelength lock of the laser light source. Therefore, the controllable range can be secured even if the finesse of the etalon 6 is increased. By increasing the finesse, the gradient of the transmittance with respect to the wavelength and temperature can be increased, enabling highly accurate wavelength control. In addition, the controllable temperature range of the etalon can be expanded. This allows the amount of temperature adjustment of the etalon to be reduced, thereby reducing power consumption. In addition, the optical system and etalon can be made smaller because the second light 9 is obtained using the reflected light of the etalon 6.
  • Embodiment 2 is a diagram showing a wavelength tunable light source with a built-in wavelength locker according to the second embodiment.
  • a high reflection film 14 is provided on the side surface of the beam splitter 3.
  • the high reflection film 14 reflects the reflected light 7 and makes it enter the etalon 6 again at an angle as the second light 9.
  • the other configurations are the same as those of the first embodiment.
  • the optical axis of the laser light 2 When the optical axis of the laser light 2 is tilted by ⁇ /2 and incident on the beam splitter 3, the difference in the angle of incidence of the first light 5 and the second light 9 with respect to the etalon 6 is ⁇ . Therefore, the first light 5 and the second light 9 have different transmission wavelengths through the etalon 6 and different transparent temperatures of the etalon 6. Therefore, the same effect as in the first embodiment can be obtained.
  • the second reflected light 15 from the etalon 6 is reflected by the highly reflective film 14 and enters the etalon 6 again.
  • This light becomes the remaining component of the reflected lights 7 and 15, resulting in a complex transmission shape. It is difficult to control the wavelength lock based on this light. Therefore, the external size and arrangement of the beam splitter 3 and etalon 6 are set so that the reflected light 15 does not become the third incident light to the etalon 6.
  • the external size and arrangement of the light receiving elements 10 and 11 are adjusted so that the third incident light does not enter the light receiving elements 10 and 11.
  • Embodiment 3. 21 is a diagram showing a wavelength tunable light source with a built-in wavelength locker according to embodiment 3.
  • One large light receiving element 16 receives the first light 5 and the second light 9 transmitted through the etalon 6.
  • the other configurations are the same as those of embodiment 2. Even in this case, the same effects as those of embodiments 1 and 2 can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

ビームスプリッタ(3)がレーザ光(2)を分割して第1の光(5)を生成する。エタロン(6)は第1の光(5)の一部を透過させ、第1の光(5)の残りを端面で反射させて反射光(7)を生成する。反射部(8)は反射光(7)を反射して第2の光(9)としてエタロン(6)に入射させる。受光素子(10,11)はエタロン(6)を透過した第1の光(5)と第2の光(9)をそれぞれ受光する。第1の光(5)と第2の光(9)は、エタロン(6)に対する入射角度が異なり、エタロン(6)の内部での光路長が異なる。

Description

波長ロッカー及び波長ロッカー内蔵型波長可変光源
 本開示は、波長ロッカー及び波長ロッカー内蔵型波長可変光源に関する。
 光学系で光を2分割し、光軸を傾斜させて相対的にπ/2の位相差でずらしてエタロンに入射させ、それぞれ受光素子で受光する波長モニタ及びそれを内蔵した波長可変光源が提案されている(例えば、特許文献1参照)。これにより、エタロン単体で2信号が得られて高分解能で広帯域に渡り波長変化方向も認識できる。
日本特開2002-202190号公報
 しかし、従来技術では、光を2分割する光学系が大型化し、かつエタロンも大型化するという問題があった。
 本開示は、上述のような課題を解決するためになされたもので、その目的は広帯域で高精度な波長制御が可能な小型の波長ロッカー及び波長ロッカー内蔵型波長可変光源を得るものである。
 本開示に係る波長ロッカーは、レーザ光を分割して第1の光を生成するビームスプリッタと、前記第1の光の一部を透過させ、前記第1の光の残りを端面で反射させて反射光を生成するエタロンと、前記反射光を反射して第2の光として前記エタロンに入射させる反射部と、前記エタロンを透過した前記第1の光と前記第2の光をそれぞれ受光する受光素子とを備え、前記第1の光と前記第2の光は、前記エタロンに対する入射角度が異なり、前記エタロンの内部での光路長が異なることを特徴とする。
 本開示では、エタロンに対する入射角度が異なる第1の光と第2の光を用いる。これにより、光の波長の変化に対するエタロンの透過率の傾きが大きい範囲が広くなるため、それを利用してレーザ光源の波長ロックの制御可能な範囲を広げることができる。従って、エタロンのフィネスを高くしても制御可能範囲を確保できる。フィネスを高くすることで波長・温度に対する透過率の傾きを大きくすることができるため、高精度な波長制御が可能となる。また、エタロンの反射光を用いて第2の光を得るため、光学系とエタロンを小型化できる。
実施の形態1に係る波長ロッカー内蔵型波長可変光源を示す図である。 一般的なエタロンの透過率の周波数依存性を示す図である。 一般的なエタロンの透過率の傾きの周波数依存性を示す図である。 一般的なエタロンの透過率の温度依存性を示す図である。 一般的なエタロンの透過率の温度依存性を示す図である。 比較例に係る波長ロッカーを示す図である。 比較例のエタロンの透過率の周波数依存性を示す図である。 比較例のエタロンの透過率の傾きの周波数依存性を示す図である。 エタロンへの光の入射角度とエタロンの透過率の関係を示す図である。 実施の形態1のエタロンの透過率の周波数依存性を示す図である。 実施の形態1のエタロンの透過率の傾きの周波数依存性を示す図である。 実施の形態1のエタロンの透過率の周波数依存性を示す図である。 実施の形態1のエタロンの透過率の傾きの周波数依存性を示す図である。 実施の形態1のエタロンへの光の入射角度とエタロンの透過率の関係を示す図である。 実施の形態1のエタロンの透過率の周波数依存性を示す図である。 実施の形態1のエタロンの透過率の傾きの周波数依存性を示す図である。 実施の形態1のエタロンの透過率の周波数依存性を示す図である。 実施の形態1のエタロンの透過率の傾きの周波数依存性を示す図である。 実施の形態1のエタロンの透過率の周波数依存性を示す図である。 実施の形態2に係る波長ロッカー内蔵型波長可変光源を示す図である。 実施の形態3に係る波長ロッカー内蔵型波長可変光源を示す図である。
 実施の形態に係る波長ロッカー及び波長ロッカー内蔵型波長可変光源について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
 図1は、実施の形態1に係る波長ロッカー内蔵型波長可変光源を示す図である。レーザ光源1からレーザ光2が出射される。レーザ光源1の電流又は電圧を調整するとレーザ光源1の出力が制御される。
 ビームスプリッタ3は、レーザ光2を出力光4と第1の光5に分割する。出力光4はビームスプリッタ3を通過して外部に出力される。第1の光5はビームスプリッタ3により出力光4とは別の方向に反射される。反射角度は例えば90°であるが、これに限らない。
 エタロン6は互いに平行な端面6a,6bを有する。第1の光5は端面6aからエタロン6に入射される。エタロン6は、第1の光5の一部を透過させ、第1の光5の残りを端面6bで反射させて反射光7を生成する。
 高反射ミラー8は、反射光7を反射して、第2の光9として角度をつけてエタロン6に再び入射させる。受光素子10,11は、例えばフォトダイオードであり、エタロン6を透過した第1の光5と第2の光9をそれぞれ受光する。
 第1の光5と第2の光9は、エタロン6に対する入射角度が角度θだけ異なり、エタロン6の内部での光路長が異なる。従って、第1の光5と第2の光9は、エタロン6を透過する透過波長とエタロン6の透明温度が異なる。
 温度調整部12は、受光素子10の出力信号又は受光素子11の出力信号に基づいてレーザ光源1の温度を調節してレーザ光源1の発振波長が一定になるように制御する。エタロン6は温度調整部13の上に配置されている。温度調整部13はエタロン6の温度を調整する。温度調整部12,13は、例えば、ペルチェ素子を使った熱電クーラー(ThermoElectric Cooler)である。なお、エタロン6の温度を測定するサーミスタ又は熱電対などの温度測定部が、エタロン6の上、又は、温度調整部13の上でエタロン6近傍に配置されている。温度測定部はレーザ光源1にも設けられている。
 図2は、一般的なエタロンの透過率の周波数依存性を示す図である。図3は、一般的なエタロンの透過率の傾きの周波数依存性を示す図である。FWHMはエタロンの透過波形のピーク半値幅である。FSRはエタロンの透過波形の周期である。フィネスFはF=FSR/FWHMで定義される。
 エタロンの反射率をRとすると、F=πR1/2/(1-R)である。従って、エタロンの反射率Rを高くするとフィネスを高くすることができる。フィネスが高いと、最大の透過率の傾きが大きくなることから僅かな波長の変化で受光素子の電流が変わるため、高精度に波長制御ができる。一方、波長ロックは波長変化に対する透過率の傾きが大きい領域内で制御する必要があるが、フィネスが高いと透過率の傾きが大きい領域が狭くなるため、波長ロックが外れやすくなる。
 図4及び図5は、一般的なエタロンの透過率の温度依存性を示す図である。図4はフィネスが一定で光の周波数が異なる場合である。図5は、光の周波数が一定でフィネスが異なる場合である。エタロンの温度を変えることでエタロンの透過率が変わる。光の周波数が異なると、エタロンの温度に対する透過率のピーク位置が変わる。そこで、所望の波長で波長ロックを行うために、エタロンの温度を変えて透過率の傾きが大きい温度に設定する。
 しかし、エタロンの温度が周囲の環境温度からずれると一定温度に保つために大きな電力が必要となる。従って、波長ロックの制御可能範囲を広げること及びエタロンの温度制御の消費電力を抑えることは高精度な波長制御とは相反する設計項目となる。
 図6は、比較例に係る波長ロッカーを示す図である。受光素子11がエタロン6の反射光7を直接受光する。図7は、比較例のエタロンの透過率の周波数依存性を示す図である。図8は、比較例のエタロンの透過率の傾きの周波数依存性を示す図である。第1の光5と反射光7ではエタロン6の透過率の傾きの正負が反転する。しかし、波長ロックの制御可能な透過率の傾きが大きい領域は広がらない。
 これに対して、本実施の形態では、エタロン6に対する入射角度が異なる第1の光5と第2の光9を用いることにより、波長ロックの制御可能な透過率の傾きが大きい領域を広げる。これについて以下に詳細に説明する。
 図9は、エタロンへの光の入射角度とエタロンの透過率の関係を示す図である。エタロンの材料は合成石英であり、FRSは100GHzであり、π/2角度は1.9deg.である。左右のデータは、レーザ光源1の出射光の周波数又はエタロン6の温度で1/2FSR分ずれた場合である。第1の光5と第2の光9の入射角度の差θをπ/2角度にすることで、第2の光9に対するエタロン6の特性は、第1の光5に対するエタロン6の特性に比べて半周期ずれた特性となる。
 図10及び図12は、実施の形態1のエタロンの透過率の周波数依存性を示す図である。図11及び図13は、実施の形態1のエタロンの透過率の傾きの周波数依存性を示す図である。図10から図13は第1の光5と第2の光9の入射角度の差θがπ/2角度の場合である。図10及び図11は受光素子10,11が分離している場合である。図12及び図13は1つの受光素子で一括受光した場合である。第1の光5だけでなく第2の光9も用いることにより波長ロックの制御可能な範囲を広げることができる。
 図14は、実施の形態1のエタロンへの光の入射角度とエタロンの透過率の関係を示す図である。エタロンの材料は合成石英であり、FRSは100GHzであり、π/4角度は1.3deg.である。左右のデータは、レーザ光源1の出射光の周波数又はエタロン6の温度で1/4FSR分ずれた場合である。第1の光5と第2の光9の入射角度の差θをπ/4角度にすることで、第2の光9に対するエタロン6の特性は、第1の光5に対するエタロン6の特性に比べて1/4周期ずれた特性となる。このように入射角度の差θを調整することで任意のピーク位置となるエタロン6特性が得られる。
 図15及び図17は、実施の形態1のエタロンの透過率の周波数依存性を示す図である。図16及び図18は、実施の形態1のエタロンの透過率の傾きの周波数依存性を示す図である。図15から図18は第1の光5と第2の光9の入射角度の差θがπ/4角度の場合である。図15及び図16は受光素子10,11が分離している場合である。図17及び図18は1つの受光素子で一括受光した場合である。入射角度の差θがπ/2角度の場合に比べて波長ロックの制御可能な範囲を集中させることができる。
 図19は、実施の形態1のエタロンの透過率の周波数依存性を示す図である。光の波長をλ、エタロンの屈折率をn、エタロンの長さをdとするとFSR=λ/2ndである。即ち、FSRはエタロンの長さdに反比例する。本実施の形態においてθ=π/2角度とすることで2倍周期の透過特性が得られるため、エタロンの長さを1/2にしても従来と同じ周期の透過特性が得られる。従って、エタロンの長さを短くできるため、波長ロッカーの小型化が可能になる。
 以上説明したように、本実施の形態では、エタロン6に対する入射角度が異なる第1の光5と第2の光9を用いる。これにより、光の波長の変化に対するエタロン6の透過率の傾きが大きい範囲が広くなるため、それを利用してレーザ光源の波長ロックの制御可能な範囲を広げることができる。従って、エタロン6のフィネスを高くしても制御可能範囲を確保できる。フィネスを高くすることで波長・温度に対する透過率の傾きを大きくすることができるため、高精度な波長制御が可能となる。また、制御可能なエタロンの温度範囲を広げることができる。このため、エタロンの温度調整量を小さくできるため、消費電力を抑えることができる。また、エタロン6の反射光を用いて第2の光9を得るため、光学系とエタロンを小型化できる。
実施の形態2.
 図20は、実施の形態2に係る波長ロッカー内蔵型波長可変光源を示す図である。本実施の形態では、実施の形態1の高反射ミラー8の代わりに、ビームスプリッタ3の側面に高反射膜14を設けている。高反射膜14は、反射光7を反射して、第2の光9として角度をつけてエタロン6に再び入射させる。その他の構成は実施の形態1と同様である。
 レーザ光2の光軸をθ/2傾けてビームスプリッタ3に入射させると、第1の光5と第2の光9のエタロン6に対する入射角度の差がθとなる。従って、第1の光5と第2の光9は、エタロン6を透過する透過波長とエタロン6の透明温度が異なる。従って、実施の形態1と同様の効果を得ることができる。
 なお、エタロン6の2回目の反射光15が高反射膜14で反射されてエタロン6に再び入射することが考えられる。このような光は反射光7,15の残り成分となるため、複雑な透過形状になる。このような光に基づく波長ロックの制御は困難である。そこで、反射光15がエタロン6への3回目の入射光にならないようにビームスプリッタ3及びエタロン6の外形サイズと配置が設定されている。または、3回目の入射光が受光素子10,11に入射しないように受光素子10,11の外形サイズと配置を調整する。
実施の形態3.
 図21は、実施の形態3に係る波長ロッカー内蔵型波長可変光源を示す図である。1つの大型の受光素子16が、エタロン6を透過した第1の光5と第2の光9を受光する。その他の構成は実施の形態2と同様である。この場合でも実施の形態1,2と同様の効果を得ることができる。
1 レーザ光源、2 レーザ光、3 ビームスプリッタ、5 第1の光、6 エタロン、7 反射光、8 高反射ミラー(反射部)、9 第2の光、10,11,16 受光素子、12 温度調整部、14 高反射膜(反射部)

Claims (6)

  1.  レーザ光を分割して第1の光を生成するビームスプリッタと、
     前記第1の光の一部を透過させ、前記第1の光の残りを端面で反射させて反射光を生成するエタロンと、
     前記反射光を反射して第2の光として前記エタロンに入射させる反射部と、
     前記エタロンを透過した前記第1の光と前記第2の光をそれぞれ受光する受光素子とを備え、
     前記第1の光と前記第2の光は、前記エタロンに対する入射角度が異なり、前記エタロンの内部での光路長が異なることを特徴とする波長ロッカー。
  2.  前記反射部は、前記反射光を反射して前記第2の光として角度をつけて前記エタロンに入射させる高反射ミラーであることを特徴とする請求項1に記載の波長ロッカー。
  3.  前記反射部は、前記ビームスプリッタの側面に設けられた高反射膜であることを特徴とする請求項1に記載の波長ロッカー。
  4.  前記第2の光の一部が前記エタロンの前記端面で反射した光が前記エタロンに再び入射しないか又は前記受光素子に入射しないように前記ビームスプリッタ及び前記エタロンの外形サイズと配置が設定されていることを特徴とする請求項3に記載の波長ロッカー。
  5.  1つの前記受光素子が前記エタロンを透過した前記第1の光と前記第2の光を受光することを特徴とする請求項1~4の何れか1項に記載の波長ロッカー。
  6.  請求項1~5の何れか1項に記載の波長ロッカーと、
     前記レーザ光を出射するレーザ光源と、
     前記受光素子の出力信号に基づいて前記レーザ光源の温度を調節して前記レーザ光源の発振波長が一定になるように制御する温度調整部とを備えることを特徴とする波長ロッカー内蔵型波長可変光源。
PCT/JP2022/041079 2022-11-02 2022-11-02 波長ロッカー及び波長ロッカー内蔵型波長可変光源 WO2024095424A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041079 WO2024095424A1 (ja) 2022-11-02 2022-11-02 波長ロッカー及び波長ロッカー内蔵型波長可変光源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041079 WO2024095424A1 (ja) 2022-11-02 2022-11-02 波長ロッカー及び波長ロッカー内蔵型波長可変光源

Publications (1)

Publication Number Publication Date
WO2024095424A1 true WO2024095424A1 (ja) 2024-05-10

Family

ID=90930023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041079 WO2024095424A1 (ja) 2022-11-02 2022-11-02 波長ロッカー及び波長ロッカー内蔵型波長可変光源

Country Status (1)

Country Link
WO (1) WO2024095424A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582882A (ja) * 1991-09-24 1993-04-02 Komatsu Ltd 光波長制御装置及び波長制御型レーザ光発生装置
JP2000223761A (ja) * 1999-02-03 2000-08-11 Sun Tec Kk 波長モニタ及びレーザ光源装置
JP2001284711A (ja) * 2000-03-31 2001-10-12 Hitachi Ltd 光伝送装置及びこれを用いた光システム
JP2002202190A (ja) * 2000-12-27 2002-07-19 Ando Electric Co Ltd 波長モニタ及び波長モニタ内蔵型波長可変光源
US20030108072A1 (en) * 2001-12-11 2003-06-12 Altitun Ab Method and algorithm for continuous wavelength locking
JP2010153926A (ja) * 2010-04-02 2010-07-08 Mitsubishi Electric Corp 半導体レーザ装置
JP2018190778A (ja) * 2017-04-28 2018-11-29 富士通オプティカルコンポーネンツ株式会社 波長モニタ装置、光源装置及び光モジュール
WO2019208575A1 (ja) * 2018-04-26 2019-10-31 住友電工デバイス・イノベーション株式会社 光半導体装置およびその制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582882A (ja) * 1991-09-24 1993-04-02 Komatsu Ltd 光波長制御装置及び波長制御型レーザ光発生装置
JP2000223761A (ja) * 1999-02-03 2000-08-11 Sun Tec Kk 波長モニタ及びレーザ光源装置
JP2001284711A (ja) * 2000-03-31 2001-10-12 Hitachi Ltd 光伝送装置及びこれを用いた光システム
JP2002202190A (ja) * 2000-12-27 2002-07-19 Ando Electric Co Ltd 波長モニタ及び波長モニタ内蔵型波長可変光源
US20030108072A1 (en) * 2001-12-11 2003-06-12 Altitun Ab Method and algorithm for continuous wavelength locking
JP2010153926A (ja) * 2010-04-02 2010-07-08 Mitsubishi Electric Corp 半導体レーザ装置
JP2018190778A (ja) * 2017-04-28 2018-11-29 富士通オプティカルコンポーネンツ株式会社 波長モニタ装置、光源装置及び光モジュール
WO2019208575A1 (ja) * 2018-04-26 2019-10-31 住友電工デバイス・イノベーション株式会社 光半導体装置およびその制御方法

Similar Documents

Publication Publication Date Title
US5970076A (en) Wavelength tunable semiconductor laser light source
US7701984B2 (en) Laser module and method of controlling wavelength of external cavity laser
US6205159B1 (en) Discrete wavelength liquid crystal tuned external cavity diode laser
US5444724A (en) Tunable wavelength light source incorporated optical filter using interferometer into external cavity
US7496119B2 (en) External cavity laser with multiple stabilized modes
US7508849B2 (en) Wavelength tunable laser device
US20190235446A1 (en) Method and device for producing a reference frequency
JP2013179266A (ja) 位相連続波長可変レーザ
RU2457591C2 (ru) Компактный источник лазерного излучения с уменьшенной шириной спектра
WO2022082965A1 (zh) 一种波长锁定器和可调激光器组件
CN108801466B (zh) 波长监测装置、光源装置以及光模块
US20130163621A1 (en) External cavity tunable laser module
US20040258109A1 (en) Solid laser apparatus
WO2024095424A1 (ja) 波長ロッカー及び波長ロッカー内蔵型波長可変光源
US20050276303A1 (en) External Cavity Laser
US7711019B2 (en) Variable wavelength light source
CN105119142A (zh) 一种外腔调谐激光器
JPH0897516A (ja) 波長安定化外部共振器型ld光源
US11984699B2 (en) Optical semiconductor device and control method of the same
JPH09129982A (ja) 外部共振器型ld光源
CN102315588A (zh) F-p腔及采用该f-p腔的激光器
JP2000353854A (ja) 外部共振器型波長可変光源
JPH09260792A (ja) 外部共振器型波長可変ld光源
US6870872B2 (en) Etalon and external resonance type laser
JPH10107370A (ja) 外部共振器型波長可変半導体レーザ光源の位相調整装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964442

Country of ref document: EP

Kind code of ref document: A1