WO2024094229A2 - 激光适配器,多光子显微镜主机和光学系统 - Google Patents

激光适配器,多光子显微镜主机和光学系统 Download PDF

Info

Publication number
WO2024094229A2
WO2024094229A2 PCT/CN2023/140484 CN2023140484W WO2024094229A2 WO 2024094229 A2 WO2024094229 A2 WO 2024094229A2 CN 2023140484 W CN2023140484 W CN 2023140484W WO 2024094229 A2 WO2024094229 A2 WO 2024094229A2
Authority
WO
WIPO (PCT)
Prior art keywords
laser
module
microscope
probe
adapter
Prior art date
Application number
PCT/CN2023/140484
Other languages
English (en)
French (fr)
Other versions
WO2024094229A3 (zh
Inventor
吴润龙
田景全
云子艳
胡炎辉
王爱民
程和平
Original Assignee
北京大学
北京超维景生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211364119.8A external-priority patent/CN115826218A/zh
Priority claimed from CN202211364226.0A external-priority patent/CN115629468A/zh
Priority claimed from CN202211364197.8A external-priority patent/CN115598780A/zh
Application filed by 北京大学, 北京超维景生物科技有限公司 filed Critical 北京大学
Publication of WO2024094229A2 publication Critical patent/WO2024094229A2/zh
Publication of WO2024094229A3 publication Critical patent/WO2024094229A3/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present application relates to the field of optical technology, and in particular to a laser adapter, a multi-photon microscope host and an optical system.
  • an adjustment mechanism with multiple degrees of freedom is usually used.
  • a lens is set on the adjustment mechanism.
  • the spatial laser is coupled into the optical fiber.
  • the output pointing angle of the laser will also change.
  • the typical laser is 25 ⁇ rad/°C. If the temperature changes by 10°C, the pointing angle changes by 250 ⁇ rad.
  • the laser pointing direction changes, and the coupling efficiency of the optical fiber will drop sharply, greatly affecting the performance of the equipment.
  • the system also needs to be re-debugged.
  • the present application provides a laser adapter, a multi-photon microscope host and an optical system to solve the problems existing in the laser coupling scheme in the prior art, such as the complexity of optical path adjustment and lens replacement, and the decrease in laser coupling efficiency due to the easy change of laser.
  • a laser adapter comprising: a shell and a beam transformation device and a beam stabilization device arranged in the shell; the shell has a laser input port and a laser output port; the beam transformation device is configured to transform the laser beam entering the shell; the beam stabilization device is arranged downstream of the beam transformation device along the laser transmission direction, and is used to adjust the laser transmission direction to correct the deviation between the actual position of the laser beam at the laser output port and the ideal position.
  • the present application provides a multiphoton microscope host, which is used to solve the problems of large space occupation, difficulty in handling and transfer, and complex installation and maintenance of multiphoton microscopes in the prior art.
  • the present application provides a multiphoton microscope host, which is used to connect to a microscope probe, and the multiphoton microscope host includes a mounting body and a wide-field search module, a laser coupling module, a fluorescence collection module and a scanning control module integrated on the mounting body; wherein the wide-field search module is configured to perform wide-field imaging of a living body, so as to search for a target area for installing a microscope probe on the living body; the laser coupling module is configured to receive laser light and adjust the laser light to couple the laser light into a laser transmission optical fiber, wherein the laser transmission optical fiber is used to connect the laser coupling module and the microscope probe; the scanning control module is configured to be connected to the microscope probe through a control cable, and is used to control the microscope probe to perform laser scanning to generate a fluorescence
  • the present application also provides an optical imaging system to solve the problems in the traditional optical imaging system, such as the need to readjust the optical path due to the change of the laser emitted by the laser, and the poor flexibility of use.
  • the present application provides an optical system, which includes a laser, a transmission optical fiber, an application device body, and the laser adapter as described above; wherein the laser is arranged at the laser input port of the laser adapter, and the laser adapter is used to transmit the laser light to the laser device.
  • the laser is emitted to the laser input port; one end of the transmission optical fiber is connected to a laser coupler, the laser coupler is connected to the laser output port, and the other end of the transmission optical fiber is connected to the application device body.
  • an optical system which includes: a laser, a laser adapter and a microscope host; wherein the laser is used to emit laser light to the laser adapter; the laser adapter is used to receive the laser light emitted by the laser, adjust and adapt the laser light, and then transmit the adjusted and adapted laser light to the microscope host; the microscope host is configured to transmit the laser light to a microscope probe, and control the microscope probe to perform laser scanning on a living body to generate a fluorescence signal for imaging.
  • the laser adapter is provided with a beam conversion device and a beam stabilization device.
  • the beam conversion device can perform beam conversion on the input laser so that the laser can match the subsequent equipment to achieve the best performance of the equipment.
  • the beam stabilization device can adjust the deflection direction of the laser when the laser beam is detected to be offset, so as to ensure the stability of the laser output and thus the coupling efficiency of the laser output. Therefore, by using the laser adapter provided by the present application, when a laser with different parameters is input or a deflection occurs during the laser transmission process, there is no need to readjust the optical path or replace the optical devices on the optical path.
  • the laser adapter can be used to transform the input laser and adjust the laser transmission direction so that the laser can be adapted and coupled to the subsequent connected equipment.
  • the multiphoton microscope host integrates various functional modules into an overall structure, which can greatly reduce the occupied space and is suitable for various laboratories. Moreover, it can be set as a whole machine to make the lines neat and beautiful. In addition, since the multiphoton microscope host is small and portable, it is easy to carry and change the site. At the same time, the position and direction of the multiphoton microscope can be quickly adjusted according to some experimental requirements, which is convenient for matching more applications. In addition, the multiphoton microscope host is easy to install and maintain quickly on site.
  • the laser generated by the laser passes through a laser adapter, which can magnify, reduce, and zoom the laser beam, convert the various received laser signals into a unified laser signal output, so that the laser is adapted to the subsequently connected equipment, which is conducive to achieving the best performance of the system.
  • a laser adapter which can magnify, reduce, and zoom the laser beam, convert the various received laser signals into a unified laser signal output, so that the laser is adapted to the subsequently connected equipment, which is conducive to achieving the best performance of the system.
  • FIG1 is a schematic diagram of the appearance of a laser adapter according to an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of a laser adapter without an upper cover according to an embodiment of the present application
  • FIG3 is a schematic structural diagram of an optical system according to an embodiment of the present application.
  • FIG4 is a schematic diagram of an optical path of an optical system according to an embodiment of the present application.
  • FIG5 is a schematic diagram of the appearance structure of a multiphoton microscope host according to an embodiment of the present application.
  • FIG6 is a schematic structural diagram of the multiphoton microscope mainframe shown in FIG5 with the light shielding door in an open state;
  • FIG7 is a schematic diagram of the structure of a multiphoton microscope host in a disassembled state according to an embodiment of the present application
  • FIG8 is a schematic structural diagram of a multiphoton microscope host in a disassembled state viewed from another angle;
  • FIG9 is a schematic diagram of the coordinated installation of a mobile module, a living body installation device, and a visual field search adapter according to an embodiment of the present application;
  • FIG10 is a schematic structural diagram of a living body installation device according to an embodiment of the present application.
  • FIG11 is a schematic structural diagram of a laser coupling module according to an embodiment of the present application.
  • FIG12 is a schematic diagram of the internal structure of the laser coupling module shown in FIG11;
  • FIG13 is a schematic diagram of a structure in which a wide-field search module is installed on a laser coupling module according to an embodiment of the present application;
  • FIG14 is a schematic diagram of the structure of a control box according to an embodiment of the present application.
  • FIG15 is a front view of the control box shown in FIG14;
  • FIG16 is a schematic structural diagram of a storage device according to an embodiment of the present application.
  • FIG17 is a schematic structural diagram of a storage device in a disassembled state according to an embodiment of the present application.
  • FIG18 is a schematic structural diagram of an optical system according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of the structure of an optical system according to another embodiment of the present application.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of the features.
  • the laser adapter 300 includes: a shell 3001 and a beam transformation device 304 and a beam stabilization device arranged on the shell 3001; wherein the shell 3001 has a laser input port 3011 and a laser output port 3012; the beam transformation device 304 is configured to transform the laser beam entering the shell 3001; the beam stabilization device is arranged downstream of the beam transformation device 304 along the laser transmission direction, and is used to adjust the deflection direction of the laser beam to correct the deviation between the actual position of the laser beam at the laser output port 3012 and the ideal position.
  • the laser adapter provided in the present application can transform the input laser beam through the beam transformation device 304.
  • Beam transformation refers to magnifying, reducing and zooming the beam through the transformation characteristics of the optical element, so that the laser can be connected to the back
  • the laser adapter provided by the present application can adjust the deflection direction of the laser through the beam stabilization device when the laser beam is detected to be offset, so that the laser output is stable, thereby ensuring the coupling efficiency of the laser output.
  • the beams can be transformed by the beam transformation device and uniformly output beams with a fixed spot size, so that the lasers output by different lasers can be adapted to the devices connected later; or, if the distance of the laser changes, a uniform laser beam can be output after zooming by the beam transformation device 304.
  • the beam stabilization device can adjust the deflection direction of the laser in real time according to the deviation between the actual position of the light beam at the laser output port 3012 and the ideal position, so that the laser output is stable, that is, the laser is controlled to be output within a range with a small deviation from the ideal output position, thereby ensuring the coupling efficiency of the laser output.
  • the laser adapter provided in the present application, when a laser with different parameters is input or a deflection occurs during the laser transmission process, there is no need to readjust the optical path or replace the optical devices on the optical path.
  • the laser can be adapted and coupled to the device connected later by transforming the input laser and adjusting the laser transmission direction through the laser adapter.
  • the beam transformation device 304 may adopt an existing device capable of expanding or reducing the cross section of a laser beam and zooming the laser beam.
  • the specific structure thereof can be implemented by those skilled in the art and will not be described in detail herein.
  • the beam stabilizing device is located downstream of the beam changing device 304 in the laser transmission direction, so that the beam stabilizing device can correct the beam deflection caused by the laser beam being magnified, reduced or zoomed after passing through the beam changing device 304.
  • the beam stabilization device may include a position detector 307, at least one deflection reflector, and a reflector adjustment mechanism connected to each deflection reflector; wherein the position detector 307 is arranged at a position close to the laser output port 3012, and is used to detect the position information of the laser at the laser output port 3012.
  • a beam splitter 309 may be arranged on the laser transmission path, and the beam splitter 309 directly or indirectly reflects part of the laser to the position detector 307, thereby realizing the detection of the laser position by the position detector 307.
  • the beam splitter 309 reflects part of the laser to the laser power meter 308, and the laser power meter 308 is also provided with a beam splitter, and the laser power meter reflects part of the laser to the position detector 307.
  • the position detector 307 may adopt a 4D position detector, which can strictly detect and distinguish the position drift and angle drift of the light beam, and can accurately detect the real-time position of the light beam.
  • the reflector adjustment mechanism is configured to drive the deflection reflector to deflect according to the position information detected by the position detector 307 to adjust the laser transmission direction so that the laser is output stably.
  • the ideal position of the laser beam at the laser output port 3012 is first determined, and the ideal position is the position where the laser can achieve an ideal coupling efficiency when it is output and coupled to a device or component (such as a transmission optical fiber) connected to the laser output port 3012.
  • a device or component such as a transmission optical fiber
  • the position detector 307 detects the position information of the laser at the laser output port 3012 in real time and sends it to the control unit.
  • the control unit continuously determines the deviation between the position of the laser beam and the ideal position according to the position information, and controls the reflector adjustment mechanism to adjust the deflection reflector, thereby continuously adjusting the reflection direction of the laser, so that the laser is stably transmitted within a certain range around the ideal position.
  • the laser adapter further includes a control unit, which receives the position information detected by the position detector 307 and controls the reflector adjustment mechanism according to the position information.
  • the control unit can be disposed in the housing 3001.
  • the control unit can also be disposed separately, that is, the control unit can be a separate module disposed outside the housing 3001.
  • a driving circuit 3016 is also disposed in the housing 3001 of the laser adapter.
  • the control unit sends a control signal to the driving circuit 3016 , and the driving circuit 3016 controls the operation of the reflector adjustment mechanism.
  • the laser adapter 300 further includes at least one fixed reflector for changing the direction of laser transmission, and the fixed reflector is arranged upstream of the beam transforming device 304 along the direction of laser transmission.
  • the fixed reflector is arranged upstream of the beam transforming device 304 along the direction of laser transmission.
  • the at least one fixed reflector includes a first fixed reflector 302 and a second fixed reflector 303
  • the at least one deflecting reflector includes a first deflecting reflector 305 and a second deflecting reflector 306 ;
  • the laser is reflected by the first fixed reflector 302 to the second fixed reflector 303, and the second fixed reflector 303 reflects the laser to the beam transformation device 304; after the beam transformation device 304 transforms the laser, the output laser is reflected by the first deflection reflector 305 to the second deflection reflector 306, and the second deflection reflector 306 is configured to reflect the laser to the laser output port 3012.
  • the incident angle and the incident angle of the laser at the first fixed reflector 302 and the incident angle and the incident angle and the incident angle of the laser at the second fixed reflector 303 are approximately 45° respectively, and the incident angle and the incident angle of the laser at the first deflecting reflector 305 and the incident angle and the incident angle of the laser at the second deflecting reflector 303 are approximately 45° respectively.
  • the transmission path of the laser is shown in Fig. 3.
  • the laser light emitted by the laser 200 enters from the laser input port 3011, is transmitted to the first fixed reflector 302, is deflected by the first fixed reflector 302 by about 90 degrees, is reflected to the second fixed reflector 303, is deflected by the second fixed reflector 303 by about 90 degrees, is transmitted to the beam conversion device 304, is beam converted by the beam conversion device 304, is transmitted to the first deflection reflector 305, is deflected by the first deflection reflector 305 by about 90 degrees, is reflected to the second deflection reflector 306, is reflected to the laser output port 3012 by the second deflection reflector 306, and is coupled into the component connected to the laser output port 3012, such as the transmission optical fiber 301 connected to the laser output port 3012 through the laser coupler 3014.
  • the optical path is bent by fixing the reflector and the deflecting reflector, so that the length of the laser adapter can be reduced while arranging various optical devices conveniently.
  • the arrangement of the fixed transmitting mirror and the deflecting reflecting mirror is not limited to that described above, and other arrangements are also possible.
  • At least one laser power meter 308 is provided in the housing 3001 to detect the power of the laser entering the laser adapter.
  • the laser power meter 308 can detect the power change of the laser in real time, so as to determine whether there is a problem with the laser transmission, especially whether there is a problem with the input end of the laser, such as whether the laser is damaged or whether the laser is blocked.
  • the laser power meter 308 is disposed near the laser output port 3012 and can detect the power of the laser when it is output from the laser adapter.
  • a beam splitter 309 is provided on the laser transmission path.
  • the beam splitter 309 can split a portion of the laser beam and reflect it to the laser power meter 308 .
  • the laser power meter 308 can obtain the power of the laser by detecting the split beam.
  • the at least one laser power meter includes a first laser power meter and a second laser power meter, and the first laser power meter can be arranged to be located near the laser input port 3011, and the second laser power meter can be arranged to be located near the laser output port 3012. That is, by detecting the power of the laser input by the first laser power meter, and detecting the power of the laser output by the second laser power meter, and by detecting the power change during laser input, it can be determined whether there is a problem with the laser input, for example, whether the laser is damaged, or whether the laser is blocked, etc. By detecting the power of the laser input and output by the first laser power meter and the second laser power meter, respectively, the power change during laser output compared with the laser input can be compared, thereby determining the power loss of the laser in the laser adapter.
  • the laser adapter 300 further includes a switch device 3010 disposed at the laser input port 3011, the switch device 3010 includes a switch door for opening and closing the laser input port 3011 and a door driving mechanism for driving the switch door to switch between an open state and a closed state;
  • the laser can enter the laser adapter 300 for transmission, and when the switch door is closed, the laser is blocked from entering the laser adapter.
  • the door driving mechanism can be controlled by a control unit.
  • the control unit sends a control signal, and the driving circuit 3016 can control the door driving mechanism to drive the switch of the door.
  • a support leg 3013 can be set under the shell 3001 of the laser adapter 300.
  • the support leg 3013 is set to be height-adjustable. By adjusting the height of the support leg 3013, the laser input port 3011 can be adapted to the height of the laser, so that the laser can accurately emit laser to the laser input port 3011.
  • the height adjustment of the support legs 3013 can be carried out by using existing common techniques, such as by setting an adjustment bolt to adjust the height of the support legs 3013.
  • the height of the support leg 3013, or the support leg is configured to include two parts, and the height can be adjusted by connecting the two parts at different height positions.
  • Another embodiment of the present application also provides an optical system.
  • Directly recording the neuronal activity in freely moving living animals is one of the most direct and effective methods to study the relationship between animal behavior and neural function.
  • the multiphoton optical imaging system has become the most important and widely used tool for neuron observation due to its good optical sectioning ability and deep penetration depth.
  • the multiphoton optical imaging system can be a nonlinear laser scanning microscope device such as two-photon, three-photon, Raman, etc.
  • the laser and the optical adjustment frame are fixed on an optical platform to adjust the optical path. After the optical path is shaped, it enters the microscope host through a reflector. Because the optical path from the laser to the microscope host is a spatial optical path, the microscope host must also be stably fixed on the optical platform to ensure that the optical path inside the main body will not be deflected by external forces, thereby affecting the performance of the microscope.
  • modules are usually placed around, such as beam shaping, circuit control modules, various drivers, fluorescence collection modules, wide-field fluorescence modules, laser modules, etc.
  • the equipment is complicated and the wiring is complex.
  • the modules are easily affected by signal interference and human misoperation, which can easily cause the optical path to deflect.
  • the optical path and the microscope host are fixed, and experiments that require the position and direction of the microscope body cannot be changed or implemented.
  • the laser optical path and the microscope body are not on the same platform or even in the same room, which is impossible to achieve with traditional methods. If the laser is to be replaced or the distance of the laser is changed, all optical paths need to be readjusted due to the change in the laser emitted by the laser. Some of them cannot be adapted because of the large differences in laser parameters.
  • the present application provides an optical system, as shown in FIG3 , which includes a laser 200, a transmission optical fiber 301, an application device body 100, and the laser adapter 300 mentioned in the above embodiment;
  • the application device body 100 may be a device that works by laser, such as a two-photon microscope, and a microscope host.
  • the laser 200 is used to emit laser light to the laser adapter 300;
  • the laser adapter 300 is used to receive the laser light emitted by the laser 200, adjust and adapt the laser light, and then transmit the adjusted and adapted laser light to the application device body 100;
  • the application device body 100 is configured to transmit the laser light to the microscope probe, and control the microscope probe to perform laser scanning on the living body to generate a fluorescent signal for imaging.
  • the laser generated by the laser 200 passes through the laser adapter 300, and the laser adapter 300 can perform transformations such as amplification, reduction, and zooming on the laser beam, and convert the various different laser signals received into a unified laser signal output, so that the laser is adapted to the subsequently connected device, which is conducive to achieving the best performance of the system.
  • the laser adapter 300 can perform transformations such as amplification, reduction, and zooming on the laser beam, and convert the various different laser signals received into a unified laser signal output, so that the laser is adapted to the subsequently connected device, which is conducive to achieving the best performance of the system.
  • lasers with various parameters can be used, and even if the distance of the laser changes, after the laser adapter 300 transforms the received laser, it can output an adapted laser beam to the application device body 100.
  • the optical system may further include a microscope probe 400
  • the application device body 100 may be a multi-photon microscope host.
  • the laser 200 is arranged at the laser input port 3011 of the laser adapter 300, and is used to emit laser to the laser input port 3011; one end of the transmission optical fiber 301 is connected to the laser coupler 3014, the laser coupler 3014 is connected to the laser output port 3011, and the other end of the transmission optical fiber 301 is connected to the application device body 100.
  • the laser is stably coupled to the transmission optical fiber 301 through the laser adapter 300, and then transmitted to the application device body 100 through the transmission optical fiber 301.
  • the lasers with various parameters emitted by the laser 200 can be adjusted to match the application device body, ensuring that the application device body is not affected by parameter changes of the laser 200 or changes in the distance between the laser 200 and the laser adapter 300. Therefore, there is no need to replace optical devices on the optical path or adjust the entire optical path, which is very convenient to use.
  • the laser 200 is used to emit laser to the laser adapter 300; the laser adapter 300 is used to receive the laser emitted by the laser 200, adjust and adapt the laser, and then transmit the adjusted and adapted laser to the application device body 100; the application device body 100 is configured to transmit the laser to the microscope probe 400, and control the microscope probe 400 to perform laser scanning on the living body to generate a fluorescence signal for imaging.
  • the laser generated by the laser 200 passes through the laser adapter 300, which can amplify, reduce and zoom the laser beam, and convert the various received laser signals into a unified laser signal output, so that the laser can be adapted to the subsequently connected equipment, which is conducive to achieving the best performance of the system.
  • the laser adapter 300 can adjust the received laser signal. After the light is transformed, it can also output an adapted laser beam to the application device body 100 .
  • the optical system provided in the present application is a multi-photon imaging system, that is, the microscope probe 400 can use nonlinear laser scanning imaging such as two-photon, three-photon, Raman, etc.
  • the microscope probe 400 can specifically include a micro-electromechanical (MEMS, Micro-Electro-Mechanical System) scanning galvanometer and various lenses.
  • MEMS Micro-Electro-Mechanical System
  • the optical system further includes a transmission optical fiber 301 connected between the laser adapter 300 and the application device body 100, and the laser adapter 300 transmits the adjusted and adapted laser to the application device body 100 through the transmission optical fiber 301.
  • One end of the transmission optical fiber 301 can be connected to a laser coupler, and connected to the output end of the laser adapter 300 through the laser coupler, and the other end is connected to a collimator, and connected to the application device body 100 through the collimator.
  • the laser adapter 300 is connected to the application device body 100 by optical fiber, so that the application device body 100 can be moved freely. Therefore, the application device body 100 can be placed in different positions as needed, or even placed across platforms, which is more flexible to use.
  • the optical fiber output can play a role in beam shaping, making the light spot output from the laser adapter 300 to the application device body 100 more uniform, which is beneficial to improving the performance of the system.
  • the optical fiber connection method reduces interference and misoperation, improves the stability of the system, and can reduce the arrangement of the optical path adjustment device before the module, which is easy to install and maintain.
  • the application device body 100 includes a laser coupling module 3 , a laser input end 31 of the laser coupling module 3 is connected to a transmission optical fiber 301 , and a laser output end 32 is connected to a microscope probe 400 through a laser transmission optical fiber 401 .
  • the laser coupling module 3 is used to adjust the laser received from the transmission optical fiber 301 and transmit it to the microscope probe 400 through the laser transmission optical fiber 401.
  • the laser coupling module 3 can perform dispersion compensation and/or intensity adjustment on the laser.
  • Fig. 4 is a schematic diagram of an optical path of an optical system according to an embodiment of the present application.
  • the laser adapter 300 includes a laser power meter 308 for detecting laser power
  • the laser coupling module 3 includes a power detector 311 for detecting laser power.
  • the laser power meter 308 can detect the laser power entering the laser adapter 300 in real time.
  • the power change detected by the laser power meter 308 can detect whether the laser transmission is abnormal, usually to judge whether the laser 200 is damaged or whether the laser is blocked.
  • a first beam splitter 309 can be set on the laser transmission optical path, and a part of the laser beam is split by the first beam splitter 309 to the laser power meter 308.
  • the laser power meter 308 obtains the power of the laser by detecting the split.
  • the power detector 311 can detect the power of the laser in the laser coupling module 3 in real time. Similarly, by obtaining the split of the laser beam, the power detector 311 detects the split to obtain the laser power.
  • the laser power meter 308 is close to the laser output end 3012 of the laser adapter 300, and the power detector 311 is close to the laser input end 31 of the laser coupling module 3. If the power change of the power detector 311 is larger than that of the laser power meter 308, it can be determined that there is a problem with the laser power meter 308, thereby quickly locating the problem link and achieving rapid maintenance.
  • the laser light emitted by the laser 200 enters from the laser input end 3011, is transmitted to the first fixed reflector 302, is deflected approximately 90° by the first fixed reflector 302, is reflected to the second fixed reflector 303, is deflected approximately 90° by the second fixed reflector 303, is transmitted to the beam conversion device 304, is transformed by the beam conversion device 304, is transmitted to the first deflecting reflector 305, is deflected approximately 90 degrees by the first deflecting reflector 305, is reflected to the second deflecting reflector 306, is reflected to the laser output end 3012 by the second deflecting reflector 306, and is coupled into the transmission optical fiber 301 connected to the laser output end 3012.
  • the optical fiber transmitted by the transmission optical fiber 301 enters the laser coupling module 3 from the laser input end 31, is dispersed by the dispersion compensation element 34, is transmitted to the reflector 35, is deflected by the reflector 35 by about 90 degrees, is transmitted to the acousto-optic modulator 36, and the acousto-optic modulator 36 adjusts the intensity of the laser and transmits it to the first deflection reflector 37. After the reflector 37 deflects by about 90 degrees, the light is reflected to the second deflecting reflector 38 , and then reflected to the laser output end 32 by the second deflecting reflector 38 and coupled into the laser transmission optical fiber 401 connected to the laser output end 32 .
  • the optical system provided in the present application may also include a workbench, which includes a workbench host and a display.
  • the workbench host is connected to the application device body 100.
  • the application device body 100 processes the collected fluorescence signal and transmits it to the workbench host, and the display displays the image.
  • the workbench host also sends control instructions to the application device body 100, and then the control circuits in the control box 5 control the various components.
  • the optical system provided in the present application may also include a behavioral test device, which provides an activity space for a living body equipped with a microscope probe 400.
  • a behavioral test device which provides an activity space for a living body equipped with a microscope probe 400.
  • a mouse equipped with a microscope probe 400 is placed in the behavioral test device and allowed to move freely, and the state of its neurons when the mouse is in a free moving state can be detected.
  • an embodiment of the present application provides an application device body.
  • Directly recording neuronal activity in freely moving animals is one of the most direct and effective methods to study the relationship between animal behavior and neural function, and multiphoton microscope equipment has become the most important and widely used tool for observing animal neurons using fluorescence imaging.
  • the multiphoton microscope equipment can be a nonlinear laser scanning microscope equipment such as two-photon, three-photon or Raman.
  • multi-photon microscope equipment has a complex structure and large size. It takes up a lot of space, has many connections, is difficult to carry and transfer, and has complex on-site installation and subsequent maintenance.
  • the main body of the application device provided in one embodiment of the present application is a multi-photon microscope host 100, which is used to be connected to a microscope probe, and the microscope probe is used to be detachably installed on a living body to observe the neuronal activity of the living body.
  • the multi-photon microscope host 100 includes a mounting body 1 and a wide-field search module 4, a laser coupling module 3, a fluorescence collection module and a scanning control module integrated on the mounting body 1; wherein the wide-field search module 4 is configured to perform wide-field imaging of a living body to search for a target area on the living body for installing a microscope probe; the laser coupling module 3 is configured to receive laser light and adjust the laser light to couple the laser light into a laser transmission optical fiber, wherein the laser transmission optical fiber is used to connect the laser coupling module 3 and the microscope probe; the scanning control module is configured to be connected to the microscope probe via a control cable, and is used to control the microscope probe to perform laser scanning on the living body to generate a fluorescence signal; the fluorescence collection module is configured to be connected to the microscope probe via a fluorescence collection optical fiber, and is used to collect the fluorescence signal output by the microscope probe.
  • the wide-field search module 4 is configured to perform wide-field imaging of a living body to search for a
  • the multiphoton microscope host 100 When in use, the multiphoton microscope host 100 is connected to the microscope probe 400.
  • the laser coupling module 3 of the multiphoton microscope host 100 is connected to the microscope probe 400 through the laser transmission optical fiber 401
  • the scanning control module is connected to the microscope probe 400 through the control cable 403
  • the fluorescence collection module is connected to the microscope probe 400 through the fluorescence collection optical fiber 402.
  • the microscope probe 400 is used to be worn on a living body.
  • the scanning control module controls the microscope probe 400 to perform laser scanning on the living body to generate a fluorescence signal through the control cable 403, and the fluorescence collection module collects the fluorescence signal output by the microscope probe 400 through the fluorescence collection optical fiber 402.
  • the output fluorescence signal can be converted into an electrical signal and imaged on a computer, and then the neuronal activity of the living body is observed through imaging.
  • the microscope probe 400 may include a micro-electromechanical (MEMS) scanning galvanometer and various lenses. Therefore, the scanning control module may include a MEMS control module for controlling the micro-electromechanical scanning galvanometer.
  • MEMS micro-electromechanical
  • the multiphoton microscope host integrates various functional modules into an integral structure, which can greatly reduce the occupied space, is suitable for various laboratories, and is set as a complete machine, so that the lines can be drawn neatly, neatly and beautifully.
  • the multiphoton microscope host is small in size, portable, and easy to carry and change the site.
  • the position and direction of the multiphoton microscope can be quickly adjusted according to some experimental requirements, which is convenient for matching more applications.
  • the multiphoton microscope host is convenient for rapid installation and maintenance on site.
  • the multiphoton microscope equipment described in the present application can be a nonlinear laser scanning microscope such as a two-photon, three-photon or Raman laser scanning microscope.
  • the multiphoton microscope host 100 also includes a mobile module 7 arranged on the mounting body 1, the mobile module 7 is used to carry the living body and can drive the living body to move in multiple directions, and the wide-field search module 4 is configured to perform a field of view search for the living body located on the mobile module 7.
  • the living body can be directly mounted on the mobile module 7, and the living body can be restricted by setting a clamping or limiting structure on the mobile module 7.
  • the living body can also be first mounted on the living body mounting device 8, and then the living body
  • the mounting device 8 is fixed on the mobile module 7, and the mobile module 7 can move with the living body mounting device 8 to adjust the position of the living body, so that the wide-field search module 4 can image different areas of the living body to search for the target position of interest.
  • the mobile module 7 can be a multi-axis mobile platform that can move in multiple directions such as up, down, left, right, front, and back.
  • the wide-field search module 4 is a device capable of imaging a living body in a large field of view, and single-photon fluorescence imaging can be used.
  • the imaging of the wide-field search module 4 can be transmitted to a computer for display, or an eyepiece can be set on the wide-field search module 4 to directly observe the imaging through the eyepiece.
  • the living body when the wide-field search module 4 is used to perform wide-field imaging on a living body, the living body is mounted on a living body mounting device 8, and then the living body mounting device 8 is fixed on a moving module 7.
  • the living body may be a mouse or other animals.
  • FIG10 provides a kind of living body installation device 8 suitable for installing mice (not excluding the installation of other suitable animals), which includes: a mounting seat 81, a treadmill 88 and a clamping mechanism, and the treadmill 88 and the clamping mechanism are both installed on the mounting seat 81.
  • the clamping mechanism may include two clamping assemblies 82 arranged opposite to each other, which are used to clamp the two sides of the probe mounting member 80 arranged on the mouse (the probe mounting member 80 is usually used to be installed on the head of the mouse, and FIG10 only shows the probe mounting member 80 without showing the mouse).
  • the clamping mechanism is configured to clamp and fix the probe mounting member 80, and the mouse can run on the treadmill 88.
  • the mounting seat 81 is provided with baffles 811 located on both sides of the treadmill 88, which are used to restrict the mouse on the treadmill 88, and the mounting seat 81 is also provided with a fixing frame 812 for fixing on the mobile module 7, which can be fixed by bolts.
  • the clamping assembly 82 When the clamping assembly 82 is used to clamp the probe mounting member 80 set on the mouse, the mouse runs on the treadmill 88, which can distract the mouse's attention, reduce the stress response of the awake mouse during the installation process, and facilitate rapid experimentation.
  • each clamping assembly 82 includes two clamping parts and a first adjusting bolt 821, and the first adjusting bolt 82 is configured to rotate so that the two clamping parts can be moved closer to each other to clamp the probe mounting member 80, or moved away from each other to release the probe mounting member 80. Therefore, when clamping or removing the probe mounting member 80, it is only necessary to rotate the first adjusting bolts 821 of the two clamping assemblies 82, which is convenient for assembly and disassembly.
  • the two clamping assemblies 82 are configured to be movable relative to the mounting base 81 along the front-rear direction of the treadmill 88 and to be movable relative to the mounting base 81 up and down. In this way, the clamping assembly 82 can be adjusted to a suitable position to clamp the probe mounting member 80 according to the type or size of the living body.
  • the living body fixation device 8 also includes a mobile frame 85 corresponding to each clamping assembly 82, and the mobile frame 85 is configured to be movable relative to the mounting seat 81 along the front-to-back direction of the treadmill 88, and the clamping assembly 82 is arranged on the mobile frame 85 in a liftable manner.
  • the mobile frame 85 is provided with a second adjusting bolt 86 for adjusting the lifting and lowering of the clamping assembly 82.
  • the second adjusting bolt 86 By rotating the second adjusting bolt 86, the second adjusting bolt 86 can lift the clamping assembly 82, and by rotating the second adjusting bolt 86 in the opposite direction, the clamping assembly 82 can be lowered under the action of gravity.
  • the mounting seat 81 is provided with a third adjusting bolt 87 for adjusting the forward and backward movement of the mobile frame 85.
  • the third adjusting screw 87 is threadedly connected to the mobile frame 85, and rotating the third adjusting bolt 87 can make the mobile frame 85 move forward and backward relative to the mounting seat 81.
  • the living body fixing device 8 further comprises a shading mechanism for covering the eyes of the living body.
  • the shading mechanism comprises a shading cover 83 and a rotating component 84 for driving the shading cover 83 to rotate.
  • the rotating component 84 can be operated so that the shading cover 83 can cover the eyes of the mouse to protect the eyes from light damage.
  • the living body fixing device 8 may further include a water dispenser (not shown) disposed on the mounting seat 81 .
  • the water dispenser is configured to provide drinking water for the mice on the treadmill, which can help distract the mice.
  • the living body fixing device 8 may further include a receiving tray 89 disposed below the mounting seat 81 for receiving the excrement of the mouse.
  • the multiphoton microscope host also includes a field of view search adapter 9 installed on the mounting body 1;
  • the field of view search adapter 9 includes a probe mounting assembly 91 and a switching mechanism, the probe mounting assembly 91 is used to detachably mount the microscope probe 400, and the switching mechanism is configured to be able to switch the probe mounting assembly 91 to a first position and a second position.
  • the microscope probe 400 installed on the probe mounting assembly 91 avoids the optical path between the wide-field search module 4 and the living body.
  • the microscope probe 400 is aligned with the optical path of the wide-field search module 4.
  • the switching mechanism can be configured to switch the probe mounting assembly 91 between two positions by manually pushing and pulling. Specifically, a gripping portion (not shown in the figure) that is convenient for hand holding can be provided on the switching mechanism. When the probe mounting assembly 91 is pushed by the gripping portion, the probe mounting assembly 91 can be moved to the first position. When the probe mounting assembly 91 is pulled in the opposite direction, the probe mounting assembly 91 can be moved to the second position.
  • an objective lens 43 may be provided on the field of view search adapter 9.
  • the field of view search adapter 9 is mounted on the mounting body 1, the objective lens 43 is aligned with the optical path of the wide-field search module 4, and the microscope probe 400 mounted thereon needs to be adjusted to align with the optical path of the wide-field search module 4 when the probe mounting assembly 91 is in the second position.
  • the probe mounting assembly 91 is switched to the first position by a switching mechanism.
  • the probe mounting assembly 91 is switched to the second position, and then the microscope probe 400 on the probe mounting assembly 91 is removed and fixed to the position of the probe mounting component 80 of the living body corresponding to the searched target area (it may be fixed by gluing).
  • the living body eg, a mouse
  • the living body mounting device 8 can be removed from the living body mounting device 8 , releasing the mouse to allow it to move freely, thereby allowing neurons of the freely moving mouse to be observed through the microscope probe 400 .
  • the multiphoton microscope host 100 further includes a light shielding door 2 that can be opened and closed and is installed on the installation body 1.
  • a closed space is formed between the installation body 1 and the light shielding door 2, and the mobile module 7 is located in the closed space.
  • the wide-field search module 4 is configured to perform a wide-field search on the living body on the mobile module 7 located in the closed space.
  • Setting the light-shielding door 2 can ensure that the living body is located in a dark room when the wide-field search module 4 images the living body, thereby achieving a higher imaging signal-to-noise ratio.
  • setting the light-shielding door 2 does not require building a special light-proof environment (such as setting up a large machine cover, or turning off the laboratory lights, etc.).
  • two light shielding doors 2 may be provided, in a biparting manner, that is, the two light shielding doors 2 are rotatably mounted on the mounting body 1, and can be closed when rotated toward each other, and opened when rotated away from each other.
  • Fig. 5 shows the state of the two light shielding doors 2 being closed
  • Fig. 6 shows the state of the two light shielding doors 2 being opened.
  • light-shielding door 2 may be provided, and the light-shielding door 2 may also be provided to be opened and closed by lifting or sliding.
  • the mounting body 1 includes a base 11 and a mounting frame 12 fixed on the base 11, and a support plate 13 is arranged at the upper position of the mounting frame 12; the mobile module 7 is movably mounted on the base 1 and is located on one side of the mounting frame 12, and a control box 5 located below the support plate 13 is fixed on the other side of the mounting frame 12, and a scanning control module and a fluorescence collection module are arranged in the control box 5; the laser coupling module 3 is mounted on the support plate 13, and the wide field search module 4 is mounted above the mobile module 7.
  • the light shielding door 2 is mounted on the side of the mounting frame 12 facing the mobile module 7, and is used to form a closed space on the side of the mounting frame 12 with the mobile module 7, and the optical path of the wide field search module 4 located above can enter the closed space to enable imaging of the living body on the mobile module 7.
  • the wide-field search module 4 is mounted on the laser coupling module 3, and an optical path through hole 331 is provided on the laser coupling module 3, and the optical path of the wide-field search module 4 is arranged to pass downward through the optical path through hole 331 to reach the moving module 7.
  • Such an arrangement can make the overall structure more compact and the volume more compact.
  • a handle 14 may be provided on the base 11 , and the handle 14 may facilitate the transportation of the multiphoton microscope host 100 .
  • a display screen 15 may be provided on the base 11, and the display screen 15 may display, for example, laser parameters, transmission status, temperature and humidity of the multiphoton microscope, etc., so as to facilitate understanding of the working status of the equipment.
  • the laser coupling module 3 includes a coupler housing 33, a dispersion compensation element 34, an acousto-optic modulator 36 and a beam stabilization device, wherein the dispersion compensation element 34, the acousto-optic modulator 36 and the beam stabilization device are all arranged in the coupler housing 33 and arranged in sequence along the transmission direction of the laser; wherein the dispersion compensation element 34 is used to compensate for the negative dispersion caused by the laser transmission optical fiber 401 during the transmission of the laser; the acousto-optic modulator 36 is used to adjust the intensity of the laser; and the beam stabilization device is used to adjust the laser transmission direction to correct the deviation between the actual position of the laser beam at the output end 32 of the laser coupling module 3 and the ideal position.
  • the beam stabilization device may specifically include a position.
  • the position detector 39 is arranged near the output end 32 of the laser coupling module 3 and is used to detect the position of the laser in the The position information at the output end 32.
  • the position detector 39 can be a 4D position detector, which can strictly detect and distinguish the position drift and angle drift of the light beam, and can accurately detect the real-time position of the light beam.
  • the reflector adjustment mechanism is configured to drive the deflection reflector to deflect according to the position information detected by the position detector 39 to adjust the laser transmission direction, so that the laser is stably output from the output end to the laser transmission optical fiber, which is conducive to improving the coupling efficiency.
  • the ideal position of the laser beam at the output end 32 is first determined.
  • the ideal position is the position where the ideal coupling efficiency can be achieved when the laser is coupled into the connected laser transmission optical fiber 401 at the output end 32.
  • the position detector 39 detects the position information of the laser at the output end 32 in real time and sends it to the control unit.
  • the control unit continuously determines the deviation between the position of the laser beam and the ideal position according to the position information, and controls the reflector adjustment mechanism to adjust the deflection reflector, thereby continuously adjusting the reflection direction of the laser, so that the laser is stably transmitted to the laser transmission optical fiber 401 within a certain range around the ideal position.
  • the control unit can be arranged in the laser coupler housing 33, or in the control box 5.
  • the laser coupling module 3 may also be provided with at least one reflector 35 for changing the laser transmission direction.
  • the optical path may be bent, which facilitates the arrangement of various components on the optical path and helps to reduce the volume of the entire laser coupling module.
  • the laser enters from the input end 31 of the laser coupling module 3, is dispersion compensated by the dispersion compensation element 34, and is transmitted to the reflector 35. After being deflected by the reflector 35 by about 90 degrees, the laser is transmitted to the acousto-optic modulator 36. After the acousto-optic modulator 36 adjusts the intensity of the laser, the laser is transmitted to the first deflection reflector 37. After being deflected by the first deflection reflector 37 by about 90 degrees, the laser is reflected to the second deflection reflector 38. The laser is then reflected to the output end 32 by the second deflection reflector 38 and coupled into the laser transmission optical fiber connected to the output end 32.
  • the first deflection reflected laser 37 and the second deflection reflector 38 are respectively provided with corresponding reflector adjustment mechanisms. According to the position information detected by the position detector 39, the positions of the first deflection reflected laser 37 and the second deflection reflector 38 are adjusted in real time, so that the laser can be stably output to the laser transmission optical fiber 401.
  • a power detector 311 may also be provided in the laser coupling module 3 to detect the laser transmission power.
  • the laser coupling module further includes a driver 361 for driving the acousto-optic modulator 36 and a cooling mechanism for cooling the driver 361, and the driver 361 and the cooling mechanism are both located on the upper surface of the coupler housing 33.
  • the cooling mechanism may include heat dissipation fins 362 for dissipating heat from the driver 361 and a fan 363 for dissipating heat from the heat dissipation fins 362.
  • the driver 361 Since the driver 361 has a high driving RF power, placing it in the laser coupler housing 33 increases the risk of interference from high-power RF signals. Furthermore, since the driver 361 generates a lot of heat, it is easy to cause deformation of the precision optical system plate, increase the temperature in the cavity, and affect the performance of the equipment. Therefore, the driver 361 is set outside the coupler housing 33, and heat dissipation fins 362 and fans 363 are added for heat dissipation.
  • the wide-field search module 4 is mounted on the upper surface of the coupler housing 33, and the laser coupling module 3 is provided with an optical path through hole 331 that runs through from top to bottom, and the optical path of the wide-field search module 4 is arranged to pass downward through the optical path through hole 331.
  • the wide-field search module 4 may include a fluorescent light source 41 and a camera 42, and the optical path of the camera 42 passes downward through the optical path through hole 331 to reach the living body on the moving module 7, thereby realizing wide-field imaging of the living body.
  • the multiphoton microscope host may further include a cover 10 for covering the wide-field search module 4, the driver 361 and the cooling mechanism.
  • the cover 10 not only plays a protective role but also improves the appearance.
  • the multiphoton microscope host further includes a control box 5 installed on the installation body 1 , and the fluorescence collection module and the scanning control module are both located in the control box 5 .
  • the fluorescence collection module 53 may include a photomultiplier tube (PMT), and the signal collected by the fluorescence collection optical fiber 402 is transmitted to the photomultiplier tube.
  • PMT photomultiplier tube
  • the fluorescence collection module 53 includes a spectroscope and at least two spectroscopic collection modules, each of which may include a photomultiplier tube.
  • the fluorescence signal collected by the fluorescence collection optical fiber 402 from the microscope probe 400 is divided into at least two fluorescence signals by the spectroscope and then collected by at least two spectroscopic collection modules.
  • the control box 5 may also be provided with a signal processing module, which is configured to process the signal output by the fluorescence collection module 53 and transmit the processed signal to the computer for display.
  • the fluorescence signal is converted into an electrical signal and amplified, then collected and reorganized through high-speed AD acquisition, and then transmitted to a computer for display.
  • the fluorescence collection module and the signal processing module are both arranged in the control box 5, which shortens the transmission distance of the signal collected by the fluorescence collection module to the signal processing module, reduces the possibility of interference, and improves the reliability of signal transmission.
  • control box 5 is provided with a first interface 51 for connecting the control cable 403 and a second interface 52 for connecting the fluorescence collection optical fiber 402 , and the first interface 51 and the second interface 52 are both located at the upper position of the same side of the control box 5 .
  • the laser coupling module 3 is located above the control box 5 , and the output end of the laser coupling module 3 for connecting to the laser transmission optical fiber 401 is located on the same side as the first interface 51 and the second interface 52 of the control box 5 .
  • the laser transmission optical fiber 401, the fluorescence collection optical fiber 402 and the control cable 403 can be close to each other, which is conducive to regular and beautiful wiring, and the cables can be gathered into a main cable. For example, after being gathered, they can be wrapped into a main cable by a wire sheath, which is convenient for storage through the storage device 6 (the storage of cables and microscope probes by the storage device will be described in detail below).
  • the outlet ends of the laser transmission optical fiber 401, the fluorescence collection optical fiber 402, and the control cable 403 are arranged above the control box 5, so as to facilitate the adaptation of more behavioral devices and reduce the length of the cables.
  • the arrangement of the cables can facilitate the microscope probe 400 to extend downward into the live behavior box.
  • a main control circuit board 54 and a fluorescence collection module 53 are provided in the control box 5.
  • the fluorescence collection module 53 is located above the main control circuit board 54, wherein the main control circuit board 54 includes a scanning control module, and may also include a control driving circuit for controlling the laser coupling module 3 (for example, an acousto-optic modulator and a beam stabilization device that controls the laser coupling module 3), a field of view search module 4, and indicator lights, light sensors, temperature and humidity sensors, etc.
  • the multiphoton microscope further includes a storage device 6, which is installed on one side of the control box 5 having the first interface 51 and the second interface 52. Since the laser transmission optical fiber 401, the fluorescence collection optical fiber 402 and the control cable 403 are all located on this side, the storage device 6 is installed on this side to facilitate storage of the microscope probe 400 and the cables connected to the microscope probe 400, including the laser transmission optical fiber 401, the fluorescence collection optical fiber 402 and the control cable 403. For convenient storage, the cables can be gathered, for example, wrapped with a wire sheath.
  • the storage device 6 includes: a storage body, on which a winding drum 633 is provided, and an annular space for accommodating the cable is formed around the winding drum 633; a probe bracket 65, which is fixed on the storage body. After the cable is wound on the winding drum 633, the microscope probe 400 can be installed on the probe bracket 65.
  • FIG16 shows a state where the cable is wound on the winding drum 633 and the microscope probe 400 is mounted on the probe holder 65.
  • the storage body may include: a storage box 61 and a wire stopper 63 fixed on the storage box 61, and a probe bracket 65 is fixed on the outer side of the wire stopper 63 away from the storage box 61.
  • the winding drum 633 is arranged on one of the storage box 61 and the wire stopper 62, and the storage box 61 and the wire stopper 63 are arranged to stop the cable wound on the winding drum 633 from both ends of the winding drum 633.
  • the wire retaining drum 63 includes a winding drum 633 and a wire retaining ring 632 radially protruding from the winding drum 633.
  • the winding drum 633 is fixed on the storage box 61, an annular space around the winding drum 633 is formed between the wire retaining ring 632 and the storage box 61.
  • the winding drum 633 can also be directly formed on the storage box 61, and the wire retaining drum 63 is fixed to the end of the winding drum 633 away from the storage box 61 and has a wire retaining ring 632 radially protruding from the winding drum 633.
  • the probe bracket 65 can be of various structural forms, as long as it can install the microscope probe 400.
  • the probe bracket 65 can be set as a clamping structure that can clamp the probe, or a socket can be set on the probe bracket 65 to insert the microscope probe 400 into the socket.
  • a plurality of limiting notches are arranged on the outer circumference of the wire retaining plate 63 (i.e., on the wire retaining ring 632) at intervals along the circumferential direction.
  • the cable extends from the winding drum 633 to the outside of the cable retaining drum 63 so that when the probe is installed on the probe bracket 65, the cable is limited by one of the limiting notches.
  • a wire clamping ring 64 may be provided on the outer side of the wire retaining disc 63 away from the winding drum 633, and a plurality of clamping grooves 643 arranged around the probe holder 65 may be provided on the wire clamping ring 64, wherein a plurality of protrusions arranged at intervals along the circumferential direction may be provided on the wire clamping ring 64, and clamping grooves 643 are formed between adjacent protrusions.
  • the cable extends to the outer side of the wire retaining disc 63 so that when the probe is installed on the probe holder 65, it can be clamped in one of the clamping grooves 643, so that the cable can be prevented from loosening from the winding drum 633, and the situation that the probe is driven to separate from the probe holder due to the swing or looseness of the cable can also be avoided.
  • the wire clamping ring 64 may be made of a flexible material, such as a rubber material, and the flexible material has elasticity so that the cable can be easily clamped into and out of the clamping groove.
  • a through hole 612 is formed on the side of the storage box 61 for abutting against the control box 5, and the through hole 612 is connected to the annular space for accommodating the cable.
  • One end of the cable with the microscope probe 400 enters the storage box 61 from the through hole 612 and can extend into the annular space and be wound on the winding drum 633.
  • the storage box 61 is provided with a protrusion 611 protruding toward the winding drum 633 around the through hole 612, and an annular groove 613 is formed on the radial outer side of the protrusion 611 away from the through hole 612;
  • the winding drum 633 is provided on the wire retaining drum 63, and the winding drum 633 is fixed on the protrusion 611, and the annular groove 613 forms an annular space for winding the cable between the storage box 61 and the wire retaining drum 63.
  • the protrusion 611 can be set as an annular structure, or an arc structure with a notch.
  • an external thread can be set on the outer surface of the protrusion 611, and an internal thread can be set on the inner surface of the winding drum 633.
  • the winding drum 633 can be connected to the protrusion 611 of the storage box 61 by threaded connection.
  • the protrusion 611 is provided with a through groove 614 which radially penetrates the protrusion 611. After one end of the cable having the microscope probe 400 enters the storage box 61 from the through hole 612, it can extend outward from the through groove 614 into the annular space.
  • the through groove 614 can be a notch formed on the protrusion 611 as shown in FIG. 13, or it can be a through hole provided on the wall of the protrusion 611.
  • the through groove 614 is approximately located at one end of the winding drum 633, and the cable can extend from the through groove 614 to the annular space and be wound on the winding drum 633.
  • the storage device further includes a ring indicator light 62, which is mounted on the storage body and is arranged around the center of the winding drum 633.
  • the ring indicator light 62 can be configured to illuminate the interior of the storage device 6, or can be configured to indicate the working state inside the multiphoton microscope host.
  • the ring indicator light 62 can be configured to use different colors to indicate that the device is in a working state, a non-working state fault, or a device abnormality.
  • the controller can control the ring indicator light 62 to display green, indicating that the device is in a working state; when it is detected that the device is abnormal, such as abnormal laser power, or other abnormal states, the ring indicator light 62 can be controlled to display red for warning; when the device is in a non-working state, the ring indicator light 62 can display yellow for internal lighting.
  • the wire retaining disc 63 includes a light-transmitting cover 631.
  • the annular indicator light 62 is arranged between the storage box 61 and the wire retaining disc 63 and corresponds to the light-transmitting cover 631. The light of the annular indicator light 62 can be seen through the light-transmitting cover 631.
  • the wire retaining ring 632 of the wire retaining disc 63 is arranged on the outer ring of the light-transmitting cover 631.
  • the storage device 6 may further include a protective cover 66 covering the outside of the storage body, and the protective cover 66 is arranged to be rotatably mounted on the storage body through a rotating shaft 67 and a hinge 68, and can be rotated to an open state and a closed state.
  • a magnet may be arranged between the protective cover 66 and the storage body.
  • the protective cover 6 may include an annular cover body 661 and a transparent observation window 62 arranged at the center of the annular cover body 661 to facilitate observation of the internal conditions of the storage device and the device status indicated by the annular indicator light 62.
  • the protective cover 66 When in use, the protective cover 66 is rotated to open, the microscope probe 400 is removed from the probe holder 65, and the cable is unwound from the winding drum 633, and the probe can be installed on a living body for use.
  • an optical system is also provided, as shown in Figures 18 and 19, the multiphoton microscope system includes: a laser 200, a microscope probe 400 and the multiphoton microscope host 100 as described above; the laser 200 is configured to transmit laser to a laser coupling module 3, the output end of the laser coupling module 3 is connected to the microscope probe 400 via a laser transmission optical fiber 401, the fluorescence collection module is connected to the microscope probe 400 via a fluorescence collection optical fiber 402, and the scanning control module is connected to the microscope probe 400 via a control cable 403.
  • the optical system further includes a laser adapter 300.
  • the laser 200 first The light is emitted to the laser adapter 300 , and after being adjusted and adapted by the laser adapter 300 , the laser is transmitted to the multi-photon microscope host 100 through the transmission optical fiber 301 .
  • the laser adapter 300 By arranging the laser adapter 300 between the laser 200 and the multiphoton microscope host 100, lasers with different parameters emitted by various lasers 200 can be adapted to the subsequent device after adjustment by the laser adapter 300. Moreover, since the laser adapter 300 and the multiphoton microscope host 100 are connected via the transmission optical fiber 301, the multiphoton microscope 100 can move freely, and the multiphoton microscope host 100 can be placed in different positions as needed, or even placed across platforms, making it more flexible to use.
  • the laser adapter 300 may specifically include a housing and a beam conversion device and a beam stabilization device located in the housing.
  • the beam conversion device is configured to convert the laser beam entering the housing. Beam conversion refers to amplifying, reducing, and zooming the beam through the conversion characteristics of an optical element, so that the laser can match the subsequent equipment to achieve the best performance of the equipment.
  • the beam stabilization device is disposed downstream of the beam conversion device along the laser transmission direction, and is used to adjust the deflection direction of the laser beam to correct the deviation between the actual position of the laser beam at the laser output port and the ideal position.
  • the beam stabilization device is similar to the configuration of the beam conversion device in the laser coupling module 3. The beam stabilization device can adjust the deflection direction of the laser when a deviation of the laser beam is detected, so that the laser output is stable, thereby ensuring the coupling efficiency of the laser output.
  • a fixed optical path can be set between the laser 200 and the multiphoton microscope host 100 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本申请提供一种激光适配器,多光子显微镜系统及光学系统,所述激光适配器包括:壳体及设置于所述壳体内的光束变换装置和光束稳定装置;所述壳体具有激光输入口和激光输出口;所述光束变换装置设置为用于对进入所述壳体内的激光光束进行变换;所述光束稳定装置设置在所述光束变换装置沿激光传输方向的下游,用于调整激光传输方向,以纠正激光光束在所述激光输出口处的实际位置与理想位置的偏差。本申请提供的技术方案,在输入不同参数的激光,或者激光传输过程中发生偏转的情况下,无需重新调整光路或者更换光路上的光学器件,通过激光适配器对输入的激光进行变换及激光传输方向的调整即可使得激光适配并耦合于后面连接的设备。

Description

激光适配器,多光子显微镜主机和光学系统 技术领域
本申请涉及光学技术领域,具体涉及一种激光适配器,多光子显微镜主机及光学系统。
发明背景
在现有技术的激光耦合方案中,通常使用具有多个自由度的调节机构,调节机构上设置透镜,通过调节透镜,将空间激光耦合进入到光纤中,为了保证激光的耦合效率,通常需要根据激光器输出光斑大小、光腰位置等选择透镜。
但是,如果更换激光器,或者要改变光斑大小,就需要重新调整光路,或者重新选择透镜,光路调整以及透镜更换复杂,且需要专业人士操作。
另外,如果环境发生变化,例如产生振动或者温度产生变化,激光器的输出指向角也会发生变化,通常的激光器是25μrad/℃,如果温度变化10℃,指向角就变化了250μrad,激光指向发生变化,光纤的耦合效率会急剧下降,很大程度的影响设备性能;而且在人为误操作触碰导致光束偏转的情况下,也需要重新调试系统。
发明内容
有鉴于此,本申请提供一种激光适配器,多光子显微镜主机及光学系统,以解决现有技术中激光耦合方案中所存在的光路调整以及更换透镜复杂以及在激光容易发生变化导致激光耦合效率下降等问题。
根据本申请的一个方面,提供一种激光适配器,所述激光适配器包括:壳体及设置于所述壳体内的光束变换装置和光束稳定装置;所述壳体具有激光输入口和激光输出口;所述光束变换装置设置为用于对进入所述壳体内的激光光束进行变换;所述光束稳定装置设置在所述光束变换装置沿激光传输方向的下游,用于调整激光传输方向,以纠正激光光束在所述激光输出口处的实际位置与理想位置的偏差。
根据本申请的另一方面,本申请提供一种多光子显微镜主机,用于解决现有技术中多光子显微镜存在的占用空间大、搬运和转移困难以及安装和维护复杂等问题。本申请提供的一种多光子显微镜主机,用于与显微镜探头连接,所述多光子显微镜主机包括安装主体以及集成于所述安装主体上的宽场搜寻模块、激光耦合模块、荧光收集模块和扫描控制模块;其中,所述宽场搜寻模块设置为用于对活体进行宽视野成像,以在活体搜寻上用于安装显微镜探头的目标区域;所述激光耦合模块设置为用于接收激光并对所述激光进行调整以将所述激光耦合进激光传输光纤,其中,所述激光传输光纤用于连接所述激光耦合模块和所述显微镜探头;所述扫描控制模块设置为通过控制电缆与所述显微镜探头连接,用于控制所述显微镜探头进行激光扫描以产生荧光信号;所述荧光收集模块设置为通过荧光收集光纤与所述显微镜探头连接,用于收集所述显微镜探头输出的荧光信号。
根据本申请的又一方面,本申请还提供一种光学成像系统,以解决传统的光学成像系统中,由于激光器发出的激光发生变化,需要重新调整光路,使用灵活性差等问题。本申请提供的一种光学系统,所述光学系统包括激光器、传输光纤、应用设备主体以及如上所述的激光适配器;其中,所述激光器设置在所述激光适配器的激光输入口处,用 于向所述激光输入口发射激光;所述传输光纤的一端连接有激光耦合器,所述激光耦合器连接于所述激光输出口,所述传输光纤的另一端连接于所述应用设备主体。
根据本申请的再一方面,还提供一种光学系统,所述光学系统包括:激光器、激光适配器及显微镜主机;其中,所述激光器用于向所述激光适配器发射激光;所述激光适配器用于接收所述激光器发射的激光,并对所述激光进行调整适配,然后将所述调整适配后的激光传输至所述显微镜主机;所述显微镜主机设置为用于将激光传输至显微镜探头,并控制所述显微镜探头对活体进行激光扫描而产生用于成像的荧光信号。
本申请提供的技术方案中,激光适配器设置有光束变换装置和光束稳定装置,光束变换装置可以对输入的激光进行光束变换,使得激光能够与后面的设备进行匹配,达到设备的最佳性能。光束稳定装置可以在检测到激光光束发生偏移时能够调整激光的偏转方向,保证激光的输出稳定,从而保证激光输出的耦合效率。因此,采用本申请提供的激光适配器,在输入不同参数的激光,或者激光传输过程中发生偏转的情况下,无需重新调整光路或者更换光路上的光学器件,通过激光适配器对输入的激光进行变换及激光传输方向的调整即可使得激光适配并耦合于后面连接的设备。
多光子显微镜主机将各个功能模块集成形成一个整体结构,可大大减少占用空间,适用于各种实验室,而且设置为整机可以使得出线规整,整洁美观。另外,由于多光子显微镜主机体积小,便携,易于搬运更换场地,同时针对一些试验需求可以快速调整该多光子显微镜的位置和方向,方便匹配更多的应用。此外,该多光子显微镜主机便于现场快速安装和维护。
本申请提供的光学系统中,激光器产生的激光经过激光适配器,激光适配器可以对激光光束进行放大、缩小和变焦等变换,将接收的各种不同的激光信号转换成统一的激光信号输出,使得激光与后续连接的设备适配,利于达到系统的最佳性能。这样可以使用各种不同参数的激光器,或者即使激光器的距离发生变化,通过激光适配器对接收的激光进行变换处理后,也能向显微镜主机输出适配的激光光束。
本申请的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图简要说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施方式及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为根据本申请的一个实施例中激光适配器的外观示意图;
图2为根据本申请的一个实施例中激光适配器去掉上盖后的结构示意图;
图3为根据本申请的一个实施例中光学系统的结构示意图;
图4为根据本申请的一个实施例中光学系统的光路示意图;
图5为根据本申请的一个实施例中多光子显微镜主机的外观结构示意图;
图6为图5所示的多光子显微镜主机的遮光门处于打开状态的结构示意图;
图7为根据本申请的一个实施例中多光子显微镜主机处于分解状态的结构示意图;
图8为从另一角度看的多光子显微镜主机处于分解状态的结构示意图;
图9为根据本申请的一个实施例中移动模块、活体安装装置以及视野搜寻适配器的配合安装示意图;
图10为根据本申请的一个实施例中活体安装装置的结构示意图;
图11为根据本申请的一个实施例中激光耦合模块的结构示意图;
图12为图11所示的激光耦合模块的内部结构示意图;
图13为根据本申请的一个实施例中宽场搜寻模块安装在激光耦合模块上的结构示意;
图14为根据本申请的一个实施例中控制箱的结构示意图;
图15为图14所示的控制箱的主视图;
图16为根据本申请的一个实施例中收纳装置的结构示意图;
图17为根据本申请的一个实施例中收纳装置处于分解状态的结构示意图;
图18为根据本申请的一个实施例中光学系统的结构示意图;
图19为根据本申请的另一个实施例中光学系统的结构示意图。
附图标记说明:
100-多光子显微镜主机;1-安装主体;11-底座;12-安装架;13-支撑板;14-把手;
15-显示屏;2-遮光门;3-激光耦合模块;31-输入端;32-输出端;311-功率检测器;33-耦合器壳体;331-光路通孔;34-色散补偿元件;35-反射镜;36-声光调制器;361-驱动器;362-散热翅片;363-风扇;37-第一偏转反射镜;38-第二偏转反射镜;39-位置探测器;4-视野搜寻模块;41-荧光光源;42-相机;43-物镜;5-控制箱;51-第一接口;52-第二接口;53-荧光收集模块;54-主控电路板;6-收纳装置;61-收纳盒;611-凸出部;612-通孔;613-环形槽;614-贯通槽;62-环形指示灯;63-挡线盘;631-透光罩;632-挡线环;633-卷绕筒;64-卡线环;643-卡槽;65-探头支架;66-保护盖;661-环形盖体;662-观察窗;67-转轴;68-合页;7-移动模块;8-活体安装装置;81-安装座;811-挡板;812-固定架;82-夹持组件;821-第一调节螺栓;83-遮光罩;84-转动部件;85-移动架;86-第二调节螺栓;87-第三调节螺栓;88-跑步机;89-接收盘;80-探头安装件;9-视野搜寻适配器;91-探头安装组件;10-罩盖;200-激光器;300-激光适配器;301-传输光纤;400-显微镜探头;401-激光传输光纤;402-荧光收集光纤;403-控制电缆;3001-壳体;302-第一固定反射镜;303-第二固定反射镜;304-光束变换气;305-第一偏转反射镜;306-第二偏转反射镜;307-位置检测器;308-激光功率计;309-分光镜;3010-开关机构;3011-激光输入口;3012-激光输出口;3013-支撑腿;3014-激光耦合器;3016-驱动电路。
实施本发明的方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,本申请中的实施方式及实施方式中的特征可以相互组合。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。另外,“内、外”是指相对于各部件本身的轮廓的内、外。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
本申请提供一种激光适配器,如图1-图2所示,所述激光适配器300包括:壳体3001及设置于壳体3001的光束变换装置304和光束稳定装置;其中,壳体3001具有激光输入口3011和激光输出口3012;光束变换装置304设置为用于对进入壳体3001内的激光光束进行变换;光束稳定装置设置在光束变换装置304沿激光传输方向的下游,用于调整激光光束的偏转方向,以纠正激光光束在激光输出口3012处的实际位置与理想位置的偏差。
本申请提供的激光适配器,通过光束变换装置304可以对输入的激光进行光束变换,光束变换是指通过光学元件的变换特性对光束进行放大、缩小和变焦等,使得激光能够与后面 的设备进行匹配,达到设备的最佳性能。而且本申请提供的激光适配器通过光束稳定装置可以在检测到激光光束发生偏移时能够调整激光的偏转方向,使得激光输出稳定,从而保证激光输出的耦合效率。
具体的,采用不同参数的激光器时,激光器发射不同参数的激光进入到激光适配器内时,可以通过光束变换装置对光束变换后统一输出光斑大小固定的光束,从而使得不同的激光器输出的激光均能够适配于后面连接的设备;又或者,激光器的距离发生变化,则通过光束变换装置304进行变焦处理后,也可以输出统一的激光光束。
在环境发生变化(例如温度、湿度等变化,或者产生振动)时,光路上的各个器件(例如激光器本身、反射镜、分光镜等)会受到振动或者因温度的影响而发生偏移,导致激光的输出方向发生变化,光束稳定装置可以根据光束在激光输出口3012处的实际位置与理想位置的偏差来实时地调整激光的偏转方向,使得激光稳定输出,即控制激光能够在与理想输出位置具有较小偏差的范围内输出,保证激光输出的耦合效率。
因此,采用本申请提供的激光适配器,在输入不同参数的激光,或者激光传输过程中发生偏转的情况下,无需重新调整光路或者更换光路上的光学器件,通过激光适配器对输入的激光进行变换及激光传输方向的调整即可使得激光适配并耦合于后面连接的设备。
在一实施例中,光束变换装置304可以采用现有的能够对激光束的横截面进行扩大或缩小以及能够对激光束变焦的装置,其具体结构是本领域技术人员能够实现的,在此不再赘述。
光束稳定装置位于光束变换装置304在激光传输方向的下游,这样,光束稳定装置可以纠正激光光束在通过光束变化装置304进行光束放大、缩小或变焦等调整后所导致的光束偏转。
如图2所示,光束稳定装置可以包括位置探测器307、至少一个偏转反射镜以及与每个偏转反射镜连接的反射镜调整机构;其中,位置探测器307设置在靠近激光输出口3012的位置,用于检测激光在激光输出口3012处的位置信息。具体可在激光传输路径上设置分光镜309,通过分光镜309直接或间接反射部分激光至位置探测器307,由此实现位置探测器307对激光位置的检测。在图17所示的实施例中,分光镜309反射部分激光至激光功率计308,激光功率计308中也设置有分光镜,激光功率计将部分激光反射至位置探测器307。位置探测器307可以采用4D位置探测器,4D位置探测器能够严格探测区分光束的位置漂移与角度漂移,能精确地检测光束的实时位置。
所述反射镜调整机构设置为能够根据位置探测器307检测到的位置信息驱动偏转反射镜偏转以调整激光传输方向,使得激光稳定输出。
具体的,首先确定激光光束在激光输出口3012处的理想位置,该理想位置是激光在输出耦合至激光输出口3012处所连接的装置或部件(例如传输光纤)中时,能够达到理想的耦合效率的位置。在光束发生偏转,例如,由于振动或温度变化等导致光学器件发生偏移而导致光束偏转,或者人为触碰导致光束偏转等,位置探测器307实时地探测到激光在激光输出口3012处的位置信息并发送至控制单元,控制单元根据位置信息连续地确定激光光束的位置与理想位置所存在的偏差,并控制反射镜调整机构,调整偏转反射镜,从而不断调整激光的反射方向,使得激光在围绕理想位置的一定范围内稳定传输。
所述激光适配器还包括控制单元,所述控制单元接收位置探测器307检测到的位置信息,并根据位置信息控制反射镜调整机构。在一些实施方式中,控制单元可以设置在壳体3001内,当然,控制单元也可以单独设置,即控制单元可以是设置在壳体3001外侧的一个单独的模块。
如图2所示,激光适配器的壳体3001内还设置有驱动电路3016,控制单元向驱动电路3016发送控制信号,由驱动电路3016控制反射镜调整机构动作。
在一个实施例中,激光适配器300还包括至少一个用于改变激光传输方向的固定反射镜,所述固定反射镜设置在光束变换装置304的沿激光传输方向的上游。通过设置固定反射镜改变激光传输方向,可以使得光路弯折,便于光路上各个元器件的布置,利于减少整个激光适配器的体积。
如图2所示的实施例中,所述至少一个固定反射镜包括第一固定反射镜302和第二固定反射镜303,所述至少一个偏转反射镜包括第一偏转反射镜305和第二偏转反射镜306;
激光经第一固定反射镜302反射至第二固定反射镜303,第二固定反射镜303将激光反射至光束变换装置304;光束变换装置304对激光变换后,输出的激光经第一偏转反射镜305反射至第二偏转反射镜306,第二偏转反射镜306设置为将激光反射至激光输出口3012。
更具体的,激光在第一固定反射镜302的入射角和出射角以及在第二固定反射镜303的入射角和出射角分别大致是45°,激光在第一偏转反射镜305的入射角和出射角以及在第二偏转反射镜303的入射角和出射角分别大致是45°。
参考图3,图3中示出了激光的传输路径。激光器200发出的激光从激光输入口3011进入,传输至第一固定反射镜302,经第一固定反射镜302大约偏转90°后,反射至第二固定反射镜303,再经第二固定反射镜303大约偏转90°后,输送至光束变换装置304,经光束变换装置304进行光束变换后,传输至第一偏转反射镜305,经第一偏转反射镜305偏转大约90度后,反射至第二偏转反射镜306,然后经第二偏转反射镜306反射至激光输出口3012并耦合进入激光输出口3012所连接的部件,如激光输出口3012连接通过激光耦合器3014连接的传输光纤301。
该实施例中通过固定反射镜和偏转反射镜将光路弯折设置,可以在减少激光适配器长度的同时还方便布置各个光学器件。
可以理解的是,固定发射镜和偏转反射镜的布置方式并不限于如上所述,其它布置方式也可。
在一个实施例中,壳体3001内设置有至少一个激光功率计308,用于检测进入激光适配器内的激光的功率。通过激光功率计308可以实时检测激光的功率变化,从而可以判断激光传输是否出现问题,尤其可以判断激光的输入端是否出现问题,例如激光器器是否出现损坏或者激光是否出现阻挡等。
可选地,所述激光功率计308设置在靠近激光输出口3012的位置,可以检测激光从激光适配器输出时的功率。
具体如图3所示,在激光传输路径上设置有分光镜309,通过分光镜309可以将激光光束的一部分分光反射至激光功率计308,激光功率计308通过对分光进行检测可获取激光的功率。
可选地,所述至少一个激光功率计包括第一激光功率计和第二激光功率计,可设置第一激光功率计位于靠近激光输入口3011的位置,第二激光功率计位于靠近激光输出口3012的位置。即,通过第一激光功率计检测激光输入时的功率,通过第二激光功率计检测激光输出时的功率,通过检测激光输入时的功率变化,可以判断激光输入是否出现问题,例如,激光器是否出现损坏,或者激光器是否出现阻挡等。通过第一激光功率计和第二激光功率计分别检测激光的输入和输出时的功率,可以比较激光输出时相比激光输入时的功率变化,由此能够判断激光在激光适配器内的功率损耗。
在一个实施例中,所述激光适配器300还包括设置在激光输入口3011处的开关装置3010,开关装置3010包括用于打开和关闭激光输入口3011的开关门以及驱动所述开关门在打开状态和关闭状态转换的门驱动机构;
开关门打开时激光能够进入激光适配器300内传输,开关门关闭时,阻断激光进入激光适配器内。
门驱动机构可以由控制单元控制,控制单元发送控制信号,驱动电路3016可以控制门驱动机构来驱动开关门的开关。
另外,激光适配器300的壳体3001下方还可设置支撑腿3013,支撑腿3013设置为高度可调节,通过调整支撑腿3013的高度,可以使得激光输入口3011与激光器的高度适配,从而激光器能够准确地向激光输入口3011发射激光。
其中,支撑腿3013的高度调节可以采用现有的常用技术,例如通过设置调整螺栓来调整 支撑腿3013的高度,或者设置支撑腿包括两个部分,通过两个部分在不同的高度位置连接来调整高度。
本申请另一实施例,还提供一种光学系统。在自由活动的活体动物中直接记录其神经元活动是研究动物行为与神经功能之间的关系最直接有效的方法之一。而多光子光学成像系统凭借其良好的光学切片能力及较深的穿透深度成为对神经元观测中最重要和最广泛使用的工具。其中,多光子光学成像系统可以是双光子、三光子、拉曼等非线性激光扫描显微镜设备。
传统的多光子光学成像系统中,激光器与光学调节架固定在光学平台上的方式进行光路的调节,光路经过整形之后,通过反射镜进入到显微镜主机,因为从激光器至显微镜主机之间的光路为空间光路,因此显微镜主机也必须稳定的固定在光学平台上,以保证主体内部的光路不会受到外力而发生偏转,从而影响显微镜的性能。
但是,由于周边通常会放置很多模块,如光束整形、电路控制模块、各种驱动器、荧光收集模块、宽场荧光模块、激光模块等等,设备繁杂,接线复杂,且各模块之间容易受到信号的干扰和人为的误操作,从而导致光路容易产生偏转。
另外,光路和显微镜主机是固定的,对显微镜主体有位置和方向要求的实验无法变通或者实现,比如激光光路和显微镜主体不在一个平台上,甚至是不在一个房间里,传统方式是无法实现的。如果要更换激光器,或者激光器的距离改变,由于激光器发出的激光产生变化,则均需要重新调节所有光路,有些甚至因为激光器的参数差异较大而无法适配。
本申请提供的一种光学系统,如图3所示,所述光学系统包括激光器200、传输光纤301、应用设备主体100以及上述实施例提及的激光适配器300;应用设备主体100可以是例如双光子显微镜等通过激光进行工作的设备和显微镜主机。激光器200用于向激光适配器300发射激光;激光适配器300用于接收激光器200发射的激光,并对激光进行调整适配,然后将调整适配后的激光传输至应用设备主体100;应用设备主体100设置为用于将激光传输至显微镜探头,并控制显微镜探头对活体进行激光扫描而产生用于成像的荧光信号。
本申请提供的技术方案中,激光器200产生的激光经过激光适配器300,激光适配器300可以对激光光束进行放大、缩小和变焦等变换,将接收的各种不同的激光信号转换成统一的激光信号输出,使得激光与后续连接的设备适配,利于达到系统的最佳性能。这样可以使用各种不同参数的激光器,而且即使激光器的距离发生变化,通过激光适配器300对接收的激光进行变换处理后,也能向应用设备主体100输出适配的激光光束。
如图4所示,光学系统还可以包括显微镜探头400,且应用设备主体100可以为多光子显微镜主机。
其中,激光器200设置在激光适配器300的激光输入口3011处,用于向激光输入口3011发射激光;传输光纤301的一端连接有激光耦合器3014,激光耦合器3014连接于激光输出口3011,传输光纤301的另一端连接于应用设备主体100。
通过激光适配器300使得激光稳定地耦合至传输光纤301,然后通过传输光纤301传输至应用设备主体100,而且可以将激光器200发出的各种不同参数的激光调整至与应用设备主体适配,保证应用设备主体不受到激光器200的参数变化或者是激光器200与激光适配器300之间距离变化的影响,由此无需更换光路上的光学器件或者对整个光路进行调整,使用非常方便。
具体地,激光器200用于向激光适配器300发射激光;激光适配器300用于接收激光器200发射的激光,并对激光进行调整适配,然后将调整适配后的激光传输至应用设备主体100;应用设备主体100设置为用于将激光传输至显微镜探头400,并控制显微镜探头400对活体进行激光扫描而产生用于成像的荧光信号。
本申请提供的技术方案中,激光器200产生的激光经过激光适配器300,激光适配器300可以对激光光束进行放大、缩小和变焦等变换,将接收的各种不同的激光信号转换成统一的激光信号输出,使得激光与后续连接的设备适配,利于达到系统的最佳性能。这样可以使用各种不同参数的激光器,而且即使激光器的距离发生变化,通过激光适配器300对接收的激 光进行变换处理后,也能向应用设备主体100输出适配的激光光束。
本申请提供的光学系统为多光子成像系统,即显微镜探头400可以采用双光子、三光子、拉曼等非线性激光扫描成像。在一些实施例中,显微镜探头400具体可以包括微机电(MEMS,Micro-Electro-Mechanical System)扫描振镜以及各种透镜。
在一个实施例中,光学系统还包括连接在激光适配器300和应用设备主体100之间的传输光纤301,激光适配器300将调整适配后的激光通过传输光纤301传输至应用设备主体100。其中,传输光纤301的一端可连接激光耦合器,通过激光耦合器与激光适配器300的输出端连接,另一端连接准直器,通过准直器与应用设备主体100连接。
激光适配器300与应用设备主体100采用光纤连接的方式,使得应用设备主体100可以自由移动,由此可以根据需要将应用设备主体100放置在不同的位置,甚至跨平台放置,使用更加灵活。
而且光纤输出可以起到对光束整形的作用,使得从激光适配器300向应用设备主体100输出的光斑更加均匀,利于提高系统的性能。另外,光纤连接的方式相比在激光适配器300与应用设备主体100之间设置固定的光路调节装置的方式,受到的干扰以及误操作减少,提高了系统的稳定性,且可以减少模块之前的光路调节装置的布置,安装和维护容易。
在一个实施例中,应用设备主体100包括激光耦合模块3,激光耦合模块3的激光输入端31与传输光纤301连接,激光输出端32通过激光传输光纤401与显微镜探头400连接。
其中,所述激光耦合模块3用于将从传输光纤301接收的激光进行调整处理后通过激光传输光纤401传输至显微镜探头400。例如,激光耦合模块3可以对激光进行色散补偿和/或强度调节。
图4为根据本申请的一个实施例中光学系统的光路示意图。如图4所示,激光适配器300包括用于检测激光功率的激光功率计308,所述激光耦合模块3包括用于检测激光功率的功率检测器311。
激光功率计308可以实时地检测进入激光适配器300内的激光功率,通过激光功率计308所检测的功率变化可以检测激光传输是否出现异常,通常是对激光器200是否损坏或者激光是否出现阻挡等进行判断。具体可在激光传输光路上设置第一分光镜309,激光光束的一部分光由第一分光镜309分光给激光功率计308,激光功率计308通过对分光进行检测获取激光的功率。功率检测器311可以实时检测激光耦合模块3内激光的功率,同样的,通过获取激光光束的分光,由功率检测器311对分光进行检测获取激光功率。通过比较功率检测器311和激光功率计308的功率变化,可以判断激光适配器300和应用设备主体100之间的激光传输是否异常,因此,设置激光功率计308和功率检测器311可以快速定位激光传输过程中出现问题的环节。
可选地,激光功率计308靠近激光适配器300的激光输出端3012,功率检测器311靠近激光耦合模块3的激光输入端31,如果功率检测器311相比激光功率计308的功率变化较大,则可以确定是激光功率计308出现问题,由此快速定位问题环节,可以实现快速维修。
下面根据图4对激光的传输路径描述如下:
激光器200发出的激光从激光输入端3011进入,传输至第一固定反射镜302,经第一固定反射镜302大约偏转90°后,反射至第二固定反射镜303,再经第二固定反射镜303大约偏转90°后,输送至光束变换装置304,经光束变换装置304进行光束变换后,传输至第一偏转反射镜305,再经第一偏转反射镜305偏转大约90度后,反射至第二偏转反射镜306,然后经第二偏转反射镜306反射至激光输出端3012并耦合进入激光输出端3012所连接的传输光纤301。
传输光纤301传输的光纤从激光输入端31进入到激光耦合模块3,经色散补偿元件34进行色散补偿后,传输到反射镜35,经反射镜35偏转大约90度后,传输至声光调制器36,声光调制器36对激光进行强度调节后,传输至第一偏转反射镜37,经第一偏转 反射镜37偏转大约90度后,反射至第二偏转反射镜38,然后经第二偏转反射镜38反射至激光输出端32并耦合进入激光输出端32所连接的激光传输光纤401。
本申请提供的光学系统还可以包括工作台,所述工作台包括工作台主机和显示器,工作台主机与应用设备主体100连接,应用设备主体100对收集的荧光信号进行处理后传输至工作台主机,且显示器显示成像,所述工作台主机还对应用设备主体100发送控制指令,然后控制箱5内的各控制电路进行各零部件的控制。
本申请提供的光学系统还可以包括行为学试验装置,所述行为学试验装置为安装有显微镜探头400的活体提供活动空间。例如,将安装有显微镜探头400的小鼠放入到行为学试验装置中,使其自由活动,可以检测小鼠自由活动状态时其神经元的状态。
另一方面,本申请一实施例提供一种应用设备主体。在自由活动的动物中直接记录神经元活动是研究动物行为与神经功能之间的关系最直接有效的方法之一,而多光子显微镜设备则成为利用荧光成像对动物神经元观察中最重要和最广泛使用的工具。其中,多光子显微镜设备可以是双光子、三光子或拉曼等非线性激光扫描显微镜设备。
目前,多光子显微镜设备的结构复杂,体积大,具有占用空间、连线多、搬运及转移困难以及现场安装和后期维护复杂等问题。
本申请一实施例提供的应用设备主体为多光子显微镜主机100,用于与显微镜探头连接,显微镜探头用于可拆卸地安装在活体上,以观测活体的神经元活动。
如图5-图8所示,本申请的实施例提供的多光子显微镜主机100,包括安装主体1以及集成于安装主体1上的宽场搜寻模块4、激光耦合模块3、荧光收集模块和扫描控制模块;其中,宽场搜寻模块4设置为用于对活体进行宽视野成像,以在活体上搜寻用于安装显微镜探头的目标区域;激光耦合模块3设置为用于接收激光并对激光进行调整以将激光耦合进激光传输光纤,其中,激光传输光纤用于连接激光耦合模块3和显微镜探头;扫描控制模块设置为通过控制电缆与显微镜探头连接,用于控制显微镜探头对活体进行激光扫描以产生荧光信号;荧光收集模块设置为通过荧光收集光纤与显微镜探头连接,用于收集显微镜探头输出的荧光信号。
在应用时,多光子显微镜主机100与显微镜探头400连接,具体可参考图18和图19,多光子显微镜主机100的激光耦合模块3通过激光传输光纤401与显微镜探头400连接,扫描控制模块通过控制电缆403与显微镜探头400连接,荧光收集模块通过荧光收集光纤402与显微镜探头400连接,显微镜探头400用于戴在活体上。在激光耦合模块3接收激光并通过激光传输光纤401传输至显微镜探头400时,扫描控制模块通过控制电缆403控制显微镜探头400对活体进行激光扫描产生荧光信号,荧光收集模块通过荧光收集光纤402收集显微镜探头400输出的荧光信号,输出的荧光信号可以转换成电信号并成像在计算机上,然后通过成像观察活体的神经元活动情况。
其中,显微镜探头400可以包括微机电(MEMS,Micro-Electro-Mechanical System)扫描振镜以及各种透镜。因此,扫描控制模块可以包括控制微机电扫描振镜的MEMS控制模块。
本申请提供的多光子显微镜主机,将各个功能模块集成形成一个整体结构,可大大减少占用空间,适用于各种实验室,而且设置为整机,可以使得出线规整,整洁美观。另外,该多光子显微镜主机体积小,便携,易于搬运更换场地,同时针对一些试验需求可以快速调整该多光子显微镜的位置和方向,方便匹配更多的应用。此外,该多光子显微镜主机便于现场快速安装和维护。其中,本申请所述的多光子显微镜设备可以是双光子、三光子或者拉曼等非线性激光扫描显微镜。
在一个实施例中,多光子显微镜主机100还包括设置在安装主体1上的移动模块7,移动模块7用于承载活体并能够带动活体在多个方向上移动,所述宽场搜寻模块4设置为对位于移动模块7上的活体进行视野搜寻。
具体的,可以将活体直接安装在移动模块7上,具体可以通过在移动模块7上设置夹持或者限位结构等对活体进行限制。也可以首先将活体安装在活体安装装置8上,然后将活体 安装装置8固定在该移动模块7上,移动模块7可以带着活体安装装置8移动来调整活体的位置,由此宽场搜寻模块4可以对活体的不同区域进行成像以搜寻感兴趣的目标位置。其中,移动模块7可以是多轴移动平台,能够在上下左右前后多个方向上移动。
其中,宽场搜寻模块4是能够对活体进行大视野区域成像的装置,可以采用单光子荧光成像。该宽场搜寻模块4的成像可以传输到计算机上显示,也可以在该宽场搜寻模块4上设置目镜,从目镜直接观察成像。
在图9所示的实施例中,在采用宽场搜寻模块4对活体进行宽视野成像时,活体安装在活体安装装置8上,然后活体安装装置8固定在移动模块7上。其中,活体可以是小鼠,也可以是其它动物。
图10提供了一种适合安装小鼠(不排除用于安装其它合适的动物)的活体安装装置8,其包括:安装座81、跑步机88及夹持机构,跑步机88和夹持机构均安装在安装座81上。夹持机构可包括两个相对设置的夹持组件82,用于夹持小鼠上设置的探头安装件80的两侧(探头安装件80通常用于安装在小鼠的头部,图10仅显示了探头安装件80而未显示小鼠)。夹持机构设置为对进行探头安装件80夹持固定时,小鼠能够在跑步机88上跑步。其中,安装座81上设置有位于跑步机88两侧挡板811,用于将小鼠限制在跑步机88上,安装座81上还设置有用于固定在移动模块7上的固定架812可通过螺栓固定。
在采用夹持组件82夹持小鼠上设置的探头安装件80时,小鼠在跑步机88上跑步,可以分散小鼠的注意力,减小安装过程中清醒小鼠的应激反应,并利于快速进行实验。
可选地,每个夹持组件82包括两个夹持部以及第一调节螺栓821,第一调节螺栓82设置为通过旋转能够使得两个夹持部靠近彼此以夹持探头安装件80,或者远离彼此以释放探头安装件80。因此,在夹持或拆卸探头安装件80时,仅需要旋转两个夹持组件82的第一调节螺栓821即可,拆装方便。
可选地,两个夹持组件82设置为能够相对于安装座81沿跑步机88的前后方向移动以及能够相对于安装座81上下移动。这样,可以根据活体的类型或者大小来调整夹持组件82位于合适的位置来夹持探头安装件80。
具体的,活体固定装置8还包括对应于每个夹持组件82设置的移动架85,移动架85设置为能够相对于安装座81沿跑步机88的前后方向移动,夹持组件82可升降地设置在移动架85上。如图6中显示有移动架85上设置有用于调整夹持组件82升降的第二调节螺栓86,通过旋转第二调节螺栓86,第二调节螺栓86可以顶升夹持组件82,反向旋转第二调节螺栓86,夹持组件82可以在重力的作用下下降。安装座81上设置有用于调整移动架85前后移动的第三调节螺栓87。第三调节螺旋87与移动架85螺纹连接,旋转第三调节螺栓87,可以使得移动架85相对安装座81前后移动。
可选地,所述活体固定装置8还包括用于遮住活体眼睛的遮光机构。该遮光机构包括遮光罩83及驱动遮光罩83旋转的转动部件84。在对小鼠进行宽视野搜寻成像时,可以操作转动部件84,使得遮光罩83能够遮住小鼠的眼睛,以保护眼睛不受光线伤害。
活体固定装置8还可以包括设置在安装座81上的饮水器(图中未显示),饮水器设置为用于跑步机上的小鼠提供饮水,可以利于分散小鼠注意力。
活体固定装置8还可以包括设置在安装座81下方的接收盘89,用于接收小鼠的排泄物。
在一个实施例中,如图7和图9所示,所述多光子显微镜主机还包括安装在安装主体1上的视野搜寻适配器9;视野搜寻适配器9包括探头安装组件91和切换机构,探头安装组件91用于可拆卸地安装显微镜探头400,切换机构设置为能够将探头安装组件91切换至第一位置和第二位置。
所述探头安装组件91位于第一位置时,安装在探头安装组件91上的显微镜探头400避让宽场搜寻模块4与活体之间的光路,探头安装组件91位于第二位置时,所述显微镜探头400与宽场搜寻模块4的光路对准。
其中,所述切换机构可以设置为通过手动推拉的方式使得探头安装组件91在两个位置切 换,具体的,可以在切换机构上设置方便手握的握持部(图中未显示),通过握持部推动探头安装组件91时,探头安装组件91可移动至第一位置,向相反的方向拉动探头安装组件91时,探头安装组件91可移动至第二位置。
进一步的,视野搜寻适配器9上可设置物镜43,在视野搜寻适配器9安装在安装主体1上时,物镜43与宽场搜寻模块4的光路对准,且需调整探头安装组件91在第二位置时其上安装的显微镜探头400与宽场搜寻模块4的光路对准。在采用宽场搜寻模块4进行宽视野成像时,采用切换机构将探头安装组件91切换至第一位置,宽场搜寻模块4在活体上找到目标区域后,再将探头安装组件91切换至第二位置,然后将探头安装组件91上的显微镜探头400取下,固定在活体的探头安装件80的与搜寻到的目标区域对应的位置(可以通过胶粘的方式固定)。
在将显微镜探头400安装在探头安装件80上后,活体(例如小鼠)可以从活体安装装置8上拆下,释放小鼠,使其自由活动,由此可以通过显微镜探头400对自由活动的小鼠进行神经元观测。
在一个实施例中,所述多光子显微镜主机100还包括安装在安装主体1上的能够开关的遮光门2。遮光门2处于关闭状态时,安装主体1与遮光门2之间形成密闭空间,移动模块7位于所述密闭空间内,宽场搜寻模块4设置为对位于密闭空间内的移动模块7上的活体进行宽视野搜寻。
设置遮光门2可以保证在宽场搜寻模块4对活体进行成像时活体位于暗室,可以达到较高的成像信噪比,而且设置遮光门2无需再搭建专门的避光环境(例如设置大的机罩,或者关闭实验室的照明灯等)。
可选地,如图5和图6所示,遮光门2可设置有两个,采用对开方式,即两个遮光门2分别可转动地安装在安装主体1上,朝向彼此转动时能够关闭,远离彼此转动打开。图5显示了两个遮光门2处于关闭时的状态,图6显示了两个遮光门2处于打开时的状态。
可以理解的是,遮光门2也可以仅设置一个,而且也可以设置为通过升降或者滑移的方式进行开关。
在一个实施例中,多光子显微镜主机100的各模块的具体布置可参考图7和图8所示,安装主体1包括底座11及固定在底座11上的安装架12,安装架12的上部位置设置有支撑板13;移动模块7可移动地安装在底座1上且位于安装架12的一侧,安装架12的另一侧固定有位于支撑板13下方的控制箱5,扫描控制模块和荧光收集模块设置在控制箱5内;激光耦合模块3安装在支撑板13上,宽场搜寻模块4安装于移动模块7上方。遮光门2安装于安装架12的朝向移动模块7的一侧,用于在安装架12的具有移动模块7的一侧形成密闭空间,位于上方的宽场搜寻模块4的光路可以进入该密闭空间,以能够对移动模块7上的活体成像。
可选地,宽场搜寻模块4安装在激光耦合模块3上,激光耦合模块3上设置有上下贯穿的光路通孔331,宽场搜寻模块4的光路设置为向下穿过光路通孔331而到达移动模块7。如此布置可以使得整体结构更加紧凑,体积更加小巧。
可选地,底座11上可设置有把手14,通过把手14可以方便该多光子显微镜主机100的搬运。
可选地,底座11上还可设置显示屏15,该显示屏15可以显示:例如激光的参数、传输状态、多光子显微镜的温湿度等等,方便了解设备的工作状态。
在一个实施例中,如图11和图12所示,激光耦合模块3包括耦合器壳体33、色散补偿元件34、声光调制器36和光束稳定装置,所述色散补偿元件34、声光调制器36和光束稳定装置均设置在耦合器壳体33内且沿激光的传输方向依次设置;其中,色散补偿元件34用于补偿由激光传输光纤401在传输激光过程中引起的负色散;声光调制器36用于调节激光的强度;光束稳定装置用于调整激光传输方向,以纠正激光光束在激光耦合模块3的输出端32处的实际位置与理想位置的偏差。光束稳定装置具体可以包括位置。
其中,位置探测器39设置在靠近激光耦合模块3的输出端32的位置,用于检测激光在 输出端32处的位置信息。位置探测器39可以采用4D位置探测器,4D位置探测器能够严格探测区分光束的位置漂移与角度漂移,能精确地检测光束的实时位置。所述反射镜调整机构设置为能够根据位置探测器39检测到的位置信息驱动偏转反射镜偏转以调整激光传输方向,使得激光稳定地从输出端输出至激光传输光纤,利于提高耦合效率。
具体的,首先确定激光光束在输出端32处的理想位置,该理想位置是激光在输出端32处耦合进入所连接的激光传输光纤401中时,能够达到理想的耦合效率的位置。在光束发生偏转,例如,由于振动或温度变化等导致光学器件发生偏移而导致光束偏转,或者人为触碰导致光束偏转等,位置探测器39实时地探测到激光在输出端32处的位置信息并发送至控制单元,控制单元根据位置信息连续地确定激光光束的位置与理想位置所存在的偏差,并控制反射镜调整机构,调整偏转反射镜,从而不断调整激光的反射方向,使得激光在围绕理想位置的一定范围内稳定传输至激光传输光纤401。其中,所述控制单元可设置在激光耦合器壳体33内,也可以设置在控制箱5内。
可选地,激光耦合模块3还可以设置用于改变激光传输方向的至少一个反射镜35。通过改变激光传输方向,可以使得光路弯折,便于光路上各个元器件的布置,利于减少整个激光耦合模块的体积。
具体如图12所示,激光从激光耦合模块3的输入端31进入,经色散补偿元件34进行色散补偿后,传输到反射镜35,经反射镜35偏转大约90度后,传输至声光调制器36,声光调制器36对激光进行强度调节后,传输至第一偏转反射镜37,经第一偏转反射镜37偏转大约90度后,反射至第二偏转反射镜38,然后经第二偏转反射镜38反射至输出端32并耦合进入输出端32所连接的激光传输光纤。其中,第一偏转反射激光37和第二偏转反射镜38分别设置有对应的反射镜调整机构,根据位置探测器39探测的位置信息,实时地调整第一偏转反射激光37和第二偏转反射镜38的位置,能够使得激光稳定地输出至激光传输光纤401。
激光耦合模块3内还可设置功率检测器311,用于检测激光传输功率。
另外,如图13所示,所述激光耦合模块还包括用于驱动声光调制器36的驱动器361以及用于对驱动器361冷却的冷却机构,所述驱动器361和冷却机构均位于耦合器壳体33的上表面。其中,冷却机构可以包括对驱动器361散热的散热翅片362和对散热翅片362进行散热的风扇363。
因驱动器361驱动射频功率大,放在激光耦合器壳体33内增加了大功率射频信号干扰的风险,而且由于驱动器361发热量大,容易导致精密的光学系统平板形变,增加腔内的温度,影响设备性能,因此将驱动器361设置在耦合器壳体33的外面,并增加散热翅片362和风扇363进行散热。
可选地,参考图13,宽场搜寻模块4安装在耦合器壳体33的上表面,激光耦合模块3上设置有上下贯穿的光路通孔331,宽场搜寻模块4的光路设置为向下穿过所述光路通孔331。其中,宽场搜寻模块4可包括荧光光源41及相机42,相机42的光路向下穿过光路通孔331能够达到移动模块7上的活体,对活体实现宽视野成像。
所述多光子显微镜主机还可包括用于罩盖宽场搜寻模块4、驱动器361和冷却机构的罩盖10,罩盖10不仅起到保护作用,还利于美观。
在一个实施例中,如图14和图15所示,所述多光子显微镜主机还包括安装在安装主体1上的控制箱5,荧光收集模块和扫描控制模块均位于控制箱5内。
其中,荧光采集模块53可以包括光电倍增管(PMT),荧光收集光纤402收集的信号传导至光电倍增管。
可选地,所述荧光采集模块53包括分光镜和至少两个分光收集模块,每个分光收集模块可包括光电倍增管。荧光收集光纤402从显微镜探头400收集的荧光信号经分光镜分成至少两路荧光信号后,分别由至少两个分光收集模块收集。
控制箱5内还可设置有信号处理模块,所述信号处理模块设置为对荧光采集模块53输出的信号进行处理并将处理后的信号传输至计算机进行显示。例如,对荧光采集模块53采集的 荧光信号转换成电信号,并且进行信号放大,然后通过高速AD采集进行采集重组,再传输到计算机上进行显示。
荧光采集模块和信号处理模块均设置在控制箱5内,缩短了荧光采集模块所采集的信号向信号处理模块的传输距离,减少了被干扰的可能性,提高了信号传输的可靠性。
可选地,控制箱5上设置有用于连接控制电缆403的第一接口51和连接荧光收集光纤402的第二接口52,第一接口51和第二接口52均位于控制箱5同一侧的上方位置。
激光耦合模块3位于控制箱5的上方,且激光耦合模块3的用于连接激光传输光纤401的输出端与控制箱5的第一接口51和第二接口52位于同一侧。
通过激光耦合模块3设置在控制箱5的上方,控制箱5的第一接口51和第二接口52位于箱体的上方位置,且激光耦合模块3的输出端与控制箱5的第一接口51和第二接口52位于同一侧,可以使得激光传输光纤401、荧光收集光纤402以及控制电缆403相互靠近,利于走线规整且美观,而且可以使得各线缆能够汇聚成总线缆,例如可以汇聚后通过线皮包裹成总的线缆,方便通过收纳装置6收纳(下文会对收纳装置对线缆和显微镜探头的收纳进行具体描述)。
另外,将激光传输光纤401、荧光收集光纤402以及控制电缆403的出线端设置在控制箱5的上方位置,便于适配更多的行为学装置,并利于减少线缆长度。例如,将带有显微镜探头400的小鼠放置在活体行为箱内自由活动时,线缆的设置可以方便显微镜探头400向下伸入到活体行为箱内。
进一步的,如图14和图15所示,控制箱5内设置有主控电路板54和荧光收集模块53,荧光收集模块53位于主控电路板54上方,其中,主控电路板54包括扫描控制模块,还可包括控制激光耦合模块3(例如控制激光耦合模块3的声光调制器、光束稳定装置)、视野搜寻模块4以及指示灯、光传感器、温湿度传感器等的控制驱动电路。
在一个实施例中,所述多光子显微镜还包括收纳装置6,收纳装置6安装在控制箱5的具有第一接口51和第二接口52的一侧,由于激光传输光纤401、荧光收集光纤402和控制电缆403均位于该侧,收纳装置6安装在该侧可以方便收纳显微镜探头400以及与显微镜探头400连接的包括有激光传输光纤401、荧光收集光纤402和控制电缆403的线缆。为方便收纳,该线缆可以汇总例如用线皮包裹。
如图16和图17所示,收纳装置6包括:收纳主体,收纳主体上设置有卷绕筒633,围绕卷绕筒633形成有用于容纳线缆的环形空间;探头支架65,探头支架65固定在收纳主体上,在线缆绕在卷绕筒633上后,显微镜探头400可安装在探头支架65上。
图16中显示了线缆卷绕在卷绕筒633上,且显微镜探头400安装在探头支架65上的状态。通过收纳装置6进行收纳,线缆和探头不会被容易地碰触、按压而导致损坏,并可以避免线缆随意放置导致缠绕打结的情况以及线缆随意弯折导致损伤的情况,而且通过收纳装置6收纳线缆和探头更加整洁美观,利于提升视觉效果。
具体的,收纳主体可包括:收纳盒61以及固定在收纳盒61上的挡线盘63,探头支架65固定在挡线盘63的背离收纳盒61的外侧。卷绕筒633设置在收纳盒61和挡线盘62中的一者上,且收纳盒61和挡线盘63设置为能够从卷绕筒633的两端对绕在卷绕筒633上的线缆进行止挡。
在图17所示的实施例中,挡线盘63包括卷绕筒633和径向凸出于卷绕筒633的挡线环632,卷绕筒633固定在收纳盒61上时,挡线环632和收纳盒61之间形成围绕卷绕筒633的环形空间。当然,卷绕筒633也可以直接形成在收纳盒61上,挡线盘63固定在卷绕筒633的背离收纳盒61的一端且具有径向凸出于卷绕筒633的挡线环632。
其中,探头支架65可以为多种结构形式,只要能够安装显微镜探头400即可,例如,探头支架65可以设置为能够卡住探头的卡接结构,也可以在探头支架65上设置插孔,将显微镜探头400插入到插孔中。
可选地,挡线盘63的外圆周上(即挡线环632上)沿周向间隔设置有多个限位缺口,线 缆从卷绕筒633延伸至挡线盘63外侧以使得探头安装在探头支架65上时,线缆由其中一个限位缺口限位。
可选地,挡线盘63的背离卷绕筒633的外侧可设置卡线环64,卡线环64上设置有围绕探头支架65设置的多个卡槽643,其中,卡线环64上可设置沿周向间隔设置的多个凸块,相邻的凸块之间分别形成卡槽643。线缆延伸至挡线盘63外侧以使得探头安装在探头支架65上时,能够卡在其中一个卡槽643内,这样,可避免线缆从卷绕筒633上松散,而且还可以避免由于线缆摆动或松散而带动探头脱离探头支架的情况。其中,卡线环64可采用柔性材料制成,例如采用橡胶材料,柔性材料具有弹性可以使得线缆容易地卡进卡槽和从卡槽脱出。
在一个实施例中,收纳盒61的用于贴靠在控制箱5的侧面上形成有通孔612,通孔612与容纳线缆的所述环形空间连通,线缆的具有显微镜探头400的一端从通孔612进入收纳盒61,并能够伸出到环形空间而缠绕在卷绕筒633上。
具体的,收纳盒61围绕通孔612设置有朝向卷绕筒633凸出的凸出部611,在凸出部611的远离通孔612的径向外侧形成有环形槽613;挡线盘63上设置有卷绕筒633,卷绕筒633固定在凸出部611上,环形槽613在收纳盒61和挡线盘63之间形成卷绕线缆的环形空间。其中,凸出部611可以设置为环形结构,也可以为具有缺口的弧形结构,为安装卷绕筒633,可以在凸出部611的外表面设置外螺纹,在卷绕筒633的内表面设置内螺纹,卷绕筒633可通过螺纹连接的方式连接于收纳盒61的凸出部611上。
凸出部611上设置有径向贯通凸出部611的贯通槽614,线缆的具有显微镜探头400的一端从通孔612进入收纳盒61后能够从贯通槽614向外伸入到环形空间。其中,贯通槽614可以是如图13中所示的凸出部611上形成的缺口,也可以是在凸出部611上的壁上设置的通孔。在卷绕筒633套在凸出部611上固定时,贯通槽614大致位于卷绕筒633的一端,线缆能够从贯通槽614伸出至环形空间而绕在卷绕筒633上。
在一个实施例中,所述收纳装置还包括环形指示灯62,环形指示灯62安装在收纳主体上,且环形指示灯62围绕卷绕筒633的中心设置。其中,环形指示灯62可以设置为对收纳装置6的内部照明,也可以设置为用于指示多光子显微镜主机内部的工作状态,例如,环形指示灯62可以设置为采用不同的颜色指示设备处于工作状态、非工作状态故障或者设备异常等。如在检测到激光进入到激光耦合模块3内时,或者检测到激光器发射激光时,控制器可控制环形指示灯62显示绿色,绿色指示设备处于工作状态;而在检测到设备异常,例如激光功率异常,或者其它异常状态时,则可控制环形指示灯62显示红色进行警示;而在设备处于非工作状态时,则环形指示灯62可以显示黄色,用于内部照明。
挡线盘63包括透光罩631,环形指示灯62设置在收纳盒61和挡线盘63之间,且对应于透光罩631,通过透光罩631可以看到环形指示灯62的灯光。挡线盘63的挡线环632设置在透光罩631的外圈。
另外,收纳装置6还可以包括罩盖在收纳主体外侧的保护盖66,保护盖66设置为通过转轴67和合页68可转动地安装在收纳主体上,且能够旋转至打开状态和关闭状态。为将保护盖66保持在关闭状态,可以在保护盖66和收纳主体之间设置磁铁。
保护盖6可包括环形盖体661和设置在环形盖体661的中心部位的透明观察窗62,以方便观察收纳装置内部的情况,而且可以方便观察环形指示灯62所指示的设备状态。
在使用时,将保护盖66旋转至打开,从探头支架65上取下显微镜探头400,并将线缆从卷绕筒633上展开,即可将探头安装在活体上使用。
根据本申请的另一方面,还提供一种光学系统,如图18和图19所示,所述多光子显微镜系统包括:激光器200、显微镜探头400和如上所述的多光子显微镜主机100;所述激光器200设置为向激光耦合模块3传输激光,激光耦合模块3的输出端通过激光传输光纤401连接于显微镜探头400,荧光收集模块通过荧光收集光纤402连接于显微镜探头400,以及扫描控制模块通过控制电缆403连接于显微镜探头400。
在一个实施例中,如图18所示,光学系统还包括激光适配器300,激光器200首先将激 光发射至激光适配器300,激光经激光适配器300进行调整适配后,再通过传输光纤301传输至多光子显微镜主机100。
通过在激光器200和多光子显微镜主机100之间设置激光适配器300,可以使得各种激光器200发出的不同参数的激光通过激光适配300的调整后与后面的装置适配。而且,由于激光适配器300与多光子显微镜主机100之间通过传输光纤301连接,多光子显微镜100可以自由活动,可以根据需要将多光子显微镜主机100放置在不同的位置,甚至跨平台放置,使用更加灵活。
激光适配器300具体可包括壳体及位于壳体内的光束变换装置和光束稳定装置,光束变换装置设置为用于对进入壳体内的激光光束进行变换,光束变换是指通过光学元件的变换特性对光束进行放大、缩小和变焦等,使得激光能够与后面的设备进行匹配,达到设备的最佳性能。光束稳定装置设置在光束变换装置沿激光传输方向的下游,用于调整激光光束的偏转方向,以纠正激光光束在激光输出口处的实际位置与理想位置的偏差。光束稳定装置与激光耦合模块3中的光束变换装置的设置类似,通过光束稳定装置可以在检测到激光光束发生偏移时能够调整激光的偏转方向,使得激光输出稳定,从而保证激光输出的耦合效率。
在如图19所示的实施例中,激光器200与多光子显微镜主机100之间可以设置固定的光路,但在此情况下,激光器200与多光子显微镜主机100之间不能存在移动,如果要转换位置,需要重新搭建光路。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换等,均应包含在本申请的保护范围之内。

Claims (41)

  1. 一种激光适配器,包括:壳体及设置于所述壳体内的光束变换装置和光束稳定装置;其中,
    所述壳体具有激光输入口和激光输出口;
    所述光束变换装置设置为用于对进入所述壳体内的激光光束进行变换;
    所述光束稳定装置设置在所述光束变换装置沿激光传输方向的下游,用于调整激光传输方向,以纠正激光光束在所述激光输出口处的实际位置与理想位置的偏差。
  2. 根据权利要求1所述的激光适配器,其中,所述光束稳定装置包括:位置探测器、至少一个偏转反射镜以及与每个所述偏转反射镜连接的反射镜调整机构;
    所述位置探测器设置在靠近所述激光输出口的位置,用于检测所述激光在所述激光输出口处的位置信息;
    所述反射镜调整机构设置为能够根据所述位置探测器检测到的位置信息驱动所述偏转反射镜偏转以调整激光传输方向。
  3. 根据权利要求2所述的激光适配器,其中,所述激光适配器还包括控制单元,所述控制单元接收所述位置探测器检测到的位置信息,并根据所述位置信息控制所述反射镜调整机构。
  4. 根据权利要求2或3所述的激光适配器,其中,所述激光适配器还包括至少一个用于改变激光传输方向的固定反射镜,所述固定反射镜设置在所述光束变换装置的沿激光传输方向的上游。
  5. 根据权利要求4所述的激光适配器,其中,至少一个所述固定反射镜包括第一固定反射镜和第二固定反射镜,至少一个所述偏转反射镜包括第一偏转反射镜和第二偏转反射镜;
    所述激光经所述第一固定反射镜反射至所述第二固定反射镜,所述第二固定反射镜将激光反射至所述光束变换装置;所述光束变换装置发出的激光经所述第一偏转反射镜反射至所述第二偏转反射镜,所述第二偏转反射镜设置为将所述激光反射至所述激光输出口。
  6. 根据权利要求1至5中任一项所述的激光适配器,其中,所述壳体内设置有至少一个激光功率计,用于检测进入所述激光适配器内的激光的功率。
  7. 根据权利要求6所述的激光适配器,其中,所述至少一个激光功率计包括第一激光功率计和第二激光功率计,所述第一激光功率计设置在靠近所述激光输入口的位置,所述第二激光功率计设置在靠近所述激光输出口的位置。
  8. 根据权利要求1至7中任意一项所述的激光适配器,其中,所述激光适配器还包括设置在所述激光输入口处的开关装置,所述开关装置包括用于打开和关闭所述激光输入口的开关门以及驱动所述开关门在打开状态和关闭状态转换的门驱动机构;
    所述开关门打开时所述激光能够进入所述激光适配器内传输,所述开关门关闭时,阻断所述激光进入所述激光适配器内。
  9. 根据权利要求1至8中任意一项所述的激光适配器,其中,所述壳体下方设置有支撑腿,所述支撑腿设置为高度可调节。
  10. 一种光学系统,包括激光器、应用设备主体以及根据权利要求1至9中任意一项所述的激光适配器;其中,
    所述激光器用于向所述激光适配器发射激光;
    所述激光适配器用于接收所述激光器发射的激光,并对所述激光进行调整适配,然后将所述调整适配后的激光传输至所述应用设备主体;
    所述应用设备主体设置为用于将激光传输至显微镜探头,并控制所述显微镜探头对 活体进行激光扫描而产生用于成像的荧光信号。
  11. 根据权利要求10所述的光学系统,其中,所述光学系统还包括连接在所述激光适配器和所述应用设备主体之间的传输光纤,所述激光适配器将调整适配后的激光通过所述传输光纤传输至所述应用设备主体。
  12. 根据权利要求11所述的光学系统,所述应用设备主体包括激光耦合模块,所述激光耦合模块的激光输入端与所述传输光纤连接,激光输出端通过激光传输光纤与所述显微镜探头连接;
    所述激光耦合模块用于将从所述传输光纤接收的激光进行调整处理后通过所述激光传输光纤传输至所述显微镜探头。
  13. 根据权利要求12所述的光学系统,其中所述激光耦合模块包括用于检测激光功率的功率检测器。
  14. 根据权利要求13所述的光学系统,其中,所述激光功率计靠近所述激光适配器的激光输出端,所述功率检测器靠近所述激光耦合模块的激光输入端。
  15. 根据权利要求10至14中任一项所述的光学系统,其中,所述应用设备主体包括多光子显微镜主机,其中,
    所述多光子显微镜主机用于与所述显微镜探头连接,包括安装主体以及集成于所述安装主体上的宽场搜寻模块、激光耦合模块、荧光收集模块和扫描控制模块;其中,
    所述宽场搜寻模块设置为用于对活体进行宽视野成像,以在活体搜寻上用于安装显微镜探头的目标区域;
    所述激光耦合模块设置为用于接收激光并对所述激光进行调整以将所述激光耦合进激光传输光纤,其中,所述激光传输光纤用于连接所述激光耦合模块和所述显微镜探头;
    所述扫描控制模块设置为通过控制电缆与所述显微镜探头连接,用于控制所述显微镜探头进行激光扫描以产生荧光信号;
    所述荧光收集模块设置为通过荧光收集光纤与所述显微镜探头连接,用于收集所述显微镜探头输出的荧光信号。
  16. 根据权利要求15所述的光学系统,其中,所述多光子显微镜还包括安装在所述安装主体上的视野搜寻适配器;
    所述视野搜寻适配器包括探头安装组件和切换机构,所述探头安装组件用于可拆卸地安装所述显微镜探头,所述切换机构设置为能够将所述探头安装组件切换至第一位置和第二位置;
    所述探头安装组件位于所述第一位置时,安装在所述探头安装组件上的所述显微镜探头避让所述宽场搜寻模块与所述活体之间的光路,所述探头安装组件位于所述第二位置时,所述显微镜探头与所述宽场搜寻模块的光路对准。
  17. 根据权利要求15或16所述的光学系统,其中,所述多光子显微镜主机还包括设置在所述安装主体上的移动模块,所述移动模块用于承载活体并能够带动所述活体在多个方向上移动,所述宽场搜寻模块设置为对位于所述移动模块上的所述活体进行视野搜寻。
  18. 根据权利要求17所述的光学系统,其中,所述多光子显微镜主机还包括安装在所述安装主体上的能够开关的遮光门;
    所述遮光门处于关闭状态时,所述安装主体与所述遮光门之间形成密闭空间,所述移动模块位于所述密闭空间内;
    所述宽场搜寻模块设置为对位于密闭空间内的所述移动模块上的活体进行宽视野搜寻。
  19. 根据权利要求17或18所述的光学系统,其中,所述安装主体包括底座及固定在所述底座上的安装架,所述安装架的上部位置设置有支撑板;其中,
    所述移动模块可移动地安装在所述底座上且位于所述安装架的一侧,所述安装架的 另一侧安装有位于所述支撑板下方的控制箱,所述扫描控制模块和所述荧光收集模块设置在所述控制箱内;
    所述激光耦合模块安装在所述支撑板上方,所述宽场搜寻模块安装于所述移动模块上方。
  20. 根据权利要求18或19所述的光学系统,其中,所述宽场搜寻模块安装在所述激光耦合模块上,所述激光耦合模块上设置有上下贯穿的光路通孔,所述宽场搜寻模块的光路设置为向下穿过所述光路通孔而到达所述移动模块。
  21. 根据权利要求15至20中任意一项所述的光学系统,其中,所述激光耦合模块包括耦合器壳体、色散补偿元件、声光调制器和光束稳定装置,所述色散补偿元件、所述声光调制器和所述光束稳定装置均设置在所述耦合器壳体内且沿激光的传输方向依次设置;其中,
    所述色散补偿元件用于补偿由所述传输光纤传输激光过程中引起的负色散;
    所述声光调制器用于调节激光的强度;
    所述光束稳定装置用于调整激光传输方向,以纠正激光光束在所述激光耦合模块的激光输出端的实际位置与理想位置的偏差。
  22. 根据权利要求21所述的光学系统,其中,所述激光耦合模块还包括用于驱动所述声光调制器的驱动器以及用于对所述驱动器冷却的冷却机构,所述驱动器和所述冷却机构均位于所述耦合器壳体的上表面。
  23. 根据权利要求22所述的光学系统,其中,所述宽场搜寻模块安装在所述耦合器壳体的上表面,所述激光耦合模块上设置有上下贯穿的光路通孔,所述宽场搜寻模块的光路设置为向下穿过所述光路通孔;
    所述多光子显微镜主机还包括用于罩盖所述宽场搜寻模块、所述驱动器和所述冷却机构的罩盖。
  24. 根据权利要求15至23中任意一项所述的光学系统,其中,所述多光子显微镜主机还包括安装在所述安装主体上的控制箱,所述荧光收集模块和所述扫描控制模块均位于所述控制箱内。
  25. 根据权利要求24所述的光学系统,其中,所述控制箱上设置有用于连接所述荧光收集光纤的第一接口和用于连接所述控制电缆的第二接口,所述第一接口和所述第二接口均位于所述控制箱同一侧的上方位置;
    所述激光耦合模块位于所述控制箱的上方,且所述激光耦合模块的用于连接所述激光传输光纤的输出端与所述控制箱的所述第一接口和所述第二接口位于同一侧。
  26. 根据权利要求25所述的光学系统述第一接口和所述第二接口的一侧;
    所述收纳装置用于收纳所述显微镜探头以及与所述显微镜探头连接的包括有所述激光传输光纤、所述荧光收集光纤和所述控制电缆的线缆。
  27. 根据权利要求10至26中任意一项所述的光学系统,其中,还包括工作台,所述工作台包括工作台主机和显示器;
    所述工作台主机与所述显微镜主机连接,所述显微镜主机对收集的所述荧光信号进行处理后传输至所述工作台主机,且所述显示器显示成像;
    所述工作台主机还对所述显微镜主机发送控制指令。
  28. 一种多光子显微镜主机,用于与显微镜探头连接,所述多光子显微镜主机包括安装主体以及集成于所述安装主体上的宽场搜寻模块、激光耦合模块、荧光收集模块和扫描控制模块;其中,
    所述宽场搜寻模块设置为用于对活体进行宽视野成像,以在活体搜寻上用于安装显微镜探头的目标区域;
    所述激光耦合模块设置为用于接收激光并对所述激光进行调整以将所述激光耦合进激光传输光纤,其中,所述激光传输光纤用于连接所述激光耦合模块和所述显微镜探头;
    所述扫描控制模块设置为通过控制电缆与所述显微镜探头连接,用于控制所述显微镜探头进行激光扫描以产生荧光信号;
    所述荧光收集模块设置为通过荧光收集光纤与所述显微镜探头连接,用于收集所述显微镜探头输出的荧光信号。
  29. 根据权利要求28所述的多光子显微镜主机,其中,所述多光子显微镜还包括安装在所述安装主体上的视野搜寻适配器;
    所述视野搜寻适配器包括探头安装组件和切换机构,所述探头安装组件用于可拆卸地安装所述显微镜探头,所述切换机构设置为能够将所述探头安装组件切换至第一位置和第二位置;
    所述探头安装组件位于所述第一位置时,安装在所述探头安装组件上的所述显微镜探头避让所述宽场搜寻模块与所述活体之间的光路,所述探头安装组件位于所述第二位置时,所述显微镜探头与所述宽场搜寻模块的光路对准。
  30. 根据权利要求28或29所述的多光子显微镜主机,其中,所述多光子显微镜主机还包括设置在所述安装主体上的移动模块,所述移动模块用于承载活体并能够带动所述活体在多个方向上移动,所述宽场搜寻模块设置为对位于所述移动模块上的所述活体进行视野搜寻。
  31. 根据权利要求30所述的多光子显微镜主机,其中,所述多光子显微镜主机还包括安装在所述安装主体上的能够开关的遮光门;
    所述遮光门处于关闭状态时,所述安装主体与所述遮光门之间形成密闭空间,所述移动模块位于所述密闭空间内;
    所述宽场搜寻模块设置为对位于密闭空间内的所述移动模块上的活体进行宽视野搜寻。
  32. 根据权利要求30或31所述的多光子显微镜主机,其中,所述安装主体包括底座及固定在所述底座上的安装架,所述安装架的上部位置设置有支撑板;其中,
    所述移动模块可移动地安装在所述底座上且位于所述安装架的一侧,所述安装架的另一侧安装有位于所述支撑板下方的控制箱,所述扫描控制模块和所述荧光收集模块设置在所述控制箱内;
    所述激光耦合模块安装在所述支撑板上方,所述宽场搜寻模块安装于所述移动模块上方。
  33. 根据权利要求31或32所述的多光子显微镜主机,其中,所述宽场搜寻模块安装在所述激光耦合模块上,所述激光耦合模块上设置有上下贯穿的光路通孔,所述宽场搜寻模块的光路设置为向下穿过所述光路通孔而到达所述移动模块。
  34. 根据权利要求28至33中任意一项所述的多光子显微镜主机,其中,所述激光耦合模块包括耦合器壳体、色散补偿元件、声光调制器和光束稳定装置,所述色散补偿元件、所述声光调制器和所述光束稳定装置均设置在所述耦合器壳体内且沿激光的传输方向依次设置;其中,
    所述色散补偿元件用于补偿由所述传输光纤传输激光过程中引起的负色散;
    所述声光调制器用于调节激光的强度;
    所述光束稳定装置用于调整激光传输方向,以纠正激光光束在所述激光耦合模块的激光输出端的实际位置与理想位置的偏差。
  35. 根据权利要求34所述的多光子显微镜主机,其中,所述激光耦合模块还包括用于驱动所述声光调制器的驱动器以及用于对所述驱动器冷却的冷却机构,所述驱动器和所述冷却机构均位于所述耦合器壳体的上表面。
  36. 根据权利要求35所述的多光子显微镜主机,其中,所述宽场搜寻模块安装在所述耦合器壳体的上表面,所述激光耦合模块上设置有上下贯穿的光路通孔,所述宽场搜寻模块的光路设置为向下穿过所述光路通孔;
    所述多光子显微镜主机还包括用于罩盖所述宽场搜寻模块、所述驱动器和所述冷却机构的罩盖。
  37. 根据权利要求28至36中任意一项所述的多光子显微镜主机,其中,所述多光子显微镜主机还包括安装在所述安装主体上的控制箱,所述荧光收集模块和所述扫描控制模块均位于所述控制箱内。
  38. 根据权利要求37所述的多光子显微镜主机,其中,所述控制箱上设置有用于连接所述荧光收集光纤的第一接口和用于连接所述控制电缆的第二接口,所述第一接口和所述第二接口均位于所述控制箱同一侧的上方位置;
    所述激光耦合模块位于所述控制箱的上方,且所述激光耦合模块的用于连接所述激光传输光纤的输出端与所述控制箱的所述第一接口和所述第二接口位于同一侧。
  39. 根据权利要求38所述的多光子显微镜主机,其中,所述多光子显微镜还包括收纳装置,所述收纳装置安装在所述控制箱的具有所述第一接口和所述第二接口的一侧;
    所述收纳装置用于收纳所述显微镜探头以及与所述显微镜探头连接的包括有所述激光传输光纤、所述荧光收集光纤和所述控制电缆的线缆。
  40. 一种多光子显微镜系统,所述多光子显微镜系统包括:激光器、显微镜探头和根据权利要求28至39中任意一项所述的多光子显微镜主机;
    所述激光器设置为向所述激光耦合模块传输激光,所述激光耦合模块的输出端通过激光传输光纤连接于所述显微镜探头,所述荧光收集模块通过荧光收集光纤连接于所述显微镜探头,以及所述扫描控制模块通过控制电缆连接于所述显微镜探头。
  41. 一种光学成像系统,包括:激光器、激光适配器及显微镜主机;其中,
    所述激光器用于向所述激光适配器发射激光;
    所述激光适配器用于接收所述激光器发射的激光,并对所述激光进行调整适配,然后将所述调整适配后的激光传输至所述显微镜主机;
    所述显微镜主机设置为用于将激光传输至显微镜探头,并控制所述显微镜探头对活体进行激光扫描而产生用于成像的荧光信号。
PCT/CN2023/140484 2022-11-02 2023-12-21 激光适配器,多光子显微镜主机和光学系统 WO2024094229A2 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211364197.8 2022-11-02
CN202211364226.0 2022-11-02
CN202211364119.8A CN115826218A (zh) 2022-11-02 2022-11-02 多光子显微镜主机及多光子显微镜系统
CN202211364226.0A CN115629468A (zh) 2022-11-02 2022-11-02 光学成像系统
CN202211364119.8 2022-11-02
CN202211364197.8A CN115598780A (zh) 2022-11-02 2022-11-02 激光适配器及光学系统

Publications (2)

Publication Number Publication Date
WO2024094229A2 true WO2024094229A2 (zh) 2024-05-10
WO2024094229A3 WO2024094229A3 (zh) 2024-07-04

Family

ID=90929779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/140484 WO2024094229A2 (zh) 2022-11-02 2023-12-21 激光适配器,多光子显微镜主机和光学系统

Country Status (1)

Country Link
WO (1) WO2024094229A2 (zh)

Similar Documents

Publication Publication Date Title
US11169366B2 (en) Compact microscope
US10527834B2 (en) Functionally integrated laser scanning microscope
US7589839B2 (en) Examination apparatus, fluoroscopy apparatus, examination method, and experimental method
JPH06167654A (ja) 顕微鏡
US20160324402A1 (en) Optical fiber connection adapter and endoscope apparatus
US10288863B2 (en) Optogenetics microscope
US20220291129A1 (en) Integrated fluorescence scanning system
US7564624B2 (en) Microscope
JP2002516409A (ja) 立体顕微鏡のための照明装置
US6166761A (en) Method and apparatus for monitoring a biological sample
JP3861357B2 (ja) 光学装置と一体化された顕微鏡用レボルバおよび顕微鏡
WO2024094229A2 (zh) 激光适配器,多光子显微镜主机和光学系统
CN100483175C (zh) 全光纤光镊系统
JP6640474B2 (ja) 赤外線顕微鏡用の拡大アセンブリ
GB2479012A (en) Aligning a collection fibre with a sampling region in an emission measurement system
JP4608219B2 (ja) レーザ走査顕微鏡
CN218782468U (zh) 光学成像系统
JP4689975B2 (ja) 顕微鏡照明強度測定装置
CN219038825U (zh) 控制箱、多光子显微镜主机及多光子显微镜系统
WO2021189453A1 (zh) 一种微型荧光显微成像模块
CN115629468A (zh) 光学成像系统
JP5512122B2 (ja) 走査型レーザ顕微鏡および非デスキャン検出のためのサブアセンブリ
CN115826218A (zh) 多光子显微镜主机及多光子显微镜系统
CN115046933A (zh) 微区圆二色谱及圆偏振发光的测试装置
Colville et al. Azimuthal beam scanning microscope design and implementation for axial localization with scanning angle interference microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885153

Country of ref document: EP

Kind code of ref document: A2