WO2024094905A1 - Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos - Google Patents

Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos Download PDF

Info

Publication number
WO2024094905A1
WO2024094905A1 PCT/ES2022/070712 ES2022070712W WO2024094905A1 WO 2024094905 A1 WO2024094905 A1 WO 2024094905A1 ES 2022070712 W ES2022070712 W ES 2022070712W WO 2024094905 A1 WO2024094905 A1 WO 2024094905A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
cultivation
photobioreactor
floating
hemisphere
Prior art date
Application number
PCT/ES2022/070712
Other languages
English (en)
French (fr)
Inventor
Josep Maria PUIG LOPEZ
Original Assignee
Puig Lopez Josep Maria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Puig Lopez Josep Maria filed Critical Puig Lopez Josep Maria
Priority to PCT/ES2022/070712 priority Critical patent/WO2024094905A1/es
Publication of WO2024094905A1 publication Critical patent/WO2024094905A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology

Definitions

  • the present invention relates to a new type of floating photobioreactor designed to cultivate microalgae in aquatic environments.
  • Photobioreactors have traditionally been used for the cultivation of microalgae. These have usually been installed on land, highlighting both vertical and horizontal tubular designs, flat panels, and open systems similar to rafts (Branyikova and Lucakova, 2021 Technical and physiological aspects of microalgae cultivation and productivity-spirulina as a promising and feasible choice.
  • the productivity rate is generally low, in the order of 0.01 to 2 grams of microalgae per liter/day (Chen et al. 2011, Yeh, KL, Aisyah, R., Lee, DJ., Chang, JS., 2011 .
  • floating photobioreactors are installed in water and are designed to float (Zhu et al., 2019a Zhai, X, XI, Y, Wang, J., Kong, F., Zhao, Y, Chi, Z., 2019a. Progress on the development of floating photobioreactor for microalgae cultivation and its application potential. World Journal of Microbiology and Biotechnology 35, 190. https://doi.org/10.1007/s11274-019-2767-x). Floating photobioreactors offer advantages in terms of economic costs and environmental impact associated with the cultivation of microalgae in terrestrial environments.
  • Patent US2011287544A1 (Applicant. TRON GROUP LLC IHI Inc) which describes the use of different types of floating photobioreactors constructed preferably with flexible materials. Most of them have a dome shape and a flat cubic base or others have a tubular shape and elliptical section.
  • Patent US2011247262A1 (Applicant. Inha-lndustry Partnership Institute INHA) discloses a floating photobioreactor for the cultivation of marine microalgae; It consists of one or several flat, tubular or conical bags made of flexible and semipermeable material that are submerged and secured to a flotation system, specifically a pair of tubular floats arranged in parallel.
  • Document US201333081 QM (Applicant.lHllnc), includes different types of floating photobioreactors characterized, in longitudinal section, by a tube-shaped design and in cross section, by a design with a dome-shaped upper part and a rectangular-shaped lower part, cubic or trapezoidal with a flat base.
  • Patent KR101447929B1 (Applicant. INHA IND PARTNERSHIP INST [KR]), includes a compilation of different types of floating photobioreactors. Some of them with a cubic shape and a flat base, and others with an elliptical shape, preferably made with flexible material. The latter, those with an elliptical shape, or "pillow", are designed to be a closed structure (closed being understood as a non-divisible structure in which the parts that make up its main structure are not attachable or detachable).
  • Patent KR102016380B1 (Applicant. UN IV INHA RES & BUSINESS FOUND), describes a rectangular raft-shaped photobioreactor, which is surrounded by tubular flotation systems and contains a culture tank in the center of this structure.
  • the culture tank is open and opens to the open air at the top, while the base of the tank is partially submerged and consists of a flexible sheet that confines the culture.
  • the patent document CNI 13046229A (Applicant. YUNNAN ALPHY BIOTECH CO Ltd.) discloses a floating photobioreactor whose upper part is shaped like dome and its lower part contains a culture tank of rectangular shape in section and with a flat base. Use auxiliary flotation systems installed around the main structure. It also has a small solar lamp installed on one of the sides, above the waterline. It has anchors at the base of the photobioreactor.
  • CN107475069A (Applicant. Dalian University of Technology) describes a floating photobioreactor, made of rigid or flexible material, but preferably made of film-like flexible plastic material, whose upper part is dome-shaped and its lower part contains a small culture tank shaped rectangular in section and flat base.
  • the exposed designs have low hydrodynamic properties that do not allow good use of the driving force of the waves.
  • many are preferably made of plastic film, which inhibits the installation of accessory systems to provide artificial lighting during low light hours, among others.
  • there are very significant benefits associated with the cultivation of microalgae some of them critical for the following decades, which can motivate an increase in activity in this sector and therefore effective cultivation systems must be developed. ; These aspects are: 1) the mitigation of the greenhouse effect through the capture of CO2 during photosynthesis by microalgae (Onyeaka, H . , M i ri , T., Obileke, K., Hart, A., Anumudu, C ., Al-Sharify, ZT, 2021.
  • the objective of this invention is to provide a floating photobioreactor in the shape of an oblate spheroid, whose design, hydrodynamic and built with rigid materials, represents a technical improvement compared to terrestrial photobioreactors and traditional floating photobioreactors, the latter of which are tubular in shape. dome-shaped or cubic with a flat base, limited volume, and, mostly, with reduced hydrodynamics and built with flexible materials.
  • the aim is to reduce the environmental impact and the energy and economic costs associated with the cultivation of microalgae, which are: low productivity rates and, consequently, the need for large facilities to increase it, use of large land to contain the facilities, use of large quantities of fresh water and finally the high economic costs associated with artificial lighting of the crop at night as well as the maintenance and renewal of fluids through the use of air pumping systems.
  • a floating photobioreactor is presented in the shape of an oblate spheroid, formed by two hemispheres, one upper and one lower, which can be coupled and decoupled by conventional means.
  • these means can be a threading system between both bodies presenting the whole tightness, or the cooperation of at minus a lever latch located between the two hemispheres and an elastic joint. It has at least one handle installed on the upper hemisphere that allows manipulation of the photobioreactor.
  • the lower hemisphere is partially filled with water and contains the microalgae culture while the upper hemisphere is filled with air. Its internal surface is made of a material with high reflectivity, such as aluminum, for example. This allows better use of the incidence of light on the crop. It also includes means to keep the contents of the hemisphere thermally isolated from the medium. aquatic, especially relevant when low temperatures exist, where these means are achieved through a removable coating that covers the lower hemisphere.
  • the upper hemisphere is made of light-permeable material, it includes two gas exchangers, these allow the exchange of oxygen and carbon dioxide between the outside environment and the inside of the photobioreactor.
  • These gas exchangers have a circular shape and preferably consist of a polygonal porous mesh, of any pore diameter, or a semipermeable membrane (not shown).
  • the upper hemisphere also comprises at least one waterproof solar lamp, this being understood as the conventional assembly: solar panel, the battery, the control unit, sensors and the LED light source; This allows solar energy to be used to promote nocturnal photosynthesis, improving the efficiency of the set, making it viable for geographical locations with low solar incidence.
  • the means of fixing, access and maintenance of the gas exchangers and the solar lamp are carried out through the cooperation of threaded pairs for each of them, on one side a female thread inserted into the surface of the upper hemisphere, and on the other a male thread that contains the gas exchanger, or, where appropriate, the solar panel.
  • the male rosea can be operated by a crank.
  • an anchoring system installed on one side of the lower hemisphere by means of at least one eyebolt fixed to it, close to its equator, which allows it to be tied and secured to a dead man, rope or line of ropes, as well as at least one eyebolt located on its lower pole for the same function and which can also fix the removable covering.
  • at least one drainage system installed in the lower hemisphere which consists of a small cylinder with an opening at its end, which can be opened or sealed and which allows the culture to drain from inside the photobioreactor, among others.
  • the photobioreactor can have sensors installed (not shown) that allow measuring different parameters and controlling the quality of the culture, such as luminosity, turbidity, temperature, conductivity and Ph.
  • buoy-shaped hydrodynamic design seeks to make the most of the driving force of the waves as a mechanism to mix and renew the fluids inside the photobioreactor, thus dispensing with auxiliary air pumping systems as in terrestrial photobioreactors and increasing performance in comparison with other floating photobioreactors of tubular, dome-shaped or cubic shapes with a flat base as stated.
  • its surface-volume ratio allows a greater volume of culture to be contained in a smaller surface area, reducing the amount of space allocated to the installation of the floating photobioreactor and increasing production per unit.
  • the fact of constructing the floating photobioreactor with rigid materials also allows the installation of various systems such as solar lamps at the apex of the upper hemisphere, thus providing a more distribution homogeneous light and increasing the productivity of microalgae during nocturnal photosynthesis.
  • FIG. 1 Exploded side view, you can see the lower hemisphere (1), the upper hemisphere (2), the means of joining the hemispheres, in this case through a threaded connection (6), the removable covering (3), the eyebolts (4 and 5), handles (7), the level of the crop water contained inside (8), the gas exchangers (10) and the drainage system (17).
  • Figure 2 Perspective view where you can see the removable covering (3), the lower hemisphere (1), the upper hemisphere (2), the solar lamp (9) and the gas exchangers (10).
  • Figure 3 Shows detail A of figure 2, where you can see the gas exchanger, the portion of material that makes up the female threaded opening (11) connected to the upper hemisphere, the male thread (12) with the crank (13). ) and the opening for the passage of gases, in this representation formed by a polygonal porous mesh (14).
  • FIG. Exploded detail of the location of the solar lamp, the solar panel (15) contained in the male thread (16), the crank (13) and the portion of material that makes up the female threaded opening (11).
  • a buoy-shaped floating photobioreactor specifically a rigid hollow buoy in the shape of an oblate spheroid, which mainly consists of two hemispheres, one upper (2) and the other lower (1), the which in this embodiment are united and separated through cooperation of at least one lever latch located between the two hemispheres and an elastic joint (not shown).
  • the lower hemisphere has a highly reflective inner surface, while the upper one is permeable to light.
  • this hemisphere comprises a removable covering (3) that acts as a thermal insulator that surrounds the lower hemisphere (1), which in this preferred embodiment is a polyurethane foam, this hemisphere has at least two mooring means formed by two eyebolts ( 4 and 5) on a side close to its equator and at its lower pole, figure 1.
  • a drainage system (17) consisting of a small cylinder connected to the hemisphere which can be opened or sealed and which facilitates the drainage of the culture from inside the photobioreactor.
  • the upper hemisphere (2) has three handles (7) for handling the photobioreactor and at least one solar lamp (9).
  • the solar panel (15) is located and adjusted on the male thread (16) which cooperates with the female threaded opening (11) of the upper hemisphere, figures 1 and 4, leaving the sensitive elements of the lamp, that is, battery, control circuit, sensors and LED lamp protected from crop water and the outside;
  • the solar lamp promotes photosynthesis at night or in hours of lack of sunlight.
  • It comprises at least two gas exchangers (10), which in this embodiment are formed by a polygonal porous mesh (14). These allow the exchange of oxygen and carbon dioxide between the outside environment and the inside of the photobioreactor. Access for maintenance of the gas exchangers is carried out through the cooperation of a female/male threaded pair (11 and 12), with the polygonal porous mesh contained in the male thread element (12). The adjustment of this thread is facilitated by a crank (13) which allows it to be accessed manually without requiring tools.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos. Un fotobiorreactor flotante con forma esferoidal oblada, el cual está diseñado para cultivar microalgas en medios acuáticos. El fotobiorreactor se subdivide en dos cuerpos principales, un semiesferoide superior (2) y uno inferior (1). Comprende medios convencionales para su unión y estanquidad, comprende de intercambiadores de gases, así como de una lámpara solar. La superficie interior del semiesferoide inferior posee elevada reflectividad, dispone de medios para aislar térmicamente este semiesferoide mediante un revestimiento amovible. Su diseño rígido pero hidrodinámico permite un mejor aprovechamiento de la energía de las olas para la mezcla y renovación de los fluidos rebajando los costes energéticos, económicos y el impacto ambiental asociados al cultivo de microalgas.

Description

DESCRIPCIÓN
TÍTULO
FOTOBIORREACTOR FLOTANTE PARA EL CULTIVO DE MICROALGAS EN MEDIOS ACUÁTICOS
CAMPO TÉCNICO
El presente invento se refiere a un nuevo tipo de fotobiorreactor flotante diseñado para cultivar microalgas en medios acuáticos.
ESTADO DE LA TECNICA
Los fotobiorreactores han sido tradicionalmente utilizados para el cultivo de microalgas. Estos han sido usualmente instalados en tierra, destacando los diseños tubulares tanto verticales como horizontales, los paneles planos, y los sistemas abiertos similares a balsas (Branyikova and Lucakova, 2021 Technical and physiological aspects of microalgae cultivation and productivity-spirulina as a promising and feasible choice. Organic Agriculture 11, 269-276. https://doi.org/10.1007/s13165-020-00323-1). La tasa de productividad es generalmente baja, del orden de 0,01 a 2 gramos de microalga por litro/día (Chen et al. 2011, Yeh, K-L, Aisyah, R., Lee, D-J., Chang, J-S., 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology 102, 71-81. https://doi.Org/10.1016/j.biortech.2010.06.159), siendo necesarias grandes porciones de terreno, agua dulce e infraestructura para conseguir un rendimiento económico derivado de esta actividad. Del mismo modo, los costes ambientales y económicos asociados también representan un reto importante; primero, se requiere destinar una gran porción de terreno para contener las instalaciones, segundo, grandes cantidades de agua dulce son necesarias para el cultivo de la mayoría de las especies, tercero, los costes energéticos asociados con los sistemas de iluminación y sobre todo con los sistemas de bombeo de aire para mezclar y renovar los fluidos en el cultivo son elevados. En contraste, los fotobiorreactores flotantes se instalan en el agua y están diseñados para flotar (Zhu et al., 2019a Zhai, X, XI, Y, Wang, J., Kong, F., Zhao, Y, Chi, Z., 2019a. Progress on the development of floating photobioreactor for microalgae cultivation and its application potential. World Journal of Microbiology and Biotechnology 35, 190. https://doi.org/10.1007/s11274-019-2767-x). Los fotobiorreactores flotantes ofrecen ventajas en cuanto a los costes económicos y al impacto ambiental asociado al cultivo de microalgas en medios terrestres. Estas mejoras vienen derivadas de: el aprovechamiento del movimiento y la energía de las olas para mezclar los fluidos en el interior del fotobiorreactor (Zhu, C., Chi, Z., Bi, C., Zhao, Y., Cai, H., 2019b. Hydrodynamic performance of floating photobioreactors driven by wave energy. Biotechnology for Biofuels 12, 54. https://doi.org/10.1186/s13068-019-1396-9)no necesitando de la instalación de sistemas de bombeo de aire; la utilización de agua de mar tanto como medio de cultivo como lugar de instalación, evitando así el uso de agua dulce y el uso de terrenos. Este tipo de fotobiorreactores han sido menos estudiados que sus equivalentes terrestres, y consecuentemente, menos utilizados. Además, el diseño de los fotobiorreactores flotantes puede mejorarse significativamente ya que la mayoría de ellos consisten en estructuras tubulares, en forma de domo o cubicas de base plana como recogen los documentos de patentes:
La patente US2011287544A1 (Solicitante. TRON GROUP LLC IHI Inc) la cual describe el empleo de diferentes tipos de fotobiorreactores flotantes construidos con materiales flexibles preferentemente. La mayoría de ellos con forma de domo y base cúbica plana u otros con forma tubular y sección elíptica. La patente US2011247262A1 (Solicitante. Inha-lndustry Partnership Institute INHA) revela un fotobiorreactor flotante para el cultivo de microalgas marinas; consiste en una o varias bolsas planas, tubulares o cónicas hechas de material flexible y semipermeable que van sumergidas y aseguradas a un sistema de flotación, concretamente un par de flotadores de forma tubular dispuestos en paralelo.
El documento US201333081 QM (Solicitante.lHllnc), recoge diferentes tipos de fotobiorreactores flotantes caracterizados, en sección longitudinal, por un diseño en forma de tubo yen sección transversal, por un diseño con parte superior en forma de domo y parte inferior con forma rectangular, cubica o trapezoidal con base plana.
La patente KR101447929B1 (Solicitante. INHA IND PARTNERSHIP INST [KR]), recoge una compilación de diferentes tipos de fotobiorreactores flotantes. Algunos de ellos con forma cúbica y base plana, y otros con forma elíptica, preferiblemente hechos con material flexible. Estos últimos, los de forma elíptica, o “almohada”, están diseñados para ser una estructurada cerrada (entendiendo por cerrada, una estructura no divisible en la que las partes que componen su estructura principal no son acoplables o desacoplares).
La patente KR102016380B1 (Solicitante. UN IV INHA RES & BUSINESS FOUND), describe un fotobiorreactor con forma de balsa rectangular, el cual está rodeado por sistemas de flotación tubular y contiene un tanque de cultivo en el centro de esta estructura. El tanque de cultivo está abierto y da al aire libre por su parte superior, mientras que la base del tanque está parcialmente sumergida y consiste en una lámina flexible que confina el cultivo.
El documento de patenteCNI 13046229A (Solicitante. YUNNAN ALPHY BIOTECH CO Ltd.) Revela un fotobiorreactor flotante cuya parte superior tiene forma de domo y su parte inferior contiene un tanque de cultivo de forma rectangular en sección y con base plana. Usa sistemas de flotación auxiliares instalados alrededor de la estructura principal. También dispone de una pequeña lámpara solar instalada en uno de los laterales, por encima de la línea de flotación. Dispone de anclajes en la base del fotobiorreactor.
CN107475069A (Solicitante. Dalian University of Technology) describe un fotobiorreactor flotante, hecho de material rígido o flexible, pero preferiblemente hecho de material plástico flexible tipo film, cuya parte superior tiene forma de domo y su parte inferior contiene un pequeño tanque de cultivo con forma rectangular en sección y base plana.
Los diseños expuestos presentan bajas propiedades hidrodinámicas que no permiten un buen aprovechamiento de la fuerza motriz de las olas. Asimismo, muchos están fabricados preferiblemente con plástico film, lo cual inhibe la instalación de sistemas accesorios para dar iluminación artificial durante las horas de poca luz, entre otros. A parte de los aspectos técnicos y económicos, hay beneficios muy significativos asociados al cultivo de microalgas, algunos de ellos críticos para las siguientes décadas, lo cuales pueden motivar un incremento de la actividad en este sector y por ello hay que desarrollar sistemas de cultivo efectivos; estos aspectos son: 1) la mitigación del efecto invernadero mediante la captación de CO2 durante la fotosíntesis por parte de las microalgas (Onyeaka, H . , M i ri , T., Obileke, K., Hart, A., Anumudu, C., Al-Sharify, Z.T., 2021. Minimizing carbon footprint via microalgae as a carbon biological capture. Carbon Capture Science & Technology 1. https://doi.Org/10.1016/j.ccst.2021.100007) y2) incrementar las fuentes de alimentos ya que las microalgas pueden ser consumidas y son una rica fuente de nutrientes (Mahata, C., Das, P., Khan, S., Thaher, M.I.A., Quadir, M.A., Annamalai, S.N., Al Jabri, H., 2022. The potential of marine microalgae for the production of food, feed and fuel (3F). Fermentation 8, 316. https://doi.org/10.3390/fermentation8070316).
El solicitante no conoce soluciones técnicas que resuelvan el problema expuesto de forma ventajosa como la invención preconizada.
PROBLEMA TÉCNICO A SOLUCIONAR
El objetivo de esta invención es proporcionar con un fotobiorreactor flotante con forma de esferoide oblado, cuyo diseño, hidrodinámico y construido con materiales rígidos, suponga una mejora técnica en comparación con los fotobiorreactores terrestres y los fotobiorreactores flotantes tradicionales, estos últimos, de formas tubulares, con forma de domo o cubicas de base plana, volumen limitado, y, mayorítariamente, con reducido hidrodinamismo y construidos con materiales flexibles. Con estas mejores técnicas se busca reducir el impacto ambiental y los costes energéticos y económicos asociados al cultivo de microalgas, los cuales son: bajas tasas de productividad y, consecuentemente, necesidad de grandes instalaciones para incrementarla, uso de grandes terreno para contener las instalaciones, uso de grandes cantidades de agua dulce y por último los altos costes económicos asociados a la iluminación artificial del cultivo durante la noche así como al mantenimiento y renovación de los fluidos mediante el uso de sistemas de bombeo de aire.
DESCRIPCIÓN DE LA INVENCIÓN
De acuerdo con la presente invención, se presenta un fotobiorreactor flotante con forma de esferoide oblado, formado por dos semiesferoides, uno superior y otro inferior, los cuales se pueden acoplar y desacoplar mediante medios convencionales. Donde estos medios pueden ser un sistema de roscado entre ambos cuerpos presentando el conjunto estanquidad, o de la cooperación de al menos un pestillo de palanca situado entre los dos semiesferoides y una junta elástica. Presenta al menos una agarradera instalada en el semiesferoide superior que permite el manipulado del fotobioreactor.
El semiesferoide inferior está parcialmente lleno de agua y contiene el cultivo de microalgas mientras que el semiesferoide superior está lleno de aire. Su superficie interna es de un material con elevada reflectividad como y a modo ilustrativo puede ser el aluminio, esto permite un mejor aprovechamiento de la incidencia de la luz en el cultivo, comprende así mismo de medios para mantener el contenido de la semiesfera aislado térmicamente del medio acuático, especialmente relevante cuando existen bajas temperaturas, donde estos medios se logran mediante un revestimiento amovible que recubre el semiesferoide inferior.
El semiesferoide superior esta realizado en material permeable a la luz, comprende dos intercambiadores de gases, estos permiten el intercambio de oxígeno y dióxido de carbono entre el medio exterior y el interior del fotobiorreactor. Estos intercambiadores de gases tienen forma circular y consisten de forma preferente en una malla porosa poligonal, de cualquier diámetro de poros, o una membrana semipermeable (no representada).
El semiesferoide superior también comprende al menos una lámpara solar estanca, entendiéndose por esto el conjunto convencional: panel solar, la batería, la unidad de control, sensores y la fuente de luz LED; esto permite utilizar la energía solar para promover la fotosíntesis nocturna, mejorando la eficiencia del conjunto haciéndolo viable para emplazamientos geográficos de baja incidencia solar. Los medios de fijación, acceso y mantenimiento de los intercambiadores de gases y de la lámpara solar se realizan mediante la cooperación de pares roscados para cada uno de ellos, de un lado una rosca hembra insertada en la superficie del semiesferoide superior, y de otro una rosca macho que contiene el intercambiador de gases, o en su caso el panel solar. La rosea macho puede operarse mediante una manivela.
Se provee de un sistema de anclaje instalado en un lateral del semiesferoide inferior mediante al menos un cáncamo fijado a éste, próximo a su ecuador, el cual permite amarrarlo y asegurarlo a un muerto, cabo o línea de cabos, así como al menos de un cáncamo situado en su polo inferior para idéntica función y que puede hacer a su vez de fijación del revestimiento amovible. También se provee de al menos un sistema de drenaje instalado en el semiesferoide inferior el cual consiste en un pequeño cilindro con una apertura en su extremo, la cual se puede abrir o sellar y que permite drenar el cultivo del interior del fotobiorreactor, entre otros. Asimismo, el fotobiorreactor puede llevar instalados sensores (no representados) que permitan medir diferentes parámetros y controlar la calidad del cultivo, como luminosidad, turbidez, temperatura, conductividad y Ph.
Su diseño hidrodinámico en forma de boya busca aprovechar al máximo la fuerza motriz de las olas como mecanismo para mezclar y renovar los fluidos en el interior del fotobiorreactor, prescindiendo así de sistemas auxiliares de bombeo de aire como en los fotobiorreactores terrestres e incrementando el rendimiento en comparación con otros fotobiorreactores flotantes de formas tubulares, en forma de domo o cúbicas con base plana como se ha expuesto. Asimismo, su relación superficie-volumen permite contener un mayor volumen de cultivo en una superficie más pequeña, reduciendo la cantidad de espacio destinada a la instalación del fotobiorreactor flotante e incrementando la producción por unidad. El hecho de construir el fotobiorreactor flotante con materiales rígidos también permite la instalación de diversos sistemas como son las lámparas solares en el ápice del semiesferoide superior, proporcionando así una distribución más homogénea de la luz e incrementando la productividad de microalgas durante la fotosíntesis nocturna.
DESCRIPCIÓN DE LOS DIBUJOS
Figura 1. Vista lateral explosionada, puede apreciarse el semiesferoide inferior (1), el semiesferoide superior (2), los medios de unión de las semiesferas, en este caso mediante unión roscada (6), el revestimiento amovible (3), los cáncamos (4 y 5), agarraderas (7), el nivel del agua de cultivo contenida en el interior (8), los intercambiadores de gases (10) y el sistema de drenaje (17).
Figura 2. Vista en perspectiva donde puede verse el revestimiento amovible (3), el semiesferoide inferior (1), el semiesferoide superior (2), la lámpara solar (9) y los intercambiadores de gases (10).
Figura 3. Muestra el detalle A de la figura 2, donde puede verse el intercambiador de gases, la porción de material que conforma la abertura roscada hembra (11) comunicada con la semiesfera superior, la rosca macho (12) con la manivela (13) y la apertura para el paso de gases, en esta representación formada por una malla porosa poligonal (14).
Figura 4. Detalle explosionado de la ubicación de la lámpara solar, el panel solar (15) contenido en la rosca macho (16), la manivela (13) y la porción de material que conforma la abertura roscada hembra (11).
DESCRIPCIÓN DE UN MODO DE REALIZACIÓN PREFERENTE
El invento queda definido por las reclamaciones adjuntadas. De acuerdo con ello, se expone el diseño de un fotobiorreactor flotante con forma de boya, específicamente una boya hueca rígida con forma de esferoide oblado, la cual consiste principalmente de dos semiesferoides, uno superior (2) y otro inferior (1), los cuales en este modo de realización se unen y separan mediante la cooperación de al menos un pestillo de palanca situado entre los dos semiesferoides y una junta elástica (no representadas). El semiesferoide inferior presenta una superficie interior de alta reflectividad, mientras que el superior es permeable a la luz. Comprende un revestimiento amovible (3) que actúa como aislante térmico que envuelve a la semiesfera inferior (1), que en este modo de realización preferida es una espuma de poliuretano, esta semiesfera dispone de al menos dos medios de amarre formados por dos cáncamos (4 y 5) en un lateral próximo a su ecuador y en su polo inferior, figura 1. Asimismo, también comprende un sistema de drenaje (17), consistente en un pequeño cilindro comunicado con el semiesferoide el cual se puede abrir o sellar y que facilita el drenado del cultivo del interior del fotobiorreactor.
El semiesferoide superior (2) presenta tres agarraderas (7) para la manipulación del fotobiorreactor y de al menos una lámpara solar (9). La placa solar (15) se emplaza y ajusta sobre la rosca macho (16) la cual copera con la abertura roscada hembra (11) del semiesferoide superior, figuras 1 y 4, quedando los elementos sensibles de la lámpara, esto es, batería, circuito de control, sensores y lámpara LED resguardados del agua del cultivo y del exterior; la lámpara solar favorece la fotosíntesis nocturna o en horas de falta de luz solar.
Comprende de al menos dos intercambiadores de gases (10), los cuales en esta realización están formados por una malla porosa poligonal (14). Estos permiten el intercambio de oxígeno y dióxido de carbono entre el medio exterior y el interior del fotobiorreactor. El acceso para el mantenimiento de los intercambiadores de gases se realiza mediante la cooperación de un par roscado hembra/macho (11 y 12), encontrándose la malla porosa poligonal contenida en el elemento rosca macho (12). El ajuste de esta rosca es facilitado mediante una manivela (13) lo cual permite su acceso de forma manual sin precisar herramientas.

Claims

REIVINDICACIONES
1.Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos caracterizado por presentar un cuerpo con forma de esferoide oblado, dicho cuerpo está hueco y se puede dividir en dos semiesferiodes amovibles, un semiesferoide superior (2) permeable a la luz y un semiesferoide inferior (1) cuya superficie interior es de material con elevadas propiedades de reflexión de la luz; estos se acoplan y desacoplan mediante medios convencionales manteniendo estanquidad, comprende en el semiesferoide superior de al menos una agarradera (7), de dos intercambiadores de gases (10) y de al menos una lámpara solar estanca (9); en el semiesferoide inferior comprende al menos un sistema de amarre mediante al menos un cáncamo (4 y 5) y de medios para aislar térmicamente este semiesferoide mediante un revestimiento amovible (3).
2.Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos de acuerdo con la reivindicación primera caracterizado por ser los medios de acoplamiento y estanquidad de los semiesferoides ejecutados mediante la unión roscada entre ambos cuerpos, encontrándose la cooperación de una rosca macho y otra hembra presentes en las semiesferas indistintamente.
3. Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos de acuerdo con la reivindicación primera caracterizado por ser los medios de acoplamiento y estanquidad la cooperación de al menos un pestillo de palanca situado entre los dos semiesferoides y una junta elástica.
4. Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos de acuerdo con todas las reivindicaciones anteriores caracterizado por estar los intercambiadores de gases formados por una malla porosa poligonal (14) y medios para su colocación y remoción mediante el apriete de un par roscado (11 y 12) mediante una manivela (13).
5. Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos de acuerdo con todas las reivindicaciones una a tres caracterizado por estar los intercambiadores de gases formados por una membrana semipermeable y medios para su colocación y remoción mediante el apriete de un par roscado (11 y 12) mediante una manivela (13).
6. Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos de acuerdo con todas las reivindicaciones anteriores caracterizado por encontrase la placa solar dispuesta sobre la rosca macho (16) la cual copera con la abertura roscada hembra (11) del semiesferoide superior y es ajustada mediante la manivela (13).
7. Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos de acuerdo con todas las reivindicaciones anteriores caracterizado por comprender al menos un sistema de drenaje (17) instalado en el semiesferoide inferior el cual consiste en un pequeño cilindro con una apertura en su extremo, la cual se puede abrir o sellar.
8. Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos de acuerdo con todas las reivindicaciones anteriores caracterizado por comprender el fotobiorreactor sensores de luminosidad, turbidez, temperatura, conductividad y Ph.
PCT/ES2022/070712 2022-11-04 2022-11-04 Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos WO2024094905A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2022/070712 WO2024094905A1 (es) 2022-11-04 2022-11-04 Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2022/070712 WO2024094905A1 (es) 2022-11-04 2022-11-04 Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos

Publications (1)

Publication Number Publication Date
WO2024094905A1 true WO2024094905A1 (es) 2024-05-10

Family

ID=90929829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2022/070712 WO2024094905A1 (es) 2022-11-04 2022-11-04 Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos

Country Status (1)

Country Link
WO (1) WO2024094905A1 (es)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130102076A1 (en) * 2011-10-24 2013-04-25 Jason D. LICAMELE Systems and methods for growing photosynthetic organisms
US8569050B1 (en) * 2009-05-04 2013-10-29 John D. Ericsson Enclosed bioreactor system and methods associated therewith
US20140315290A1 (en) * 2011-12-07 2014-10-23 International Ltd. Low-cost photobioreactor
CN105331517A (zh) * 2015-12-08 2016-02-17 大连理工大学 微藻培养系统、腔体式光生物反应器及微藻培养方法
CN107475069A (zh) * 2017-08-15 2017-12-15 大连理工大学 漂浮式微藻培养系统及微藻培养方法
CN210193886U (zh) * 2019-05-20 2020-03-27 广西壮族自治区水产科学研究院 一种高效封闭式海洋微藻培养光生物反应器
CN113046229A (zh) * 2019-12-26 2021-06-29 云南爱尔发生物技术股份有限公司 一种微藻培养系统中的腔体式光生物反应器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8569050B1 (en) * 2009-05-04 2013-10-29 John D. Ericsson Enclosed bioreactor system and methods associated therewith
US20130102076A1 (en) * 2011-10-24 2013-04-25 Jason D. LICAMELE Systems and methods for growing photosynthetic organisms
US20140315290A1 (en) * 2011-12-07 2014-10-23 International Ltd. Low-cost photobioreactor
CN105331517A (zh) * 2015-12-08 2016-02-17 大连理工大学 微藻培养系统、腔体式光生物反应器及微藻培养方法
CN107475069A (zh) * 2017-08-15 2017-12-15 大连理工大学 漂浮式微藻培养系统及微藻培养方法
CN210193886U (zh) * 2019-05-20 2020-03-27 广西壮族自治区水产科学研究院 一种高效封闭式海洋微藻培养光生物反应器
CN113046229A (zh) * 2019-12-26 2021-06-29 云南爱尔发生物技术股份有限公司 一种微藻培养系统中的腔体式光生物反应器

Similar Documents

Publication Publication Date Title
ES2364891T3 (es) Biorreactor.
PT1771359E (pt) Controle da evaporação no armazenamento de água
US8409852B2 (en) Aquatic-based microalgae production apparatus
US20120231528A1 (en) Reaction casing for a photosynthetic reactor and associated photosynthetic reactor
CN107428579A (zh) 使用大型藻类的生物反应器
CN107475069B (zh) 漂浮式微藻培养系统及微藻培养方法
US10287538B2 (en) Device for producing a photosynthetic culture by means of a photo-bioreactor and at least one light distributor
ES2245467T3 (es) Aparato de buceo y procedimiento para su fabricacion.
ES2347515A1 (es) Fotobiorreactor laminar para la produccion de microalgas.
US20200032181A1 (en) Device for exposing an algal solution to light, associated photobioreactor and implementation method
WO2024094905A1 (es) Fotobiorreactor flotante para el cultivo de microalgas en medios acuáticos
WO2010128170A1 (es) Estrctura flotante ensambladora
ES2877054T3 (es) Cubierta con colector de agua para cuba de metanización
CN101407757A (zh) 一种水面养殖工程设施的装置及构建方法
CN111891305B (zh) 一种模块化海上浮式自适应蔬菜种植平台
CN201334475Y (zh) 一种水面养殖工程的装置
CN110447581A (zh) 抗流速生态保育放流设备
CA2761251A1 (en) Fast erectable bioreactor
CN203860177U (zh) 船载海水流水浴光照培养装置
NO315633B1 (no) Anordning for fiskeoppdrett
WO2016166041A1 (en) Solar energy harvesting system
WO2013017723A1 (es) Fotobiorreactor para cultivar microorganismos fotoautótrofos
US20130199514A1 (en) Buoyant water heating device
CA2764291A1 (en) Low-cost integrated pond-photobioreactor
ES2660841B1 (es) Sistema polimérico flexible flotante modular de usos múltiples

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964312

Country of ref document: EP

Kind code of ref document: A1