WO2024094207A1 - 一种通信方法及装置 - Google Patents
一种通信方法及装置 Download PDFInfo
- Publication number
- WO2024094207A1 WO2024094207A1 PCT/CN2023/129837 CN2023129837W WO2024094207A1 WO 2024094207 A1 WO2024094207 A1 WO 2024094207A1 CN 2023129837 W CN2023129837 W CN 2023129837W WO 2024094207 A1 WO2024094207 A1 WO 2024094207A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- port
- subcarrier
- index group
- dmrs
- frequency domain
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 281
- 238000004891 communication Methods 0.000 title claims abstract description 88
- 230000011664 signaling Effects 0.000 claims description 115
- 238000013507 mapping Methods 0.000 claims description 41
- 230000015654 memory Effects 0.000 claims description 41
- 238000004590 computer program Methods 0.000 claims description 25
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 11
- 230000000295 complement effect Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 14
- 230000005540 biological transmission Effects 0.000 description 117
- 238000012545 processing Methods 0.000 description 65
- 230000006870 function Effects 0.000 description 49
- 238000013461 design Methods 0.000 description 42
- 238000010586 diagram Methods 0.000 description 23
- 230000008569 process Effects 0.000 description 16
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 8
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 8
- 230000009977 dual effect Effects 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 244000126211 Hericium coralloides Species 0.000 description 6
- 101100499939 Schizosaccharomyces pombe (strain 972 / ATCC 24843) cdm1 gene Proteins 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 101000615541 Canis lupus familiaris E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0204—Channel estimation of multiple channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
Definitions
- the present application relates to the field of communication technology, and in particular to a communication method and device.
- the demodulation reference signal can be used to estimate the equivalent channel of a data channel or a control channel.
- the data channel can be, for example, a physical uplink shared channel (PUSCH) or a physical downlink shared channel (PDSCH), and the control channel can be, for example, a physical downlink control channel (PDCCH).
- PUSCH physical uplink shared channel
- PDSCH physical downlink shared channel
- PDCCH physical downlink control channel
- the network device when the network device sends data to the terminal device through PDSCH, it can precode the data according to the downlink channel state information (CSI); further, the network device can also allocate a DMRS port to the terminal device, and send DMRS to the terminal device through PDSCH on the time-frequency resources corresponding to the DMRS port.
- CSI downlink channel state information
- DMRS usually undergoes the same signal processing as data, such as precoding.
- the terminal device after the terminal device receives the DMRS corresponding to the DMRS port, it can use the channel estimation algorithm to obtain an estimate of the equivalent channel, and then complete the data demodulation based on the equivalent channel.
- the present application provides a communication method and apparatus for flexibly indicating the frequency domain orthogonal mask length of some ports allocated by a network device to a terminal device, so that the terminal device can flexibly select ports for channel estimation to achieve better channel estimation effect.
- an embodiment of the present application provides a communication method, which can be applied to a network device or a component of a network device (such as a processor, a chip, or a chip system, etc.).
- the method includes: the network device sends a first indication information to a first terminal device, and the first indication information is used to indicate a mask length corresponding to a first port among M ports; wherein the M ports belong to a first port set and/or a second port set, the mask length corresponding to the first port set is a first length, and the mask length corresponding to the second port set is a second length.
- the first port set can be understood as a set of amplified ports, i.e., R18 ports; the second port set can be understood as a set of existing ports, i.e., R15 ports.
- “mask length" can include a first mask length and a second mask length.
- the second mask length corresponding to the first port set is the same as the second mask length corresponding to the second port set. In a possible implementation, when the mask length is the first mask length, the mask length is 4 long or 2 long.
- the first mask is a frequency domain mask
- the second mask is a time domain mask.
- the frequency domain mask is W f (f) in the first time-frequency resource mapping rule
- ⁇ is the subcarrier spacing parameter
- DMRS demodulation reference signal DMRS corresponding to the demodulation reference signal DMRS port p on the resource element RE with index (k,l) p, ⁇ (k,l), is the power coefficient
- w t (l′) is the time domain mask corresponding to the time domain symbol indexed as l′
- W f (f) is the frequency domain mask corresponding to the subcarrier indexed as k′
- f 2 ⁇ (n mod 2)+k′
- m 2n+k′
- m is the mth element in the reference signal sequence
- l represents the OFDM symbol index contained in a time slot
- ⁇ is the subcarrier offset factor.
- the specific values of w t (l′) and W f (f) can be determined according to Table A1; for a port whose demodulation reference signal type is type2, the specific values of w t (l′) and W f (f) can be determined according to Table A2.
- the M ports are ports allocated by the network device to the terminal device.
- M is a positive integer greater than or equal to 1.
- M ports belong to the first port set and/or the second port set can be understood as the ports allocated by the network device to the terminal device belong to the first port set, or the ports allocated by the network device to the terminal device belong to the second port set, or the ports allocated by the network device to the terminal device belong to the first port set and the second port set.
- the mask length corresponding to the first port set and the mask length corresponding to the second port set are different.
- the mask length corresponding to the first port set is 4 long, and the mask length corresponding to the second port set is 2 long.
- the mask length corresponding to the first port set is 6 long, and the mask length corresponding to the second port set is 4 long.
- the network device sends a first indication information to the terminal device, and the first indication information is used to indicate the mask length corresponding to the first port of the M ports; wherein the M ports belong to the first port set and/or the second port set, the mask length corresponding to the first port set is the first length, and the mask length corresponding to the second port set is the second length.
- the terminal device can know the mask length corresponding to the first port, so that the terminal device can flexibly select the port for channel estimation to achieve a better channel estimation effect. For example, when the number of ports used in a CDM is less than 4 ports, the terminal device selects a port with a mask length of 2 for channel estimation to achieve a better channel estimation effect.
- the M ports that the network device can flexibly indicate to the terminal device can belong to the existing port set and/or the expanded port set, and the ports in the expanded port set can reuse the time-frequency resources and sequences corresponding to the ports in the existing port set. Therefore, the network device can flexibly indicate the paired ports from different port sets to the terminal device, which can not only ensure that the terminal device can achieve the channel estimation capability, but also maximize the number of combined ports.
- the network device indicates the mask length corresponding to the first port among the M ports to the terminal device through the first indication information, including but not limited to the following implementations:
- the first indication information includes a first bit field; the first indication information is used to indicate a mask length corresponding to a first port among M ports, including: the first bit field is used to indicate a mask length corresponding to the first port.
- the first bit field includes a first bit, and the first bit is used to indicate the mask length corresponding to the first port.
- the M ports are 4 ports, and the mask lengths of 2 ports among the 4 ports need to be indicated, then the first bit can be used to indicate the mask lengths corresponding to the 2 ports. In this way, only one bit is needed to indicate the mask length corresponding to at least one first port, reducing communication overhead.
- the first bit field includes a first bit, where the first bit is used to indicate a mask length corresponding to the M ports.
- the first bit field includes a bitmap, and the bitmap is used to indicate the mask length corresponding to the first port.
- the bitmap includes N bits, N is greater than or equal to M, and the i-th bit of the N bits is used to indicate the first mask length corresponding to the i-th port of the M ports, i ⁇ 1,M ⁇ .
- the N bits include M bits, and there are at least two bits with different values in the M bits; wherein the M bits are the 1st bit to the Mth bit of the N bits.
- the first indication information may be carried in a first signaling, the first signaling further comprising second indication information; the second indication information is used to indicate a first value, the first value is associated with a first port index group, the first port index group comprises indexes of the M ports; wherein M is a positive integer greater than or equal to 1.
- the first signaling may be DCI.
- the first indication information is used to indicate the mask length corresponding to the first port among M ports, including: the first indication information is used to indicate a first value, and the first value is associated with a first port index group; the first port index group includes the indexes of the M ports, the index of the first port corresponds to a first identifier, and the first identifier is used to indicate the mask length corresponding to the first port; wherein, M is a positive integer greater than or equal to 1.
- the first indication information is used to indicate the mask length corresponding to the first port among M ports, including: the first indication information is used to indicate a first value, and the first value is associated with a first port index group; the first port index group includes the indexes of the M ports, and the index of the first port is used to indicate the mask length corresponding to the first port; wherein, M is a positive integer greater than or equal to 1.
- the first port index group when the first value includes the first value and/or the second value, the first port index group includes the index of the third port; when the first value includes the first value, the mask length corresponding to the third port is the first length; when the first value includes the second value, the mask length corresponding to the third port is the second length.
- the first length is 2 and the second length is 4.
- the first port index group when the first value includes the third value, includes the indexes of the fourth port and the fifth port; wherein the 4-long frequency domain masks corresponding to the fourth port and the fifth port are orthogonal, and the 2-long frequency domain masks corresponding to the fourth port and the fifth port are not orthogonal.
- the R15 port and the R18 port can be paired in one CDM group.
- the first port index group when the first value includes the fourth value, includes indexes of at least one sixth port and at least one seventh port; the mask length corresponding to at least one sixth port is the first length, and the mask length corresponding to at least one seventh port is the second length.
- different ports in the same first port index group may correspond to different mask lengths.
- the first length is 2, and the second length is 4.
- the above-mentioned first identifier is used to indicate the mask length corresponding to the first port, including: the first identifier is used to indicate that the mask length of the first port is 2.
- the network device obtains a first antenna port set; the first antenna port set includes at least one port index group set, and the port indexes contained in the first port index group set in the at least one port index group set are different; the first port index group is any port index group in the first port index group set; wherein the total number of port indexes contained in the first port index group set is G, G is a positive integer greater than or equal to 1 and less than or equal to K; K is related to the type of the demodulation reference signal DMRS.
- the first antenna port set may include a first port index group, a second port index group, and a third port index group, the first port index group includes indexes of port 0, port 1, and port 8, the second port index group includes indexes of port 2, port 3, and port 10, and the third port index group includes indexes of port 9 and port 11.
- the K is also associated with the maximum length of a demodulation reference signal; accordingly, the method further includes: the network device sends a second signaling to the first terminal device, the second signaling being used to indicate the type of the demodulation reference signal and/or the maximum length of the demodulation reference signal. Furthermore, the first terminal device can also determine the type of the demodulation reference signal and/or the maximum length of the demodulation reference signal through the second signaling.
- the maximum length can also be the maximum number of symbols, or the number of pre-DMRS symbols.
- the value of K is any one of 8, 12, 16, or 24.
- the value of K is 8; or, when the type of the demodulation reference signal is the first type and the maximum length of the demodulation reference signal is 2, the value of K is 16; or, when the type of the demodulation reference signal is the second type and the maximum length of the demodulation reference signal is 1, the value of K is 12; or, when the type of the demodulation reference signal is the second type and the maximum length of the demodulation reference signal is 2, the value of K is 24.
- the first port index group belongs to a first antenna port set and a second antenna port set; wherein the second antenna port set is a subset of the first antenna port set.
- the first antenna port set may include a first port index group, a second port index group, and a third port index group, and the second antenna port set includes the first port index group and the second port index group. Therefore, the second antenna port set is a subset of the first antenna port set.
- the first port index group belongs to the first antenna port set and the second antenna port set; wherein, the second antenna port set is not a subset of the first antenna port set.
- the first antenna port set may include the first port index group, the second port index group, and the third port index group, and the second antenna port set includes the fourth port index group. Therefore, the second antenna port set is not a subset of the first antenna port set.
- the first port index group belongs to a first antenna port set and a second antenna port set; wherein the second antenna port set includes at least one antenna port subset, and the complement of the at least one antenna port subset in the second antenna port set is a subset of the first antenna port set.
- the port index group included in the at least one antenna port subset is used for MIMO transmission of the first terminal device, and the first terminal device is not paired with other terminal devices, or the first terminal device assumes that the port index group included in the second antenna port set is not indicated to other terminal devices.
- the first antenna port set may include a first port index group, a second port index group, and a third port index group, and at least one antenna port subset in the second antenna port set includes the first port index group, the second port index group, and the third port index group, and the second port index group is used for single-user MIMO transmission. Therefore, only the first port index group and the second port index group are subsets of the first antenna port set.
- the method further includes: the network device receives third indication information from the first terminal device, the third indication information is used to characterize that the first terminal device supports a first capability, the first capability includes that the first terminal device supports mask length switching, and the mask length switching includes using a first signaling to switch the mask length; wherein the first indication information is carried with the first signaling, and the using the first signaling to switch the mask length includes using the first indication information to switch the mask length Among them, the first terminal device supports mask length switching, which can be understood as the first terminal device supports different mask lengths corresponding to the same DMRS port index, and the mask length can be 2 or 4. Exemplarily, when the first port index group includes the port index of port 0, the mask length of port 0 is 2; when the second port index group includes the port index of port 0, the mask length of port 0 is 4.
- the method further includes: the network device receives fourth indication information from the first terminal device, and the fourth indication information is used to indicate that the first terminal device supports a second capability; wherein the second capability includes that any one of the M ports and the twelfth port occupy the same time and frequency resources; and the twelfth port belongs to the first port set.
- the first port set includes an eighth port and a ninth port, and the 4-long frequency domain masks corresponding to the eighth port and the ninth port are orthogonal;
- the 4-length frequency domain mask orthogonality includes the frequency domain mask orthogonality corresponding to 4 consecutive subcarriers in a code division multiplexing CDM group. Further, the 4-length frequency domain mask orthogonality satisfies the following formula:
- the second port set includes a tenth port and an eleventh port, and the two long frequency domain masks corresponding to the tenth port and the eleventh port are orthogonal; wherein the two long frequency domain masks are orthogonal including the frequency domain masks corresponding to two consecutive subcarriers in a CDM group. Further, the two long frequency domain masks are orthogonal and satisfy the following formula:
- the first port set includes an eighth port and a ninth port
- the 6-long frequency domain masks corresponding to the eighth port and the ninth port are orthogonal; wherein the 6-long frequency domain masks orthogonal include the frequency domain masks corresponding to 6 consecutive subcarriers in a code division multiplexing CDM group. Further, the 6-long frequency domain masks orthogonal satisfy the following formula:
- a communication method is also provided.
- the method can be applied to a terminal device or a component of a terminal device (such as a processor, a chip, or a chip system, etc.).
- the method includes: the first terminal device receives first indication information from a network device, and the first indication information is used to indicate a mask length corresponding to a first port among M ports; wherein the M ports belong to a first port set and/or a second port set, and the first mask length corresponding to the first port set is a first length, and the first mask length corresponding to the second port set is a second length.
- the method further includes: the first terminal device sends third indication information to the network device, the third indication information is used to indicate that the first terminal device supports a first capability, the first capability includes that the first terminal device supports mask length switching, and the mask length switching includes using a first signaling to perform mask length switching; wherein the first indication information Carrying the first signaling, the using the first signaling to switch the mask length includes using the first indication information to switch the mask length.
- the method further includes: the network device receives fourth indication information from the first terminal device, the fourth indication information being used to indicate that the first terminal device supports a second capability; wherein the second capability includes that any one of the M ports and the twelfth port occupy the same time and frequency resources; and the twelfth port belongs to the first port set.
- an embodiment of the present application provides another communication method, which can be applied to a network device or a component of a network device (such as a processor, a chip, or a chip system, etc.).
- the method includes: the network device sends a first signaling to a first terminal device, and the first signaling is used to indicate a port index of a first port among M ports, and allocation status information of a second port; wherein the second port and the first port belong to the same code division multiplexing CDM group.
- the allocation status information of the second port can be understood as whether the second port is scheduled to other terminals.
- the M ports belong to a first port set and/or a second port set
- the mask length corresponding to the first port set is a first length
- the mask length corresponding to the second port set is a second length
- the first port set can be understood as a set of amplified ports, i.e., R18 ports; the second port set can be understood as a set of existing ports, i.e., R15 ports.
- “mask length" can include a first mask length and a second mask length.
- the second mask length corresponding to the first port set is the same as the second mask length corresponding to the second port set. In a possible implementation, when the mask length is the first mask length, the mask length is 4 long or 2 long.
- the first mask is a frequency domain mask
- the second mask is a time domain mask.
- the frequency domain mask is Wf(f) in the first time-frequency resource mapping rule
- ⁇ is the subcarrier spacing parameter
- DMRS demodulation reference signal DMRS corresponding to the demodulation reference signal DMRS port p on the resource element RE with index (k,l) p, ⁇ (k,l), is the power coefficient
- w t (l′) is the time domain mask corresponding to the time domain symbol indexed as l′
- W f (f) is the frequency domain mask corresponding to the subcarrier indexed as k′
- f 2 ⁇ (n mod 2)+k′
- m 2n+k′
- m is the mth element in the reference signal sequence
- l represents the OFDM symbol index contained in a time slot
- ⁇ is the subcarrier offset factor.
- the first signaling includes the first indication information, and the first indication information is used to indicate allocation status information of the second port.
- the first indication information is also used to indicate a port index of the first port.
- the allocation status of the second port includes that the second port is allocated, or that the second port is not allocated.
- the first indication information is used to indicate allocation status information of the second port, including: the first indication information is used to indicate that the second port is allocated to the second terminal device, or the first indication information is used to indicate that the second port is not allocated to the second terminal device.
- the first indication information is used to indicate the allocation status information of the second port, including but not limited to the following: Implementation method:
- the first indication information includes a first bit field; the first indication information is used to indicate allocation status information of the second port, including: the first bit field is used to indicate allocation status information of the second port.
- the first bit field includes a first bit, where the first bit is used to indicate allocation status information of the second port.
- the first bit field includes a first bit, where the first bit is used to indicate allocation status information of the second ports corresponding to the M ports.
- the first bit field includes a bitmap; the first indication information is used to indicate the allocation status information of the second port, including: the bitmap is used to indicate the allocation status information of the second port.
- the bitmap includes N bits, N is greater than M, and the i-th bit of the N bits is used to indicate the allocation status information of the second port corresponding to the i-th port of the M ports; wherein i ⁇ 1,M ⁇ .
- the N bits include M bits, and there are at least two bits with different values in the M bits; wherein the M bits are the 1st bit to the Mth bit of the N bits.
- the first signaling further includes second indication information; the second indication information is used to indicate a first value, the first value is associated with a first port index group, and the first port index group includes indexes of the M ports.
- the first indication information is used to indicate the allocation status information of the second port, including: the first indication information is used to indicate a first value, the first value is associated with a first port index group; the first port index group includes the index of the first port, the index of the first port corresponds to a first identifier, and the first identifier is used to indicate the allocation status information of the second port.
- the first identifier is used to indicate allocation status information of the second port, including: the first identifier is used to indicate that 2 non-orthogonal masks among 4 orthogonal masks corresponding to the second port are allocated to the second terminal device, or the first identifier is used to indicate that 2 non-orthogonal masks among 4 orthogonal masks corresponding to the second port are not allocated to the second terminal device.
- the first port index group when the first value includes the first value and/or the second value, the first port index group includes the index of the third port; when the first value includes the first value, the mask length corresponding to the third port is the first length; when the first value includes the second value, the mask length corresponding to the third port is the second length.
- the first length is 2 and the second length is 4.
- the first port index group when the first value includes the third value, includes the indexes of the fourth port and the fifth port; wherein the 4-long frequency domain masks corresponding to the fourth port and the fifth port are orthogonal, and the 2-long frequency domain masks corresponding to the fourth port and the fifth port are not orthogonal.
- the R15 port and the R18 port can be paired in one CDM group.
- the first port index group includes indexes of the first port, the sixth port, and the seventh port; the mask length corresponding to the first port is the first length, and the mask lengths corresponding to the sixth port and the seventh port are the second length.
- the first length is 2, and the second length is 4.
- the above-mentioned first identifier is used to indicate the mask length corresponding to the first port, including: the first identifier is used to indicate that the mask length of the first port is 2.
- the network device obtains a first antenna port set; the first antenna port set includes at least one port index group set, and the port indexes contained in the first port index group set in the at least one port index group set are different; the first port index group is any port index group in the first port index group set; wherein the total number of port indexes contained in the first port index group set is G, G is a positive integer greater than or equal to 1 and less than or equal to K; K is related to the type of the demodulation reference signal DMRS.
- the first antenna port set may include a first port index group, a second port index group, and a third port index group, the first port index group includes indexes of port 0, port 1, and port 8, the second port index group includes indexes of port 2, port 3, and port 10, and the third port index group includes indexes of port 9 and port 11.
- the K is also associated with the maximum length of a demodulation reference signal; accordingly, the method further includes: the network device sends a second signaling to the first terminal device, the second signaling being used to indicate the type of the demodulation reference signal and/or the maximum length of the demodulation reference signal. Furthermore, the first terminal device may also determine the type of the demodulation reference signal and/or the maximum length of the demodulation reference signal through the second signaling.
- the value of K is any one of 8, 12, 16, or 24.
- the value of K is any one of 8, 12, 16, or 24.
- the value of K is 8; or
- the value of K is 16; or, when the type of the demodulation reference signal is the second type and the maximum length of the demodulation reference signal is 1, the value of K is 12; or, when the type of the demodulation reference signal is the second type and the maximum length of the demodulation reference signal is 2, the value of K is 24.
- the first port index group belongs to a first antenna port set and a second antenna port set; wherein the second antenna port set is a subset of the first antenna port set.
- the first antenna port set may include a first port index group, a second port index group, and a third port index group, and the second antenna port set includes the first port index group and the second port index group. Therefore, the second antenna port set is a subset of the first antenna port set.
- the first port index group belongs to the first antenna port set and the second antenna port set; wherein, the second antenna port set is not a subset of the first antenna port set.
- the first antenna port set may include the first port index group, the second port index group, and the third port index group, and the second antenna port set includes the fourth port index group. Therefore, the second antenna port set is not a subset of the first antenna port set.
- the first port index group belongs to a first antenna port set and a second antenna port set; wherein the second antenna port set includes at least one antenna port subset, and the complement of the at least one antenna port subset in the second antenna port set is a subset of the first antenna port set.
- the port index group included in the at least one antenna port subset is used for MIMO transmission of the first terminal device, and the first terminal device is not paired with other terminal devices, or the first terminal device assumes that the port index group included in the second antenna port set is not indicated to other terminal devices.
- the first antenna port set may include a first port index group, a second port index group, and a third port index group, and at least one antenna port subset in the second antenna port set includes the first port index group, the second port index group, and the third port index group, and the second port index group is used for single-user MIMO transmission. Therefore, only the first port index group and the second port index group are subsets of the first antenna port set.
- the method further includes: the network device receives third indication information from the first terminal device, the third indication information is used to characterize that the first terminal device supports a first capability, the first capability includes that the first terminal device supports mask length switching, and the mask length switching includes using a first signaling to switch the mask length; wherein the first indication information is carried with the first signaling, and the use of the first signaling to switch the mask length includes using the first indication information to switch the mask length.
- the first terminal device supports mask length switching, which can be understood as the first terminal device supporting different mask lengths corresponding to the same DMRS port index, and the mask length can be 2 or 4. Exemplarily, when the first port index group includes the port index of port 0, the mask length of port 0 is 2; when the second port index group includes the port index of port 0, the mask length of port 0 is 4.
- the method further includes: the network device receives fourth indication information from the first terminal device, and the fourth indication information is used to indicate that the first terminal device supports a second capability; wherein the second capability includes that any one of the M ports and the twelfth port occupy the same time and frequency resources; and the twelfth port belongs to the first port set.
- the first port set includes an eighth port and a ninth port, and the 4-long frequency domain masks corresponding to the eighth port and the ninth port are orthogonal;
- the 4-length frequency domain mask orthogonality includes the frequency domain mask orthogonality corresponding to 4 consecutive subcarriers in a code division multiplexing CDM group. Further, the 4-length frequency domain mask orthogonality satisfies the following formula:
- the second port set includes a tenth port and an eleventh port, and the two long frequency domain masks corresponding to the tenth port and the eleventh port are orthogonal; wherein the two long frequency domain masks are orthogonal including the frequency domain masks corresponding to two consecutive subcarriers in a CDM group. Further, the two long frequency domain masks are orthogonal and satisfy the following formula:
- the first port set includes an eighth port and a ninth port, wherein the eighth port and the ninth port
- the 6-length frequency domain mask orthogonality satisfies the following formula:
- another communication method is also provided, which can be applied to a first terminal device or a component of the first terminal device (such as a processor, a chip, or a chip system, etc.).
- the method includes: the first terminal device receives a first signaling from a network device, the first signaling is used to indicate a port index of a first port among M ports, and allocation status information indicating a second port; wherein the second port and the first port belong to the same code division multiplexing CDM group.
- the method also includes: the first terminal device sends a third indication information to the network device, and the third indication information is used to characterize that the first terminal device supports a first capability, the first capability includes that the first terminal device supports mask length switching, and the mask length switching includes using a first signaling to perform mask length switching; wherein, the first indication information is carried with the first signaling, and the use of the first signaling to perform mask length switching includes using the first indication information to perform mask length switching.
- the method when any port among the M ports belongs to the second port set, the method further includes: wherein the second capability includes that the time-frequency resources occupied by any port among the M ports and the twelfth port are the same; and the twelfth port belongs to the first port set.
- an embodiment of the present application provides an antenna port indication method, which can be applied to a network device or a component of a network device (such as a processor, a chip, or a chip system, etc.).
- the method includes: the network device obtains an antenna port set; the antenna port set includes at least one port index group set, and the port indexes contained in the first port index group set in the at least one port index group set are different; the first port index group set includes at least one port index group, and the at least one port index group includes M port indexes; wherein M is a positive integer greater than or equal to 1; the total number of port indexes contained in the first port index group set is G, and G is a positive integer greater than or equal to 1 and less than or equal to K; wherein K is related to the type of the demodulation reference signal DMRS; the network device sends first indication information to the first terminal device, and the first indication information is used to indicate the first port index group
- the number of port index group sets included in the at least one port index group set is K
- the total number of port indexes G included in the i-th port index group set among the K port index group sets corresponds one-to-one to a positive integer greater than or equal to 1 and less than or equal to K, i ⁇ [1,K].
- the K is also associated with the maximum length of a demodulation reference signal; accordingly, the method further includes: the network device sends a second signaling to the first terminal device, the second signaling being used to indicate the type of the demodulation reference signal and/or the maximum length of the demodulation reference signal. Furthermore, the first terminal device may also determine the type of the demodulation reference signal and/or the maximum length of the demodulation reference signal through the second signaling.
- the value of K is any one of 8, 12, 16, or 24.
- the value of K is 8; or, when the type of the demodulation reference signal is the first type and the maximum length of the demodulation reference signal is 2, the value of K is 16; or, when the type of the demodulation reference signal is the second type and the maximum length of the demodulation reference signal is 1, the value of K is 12; or, when the type of the demodulation reference signal is the second type and the maximum length of the demodulation reference signal is 2, the value of K is is 24.
- the first port index group set includes a first port index group, a second port index group, and a third port index group; wherein the first port index group includes 3 port indexes, the second port index group includes 3 port indexes, and the third port index group includes 2 port indexes.
- the first port index group can be understood as a port index group indicated by the network device to the first terminal device
- the second port index group can be understood as a port index group indicated by the network device to the second terminal device
- the third port index group can be understood as a port index group indicated by the network device to the third terminal device.
- the network device can indicate 3 streams to the first terminal device, 3 streams to the second terminal device, and 2 streams to the third terminal device.
- the first port index group includes the indexes of port 0, port 1, and port 8
- the second port index group includes the indexes of port 2, port 3, and port 10
- the third port index group includes the indexes of port 9 and port 11.
- the first port index group set includes a first port index group, a second port index group, a third port index group and a fourth port index group; wherein the first port index group includes 3 port indexes, the second port index group includes 3 port indexes, the third port index group includes 3 port indexes, and the fourth port index group includes 4 port indexes.
- the first port index group can be understood as a port index group indicated by the network device to the first terminal device
- the second port index group can be understood as a port index group indicated by the network device to the second terminal device
- the third port index group can be understood as a port index group indicated by the network device to the third terminal device
- the fourth port index group can be understood as a port index group indicated by the network device to the fourth terminal device.
- the network device can indicate 3 flows to the first terminal device, 3 flows to the second terminal device, 3 flows to the third terminal device, and 4 flows to the fourth terminal device.
- the type of the demodulation reference signal is the first type and the maximum length of the demodulation reference signal is 2
- the first port index group includes indexes of port 7, port 12, and port 13
- the second port index group includes indexes of port 0, port 1, and port 4
- the third port index group includes indexes of port 2 port 3, and port 6
- the fourth port index group includes indexes of port 10, port 11, port 14, and port 15.
- first port index group there are a first port index group, a second port index group, a third port index group and a fourth port index group; wherein the first port index group includes 3 port indexes, the second port index group includes 3 port indexes, the third port index group includes 3 port indexes, and the fourth port index group includes 3 port indexes.
- the first port index group can be understood as the port index group indicated by the network device to the first terminal device
- the second port index group can be understood as the port index group indicated by the network device to the second terminal device
- the third port index group can be understood as the port index group indicated by the network device to the third terminal device
- fourth port index group can be understood as the port index group indicated by the network device to the fourth terminal device.
- the network device can indicate 3 flows to the first terminal device, 3 flows to the second terminal device, 3 flows to the third terminal device, and 3 flows to the fourth terminal device.
- the type of the demodulation reference signal is the second type and the maximum length of the demodulation reference signal is 1
- the first port index group includes indexes of port 13, port 15, and port 17
- the second port index group includes indexes of port 0, port 1 and port 12
- the third port index group includes indexes of port 4, port 5, and port 16
- the fourth port index group includes indexes of port 2, port 3, and port 14.
- the fourth port index group can be understood as the port index group indicated by the network device to the fourth terminal device
- the fifth port index group can be understood as the port index group indicated by the network device to the fifth terminal device
- the sixth port index group can be understood as the port index group indicated by the network device to the sixth terminal device
- the seventh port index group can be understood as the port index group indicated by the network device to the seventh terminal device
- the eighth port index group can be understood as the port index group indicated by the network device to the eighth terminal device; in this way, the network device can indicate 3 flows to the first terminal device, and 3 flows to the second terminal device, and 3 flows to the third terminal device, and 3 flows to the fourth terminal device, and 3 flows to the fifth terminal device, and 3 flows to the sixth terminal device, and 3 flows to the seventh terminal device, and 3 flows to the eighth terminal device.
- the first port index group includes the indexes of port 18, port 19, and port 20
- the second port index group includes the indexes of port 21, port 22, and port 23
- the third port index group includes the indexes of port 7, port 12, and port 13.
- the fourth port index group includes the indexes of port 9, port 14, and port 15
- the fifth port index group includes the indexes of port 11, port 16, and port 17
- the sixth port index group includes the indexes of port 2, port 3, and port 8
- the seventh port index group includes the indexes of port 0, port 1, and port 6, and the eighth port index group includes the indexes of port 4, port 5, and port 10.
- the first indication information is used to indicate a first port index group, including: the first indication information is used to indicate a first value, and the first value is associated with the first port index group.
- the first port index group when the first value includes the first value and/or the second value, the first port index group includes the index of the first port; when the first value includes the first value, the mask length corresponding to the first port is the first length; when the first value includes the second value, the mask length corresponding to the first port is the second length.
- the first length is 2 and the second length is 4.
- the first port index group when the first value includes a third value, includes indexes of a second port and a third port; wherein the 4-length frequency domain masks corresponding to the second port and the third port are orthogonal, and the 2-length frequency domain masks corresponding to the second port and the third port are not orthogonal. wherein the second port and the third port are in the same CDM group.
- the first port index group includes the indexes of at least one fourth port and at least one fifth port; the mask length corresponding to the at least one fourth port is the first length, and the mask length corresponding to the at least one fifth port is the second length.
- the first length is 2 and the second length is 4.
- the index of the fourth port corresponds to a first identifier
- the first identifier is used to indicate that the mask length of the fourth port is 2.
- ⁇ is the subcarrier spacing parameter
- DMRS demodulation reference signal DMRS corresponding to the demodulation reference signal DMRS port p on the resource element RE with index (k,l) p, ⁇ (k,l), is the power coefficient
- w t (l′) is the time domain mask corresponding to the time domain symbol indexed as l′
- W f (f) is the frequency domain mask corresponding to the subcarrier indexed as k′
- f 2 ⁇ (n mod 2)+k′
- m 2n+k′
- m is the mth element in the reference signal sequence
- l represents the OFDM symbol index contained in a time slot
- ⁇ is the subcarrier offset factor.
- the first port index group further includes at least one second port, the at least one second port belongs to a second port set, and the first mask length corresponding to the ports in the second port set is 2.
- the first mask is w f (k′)
- ⁇ is the subcarrier spacing parameter
- ⁇ is the demodulation reference signal DMRS symbol corresponding to the demodulation reference signal DMRS port p on the resource element RE with index (k,l) p, ⁇
- w t (l′) is a time domain mask sequence element corresponding to a time domain symbol indexed as l′
- w f (k′) is a frequency domain mask sequence element corresponding to a subcarrier indexed as k′
- m 2n+k′
- m is the mth element in the reference signal sequence
- l represents an orthogonal frequency division multiplexing OFDM symbol index contained in a time slot
- ⁇ is the subcarrier offset factor.
- an embodiment of the present application also provides an antenna port indication method, which can be applied to a first terminal device or a component of the first terminal device (such as a processor, a chip, or a chip system, etc.).
- the method includes: the first terminal device receives first indication information from a network device, and the first indication information is used to indicate a first port index group; the first port index group includes M port indexes; wherein M is a positive integer greater than or equal to 1; wherein the first port index group is a port index group in a first port index group set, and the first port index group set is a port index group set in the antenna port set; the antenna port set includes at least one port index group set; the port indexes contained in the first port index group set are different, the first port index group set contains at least one port index group, and the total number of port indexes contained in the first port index group set is G, and G is a positive integer greater than or equal to 1 and less than
- an embodiment of the present application also provides an antenna port indication method, which can be applied to a network device or a component of a network device (such as a processor, a chip, or a chip system, etc.).
- the method includes: obtaining an antenna port set, the antenna port set includes at least one port index group, and the port index group includes M port indexes; wherein M is a positive integer greater than or equal to 1; the number of different port indexes contained in the antenna port set is K, wherein K is related to the demodulation reference signal DMRS type, and the K is a positive integer greater than or equal to 1; sending first indication information, the first indication information is used to indicate a first port index group, and the antenna port set includes the first port index group.
- the value of K is any one of 8, 12, 16, or 24.
- the K is also related to a maximum length of the demodulation reference signal
- the value of K is 8;
- the value of K is 16;
- the value of K is 12; or,
- the value of K is 24.
- the type of the demodulation reference signal is the first type
- the maximum length of the demodulation reference signal is 1
- the M value corresponding to the port index group included in the antenna port set is one of 1 to 8.
- At least one port index group M in the antenna port set takes a value of 1, and at least one port index group includes a first port index group, a second port index group, a third port index group, a fourth port index group, a fifth port index group, a sixth port index group, a seventh port index group, an eighth port index group, a ninth port index group, a tenth port index group, an eleventh port index group, and a twelfth port index group; the first port index group includes port 0, and the first port index group corresponds to a DMRS with no data
- the number of DMRS CDM groups is 1;
- the second port index group includes port 1, and the number of DMRS CDM groups with no data corresponding to the second port index group is 1;
- the third port index group includes port 0, and the number of DMRS CDM groups with no data corresponding to the third port index group is 2;
- the fourth port index group includes port 1, and the number of DMRS CDM groups with no data corresponding to the fourth port index group
- At least one port index group M in the antenna port set takes a value of 2, and the at least one port index group includes a first port index group, a second port index group, a third port index group, a fourth port index group, a fifth port index group, a sixth port index group, a seventh port index group, and an eighth port index group;
- the first port index group includes port 0 and port 1, and the number of DMRS CDM groups with no data corresponding to the first port index group is 1;
- the second port index group includes port 0 and port 1, and the number of DMRS CDM groups with no data corresponding to the second port index group is 2;
- the third port index group includes port 2 and port 3, and the number of DMRS CDM groups with no data corresponding to the third port index group is
- the number is 2;
- the fourth port index group includes port 0 and port 2, and the number of DMRS CDM groups with no data corresponding to the fourth port index group is 2;
- the fifth port index group includes port 8 and port 9, and the
- At least one port index group M in the antenna port set takes a value of 3, and the at least one port index group includes a first port index group, a second port index group, a third port index group, and a fourth port index group;
- the first port index group includes port 0, port 1, and port 2, and the number of DMRS CDM groups with no data corresponding to the first port index group is 2;
- the second port index group includes port 0, port 1, and port 8, and the number of DMRS CDM groups with no data corresponding to the second port index group is 1;
- the third port index group includes port 0, port 1, and port 8, and the number of DMRS CDM groups with no data corresponding to the third port index group is 2;
- the fourth port index group includes port 2, port 3, and port 10, and the number of DMRS CDM groups with no data corresponding to the fourth port index group is 2.
- At least one port index group M in the antenna port set takes a value of 4, and the at least one port index group includes a first port index group, a second port index group, a third port index group, a fourth port index group, and a fifth port index group;
- the first port index group includes port 0, port 1, port 2, and port 3, and the number of DMRS CDM groups with no data corresponding to the first port index group is 2;
- the second port index group includes port 8, port 9, port 10, and port 11, and the number of DMRS CDM groups with no data corresponding to the second port index group is 2;
- the third port index group includes port 0, port 1, port 8, and port 9, and the number of DMRS CDM groups with no data corresponding to the third port index group is 1;
- the fourth port index group includes port 0, port 1, port 8, and port 9, and the number of DMRS CDM groups with no data corresponding to the fourth port index group is 2;
- the fifth port index group includes port 2, port 3, port 10, and port 11, and the number of DMRS CDM groups
- At least one port index group M in the antenna port set takes a value of 5, and the at least one port index group includes a first port index group, the first port index group includes port 0, port 1, port 2, port 3 and port 8, and the number of data-free DMRS CDM groups corresponding to the first port index group is 2.
- At least one port index group M in the antenna port set takes a value of 6, and the at least one port index group includes a first port index group, the first port index group includes port 0, port 1, port 2, port 3, port 8, and port 10, and the number of data-free DMRS CDM groups corresponding to the first port index group is 2.
- At least one port index group M in the antenna port set takes a value of 7, and the at least one port index group includes a first port index group, the first port index group includes port 0, port 1, port 2, port 3, port 8, port 9, and port 10, and the number of data-free DMRS CDM groups corresponding to the first port index group is 2.
- At least one port index group M in the antenna port set has a value of 8, and the at least one port
- the port index group includes a first port index group, the first port index group includes port 0, port 1, port 2, port 3, port 8, port 9, port 10, and port 11, and the number of DMRS CDM groups with no data corresponding to the first port index group is 2.
- any two port index groups included in the antenna port set have the same number of data-free DMRS CDM groups.
- the maximum length of the DMRS is 2
- the number of preamble symbols of any two port index groups included in the antenna port set is the same.
- the antenna port set includes a first port index group, a second port index group, and a third port index group; wherein the first port index group includes 3 port indexes, the second port index group includes 3 port indexes, and the third port index group includes 2 port indexes, wherein the port indexes of the first port index group, the second port index group, and the third port index group are different.
- the type of the DMRS is the first type, and when the maximum length of the DMRS is 1, the first port index group includes indexes of port 0, port 1, and port 8, the second port index group includes indexes of port 2, port 3, and port 10, and the third port index group includes indexes of port 9 and port 11.
- the antenna port set includes a first port index group, a second port index group, a third port index group and a fourth port index group; wherein the first port index group includes 3 port indexes, the second port index group includes 3 port indexes, the third port index group includes 3 port indexes, and the fourth port index group includes 4 port indexes, wherein the port indexes of the first port index group, the second port index group, the third port index group and the fourth port index group are different.
- the first port index group includes indexes of port 7, port 12, and port 13
- the second port index group includes indexes of port 0, port 1, and port 4
- the third port index group includes indexes of port 2, port 3, and port 6,
- the fourth port index group includes indexes of port 10, port 11, port 14, and port 15.
- the antenna port set includes a first port index group, a second port index group, a third port index group and a fourth port index group; wherein the first port index group includes 3 port indexes, the second port index group includes 3 port indexes, the third port index group includes 3 port indexes, and the fourth port index group includes 3 port indexes, wherein the port indexes of the first port index group, the second port index group, the third port index group and the fourth port index group are different.
- the first port index group includes indexes of port 13, port 15, and port 17, the second port index group includes indexes of port 0, port 1, and port 12, the third port index group includes indexes of port 4, port 5, and port 16, and the fourth port index group includes indexes of port 2, port 3, and port 14.
- the antenna port set includes a first port index group, a second port index group, a third port index group, a fourth port index group, a fifth port index group, a sixth port index group, a seventh port index group, and an eighth port index group; wherein the first port index group includes 3 port indexes, the second port index group includes 3 port indexes, the third port index group includes 3 port indexes, the fourth port index group includes 3 port indexes, the fifth port index group includes 3 port indexes, the sixth port index group includes 3 port indexes, the seventh port index group includes 3 port indexes, and the eighth port index group includes 3 port indexes, wherein the port indexes of the first port index group, the second port index group, and the third port index group and the fourth port, the fifth port index group, the sixth port index group, the seventh port index group and the eighth port index group are different.
- the first port index group includes indexes of port 18, port 19, and port 20
- the second port index group includes indexes of port 21, port 22, and port 23
- the third port index group includes indexes of port 7, port 12, and port 13
- the fourth port index group includes indexes of port 14, port 15, and port 20
- the fifth port index group includes indexes of port 11, port 16, and port 17,
- the sixth port index group includes indexes of port 2, port 3, and port 8
- the seventh port index group includes indexes of port 0, port 1, and port 6, and the eighth port index group includes indexes of port 4, port 5, and port 10.
- the first port index group includes at least one first port, the at least one first port belongs to a first port set, and the first mask length corresponding to the ports in the first port set is 4.
- the first mask is W f (f)
- ⁇ is the subcarrier spacing parameter
- DMRS demodulation reference signal DMRS corresponding to the demodulation reference signal DMRS port p on the resource element RE with index (k,l) p, ⁇ (k,l), is the power coefficient
- w t (l′) is the time domain mask corresponding to the time domain symbol indexed as l′
- W f (f) is the frequency domain mask corresponding to the subcarrier indexed as k′
- f 2 ⁇ (n mod 2)+k′
- m 2n+k′
- m is the mth element in the reference signal sequence
- l represents the OFDM symbol index contained in a time slot
- ⁇ is the subcarrier offset factor.
- the method further includes: sending RRC signaling, where the RRC signaling is used to indicate the type and/or maximum length of the DMRS.
- an embodiment of the present application further provides an antenna port indication method, which can be applied to a network device or a component of a network device (such as a processor, a chip, or a chip system, etc.).
- the method includes: receiving first indication information, where the first indication information is used to indicate a first port index group, and the first port index group includes M port indexes; wherein M is a positive integer greater than or equal to 1;
- the first port index group is a port index group in an antenna port set, the antenna port set includes K different port indexes, K is related to the demodulation reference signal DMRS type, and K is a positive integer greater than or equal to 1.
- the present application provides a communication device, which has the function of implementing the first aspect or the third aspect or the fifth aspect or the seventh aspect.
- the communication device includes a module or unit or means corresponding to the operations involved in the first aspect or the third aspect or the fifth aspect or the seventh aspect.
- the module or unit or means can be implemented by software, or by hardware, or the corresponding software can be implemented by hardware.
- the communication device includes a processing unit and a communication unit, wherein the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices; the processing unit can be used to perform some internal operations of the communication device.
- the functions performed by the processing unit and the communication unit can correspond to the operations involved in the first aspect, the third aspect, the fifth aspect, or the seventh aspect.
- the communication device includes a processor, which can be used to couple with a memory.
- the memory can store necessary computer programs or instructions for implementing the functions involved in the first aspect, the third aspect, the fifth aspect, or the seventh aspect.
- the processor can execute the computer program or instructions stored in the memory, and when the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the first aspect, the third aspect, the fifth aspect, or the seventh aspect.
- the communication device includes a processor and a memory
- the memory can store necessary computer programs or instructions for implementing the functions involved in the first aspect, the third aspect, the fifth aspect, or the seventh aspect.
- the processor can execute the computer program or instructions stored in the memory, and when the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the first aspect, the third aspect, the fifth aspect, or the seventh aspect.
- the communication device includes a processor and an interface circuit, wherein the processor is used to communicate with other devices through the interface circuit and execute the method in any possible design or implementation of the first aspect above.
- the present application provides a communication device, which has the function of implementing the second aspect or the fourth aspect or the sixth aspect or the eighth aspect.
- the communication device includes a module or unit or means corresponding to the operation involved in the second aspect or the fourth aspect or the sixth aspect or the eighth aspect.
- the function or unit or means can be implemented by software, or by hardware, or the corresponding software can be implemented by hardware.
- the communication device includes a processing unit and a communication unit, wherein the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices, for example, the communication unit is used to send system information to a terminal device; the processing unit can be used to perform some internal operations of the communication device.
- the functions performed by the processing unit and the communication unit can be the same as those of the second aspect or the fourth aspect described above. Corresponding to the operations involved in the first aspect or the sixth aspect or the eighth aspect.
- the communication device includes a processor, which can be used to couple with a memory.
- the memory can store necessary computer programs or instructions for implementing the functions involved in the second aspect, the fourth aspect, the sixth aspect, or the eighth aspect.
- the processor can execute the computer program or instructions stored in the memory, and when the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the second aspect, the fourth aspect, the sixth aspect, or the eighth aspect.
- the communication device includes a processor and a memory
- the memory can store necessary computer programs or instructions for implementing the functions involved in the second aspect, the fourth aspect, the sixth aspect, or the eighth aspect.
- the processor can execute the computer program or instructions stored in the memory, and when the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the second aspect, the fourth aspect, the sixth aspect, or the eighth aspect.
- the communication device includes a processor and an interface circuit, wherein the processor is used to communicate with other devices through the interface circuit and execute the method in any possible design or implementation of the second aspect, fourth aspect, sixth aspect, or eighth aspect mentioned above.
- the processor can be implemented by hardware or by software.
- the processor can be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor can be a general-purpose processor, which is implemented by reading the software code stored in the memory.
- the above processors can be one or more, and the memories can be one or more.
- the memory can be integrated with the processor, or the memory can be separately set from the processor. In the specific implementation process, the memory can be integrated with the processor on the same chip, or can be set on different chips respectively.
- the embodiment of the present application does not limit the type of memory and the setting method of the memory and the processor.
- the present application provides a communication system, which may include the communication device provided in the ninth aspect and the communication device provided in the tenth aspect.
- the present application provides a computer-readable storage medium, in which computer-readable instructions are stored.
- a computer reads and executes the computer-readable instructions, the computer executes any aspect of the first to eighth aspects above or a method in a possible design of the aspect.
- the present application provides a computer program product.
- the computer reads and executes the computer program product, the computer executes the method in any aspect of the first to eighth aspects or any possible design of the aspect.
- the present application provides a chip, comprising a processor, wherein the processor is coupled to a memory and is used to read and execute a software program stored in the memory to implement any aspect of the first to eighth aspects above or a method in a possible design of such aspect.
- FIG1 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
- FIG2 is a schematic diagram of DMRS resource mapping provided in an embodiment of the present application.
- FIG3A is a diagram of a DMRS port obtained by single symbol extension of configuration type 1 according to an embodiment of the present application
- FIG3B is a diagram of a DMRS port obtained by double symbol extension of configuration type 1 provided in an embodiment of the present application;
- FIG4A is a diagram of a DMRS port obtained by single symbol extension of configuration type 2 provided in an embodiment of the present application;
- FIG4B is a diagram of a DMRS port obtained by double symbol extension of configuration type 2 provided in an embodiment of the present application;
- FIG5 is a schematic diagram of a time-frequency resource mapping method provided in an embodiment of the present application.
- FIG6 is a schematic diagram of another time-frequency resource mapping method provided in an embodiment of the present application.
- FIG7 is a flow chart of a communication method according to an embodiment of the present application.
- FIG8 is a possible exemplary block diagram of a device involved in an embodiment of the present application.
- FIG9 is a schematic diagram of the structure of a network device provided in an embodiment of the present application.
- FIG10 is a schematic diagram of the structure of a terminal device provided in an embodiment of the present application.
- FIG1 is a schematic diagram of the architecture of a communication system used in an embodiment of the present application.
- the communication system 1000 includes a network device 100 and a core network 200.
- the communication system 1000 may also include the Internet 300.
- the network device 100 may include at least one network device, such as 110a and 110b in FIG1 , and may also include at least one terminal device, such as 120a-120j in FIG1 .
- a base station is a base station
- 110b is a micro station
- 120a, 120e, 120f and 120j are mobile phones
- 120b is a car
- 120c is a gas pump
- 120d is a home access point (HAP) arranged indoors or outdoors
- 120g is a laptop computer
- 120h is a printer
- 120i is a drone.
- the terminal device can be connected to the network device, and the network device can be connected to the core network device in the core network.
- the core network device and the network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the network device can be integrated on the same physical device, or the functions of some core network devices and some wireless network devices can be integrated on one physical device.
- Terminal devices and terminal devices and network devices and network devices can be connected to each other by wired or wireless means.
- Figure 1 is only a schematic diagram, and the communication system can also include other devices, such as wireless relay devices and wireless backhaul devices, which are not drawn in Figure 1.
- a network device is a node in a radio access network (RAN), which can also be called a base station or a RAN node (or device).
- RAN radio access network
- Some examples of network devices are: next generation nodeB (gNB), next generation evolved nodeB (Ng-eNB), transmission reception point (TRP), evolved NodeB (eNB), radio network controller (RNC), NodeB (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home NodeB, HNB), base band unit (BBU), or wireless fidelity (Wifi) access point (AP).
- a network device can also be a satellite, which can also be called a high altitude platform, a high altitude vehicle, or a satellite base station.
- the network device may also be other devices having network device functions.
- the network device may also be a device that performs network device functions in device-to-device (D2D) communication.
- the network device
- the network equipment may include a centralized unit (CU) and a distributed unit (DU).
- the network equipment may also include an active antenna unit (AAU).
- the CU implements some functions of the network equipment, and the DU implements some functions of the network equipment.
- the CU is responsible for processing non-real-time protocols and services, and implementing the functions of the radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
- the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
- the AAU implements some physical layer processing functions, RF processing, and related functions of active antennas.
- the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
- the CU may be classified as a network device in the RAN, or the CU may be classified as a network device in the core network (CN), which is not limited in this application.
- the device for realizing the function of the network device may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system, which may be installed in the network device.
- the chip system may be composed of a chip, or may include a chip and other discrete devices.
- Terminal devices may also be referred to as terminals, user equipment (UE), mobile stations, mobile terminals, etc.
- Terminal devices can be widely used in various scenarios, for example, device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
- Terminal devices may be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
- the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal devices.
- the device for realizing the function of the terminal device may be the terminal device; or it may be a device capable of supporting the terminal device to realize the function, such as a chip system, which may be installed in the terminal device.
- the technical solution provided in the embodiment of the present application is described by taking the device for realizing the function of the terminal device as the terminal device as an example.
- the mobile phone in Figure 1 It includes 120a, 120e, 120f and 120j.
- the mobile phone 120a can access the base station 110a, connect to the car 120b, communicate directly with the mobile phone 120e and access the HAP;
- the mobile phone 120e can access the HAP and communicate directly with the mobile phone 120a;
- the mobile phone 120f can be connected to the micro station 110b, connect to the laptop computer 120g, and connect to the printer 120h;
- the mobile phone 120j can control the drone 120i.
- the helicopter or drone 120i in Figure 1 can be configured as a mobile base station.
- the terminal device 120i For the terminal devices 120j that access the network device 100 through 120i, the terminal device 120i is a base station; but for the base station 110a, 120i is a terminal device, that is, 110a and 120i communicate through the wireless air interface protocol.
- 110a and 120i can also communicate through the interface protocol between base stations.
- relative to 110a, 120i is also a base station. Therefore, network devices and terminal devices can be collectively referred to as communication devices.
- 110a and 110b in Figure 1 can be referred to as communication devices with base station functions
- 120a-120j in Figure 1 can be referred to as communication devices with terminal device functions.
- the network equipment and terminal equipment can be fixed or movable.
- the network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on the water surface; they can also be deployed on aircraft, balloons and artificial satellites in the air.
- the embodiments of the present application do not limit the application scenarios of the network equipment and terminal equipment.
- Network devices and terminal devices, network devices and network devices, and terminal devices and terminal devices may communicate through authorized spectrum, unauthorized spectrum, or both; may communicate through spectrum below 6 gigahertz (GHz), spectrum above 6 GHz, or spectrum below 6 GHz and spectrum above 6 GHz.
- GHz gigahertz
- the embodiments of the present application do not limit the spectrum resources used for wireless communication.
- the communication system illustrated in FIG. 1 above may support various radio access technologies (RAT).
- RAT radio access technologies
- the communication system illustrated in FIG. 1 may be a fourth generation (4G) communication system (also referred to as a long term evolution (LTE) communication system), a 5G communication system (also referred to as a new radio (NR) communication system), or a future-oriented evolution system.
- 4G fourth generation
- LTE long term evolution
- NR new radio
- NR new radio
- the network device may send control information to the terminal device via a control channel (such as PDCCH) to allocate transmission parameters of a data channel to the terminal device, and the data channel may be, for example, PDSCH or PUSCH.
- a control channel such as PDCCH
- the control information may indicate the time domain symbol and/or frequency domain resource block (resource block, RB) mapped to the data channel, and then the network device and the terminal device may transmit downlink data (such as data carried by PDSCH) and/or uplink data (such as data carried by PUSCH) via the data channel on the allocated time-frequency resources.
- the time domain symbol in the embodiment of the present application may be an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbol, or may be a discrete Fourier transform spread OFDM (discrete fourier transform-spread-OFDM, DFT-s-OFDM) symbol.
- OFDM orthogonal frequency division multiplexing
- DFT-s-OFDM discrete Fourier transform-spread-OFDM
- a control channel such as PDCCH
- a data channel such as PDSCH or PUSCH
- a reference signal such as a demodulation reference signal (DMRS).
- DMRS can be used to estimate the equivalent channel of the data signal carried by the data channel, thereby being used for detection and demodulation of data in the data channel.
- DMRS is usually subjected to the same signal processing as the data, such as precoding, to ensure that DMRS and the data experience the same equivalent channel.
- DMRS can be used to estimate the equivalent channel experienced by a data channel (such as PDSCH or PUSCH) or a control channel (such as PDCCH), or to estimate the equivalent channel matrix experienced by a data channel (such as PDSCH) or a control channel (such as PDCCH), so as to be used for data detection and demodulation.
- the channel can produce a certain weighting or change (for example, a change in amplitude, a change in phase, or a change in frequency, etc.) on the experienced signal.
- the channel can also be called a channel response, which can be represented by a channel response coefficient. Assume that the DMRS vector sent by the transmitter is s, and the data signal (or data symbol) vector sent is x.
- the DMRS and the data are precoded in the same way (for example, multiplied by the same precoding matrix P), and the precoded data signal and DMRS are transmitted simultaneously and experience the same channel.
- the corresponding received signal vector at the receiving end can be expressed as:
- y represents the data signal vector received by the receiving end
- r represents the DMRS vector received by the receiving end
- H represents the data signal and The channel actually experienced by DMRS
- P represents the precoding matrix
- n represents the noise signal vector.
- the receiving end can obtain an estimate of the equivalent channel based on the known DMRS vector s using a channel estimation algorithm, wherein the DMRS vector is composed of DMRS symbols corresponding to multiple DMRS ports; furthermore, the receiving end can complete data detection and demodulation based on the equivalent channel.
- the channel estimation algorithm may be, for example, a least square (LS) channel estimation algorithm, a minimum mean square error (MMSE) channel estimation algorithm, or a delay domain channel estimation algorithm based on discrete Fourier transform (DFT)/inverse discrete Fourier transform (IDFT).
- a port may refer to an antenna port, which may be understood as a transmitting antenna identified by a receiving end, or a transmitting antenna that can be distinguished in space.
- a port may be configured for each virtual antenna, and each virtual antenna may be a weighted combination of multiple physical antennas.
- a port for sending a reference signal may be called a reference signal port, and a reference signal may be, for example, a DMRS, a channel state information reference signal (CSI-RS), or a sounding reference signal (SRS), without specific limitation.
- CSI-RS channel state information reference signal
- SRS sounding reference signal
- DMRS ports can be distinguished by different indexes (or port numbers).
- the index of the DMRS port can be 1000+X, and the value of X can be an integer greater than or equal to 0. 1000+X can also be recorded as X.
- the DMRS port can be called DMRS port 1000+X, or it can also be called DMRS port X. That is to say, in the embodiment of the present application, 1000+X and X can be understood as the index of the same DMRS port.
- the DMRS port as an example. It can be understood that the method provided in the embodiment of the present application is applicable not only to the DMRS port, but also to other possible reference signal ports, such as the CSI-RS port and the SRS port.
- the DMRS port may correspond to one or more DMRS signal symbols (also referred to as DMRS modulation symbols, or simply DMRS symbols).
- DMRS signal symbols also referred to as DMRS modulation symbols, or simply DMRS symbols.
- multiple DMRS symbols corresponding to the DMRS port may be sent in multiple time-frequency resources.
- different DMRS ports are usually orthogonal ports to avoid interference between different DMRS ports.
- Multiple DMRS symbols corresponding to a DMRS port may correspond to a DMRS sequence, and a DMRS sequence includes multiple DMRS sequence elements.
- the DMRS sequence corresponding to a DMRS port may be mapped to the corresponding time-frequency resource after being multiplied by the corresponding mask sequence through the time-frequency resource mapping rule.
- the mth DMRS sequence element r(m) in the corresponding DMRS sequence may be mapped to the resource element (RE) indexed as (k,l) p, ⁇ according to the time-frequency resource mapping rule.
- the RE indexed as (k,l) p, ⁇ may correspond to a time domain symbol indexed as l in a time slot in the time domain, and to a subcarrier indexed as k in the frequency domain.
- p is the DMRS port index (i.e., port index value)
- ⁇ is the subcarrier spacing parameter
- w t (l′) is the index l′
- ⁇ is the subcarrier offset factor
- the values of w f (k′), w t (l′) and ⁇ corresponding to the DMRS port p are related to the configuration type of the DMRS. For details, please refer to the description of the configuration type of the DMRS.
- the configuration types of DMRS may include configuration type 1 (type 1) and configuration type 2 (type 2). Different configuration types support different numbers of orthogonal DMRS ports and time-frequency resource mapping rules. Configuration type 1 and configuration type 2 are introduced below.
- w f (k′), w t (l′) and ⁇ corresponding to the DMRS port p can be determined according to the following Table 1.
- Table 1 Parameter values corresponding to Type 1 DMRS ports
- ⁇ is the index of the code division multiplexing (CDM) group (also called orthogonal multiplexing group) to which the DMRS port p belongs, and the time-frequency resources occupied by the DMRS ports in the same CDM group are the same.
- CDM code division multiplexing
- the time-frequency resources occupied by the DMRS port can also be replaced by “the time-frequency resources corresponding to the DMRS port” or “the time-frequency resources mapped by the DMRS port”.
- the time-frequency resources mapped by the DMRS sequences corresponding to different DMRS ports can be determined, as shown in (a) of Figure 2.
- the time domain symbol length occupied by the DMRS port (or the number of time domain symbols occupied by the DMRS port) can be 1 or 2.
- the time domain symbol length occupied by the DMRS port is 1, it can be called a single-symbol DMRS, and when the time domain symbol length occupied by the DMRS port is 2, it can be called a dual-symbol DMRS.
- the following introduces single-symbol DMRS and dual-symbol DMRS respectively.
- CDM group 0 contains DMRS port 0 and DMRS port 1; CDM group 1 contains DMRS port 2 and DMRS port 3.
- CDM group 0 and CDM group 1 are frequency-division multiplexed (mapped on different frequency domain resources).
- the DMRS ports contained in the CDM group are mapped on the same time-frequency resources.
- the DMRS sequences corresponding to the DMRS ports contained in the CDM group are distinguished by mask sequences, thereby ensuring the orthogonality of the DMRS ports in the CDM group and suppressing interference between DMRS transmitted on different DMRS ports.
- the mask sequence can be an orthogonal cover code (OCC) sequence.
- DMRS port 0 and DMRS port 1 are located in the same RE, and resource mapping is performed in a comb-tooth manner in the frequency domain, that is, there is one subcarrier between the adjacent frequency domain resources occupied by DMRS port 0 and DMRS port 1.
- two adjacent subcarriers occupied in the frequency domain correspond to a frequency domain mask sequence of length 2, such as (+1, +1) or (+1, -1); a time domain symbol occupied in the time domain corresponds to a time domain mask sequence of length 1, such as (+1); according to the frequency domain mask sequence and the time domain mask sequence, it can be obtained that the length of the mask sequence corresponding to the DMRS port is 2 (the mask sequence corresponding to the DMRS port can be composed of the frequency domain mask sequence and the time domain mask sequence through the Cronecock product).
- DMRS port 0 and DMRS port 1 can be code-division multiplexed through a mask sequence of length 2.
- the mask sequence corresponding to DMRS port 0 is (+1, +1), and the mask sequence corresponding to DMRS port 1 is (+1, -1).
- DMRS port 2 and DMRS port 3 are located in the same RE and are mapped in a comb-tooth manner in the frequency domain to the REs not occupied by DMRS port 0 and DMRS port 1.
- DMRS port 2 and DMRS port 3 can be code-division multiplexed through a mask sequence of length 2.
- the mask sequence corresponding to DMRS port 2 is (+1, +1)
- the mask sequence corresponding to DMRS port 3 is (+1, -1).
- CDM group 0 includes DMRS port 0, DMRS port 1, DMRS port 4 and DMRS port 5; CDM group 1 includes DMRS port 2, DMRS port 3, DMRS port 6 and DMRS port 7.
- CDM group 0 and CDM group 1 are frequency division multiplexed.
- the DMRS ports contained in the CDM group are mapped on the same time-frequency resources.
- the DMRS sequences corresponding to the DMRS ports contained in the CDM group are distinguished by mask sequences.
- DMRS port 0, DMRS port 1, DMRS port 4 and DMRS port 5 are located in the same RE, and resource mapping is performed in a comb-tooth manner in the frequency domain, that is, there is one subcarrier between the adjacent frequency domain resources occupied by DMRS port 0, DMRS port 1, DMRS port 4 and DMRS port 5.
- two adjacent subcarriers occupied in the frequency domain correspond to a frequency domain mask sequence of length 2, such as (+1, +1) or (+1, -1); two adjacent time domain symbols occupied in the time domain correspond to a time domain mask sequence of length 2, such as (+1, +1) or (+1, -1); according to the frequency domain mask sequence and the time domain mask sequence, it can be obtained that the length of the mask sequence corresponding to the DMRS port is 4 (the mask sequence corresponding to the DMRS port can be formed by the frequency domain mask sequence and the time domain mask sequence through the Cronecock product).
- DMRS port 0, DMRS port 1, DMRS port 4, and DMRS port 5 can be code-division multiplexed by a mask sequence of length 4.
- the mask sequence corresponding to DMRS port 0 is (+1, +1, +1, +1)
- the mask sequence corresponding to DMRS port 1 is (+1, +1, -1, -1)
- the mask sequence corresponding to DMRS port 4 is (+1, -1, +1, -1)
- the mask sequence corresponding to DMRS port 5 is (+1, -1, -1, +1).
- DMRS port 2, DMRS port 3, DMRS port 6, and DMRS port 7 are located in the same RE and are mapped in a comb-tooth manner in the frequency domain on the unoccupied subcarriers of DMRS port 0, DMRS port 1, DMRS port 4, and DMRS port 5.
- DMRS port 2, DMRS port 3, DMRS port 6, and DMRS port 7 can be code-division multiplexed through a mask sequence of length 4.
- the mask sequence corresponding to DMRS port 2 is (+1, +1, +1, +1)
- the mask sequence corresponding to DMRS port 3 is (+1, +1, -1, -1)
- the mask sequence corresponding to DMRS port 6 is (+1, -1, +1, -1)
- the mask sequence corresponding to DMRS port 7 is (+1, -1, -1, +1).
- the values of w f (k′), w t (l′) and ⁇ corresponding to the DMRS port p can be determined according to Table 2.
- Table 2 Parameter values corresponding to type 2 DMRS ports
- ⁇ is the index of the CDM group to which the DMRS port p belongs, and the DMRS ports in the same CDM group occupy the same time-frequency resources.
- the time-frequency resources mapped by the DMRS sequences corresponding to different DMRS ports can be determined, as shown in (b) of Figure 2.
- the time domain symbol length occupied by the DMRS port can be 1 or 2.
- the time domain symbol length occupied by the DMRS port is 1, it can be called a single-symbol DMRS.
- the time domain symbol length occupied by the DMRS port is 2, it can be called a single-symbol DMRS.
- the length is 2, it can be called a dual-symbol DMRS.
- the following introduces single-symbol DMRS and dual-symbol DMRS respectively.
- CDM group 0 contains DMRS port 0 and DMRS port 1
- CDM group 1 contains DMRS port 2 and DMRS port 3
- CDM group 2 contains DMRS port 4 and DMRS port 5.
- the CDM groups are frequency-division multiplexed, and the DMRS corresponding to the DMRS ports included in the CDM group are mapped to the same time-frequency resources.
- the DMRS sequences corresponding to the DMRS ports included in the CDM group are distinguished by mask sequences. For a DMRS port, its corresponding DMRS sequence is mapped in the frequency domain to multiple resource subblocks containing 2 consecutive subcarriers, and adjacent resource subblocks are separated by 4 subcarriers in the frequency domain.
- DMRS port 0 and DMRS port 1 are located in the same RE, and resources are mapped in a comb-tooth manner in the frequency domain. Taking the frequency domain resource granularity of 1RB as an example, DMRS port 0 and DMRS port 1 occupy subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7. DMRS port 2 and DMRS port 3 occupy subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9. DMRS port 4 and DMRS port 5 occupy subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11.
- the two DMRS ports included in a CDM group they are code-division multiplexed in two adjacent subcarriers through a mask sequence of length 2. For example, the mask sequences corresponding to the two DMRS ports are (+1, +1) and (+1, -1) respectively.
- CDM group 0 includes DMRS port 0, DMRS port 1, DMRS port 6 and DMRS port 7
- CDM group 1 includes DMRS port 2, DMRS port 3, DMRS port 8 and DMRS port 9
- CDM group 2 includes DMRS port 4, DMRS port 5, DMRS port 10 and DMRS port 11.
- Frequency division multiplexing is used between CDM groups, and the DMRS corresponding to the DMRS ports included in the CDM group are mapped on the same time-frequency resources.
- the DMRS sequences corresponding to the DMRS ports included in the CDM group are distinguished by mask sequences.
- For a DMRS port its corresponding DMRS sequence is mapped in the frequency domain to multiple resource subblocks containing 2 consecutive subcarriers, and adjacent resource subblocks are separated by 4 subcarriers in the frequency domain.
- DMRS port 0, DMRS port 1, DMRS port 6 and DMRS port 7 are located in the same RE, and resources are mapped in a comb-tooth manner in the frequency domain.
- DMRS port 0, DMRS port 1, DMRS port 6 and DMRS port 7 occupy subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 corresponding to time domain symbol 0 and time domain symbol 1.
- DMRS port 2, DMRS port 3, DMRS port 8 and DMRS port 9 occupy subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 corresponding to time domain symbol 1 and time domain symbol 2.
- DMRS port 4 DMRS port 5, DMRS port 10 and DMRS port 11 occupy subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 corresponding to time domain symbol 1 and time domain symbol 2.
- code division multiplexing is performed in the two adjacent subcarriers corresponding to the two time domain symbols through a mask sequence of length 4.
- the mask sequences corresponding to the 4 DMRS ports are (+1, +1, +1, +1), (+1, +1, -1, -1), (+1, -1, +1, -1), and (+1, -1, -1, +1).
- each data stream can be called a spatial layer or spatial stream or transmission stream, and a DMRS port can correspond to a spatial layer or transmission stream.
- V spatial layers include spatial layer 0 and spatial layer 1.
- spatial layer 0 corresponds to DMRS port 0
- spatial layer 1 corresponds to DMRS port 1
- the DMRS port index assigned by the network device to the terminal device is "2,3”
- spatial layer 0 corresponds to DMRS port 2
- spatial layer 1 corresponds to DMRS port 3.
- DMRS ports can be expanded by code division multiplexing, or by frequency division multiplexing.
- Code division multiplexing is to introduce more orthogonal DMRS ports in the same time-frequency resources. The following takes the expansion of DMRS ports by code division multiplexing as an example to introduce the relevant content of expanding DMRS ports.
- configuration type 1 single-symbol DMRS can support a maximum of 8 ports
- configuration type 1 dual-symbol DMRS can support a maximum of 16 ports
- configuration type 2 single-symbol DMRS can support a maximum of 12 ports
- configuration type 2 dual-symbol DMRS can support a maximum of 24 ports.
- Table 3-1 Existing DMRS ports and newly added DMRS ports corresponding to different configuration types
- Table 3-2 Existing DMRS ports and newly added DMRS ports corresponding to different configuration types
- a DMRS sequence corresponding to an existing DMRS port can be mapped to a corresponding time-frequency resource after being multiplied by a corresponding mask sequence according to a time-frequency resource mapping rule.
- a DMRS sequence corresponding to a newly added DMRS port can be mapped to a corresponding time-frequency resource after being multiplied by a corresponding mask sequence according to a time-frequency resource mapping rule.
- the mth DMRS sequence element r(m) in the corresponding DMRS sequence can be mapped to the resource element (RE) with index (k,l) p, ⁇ according to the time-frequency resource mapping rule.
- the RE with index (k,l) p, ⁇ can correspond to the time domain symbol with index l in a time slot in the time domain, and to the subcarrier with index k in the frequency domain.
- the following DMRS port is introduced by taking the PDSCH port as an example.
- the time-frequency resource mapping rules may satisfy the following formula 2.1, formula 2.2, formula 2.3, and formula 2.4.
- ⁇ is the subcarrier spacing parameter
- ⁇ is the DMRS symbol corresponding to port p on the RE with index (k,l) p, ⁇ , is the power factor
- w t (l′) is the time domain mask sequence element corresponding to the time domain symbol indexed as l′
- w f (k′) is the frequency domain mask sequence element corresponding to the subcarrier indexed as k′.
- ⁇ is the subcarrier offset factor, The starting point of DMRS symbol occupation The symbol index of the initial time domain symbol or the symbol index of the reference time domain symbol.
- t(i) represents the anti-interference sequence (or mask element), i is the sequence index, and is applicable to the randomization of interference between different additional symbols.
- Formula 2.3 adds t(i) relative to Formula 2.1.
- the value of t(i) can be determined according to Table 4.
- t(i) represents the anti-interference sequence (or mask element), i is the sequence index, and is applicable to the randomization of interference between different additional symbols.
- Formula 2.4 adds i(i) relative to Formula 2.2.
- the value of t(i) can be determined according to Table 4.
- the values of w f (k′), w t (l′) and ⁇ corresponding to the DMRS port p are It is related to the configuration type of DMRS and the sequence type adopted, and the details can be found in the following description.
- the value of the frequency domain mask w f (k′) (ie, the value of the OCC index) can be determined according to Table 5-1.
- the values of w f (k′), w t (l′) and ⁇ corresponding to DMRS port p can be determined by querying Table 5-2 according to the value of the OCC index.
- DMRS port p is any one of port 0 to port 3, port 8 to port 11, the values of w f (k′), w t (l′) and ⁇ corresponding to DMRS port p can be determined by Table 5-2.
- the OCC index corresponding to the mask value of w f (k′) corresponding to port 1008 is #2, and accordingly, the frequency domain mask w f (k′) corresponding to port 1008 is (+1, +j, -1, -j), and the time domain mask corresponding to port 1008 is (+1).
- the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 5-2.
- the OCC index corresponding to the mask value of w f (k′) corresponding to port 1008 is #2, and accordingly, the frequency domain mask w f (k′) corresponding to port 1008 is (+1, +j, -1, -j), and the time domain mask corresponding to port 1008 is (+1, +j).
- the values of w f ( k′) and w t (l′) corresponding to the DMRS port p and the value of ⁇ can be determined by querying Table 5-3 according to the value of the OCC index.
- DMRS port p is any port from port 0 to port 5 and port 12 to port 17, the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 5-3.
- DMRS port p is port 0 to port 11, port 12 to port 23, the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 5-3.
- the value of the frequency domain mask w f (k′) (ie, the value of the OCC index) can be determined according to Table 6-1.
- the values of w f (k′), w t (l′) and ⁇ corresponding to DMRS port p can be determined by querying Table 6-2 according to the value of the OCC index.
- DMRS port p is any port from port 0 to port 3 and port 8 to port 11
- the values of w f (k′), w t (l′) and ⁇ corresponding to DMRS port p can be determined by Table 6-2.
- DMRS port p is any port from port 0 to port 7 and port 8 to port 15
- the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 6-2.
- the values of w f ( k′) and w t (l′) corresponding to the DMRS port p and the value of ⁇ can be determined by querying Table 6-3 according to the value of the OCC index.
- DMRS port p is any port from port 0 to port 5 and port 12 to port 17, the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 6-3.
- DMRS port p is any port from port 0 to port 11 and port 12 to port 23
- the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 6-3.
- the value of the frequency domain mask w f (k′) (ie, the value of the OCC index) can be determined according to Table 7-1.
- the values of w f (k′), w t (l′) and ⁇ corresponding to DMRS port p can be determined by looking up Table 7-2 based on the value of the OCC index. For example, when Type 1 single symbol configuration is adopted and DMRS port p is any port from port 0 to port 3, port 8 to port 11, the values of w f (k′), w t (l′) and ⁇ corresponding to DMRS port p can be determined by Table 7-2.
- DMRS port p is any port from port 0 to port 7 and port 8 to port 15
- the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 7-2.
- the values of w f ( k′) and w t (l′) corresponding to the DMRS port p and the value of ⁇ can be determined by querying Table 7-3 according to the value of the OCC index.
- DMRS port p is any port from port 0 to port 5 and port 12 to port 17, the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 7-3.
- DMRS port p is any port from port 0 to port 11 and port 12 to port 23
- the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 7-3.
- the time-frequency resource mapping rules may satisfy the following formula 3.1 and formula 3.2.
- ⁇ is the subcarrier spacing parameter, is the DMRS symbol corresponding to the DMRS port p on the RE with index (k, l), is the power factor, w t (l′) is the time domain mask sequence element corresponding to the time domain symbol indexed as l′, w f (k′) is the frequency domain mask sequence element corresponding to the subcarrier indexed as k′.
- ⁇ is the subcarrier offset factor, It is the symbol index of the starting time domain symbol occupied by the DMRS symbol or the symbol index of the reference time domain symbol.
- the b(n mod 2) outer frequency domain mask index can be determined according to Table 8-1.
- t(i) represents the anti-interference sequence (or mask element), i is the sequence index, and is applicable to the randomization of interference between different additional symbols.
- Formula 3.2 adds t(i) relative to Formula 3.1.
- the value of t(i) can be determined according to the above Table 4.
- the time-frequency resource mapping rules can satisfy the following formulas 4.1 and 4.2.
- formula 4.1 is as follows:
- ⁇ is the subcarrier spacing parameter, is the DMRS symbol corresponding to the DMRS port p on the RE with index (k, l), is the power factor, w t (l′) is the time domain mask sequence element corresponding to the time domain symbol indexed as l′, w f (k′) is the frequency domain mask sequence element corresponding to the subcarrier indexed as k′.
- ⁇ is the subcarrier offset factor, It is the symbol index of the starting time domain symbol occupied by the DMRS symbol or the symbol index of the reference time domain symbol.
- b((2n+k′)mod 4) is the outer mask sequence, and the outer frequency domain mask (FD-OCC) index can be determined according to Table 9-1.
- the outer time domain mask (TD-OCC) index can be determined according to Table 9-2.
- i refers to the relative index of non-adjacent DMRS symbols, or the relative index between different additional DMRS symbol groups.
- the frequency domain mask w f (k′)b((2n+k′)mod 4) in the above formula can also be expressed in the form of w f (k′) in implementation method 1 and w f (k′)b(n mod 2) in implementation method 2.
- t(i) represents the anti-interference sequence (or mask element), i is the sequence index, and is applicable to the randomization of interference between different additional symbols.
- Formula 4.2 adds t(i) relative to Formula 4.1. Wherein, the value of t(i) can be determined according to the above Table 4.
- implementation method 2 and implementation method 3 may use the same sequence to implement FD-OCC enhancement, including but not limited to the following solutions:
- w f (k′), w t (l′) and ⁇ corresponding to DMRS port p can be determined according to Table 10-1.
- DMRS port p is any port from port 0 to port 3 and port 8 to port 11
- the values of w f (k′), w t (l′) and ⁇ corresponding to DMRS port p can be determined by Table 10-1.
- DMRS port p is any port from port 0 to port 7 and port 8 to port 15
- the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 10-1.
- DMRS port p is any port from port 0 to port 11 and port 12 to port 23
- the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 10-2.
- w f (k′), w t (l′) and ⁇ corresponding to DMRS port p can be determined according to Table 11-1.
- DMRS port p is any port from port 0 to port 3 and port 8 to port 11
- the values of w f (k′), w t (l′) and ⁇ corresponding to DMRS port p can be determined by Table 11-1.
- DMRS port p is any port from port 0 to port 7 and port 8 to port 15
- the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 11-1.
- w f (k′), w t (l′) and ⁇ corresponding to DMRS port p can be determined according to Table 11-2.
- w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 11-2.
- DMRS port p is any port from port 0 to port 11 and port 12 to port 23
- the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 11-2.
- Table 11-1 Parameter values corresponding to different PDSCH DMRS ports (type 1 R18)
- w f (k′), w t (l′) and ⁇ corresponding to DMRS port p can be determined according to Table 12-1.
- DMRS port p is any port from port 0 to port 3 and port 8 to port 11
- the values of w f (k′), w t (l′) and ⁇ corresponding to DMRS port p can be determined by Table 12-1.
- DMRS port p is any port from port 0 to port 7 and port 8 to port 15
- the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 12-1.
- w f (k′), w t (l′) and ⁇ corresponding to DMRS port p can be determined according to Table 12-2.
- DMRS port p is any port from port 0 to port 11 and port 12 to port 23
- the values of w f (k′) and w t (l′) corresponding to DMRS port p can be determined by Table 12-2.
- Table 12-1 Parameter values corresponding to different PDSCH DMRS ports (type 1 R18)
- Table 12-2 Parameter values corresponding to different PDSCH DMRS ports (type 2 R18)
- the above table is also applicable to PUSCH ports, and the PUSCH port index can be changed from 1000 to 1023 to 0 to 23.
- the leading DMRS symbol when the leading DMRS symbol adopts a single symbol and the number of additional DMRS is 1, the leading DMRS symbol takes symbol 2 as an example, and the additional symbol takes symbol 7 as an example.
- the DMRS sequence is implemented by using an interference randomization sequence or a DFT sequence.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4, and subcarrier 6, respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 0, subcarrier 2
- Subcarrier 4 and subcarrier 6 correspond to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ respectively;
- the newly added port 8 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 9 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 8 corresponds to frequency domain OCC ⁇ -1,-j,1,j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 9 corresponds to frequency domain OCC ⁇ -1,j,1,-j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the frequency domain OCCs of port 0, port 1, port 8, and port 9 at subcarrier 8, subcarrier 10, subcarrier 12, and subcarrier 14, and the frequency domain OCCs of port 0, port 1, port 8, and port 9 at subcarrier 16, subcarrier 18, subcarrier 20, and subcarrier 22 in symbol 2 and symbol 7 can be determined according to Table 13-1.
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 10 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 10 corresponds to frequency domain OCC ⁇ -1,-j,1,j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ -1,j,1,-j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively.
- the frequency domain OCCs of port 2, port 3, port 10, and port 11 at subcarrier 9, subcarrier 11, subcarrier 13, and subcarrier 15, and the frequency domain OCCs of port 2, port 3, port 10, and port 11 at subcarrier 17, subcarrier 19, subcarrier 21, and subcarrier 23 in symbol 2 and symbol 7 can be determined according to Table 13-2.
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 12 corresponds to frequency domain OCC ⁇ -1,-j,1,j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 13 corresponds to frequency domain OCC ⁇ -1,j,1,-j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 14 corresponds to frequency domain OCC ⁇ -1,-j,1,j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ -1,j,1,-j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 4 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 16 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 17 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively.
- the existing port 4 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 16 corresponds to frequency domain OCC ⁇ -1,-j,1,j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 17 corresponds to frequency domain OCC ⁇ -1,j,1,-j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively.
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the DMRS sequence is implemented by a Walsh sequence.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 8 corresponds to frequency domain OCC ⁇ +1, +1, -1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 9 corresponds to frequency domain OCC ⁇ +1, -1, -1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 8 corresponds to frequency domain OCC ⁇ 1, 1, -1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 9 corresponds to frequency domain OCC ⁇ 1, -1, -1, 1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the frequency domain OCCs of port 0, port 1, port 8, and port 9 at subcarrier 8, subcarrier 10, subcarrier 12, and subcarrier 14, and the frequency domain OCCs of port 0, port 1, port 8, and port 9 at subcarrier 16, subcarrier 18, subcarrier 20, and subcarrier 22 in symbol 2 and symbol 7 can be determined according to Table 14-1.
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 10 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 10 corresponds to frequency domain OCC ⁇ 1, 1, -1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ 1, -1, -1, 1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively.
- the frequency domain OCCs of port 2, port 3, port 10, and port 11 at subcarrier 9, subcarrier 11, subcarrier 13, and subcarrier 15, and the frequency domain OCCs of port 2, port 3, port 10, and port 11 at subcarrier 17, subcarrier 19, subcarrier 21, and subcarrier 23 in symbol 2 and symbol 7 can be determined according to Table 14-2.
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 10 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1, +1, -1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1, -1, -1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 4 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 16 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 17 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively.
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 16 corresponds to frequency domain OCC ⁇ +1, +1, -1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 17 corresponds to frequency domain OCC ⁇ +1, -1, -1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively.
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the pre-DMRS symbols take symbols 2 and 3 as examples, and the additional symbol group takes symbols 10 and 11 as examples.
- the pre-DMRS symbols take symbols 2 and 3 as examples, and the additional symbol group takes symbols 10 and 11 as examples.
- the DMRS sequence is implemented by using an interference randomization sequence.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the newly added port 8 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively
- the newly added port 9 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 4 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 8 corresponds to frequency domain OCC ⁇ +j,-1,-j,+1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 9 corresponds to frequency domain OCC ⁇ +j,1,-j,-1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively.
- the newly added port 8 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 9 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 4 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ -1, +1, -1, +1 ⁇ ;
- the newly added port 8 corresponds to frequency domain OCC ⁇ +j,-1,-j,+1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 9 corresponds to frequency domain OCC ⁇ +j,1,-j,-1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- port 0, port 1, port 8, port 9, port 12, and port 13 have frequency domain OCCs corresponding to subcarrier 8, subcarrier 10, subcarrier 12, and subcarrier 14, and in symbol 2 and symbol 7,
- the frequency domain OCCs of port 0, port 1, port 8, port 9, port 12, and port 13 corresponding to subcarrier 16, subcarrier 18, subcarrier 20, and subcarrier 22 can be determined according to Table 15-1.
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively.
- the newly added port 10 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ -1, +1, -1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the newly added port 10 corresponds to frequency domain OCC ⁇ +j,-1,-j,+1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ +j,1,-j,-1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 14 corresponds to frequency domain OCC ⁇ -j,+1,+j,-1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ -j,-1,j,+1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively.
- the newly added port 10 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively.
- the existing port 2 corresponds to the frequency domain on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively.
- the existing port 3 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ -1,-1,-1,-1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ -1,+1,-1,+1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 10 corresponds to frequency domain OCC ⁇ -1,+1,-1,+1 ⁇ on subcarrier 1, subcarrier 3 , subcarrier 5 and subcarrier 7 correspond to frequency domain OCC ⁇ +j,-1,-j,+1 ⁇ respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ +j,1,-j,-1
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 18 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 19 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ -1, +1, -1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the newly added port 12 corresponds to frequency domain OCC ⁇ +j,-1,-j,+1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively
- the newly added port 13 corresponds to frequency domain OCC ⁇ +j,1,-j,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively
- the newly added port 18 corresponds to frequency domain OCC ⁇ -j,+1,+j,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively
- the newly added port 19 corresponds to frequency domain OCC ⁇ -j,-1,j,+1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively
- the newly added port 18 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively
- the newly added port 19 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 12 corresponds to frequency domain OCC ⁇ +j,-1,-j,+1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 13 corresponds to frequency domain OCC ⁇ +j,1,-j,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 8 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 9 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 20 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 21 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 8 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 9 corresponds to frequency domain OCC ⁇ -1, +1, -1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the newly added port 14 corresponds to frequency domain OCC ⁇ +j,-1,-j,+1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +j,1,-j,-1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 20 corresponds to frequency domain OCC ⁇ -j,+1,+j,-1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 21 corresponds to frequency domain OCC ⁇ -j,-1,j,+1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 8 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 9 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 20 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 21 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 8 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 9 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 14 corresponds to frequency domain OCC ⁇ +j,-1,-j,+1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +j,1,-j,-1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 10 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 11 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively.
- the newly added port 16 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively
- the newly added port 17 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively
- the newly added port 22 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively
- the newly added port 23 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively.
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 10 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 11 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 16 corresponds to frequency domain OCC ⁇ +j,-1,-j,+1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 17 corresponds to frequency domain OCC ⁇ +j,1,-j,-1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 4 corresponds to the frequency domain on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively OCC ⁇ +1,+1,+1,+1 ⁇ ;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 10 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 11 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 16 corresponds to frequency domain OCC ⁇ +1,-1,+1,-1 ⁇ on subcarrier 4, subcarrier 5,
- Subcarrier 10 and subcarrier 11 correspond to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ respectively;
- the newly added port 17 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 10 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 11 corresponds to frequency domain OCC ⁇ -1, +1, -1, +1 ⁇ ;
- the newly added port 16 corresponds to frequency domain OCC ⁇ +j,-1,-j,+1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 17 corresponds to frequency domain OCC ⁇ +j,1,-j,-1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the DMRS sequence is implemented by a Walsh sequence.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the newly added port 8 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively
- the newly added port 9 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 4 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ -1, +1, -1, +1 ⁇ ;
- the newly added port 8 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 9 corresponds to frequency domain OCC ⁇ +1,-1,-1,1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively.
- the newly added port 8 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 9 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 4 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ -1, +1, -1, +1 ⁇ ;
- the newly added port 8 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 9 corresponds to frequency domain OCC ⁇ +1,-1,-1,1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the frequency domain OCCs of port 0, port 1, port 8, port 9, port 12 and port 13 at subcarrier 8, subcarrier 10, subcarrier 12 and subcarrier 14, and in symbol 2 and symbol 7, the frequency domain OCCs of port 0, port 1, port 8, port 9, port 12 and port 13 at subcarrier 16, subcarrier 18, subcarrier 20 and subcarrier 22 can be determined according to Table 16-1.
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ +1, -1, +1,-1 ⁇ ;
- the newly added port 10 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 10 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ +1,-1,-1,1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively.
- the newly added port 10 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 10 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ +1,-1,-1,1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 18 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 19 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-1,-1,1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively
- the newly added port 18 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively
- the newly added port 19 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-1,-1,1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8, and subcarrier 9, respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1,+1,+1,+1 ⁇ on subcarrier 2, subcarrier 3,
- Subcarrier 8 and subcarrier 9 correspond to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ respectively;
- the existing port 8 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 9 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively
- the newly added port 20 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively
- the newly added port 21 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 8 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 9 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-1,-1,1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 8 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 9 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 20 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 21 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 8 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 9 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-1,-1,1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 10 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 11 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively.
- the newly added port 16 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively
- the newly added port 17 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively
- the newly added port 22 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively
- the newly added port 23 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively.
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 10 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 11 corresponds to frequency domain OCC ⁇ -1, +1, -1, +1 ⁇ ;
- the newly added port 16 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 17 corresponds to frequency domain OCC ⁇ +1,-1,-1,1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 10 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 11 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively.
- the newly added port 16 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 17 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 22 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 23 corresponds to frequency domain OCC ⁇ +1,-1,-1,+1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively.
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 10 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 11 corresponds to frequency domain OCC ⁇ -1, +1, -1, +1 ⁇ ;
- the newly added port 16 corresponds to frequency domain OCC ⁇ +1,+1,-1,-1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 17 corresponds to frequency domain OCC ⁇ +1,-1,-1,1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the DMRS sequence is implemented by a DFT sequence.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the newly added port 8 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively
- the newly added port 9 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 4 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ -1, +1, -1, +1 ⁇ ;
- the newly added port 8 corresponds to frequency domain OCC ⁇ -1,-j,1,+j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 9 corresponds to frequency domain OCC ⁇ -1,+j,1,-j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively.
- the newly added port 8 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 9 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively;
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 4 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ -1, +1, -1 ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6, respectively.
- the newly added port 8 corresponds to frequency domain OCC ⁇ -1,-j,1,+j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively
- the newly added port 9 corresponds to frequency domain OCC ⁇ -1,+j,1,-j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively
- the newly added port 12 corresponds to frequency domain OCC ⁇ -1,-j,+1,+j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively
- the newly added port 13 corresponds to frequency domain OCC ⁇ -1,j,1,-j ⁇ on subcarrier 0, subcarrier 2, subcarrier 4 and subcarrier 6 respectively.
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively.
- the newly added port 10 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 10 corresponds to frequency domain OCC ⁇ -1,-j,1,+j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ -1,+j,1,-j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively.
- the newly added port 10 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7, respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ -1, +1, -1, +1 ⁇ ;
- the newly added port 10 corresponds to frequency domain OCC ⁇ -1,-j,1,+j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the newly added port 11 corresponds to frequency domain OCC ⁇ -1,+j,1,-j ⁇ on subcarrier 1, subcarrier 3, subcarrier 5 and subcarrier 7 respectively;
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 18 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 19 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 12 corresponds to frequency domain OCC ⁇ -1,-j,+1,j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 13 corresponds to frequency domain OCC ⁇ -1,+j,+1,-j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the newly added port 12 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively
- the newly added port 13 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively
- the newly added port 18 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively
- the newly added port 19 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively.
- the existing port 0 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 1 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 6 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the existing port 7 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 12 corresponds to frequency domain OCC ⁇ -1,-j,+1,j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the newly added port 13 corresponds to frequency domain OCC ⁇ -1,+j,+1,-j ⁇ on subcarrier 0, subcarrier 1, subcarrier 6 and subcarrier 7 respectively;
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve Code domain orthogonal.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 8 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 9 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 20 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 21 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 8 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 9 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 14 corresponds to frequency domain OCC ⁇ -1,-j,+1,j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ -1,+j,+1,-j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 8 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 9 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the newly added port 14 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 20 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 21 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively.
- the existing port 2 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 3 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 8 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the existing port 9 corresponds to frequency domain OCC ⁇ -1, +1, -1, + 1 ⁇ ;
- the newly added port 14 corresponds to frequency domain OCC ⁇ -1,-j,+1,j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the newly added port 15 corresponds to frequency domain OCC ⁇ -1,+j,+1,-j ⁇ on subcarrier 2, subcarrier 3, subcarrier 8 and subcarrier 9 respectively;
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 10 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 11 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively.
- the newly added port 16 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively
- the newly added port 17 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively
- the newly added port 22 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively
- the newly added port 23 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively.
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 10 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 11 corresponds to frequency domain OCC ⁇ -1, +1, -1, +1 ⁇ ;
- the newly added port 16 corresponds to frequency domain OCC ⁇ -1,-j,+1,j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 17 corresponds to frequency domain OCC ⁇ -1,+j,+1,-j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 10 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 11 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively.
- the newly added port 16 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 17 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 22 corresponds to frequency domain OCC ⁇ +1,+j,-1,-j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 23 corresponds to frequency domain OCC ⁇ +1,-j,-1,+j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively.
- the existing port 4 corresponds to frequency domain OCC ⁇ +1, +1, +1, +1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 5 corresponds to frequency domain OCC ⁇ +1, -1, +1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 10 corresponds to frequency domain OCC ⁇ -1, -1, -1, -1 ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the existing port 11 corresponds to frequency domain OCC ⁇ -1, +1, -1, +1 ⁇ ;
- the newly added port 16 corresponds to frequency domain OCC ⁇ -1,-j,+1,j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the newly added port 17 corresponds to frequency domain OCC ⁇ -1,+j,+1,-j ⁇ on subcarrier 4, subcarrier 5, subcarrier 10 and subcarrier 11 respectively;
- the DMRS corresponding to the newly added port and the DMRS corresponding to the existing port can be distinguished by the 4-length frequency domain OCC to achieve code domain orthogonality.
- the network device when the network device and the terminal device communicate through the control channel or the data channel, the network device needs to indicate the port allocated to the terminal device to the terminal device. And, the embodiment of the present application will study how the network device indicates the DMRS port allocated to the terminal device to the terminal device after the DMRS port is expanded.
- the method proposed in the embodiment of the present application can be applied not only to the port indication of DMRS, but also to the port indication of other reference signals.
- the embodiment of the present application takes the example of the network device indicating the DMRS port to the terminal device for detailed introduction.
- the "port n", “Pn” and “Port n” involved in the embodiments of the present application all refer to ports with a port number of n or a port index value of n, where n is an integer greater than 0, and the maximum value of n may depend on the total number of ports.
- the demodulation reference signal sent by the network device to the terminal device in the embodiments of the present application is DMRS
- the ports indicated by the network device to the terminal device can be understood as DMRS ports.
- the DMRS ports allocated by the access network device to the terminal device may all be existing ports, or may all be newly added ports, or may be part of existing ports and part of newly added ports.
- the existing DMRS ports correspond to 2 long frequency domain orthogonal masks. If the DMRS ports allocated by the network device to the terminal device are existing ports, since the mask sequences of the two adjacent subcarriers of the existing ports in the same CDM group are orthogonal, this orthogonality can be used to eliminate interference channels and improve the anti-interference ability of the terminal device during channel estimation.
- the existing DMRS ports correspond to 4 long frequency domain orthogonal masks.
- the DMRS ports allocated by the network device to the terminal device are newly added ports, since the mask sequences of the four adjacent subcarriers of the newly added ports in the same CDM group are orthogonal, this orthogonality can be used to eliminate interference channels and improve the anti-interference ability of the terminal device during channel estimation.
- the anti-interference ability of the 4-long frequency domain orthogonal masks is weaker than that of the 2-long frequency domain orthogonal masks. Therefore, how to make the newly added port have the anti-interference ability of 2-long frequency domain orthogonal masking to facilitate the terminal device to flexibly select the port for channel estimation to achieve better channel estimation effect is a problem that technical personnel in this field need to solve urgently.
- an embodiment of the present application provides a communication method for flexibly indicating the frequency domain orthogonal mask length of some ports among the ports allocated by the network device to the terminal device, so that the terminal device can flexibly select ports for channel estimation to achieve better channel estimation effect. For example, when the number of ports used in a CDM is less than 4 ports, the terminal device can select a port with a frequency domain orthogonal mask length of 2 for channel estimation to achieve better channel estimation effect.
- FIG. 7 shows a schematic diagram of a flow chart corresponding to a communication method provided in an embodiment of the present application. As shown in FIG. 7 , the flow of the method may include:
- the network device sends an RRC signaling to the first terminal device, where the RRC signaling is used to indicate the configuration type of the DMRS and/or the maximum length of the DMRS.
- the first terminal device receives a second signaling.
- the maximum length of the DMRS may be understood as the maximum symbol occupied by the DMRS or the number of symbols occupied by the DMRS.
- the demodulation reference signal is a DMRS.
- the second signaling may be an RRC message, or the second signaling is carried in an RRC message, for example, the second signaling may include a configuration type field and an occupied maximum number of symbols field in the RRC message.
- step S701 is an optional step. Because the type of DMRS and/or the maximum length of DMRS may be configured by default, or may be indicated by the network device to the first terminal device. When the network device indicates the type of DMRS and/or the maximum length of DMRS to the first terminal device, the network device performs step S701.
- the network device sends first indication information to the first terminal device, where the first indication information is used to indicate a frequency domain orthogonal mask length corresponding to at least one first port among the M ports. Accordingly, the first terminal device may receive the first indication information.
- M ports are ports allocated by the network device to the first terminal device.
- M is a positive integer greater than or equal to 1.
- the M ports belong to the first port set and/or the second port set. Accordingly, “M ports belong to the first port set and/or the second port set” can be understood as the ports allocated by the network device to the first terminal device belong to the first port set, or the network device is The port allocated to the first terminal device belongs to the second port set, or the port allocated to the first terminal device by the network device belongs to the first port set and the second port set.
- the first port set can be understood as a set of amplified ports, i.e., R18 ports; the second port set can be understood as a set of existing ports, i.e., R15 ports.
- “mask length" can include a first mask length and a second mask length.
- the second mask length corresponding to the first port set is the same as the second mask length corresponding to the second port set. In a possible implementation, when the mask length is the first mask length, the mask length is 4 long or 2 long.
- the first mask is a frequency domain mask
- the second mask is a time domain mask.
- the frequency domain mask is Wf(f) in the first time-frequency resource mapping rule
- ⁇ is the subcarrier spacing parameter
- DMRS demodulation reference signal DMRS corresponding to the demodulation reference signal DMRS port p on the resource element RE with index (k,l) p, ⁇ (k,l), is the power coefficient
- w t (l′) is the time domain mask corresponding to the time domain symbol indexed as l′
- W f (f) is the frequency domain mask corresponding to the subcarrier indexed as k′
- f 2 ⁇ (n mod 2)+k′
- m 2n+k′
- m is the mth element in the reference signal sequence
- l represents the OFDM symbol index contained in a time slot
- ⁇ is the subcarrier offset factor.
- the specific values of wt (l′) and Wf(f) can be determined according to Table A1; for a port whose demodulation reference signal type is type2, the specific values of wt (l′) and Wf(f) can be determined according to Table A2.
- the M ports are ports allocated by the network device to the terminal device.
- M is a positive integer greater than or equal to 1.
- M ports belong to the first port set and/or the second port set can be understood as the ports allocated by the network device to the terminal device belong to the first port set, or the ports allocated by the network device to the terminal device belong to the second port set, or the ports allocated by the network device to the terminal device belong to the first port set and the second port set.
- the mask length corresponding to the first port set and the mask length corresponding to the second port set are different.
- the mask length corresponding to the first port set is 4 long, and the mask length corresponding to the second port set is 2 long.
- the mask length corresponding to the first port set is 6 long, and the mask length corresponding to the second port set is 4 long.
- the network device sends a first indication information to the terminal device, and the first indication information is used to indicate the mask length corresponding to the first port of the M ports; wherein the M ports belong to the first port set and/or the second port set, the mask length corresponding to the first port set is the first length, and the mask length corresponding to the second port set is the second length.
- the terminal device can know the mask length corresponding to the first port, so that the terminal device can flexibly select the port for channel estimation to achieve a better channel estimation effect. For example, when the number of ports used in a CDM is less than 4 ports, the terminal device selects a port with a mask length of 2 for channel estimation to achieve a better channel estimation effect.
- the M ports that the network device can flexibly indicate to the terminal device can belong to the existing port set and/or the expanded port set, and the ports in the expanded port set can reuse the time-frequency resources and sequences corresponding to the ports in the existing port set. Therefore, the network device can flexibly indicate the paired ports from different port sets to the terminal device, which can not only ensure that the terminal device can achieve the channel estimation capability, but also maximize the number of combined ports.
- the first port set includes an eighth port and a ninth port, and the 4-long frequency domain masks corresponding to the eighth port and the ninth port are orthogonal;
- the 4-length frequency domain mask orthogonality includes the frequency domain mask orthogonality corresponding to 4 consecutive subcarriers in a code division multiplexing CDM group. Further, the 4-length frequency domain mask orthogonality satisfies the following formula:
- f represents the frequency domain position.
- the second port set includes a tenth port and an eleventh port, and the two long frequency domain masks corresponding to the tenth port and the eleventh port are orthogonal; wherein the two long frequency domain masks are orthogonal including the frequency domain masks corresponding to two consecutive subcarriers in a CDM group. Further, the two long frequency domain masks are orthogonal and satisfy the following formula:
- the first port set includes an eighth port and a ninth port
- the 6-long frequency domain masks corresponding to the eighth port and the ninth port are orthogonal; wherein the 6-long frequency domain masks orthogonal include the frequency domain masks corresponding to 6 consecutive subcarriers in a code division multiplexing CDM group. Further, the 6-long frequency domain masks orthogonal satisfy the following formula:
- the network device may send the first indication information to the first terminal device via a message of the media access control (MAC) layer (such as a MAC control element (CE)) or a message of the physical layer (such as downlink control information (DCI)).
- the first indication information may be a message of the media access control MAC layer (such as CE) or a message of the physical layer (such as DCI); or the first indication information may be carried in a message of the media access control MAC layer (such as CE) or a message of the physical layer (such as DCI), and the present application does not make specific limitations on this.
- the first indication information is carried in the first signaling.
- the first signaling may also include indication information for indicating the number of CDM groups that do not carry data and the number of symbols occupied by the demodulation reference signal.
- the first signaling may also include indication information for indicating the indexes of the above-mentioned M ports.
- the first terminal device may know the DMRS port allocated to it by the network device.
- the network device indicates the mask length corresponding to the first port among the M ports to the first terminal device through the first indication information, and there are multiple implementation methods.
- the first indication information includes a first bit field; the first indication information is used to indicate a mask length corresponding to a first port among M ports, including: the first bit field is used to indicate a mask length corresponding to the first port.
- the first bit field includes a first bit, and the first bit is used to indicate the mask length corresponding to the first port.
- the M ports are 4 ports as an example, and the mask lengths of 2 ports (i.e., the first ports) among the 4 ports need to be indicated, then the first bit can be used to indicate the mask lengths corresponding to the 2 ports.
- the first bit field includes a first bit, and the first bit is used to indicate the mask length corresponding to the M ports.
- the M ports are 4 ports, and the first bit can be used to indicate the mask length corresponding to the 4 ports.
- the first bit field includes a bitmap, and the bitmap is used to indicate the mask length corresponding to the first port.
- the bitmap includes N bits, N is greater than or equal to M, and the i-th bit of the N bits is used to indicate the first mask length corresponding to the i-th port of the M ports, i ⁇ 1,M ⁇ .
- the N bits include M bits, and there are at least two bits with different values in the M bits; wherein the M bits are the 1st bit to the Mth bit of the N bits.
- the first indication information may be carried in a first signaling, the first signaling further comprising second indication information; the second indication information is used to indicate a first value, the first value is associated with a first port index group, the first port index group comprises indexes of the M ports; wherein M is a positive integer greater than or equal to 1.
- the first signaling may be DCI.
- the first indication information is used to indicate the mask length corresponding to the first port among M ports, including: the first indication information is used to indicate a first value, and the first value is associated with a first port index group; the first port index group includes the indexes of the M ports, the index of the first port corresponds to a first identifier, and the first identifier is used to indicate the mask length corresponding to the first port; wherein, M is a positive integer greater than or equal to 1.
- the first indication information is used to indicate the mask length corresponding to the first port among M ports, including: the first indication information is used to indicate a first value, and the first value is associated with a first port index group; the first port index group includes the indexes of the M ports, and the index of the first port is used to indicate the mask length corresponding to the first port; wherein, M is a positive integer greater than or equal to 1.
- the above S702 can be replaced by: the network device sends a first signaling to the first terminal device, the first signaling is used to indicate the port index of the first port among the M ports, and indicates the allocation status information of the second port; wherein the second port and the first port belong to the same code division multiplexing CDM group.
- the first terminal device receives the first signaling.
- the allocation status of the second port includes that the second port is allocated, or that the second port is not allocated. Also, the allocation status information of the second port can be understood as whether the second port is scheduled to other terminals.
- the first signaling includes the first indication information
- the first indication information is used to indicate the allocation status information of the second port.
- the first indication information is also used to indicate the port index of the first port.
- the first indication information is used to indicate the allocation status information of the second port, including: the first indication information is used to indicate that the second port is allocated to the second terminal device, or the first indication information is used to indicate that the second port is not allocated to the second terminal device.
- the network device indicates the allocation status information of the second port to the first terminal device through the first indication information, including but not limited to the following implementation modes:
- the first indication information includes a first bit field; the first indication information is used to indicate allocation status information of the second port, including: the first bit field is used to indicate allocation status information of the second port.
- the first bit field includes a first bit, where the first bit is used to indicate allocation status information of the second port.
- the first bit field includes a first bit, where the first bit is used to indicate allocation status information of the second ports corresponding to the M ports.
- the first bit field includes a bitmap; the first indication information is used to indicate the allocation status information of the second port, including: the bitmap is used to indicate the allocation status information of the second port.
- the bitmap includes N bits, N is greater than M, and the i-th bit of the N bits is used to indicate the allocation status information of the second port corresponding to the i-th port of the M ports; wherein, i ⁇ 1,M ⁇ .
- the N bits include M bits, and there are at least two bits with different values in the M bits; wherein the M bits are the 1st bit to the Mth bit of the N bits.
- the second port corresponding to the i-th port of the M ports can be understood as that there is a second port that belongs to the same CDM group as the i-th port of the M ports.
- the first signaling further includes second indication information; the second indication information is used to indicate a first value, the first value is associated with a first port index group, and the first port index group includes indexes of the M ports.
- the first indication information is used to indicate the allocation status information of the second port, including: the first indication information is used to indicate a first value, the first value is associated with a first port index group; the first port index group includes the index of the first port, the index of the first port corresponds to a first identifier, and the first identifier is used to indicate the allocation status information of the second port.
- the first identifier is used to indicate allocation status information of the second port, including: the first identifier is used to indicate that 2 non-orthogonal masks among 4 orthogonal masks corresponding to the second port are allocated to the second terminal device, or the first identifier is used to indicate that 2 non-orthogonal masks among 4 orthogonal masks corresponding to the second port are not allocated to the second terminal device.
- the first indication information includes a first bit field, and the mask length corresponding to the first port is indicated through the first bit field.
- the first bit field includes a first bit, and the first bit is used to indicate the mask length corresponding to the first port.
- the first bit can be used to indicate the mask lengths corresponding to the 2 ports.
- the information indicated by the first bit can be as shown in Table 18-1.
- the first bit field includes a first bit, and the first bit is used to indicate the mask length corresponding to the M ports.
- the first bit can be used to indicate the mask length corresponding to the 4 ports.
- the information indicated by the first bit can be as shown in Table 18-1.
- the first bit field includes a bitmap, and the bitmap is used to indicate the mask length corresponding to the first port.
- the bitmap includes N bits, N is greater than or equal to M, and the i-th bit of the N bits is used to indicate the first mask length corresponding to the i-th port of the M ports, i ⁇ 1,M ⁇ .
- the N bits include M bits, and there are at least two bits with different values in the M bits; wherein the M bits are the 1st bit to the Mth bit of the N bits.
- the frequency domain orthogonal mask length corresponding to the first port is 2; when the value indicated by bit 1 is 0, the frequency domain orthogonal mask length corresponding to the first port is 2; When the value indicated by bit 1 is 1, the frequency domain orthogonal mask length corresponding to the first port is 4 long.
- the frequency domain orthogonal mask length corresponding to the second port is 2 long; when the value indicated by bit 2 is 1, the frequency domain orthogonal mask length corresponding to the second port is 4 long.
- the frequency domain orthogonal mask length corresponding to the third port is 2 long; when the value indicated by bit 2 is 1, the frequency domain orthogonal mask length corresponding to the third port is 4 long.
- the frequency domain orthogonal mask length corresponding to the fourth port is 2 long; when the value indicated by bit 2 is 1, the frequency domain orthogonal mask length corresponding to the fourth port is 4 long.
- the M ports include port 0, port 1, port 8, and port 9.
- the first port is port 0.
- the frequency domain orthogonal mask length corresponding to port 0 is 2; when the value indicated by bit 1 is 1, the frequency domain orthogonal mask length corresponding to port 0 is 4.
- the second port is port 1.
- the frequency domain orthogonal mask length corresponding to port 1 is 2; when the value indicated by bit 2 is 1, the frequency domain orthogonal mask length corresponding to port 1 is 4.
- the third port is port 8.
- the frequency domain orthogonal mask length corresponding to port 8 is 2; when the value indicated by bit 2 is 1, the frequency domain orthogonal mask length corresponding to port 8 is 4.
- the fourth port is port 9.
- the frequency domain orthogonal mask length corresponding to port 9 is 2; when the value indicated by bit 2 is 1, the frequency domain orthogonal mask length corresponding to port 9 is 4.
- the M ports include port 2 and port 3, the first port is port 2, when the value indicated by bit 1 is 0, the frequency domain orthogonal mask length corresponding to port 2 is 2; when the value indicated by bit 1 is 1, the frequency domain orthogonal mask length corresponding to port 2 is 4.
- the second port is port 3, when the value indicated by bit 2 is 0, the frequency domain orthogonal mask length corresponding to port 3 is 2; when the value indicated by bit 2 is 1, the frequency domain orthogonal mask length corresponding to port 3 is 4.
- the first indication information includes a first bit field; the first indication information is used to indicate allocation status information of the second port, including: the first bit field is used to indicate allocation status information of the second port.
- the first bit field includes a first bit, and the first bit is used to indicate the allocation status information of the second port.
- the M ports are 4 ports as an example, and the 4 ports include port 9.
- Port 9 and port 0 i.e., the second port
- the first bit can be used to indicate the mask length corresponding to port 0.
- the information indicated by the first bit can be as shown in Table 19-1.
- the first bit field includes a first bit, and the first bit is used to indicate the allocation status information of the second port corresponding to the M ports.
- the M ports are 4 ports, and these 4 ports all have corresponding second ports, then the first bit can be used to indicate the allocation status information of these 4 second ports.
- the information indicated by the first bit can be as shown in Table 19-1, when the allocation status information field indicated by the first bit takes a value of 0, the 4 second ports are allocated; when the allocation status information field indicated by the first bit takes a value of 1, the 4 second ports are not allocated.
- the first bit field includes a bitmap; the first indication information is used to indicate the allocation status information of the second port, including: the bitmap is used to indicate the allocation status information of the second port.
- the bitmap includes N bits, N is greater than M, and the i-th bit of the N bits is used to indicate the allocation status information of the second port corresponding to the i-th port of the M ports; wherein, i ⁇ 1,M ⁇ .
- the N bits include M bits, and there are at least two bits with different values in the M bits; wherein, the M bits are the 1st bit to the Mth bit of the N bits.
- the second port corresponding to the i-th port of the M ports can be understood as there is a second port that belongs to the same CDM group as the i-th port of the M ports.
- the third bit of the N bits is used to indicate the allocation status information of the second port corresponding to the third port of the M ports, and the fourth bit of the N bits is used to indicate the allocation status information of the second port corresponding to the fourth port of the M ports.
- the information indicated by the bitmap is as shown in Table 19-2.
- the second port corresponding to the first port of the M ports has been allocated; when the value indicated by bit 1 is 1, the second port corresponding to the first port of the M ports has not been allocated.
- the second port corresponding to the first port of the M ports has been allocated; when the value indicated by bit 2 is 1, the second port corresponding to the first port of the M ports has not been allocated.
- the value indicated by bit 3 is 0, the second port corresponding to the first port of the M ports has been allocated; when the value indicated by bit 3 is 1, the second port corresponding to the first port of the M ports has not been allocated.
- the value indicated by bit 4 is 0, the second port corresponding to the first port of the M ports has been allocated; when the value indicated by bit 4 is 1, the second port corresponding to the first port of the M ports has not been allocated.
- the M ports include port 0, port 1, port 8, and port 9.
- the first port is port 0.
- the frequency domain orthogonal mask length corresponding to port 0 is 2; when the value indicated by bit 1 is 1, the frequency domain orthogonal mask length corresponding to port 0 is 4.
- the second port is port 1.
- the frequency domain orthogonal mask length corresponding to port 1 is 2; when the value indicated by bit 2 is 1, the frequency domain orthogonal mask length corresponding to port 1 is 4.
- the third port is port 8.
- the frequency domain orthogonal mask length corresponding to port 8 is 2; when the value indicated by bit 2 is 1, the frequency domain orthogonal mask length corresponding to port 8 is 4.
- the fourth port is port 9.
- the frequency domain orthogonal mask length corresponding to port 9 is 2; when the value indicated by bit 2 is 1, the frequency domain orthogonal mask length corresponding to port 9 is 4.
- the M ports include port 2 and port 3, the first port is port 2, when the value indicated by bit 1 is 0, the frequency domain orthogonal mask length corresponding to port 2 is 2; when the value indicated by bit 1 is 1, the frequency domain orthogonal mask length corresponding to port 2 is 4.
- the second port is port 3, when the value indicated by bit 2 is 0, the frequency domain orthogonal mask length corresponding to port 3 is 2; when the value indicated by bit 2 is 1, the frequency domain orthogonal mask length corresponding to port 3 is 4.
- Table 20-1 is the DMRS table corresponding to the DMRS type 1 single symbol. If the M ports indicated by the network device to the terminal device include port 0 and port 1 corresponding to the value of 2, port 0 and port 1 are R15 ports, and the first indication information includes the first bit, it can be seen from Table 18-1 that when the value indicated by the first bit is 0, the FD-OCC length corresponding to port 0 and port 1 is 4; when the value indicated by the first bit is 1, the FD-OCC length corresponding to port 0 and port 1 is 2.
- Example 1.2 Table 20-1 is the DMRS table corresponding to the DMRS type 1 single symbol. If the M ports indicated by the network device to the terminal device include port 0 and port 1 corresponding to index 2, port 0 and port 1 are R15 ports.
- the first indication information includes a bitmap.
- the bitmap takes 4 bits as an example. When the value indicated by bit 1 in the bitmap is 0, the FD-OCC length corresponding to port 0 is 4. When the value indicated by bit 1 in the bitmap is 1, the FD-OCC length corresponding to port 0 is 2; when the value indicated by bit 2 in the bitmap is 0, the FD-OCC length corresponding to port 1 is 4. When the value indicated by bit 2 in the bitmap is 1, the FD-OCC length corresponding to port 1 is 2.
- Table 20-2 is the DMRS table corresponding to the DMRS type 1 double symbol. If the M ports indicated by the network device to the terminal device include port 2 and port 3 corresponding to the value of 8, port 2 and port 3 are R15 ports, and the first indication information includes the first bit, it can be seen from Table 18-1 that when the value indicated by the first bit is 0, the FD-OCC length corresponding to port 2 and port 3 is 4; when the value indicated by the first bit is 1, the FD-OCC length corresponding to port 2 and port 3 is 2.
- Example 2.2 Table 20-2 is the DMRS table corresponding to a single DMRS type 1 symbol. If the M ports indicated by the network device to the terminal device include port 2 and port 3 corresponding to a value of 8, port 2 and port 3 are R15 ports.
- the first indication information includes a bitmap.
- the bitmap takes 4 bits as an example. When the value indicated by bit 1 in the bitmap is 0, the FD-OCC length corresponding to port 2 is 4. When the value indicated by bit 1 in the bitmap is 1, the FD-OCC length corresponding to port 2 is 42; when the value indicated by bit 2 in the bitmap is 0, the FD-OCC length corresponding to port 3 is 4. When the value indicated by bit 2 in the bitmap is 1, the FD-OCC length corresponding to port 3 is 2.
- Table 20-3 is the DMRS table corresponding to the DMRS type 2 single symbol. If the M ports indicated by the network device to the terminal device include port 4 and port 5 corresponding to the value 19, port 4 and port 5 are R15 ports, and the first indication information includes the first bit, it can be seen from Table 18-1 that when the value indicated by the first bit is 0, the FD-OCC length corresponding to port 4 and port 5 is 4; when the value indicated by the first bit is 1, the FD-OCC length corresponding to port 4 and port 5 is 2.
- Example 3.2 Table 20-3 is the DMRS table corresponding to a single DMRS type 1 symbol. If the M ports indicated by the network device to the terminal device include port 4 and port 5 corresponding to the value of 19, port 4 and port 5 are R15 ports, and the first indication information includes a bitmap.
- the bitmap takes 4 bits as an example.
- the FD-OCC length corresponding to port 4 is 4; when the value indicated by bit 1 in the bitmap is 1, the FD-OCC length corresponding to port 4 is 2; when the value indicated by bit 2 in the bitmap is 0, the FD-OCC length corresponding to port 5 is 4; when the value indicated by bit 2 in the bitmap is 1, the FD-OCC length corresponding to port 5 is 2.
- Example 4.1 Table 20-4 is the DMRS table corresponding to the DMRS type 2 double symbol. If the M ports indicated by the network device to the terminal device include port 2, port 3 and port 8 corresponding to the value of 43, the first indication information includes the first bit. Combined with Table 18-1, it can be seen that when the value indicated by the first bit is 0, the FD-OCC length corresponding to port 2, port 3 and port 8 is 4; when the value indicated by the first bit is 1, the FD-OCC length corresponding to port 2, port 3 and port 8 is 2.
- Example 4.2 Table 20-4 is the DMRS table corresponding to a single DMRS type 1 symbol. If the M ports indicated by the network device to the terminal device include port 2, port 3, and port 8 corresponding to a value of 43, combined with Table 18-2, it can be seen that the first indication information includes a bitmap.
- the bitmap takes 4 bits as an example.
- the FD-OCC length corresponding to port 2 is 2; when the value indicated by bit 1 in the bitmap is 1, the FD-OCC length corresponding to port 2 is 4; when the value indicated by bit 2 in the bitmap is 0, the FD-OCC length corresponding to port 3 is 4; when the value indicated by bit 2 in the bitmap is 1, the FD-OCC length corresponding to port 3 is 2; when the value indicated by bit 3 in the bitmap is 0, the FD-OCC length corresponding to port 8 is 4; when the value indicated by bit 3 in the bitmap is 1, the FD-OCC length corresponding to port 8 is 2.
- Table 18-1, Table 18-2, Table 19-1, and Table 19-2 of Example 1 can also be combined with Table 21-9, Table 22-9, Table 23-9, Table 24-A9, and Table 24-B9 of Example 2 to determine the mask length of the first port specified by the network device or the allocation status information of the second port.
- the first indication information is used to indicate the mask length corresponding to the first port among the M ports.
- the first indication information is used to indicate the mask length corresponding to the first port among M ports, including: the first indication information is used to indicate a first value, and the first value is associated with a first port index group; the first port index group includes indexes of M ports, and the index of the first port corresponds to a first identifier, and the first identifier is used to indicate the mask length corresponding to the first port; wherein M is a positive integer greater than or equal to 1.
- the first indication information is used to indicate the mask length corresponding to the first port among M ports, including: the first indication information is used to indicate a first value, and the first value is associated with a first port index group; the first port index group includes indexes of M ports, and the index of the first port is used to indicate the mask length corresponding to the first port; wherein M is a positive integer greater than or equal to 1.
- the first indication information is used to indicate the allocation status information of the second port, including: the first indication information is used to indicate the first value, the first value is associated with the first port index group; the first port index group includes the index of the first port, the index of the first port corresponds to the first identifier, and the first identifier is used to indicate the allocation status information of the second port.
- the first identifier is used to indicate allocation status information of the second port, including: the first identifier is used to indicate that 2 non-orthogonal masks among 4 orthogonal masks corresponding to the second port are allocated to the second terminal device, or the first identifier is used to indicate that 2 non-orthogonal masks among 4 orthogonal masks corresponding to the second port are not allocated to the second terminal device.
- the first indication information is used to indicate the FD-OCC length corresponding to at least one first port among M ports, including: the first indication information can be used to indicate the index of the M ports, the index of at least one port among the M ports corresponds to the first identifier, and the first identifier is used to indicate the mask length corresponding to the at least one first port.
- the second port and the first port belong to the same CDM group, and the FD-OCC length can also be understood as the allocation status of the second port (i.e., whether the second port is allocated to the second terminal device) or the scheduling status (i.e., whether the second port is scheduled to the second terminal device).
- the following describes the indication method corresponding to the mask length of the first port in combination with the configuration type of the DMRS and the maximum number of symbols occupied by the DMRS.
- the network device can indicate the contents of Table 21-1 to Table 21-9 to the terminal device through the first indication information, and then the terminal device can determine the ports allocated to it by the network device and the FD-OCC lengths corresponding to these ports based on the first indication information in combination with Table 21-1 to Table 21-9.
- the FD-OCC length corresponding to the unindicated port defaults to 4 lengths.
- the FD-OCC length corresponding to the unindicated port may also default to 2 lengths or 6 lengths, which is not limited by the embodiments of the present application.
- the default FD-OCC length of R18 can be determined by Tables 5.1 to 7.3 corresponding to the above formulas 2.1 to 2.4.
- Table 21-1 occupies 6 bits. It can be seen from Table 21-1 that the FD-OCC length of the same port can be switched dynamically (for example, the network device can instruct the first terminal device to switch through DCI signaling).
- the first indication information is carried in the first signaling, and the first signaling also includes the second indication information, and the second indication information is used to indicate the first value, and the first value is associated with the first port index group, and the first port index group includes the indexes of M ports.
- the first value can be understood as the value of the row in Table 21-1.
- the first port index group when the first value includes the first value and/or the second value, the first port index group includes the index of the third port; when the first value includes the first value, the mask length corresponding to the third port is the first length; when the first value includes the second value, the mask length corresponding to the third port is the second length.
- the first length is 2 and the second length is 4.
- the indexes of the M ports include the index of port 0; wherein, when the first value is 0, the FD-OCC length of port 0 is 4; when the first value is 29, the index of port 0 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the index of port 0; when the first value is 3, the FD-OCC length of port 0 is 4; when the first value is 32, the index of port 0 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0 is 2.
- the indexes of the M ports include the index of port 1; wherein, when the first value is 1, the FD-OCC length of port 1 is 4; when the first value is 30, the index of port 1 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 1 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the index of port 1; when the first value is 4, the FD-OCC length of port 1 is 4; when the first value is 33, the index of port 1 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 1 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the indexes of port 0 and port 1; wherein, when the first value is 2, the FD-OCC length of port 0 and port 1 is 4; when the first value is 31, the indexes of port 0 and port 1 correspond to the first identifier (i.e., FD-OCC2) respectively, and the first identifier indicates that the FD-OCC length corresponding to port 0 and port 1 is 2.
- the first identifier i.e., FD-OCC2
- the indexes of the M ports include the indexes of port 0 and port 1; wherein, when the first value is 7, the FD-OCC length of port 0 and port 1 is 4; when the first value is 34, the indexes of port 0 and port 1 correspond to the first identifier (i.e., FD-OCC2), and the first identifier indicates that port 0 and port 1 correspond to The length of FD-OCC is 2 long.
- the first identifier i.e., FD-OCC2
- the indexes of the M ports include the index of port 2; when the first value is 5, the FD-OCC length of port 2 is 4; when the first value is 33, the index of port 2 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 2 is 2.
- the indexes of the M ports include the index of port 3; when the first value is 6, the FD-OCC length of port 3 is 4; when the first value is 36, the index of port 3 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 3 is 2.
- the indexes of the M ports include the indexes of port 2 and port 3; wherein, when the first value is 8, the FD-OCC length of port 2 and port 3 is 4; when the first value is 37, the indexes of port 2 and port 3 respectively correspond to the first identifier (i.e., FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 2 and port 3 is 2.
- the first identifier i.e., FD-OCC2
- the indexes of the M ports include the indexes of port 0, port 2 and port 3, and the indexes of port 0, port 2 and port 3 correspond to the first identifier (i.e., FD-OCC2) respectively, and the first identifier indicates that the FD-OCC length corresponding to port 0, port 2 and port 3 is 2; when the first value is 8, the indexes of the M ports include the indexes of port 2 and port 3, and the FD-OCC length of port 2 and port 3 is 4; when the first value is 3, the indexes of the M ports include the index of port 0, and the FD-OCC length of port 0 is 4.
- the first identifier i.e., FD-OCC2
- the indexes of the M ports include the indexes of port 0, port 1, port 2 and port 3; wherein, when the first value is 10, the FD-OCC length of port 0, port 1, port 2 and port 3 is 4; when the first value is 39, the indexes of port 0, port 1, port 2 and port 3 respectively correspond to the first identifier (i.e., FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0, port 1, port 2 and port 3 is 2.
- the first identifier i.e., FD-OCC2
- the 4-long frequency domain masks corresponding to the second port and the third port are orthogonal, and the 2-long frequency domain masks corresponding to the second port and the third port are not orthogonal.
- the second port and the third port are in the same CDM group.
- the R15 port and the R18 port can be paired in a CDM group. It can be seen from Table 21-1 that the R15 port and the R18 port can be MU in a CDM group.
- the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set
- the M ports include a port combination corresponding to a sequence in which the 4-long frequency domain masks are orthogonal, but the 2-long frequency domain masks are not orthogonal.
- the M ports may include port 1 and port 9 corresponding to row 40 or row 41, and port 1 and port 9 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1 and port 9 are orthogonal, but the 2-long frequency domain masks corresponding to port 1 and port 9 are not orthogonal.
- the corresponding ports in line 40 or line 41 may be replaced with port 0 and port 8.
- the first port index group when the first value includes the fourth value, includes indexes of at least one fourth port and at least one fifth port; the mask length corresponding to the at least one fourth port is the first length, and the mask length corresponding to the at least one fifth port is the second length.
- the first length is 2 and the second length is 4.
- the above-mentioned first identifier is used to indicate the mask length corresponding to the first port, including: the first identifier is used to indicate that the mask length of the first port is 2.
- the FD-OCC lengths of the M ports associated with the first value may be different, that is, the ports in the same row of Table 21-1 may correspond to different FD-OCC lengths.
- the M ports may include the corresponding port 0, port 1, and port 9 in the 42 rows or 43 rows, the FD-OCC length of port 0 is 2, the FD-OCC length of port 1 is 4, and the FD-OCC length of port 9 is 4.
- the corresponding ports in the 42 rows or 43 rows may be replaced with port 0, port 1, and port 8, wherein the FD-OCC length of port 0 is 4, the FD-OCC length of port 1 is 2, and the FD-OCC length of port 8 is 4.
- the M ports may include the corresponding port 0 and port 1 in the 44 or 45 rows, the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1 is 4.
- the corresponding ports in the 44 or 45 rows are still port 0 and port 1, but the FD-OCC length of port 0 is 4, and the FD-OCC length of port 1 is 2.
- a network device obtains a first antenna port set; the first antenna port set includes at least one port index group set, and the port indexes contained in a first port index group set in at least one port index group set are different; the first port index group is any port index group in the first port index group set; wherein the total number of port indexes contained in the first port index group set is G, and G is a positive integer greater than or equal to 1 and less than or equal to K; and K is related to the type of a demodulation reference signal DMRS.
- the first antenna port set may include a first port index group, a second port index group, and a third port index group, the first port index group includes indexes of port 0, port 1, and port 8, the second port index group includes indexes of port 2, port 3, and port 10, and the third port index group includes indexes of port 9 and port 11.
- K is also associated with the maximum length of the demodulation reference signal; accordingly, the method also includes: the network device sends a second signaling to the first terminal device, the second signaling is used to indicate the type of the demodulation reference signal and/or the maximum length of the demodulation reference signal. Furthermore, the first terminal device can also determine the type of the demodulation reference signal and/or the maximum length of the demodulation reference signal through the second signaling.
- the value of K is any one of 8, 12, 16, or 24.
- the value of K is 8; or, when the type of the demodulation reference signal is the first type and the maximum length of the demodulation reference signal is 2, the value of K is 16; or, when the type of the demodulation reference signal is the second type and the maximum length of the demodulation reference signal is 1, the value of K is 12; or, when the type of the demodulation reference signal is the second type and the maximum length of the demodulation reference signal is 2, the value of K is 24.
- Table 21-1 includes any port combination of a maximum of 8 streams supported by a type 1 single-symbol R18 port, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, and the number allocated to each terminal is less than or equal to 4. This can be implemented specifically by at least one of rows 12-45 in Table 21-1.
- the network device may indicate port 0, port 1, and port 8 on line 20 to terminal device 1, port 2, port 3, and port 10 on line 25 to terminal device 2, and port 9 and port 11 on line 27 to terminal device 3. That is, the network device indicates 3 streams to terminal device 1, 3 streams to terminal device 2, and 2 streams to terminal device 3, forming an 8-stream transmission pairing.
- the network device indicates port 8, port 9, port 10, and port 11 on line 28 to terminal device 1, port 0 and port 1 on line 31 to terminal device 2, and port 2 and port 3 on line 37 to terminal device 3, that is, the network device indicates 4 streams to terminal device 1, 2 streams to terminal device 2, and 2 streams to terminal device 3, forming an 8-stream transmission pairing.
- the network device indicates port 8, port 9, port 10, and port 11 on line 28 to terminal device 1, and indicates port 0, port 1, port 2, and port 3 on line 39 to terminal device 2, that is, the network device indicates 4 streams to terminal device 1 and 4 streams to terminal device 2, forming an 8-stream transmission pairing.
- the first port index group belongs to a first antenna port set and a second antenna port set; wherein the second antenna port set is a subset of the first antenna port set.
- the first antenna port set may include a first port index group, a second port index group, and a third port index group, and the second antenna port set includes a first port index group and a second port index group. Therefore, the second antenna port set is a subset of the first antenna port set.
- Table 21-1 includes the port index group for the maximum 4-stream transmission supported by the type1 single symbol R15 port, which can be specifically implemented through at least one row in rows 0-11 in Table 21-1, and the number of ports corresponding to each row is less than or equal to 4.
- the network device may indicate port 0 and port 1 of row 2 to terminal device 1, and port 2 and port 3 of row 8 to terminal device 2, so that terminal device 1 and terminal device 2 are simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the network device may indicate port 0 of row 5 to terminal device 1, and port 3 of row 6 to terminal device 2, so that terminal device 1 and terminal device 2 are simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the existing protocol stipulates that when the network device indicates port 0, port 1 and port 2 of row 9, or indicates port 0, port 1, port 2 and port 3 of row 10, or indicates port 0, port 1 and port 2 of row 11 to terminal device 1, the ports corresponding to rows 2, 9 and 11 are only used for single UE transmission, so only terminal device 1 is scheduled, that is, no other terminals are scheduled on the same time-frequency resources as terminal device 1.
- Table 21-1 may not include the value set corresponding to the R15 port (the row corresponding to the port combination of the R15 port). In other words, rows 0 to 11 in Table 21-1 may be deleted.
- the first port index group belongs to a first antenna port set and a second antenna port set; wherein the second antenna port set includes at least one antenna port subset, and the complement of the at least one antenna port subset in the second antenna port set is a subset of the first antenna port set.
- the port index group included in the at least one antenna port subset is used for single-user MIMO transmission.
- the first antenna port set may include a first port index group, a second port index group, and a third port index group, and at least one antenna port subset in the second antenna port set includes the first port index group, the second port index group, and the third port index group, and the second port index group is used for single-user MIMO transmission. Therefore, only the first port index group and the second port index group are subsets of the first antenna port set.
- the first port index group belongs to the first antenna port set and the second antenna port set; wherein, but the second antenna port set is not a subset of the first antenna port set.
- the first antenna port set may include the first port index group, the second port index group, and the third port index group, and the second antenna port set includes the fourth port index group. Therefore, the second antenna port set is not a subset of the first antenna port set.
- the first antenna port set is a table corresponding to R18
- the second antenna port set is a table corresponding to R15
- the first antenna port set is shown in Table 21-9
- the first antenna port set does not include a table corresponding to R15.
- Table 21-2 occupies 6 bits.
- the FD-OCC length corresponding to the unindicated port defaults to 4.
- the FD-OCC length of the same port can be switched dynamically. For specific examples, please refer to the relevant description in Table 21-1.
- Table 21-1 includes the maximum 8-stream transmission supported by the R18 port of type 1, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, which can be specifically achieved through at least one row in rows 12-45 in Table 21-1, and the number of M ports corresponding to each row is less than or equal to 4.
- Table 21-1 includes the maximum 8-stream transmission supported by the R18 port of type 1, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, which can be specifically achieved through at least one row in rows 12-45 in Table 21-1, and the number of M ports corresponding to each row is less than or equal to 4.
- Table 21-1 includes the maximum 8-stream transmission supported by the R18 port of type 1, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, which can be specifically achieved through at least one row in rows 12-45 in Table 21-1, and the number of M ports corresponding to each row is less than or equal to 4.
- the network device can indicate the port combination corresponding to any number of rows in Table 21-2 to the terminal device to implement MU of multiple terminals. For example, the network device indicates port 0 and port 1 in row 7 to terminal device 1, and indicates port 8 and port 9 in row 11 to terminal device 2, so that terminal device 1 and terminal device 2 can be paired.
- Table 21-3 The difference between Table 21-3 and Table 21-2 is that the number of rows corresponding to the port combinations in Table 21-3 is less than that in Table 21-2, so that Table 21-3 only occupies 5 bits, which can save resource overhead.
- Table 21-4 occupies 6 bits. It can be seen from Table 21-4 that the FD-OCC length of the same port can be dynamically switched. For specific examples, please refer to the relevant description in Table 21-1.
- R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include 4 long frequency domain masks orthogonal, But the port combination corresponding to the sequence with 2 long frequency domain masks is not orthogonal.
- the M ports may include port 1 and port 9 corresponding to row 36 or row 37, where port 1 and port 9 belong to the same CDM group, but the 4 long frequency domain masks corresponding to port 1 and port 9 are orthogonal, but the 2 long frequency domain masks corresponding to port 1 and port 9 are not orthogonal.
- the corresponding ports in row 36 or row 37 are replaced with port 0 and port 8.
- the R18 port of type 1 supports up to 8 stream transmission, that is, any port combination including 8 stream transmission in Table 21-4, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, and the number of M ports corresponding to each row is less than or equal to 4.
- Table 21-1 For specific examples, please refer to the relevant description in Table 21-1.
- the network device can indicate the port combination corresponding to any number of rows in Table 21-4 to the terminal device to implement MU of multiple terminals. For example, the network device indicates port 0 and port 1 in row 7 to terminal device 1, and indicates port 8 and port 9 in row 11 to terminal device 2, so that terminal device 1 and terminal device 2 can be paired.
- Table 21-5 The difference between Table 21-5 and Table 21-4 is that the number of rows corresponding to the port combination in Table 21-4 is less than that in Table 21-4, so that Table 21-4 only occupies 5 bits.
- the corresponding ports in row 30 or row 31 are port 1 and port 9, and the corresponding ports in row 30 or row 31 are replaced by port 0 and port 8.
- Table 21-6 occupies 5 bits. It can be seen from Table 21-6 that the R18 port of type 1 supports up to 8 stream transmission, that is, any port combination including 8 stream transmission in Table 21-6, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, and the number of M ports corresponding to each row is less than or equal to 4. For specific examples, please refer to the relevant description in Table 21-1.
- Table 21-6 includes any port combination of the maximum 4-stream transmission supported by the R15 port, which can be specifically implemented by at least one of rows 0-11 in Table 21-6, and the number of ports corresponding to each row is less than or equal to 4.
- the network device can indicate port 0 and port 1 of row 2 to terminal device 1, and port 2 and port 3 of row 8 to terminal device 2, so as to implement simultaneous scheduling of terminal device 1 and terminal device 2 in the same time slot (i.e., scheduling on the same time-frequency resource).
- the existing protocol stipulates that when the network device indicates port 0, port 1 and port 2 of row 9 to terminal device 1, or indicates port 0, port 1, port 2 and port 3 of row 10, or indicates port 0, port 1 and port 2 of row 11, the ports corresponding to rows 2, 9 and 11 are only used for single UE transmission, so only terminal device 1 is scheduled, that is, no other terminal is scheduled on the same time-frequency resource as terminal device 1.
- Table 21-7 occupies 5 bits. It can be seen from Table 21-7 that R15 ports and R18 ports can be MU in one CDM group. That is to say, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence in which 4 long frequency domain masks are orthogonal, but 2 long frequency domain masks are not orthogonal. For example, assuming that port 0 is assigned to other terminals, the M ports may include port 1 and port 9 corresponding to row 29 or row 30.
- Port 1 and port 9 belong to the same CDM group, but the 4 long frequency domain masks corresponding to port 1 and port 9 are orthogonal, but the 2 long frequency domain masks corresponding to port 1 and port 9 are not orthogonal.
- the corresponding ports in row 29 or row 30 may be replaced with port 0 and port 8.
- the R18 port of type 1 supports up to 8 stream transmission, that is, any port combination including 8 stream transmission in Table 21-7, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, and the number of M ports corresponding to each row is less than or equal to 4.
- Table 21-1 For specific examples, please refer to the relevant description in Table 21-1.
- Table 21-7 includes any port combination of the maximum 4-stream transmission supported by the R15 port, which can be specifically implemented by at least one of rows 0-11 in Table 21-7, and the number of ports corresponding to each row is less than or equal to 4.
- the network device can indicate port 0 and port 1 of row 2 to terminal device 1, and port 2 and port 3 of row 8 to terminal device 2, so as to implement simultaneous scheduling of terminal device 1 and terminal device 2 in the same time slot (i.e., scheduling on the same time-frequency resource).
- the existing protocol stipulates that when the network device indicates port 0, port 1 and port 2 of row 9 to terminal device 1, or indicates port 0, port 1, port 2 and port 3 of row 10, or indicates port 0, port 1 and port 2 of row 11, the ports corresponding to rows 2, 9 and 11 are only used for single UE transmission, so only terminal device 1 is scheduled, that is, no other terminal is scheduled on the same time-frequency resource as terminal device 1.
- Table 21-8 occupies 5 bits. It can be seen from Table 21-8 that R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include 4 long frequency domains. The masks are orthogonal, but the 2-long frequency domain masks are not orthogonal. For example, assuming that port 0 is allocated to other terminals, the M ports may include port 1 and port 9 corresponding to row 29 or row 30. Port 1 and port 9 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1 and port 9 are orthogonal, but the 2-long frequency domain masks corresponding to port 1 and port 9 are not orthogonal. Alternatively, the corresponding ports in row 29 or row 30 may be replaced with port 0 and port 8.
- the R18 port of type 1 supports up to 8 stream transmission, that is, any port combination including 8 stream transmission in Table 21-8, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, and the number of M ports corresponding to each row is less than or equal to 4.
- Table 21-1 For specific examples, please refer to the relevant description in Table 21-1.
- the network device can indicate the port combination corresponding to any number of rows in Table 21-2 to the terminal device to implement MU of multiple terminals. For example, the network device indicates port 0 and port 1 in row 7 to terminal device 1, and indicates port 8 and port 9 in row 19 to terminal device 2, so that terminal device 1 and terminal device 2 can be paired.
- Table 21-9 occupies 5 bits. It can be seen from Table 21-9 that the R18 port of type 1 supports up to 8 stream transmission, that is, any port combination including 8 stream transmission in Table 21-8, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, and the number of M ports corresponding to each row is less than or equal to 4. For specific examples, please refer to the relevant description in Table 21-1.
- Table 21-9 does not include the value set corresponding to the R15 port (the row corresponding to the port combination of the R15 port).
- Table 21-9 can be used in combination with Table 18-1 to Table 19-2 of the first embodiment.
- the network device indicates 9 rows of port 0, port 1, port 8, and port 9 to the terminal device. Accordingly, if the network device indicates that the value of the first DCI field is 0, the 4-length orthogonal mask corresponding to port 0, port 1, port 8, and port 9 has been allocated to other terminals, or the FD-OCC length corresponding to port 0, port 1, port 8, and port 9 is 2 long; if the network device indicates that the value of the first DCI field is 1, the 4-length orthogonal mask corresponding to port 0, port 1, port 8, and port 9 has not been allocated to other terminals, or the FD-OCC length corresponding to port 0, port 1, port 8, and port 9 is 4 long.
- the network device may indicate the contents of Table 22-1 to Table 22-9 to the terminal device through the first indication information, and then the terminal device may determine the ports allocated to it by the network device and the corresponding FD-OCC lengths of these ports according to the first indication information combined with Table 22-1 to Table 22-9.
- the default FD-OCC length corresponding to the unindicated port is 4.
- the default FD-OCC length corresponding to the unindicated port may also be 2 or 6, which is not limited in the embodiment of the present application.
- the default FD-OCC length of R18 can be determined by Table 5.1-7.3 corresponding to the above formulas 2.1 to 2.4.
- Table 22-1 occupies 7 bits. It can be seen from Table 22-1 that the FD-OCC length of the same port can be switched dynamically (for example, the network device can instruct the terminal device to switch through DCI signaling).
- the first indication information is carried in the first signaling, and the first signaling also includes the second indication information, and the second indication information is used to indicate the first value, and the first value is associated with the first port index group, and the first port index group includes the indexes of M ports.
- the first value can be understood as the value of the row in Table 22-1.
- the indexes of the M ports include the index of port 0; wherein, when the first value is 0, the FD-OCC length of port 0 is 4; when the first value is 29, the index of port 0 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the index of port 0; when the first value is 3, the FD-OCC length of port 0 is 4; when the first value is 32, the index of port 0 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0 is 2.
- the indexes of the M ports include the index of port 1; wherein, when the first value is 1, the FD-OCC length of port 1 is 4; when the first value is 30, the index of port 1 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 1 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the index of port 1; when the first value is 4, the FD-OCC length of port 1 is 4; when the first value is 33, the index of port 1 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 1 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the indexes of port 0 and port 1; wherein, when the first value is 2, the FD-OCC length of port 0 and port 1 is 4; when the first value is 31, the indexes of port 0 and port 1 respectively correspond to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0 and port 1 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the indexes of port 0 and port 1; wherein, when the first value is 7, the FD-OCC length of port 0 and port 1 is 4; when the first value is 34, the indexes of port 0 and port 1 respectively correspond to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0 and port 1 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the index of port 2; when the first value is 5, the FD-OCC length of port 2 is 4; when the first value is 33, the index of port 2 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 2 is 2.
- the indexes of the M ports include the index of port 3; when the first value is 6, the FD-OCC length of port 3 is 4; when the first value is 36, the index of port 3 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 3 is 2.
- the indexes of the M ports include the indexes of port 2 and port 3; wherein, when the first value is 8, the FD-OCC length of port 2 and port 3 is 4; when the first value is 37, the indexes of port 2 and port 3 respectively correspond to the first identifier (i.e., FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 2 and port 3 is 2.
- the first identifier i.e., FD-OCC2
- the indexes of the M ports include the indexes of port 0, port 2 and port 3, and the indexes of port 0, port 2 and port 3 correspond to the first identifier (i.e., FD-OCC2) respectively, and the first identifier indicates that the FD-OCC length corresponding to port 0, port 2 and port 3 is 2; when the first value is 8, the indexes of the M ports include the indexes of port 2 and port 3, and the FD-OCC length of port 2 and port 3 is 4; when the first value is 3, the indexes of the M ports include the index of port 0, and the FD-OCC length of port 0 is 4.
- the first identifier i.e., FD-OCC2
- the indexes of the M ports include the indexes of port 0, port 1, port 2 and port 3; wherein, when the first value is 10, the FD-OCC length of port 0, port 1, port 2 and port 3 is 4; when the first value is 39, the indexes of port 0, port 1, port 2 and port 3 respectively correspond to the first identifier (i.e., FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0, port 1, port 2 and port 3 is 2.
- the first identifier i.e., FD-OCC2
- the indexes of the M ports include the index of port 0.
- the FD-OCC length of port 0 is 4; when the first value is 82, the index of port 0 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0 is 2.
- the indexes of the M ports include the index of port 1; when the first value is 47, the FD-OCC length of port 1 is 4; when the first value is 83, the index of port 1 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 1 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the index of port 2; when the first value is 48, the FD-OCC length of port 2 is 4; when the first value is 84, the index of port 2 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 2 is 2.
- the indexes of the M ports include the index of port 3; when the first value is 49, the FD-OCC length of port 3 is 4; when the first value is 85, the index of port 3 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 3 is 2.
- the indexes of the M ports include the index of port 4; wherein, when the first value is 50, the FD-OCC length of port 4 is 4; when the first value is 86, the index of port 4 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 4 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the index of port 5; when the first value is 51, the FD-OCC length of port 5 is 4; when the first value is 87, the index of port 5 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 5 is 2.
- the FD-OCC lengths of the ports corresponding to lines 88 to 99 can also be dynamically switched.
- R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence with 4 orthogonal long frequency domain masks but 2 non-orthogonal long frequency domain masks.
- the M ports allocated by the network device to the current terminal device may include port 1 and port 9 corresponding to row 40 or row 41, where port 1 and port 9 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1 and port 9 are orthogonal, but the 2-long frequency domain masks corresponding to port 1 and port 9 are not orthogonal.
- the corresponding ports in row 40 or row 41 may be replaced with port 0 and port 8.
- the M ports allocated by the network device to the current terminal device may include port 1 and port 9 corresponding to row 100.
- Port 1 and port 9 belong to the same CDM group, but the 4-length frequency domain masks corresponding to port 1 and port 9 are orthogonal, but the 2-length frequency domain masks corresponding to port 1 and port 9 are not orthogonal.
- the corresponding ports in row 100 can be replaced by port 0 and port 8.
- the M ports allocated by the network device to the current terminal device may include port 1, port 5, and port 9 corresponding to row 101.
- Port 1, port 5, and port 9 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1, port 5, and port 9 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 5, and port 9 are not orthogonal.
- the corresponding ports in row 101 can be replaced by port 0, port 4, and port 8.
- the M ports allocated by the network device to the current terminal device may include port 1, port 5, port 9, and port 13 corresponding to row 102.
- Port 1, port 5, port 9, and port 13 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1, port 5, port 9, and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 5, port 9, and port 13 are not orthogonal.
- the corresponding ports in row 102 can be replaced by port 0, port 4, port 8, and port 12.
- the FD-OCC lengths of the M ports associated with the first value may be different, that is, the ports in the same row of Table 22-1 may correspond to different FD-OCC lengths.
- the M ports may include the corresponding port 0, port 1, and port 9 in the 42 rows or 43 rows, the FD-OCC length of port 0 is 2, the FD-OCC length of port 1 is 4, and the FD-OCC length of port 9 is 4.
- the corresponding ports in the 42 rows or 43 rows may be replaced with port 0, port 1, and port 8, wherein the FD-OCC length of port 0 is 4, the FD-OCC length of port 1 is 2, and the FD-OCC length of port 8 is 4.
- the M ports may include the corresponding port 0 and port 1 in the 44 or 45 rows, the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1 is 4.
- the corresponding ports in the 44 or 45 rows are still port 0 and port 1, but the FD-OCC length of port 0 is 4, and the FD-OCC length of port 1 is 2.
- the M ports may include the corresponding ports 0 and 1 in row 103, the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1 is 4.
- the corresponding ports in row 103 may be replaced by ports 0 and 5, wherein the FD-OCC length of port 0 is 2, and the FD-OCC length of port 5 is 4.
- the corresponding ports in row 103 may be replaced by ports 0 and port 9, wherein the FD-OCC length of port 0 is 2, and the FD-OCC length of port 9 is 4.
- the corresponding ports in row 103 may be replaced by ports 0 and port 13, wherein the FD-OCC length of port 0 is 2, and the FD-OCC length of port 13 is 4.
- the corresponding ports in row 103 may be replaced by ports 0 and port 1, wherein the FD-OCC length of port 0 is 4, and the FD-OCC length of port 1 is 2.
- the corresponding ports in row 103 may be replaced by port 1 and port 4, where the FD-OCC length of port 1 is 2 and the FD-OCC length of port 4 is 4.
- the corresponding ports in row 103 may be replaced by port 1 and port 8, where the FD-OCC length of port 1 is 2 and the FD-OCC length of port 8 is 4.
- the corresponding ports in row 103 may be replaced by port 1 and port 12, where the FD-OCC length of port 1 is 2 and the FD-OCC length of port 12 is 4.
- the M ports may include the corresponding ports 0, 1 and 13 in the 104 rows, the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 1 and 13 are 4.
- the corresponding ports in the 104 rows may be replaced by ports 0, 5 and 13, wherein the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 5 and 13 are 4.
- the corresponding ports in the 104 rows may be replaced by ports 0, 5 and 9, wherein the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 5 and 9 are 4.
- the corresponding ports in the 104 rows may be replaced by ports 0, 1 and 9, wherein the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 5 and 9 are 4.
- the corresponding ports in row 104 may be replaced by port 1, port 4, and port 12, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 4 and port 12 is 4.
- the corresponding ports in row 104 may be replaced by port 0, port 1, and port 12, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 0 and port 12 is 4.
- the corresponding ports in row 104 may be replaced by port 1, port 4, and port 8, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 4 and port 8 is 4.
- the corresponding ports in row 104 may be replaced by port 0, port 1, and port 8, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 0 and port 8 is 4.
- the M ports may include the corresponding ports 0, 1, 5, and 9 in the 105 rows, the FD-OCC length of port 0 is 2, and the FD-OCC length of ports 1, 5, and 9 is 4.
- the corresponding ports in the 105 rows may be replaced by ports 0, 1, 5, and 13, the FD-OCC length of port 0 is 2, and the FD-OCC length of ports 1, 5, and 13 is 4.
- the corresponding ports in the 105 rows may be replaced by ports 0, 1, 9, and 13, the FD-OCC length of port 0 is 2, and the FD-OCC length of ports 1, 9, and 13 is 4.
- the corresponding ports in the 105 rows may be replaced by ports 0, 1, 4, and 8, the FD-OCC length of port 1 is 2, and the FD-OCC length of ports 0, 4, and 8 is 4.
- the corresponding ports in row 105 can be replaced by port 0, port 1, port 4 and port 12, where the FD-OCC length of port 1 is 2, and the FD-OCC length of port 0, port 4 and port 12 is 4.
- the corresponding ports in row 105 can be replaced by port 0, port 1, port 8 and port 12, where the FD-OCC length of port 1 is 2, and the FD-OCC length of port 0, port 8 and port 12 is 4.
- the M ports may include the corresponding ports 0, 4, and 1 in the 106 rows, the FD-OCC lengths of ports 0 and 4 are 2, and the FD-OCC length of port 1 is 4.
- the corresponding ports in the 106 rows may be replaced by ports 0, 4, and 5, the FD-OCC lengths of ports 0 and 4 are 2, and the FD-OCC length of port 5 is 4.
- the corresponding ports in the 106 rows may be replaced by ports 0, 4, and 9, the FD-OCC lengths of ports 0 and 4 are 2, and the FD-OCC length of port 9 is 4.
- the corresponding ports in the 106 rows may be replaced by ports 0, 4, and 13, the FD-OCC lengths of ports 0 and 4 are 2, and the FD-OCC length of port 13 is 4.
- the corresponding ports in row 106 may be replaced by port 1, port 5, and port 4, the FD-OCC length of ports 1 and port 5 is 2, and the FD-OCC length of port 4 is 4.
- the corresponding ports in row 106 may be replaced by port 1, port 5, and port 8, the FD-OCC length of ports 1 and port 5 is 2, and the FD-OCC length of port 8 is 4.
- the corresponding ports in row 106 may be replaced by port 0, port 1, port 5, and port 4, the FD-OCC length of ports 1 and port 5 is 2, and the FD-OCC length of ports 0 and port 4 is 4.
- the corresponding ports in row 106 may be replaced by port 1, port 5, and port 12, the FD-OCC length of ports 1 and port 5 is 2, and the FD-OCC length of port 12 is 4.
- the M ports may include the corresponding ports 0, 4, 9, and 13 in row 107, the FD-OCC length of ports 0 and 4 is 2, and the FD-OCC length of ports 9 and 13 is 4.
- the corresponding ports in row 107 can be replaced by ports 0, 4, 5, and 13, the FD-OCC length of ports 0 and 4 is 2, and the FD-OCC length of ports 9 and 13 is 4.
- 5 and port 13 have an FD-OCC length of 4.
- the corresponding ports in row 107 can be replaced by port 0, port 4, port 5 and port 9, the FD-OCC length of port 0 and port 4 is 2, and the FD-OCC length of port 5 and port 9 is 4.
- the corresponding ports in row 107 can be replaced by port 8, port 1, port 5 and port 12, the FD-OCC length of port 1 and port 5 is 2, and the FD-OCC length of port 8 and port 12 is 4.
- the corresponding ports in row 107 can be replaced by port 4, port 1, port 5 and port 12, the FD-OCC length of port 1 and port 5 is 2, and the FD-OCC length of port 4 and port 12 is 4.
- the corresponding ports in row 107 can be replaced by port 4, port 1, port 5 and port 8, the FD-OCC length of port 1 and port 5 is 2, and the FD-OCC length of port 4 and port 8 is 4.
- the corresponding ports in row 107 may be replaced by port 0, port 1, port 5, and port 4, the FD-OCC length of port 1 and port 5 being 2, and the FD-OCC length of port 0 and port 4 being 4.
- the maximum supported stream transmission is 16, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 16, and the number allocated to each terminal is less than or equal to 4. This can be achieved specifically through rows 12 to 107 in Table 22-1.
- the network device may indicate port 0, port 1, and port 8 on line 20 to terminal device 1, port 2, port 3, and port 10 on line 25 to terminal device 2, and port 9 and port 11 on line 27 to terminal device 3. That is, the network device indicates 3 streams to terminal device 1, 3 streams to terminal device 2, and 2 streams to terminal device 3, forming an 8-stream transmission pairing.
- the network device may indicate 15 lines of port 0, port 1, and port 8 to terminal device 1, 61 lines of port 2, port 3, and port 6 to terminal device 2, 81 lines of port 7, port 12, and port 13 to terminal device 3, and 80 lines of port 10, port 11, port 14, and port 15 to terminal device 4. That is, the network device indicates 3 streams to terminal device 1, 3 streams to terminal device 2, 3 streams to terminal device 3, and 4 streams to terminal device 4, forming 16-stream transmission pairings.
- the ports corresponding to line 81 can be replaced by port 5, port 14, and port 15.
- the network device can indicate port 7, port 10, and port 11 of line 78 to terminal device 1, port 2, port 3, and port 6 of line 61 to terminal device 2, port 5, port 14, and port 15 of line 81 to terminal device 3, and port 8, port 9, port 12, and port 13 of line 79 to terminal device 4. That is, the network device indicates 3 streams to terminal device 1, 3 streams to terminal device 2, 3 streams to terminal device 3, and 4 streams to terminal device 4, forming 16-stream transmission pairing.
- Table 22-1 includes any port combination of up to 8 stream transmissions supported by type1 dual-symbol R15 ports, and the number of ports allocated to each terminal is less than or equal to 4. This can be specifically implemented through rows 0 to 11 in Table 22-1.
- the network device can indicate port 0 and port 1 of row 2 to terminal device 1, and port 2 and port 3 of row 8 to terminal device 2, so that terminal device 1 and terminal device 2 are simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the network device can indicate port 0 of row 5 to terminal device 1, and port 3 of row 6 to terminal device 2, so that terminal device 1 and terminal device 2 are simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the existing protocol stipulates that when the network device indicates port 0, port 1 and port 2 of row 9 to terminal device 1, or indicates port 0, port 1, port 2 and port 3 of row 10, or indicates port 0, port 1 and port 2 of row 11, or indicates port 0, port 2, port 4 and port 6 of row 64, the ports corresponding to rows 9, 10, 11 and 64 are only used for single UE transmission, so only terminal device 1 is scheduled, that is, no other terminals are scheduled on the same time-frequency resources as terminal device 1.
- Table 22-1 may not include the value set corresponding to the R15 port (the row corresponding to the port combination of the R15 port). In other words, rows 0 to 11 in Table 22-1 may be deleted.
- Table 22-2 occupies 7 bits. It can be seen from Table 22-2 that the FD-OCC length of the same port can be dynamically switched (for example, the network device can instruct the terminal device to switch through DCI signaling). For specific examples, please refer to the relevant description of Table 22-1.
- the maximum supported stream transmission is 16, and the total number of ports allocated by the network device to the paired terminal devices is less than or equal to 16, and the number allocated to each terminal is less than or equal to 4.
- the network device may indicate port 0, port 1, and port 8 of line 12 to terminal device 1, port 2, port 3, and port 10 of line 22 to terminal device 2, and port 9 and port 11 of line 24 to terminal device 3. That is, the network device indicates 3 streams to terminal device 1, 3 streams to terminal device 2, and 2 streams to terminal device 3, forming an 8-stream transmission pairing.
- the network device may indicate 12 lines of port 0, port 1, and port 8 to terminal device 1, 51 lines of port 2, port 3, and port 6 to terminal device 2, 70 lines of port 7, port 12, and port 13 to terminal device 3, and 69 lines of port 10, port 11, port 14, and port 15 to terminal device 4. That is, the network device indicates 3 streams to terminal device 1, 3 streams to terminal device 2, 3 streams to terminal device 3, and 4 streams to terminal device 4, forming 16-stream transmission pairings.
- the ports corresponding to line 70 can be replaced by port 5, port 14, and port 15.
- the network device can indicate port 7, port 10, and port 11 of line 67 to terminal device 1, port 2, port 3, and port 6 of line 51 to terminal device 2, port 5, port 14, and port 15 of line 70 to terminal device 3, and port 8, port 9, port 12, and port 13 of line 68 to terminal device 4. That is, the network device indicates 3 streams to terminal device 1, 3 streams to terminal device 2, 3 streams to terminal device 3, and 4 streams to terminal device 4, forming 16-stream transmission pairing.
- the network device can indicate the port combination corresponding to any number of rows in Table 22-2 to the terminal device to implement MU of multiple terminals. For example, the network device indicates port 0 and port 1 in row 7 to terminal device 1, and indicates port 8 and port 9 in row 11 to terminal device 2, so that the pairing of terminal device 1 and terminal device 2 can be implemented.
- Table 22-3 only contains three corresponding examples (i.e., row 60, row 61, and row 62) in which the FD-OCC length of the same port can be dynamically switched, so that Table 22-3 occupies 6 bits, while Table 22-2 occupies 7 bits, so Table 22-3 consumes fewer bits.
- Table 22-4 occupies 7 bits. It can be seen from Table 22-4 that the FD-OCC length of the same port can be dynamically switched (for example, the network device can instruct the terminal device to switch through DCI signaling). For specific examples, please refer to the relevant description of Table 22-1.
- R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence with 4 orthogonal long frequency domain masks but 2 non-orthogonal long frequency domain masks.
- the M ports allocated by the network device to the current terminal device may include port 1 and port 9 corresponding to row 37 or row 38, where port 1 and port 9 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1 and port 9 are orthogonal, but the 2-long frequency domain masks corresponding to port 1 and port 9 are not orthogonal.
- the corresponding ports in row 37 or row 38 may be replaced with port 0 and port 8.
- the M ports allocated by the network device to the current terminal device may include port 1 and port 9 corresponding to row 92.
- Port 1 and port 9 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1 and port 9 are orthogonal, but the 2-long frequency domain masks corresponding to port 1 and port 9 are not orthogonal.
- the corresponding ports in row 92 can be replaced by port 0 and port 8.
- the M ports allocated by the network device to the current terminal device may include the M ports in line 93.
- the corresponding ports 1, 5 and 9 belong to the same CDM group, but the 4-length frequency domain masks corresponding to ports 1, 5 and 9 are orthogonal, but the 2-length frequency domain masks corresponding to ports 1, 5 and 9 are not orthogonal.
- the corresponding ports in row 93 can be replaced by ports 0, 4 and 8.
- the M ports allocated by the network device to the current terminal device may include port 1, port 5, port 9, and port 13 corresponding to row 94.
- Port 1, port 5, port 9, and port 13 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1, port 5, port 9, and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 5, port 9, and port 13 are not orthogonal.
- the corresponding ports in row 94 can be replaced by port 0, port 4, port 8, and port 12.
- the R18 port of type 1 supports a maximum of 16 stream transmissions, that is, Table 22-4 includes any port combination for 16 stream transmissions, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 16, and the number of M ports corresponding to each row is less than or equal to 4.
- the network device may indicate port 0, port 1, and port 8 of line 12 to terminal device 1, port 2, port 3, and port 10 of line 22 to terminal device 2, and port 9 and port 11 of line 24 to terminal device 3. That is, the network device indicates 3 streams to terminal device 1, 3 streams to terminal device 2, and 2 streams to terminal device 3, forming an 8-stream transmission pairing.
- the network device may indicate 12 lines of port 0, port 1, and port 8 to terminal device 1, 54 lines of port 2, port 3, and port 6 to terminal device 2, 73 lines of port 7, port 12, and port 13 to terminal device 3, and 72 lines of port 10, port 11, port 14, and port 15 to terminal device 4. That is, the network device indicates 3 streams to terminal device 1, 3 streams to terminal device 2, 3 streams to terminal device 3, and 4 streams to terminal device 4, forming 16-stream transmission pairings.
- the ports corresponding to line 73 can be replaced by port 5, port 14, and port 15.
- the network device can indicate port 7, port 10, and port 11 of line 70 to terminal device 1, port 2, port 3, and port 6 of line 54 to terminal device 2, port 5, port 14, and port 15 of line 73 to terminal device 3, and port 8, port 9, port 12, and port 13 of line 71 to terminal device 4. That is, the network device indicates 3 streams to terminal device 1, 3 streams to terminal device 2, 3 streams to terminal device 3, and 4 streams to terminal device 4, forming 16-stream transmission pairings.
- the network device can indicate the port combination corresponding to any number of rows in Table 21-4 to the terminal device to implement MU of multiple terminals. For example, the network device indicates port 0 and port 1 in row 7 to terminal device 1, and indicates port 8 and port 9 in row 11 to terminal device 2, so that terminal device 1 and terminal device 2 can be paired.
- Table 22-5 occupies 7 bits.
- Table 22-5 only contains three examples (i.e., rows 61, 62, and 63) corresponding to the dynamic switching of the FD-OCC length of the same port, and only contains three examples (i.e., rows 64, 65, and 66) corresponding to the MU of the R15 port and the R18 port in a CDM group.
- Table 22-5 occupy 6 bits, while Table 22-4 occupies 7 bits. Therefore, Table 22-5 can reduce bit consumption relative to Table 22-4.
- Table 22-6 occupies 6 bits. It can be seen from Table 22-6 that for the type 1 dual-symbol R18 port, the maximum supported stream transmission is 16, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 16, and the number allocated to each terminal is less than or equal to 4. For specific examples, please refer to the relevant description in Table 22-1.
- Table 22-6 includes any port combination of up to 8 stream transmissions supported by type1 dual-symbol R15 ports, and the number of ports allocated to each terminal is less than or equal to 4. This can be specifically implemented through rows 0 to 11 in Table 22-6.
- the network device can indicate port 0 and port 1 of row 2 to terminal device 1, and port 2 and port 3 of row 8 to terminal device 2, so that terminal device 1 and terminal device 2 are simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the network device can indicate port 0 of row 5 to terminal device 1, and port 3 of row 6 to terminal device 2, so that terminal device 1 and terminal device 2 are simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the existing protocol stipulates that when the network device indicates port 0, port 1 and port 2 of row 9 to terminal device 1, or indicates port 0, port 1, port 2 and port 3 of row 10, or indicates port 0, port 1 and port 2 of row 11, or indicates port 0, port 2, port 4 and port 6 of row 46, the ports corresponding to rows 9, 10, 11 and 46 are only used for single UE transmission, so only terminal device 1 is scheduled, that is, no other terminals are scheduled on the same time-frequency resources as terminal device 1.
- Table 22-7 occupies 6 bits. It can be seen from Table 22-7 that R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence of 4 orthogonal long frequency domain masks but 2 non-orthogonal long frequency domain masks.
- the M ports allocated by the network device to the current terminal device may include port 1 and port 9 corresponding to row 61.
- Port 1 and port 9 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1 and port 9 are orthogonal, but the 2-long frequency domain masks corresponding to port 1 and port 9 are not orthogonal.
- the corresponding ports in row 61 can be replaced by port 0 and port 8.
- the M ports allocated by the network device to the current terminal device may include port 1, port 5, and port 9 corresponding to row 62.
- Port 1, port 5, and port 9 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1, port 5, and port 9 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 5, and port 9 are not orthogonal.
- the corresponding ports in row 62 can be replaced by port 0, port 4, and port 8.
- the M ports allocated by the network device to the current terminal device may include port 1, port 5, port 9, and port 13 corresponding to row 63.
- Port 1, port 5, port 9, and port 13 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1, port 5, port 9, and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 5, port 9, and port 13 are not orthogonal.
- the corresponding ports in row 63 can be replaced by port 0, port 4, port 8, and port 12.
- Table 22-7 for type 1 dual-symbol R18 ports, a maximum of 16 streams are supported, that is, Table 22-7 includes 16 streams.
- the total number of ports assigned by the network device to the paired terminal device is less than or equal to 16, and the number of M ports corresponding to each row is less than or equal to 4. For specific examples, see the relevant description in Table 22-1.
- Table 22-7 includes any port combination of up to 4 stream transmissions supported by type1 dual-symbol R15 ports, and the number of ports corresponding to each port combination (i.e., each row in Table 22-7) is less than or equal to 4, i.e., rows 0 to 11 in Table 22-7.
- the network device can indicate port 0 and port 1 of row 2 to terminal device 1, and port 2 and port 3 of row 8 to terminal device 2, so that terminal device 1 and terminal device 2 are simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the network device can indicate port 0 of row 5 to terminal device 1, and port 3 of row 6 to terminal device 2, so that terminal device 1 and terminal device 2 are simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the existing protocol stipulates that when the network device indicates port 0, port 1 and port 2 of row 9 to terminal device 1, or indicates port 0, port 1, port 2 and port 3 of row 10, or indicates port 0, port 1 and port 2 of row 11, or indicates port 0, port 2, port 4 and port 6 of row 43, the ports corresponding to rows 9, 10, 11 and 43 are only used for single UE transmission, so only terminal device 1 is scheduled, that is, no other terminals are scheduled on the same time-frequency resources as terminal device 1.
- Table 22-8 occupies 6 bits. It can be seen from Table 22-8 that for type1 dual-symbol R18 ports, a maximum of 16 stream transmissions are supported, that is, any port combination including 16 stream transmissions in Table 22-4, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 16, and the number of M ports corresponding to each row is less than or equal to 4.
- the network device may indicate port 0, port 1, and port 8 of line 12 to terminal device 1, port 2, port 3, and port 10 of line 22 to terminal device 2, and port 9 and port 11 of line 24 to terminal device 3. That is, the network device indicates 3 streams to terminal device 1, 3 streams to terminal device 2, and 2 streams to terminal device 3, forming an 8-stream transmission pairing.
- the network device may indicate port 0, port 1, and port 8 on line 12 to terminal device 1, port 2, port 3, and port 6 on line 40 to terminal device 2, and port 7, port 12, and port 13 on line 59 to terminal device 3, and Port 10, port 11, port 14, and port 15 of row 58 are indicated to terminal device 4. That is, the network device indicates 3 streams to terminal device 1, 3 streams to terminal device 2, 3 streams to terminal device 3, and 4 streams to terminal device 4, forming 16-stream transmission pairing.
- the ports corresponding to line 59 can be replaced with port 5, port 14, and port 15.
- the network device can indicate port 7, port 10, and port 11 of line 56 to terminal device 1, port 2, port 3, and port 6 of line 40 to terminal device 2, port 5, port 14, and port 15 of line 59 to terminal device 3, and port 8, port 9, port 12, and port 13 of line 56 to terminal device 4. That is, the network device indicates 3 streams to terminal device 1, 3 streams to terminal device 2, 3 streams to terminal device 3, and 4 streams to terminal device 4, forming 16-stream transmission pairing.
- the network device can indicate the port combination corresponding to any number of rows in Table 21-8 to the terminal device to implement MU of multiple terminals. For example, the network device indicates port 0 and port 1 in row 7 to terminal device 1, and indicates port 8 and port 9 in row 11 to terminal device 2, so that the pairing of terminal device 1 and terminal device 2 can be implemented.
- Table 22-9 occupies 6 bits. It can be seen from Table 22-9 that R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence of 4 orthogonal long frequency domain masks but 2 non-orthogonal long frequency domain masks.
- the M ports assigned by the network device to the current terminal device may include port 1 and port 9 corresponding to row 17 or row 18.
- Port 1 and port 9 belong to the same CDM group, but the 4-length frequency domain masks corresponding to port 1 and port 9 are orthogonal, but the 2-length frequency domain masks corresponding to port 1 and port 9 are not orthogonal.
- the corresponding ports in row 17 or row 18 may be replaced by port 0 and port 8.
- the M ports allocated by the network device to the current terminal device may include port 1 and port 9 corresponding to row 40.
- Port 1 and port 9 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1 and port 9 are orthogonal, but the 2-long frequency domain masks corresponding to port 1 and port 9 are not orthogonal.
- the corresponding ports in row 40 can be replaced by port 0 and port 8.
- the M ports allocated by the network device to the current terminal device may include port 1, port 5, and port 9 corresponding to row 41.
- Port 1, port 5, and port 9 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1, port 5, and port 9 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 5, and port 9 are not orthogonal.
- the corresponding ports in row 41 can be replaced by port 0, port 4, and port 8.
- the M ports allocated by the network device to the current terminal device may include port 1, port 5, port 9, and port 13 corresponding to row 42.
- Port 1, port 5, port 9, and port 13 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1, port 5, port 9, and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 5, port 9, and port 13 are not orthogonal.
- the corresponding ports in row 42 can be replaced by port 0, port 4, port 8, and port 12.
- the FD-OCC lengths of the M ports associated with the first value may be different, that is, the ports in the same row of Table 22-9 may correspond to different FD-OCC lengths.
- a maximum of 16 streams are supported, that is, any port combination for 16 streams is included in Table 22-9, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 16, and the number of ports allocated to each terminal is less than or equal to 4.
- Table 22-1 For specific examples, please refer to the relevant description in Table 22-1.
- Table 22-9 does not include the port combination corresponding to the R15 port.
- Table 22-9 can be used in combination with Table 18-1 to Table 19-1 of the first embodiment.
- the network device indicates 9 rows of port 0, port 1, port 8, and port 9 to the terminal device. Accordingly, if the network device indicates that the value of the first DCI field is 0, the 4-length orthogonal mask corresponding to port 0, port 1, port 8, and port 9 has been allocated to other terminals, or the FD-OCC length corresponding to port 0, port 1, port 8, and port 9 is 2 long; if the network device indicates that the value of the first DCI field is 1, the 4-length orthogonal mask corresponding to port 0, port 1, port 8, and port 9 has not been allocated to other terminals, or the FD-OCC length corresponding to port 0, port 1, port 8, and port 9 is 4 long.
- the network device may indicate the contents of Table 23-1 to Table 23-9 to the terminal device through the first indication information, and then the terminal device may determine the ports allocated to it by the network device and the corresponding FD-OCC lengths of these ports according to the first indication information combined with Table 23-1 to Table 23-9.
- the default FD-OCC length of R18 can be determined by Table 5.1 to Table 7.3 corresponding to the above formulas 2.1 to 2.4.
- Table 23-1 occupies 7 bits.
- the FD-OCC length corresponding to the unindicated port defaults to 4. It can be seen from Table 23-1 that the FD-OCC length of the same port can be switched dynamically (for example, the network device can instruct the terminal device to switch through DCI signaling).
- the first indication information is carried in the first signaling, and the first signaling also includes the second indication information, and the second indication information is used to indicate the first value, and the first value is associated with the index of M ports. Among them, the first value can be understood as the index of the row in Table 23-1.
- the indexes of the M ports include the index of port 0; wherein, when the first value is 0, the FD-OCC length of port 0 is 4; when the first value is 57, the index of port 0 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the index of port 0; when the first value is 3, the FD-OCC length of port 0 is 4; when the first value is 60, the index of port 0 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0 is 2.
- the indexes of the M ports include the index of port 1; wherein, when the first value is 1, the FD-OCC length of port 1 is 4; when the first value is 58, the index of port 1 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 1 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the index of port 1; when the first value is 4, the FD-OCC length of port 1 is 4; when the first value is 61, the index of port 1 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 1 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the indexes of port 0 and port 1; wherein, when the first value is 2, the FD-OCC length of port 0 and port 1 is 4; when the first value is 59, the indexes of port 0 and port 1 correspond to the first identifier (ie, FD-OCC2) respectively, and the first identifier indicates that the FD-OCC length corresponding to port 0 and port 1 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the indexes of port 0 and port 1; wherein, when the first value is 7, the FD-OCC length of port 0 and port 1 is 4; when the first value is 64, the indexes of port 0 and port 1 correspond to the first identifier (i.e., FD-OCC2) respectively, and the first identifier indicates that the FD-OCC length corresponding to port 0 and port 1 is 2.
- the first identifier i.e., FD-OCC2
- the indexes of the M ports include the index of port 2; when the first value is 5, the FD-OCC length of port 2 is 4; when the first value is 62, the index of port 2 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 2 is 2.
- the indexes of the M ports include the index of port 3; when the first value is 6, the FD-OCC length of port 3 is 4; when the first value is 63, the index of port 3 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 3 is 2.
- the indexes of the M ports include the indexes of port 2 and port 3; wherein, when the first value is 8, the FD-OCC length of port 2 and port 3 is 4; when the first value is 65, the indexes of port 2 and port 3 respectively correspond to the first identifier (i.e., FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 2 and port 3 is 2.
- the first identifier i.e., FD-OCC2
- the FD-OCC lengths of the ports corresponding to lines 66 to 79 refer to the example description.
- R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence in which 4 long frequency domain masks are orthogonal, but 2 long frequency domain masks are not orthogonal.
- the M ports may include port 1 and port 13 corresponding to any item in row 80, row 81, or row 82, and port 1 and port 13 belong to the same CDM group, but the 4 long frequency domain masks corresponding to port 1 and port 13 are orthogonal, but the 2 long frequency domain masks corresponding to port 1 and port 13 are not orthogonal.
- the port corresponding to any item in row 80, row 81, or row 82 may be replaced with port 0 and port 12.
- the FD-OCC lengths of the M ports associated with the first value may be different, that is, the ports in the same row of Table 23-1 may correspond to different FD-OCC lengths.
- the M ports may include port 0, port 1, and port 13 corresponding to any one of 83, 84, and 85, the FD-OCC length of port 0 is 2, and the FD-OCC lengths of port 1 and port 13 are 4.
- the port corresponding to any one of 83, 84, and 85 may be replaced by port 0, port 1, and port 12, wherein the FD-OCC length of port 0 is 4, the FD-OCC length of port 1 is 2, and the FD-OCC length of port 12 is 4.
- the M ports may include port 0 and port 1 corresponding to any one of 86, 87, and 88, the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1 is 4.
- the FD-OCC length of port 0 is 4, and the FD-OCC length of port 1 is 2.
- Table 23-1 includes any port combination of up to 12 streams supported by the R18 port of type2 single symbol, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, and the number of ports allocated to each terminal is less than or equal to 4. That is, the port combination corresponding to any multiple rows from 24 to 56 in Table 23-1.
- the network device may indicate 54 lines of port 13, port 15, and port 17 to terminal device 1, 52 lines of port 4, port 5, and port 16 to terminal device 2, 47 lines of port 2, port 3, and port 14 to terminal device 3, and 42 lines of port 0, port 1, and port 12 to terminal device 4, that is, the network device indicates 3 streams to terminal device 1, 3 streams to terminal device 2, 3 streams to terminal device 3, and 3 streams to terminal device 4, forming a 12-stream transmission pairing.
- the network device indicates port 4, port 5, and port 16 on line 52 to terminal device 1, port 13 and port 15 on line 55 or 56 to terminal device 2, and port 2 and port 3 on line 8 to terminal device 3, that is, the network device indicates 3 streams to terminal device 1, 2 streams to terminal device 2, and 3 streams to terminal device 3, forming an 8-stream transmission pairing.
- Table 23-1 includes any port combination of 6 stream transmissions supported by the type2 single-symbol R15 port at most, and the number of ports corresponding to each port combination is less than or equal to 4, that is, the number of ports corresponding to each row in rows 0 to 23 in Table 23-1 is less than 4.
- the network device can indicate 2 rows of port 0 and port 1 to terminal device 1, and 8 rows of port 2 and port 3 to terminal device 2, forming a 4-stream transmission pairing, so that terminal device 1 and terminal device 2 can be simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the network device can indicate port 0 of row 5 to terminal device 1 and port 3 of row 6 to terminal device 2, forming a 4-stream transmission pairing, so that terminal device 1 and terminal device 2 can be simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the network device can indicate port 0, port 1, port 2, and port 3 on line 22 to terminal device 1, and port 4 and port 5 on line 19 to terminal device 2, forming a 6-stream transmission pairing, enabling terminal device 1 and terminal device 2 to be simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the existing protocol stipulates that when the network device indicates port 0, port 1 and port 2 of row 9, or indicates port 0, port 1, port 2 and port 3 of row 10, or indicates port 0, port 1 and port 2 of row 11 to terminal device 1, the ports corresponding to rows 2, 9, 11 and 23 are only used for single UE transmission, so only terminal device 1 is scheduled, that is, no other terminals are scheduled on the same time-frequency resources as terminal device 1.
- Table 23-1 may not include the value set corresponding to the R15 port (the row corresponding to the port combination of the R15 port). In other words, rows 0 to 23 in Table 23-1 may be deleted.
- Table 23-2 occupies 7 bits.
- the FD-OCC length corresponding to the unindicated port defaults to 4. It can be seen from Table 23-2 that the FD-OCC length of the same port can be switched dynamically.
- the first indication information is carried in the first signaling, and the first signaling also includes the second indication information, and the second indication information is used to indicate the first value, and the first value is associated with the index of M ports.
- the first value can be understood as the index of the row in Table 23-2.
- Table 23-1 For specific examples, please refer to the relevant description in Table 23-1.
- the R18 port of type 2 supports up to 12 stream transmission, that is, any port combination including 12 stream transmission in Table 23-2, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, and the number of M ports corresponding to each row is less than or equal to 4.
- the relevant description in Table 23-1 please refer to the relevant description in Table 23-1.
- the network device can indicate the port combination corresponding to any number of rows in Table 23-2 to the terminal device to implement MU of multiple terminals. For example, the network device indicates port 0 and port 1 in row 7 to terminal device 1, and indicates port 2 and port 3 in row 17 to terminal device 2, so that terminal device 1 and terminal device 2 can be paired.
- Table 23-3 The difference between Table 23-3 and Table 23-2 is that the number of rows corresponding to the port combinations in Table 23-3 is less than that in Table 23-2, so Table 23-3 only occupies 6 bits, while Table 23-2 occupies 7 bits, so Table 23-3 can save resource overhead.
- Table 23-4 occupies 7 bits.
- the FD-OCC length corresponding to the unindicated port defaults to 4. It can be seen from Table 23-1 that the FD-OCC length of the same port can be switched dynamically (for example, the network device can instruct the terminal device to switch through DCI signaling).
- the first indication information is carried in the first signaling, and the first signaling also includes the second indication information, and the second indication information is used to indicate the first value, and the first value is associated with the index of M ports.
- the first value can be understood as the index of the row in Table 23-1. For specific examples, please refer to the relevant description of Table 23-1.
- R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence with 4 orthogonal long frequency domain masks but 2 non-orthogonal long frequency domain masks. For specific examples, please refer to the relevant description of Table 23-1.
- Table 23-1 includes any port combination of 6 stream transmissions supported by the R15 port at most, and all rows are used for MU.
- Table 23-5 contains fewer port combinations, so that Table 23-5 only occupies 6 bits, while Table 23-4 only occupies 7 bits. Therefore, Table 23-5 can reduce bit consumption compared to Table 23-4.
- Table 23-6 occupies 6 bits. It can be seen from Table 23-6 that Table 23-6 includes any port combination that supports up to 12 streams of transmission for a type 2 single-symbol R18 port, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, and the number of M ports corresponding to each row is less than or equal to 4. That is, any number of rows from 24 to 56 in Table 23-6 correspond to the port combination. For specific examples, please refer to the relevant description of Table 23-1.
- Table 23-6 includes any port combination of 6 stream transmissions supported by the type2 single-symbol R15 port at most, and the number of ports corresponding to each port combination is less than or equal to 4, that is, the number of ports corresponding to any row from 0 to 23 in Table 23-6 is less than 4.
- Table 23-1 please refer to the relevant description of Table 23-1.
- Table 23-7 occupies 6 bits. It can be seen from Table 23-7 that R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence of 4 orthogonal long frequency domain masks but 2 non-orthogonal long frequency domain masks. For example, assuming that port 0 is assigned to other terminals, the M ports may include port 1 and port 13 corresponding to any of the items in row 57, row 58 or row 59.
- Port 1 and port 13 belong to the same CDM group, but the 4 long frequency domain masks corresponding to port 1 and port 13 are orthogonal, but the 2 long frequency domain masks corresponding to port 1 and port 13 are not orthogonal.
- the port corresponding to any of the items in row 57, row 58 or row 59 may be replaced with port 0 and port 12.
- Table 23-7 includes any port combination that supports up to 12 streams of transmission for the R18 port of type2 single symbol, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, and the number of M ports corresponding to each row is less than or equal to 4. That is, any number of rows from 24 to 56 in Table 23-7 correspond to the port combination.
- Table 23-1 please refer to the relevant description of Table 23-1.
- Table 23-7 includes any port combination of 6 stream transmissions supported by the type2 single-symbol R15 port at most, and the number of ports corresponding to each port combination is less than or equal to 4, that is, the number of ports corresponding to any row from 0 to 23 in Table 23-7 is less than 4.
- Table 23-1 please refer to the relevant description of Table 23-1.
- Table 23-8 occupies 6 bits. It can be seen from Table 23-8 that for type2 single-symbol R18 ports, a maximum of 12 streams are supported. That is, any port combination for 12 streams is included in Table 23-8, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, and the number of M ports corresponding to each row is less than or equal to 4. That is, any multiple rows from 24 to 56 in Table 23-8 correspond to the port combination. For specific examples, please refer to the relevant description of Table 23-1.
- Table 23-8 includes port combinations for 6 stream transmissions supported by a type 2 single symbol R15 port at most, and these port combinations are all used for MU.
- Table 23-1 For specific examples, please refer to the relevant description of Table 23-1.
- Table 23-9 occupies 6 bits. It can be seen from Table 23-9 that R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence in which 4 long frequency domain masks are orthogonal, but 2 long frequency domain masks are not orthogonal. For example, assuming that port 0 is assigned to other terminals, the M ports may include port 1 and port 13 corresponding to any item in row 34, row 35, or row 36.
- Port 1 and port 13 belong to the same CDM group, but the 4 long frequency domain masks corresponding to port 1 and port 13 are orthogonal, but the 2 long frequency domain masks corresponding to port 1 and port 13 are not orthogonal.
- the port corresponding to any item in row 34, row 35, or row 36 can be replaced by port 0 and port 12.
- the FD-OCC lengths of the M ports associated with the first value may be different, that is, the ports in the same row of Table 23-9 may correspond to different FD-OCC lengths.
- the M ports may include port 0, port 1, and port 13 corresponding to any one of 37, 38, and 39, the FD-OCC length of port 0 is 2, and the FD-OCC lengths of port 1 and port 13 are 4.
- the port corresponding to any one of 37, 38, and 39 may be replaced by port 0, port 1, and port 12, wherein the FD-OCC length of port 0 is 4, the FD-OCC length of port 1 is 2, and the FD-OCC length of port 12 is 4.
- the M ports may include port 0 and port 1 corresponding to any one of 40, 41, and 42, the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1 is 4.
- the FD-OCC length of port 0 is 4, and the FD-OCC length of port 1 is 2.
- a maximum of 12 streams are supported, that is, any port combination including 12 streams in Table 23-9, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 8, and the number of M ports corresponding to each row is less than or equal to 4. That is, any number of rows 0 to 33 in Table 23-9 correspond to a port combination.
- Table 23-1 For specific examples, please refer to the relevant description in Table 23-1.
- Table 23-9 does not include the maximum port combination supported by the R15 port.
- Table 23-9 can be used in combination with Table 18-1, Table 18-2, Table 19-1, and Table 19-2 of the first embodiment.
- the network device indicates 5 rows of port 0, port 1, port 12, and port 13 to the terminal device. Accordingly, if the network device indicates that the value of the first DCI field is 0, the 4-length orthogonal mask corresponding to port 0, port 1, port 12, and port 13 has been allocated to other terminals, or the FD-OCC length corresponding to port 0, port 1, port 12, and port 13 is 2 long; if the network device indicates that the value of the first DCI field is 1, the 4-length orthogonal mask corresponding to port 0, port 1, port 12, and port 13 has not been allocated to other terminals, or the FD-OCC length corresponding to port 0, port 1, port 12, and port 13 is 4 long.
- the network device can indicate the contents of Table 24-A1 to Table 24-A9 to the terminal device through the first indication information, and then the terminal device can determine the ports allocated to it by the network device and the corresponding FD-OCC lengths of these ports based on the first indication information combined with Table 24-A1 to Table 24-A9.
- the FD-OCC length corresponding to the unindicated port defaults to 4 lengths.
- the default FD-OCC length of R18 can be determined by Table 5.1 to Table 7.3 corresponding to the above formulas 2.1 to 2.4.
- Table 24-A1 occupies 8 bits. It can be seen from Table 24-A1 that the FD-OCC length of the same port can be switched dynamically (for example, the network device can instruct the terminal device to switch through DCI signaling).
- the first indication information is carried in the first signaling, and the first signaling also includes the second indication information, and the second indication information is used to indicate the first value, and the first value is associated with the index of the M ports. Among them, the first value can be understood as the index of the row in Table 24-A1.
- the indexes of the M ports include the index of port 0; wherein, when the first value is 0, the FD-OCC length of port 0 is 4; when the first value is 91, the index of port 0 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the index of port 0; when the first value is 3, the FD-OCC length of port 0 is 4; when the first value is 94, the index of port 0 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0 is 2.
- the indexes of the M ports include the index of port 1; wherein, when the first value is 1, the FD-OCC length of port 1 is 4; when the first value is 92, the index of port 1 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 1 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the index of port 1; when the first value is 4, the FD-OCC length of port 1 is 4; when the first value is 95, the index of port 1 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 1 is 2.
- the indexes of the M ports include the indexes of port 0 and port 1; wherein, when the first value is 2, the FD-OCC length of port 0 and port 1 is 4; when the first value is 93, the indexes of port 0 and port 1 respectively correspond to the first identifier (i.e., FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0 and port 1 is 2.
- the first identifier i.e., FD-OCC2
- the indexes of the M ports include the indexes of port 0 and port 1; wherein, when the first value is 7, the FD-OCC length of port 0 and port 1 is 4; when the first value is 98, the indexes of port 0 and port 1 correspond to the first identifier (i.e., FD-OCC2), respectively, and the first identifier indicates that the FD-OCC length corresponding to port 0 and port 1 is 2.
- the first identifier i.e., FD-OCC2
- the indexes of the M ports include the index of port 2; when the first value is 5, the FD-OCC length of port 2 is 4; when the first value is 96, the index of port 2 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 2 is 2.
- the indexes of the M ports include the index of port 3; when the first value is 6, the FD-OCC length of port 3 is 4; when the first value is 97, the index of port 3 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 3 is 2.
- the indexes of the M ports include the indexes of port 2 and port 3; wherein, when the first value is 8, the FD-OCC length of port 2 and port 3 is 4; when the first value is 99, the indexes of port 2 and port 3 respectively correspond to the first identifier (i.e., FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 2 and port 3 is 2.
- the first identifier i.e., FD-OCC2
- the indexes of the M ports include the indexes of port 0, port 1, port 2 and port 3; wherein, when the first value is 10, the FD-OCC length of port 0, port 1, port 2 and port 3 is 4; when the first value is 101, the indexes of port 0, port 1, port 2 and port 3 respectively correspond to the first identifier (i.e., FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0, port 1, port 2 and port 3 is 2.
- the first identifier i.e., FD-OCC2
- the FD-OCC lengths of the ports corresponding to row 100, row 102 to row 113, and row 152 to row 209 can also be dynamically switched.
- R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence with 4 orthogonal long frequency domain masks but 2 non-orthogonal long frequency domain masks.
- the M ports allocated by the network device to the current terminal device may include port 1 and port 13 corresponding to any one of row 114, row 115, row 116, or row 210, and port 1 and port 13 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1 and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1 and port 13 are not orthogonal.
- the port corresponding to any one of row 114, row 115, row 116, or row 210 may be replaced by port 0 and port 12.
- the M ports allocated by the network device to the current terminal device may include port 1, port 7, and port 13 corresponding to row 211, port 1, port 7, and port 13 belong to the same CDM group, and the 4-long frequency domain masks corresponding to port 1, port 7, and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 7, and port 13 are not orthogonal.
- the corresponding ports in row 211 can be replaced by port 0, port 6, and port 12.
- the M ports allocated by the network device to the current terminal device may include port 1, port 7, port 13, and port 19 corresponding to row 212.
- Port 1, port 7, port 13, and port 19 belong to the same CDM group, and the 4-long frequency domain masks corresponding to port 1, port 7, port 13, and port 19 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 7, port 13, and port 19 are not orthogonal.
- the corresponding ports in row 212 can be replaced by port 0, port 6, port 12, and port 18.
- the FD-OCC lengths of the M ports associated with the first value may be different, that is, the ports in the same row of Table 24-A1 may correspond to different FD-OCC lengths.
- the M ports may include port 0, port 1, and port 13 corresponding to any one of rows 117, 118, or 119, and the FD-OCC length of port 0 is 2, the FD-OCC length of port 1 is 4, and the FD-OCC length of port 13 is 4.
- the port corresponding to any one of rows 117, 118, or 119 may be replaced by port 0, port 1, and port 12, wherein the FD-OCC length of port 0 is 4, the FD-OCC length of port 1 is 2, and the FD-OCC length of port 12 is 4.
- the M ports may include port 0 and port 1 corresponding to any one of 120 rows, 121 rows, or 122 rows, and the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1 is 4.
- the ports corresponding to any one of 120 rows, 121 rows, or 122 rows are still port 0 and port 1, but the FD-OCC length of port 0 is 4, and the FD-OCC length of port 1 is 2.
- the M ports may include 213 rows or 218 rows corresponding to port 0 and port 1, the FD-OCC length of port 0 is 2 long, and the FD-OCC length of port 1 is 4 long.
- the corresponding ports in 213 rows or 218 rows can be replaced by port 0 and port 7, wherein the FD-OCC length of port 0 is 2 long, and the FD-OCC length of port 7 is 4 long.
- the corresponding ports in 213 rows or 218 rows can be replaced by port 0 and port 19, wherein the FD-OCC length of port 0 is 2 long, and the FD-OCC length of port 19 is 4 long.
- the corresponding ports in 213 rows or 218 rows can be replaced by port 0 and port 13, wherein the FD-OCC length of port 0 is 2 long, and the FD-OCC length of port 13 is 4 long.
- the corresponding ports in row 213 or row 218 are still port 0 and port 1, but the FD-OCC length of port 0 is 4, and the FD-OCC length of port 1 is 2.
- the corresponding ports in row 213 or row 218 can be replaced by port 1 and port 6, where the FD-OCC length of port 1 is 2, and the FD-OCC length of port 6 is 4.
- the corresponding ports in row 213 or row 218 can be replaced by port 1 and port 18, where the FD-OCC length of port 1 is 2, and the FD-OCC length of port 18 is 4.
- the corresponding ports in row 213 or row 218 can be replaced by port 1 and port 12, where the FD-OCC length of port 1 is 2, and the FD-OCC length of port 12 is 4.
- the M ports may include the corresponding ports 0, 1 and 13 in the 214 rows or 219 rows, the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 1 and 13 are 4.
- the corresponding ports in the 214 rows or 219 rows may be replaced by ports 0, 1 and 19, wherein the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 1 and 19 are 4.
- the corresponding ports in the 214 rows or 219 rows may be replaced by ports 0, 1 and 7, wherein the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 1 and 7 are 4.
- the corresponding ports in the 214 rows or 219 rows may be replaced by ports 0, 13 and 19, wherein the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 13 and 19 are 4.
- the corresponding ports in row 214 or row 219 may be replaced by port 0, port 7, and port 19, wherein the FD-OCC length of port 0 is 2, and the FD-OCC length of port 7 and port 19 is 4.
- the corresponding ports in row 214 or row 219 may be replaced by port 1, port 6, and port 12, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 6 and port 12 is 4.
- the corresponding ports in row 214 or row 219 may be replaced by port 1, port 12, and port 18, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 12 and port 18 is 4.
- the corresponding ports in row 214 or row 219 may be replaced by port 1, port 6, and port 18, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 6 and port 18 is 4.
- the M ports may include the corresponding port 0, port 1, port 7, and port 13 in the 215 or 220 rows, the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1, port 7, and port 13 is 4.
- the corresponding ports in the 215 or 220 rows may be replaced by port 0, port 1, port 7, and port 19, the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1, port 7, and port 19 is 4.
- the corresponding ports in the 215 or 220 rows may be replaced by port 0, port 1, port 7, and port 19, the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1, port 7, and port 19 is 4.
- the corresponding ports in row 215 or row 220 may be replaced by port 0, port 1, port 13, and port 19, wherein the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1, port 13, and port 19 is 4.
- the corresponding ports in row 215 or row 220 may be replaced by port 0, port 1, port 6, and port 12, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 0, port 6, and port 12 is 4.
- the corresponding ports in row 215 or row 220 may be replaced by port 0, port 1, port 12, and port 18, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 0, port 12, and port 18 is 4.
- the corresponding ports in row 215 or row 220 may be replaced with port 0, port 1, port 6, and port 18, where the FD-OCC length of port 1 is 2, and the FD-OCC length of port 0, port 6, and port 18 is 4.
- the M ports may include the corresponding ports 0, 6 and 1 in the 216 rows or 221 rows, the FD-OCC lengths of ports 0 and 6 are 2, and the FD-OCC length of port 1 is 4.
- the corresponding ports in the 216 rows or 221 rows may be replaced by ports 0, 6 and 7, the FD-OCC lengths of ports 0 and 7 are 2, and the FD-OCC length of port 7 is 4.
- the corresponding ports in the 216 rows or 221 rows may be replaced by ports 0, 6 and 13, the FD-OCC lengths of ports 0 and 6 are 2, and the FD-OCC length of port 13 is 4.
- the corresponding ports in the 216 rows or 221 rows may be replaced by ports 0, 6 and 19, the FD-OCC lengths of ports 0 and 6 are 2, and the FD-OCC length of port 19 is 4.
- the corresponding ports in row 216 or row 221 may be replaced by port 1, port 7, and port 6, the FD-OCC lengths of ports 1 and 7 are 2, and the FD-OCC length of port 6 is 4.
- the corresponding ports in row 216 or row 221 may be replaced by port 1, port 7, and port 12, the FD-OCC lengths of ports 1 and 7 are 2, and the FD-OCC length of port 12 is 4.
- the corresponding ports in row 216 or row 221 may be replaced by port 0, port 1, and port 7, the FD-OCC lengths of ports 1 and 7 are 2, and the FD-OCC length of port 0 is 4.
- the M ports may include the corresponding ports 0, 6, 13, and 19 in rows 217 or 222, the FD-OCC length of ports 0 and 6 is 2, and the FD-OCC length of ports 13 and 19 is 4.
- the corresponding ports in rows 217 or 222 may be replaced by ports 0, 6, 7, and 19, the FD-OCC length of ports 0 and 6 is 2, and the FD-OCC length of ports 7 and 19 is 4.
- the corresponding ports in rows 217 or 222 may be replaced by ports 0, 6, 7, and 13, the FD-OCC length of ports 0 and 6 is 2, and the FD-OCC length of ports 7 and 13 is 4.
- the corresponding ports in row 217 or row 222 may be replaced by port 1, port 7, port 12, and port 18, the FD-OCC length of port 1 and port 7 is 2, and the FD-OCC length of port 18 and port 12 is 4.
- the corresponding ports in row 217 or row 222 may be replaced by port 1, port 7, port 6, and port 18, the FD-OCC length of port 1 and port 7 is 2, and the FD-OCC length of port 18 and port 6 is 4.
- the corresponding ports in row 217 or row 222 may be replaced by port 0, port 1, port 6, and port 7, the FD-OCC length of port 1 and port 7 is 2, and the FD-OCC length of port 0 and port 6 is 4.
- the R18 port of type 2 supports up to 24 stream transmissions, that is, any port combination including 24 stream transmissions in Table 24-A1, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 24, and the number of M ports corresponding to each row is less than or equal to 4. That is, the port combination corresponding to rows 58 to 217 in Table 24-A1.
- the network device may indicate line 113 of port 0, port 1, port 2, and port 3 to terminal device 1, line 141 of port 7, port 12, and port 13 to terminal device 2, line 147 or line 148 of port 9, port 18, and port 19 to terminal device 3, line 145 of port 14, port 15, port 20, and port 21 to terminal device 4, line 146 of port 16, port 17, port 22, and port 23 to terminal device 5, and line 171 of port 172 to terminal device 6.
- the network device indicates port 4 and port 5 of line 182 to terminal device 7, port 10 and port 11 of line 193 to terminal device 8, and port 8 of line 184 to terminal device 9; that is, the network device indicates 4 streams to terminal device 1, 3 streams to terminal device 2, 3 streams to terminal device 3, 4 streams to terminal device 4, 4 streams to terminal device 5, 2 streams to terminal device 6, 1 stream to terminal device 7, 2 streams to terminal device 8, and 1 stream to terminal device 9, forming a 24-stream transmission pairing.
- the ports corresponding to line 147 or line 148 can be replaced by port 7, port 20, and port 21.
- the first port index group indicated by the network device to the terminal device 1 includes the indexes of port 18, port 19, and port 20
- the second port index group indicated by the network device to the terminal device 2 includes the indexes of port 21, port 22, and port 23
- the third port index group indicated by the network device to the terminal device 3 includes the indexes of port 7, port 12, and port 13
- the fourth port index group indicated by the network device to the terminal device 4 includes the indexes of port 14, port 15, and port 20
- the fifth port index group indicated by the network device to the terminal device 5 includes the indexes of port 11, port 16, and port 17,
- the sixth port index group indicated by the network device to the terminal device 6 includes the indexes of port 2, port 3, and port 8
- the seventh port index group indicated by the network device to the terminal device 7 includes the indexes of port 0, port 1, and port 6
- the eighth port index group indicated by the network device to the terminal device 8 includes the indexes of port 4, port 5, and port 10.
- Table 24-A1 includes any port combination of 12 stream transmissions supported by the R15 port, and the number of ports corresponding to each port combination (i.e., each row in Table 24-A1) is less than or equal to 4, i.e., rows 0 to 57 in Table 24-A1.
- the network device may indicate port 0 and port 1 of row 2 to terminal device 1, and port 2 and port 3 of row 8 to terminal device 2, so that terminal device 1 and terminal device 2 are simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the network device may indicate port 0 of row 5 to terminal device 1, and port 3 of row 6 to terminal device 2, so that terminal device 1 and terminal device 2 are simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the existing protocol stipulates that when the network device indicates port 0, port 1 and port 2 of row 9 to terminal device 1, or indicates port 0, port 1, port 2 and port 3 of row 10, or indicates port 0, port 1 and port 2 of row 11, or indicates port 0 and port 2 of row 23, the ports corresponding to rows 9, 10, 11 and 23 are only used for single UE transmission, so only terminal device 1 is scheduled, that is, no other terminals are scheduled on the same time-frequency resources as terminal device 1.
- Table 24-A1 may not include the value set corresponding to the R15 port (the row corresponding to the port combination of the R15 port). In other words, rows 0 to 57 in Table 24-A1 may be deleted.
- Table 24-A2 occupies 8 bits. As can be seen from Table 24-A1, the FD-OCC length of the same port can be switched dynamically (for example, the network device can instruct the terminal device to switch through DCI signaling). For specific examples, please refer to the relevant description of Table 24-A1.
- the R18 port of type2 double symbol supports up to 24 stream transmission, that is, any port combination including 24 stream transmission in Table 24-A1, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 24, and the number of M ports corresponding to each row is less than or equal to 4. That is, the port combination corresponding to rows 57 to 200 in Table 24-A1.
- the network device may indicate port 0, port 1, port 2, and port 3 of line 113 to terminal device 1, port 7, port 12, and port 13 of line 131 to terminal device 2, port 9, port 18, and port 19 of line 137 or line 138 to terminal device 3, port 14, port 15, port 20, and port 21 of line 135 to terminal device 4, port 16, port 17, port 22, and port 23 of line 136 to terminal device 5, and port 161 of line 162 to terminal device 6.
- the network device indicates port 4 and port 5 of line 172 to terminal device 7, port 10 and port 11 of line 183 to terminal device 8, and port 8 of line 174 to terminal device 9; that is, the network device indicates 4 streams to terminal device 1, 3 streams to terminal device 2, 3 streams to terminal device 3, 4 streams to terminal device 4, 4 streams to terminal device 5, 2 streams to terminal device 6, 1 stream to terminal device 7, 2 streams to terminal device 8, and 1 stream to terminal device 9, forming a 24-stream transmission pairing.
- the ports corresponding to line 137 or line 138 can be replaced by port 7, port 20, and port 21.
- Table 24-A2 includes port combinations for 12-stream transmission supported by type2 dual-symbol R15 ports, and all rows are used for MU.
- Table 24-A3 The difference between Table 24-A3 and Table 24-2 is that the FD-OCC length of the same port in Table 24-A3 can be dynamically switched, and the corresponding examples are less than those in Table 24-A2.
- Table 24-A4 occupies 8 bits.
- the FD-OCC length corresponding to the unindicated port defaults to 4.
- the FD-OCC length of the same port can be switched dynamically (for example, the network device can instruct the terminal device to switch through DCI signaling).
- the first indication information is carried in the first signaling, and the first signaling also includes the second indication information, and the second indication information is used to indicate the first value, and the first value is associated with the index of the M ports.
- the first value can be understood as the index of the row in Table 24-A4. For example, rows 90-118, rows 142-192. For specific examples, please refer to the relevant description of Table 24-A1.
- R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence with 4 orthogonal long frequency domain masks but 2 non-orthogonal long frequency domain masks.
- the M ports allocated by the network device to the current terminal device may include port 1 and port 13 corresponding to any one of row 113, row 114, row 115, or row 203, and port 1 and port 13 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1 and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1 and port 13 are not orthogonal.
- the port corresponding to any one of row 113, row 114, row 115, or row 203 may be replaced by port 0 and port 12.
- the M ports allocated by the network device to the current terminal device may include port 1, port 7, and port 13 corresponding to row 204, port 1, port 7, and port 13 belong to the same CDM group, and the 4-long frequency domain masks corresponding to port 1, port 7, and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 7, and port 13 are not orthogonal.
- the corresponding ports in row 204 can be replaced by port 0, port 6, and port 12.
- the M ports allocated by the network device to the current terminal device may include port 1, port 7, port 13, and port 19 corresponding to row 205.
- Port 1, port 7, port 13, and port 19 belong to the same CDM group, and the 4-long frequency domain masks corresponding to port 1, port 7, port 13, and port 19 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 7, port 13, and port 19 are not orthogonal.
- the corresponding ports in row 205 can be replaced by port 0, port 6, port 12, and port 18.
- the R18 port of type2 double symbol supports up to 24 stream transmission, that is, any port combination including 24 stream transmission in Table 24-A1, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 24, and the number of M ports corresponding to each row is less than or equal to 4. That is, the port combination corresponding to rows 57 to 200 in Table 24-A1.
- the network device may indicate port 0, port 1, port 2, and port 3 of line 113 to terminal device 1, port 7, port 12, and port 13 of line 131 to terminal device 2, port 9, port 18, and port 19 of line 137 or line 138 to terminal device 3, port 14, port 15, port 20, and port 21 of line 135 to terminal device 4, port 16, port 17, port 22, and port 23 of line 136 to terminal device 5, and port 161 of line 162 to terminal device 6.
- the network device indicates port 4 and port 5 of line 172 to terminal device 7, port 10 and port 11 of line 183 to terminal device 8, and port 8 of line 174 to terminal device 9; that is, the network device indicates 4 streams to terminal device 1, 3 streams to terminal device 2, 3 streams to terminal device 3, 4 streams to terminal device 4, 4 streams to terminal device 5, 2 streams to terminal device 6, 1 stream to terminal device 7, 2 streams to terminal device 8, and 1 stream to terminal device 9, forming a 24-stream transmission pairing.
- the ports corresponding to line 137 or line 138 can be replaced by port 7, port 20, and port 21.
- Table 24-A4 includes port combinations for 12-stream transmission supported by type2 dual-symbol R15 ports, and all rows are used for MU.
- Table 24-A5 The difference between Table 24-A5 and Table 24-A4 is that the FD-OCC length of the same port in Table 24-A5 can be dynamically switched, and the corresponding number is less than that in Table 24-A4.
- Table 24-A6 occupies 7 bits. It can be seen from Table 24-A6 that the R18 port of type 2 supports up to 24 stream transmissions, that is, any port combination for 24 stream transmissions is included in Table 24-A6, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 24, and the number of M ports corresponding to each row is less than or equal to 4. That is, the port combination corresponding to rows 58 to 217 in Table 24-A6. For specific examples, please refer to the relevant description of Table 24-A1.
- Table 24-A6 includes any port combination of 12 stream transmissions supported by the R15 port, and the number of ports corresponding to each port combination is less than or equal to 4, and all rows are used for MU.
- Table 24-A7 occupies 8 bits. It can be seen from Table 24-A7 that R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence of 4 orthogonal long frequency domain masks but 2 non-orthogonal long frequency domain masks.
- the M ports allocated by the network device to the current terminal device may include port 1 and port 13 corresponding to any one of row 91, row 92, row 93, or row 123, and port 1 and port 13 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1 and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1 and port 13 are not orthogonal.
- the port corresponding to any one of row 91, row 92, row 93, or row 123 may be replaced by port 0 and port 12.
- the M ports allocated by the network device to the current terminal device may include port 1, port 7, and port 13 corresponding to row 124, port 1, port 7, and port 13 belong to the same CDM group, and the 4-long frequency domain masks corresponding to port 1, port 7, and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 7, and port 13 are not orthogonal.
- the corresponding ports in row 124 can be replaced by port 0, port 6, and port 12.
- the M ports allocated by the network device to the current terminal device may include port 1, port 7, port 13, and port 19 corresponding to row 125.
- Port 1, port 7, port 13, and port 19 belong to the same CDM group, and the 4-long frequency domain masks corresponding to port 1, port 7, port 13, and port 19 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 7, port 13, and port 19 are not orthogonal.
- the corresponding ports in row 125 can be replaced by port 0, port 6, port 12, and port 18.
- Table 24-A6 includes any port combination of 4-stream transmission supported by the R15 port, and the number of ports corresponding to each port combination (ie, each row in Table 24-A6) is less than or equal to 4.
- Table 24-A8 occupies 7 bits. It can be seen from Table 24-A8 that the R18 port of type 2 supports up to 24 stream transmissions, that is, any port combination including 24 stream transmissions in Table 24-A6, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 24, and the number of M ports corresponding to each row is less than or equal to 4. That is, the port combination corresponding to rows 58 to 118 in Table 24-A6. For specific examples, please refer to the relevant description of Table 24-A1.
- Table 24-A8 includes any port combination of 12 stream transmissions supported by the R15 port, and the number of ports corresponding to each port combination (ie, each row in Table 24-A6) is less than or equal to 4, i.e., rows 0 to 56, and all rows are used for MU.
- Table 24-A9 occupies 7 bits. It can be seen from Table 24-A9 that R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence of 4 orthogonal long frequency domain masks but 2 non-orthogonal long frequency domain masks.
- the M ports allocated by the network device to the current terminal device may include port 1 and port 13 corresponding to any one of row 34, row 35, row 36, or row 72, and port 1 and port 13 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1 and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1 and port 13 are not orthogonal.
- the port corresponding to any one of row 34, row 35, row 36, or row 72 may be replaced by port 0 and port 12.
- the M ports allocated by the network device to the current terminal device may include port 1, port 7, and port 13 corresponding to row 73, port 1, port 7, and port 13 belong to the same CDM group, and the 4-long frequency domain masks corresponding to port 1, port 7, and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 7, and port 13 are not orthogonal.
- the corresponding ports in row 73 can be replaced by port 0, port 6, and port 12.
- the M ports allocated by the network device to the current terminal device may include port 1, port 7, port 13, and port 19 corresponding to row 74, port 1, port 7, port 13, and port 19 belong to the same CDM group, and the 4-long frequency domain masks corresponding to port 1, port 7, port 13, and port 19 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 7, port 13, and port 19 are not orthogonal.
- the corresponding ports in row 74 can be replaced by port 0, port 6, port 12, and port 18.
- the FD-OCC lengths of the M ports associated with the first value may be different, that is, the ports in the same row of Table 24-A9 may correspond to different FD-OCC lengths.
- the M ports may include port 0, port 1, and port 13 corresponding to any one of row 37, row 38, or row 39, the FD-OCC length of port 0 is 2, the FD-OCC length of port 1 is 4, and the FD-OCC length of port 13 is 4.
- the port corresponding to any one of row 37, row 38, or row 39 may be replaced by port 0, port 1, and port 12, wherein the FD-OCC length of port 0 is 4, the FD-OCC length of port 1 is 2, and the FD-OCC length of port 12 is 4.
- the M ports may include the corresponding port 0 and port 1 in any one of the 40th, 41st, or 42nd rows, the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1 is 4.
- the ports corresponding to any one of the 40th, 41st, or 42nd rows are still port 0 and port 1, but the FD-OCC length of port 0 is 4, and the FD-OCC length of port 1 is 4.
- the FD-OCC length of port 1 is 2.
- the M ports may include 75 rows or 80 rows corresponding to port 0 and port 1, the FD-OCC length of port 0 is 2 long, and the FD-OCC length of port 1 is 4 long.
- the corresponding ports in 75 rows or 80 rows can be replaced by port 0 and port 7, wherein the FD-OCC length of port 0 is 2 long, and the FD-OCC length of port 7 is 4 long.
- the corresponding ports in 75 rows or 80 rows can be replaced by port 0 and port 19, wherein the FD-OCC length of port 0 is 2 long, and the FD-OCC length of port 19 is 4 long.
- the corresponding ports in 75 rows or 80 rows can be replaced by port 0 and port 13, wherein the FD-OCC length of port 0 is 2 long, and the FD-OCC length of port 13 is 4 long.
- the corresponding ports in 75 rows or 80 rows are still port 0 and port 1, but the FD-OCC length of port 0 is 4 long, and the FD-OCC length of port 1 is 2 long.
- the corresponding ports in row 75 or row 80 can be replaced by port 1 and port 6, where the FD-OCC length of port 1 is 2 and the FD-OCC length of port 6 is 4.
- the corresponding ports in row 75 or row 80 can be replaced by port 1 and port 18, where the FD-OCC length of port 1 is 2 and the FD-OCC length of port 18 is 4.
- the corresponding ports in row 75 or row 80 can be replaced by port 1 and port 12, where the FD-OCC length of port 1 is 2 and the FD-OCC length of port 12 is 4.
- the M ports may include the corresponding ports 0, 1 and 13 in the 76 rows or 81 rows or 81 rows, the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 1 and 13 are 4.
- the corresponding ports in the 76 rows or 81 rows or 81 rows may be replaced by ports 0, 1 and 19, wherein the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 1 and 19 are 4.
- the corresponding ports in the 76 rows or 81 rows or 81 rows may be replaced by ports 0, 1 and 7, wherein the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 1 and 7 are 4.
- the corresponding ports in the 76 rows or 81 rows or 81 rows may be replaced by ports 0, 13 and 19, wherein the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 13 and 19 are 4.
- the corresponding ports in row 76 or row 81 or row 81 may be replaced by port 0, port 7, and port 9, wherein the FD-OCC length of port 0 is 2, and the FD-OCC length of port 7 and port 9 is 4.
- the corresponding ports in row 76 or row 81 or row 81 may be replaced by port 1, port 6, and port 12, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 6 and port 12 is 4.
- the corresponding ports in row 76 or row 81 or row 81 may be replaced by port 0, port 1, and port 12, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 0 and port 12 is 4.
- the corresponding ports in row 76 or row 81 or row 81 may be replaced by port 1, port 6, and port 18, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 6 and port 18 is 4.
- the M ports may include the corresponding ports 0, 1, 7, and 13 in rows 77 or 82, the FD-OCC length of port 0 is 2, and the FD-OCC length of ports 1, 7, and 13 is 4.
- the corresponding ports in rows 77 or 82 may be replaced by ports 0, 1, 7, and 19, the FD-OCC length of port 0 is 2, and the FD-OCC length of ports 1, 7, and 19 is 4.
- the corresponding ports in rows 77 or 82 may be replaced by ports 0, 1, 7, and 19, the FD-OCC length of port 0 is 2, and the FD-OCC length of ports 1, 7, and 19 is 4.
- the corresponding ports in row 77 or row 82 may be replaced by port 0, port 1, port 13, and port 19, wherein the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1, port 13, and port 19 is 4.
- the corresponding ports in row 77 or row 82 may be replaced by port 0, port 1, port 6, and port 12, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 0, port 6, and port 12 is 4.
- the corresponding ports in row 77 or row 82 may be replaced by port 0, port 1, port 12, and port 18, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 0, port 12, and port 18 is 4.
- the corresponding ports in row 77 or row 82 may be replaced by port 0, port 1, port 6, and port 18, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 0, port 6, and port 18 is 4.
- the M ports may include the corresponding ports 0, 6, and 1 in the 78 or 83 rows, the FD-OCC lengths of ports 0 and 6 are 2, and the FD-OCC length of port 1 is 4.
- the corresponding ports in the 78 or 83 rows may be replaced by ports 0, 6, and 7, the FD-OCC lengths of ports 0 and 7 are 2, and the FD-OCC length of port 7 is 4.
- the corresponding ports in the 78 or 83 rows may be replaced by ports 0, 6, and 13, the FD-OCC lengths of ports 0 and 6 are 2, and the FD-OCC length of port 13 is 4.
- the corresponding ports in the 78 or 83 rows may be replaced by ports 0, 6, and 19, the FD-OCC lengths of ports 0 and 6 are 2, and the FD-OCC length of port 19 is 4.
- the corresponding ports in row 78 or row 83 may be replaced by port 1, port 7, and port 6, the FD-OCC length of ports 1 and port 7 is 2, and the FD-OCC length of port 6 is 4.
- the corresponding ports in row 78 or row 83 may be replaced by port 1, port 7, and port 12, the FD-OCC length of ports 1 and port 7 is 2, and the FD-OCC length of port 12 is 4.
- the corresponding ports in row 78 or row 83 may be replaced by port 0, port 1, port 6, and port 7, the FD-OCC length of ports 1 and port 7 is 2, and the FD-OCC length of ports 0 and port 6 is 4.
- the M ports may include the corresponding ports 0, 6, 13, and 19 in the 79 or 84 rows, the FD-OCC length of ports 0 and 6 is 2, and the FD-OCC length of ports 13 and 19 is 4.
- the corresponding ports in the 79 or 84 rows may be replaced by ports 0, 6, 7, and 19, the FD-OCC length of ports 0 and 6 is 2, and the FD-OCC length of ports 7 and 19 is 4.
- the corresponding ports in the 79 or 84 rows may be replaced by ports 0, 6, 7, and 13, the FD-OCC length of ports 0 and 6 is 2, and the FD-OCC length of ports 7 and 13 is 4.
- the corresponding ports in row 79 or row 84 can be replaced by port 1, port 7, port 12, and port 18, and the FD-OCC length of port 1 and port 7 is 2, and the FD-OCC length of port 18 and port 12 is 4.
- the corresponding ports in row 79 or row 84 can be replaced by port 1, port 7, port 6, and port 18, and the FD-OCC length of port 1 and port 7 is 2, and the FD-OCC length of port 18 and port 6 is 4.
- the corresponding ports in row 79 or row 84 can be replaced by port 0, port 1, port 6, and port 7, and the FD-OCC length of port 1 and port 7 is 2, and the FD-OCC length of port 0 and port 6 is 4.
- Table 24-A9 it can be seen that for type2 R18 port, a maximum of 24 streams are supported, that is, any port combination for 24 streams is included in Table 24-A9, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 24, and the number of M ports corresponding to each row is less than or equal to 4. That is, the port combination corresponding to rows 0 to 79 in Table 24-A9.
- Table 24-A1 For specific examples, please refer to the relevant description of Table 24-A1.
- Table 24-A9 can be used in combination with Table 18-1, Table 18-2, Table 19-1, and Table 19-2 of the first embodiment.
- the network device indicates 5 rows of port 0, port 1, port 12, and port 13 to the terminal device. Accordingly, if the network device indicates that the value of the first DCI field is 0, the 4-long orthogonal mask corresponding to port 0, port 1, port 12, and port 13 has been allocated to other terminals, or the FD-OCC length corresponding to port 0, port 1, port 12, and port 13 is 2 long; if the network device indicates that the value of the first DCI field is 1, the 4-long orthogonal mask corresponding to port 0, port 1, port 12, and port 13 has not been allocated to other terminals, or the FD-OCC length corresponding to port 0, port 1, port 12, and port 13 is 4 long.
- the network device may indicate the contents of Tables 24-B1 to 24-B9 to the terminal device through a first indication message, and the terminal device may determine the ports allocated to it by the network device and the corresponding FD-OCC lengths of these ports based on the first indication message in combination with Tables 24-B1 to 24-B9.
- Table 24-B1 occupies 8 bits.
- the FD-OCC length corresponding to the unindicated port defaults to 4. It can be seen from Table 24-B1 that the FD-OCC length of the same port can be switched dynamically (for example, the network device can instruct the terminal device to switch through DCI signaling).
- the first indication information is carried in the first signaling, and the first signaling also includes the second indication information, and the second indication information is used to indicate the first value, and the first value is associated with the index of M ports. Among them, the first value can be understood as the index of the row in Table 24-B1.
- the indexes of the M ports include the index of port 0; wherein, when the first value is 0, the FD-OCC length of port 0 is 4; when the first value is 91, the index of port 0 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the index of port 0; when the first value is 3, the FD-OCC length of port 0 is 4; when the first value is 94, the index of port 0 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0 is 2.
- the indexes of the M ports include the index of port 1; wherein, when the first value is 1, the FD-OCC length of port 1 is 4; when the first value is 92, the index of port 1 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 1 is 2.
- the first identifier ie, FD-OCC2
- the indexes of the M ports include the index of port 1; when the first value is 4, the FD-OCC length of port 1 is 4; when the first value is 95, the index of port 1 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 1 is 2.
- the indexes of the M ports include the indexes of port 0 and port 1; wherein, when the first value is 2, the FD-OCC length of port 0 and port 1 is 4; when the first value is 93, the indexes of port 0 and port 1 correspond to the first identifier (i.e., FD-OCC2) respectively, and the first identifier indicates that the FD-OCC length corresponding to port 0 and port 1 is 2.
- the first identifier i.e., FD-OCC2
- the indexes of the M ports include the indexes of port 0 and port 1; wherein, when the first value is 7, the FD-OCC length of port 0 and port 1 is 4; when the first value is 98, the indexes of port 0 and port 1 correspond to the first identifier (i.e., FD-OCC2) respectively, and the first identifier indicates that the FD-OCC length corresponding to port 0 and port 1 is 2.
- the first identifier i.e., FD-OCC2
- the indexes of the M ports include the index of port 2; when the first value is 5, the FD-OCC length of port 2 is 4; when the first value is 96, the index of port 2 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 2 is 2.
- the indexes of the M ports include the index of port 3; when the first value is 6, the FD-OCC length of port 3 is 4; when the first value is 97, the index of port 3 corresponds to the first identifier (ie, FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 3 is 2.
- the indexes of the M ports include the indexes of port 2 and port 3; wherein, when the first value is 8, the FD-OCC length of port 2 and port 3 is 4; when the first value is 99, the indexes of port 2 and port 3 respectively correspond to the first identifier (i.e., FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 2 and port 3 is 2.
- the first identifier i.e., FD-OCC2
- the indexes of the M ports include the indexes of port 0, port 1, port 2 and port 3; wherein, when the first value is 10, the FD-OCC length of port 0, port 1, port 2 and port 3 is 4; when the first value is 101, the indexes of port 0, port 1, port 2 and port 3 respectively correspond to the first identifier (i.e., FD-OCC2), and the first identifier indicates that the FD-OCC length corresponding to port 0, port 1, port 2 and port 3 is 2.
- the first identifier i.e., FD-OCC2
- the FD-OCC lengths of the ports corresponding to row 100, row 102 to row 113, and row 150 to row 207 can also be dynamically switched.
- R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence with 4 orthogonal long frequency domain masks but 2 non-orthogonal long frequency domain masks.
- the M ports allocated by the network device to the current terminal device may include port 1 and port 13 corresponding to any one of row 114, row 115, row 116, or row 208, and port 1 and port 13 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1 and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1 and port 13 are not orthogonal.
- the port corresponding to any one of row 114, row 115, row 116, or row 208 may be replaced by port 0 and port 12.
- the M ports allocated by the network device to the current terminal device may include port 1, port 7, and port 13 corresponding to row 209, port 1, port 7, and port 13 belong to the same CDM group, and the 4-long frequency domain masks corresponding to port 1, port 7, and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 7, and port 13 are not orthogonal.
- the corresponding ports in row 209 can be replaced by port 0, port 6, and port 12.
- the M ports allocated by the network device to the current terminal device may include port 1, port 7, port 13, and port 19 corresponding to row 210.
- Port 1, port 7, port 13, and port 19 belong to the same CDM group.
- the 4-long frequency domain masks corresponding to port 1, port 7, port 13, and port 19 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 7, port 13, and port 19 are not orthogonal.
- the corresponding ports in row 210 can be replaced by port 0, port 6, port 12, and port 18.
- the FD-OCC lengths of the M ports associated with the first value may be different, that is, the ports in the same row of Table 24-B1 may correspond to different FD-OCC lengths.
- the M ports may include port 0, port 1, and port 13 corresponding to any one of rows 117, 118, or 119, and the FD-OCC length of port 0 is 2, the FD-OCC length of port 1 is 4, and the FD-OCC length of port 13 is 4.
- the port corresponding to any one of rows 117, 118, or 119 may be replaced by port 0, port 1, and port 12, wherein the FD-OCC length of port 0 is 4, the FD-OCC length of port 1 is 2, and the FD-OCC length of port 12 is 4.
- the M ports may include port 0 and port 1 corresponding to any one of 120 rows, 121 rows, or 122 rows, and the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1 is 4.
- the ports corresponding to any one of 120 rows, 121 rows, or 122 rows are still port 0 and port 1, but the FD-OCC length of port 0 is 4, and the FD-OCC length of port 1 is 2.
- the M ports may include port 0 and port 1 corresponding to the 211 rows or 216 rows, the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1 is 4.
- the corresponding ports in the 211 rows or 216 rows may be replaced by port 0 and port 7, wherein the FD-OCC length of port 0 is 2, and the FD-OCC length of port 7 is 4.
- the corresponding ports in the 211 rows or 216 rows may be replaced by port 0 and port 19, wherein the FD-OCC length of port 0 is 2, and the FD-OCC length of port 19 is 4.
- the corresponding ports in the 211 rows or 216 rows may be replaced by port 0 and port 13, wherein the FD-OCC length of port 0 is 2, and the FD-OCC length of port 13 is 4.
- the corresponding ports in row 211 or row 216 are still port 0 and port 1, but the FD-OCC length of port 0 is 4, and the FD-OCC length of port 1 is 2.
- the corresponding ports in row 211 or row 216 can be replaced by port 1 and port 6, where the FD-OCC length of port 1 is 2, and the FD-OCC length of port 6 is 4.
- the corresponding ports in row 211 or row 216 can be replaced by port 1 and port 18, where the FD-OCC length of port 1 is 2, and the FD-OCC length of port 18 is 4.
- the corresponding ports in row 211 or row 216 can be replaced by port 1 and port 12, where the FD-OCC length of port 1 is 2, and the FD-OCC length of port 12 is 4.
- the M ports may include the corresponding ports 0, 1, and 13 in the 212 or 217 rows, the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 1 and 13 are 4.
- the corresponding ports in the 212 or 217 rows may be replaced by ports 0, 1, and 19, the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 1 and 19 are 4.
- the corresponding ports in the 212 or 217 rows may be replaced by ports 0, 1, and 7, the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 1 and 7 are 4.
- the corresponding ports in the 212 or 217 rows may be replaced by ports 0, 13, and 19, the FD-OCC length of port 0 is 2, and the FD-OCC lengths of ports 13 and 19 are 4.
- the corresponding ports in row 212 or row 217 can be replaced by port 0, port 7, and port 9, where the FD-OCC length of port 0 is 2, and the FD-OCC length of port 7 and port 9 is 4.
- the corresponding ports in row 212 or row 217 can be replaced by port 1, port 6, and port 12, where the FD-OCC length of port 1 is 2, and the FD-OCC length of port 6 and port 12 is 4.
- the corresponding ports in row 212 or row 217 can be replaced by port 0, port 1, and port 12, where the FD-OCC length of port 1 is 2, and the FD-OCC length of ports 0 and 12 is 4.
- the corresponding ports in row 212 or row 217 can be replaced with port 1, port 6, and port 18, where the FD-OCC length of port 1 is 2, and the FD-OCC length of ports 6 and 18 is 4.
- the M ports may include the corresponding ports 0, 1, 7, and 13 in the 213 rows or 218 rows, the FD-OCC length of port 0 is 2, and the FD-OCC length of ports 1, 7, and 13 is 4.
- the corresponding ports in the 213 rows or 218 rows may be replaced by ports 0, 1, 7, and 19, the FD-OCC length of port 0 is 2, and the FD-OCC length of ports 1, 7, and 19 is 4.
- the corresponding ports in the 213 rows or 218 rows may be replaced by ports 0, 1, 7, and 19, the FD-OCC length of port 0 is 2, and the FD-OCC length of ports 1, 7, and 19 is 4.
- the corresponding ports in row 213 or row 218 may be replaced by port 0, port 1, port 13, and port 19, wherein the FD-OCC length of port 0 is 2, and the FD-OCC length of port 1, port 13, and port 19 is 4.
- the corresponding ports in row 213 or row 218 may be replaced by port 0, port 1, port 6, and port 12, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 0, port 6, and port 12 is 4.
- the corresponding ports in row 213 or row 218 may be replaced by port 0, port 1, port 12, and port 18, wherein the FD-OCC length of port 1 is 2, and the FD-OCC length of port 0, port 12, and port 18 is 4.
- the corresponding ports in row 213 or row 218 may be replaced with port 0, port 1, port 6, and port 18, where the FD-OCC length of port 1 is 2, and the FD-OCC length of port 0, port 6, and port 18 is 4.
- the M ports may include the corresponding ports 0, 6 and 1 in the 214 rows or 219 rows, the FD-OCC lengths of ports 0 and 6 are 2, and the FD-OCC length of port 1 is 4.
- the corresponding ports in the 214 rows or 219 rows may be replaced by ports 0, 6 and 7, the FD-OCC lengths of ports 0 and 7 are 2, and the FD-OCC length of port 7 is 4.
- the corresponding ports in the 214 rows or 219 rows may be replaced by ports 0, 6 and 13, the FD-OCC lengths of ports 0 and 6 are 2, and the FD-OCC length of port 13 is 4.
- the corresponding ports in the 214 rows or 219 rows may be replaced by ports 0, 6 and 19, the FD-OCC lengths of ports 0 and 6 are 2, and the FD-OCC length of port 19 is 4.
- the corresponding ports in row 214 or row 219 may be replaced by port 1, port 7, and port 6, the FD-OCC length of ports 1 and port 7 is 2, and the FD-OCC length of port 6 is 4.
- the corresponding ports in row 214 or row 219 may be replaced by port 1, port 7, and port 12, the FD-OCC length of ports 1 and port 7 is 2, and the FD-OCC length of port 12 is 4.
- the corresponding ports in row 214 or row 219 may be replaced by port 0, port 1, port 6, and port 7, the FD-OCC length of ports 1 and port 7 is 2, and the FD-OCC length of ports 0 and port 6 is 4.
- the M ports may include the corresponding ports 0, 6, 13, and 19 in the 105 row, the FD-OCC length of ports 0 and 6 is 2, and the FD-OCC length of ports 13 and 19 is 4.
- the corresponding ports in the 215 or 220 row may be replaced by ports 0, 6, 7, and 19, the FD-OCC length of ports 0 and 6 is 2, and the FD-OCC length of ports 7 and 19 is 4.
- the corresponding ports in the 215 or 220 row may be replaced by ports 0, 6, 7, and 13, the FD-OCC length of ports 0 and 6 is 2, and the FD-OCC length of ports 7 and 13 is 4.
- the corresponding ports in row 215 or row 220 may be replaced by port 1, port 7, port 12, and port 18, the FD-OCC length of port 1 and port 7 is 2, and the FD-OCC length of port 18 and port 12 is 4.
- the corresponding ports in row 215 or row 220 may be replaced by port 1, port 7, port 6, and port 18, the FD-OCC length of port 1 and port 7 is 2, and the FD-OCC length of port 18 and port 6 is 4.
- the corresponding ports in row 215 or row 220 may be replaced by port 0, port 1, port 6, and port 7, the FD-OCC length of port 1 and port 7 is 2, and the FD-OCC length of port 0 and port 6 is 4.
- the R18 port of type 2 supports up to 24 stream transmissions, that is, any port combination including 24 stream transmissions in Table 24-B1, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 24, and the number of M ports corresponding to each row is less than or equal to 4. That is, the port combination corresponding to rows 58 to 215 in Table 24-B1.
- the network device may indicate port 0, port 1, port 2, and port 3 of line 113 to terminal device 1, port 7, port 12, and port 13 of line 141 to terminal device 2, port 9, port 18, and port 19 of line 147 or 148 to terminal device 3, port 14, port 15, port 20, and port 21 of line 145 to terminal device 4, port 16, port 17, port 22, and port 23 of line 146 to terminal device 5, port 4 and port 5 of line 169 to terminal device 6, port 6 of line 180 to terminal device 7, port 10 and port 11 of line 191 to terminal device 8, and port 8 of line 182 to terminal device 9; that is, the network device indicates 4 flows to terminal device 1, 3 flows to terminal device 2, 3 flows to terminal device 3, 4 flows to terminal device 4, 4 flows to terminal device 5, and 2 flows to terminal device 6. 1 stream is indicated to terminal device 7, 2 streams are indicated to terminal device 8, and 1 stream is indicated to terminal device 9, forming 24 stream transmission pairings.
- the ports corresponding to line 147 or line 148 can be replaced by port 7, port 20, and port 21.
- Table 24-B1 includes any port combination of 4-stream transmission supported by the R15 port, and the number of ports corresponding to each port combination (i.e., each row in Table 24-B1) is less than or equal to 4, i.e., rows 0 to 57 in Table 24-B1.
- the network device can indicate port 0 and port 1 of row 2 to terminal device 1, and port 2 and port 3 of row 8 to terminal device 2, so that terminal device 1 and terminal device 2 are simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the network device can indicate port 0 of row 5 to terminal device 1, and port 3 of row 6 to terminal device 2, so that terminal device 1 and terminal device 2 are simultaneously scheduled in the same time slot (i.e., scheduled on the same time-frequency resource).
- the existing protocol stipulates that when the network device indicates port 0, port 1 and port 2 of row 9 to terminal device 1, or indicates port 0, port 1, port 2 and port 3 of row 10, or indicates port 0, port 1 and port 2 of row 11, or indicates port 0 and port 2 of row 23, the ports corresponding to rows 9, 10, 11 and 23 are only used for single UE transmission, so only terminal device 1 is scheduled, that is, no other terminals are scheduled on the same time-frequency resources as terminal device 1.
- Table 24-B1 may not include the value set corresponding to the R15 port (the row corresponding to the port combination of the R15 port). In other words, rows 0 to 57 in Table 24-B1 may be deleted.
- Table 24-B2 occupies 8 bits.
- the FD-OCC length corresponding to the unindicated port defaults to 4. It can be seen from Table 24-B1 that the FD-OCC length of the same port can be switched dynamically (for example, the network device can instruct the terminal device to switch through DCI signaling).
- the first indication information is carried in the first signaling, and the first signaling also includes second indication information, and the second indication information is used to indicate a first value, and the first value is associated with the index of M ports.
- the first value can be understood as the index of the row in Table 24-B2. For example, rows 90-112, rows 140-197. For specific examples, please refer to the relevant description of Table 24-B1.
- the R18 port of type 2 supports up to 24 stream transmissions, that is, any port combination including 24 stream transmissions in Table 24-B1, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 24, and the number of M ports corresponding to each row is less than or equal to 4. That is, the port combination corresponding to rows 57 to 197 in Table 24-B1.
- the network device may indicate port 0, port 1, port 2, and port 3 of line 113 to terminal device 1, port 7, port 12, and port 13 of line 131 to terminal device 2, port 9, port 18, and port 19 of line 137 or line 138 to terminal device 3, port 14, port 15, port 20, and port 21 of line 135 to terminal device 4, port 16, port 17, port 22, and port 23 of line 136 to terminal device 5, and port 159 of line 150 to terminal device 6.
- the network device indicates port 4 and port 5 of line 172 to terminal device 7, port 10 and port 11 of line 181 to terminal device 8, and port 8 of line 172 to terminal device 9; that is, the network device indicates 4 streams to terminal device 1, 3 streams to terminal device 2, 3 streams to terminal device 3, 4 streams to terminal device 4, 4 streams to terminal device 5, 2 streams to terminal device 6, 1 stream to terminal device 7, 2 streams to terminal device 8, and 1 stream to terminal device 9, forming a 24-stream transmission pairing.
- the ports corresponding to line 137 or line 138 can be replaced by port 7, port 20, and port 21.
- Table 24-B2 includes the port combination of 4-stream transmission supported by the R15 port, and all rows are used for MU.
- Table 24-B3 The difference between Table 24-B3 and Table 24-B2 is that the FD-OCC length of the same port can be dynamically switched and the corresponding example only includes three rows (i.e., row 90, row 91, and row 92), so Table 24-B3 occupies 7 bits, while Table 24-B2 occupies 8 bits, so Table 24-B3 can reduce bit consumption.
- Table 24-B4 occupies 8 bits.
- the FD-OCC length corresponding to the unindicated port defaults to 4. It can be seen from Table 24-B1 that the FD-OCC length of the same port can be switched dynamically (for example, the network device can instruct the terminal device to switch through DCI signaling).
- the first indication information is carried in the first signaling, and the first signaling also includes second indication information, and the second indication information is used to indicate a first value, and the first value is associated with the index of M ports.
- the first value can be understood as the index of the row in Table 24-B4. For example, rows 90-118, rows 142-192. For specific examples, please refer to the relevant description of Table 24-B1.
- R15 ports and R18 ports can be MU in one CDM group. That is, when the M ports indicated by the network device to the terminal device belong to the R15 port set and the R18 port set, the M ports include a port combination corresponding to a sequence with 4 orthogonal long frequency domain masks but 2 non-orthogonal long frequency domain masks.
- the M ports allocated by the network device to the current terminal device may include port 1 and port 13 corresponding to any one of row 113, row 114, row 115, or row 201, and port 1 and port 13 belong to the same CDM group, but the 4-long frequency domain masks corresponding to port 1 and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1 and port 13 are not orthogonal.
- the port corresponding to any one of row 113, row 114, row 115, or row 201 may be replaced by port 0 and port 12.
- the M ports allocated by the network device to the current terminal device may include port 1, port 7, and port 13 corresponding to row 202, port 1, port 7, and port 13 belong to the same CDM group, and the 4-long frequency domain masks corresponding to port 1, port 7, and port 13 are orthogonal, but the 2-long frequency domain masks corresponding to port 1, port 7, and port 13 are not orthogonal.
- the corresponding ports in row 202 can be replaced by port 0, port 6, and port 12.
- the M ports allocated by the network device to the current terminal device may include port 1, port 7, port 13, and port 19 corresponding to row 203.
- Port 1, port 7, port 13, and port 19 belong to the same CDM group.
- the 4-long frequency domain masks corresponding to port 1, port 7, port 13, and port 19 are orthogonal, but port 1, port 7, port 13, and port 19 are orthogonal.
- the corresponding 2-length frequency domain masks are not orthogonal.
- the corresponding ports in row 203 can be replaced by port 0, port 6, port 12 and port 18.
- the network device may indicate line 112 of port 0, port 1, port 2, and port 3 to terminal device 1, line 134 of port 7, port 12, and port 13 to terminal device 2, line 140 or line 141 of port 9, port 18, and port 19 to terminal device 3, line 138 of port 14, port 15, port 20, and port 21 to terminal device 4, line 139 of port 16, port 17, port 22, and port 23 to terminal device 5, and line 162 of port 163 to terminal device 6.
- Port 4 and port 5 are indicated to terminal device 7, and port 6 on line 173 is indicated to terminal device 7, and port 10 and port 11 on line 184 are indicated to terminal device 8, and port 8 on line 175 is indicated to terminal device 9; that is, the network device indicates 4 streams to terminal device 1, 3 streams to terminal device 2, 3 streams to terminal device 3, 4 streams to terminal device 4, 4 streams to terminal device 5, 2 streams to terminal device 6, 1 stream to terminal device 7, 2 streams to terminal device 8, and 1 stream to terminal device 9, forming a 24-stream transmission pairing.
- Table 24-B4 includes the port combination of 4-stream transmission supported by the R15 port, and all rows are used for MU.
- Table 24-B5 The difference between Table 24-B5 and Table 24-B4 is that the FD-OCC length of the same port can be dynamically switched and the corresponding example only includes three rows (i.e., row 90, row 91, and row 92), so Table 24-B5 occupies 7 bits, while Table 24-B4 occupies 8 bits, so Table 24-B5 can reduce bit consumption.
- Table 24-B6 occupies 7 bits. It can be seen from Table 24-B6 that the R18 port of type 2 supports up to 24 stream transmissions, that is, any port combination for 24 stream transmissions is included in Table 24-B6, and the total number of ports allocated by the network device to the paired terminal device is less than or equal to 24, and the number of M ports corresponding to each row is less than or equal to 4. That is, the port combination corresponding to rows 58 to 117 in Table 24-B6. For specific examples, please refer to the relevant description of Table 24-B1.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
- Small-Scale Networks (AREA)
Abstract
本申请公开了一种通信方法及装置,该方法包括:网络设备向终端设备发送第一指示信息,该第一指示信息用于指示M个端口中的第一端口对应的掩码长度;其中,M个端口属于第一端口集合和/或第二端口集合,第一端口集合对应的第一掩码长度为第一长度,第二端口集合对应的第一掩码长度为第二长度。通过该方法,网络设备可向终端设备指示M个端口中的第一端口对应的掩码长度,便于终端设备灵活选择端口进行信道估计,以达到较好的信道估计效果。
Description
相关申请的交叉引用
本申请要求在2022年11月06日提交中国专利局、申请号为202211381977.3、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
解调参考信号(demodulation reference signal,DMRS)可用于估计数据信道或控制信道的等效信道。其中,数据信道比如可以为物理上行共享信道(physical uplink shared channel,PUSCH)或物理下行共享信道(physical downlink shared channel,PDSCH),控制信道比如可以为物理下行控制信道(physical downlink control channel,PDCCH)。
以下行数据传输为例,网络设备通过PDSCH向终端设备发送数据时,可以根据下行信道状态信息(channel state information,CSI)对数据进行预编码处理;进一步地,网络设备还可以为终端设备分配DMRS端口,并在DMRS端口对应的时频资源上通过PDSCH向终端设备发送DMRS,DMRS通常与数据进行相同的信号处理,如预编码等。如此,终端设备接收DMRS端口对应的DMRS后,可以利用信道估计算法获得对等效信道的估计,进而可以基于等效信道完成数据的解调。
然而,在扩充DMRS端口后,网络设备如何向终端设备灵活地指示为终端设备分配的DMRS端口,以使终端设备可以灵活选择DMRS端口,仍需进一步研究。
发明内容
本申请提供了一种通信方法及装置,用于对网络设备为终端设备分配的端口中的部分端口的频域正交掩码长度进行灵活指示,以便于终端设备灵活选择端口进行信道估计,以达到较好的信道估计效果。
第一方面,本申请实施例提供一种通信方法,该方法可以应用于网络设备或者网络设备的部件(例如处理器、芯片、或芯片系统等),以该方法应用于网络设备为例,该方法包括:网络设备向第一终端设备发送第一指示信息,所述第一指示信息用于指示M个端口中的第一端口对应的掩码长度;其中,所述M个端口属于第一端口集合和/或第二端口集合,所述第一端口集合对应的掩码长度为第一长度,所述第二端口集合对应的掩码长度为第二长度。
在本申请实施例中,第一端口集合可以理解为扩增端口的集合,即R18端口;第二端口集合可以理解为现有端口的集合,即R15端口。以及,“掩码长度”可以包括第一掩码长度和第二掩码长度。在本申请实施例中,所述第一端口集合对应的第二掩码长度与所述第二端口集合对应的第二掩码长度相同。在一种可能的实施方式中,所述掩码长度为第一掩码长度时,掩码长度为4长或2长。
其中,第一掩码为频域掩码,第二掩码为时域掩码。所述频域掩码为第一时频资源映射规则中的Wf(f),所述时域掩码为所述第一时频资源映射规则中的wt(l′);所述第一时频资源映射规则满足如下公式:
k′=0,1
n=0,1,…
k′=0,1
n=0,1,…
其中,p为端口索引值,μ为子载波间隔参数,为映射至索引为(k,l)p,μ(k,l)的资源粒子RE上的解调参考信号DMRS端口p对应的解调参考信号DMRS,为功率系数,wt(l′)为索引为l′的时域符号对应的时域掩码,Wf(f)为索引为k′的子载波对应的频域掩码,f=2·(n mod 2)+k′,m=2n+k′,m为参考信号序列中第m个元素,l表示一个时隙内包含的正交频分复用OFDM符号索引,为所述DMRS符号占用的起始时域符号的符号索引或参考时域符号的符号索引,Δ为子载波偏移因子。
示例性的,对于解调参考信号类型为type1的端口,wt(l′)和Wf(f)的具体取值可以根据表A1确定;对于解调参考信号类型为type2的端口,wt(l′)和Wf(f)的具体取值可以根据表A2确定。
表A1
表A2
以及,在本申请实施例中,M个端口即网络设备为终端设备分配的端口。其中,M为大于等于1的正整数。相应的,“M个端口属于第一端口集合和/或第二端口集合”可以理解为网络设备为终端设备分配的端口属于第一端口集合,或者,网络设备为终端设备分配的端口属于第二端口集合,或者,网络设备为终端设备分配的端口属于第一端口集合和第二端口集合。可选的,在M个端口属于第一端口集合和第二端口集合时,第一端口集合对应的掩码长度和第二端口集合对应的掩码长度不同。示例性的,第一端口集合对应的掩码长度为4长,第二端口集合对应的掩码长度为2长。又示例性的,第一端口集合对应的掩码长度为6长,第二端口集合对应的掩码长度为4长。
在本申请实施例提供的方案中,网络设备向终端设备发送第一指示信息,第一指示信息用于指示M个端口中的第一端口对应的掩码长度;其中,M个端口属于第一端口集合和/或第二端口集合,第一端口集合对应的掩码长度为第一长度,第二端口集合对应的掩码长度为第二长度。如此,该终端设备可以知晓第一端口对应的掩码长度,便于终端设备灵活选择端口进行信道估计,以达到较好的信道估计效果。例如在一个CDM内使用的端口小于4个端口时,终端设备选择掩码长度为2长的端口进行信道估计可取得较好的信道估计效果。并且,本申请方案中网络设备可以灵活地向终端设备指示的M个端口可以属于现有端口集合和/或扩增的端口集合,且扩增的端口集合中的端口可复用现有端口集合中的端口对应的时频资源和序列,因此,网络设备可以灵活地向终端设备指示从不同端口集合中配对的端口,既可保证终端设备能达到信道估计能力,也可使得组合端口的数量最大化。
在本申请实施例中,网络设备通过第一指示信息向终端设备指示M个端口中的第一端口对应的掩码长度,包括但不限于以下实施方式:
实施方式1,所述第一指示信息包括第一比特域;所述第一指示信息用于指示M个端口中的第一端口对应的掩码长度,包括:所述第一比特域用于指示所述第一端口对应的掩码长度。
一种可能的实施方式中,所述第一比特域包含一个第一比特,所述第一比特用于指示所述第一端口对应的掩码长度。示例性的,M个端口以4个端口为例,这4个中有2个端口的掩码长度需要指示,则第一比特可以用于指示这2个端口对应的掩码长度。如此,只需要一个比特就可以指示至少一个第一端口对应的掩码长度,减少了通信开销。
又一种可能的实施方式中,所述第一比特域包含一个第一比特,所述第一比特用于指示所述M个端口对应的掩码长度。
又一种可能的实施方式中,所述第一比特域包括位图,所述位图用于指示所述第一端口对应的掩码长度。进一步的,在一种可能的实施方式中,所述位图包含N个比特,所述N大于或等于所述M,所述N个比特中的第i个比特用于指示所述M个端口中第i个端口对应的第一掩码长度,i∈{1,M}。可选的,所述N个比特包括M个比特,所述M个比特中存在取值不同的至少两个比特;其中,所述M个比特为所述N个比特中的第1个比特至第M个比特。
进一步的,在实施方式1中,所述第一指示信息可以承载于第一信令,所述第一信令还包括第二指示信息;所述第二指示信息用于指示第一取值,所述第一取值关联第一端口索引组,所述第一端口索引组包括所述M个端口的索引;其中,所述M为大于或等于1的正整数。示例性的,第一信令可以为DCI。
实施方式2,所述第一指示信息用于指示M个端口中的第一端口对应的掩码长度,包括:所述第一指示信息用于指示第一取值,所述第一取值关联第一端口索引组;所述第一端口索引组包括所述M个端口的索引,所述第一端口的索引对应第一标识符,第一标识符用于指示所述第一端口对应的掩码长度;其中,所述M为大于或等于1的正整数。
实施方式3,所述第一指示信息用于指示M个端口中的第一端口对应的掩码长度,包括:所述第一指示信息用于指示第一取值,所述第一取值关联第一端口索引组;所述第一端口索引组包括所述M个端口的索引,所述第一端口的索引用于指示所述第一端口对应的掩码长度;其中,所述M为大于或等于1的正整数。
在一种可能的实施方式中,在第一取值包括第一值和/或第二值时,所述第一端口索引组包括第三端口的索引;在所述第一取值包括所述第一值时,所述第三端口对应的掩码长度为第一长度;在所述第一取值包括所述第二值时,所述第三端口对应的掩码长度为第二长度。如此,第三端口的掩码长度可以动态切换。可选的,所述第一长度为2,所述第二长度为4。
在一种可能的实施方式中,在所述第一取值包括第三值时,所述第一端口索引组包括第四端口和第五端口的索引;其中,所述四端口和所述第五端口对应的4长频域掩码正交,且所述四端口和所述第五端口对应的2长频域掩码不正交。如此,R15端口和R18端口可以配对在一个CDM组内。
在一种可能的实施方式中,在所述第一取值包括第四值时,所述第一端口索引组包括至少一个第六端口和至少一个第七端口的索引;至少一个第六端口对应的掩码长度为第一长度,至少一个第七端口对应的掩码长度第二长度。如此,同一个第一端口索引组中的不同端口可以对应不同的掩码长度。可选的,所述第一长度为2,所述第二长度为4。相应的,上述第一标识符用于指示所述第一端口对应的掩码长度,包括:所述第一标识符用于指示所述第一端口的掩码长度为2长。
在一种可能的实施方式中,所述网络设备获取第一天线端口集合;所述第一天线端口集合包括至少一个端口索引组集合,所述至少一个端口索引组集合中的第一端口索引组集合包含的端口索引各不相同;所述第一端口索引组为所述第一端口索引组集合中的任一端口索引组;其中,所述第一端口索引组集合包含的端口索引总数为G,G为大于或等于1,且小于或等于K的正整数;所述K与解调参考信号DMRS的类型有关。示例性的,第一天线端口集合可以包括第一端口索引组、第二端口索引组、第三端口索引组,第一端口索引组包括端口0、端口1、和端口8的索引,第二端口索引组包括端口2、端口3、和端口10的索引,第三端口索引组包括端口9和端口11的索引。
在一种可能的实施方式中,所述K还与解调参考信号的最大长度关联;相应的,所述方法还包括:所述网络设备向所述第一终端设备发送第二信令,所述第二信令用于指示所述解调参考信号的类型和/或所述解调参考信号的最大长度。进而第一终端设备还可以通过第二信令确定解调参考信号的类型和/或所述解调参考信号的最大长度。其中,最大长度还可以是最大符号数,或前置DMRS符号数。
在一种可能的实施方式中,所述K的取值为8,12,16,或24中的任一项。具体的,所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为1时,所述K的取值为8;或者,所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为2时,所述K的取值为16;或者,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为1时,所述K的取值为12;或者,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为2时,所述K的取值为24。
在一种可能的实施方式中,所述第一端口索引组属于第一天线端口集合和第二天线端口集合;其中,所述第二天线端口集合是所述第一天线端口集合的子集。示例性的,第一天线端口集合可以包括第一端口索引组、第二端口索引组、和第三端口索引组,第二天线端口集合包括第一端口索引组和第二端口索引组。因此,第二天线端口集合是第一天线端口集合的子集。
在另一种可能的实施方式中,所述第一端口索引组属于第一天线端口集合和第二天线端口集合;其中,但所述第二天线端口集合不是所述第一天线端口集合的子集。示例性的,第一天线端口集合可以包括第一端口索引组、第二端口索引组、和第三端口索引组,第二天线端口集合包括第四端口索引组。因此,第二天线端口集合不是第一天线端口集合的子集。
在另一种可能的实施方式中,所述第一端口索引组属于第一天线端口集合和第二天线端口集合;其中,所述第二天线端口集合包含至少一个天线端口子集合,所述至少一个天线端口子集合在第二天线端口集合中的补集是第一天线端口集合的子集。其中,所述至少一个天线端口子集合包含的端口索引组用于所述第一终端设备的MIMO传输,且所述第一终端设备不与其他终端设备配对,或,所述第一终端设备假设所述第二天线端口集合包含的端口索引组中没有被指示给其他终端设备。示例性的,第一天线端口集合可以包括第一端口索引组、第二端口索引组、和第三端口索引组,第二天线端口集合中的至少一个天线端口子集合包括第一端口索引组、第二端口索引组、和第三端口索引组,且第二端口索引组用于单用户MIMO传输。因此,只有第一端口索引组和第二端口索引组是第一天线端口集合的子集。
在一种可能的实施方式中,所述方法还包括:所述网络设备接收来自所述第一终端设备的第三指示信息,所述第三指示信息用于表征所述第一终端设备支持第一能力所述第一能力包括所述第一终端设备支持掩码长度切换,所述掩码长度切换包括使用第一信令进行掩码长度切换;其中,所述第一指示信息承载与所述第一信令,所述使用第一信令进行掩码长度切换包括使用所述第一指示信息进行掩码长度切
换。其中,第一终端设备支持掩码长度切换,可以理解为第一终端设备支持同一个DMRS端口索引对应不同的掩码长度,掩码长度可以是2或者4。示例性的,第一端口索引组包括端口0的端口索引时,端口0的掩码长度是2;第二端口索引组包括端口0的端口索引时,端口0的掩码长度是4。
在一种可能的实施方式中,所述M个端口中的任一端口属于所述第二端口集合时,所述方法还包括:所述网络设备接收来自所述第一终端设备的第四指示信息,所述第四指示信息用于指示所述第一终端设备支持第二能力;其中,所述第二能力包括所述M个端口中的任一端口与第十二端口占用的时频资源相同;所述第十二端口属于所述第一端口集合。
在一种可能的实施方式中,所述第一端口集合包括第八端口和第九端口,所述第八端口和所述第九端口对应的4长频域掩码正交;
其中,所述4长频域掩码正交包括在一个码分复用CDM组内连续4个子载波上对应的频域掩码正交。进一步的,4长频域掩码正交满足以下公式:
其中,表示所述第八端口的第一频域掩码,表示所述第九端口的第二频域掩码,f表示频域位置。
在一种可能的实施方式中,所述第二端口集合包括第十端口和第十一端口,所述第十端口和所述第十一端口对应的2长频域掩码正交;其中,所述2长频域掩码正交包括在一个CDM组内连续2个子载波上对应的频域掩码正交;进一步的,所述2长频域掩码正交满足以下公式:
其中,表示所述第十端口对应的第一频域掩码;表示所述第十一端口对应的第二频域掩码,f表示频域位置。
在另一种可能的实施方式中,第一端口集合包括第八端口和第九端口,所述第八端口和所述第九端口对应的6长频域掩码正交;其中,所述6长频域掩码正交包括在一个码分复用CDM组内连续6个子载波上对应的频域掩码正交。进一步的,6长频域掩码正交满足以下公式:
其中,表示第八端口对应的第一频域掩码,表示第九端口对应的第二频域掩码,f表示频域位置。
第二方面,还提供了一种通信方法,该方法可以应用于终端设备或者终端设备的部件(例如处理器、芯片、或芯片系统等),以该方法应用于第一终端设备为例,该方法包括:第一终端设备接收来自网络设备的第一指示信息,所述第一指示信息用于指示M个端口中的第一端口对应的掩码长度;其中,所述M个端口属于第一端口集合和/或第二端口集合,所述第一端口集合对应的第一掩码长度为第一长度,所述第二端口集合对应的第一掩码长度为第二长度。
在另一种可能的实施方式中,所述方法还包括:所述第一终端设备向所述网络设备发送第三指示信息,所述第三指示信息用于表征所述第一终端设备支持第一能力,所述第一能力包括所述第一终端设备支持掩码长度切换,所述掩码长度切换包括使用第一信令进行掩码长度切换;其中,所述第一指示信息
承载与所述第一信令,所述使用第一信令进行掩码长度切换包括使用所述第一指示信息进行掩码长度切换。
在另一种可能的实施方式中,所述M个端口中的任一端口属于所述第二端口集合时,所述方法还包括:所述网络设备接收来自所述第一终端设备的第四指示信息,所述第四指示信息用于指示所述第一终端设备支持第二能力;其中,所述第二能力包括所述M个端口中的任一端口与第十二端口占用的时频资源相同;所述第十二端口属于所述第一端口集合。
需要说明的是,第二方面中任意一种可能的实施方式所达到的技术效果以及相关的细节描述,可以对应参考上述第一方面中的相关描述,此处不再赘述。
第三方面,本申请实施例提供的另一种通信方法,该方法可以应用于网络设备或者网络设备的部件(例如处理器、芯片、或芯片系统等),以该方法应用于网络设备为例,该方法包括:网络设备向第一终端设备发送第一信令,第一信令用于指示M个端口中的第一端口的端口索引,以及指示第二端口的分配状态信息;其中,所述第二端口与所述第一端口属于相同的码分复用CDM组。
在本申请实施例中,第二端口的分配状态信息可以理解为第二端口是否被调度给其他终端。
在本申请实施例中,所述M个端口属于第一端口集合和/或第二端口集合,所述第一端口集合对应的掩码长度为第一长度,所述第二端口集合对应的掩码长度为第二长度。
在本申请实施例中,第一端口集合可以理解为扩增端口的集合,即R18端口;第二端口集合可以理解为现有端口的集合,即R15端口。以及,“掩码长度”可以包括第一掩码长度和第二掩码长度。在本申请实施例中,所述第一端口集合对应的第二掩码长度与所述第二端口集合对应的第二掩码长度相同。在一种可能的实施方式中,所述掩码长度为第一掩码长度时,掩码长度为4长或2长。
其中,第一掩码为频域掩码,第二掩码为时域掩码。所述频域掩码为第一时频资源映射规则中的Wf(f),所述时域掩码为所述第一时频资源映射规则中的wt(l′);所述第一时频资源映射规则满足如下公式:
k′=0,1
n=0,1,…
k′=0,1
n=0,1,…
其中,p为端口索引值,μ为子载波间隔参数,为映射至索引为(k,l)p,μ(k,l)的资源粒子RE上的解调参考信号DMRS端口p对应的解调参考信号DMRS,为功率系数,wt(l′)为索引为l′的时域符号对应的时域掩码,Wf(f)为索引为k′的子载波对应的频域掩码,f=2·(n mod 2)+k′,m=2n+k′,m为参考信号序列中第m个元素,l表示一个时隙内包含的正交频分复用OFDM符号索引,为所述DMRS符号占用的起始时域符号的符号索引或参考时域符号的符号索引,Δ为子载波偏移因子。
在一种可能的实施方式中,第一信令包括所述第一指示信息,所述第一指示信息用于指示所述第二端口的分配状态信息。可选的,所述第一指示信息还用于指示所述第一端口的端口索引。
在本申请实施例中,所述第二端口的分配状态包括所述第二端口被分配,或,所述第二端口未被分配。
相应的,在一种可能的实施方式中,所述第一指示信息用于指示所述第二端口的分配状态信息,包括:所述第一指示信息用于指示所述第二端口被分配给第二终端设备,或者,所述第一指示信息用于指示所述第二端口未被分配给第二终端设备。
在本申请实施例中,所述第一指示信息用于指示所述第二端口的分配状态信息,包括但不限于以下
实施方式:
实施方式1,所述第一指示信息包括第一比特域;所述第一指示信息用于指示所述第二端口的分配状态信息,包括:所述第一比特域用于指示所述第二端口的分配状态信息。
在一种可能的实施方式中,所述第一比特域包含一个第一比特,所述第一比特用于指示所述第二端口的分配状态信息。
在另一种可能的实施方式中,所述第一比特域包含一个第一比特,所述第一比特用于指示所述M个端口对应的所述第二端口的分配状态信息。
在另一种可能的实施方式中,所述第一比特域包括位图;所述第一指示信息用于指示所述第二端口的分配状态信息,包括:所述位图用于指示所述第二端口的分配状态信息。进一步的,在一种可能的实施方式中,所述位图包含N个比特,所述N大于所述M,所述N个比特中的第i个比特用于指示所述M个端口中第i个端口对应的所述第二端口的分配状态信息;其中,所述i∈{1,M}。其中,所述N个比特包括M个比特,所述M个比特中存在取值不同的至少两个比特;其中,所述M个比特为所述N个比特中的第1个比特至第M个比特。
在实施方式1中,在一种可能的实施方式中,所述第一信令还包括第二指示信息;所述第二指示信息用于指示第一取值,所述第一取值关联第一端口索引组,所述第一端口索引组包括所述M个端口的索引。
实施方式2,所述第一指示信息用于指示所述第二端口的分配状态信息,包括:所述第一指示信息用于指示第一取值,所述第一取值关联第一端口索引组;所述第一端口索引组包括所述第一端口的索引,所述第一端口的索引对应第一标识符,所述第一标识符用于指示所述第二端口的分配状态信息。
在一种可能的实施方式中,所述第一标识符用于指示所述第二端口的分配状态信息,包括:所述第一标识符用于指示所述第二端口对应的4长正交掩码中2长不正交的掩码被分配给第二终端设备,或者,所述第一标识符用于指示所述第二端口对应的4长正交掩码中2长不正交的掩码未被分配给第二终端设备。
在一种可能的实施方式中,在第一取值包括第一值和/或第二值时,所述第一端口索引组包括第三端口的索引;在所述第一取值包括所述第一值时,所述第三端口对应的掩码长度为第一长度;在所述第一取值包括所述第二值时,所述第三端口对应的掩码长度为第二长度。如此,第三端口的掩码长度可以动态切换。可选的,所述第一长度为2,所述第二长度为4。
在一种可能的实施方式中,在所述第一取值包括第三值时,所述第一端口索引组包括第四端口和第五端口的索引;其中,所述四端口和所述第五端口对应的4长频域掩码正交,且所述四端口和所述第五端口对应的2长频域掩码不正交。如此,R15端口和R18端口可以配对在一个CDM组内。
在一种可能的实施方式中,在所述第一取值包括第四值时,所述第一端口索引组包括所述第一端口、第六端口和第七端口的索引;所述第一端口对应的掩码长度为第一长度,所述第六端口和所述第七端口对应的掩码长度第二长度。如此,同一个第一端口索引组中的不同端口可以对应不同的掩码长度。可选的,所述第一长度为2,所述第二长度为4。相应的,上述第一标识符用于指示所述第一端口对应的掩码长度,包括:所述第一标识符用于指示所述第一端口的掩码长度为2长。
在一种可能的实施方式中,所述网络设备获取第一天线端口集合;所述第一天线端口集合包括至少一个端口索引组集合,所述至少一个端口索引组集合中的第一端口索引组集合包含的端口索引各不相同;所述第一端口索引组为所述第一端口索引组集合中的任一端口索引组;其中,所述第一端口索引组集合包含的端口索引总数为G,G为大于或等于1,且小于或等于K的正整数;所述K与解调参考信号DMRS的类型有关。示例性的,第一天线端口集合可以包括第一端口索引组、第二端口索引组、第三端口索引组,第一端口索引组包括端口0、端口1、和端口8的索引,第二端口索引组包括端口2、端口3、和端口10的索引,第三端口索引组包括端口9和端口11的索引。
在一种可能的实施方式中,所述K还与解调参考信号的最大长度关联;相应的,所述方法还包括:所述网络设备向所述第一终端设备发送第二信令,所述第二信令用于指示所述解调参考信号的类型和/或所述解调参考信号的最大长度。进而第一终端设备还可以通过第二信令确定解调参考信号的类型和/或所述解调参考信号的最大长度。
在一种可能的实施方式中,所述K的取值为8,12,16,或24中的任一项。具体的,所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为1时,所述K的取值为8;或者,所述解调参
考信号的类型为第一类型,且所述解调参考信号的最大长度为2时,所述K的取值为16;或者,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为1时,所述K的取值为12;或者,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为2时,所述K的取值为24。
在一种可能的实施方式中,所述第一端口索引组属于第一天线端口集合和第二天线端口集合;其中,所述第二天线端口集合是所述第一天线端口集合的子集。示例性的,第一天线端口集合可以包括第一端口索引组、第二端口索引组、和第三端口索引组,第二天线端口集合包括第一端口索引组和第二端口索引组。因此,第二天线端口集合是第一天线端口集合的子集。
在另一种可能的实施方式中,所述第一端口索引组属于第一天线端口集合和第二天线端口集合;其中,但所述第二天线端口集合不是所述第一天线端口集合的子集。示例性的,第一天线端口集合可以包括第一端口索引组、第二端口索引组、和第三端口索引组,第二天线端口集合包括第四端口索引组。因此,第二天线端口集合不是第一天线端口集合的子集。
在另一种可能的实施方式中,所述第一端口索引组属于第一天线端口集合和第二天线端口集合;其中,所述第二天线端口集合包含至少一个天线端口子集合,所述至少一个天线端口子集合在第二天线端口集合中的补集是第一天线端口集合的子集。其中,所述至少一个天线端口子集合包含的端口索引组用于所述第一终端设备的MIMO传输,且所述第一终端设备不与其他终端设备配对,或,所述第一终端设备假设所述第二天线端口集合包含的端口索引组中没有被指示给其他终端设备。示例性的,第一天线端口集合可以包括第一端口索引组、第二端口索引组、和第三端口索引组,第二天线端口集合中的至少一个天线端口子集合包括第一端口索引组、第二端口索引组、和第三端口索引组,且第二端口索引组用于单用户MIMO传输。因此,只有第一端口索引组和第二端口索引组是第一天线端口集合的子集。
在一种可能的实施方式中,所述方法还包括:所述网络设备接收来自所述第一终端设备的第三指示信息,所述第三指示信息用于表征所述第一终端设备支持第一能力所述第一能力包括所述第一终端设备支持掩码长度切换,所述掩码长度切换包括使用第一信令进行掩码长度切换;其中,所述第一指示信息承载与所述第一信令,所述使用第一信令进行掩码长度切换包括使用所述第一指示信息进行掩码长度切换。其中,第一终端设备支持掩码长度切换,可以理解为第一终端设备支持同一个DMRS端口索引对应不同的掩码长度,掩码长度可以是2或者4。示例性的,第一端口索引组包括端口0的端口索引时,端口0的掩码长度是2;第二端口索引组包括端口0的端口索引时,端口0的掩码长度是4。
在一种可能的实施方式中,所述M个端口中的任一端口属于所述第二端口集合时,所述方法还包括:所述网络设备接收来自所述第一终端设备的第四指示信息,所述第四指示信息用于指示所述第一终端设备支持第二能力;其中,所述第二能力包括所述M个端口中的任一端口与第十二端口占用的时频资源相同;所述第十二端口属于所述第一端口集合。
在一种可能的实施方式中,所述第一端口集合包括第八端口和第九端口,所述第八端口和所述第九端口对应的4长频域掩码正交;
其中,所述4长频域掩码正交包括在一个码分复用CDM组内连续4个子载波上对应的频域掩码正交。进一步的,4长频域掩码正交满足以下公式:
其中,表示所述第八端口的第一频域掩码,表示所述第九端口的第二频域掩码,f表示频域位置。
在一种可能的实施方式中,所述第二端口集合包括第十端口和第十一端口,所述第十端口和所述第十一端口对应的2长频域掩码正交;其中,所述2长频域掩码正交包括在一个CDM组内连续2个子载波上对应的频域掩码正交;进一步的,所述2长频域掩码正交满足以下公式:
其中,表示所述第十端口对应的第一频域掩码;表示所述第十一端口对应的第二频域掩码,f表示频域位置。
在另一种可能的实施方式中,第一端口集合包括第八端口和第九端口,所述第八端口和所述第九端
口对应的6长频域掩码正交;其中,所述6长频域掩码正交包括在一个码分复用CDM组内连续6个子载波上对应的频域掩码正交。进一步的,6长频域掩码正交满足以下公式:
其中,表示第八端口对应的第一频域掩码,表示第九端口对应的第二频域掩码,f表示频域位置。
第四方面,还提供了另一种通信方法,该方法可以应用于第一终端设备或者第一终端设备的部件(例如处理器、芯片、或芯片系统等),以该方法应用于终端设备为例,该方法包括:第一终端设备接收来自网络设备的第一信令,第一信令用于指示M个端口中的第一端口的端口索引,以及指示第二端口的分配状态信息;其中,所述第二端口与所述第一端口属于相同的码分复用CDM组。
在一种可能的实施方式中,所述方法还包括:所述第一终端设备向所述网络设备发送第三指示信息,所述第三指示信息用于表征所述第一终端设备支持第一能力,所述第一能力包括所述第一终端设备支持掩码长度切换,所述掩码长度切换包括使用第一信令进行掩码长度切换;其中,所述第一指示信息承载与所述第一信令,所述使用第一信令进行掩码长度切换包括使用所述第一指示信息进行掩码长度切换。
在一种可能的实施方式中,所述M个端口中的任一端口属于第二端口集合时,所述方法还包括:其中,所述第二能力包括所述M个端口中的任一端口与第十二端口占用的时频资源相同;所述第十二端口属于第一端口集合。
需要说明的是,第四方面中任意一种可能的实施方式所达到的技术效果以及细节描述,可以对应参考上述第三方面中可能的实施方式所达到的技术效果和相关描述,此处不再赘述。
第五方面,本申请实施例提供一种天线端口指示方法,该方法可以应用于网络设备或者网络设备的部件(例如处理器、芯片、或芯片系统等),以该方法应用于网络设备为例,该方法包括:所述网络设备获取天线端口集合;所述天线端口集合包括至少一个端口索引组集合,所述至少一个端口索引组集合中的第一端口索引组集合包含的端口索引各不相同;所述第一端口索引组集合包含至少一个端口索引组,所述至少一个端口索引组包括M个端口索引;其中,所述M为大于或等于1的正整数;所述第一端口索引组集合包含的端口索引总数为G,G为大于或等于1,且小于或等于K的正整数;其中,所述K与解调参考信号DMRS的类型有关;所述网络设备向第一终端设备发送第一指示信息,所述第一指示信息用于指示第一端口索引组。
在一种可能的实施方式中,所述至少一个端口索引组集合包含的端口索引组集合数量为K,所述K个端口索引组集合中的第i个端口索引组集合包含的端口索引总数G与大于或等于1,且小于或等于K的正整数一一对应,i∈[1,K]。
在一种可能的实施方式中,所述K还与解调参考信号的最大长度关联;相应的,所述方法还包括:所述网络设备向所述第一终端设备发送第二信令,所述第二信令用于指示所述解调参考信号的类型和/或所述解调参考信号的最大长度。进而第一终端设备还可以通过第二信令确定解调参考信号的类型和/或所述解调参考信号的最大长度。
在一种可能的实施方式中,所述K的取值为8,12,16,或24中的任一项。具体的,所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为1时,所述K的取值为8;或者,所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为2时,所述K的取值为16;或者,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为1时,所述K的取值为12;或者,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为2时,所述K的取值
为24。
在一种可能的实施方式中,第一端口索引组集合包括第一端口索引组、第二端口索引组、和第三端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括2个端口索引。其中,第一端口索引组可以理解为网络设备指示给第一终端设备的端口索引组,第二端口索引组可以理解为网络设备指示给第二终端设备的端口索引组,第三端口索引组可以理解为网络设备指示给第三终端设备的端口索引组。如此,网络设备可以向第一终端设备指示3流,以及向第二终端设备指示3流,以及向第三终端设备指示2流。示例性的,所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为1时,所述第一端口索引组包括端口0、端口1、和端口8的索引,所述第二端口索引组包括端口2、端口3、和端口10的索引,所述第三端口索引组包括端口9和端口11的索引。
在另一种可能的实施方式中,第一端口索引组集合包括第一端口索引组、第二端口索引组、第三端口索引组和第四端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括3个端口索引,所述第四端口索引组包括4个端口索引。其中,第一端口索引组可以理解为网络设备指示给第一终端设备的端口索引组,第二端口索引组可以理解为网络设备指示给第二终端设备的端口索引组,第三端口索引组可以理解为网络设备指示给第三终端设备的端口索引组,第四端口索引组可以理解为网络设备指示给第四终端设备的端口索引组。如此,网络设备可以向第一终端设备指示3流,以及向第二终端设备指示3流,以及向第三终端设备指示3流,以及向第四终端设备指示4流。示例性的,所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为2时,所述第一端口索引组包括端口7、端口12、和端口13的索引,所述第二端口索引组包括端口0、端口1、和端口4的索引,所述第三端口索引组包括端口2、端口3和端口6的索引,所述第四端口索引组包括端口10、端口11、端口14和端口15的索引。
在另一种可能的实施方式中,第一端口索引组、第二端口索引组、第三端口索引组和第四端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括3个端口索引,所述第四端口索引组包括3个端口索引。其中,第一端口索引组可以理解为网络设备指示给第一终端设备的端口索引组,第二端口索引组可以理解为网络设备指示给第二终端设备的端口索引组,第三端口索引组可以理解为网络设备指示给第三终端设备的端口索引组,第四端口索引组可以理解为网络设备指示给第四终端设备的端口索引组。如此,网络设备可以向第一终端设备指示3流,以及向第二终端设备指示3流,以及向第三终端设备指示3流,以及向第四终端设备指示3流。示例性的,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为1时,所述第一端口索引组包括端口13、端口15、和端口17的索引,所述第二端口索引组包括端口0、端口1、和端口12的索引,所述第三端口索引组包括端口4、端口5和端口16的索引,所述第四端口索引组包括端口2、端口3、和端口14的索引。
在另一种可能的实施方式中,第一端口索引组、第二端口索引组、第三端口索引组、第四端口索引组、第五端口索引组、第六端口索引组、第七端口索引组、和第八端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括3个端口索引,所述第四端口索引组包括3个端口索引,第五端口索引组包括3个端口索引,所述第六端口索引组包括3个端口索引,所述第七端口索引组包括3个端口索引,所述第八端口索引组包括3个端口索引;其中,第一端口索引组可以理解为网络设备指示给第一终端设备的端口索引组,第二端口索引组可以理解为网络设备指示给第二终端设备的端口索引组,第三端口索引组可以理解为网络设备指示给第三终端设备的端口索引组,第四端口索引组可以理解为网络设备指示给第四终端设备的端口索引组;第五端口索引组可以理解为网络设备指示给第五终端设备的端口索引组,第六端口索引组可以理解为网络设备指示给第六终端设备的端口索引组,第七端口索引组可以理解为网络设备指示给第七终端设备的端口索引组,第八端口索引组可以理解为网络设备指示给第八终端设备的端口索引组;如此,网络设备可以向第一终端设备指示3流,以及向第二终端设备指示3流,以及向第三终端设备指示3流,以及向第四终端设备指示3流,以及向第五终端设备指示3流,以及向第六终端设备指示3流,以及向第七终端设备指示3流,以及向第八终端设备指示3流。示例性的,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为2时,所述第一端口索引组包括端口18、端口19、和端口20的索引,所述第二端口索引组包括端口21、端口22、和端口23的索引,所述第三端口索引组包括端口7、端口12和端口13
的索引,所述第四端口索引组包括端口9、端口14、和端口15的索引,所述第五端口索引组包括端口11、端口16、和端口17的索引,所述第六端口索引组包括端口2、端口3、和端口8的索引,所述第七端口索引组包括端口0、端口1和端口6的索引,所述第八端口索引组包括端口4、端口5、和端口10的索引。
在一种可能的实施方式中,所述第一指示信息用于指示第一端口索引组,包括:所述第一指示信息用于指示第一取值,所述第一取值关联所述第一端口索引组。
在一种可能的实施方式中,在所述第一取值包括第一值和/或第二值时,所述第一端口索引组包括第一端口的索引;在所述第一取值包括所述第一值时,所述第一端口对应的掩码长度为第一长度;在所述第一取值包括所述第二值时,所述第一端口对应的掩码长度为第二长度。可选的,所述第一长度为2,所述第二长度为4。
在一种可能的实施方式中,在所述第一取值包括第三值时,所述第一端口索引组包括第二端口和第三端口的索引;其中,所述第二端口和所述第三端口对应的4长频域掩码正交,且所述第二端口和所述第三端口对应的2长频域掩码不正交。其中,所述第二端口和所述第三端口在一个相同的CDM组内。
在一种可能的实施方式中,在所述第一取值包括第四值时,所述第一端口索引组包括至少一个第四端口和至少一个第五端口的索引;至少一个第四端口对应的掩码长度为第一长度,至少一个第五端口对应的掩码长度第二长度。可选的,所述第一长度为2,所述第二长度为4。
相应的,在一种可能的实施方式中,所述第四端口的索引对应第一标识符,所述第一标识符用于指示所述第四端口的掩码长度为2长。
在一种可能的实施方式中,所述第一端口索引组包括至少一个第一端口,所述至少一个第一端口属于第一端口集合,所述第一端口集合中的端口对应的第一掩码长度为4。相应的,所述第一掩码为Wf(f),所述第一端口集合对应的时频资源映射公式如下:
k′=0,1
n=0,1,…
k′=0,1
n=0,1,…
其中,p为端口索引值,μ为子载波间隔参数,为映射至索引为(k,l)p,μ(k,l)的资源粒子RE上的解调参考信号DMRS端口p对应的解调参考信号DMRS,为功率系数,wt(l′)为索引为l′的时域符号对应的时域掩码,Wf(f)为索引为k′的子载波对应的频域掩码,f=2·(n mod 2)+k′,m=2n+k′,m为参考信号序列中第m个元素,l表示一个时隙内包含的正交频分复用OFDM符号索引,为所述DMRS符号占用的起始时域符号的符号索引或参考时域符号的符号索引,Δ为子载波偏移因子。
在一种可能的实施方式中,所述第一端口索引组还包括至少一个第二端口,所述至少一个第二端口属于第二端口集合,所述第二端口集合中的端口对应的第一掩码长度为2。相应的,所述第一掩码为wf(k′),所述第二端口集合对应的时频资源映射公式如下:
k′=0,1;
n=0,1,...;
l′=0,1;
k′=0,1;
n=0,1,...;
l′=0,1;
其中,p为端口索引值,μ为子载波间隔参数,为映射至索引为(k,l)p,μ的资源粒子RE上的解调参考信号DMRS端口p对应的解调参考信号DMRS符号,为功率缩放因子或功率控制因子,wt(l′)为索引为l′的时域符号对应的时域掩码序列元素,wf(k′)为索引为k′的子载波对应的频域掩码序列元素,m=2n+k′,m为参考信号序列中第m个元素,l表示一个时隙内包含的正交频分复用OFDM符号索引,为所述DMRS符号占用的起始时域符号的符号索引或参考时域符号的符号索引,Δ为子载波偏移因子。
第六方面,本申请实施例还提供了一种天线端口指示方法,该方法可以应用于第一终端设备或者第一终端设备的部件(例如处理器、芯片、或芯片系统等),以该方法应用于第一终端设备为例,该方法包括:第一终端设备接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一端口索引组;所述第一端口索引组包括M个端口索引;其中,所述M为大于或等于1的正整数;其中,所述第一端口索引组为第一端口索引组集合中的一个端口索引组,所述第一端口索引组集合为所述天线端口集合中的一个端口索引组集合;所述天线端口集合包括至少一个端口索引组集合;第一端口索引组集合包含的端口索引各不相同,所述第一端口索引组集合包含至少一个端口索引组,所述第一端口索引组集合包含的端口索引总数为G,G为大于或等于1,且小于或等于K的正整数;其中,所述K与解调参考信号DMRS类型有关。
需要说明的是,第六方面中任意一种可能的实施方式所达到的技术效果以及细节描述,可以对应参考上述第五方面中可能的实施方式所达到的技术效果和相关描述,此处不再赘述。
第七方面,本申请实施例还提供了一种天线端口指示方法,该方法可以应用于网络设备或者网络设备的部件(例如处理器、芯片、或芯片系统等),以该方法应用于网络设备为例,该方法包括:获取天线端口集合,所述天线端口集合包括至少一个端口索引组,所述一个端口索引组包括M个端口索引;其中,所述M为大于或等于1的正整数;所述天线端口集合包含的互不相同的端口索引数量为K,其中,所述K与解调参考信号DMRS类型有关,所述K为大于或等于1的正整数;发送第一指示信息,所述第一指示信息用于指示第一端口索引组,所述天线端口集合包括所述第一端口索引组。
在一种可能的设计中,所述K的取值为8,12,16,或24中的任一项。
在一种可能的设计中,所述K还与所述解调参考信号的最大长度有关;
所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为1时,所述K的取值为8;或者,
所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为2时,所述K的取值为16;或者,
所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为1时,所述K的取值为12;或者,
所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为2时,所述K的取值为24。
在一种可能的设计中,所述解调参考信号的类型为第一类型,所述解调参考信号的最大长度为1,所述天线端口集合中包含的端口索引组对应的M取值为1~8中的一项。
在一种可能的设计中,所述天线端口集合中的至少一个端口索引组M取值为1,至少一个端口索引组包括第一端口索引组、第二端口索引组、第三端口索引组、第四端口索引组、第五端口索引组、第六端口索引组、第七端口索引组、第八端口索引组、第九端口索引组、第十端口索引组、第十一端口索引组、十二端口索引组;所述第一端口索引组包括端口0,所述第一端口索引组对应的无数据的DMRS
CDM组数量为1;所述第二端口索引组包括端口1,所述第二端口索引组对应的无数据的DMRS CDM组数量为1;所述第三端口索引组包括端口0,所述第三端口索引组对应的无数据的DMRS CDM组数量为2;所述第四端口索引组包括端口1,所述第四端口索引组对应的无数据的DMRS CDM组数量为2;所述第五端口索引组包括端口2,所述第五端口索引组对应的无数据的DMRS CDM组数量为2;所述第六端口索引组包括端口3,所述第六端口索引组对应的无数据的DMRS CDM组数量为2;所述第七端口索引组包括端口8,所述第七端口索引组对应的无数据的DMRS CDM组数量为1;所述第八端口索引组包括端口9,所述第八端口索引组对应的无数据的DMRS CDM组数量为1;所述第九端口索引组包括端口8,所述第九端口索引组对应的无数据的DMRS CDM组数量为2;所述第十端口索引组包括端口9,所述第十端口索引组对应的无数据的DMRS CDM组数量为2;所述第十一端口索引组包括端口10,所述第十一端口索引组对应的无数据的DMRS CDM组数量为1;所述第十二端口索引组包括端口11,所述第十二端口索引组对应的对应无数据的DMRS CDM组数量为1。
在一种可能的设计中,所述天线端口集合中的至少一个端口索引组M取值为2,所述至少一个端口索引组包括第一端口索引组、第二端口索引组、第三端口索引组、第四端口索引组、第五端口索引组、第六端口索引组、第七端口索引组、第八端口索引组;所述第一端口索引组包括端口0和端口1,所述第一端口索引组对应的无数据的DMRS CDM组数量为1;所述第二端口索引组包括端口0和端口1,所述第二端口索引组对应的无数据的DMRS CDM组数量为2;所述第三端口索引组包括端口2和端口3,所述第三端口索引组对应的无数据的DMRS CDM组数量为2;所述第四端口索引组包括端口0和端口2,所述第四端口索引组对应的无数据的DMRS CDM组数量为2;所述第五端口索引组包括端口8和端口9,所述第五端口索引组对应的无数据的DMRS CDM组数量为1;所述第六端口索引组包括端口8和端口9,所述第六端口索引组对应的无数据的DMRS CDM组数量为2;所述第七端口索引组包括端口10和端口11,所述第七端口索引组对应的无数据的DMRS CDM组数量为2;所述第八端口索引组包括端口9和端口11,所述第八端口索引组对应的对应无数据的DMRS CDM组数量为2。
在一种可能的设计中,所述天线端口集合中的至少一个端口索引组M取值为3,所述至少一个端口索引组包括第一端口索引组、第二端口索引组、第三端口索引组、和第四端口索引组;所述第一端口索引组包括端口0、端口1和端口2,所述第一端口索引组对应的无数据的DMRS CDM组数量为2;所述第二端口索引组包括端口0、端口1和端口8,所述第二端口索引组对应的无数据的DMRS CDM组数量为1;所述第三端口索引组包括端口0、端口1和端口8,所述第三端口索引组对应的无数据的DMRS CDM组数量为2;所述第四端口索引组包括端口2、端口3和端口10,所述第四端口索引组对应的对应无数据的DMRS CDM组数量为2。
在一种可能的设计中,所述天线端口集合中的至少一个端口索引组M取值为4,所述至少一个端口索引组包括第一端口索引组、第二端口索引组、第三端口索引组、第四端口索引组、和第五端口索引组;所述第一端口索引组包括端口0、端口1、端口2和端口3,所述第一端口索引组对应的无数据的DMRS CDM组数量为2;所述第二端口索引组包括端口8、端口9、端口10和端口11,所述第二端口索引组对应的无数据的DMRS CDM组数量为2;所述第三端口索引组包括端口0、端口1、端口8和端口9,所述第三端口索引组对应的无数据的DMRS CDM组数量为1;所述第四端口索引组包括端口0、端口1、端口8和端口9,所述第四端口索引组对应的无数据的DMRS CDM组数量为2;所述第五端口索引组包括端口2、端口3、端口10和端口11,所述第五端口索引组对应的无数据的DMRS CDM组数量为2。
在一种可能的设计中,所述天线端口集合中的至少一个端口索引组M取值为5,所述至少一个端口索引组包括第一端口索引组,所述第一端口索引组包括端口0、端口1、端口2、端口3和端口8,所述第一端口索引组对应的无数据的DMRS CDM组数量为2。
在一种可能的设计中,所述天线端口集合中的至少一个端口索引组M取值为6,所述至少一个端口索引组包括第一端口索引组,所述第一端口索引组包括端口0、端口1、端口2、端口3、端口8、和端口10,所述第一端口索引组对应的无数据的DMRS CDM组数量为2。
在一种可能的设计中,所述天线端口集合中的至少一个端口索引组M取值为7,所述至少一个端口索引组包括第一端口索引组,所述第一端口索引组包括端口0、端口1、端口2、端口3、端口8、端口9、和端口10,所述第一端口索引组对应的无数据的DMRS CDM组数量为2。
在一种可能的设计中,所述天线端口集合中的至少一个端口索引组M取值为8,所述至少一个端
口索引组包括第一端口索引组,所述第一端口索引组包括端口0、端口1、端口2、端口3、端口8、端口9、端口10、和端口11,所述第一端口索引组对应的无数据的DMRS CDM组数量为2。
在一种可能的设计中,所述天线端口集合包括的任意两个端口索引组的无数据的DMRS CDM组数量相同。
在一种可能的设计中,当所述DMRS的最大长度为2时,所述天线端口集合包括的任意两个端口索引组的前置符号数相同。
在一种可能的设计中,所述天线端口集合包括第一端口索引组、第二端口索引组、和第三端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括2个端口索引,其中,所述第一端口索引组、第二端口索引组和第三端口索引组的端口索引各不相同。
在一种可能的设计中,所述DMRS的类型为第一类型,所述DMRS的最大长度为1时,所述第一端口索引组包括端口0、端口1、和端口8的索引,所述第二端口索引组包括端口2、端口3、和端口10的索引,所述第三端口索引组包括端口9和端口11的索引。
在一种可能的设计中,所述天线端口集合包括第一端口索引组、第二端口索引组、第三端口索引组和第四端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括3个端口索引,所述第四端口索引组包括4个端口索引,其中,所述第一端口索引组、第二端口索引组、和第三端口索引组和第四端口索引组的端口索引各不相同。
在一种可能的设计中,所述DMRS的类型为第一类型,且所述DMRS的最大长度为2时,所述第一端口索引组包括端口7、端口12、和端口13的索引,所述第二端口索引组包括端口0、端口1、和端口4的索引,所述第三端口索引组包括端口2、端口3和端口6的索引,所述第四端口索引组包括端口10、端口11、端口14和端口15的索引。
在一种可能的设计中,所述天线端口集合包括第一端口索引组、第二端口索引组、第三端口索引组和第四端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括3个端口索引,所述第四端口索引组包括3个端口索引,其中,所述第一端口索引组、第二端口索引组、和第三端口索引组和第四端口索引组的端口索引各不相同。
在一种可能的设计中,所述DMRS的类型为第二类型,且所述DMRS的最大长度为1时,所述第一端口索引组包括端口13、端口15、和端口17的索引,所述第二端口索引组包括端口0、端口1、和端口12的索引,所述第三端口索引组包括端口4、端口5和端口16的索引,所述第四端口索引组包括端口2、端口3、和端口14的索引。
在一种可能的设计中,所述天线端口集合包括第一端口索引组、第二端口索引组、第三端口索引组、第四端口索引组、第五端口索引组、第六端口索引组、第七端口索引组、和第八端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括3个端口索引,所述第四端口索引组包括3个端口索引,第五端口索引组包括3个端口索引,所述第六端口索引组包括3个端口索引,所述第七端口索引组包括3个端口索引,所述第八端口索引组包括3个端口索引,其中,所述第一端口索引组、第二端口索引组、和第三端口索引组和第四端口、第五端口索引组、第六端口索引组、第七端口索引组和第八端口索引组的端口索引各不相同。
在一种可能的设计中,所述DMRS的类型为第二类型,且所述DMRS的最大长度为2时,所述第一端口索引组包括端口18、端口19、和端口20的索引,所述第二端口索引组包括端口21、端口22、和端口23的索引,所述第三端口索引组包括端口7、端口12和端口13的索引,所述第四端口索引组包括端口14、端口15、和端口20的索引,所述第五端口索引组包括端口11、端口16、和端口17的索引,所述第六端口索引组包括端口2、端口3、和端口8的索引,所述第七端口索引组包括端口0、端口1和端口6的索引,所述第八端口索引组包括端口4、端口5、和端口10的索引。
在一种可能的设计中,所述第一端口索引组包括至少一个第一端口,所述至少一个第一端口属于第一端口集合,所述第一端口集合中的端口对应的第一掩码长度为4。
在一种可能的设计中,所述第一掩码为Wf(f),所述第一端口集合对应的时频资源映射公式如下:
k′=0,1
n=0,1,…
k′=0,1
n=0,1,…
其中,p为端口索引值,μ为子载波间隔参数,为映射至索引为(k,l)p,μ(k,l)的资源粒子RE上的解调参考信号DMRS端口p对应的解调参考信号DMRS,为功率系数,wt(l′)为索引为l′的时域符号对应的时域掩码,Wf(f)为索引为k′的子载波对应的频域掩码,f=2·(n mod 2)+k′,m=2n+k′,m为参考信号序列中第m个元素,l表示一个时隙内包含的正交频分复用OFDM符号索引,为所述DMRS符号占用的起始时域符号的符号索引或参考时域符号的符号索引,Δ为子载波偏移因子。
在一种可能的设计中,所述方法还包括:发送RRC信令,所述RRC信令用于指示所述DMRS的类型和/或最大长度。
第八方面,本申请实施例还提供了一种天线端口指示方法,该方法可以应用于网络设备或者网络设备的部件(例如处理器、芯片、或芯片系统等),以该方法应用于网络设备为例,该方法包括:接收第一指示信息,所述第一指示信息用于指示第一端口索引组,所述第一端口索引组包括M个端口索引;其中,所述M为大于或等于1的正整数;
其中,所述第一端口索引组为天线端口集合中的一个端口索引组,所述天线端口集合包含的互不相同的端口索引数量为K,所述K与解调参考信号DMRS类型有关,所述K为大于或等于1的正整数。
第九方面,本申请提供一种通信装置,所述通信装置具备实现上述第一方面或第三方面或第五方面或第七方面的功能,比如,所述通信装置包括执行上述第一方面或第三方面或第五方面或第七方面涉及操作所对应的模块或单元或手段(means),所述模块或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第一方面或第三方面或第五方面或第七方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第一方面或第三方面或第五方面或第七方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第三方面或第五方面或第七方面中任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面或第三方面或第五方面或第七方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第三方面或第五方面或第七方面中任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面中任意可能的设计或实现方式中的方法。
第十方面,本申请提供一种通信装置,所述通信装置具备实现上述第二方面或第四方面或第六方面或第八方面涉及的功能,比如,所述通信装置包括执行上述第二方面或第四方面或第六方面或第八方面涉及操作所对应的模块或单元或手段,所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于向终端设备发送系统信息;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第二方面或第四方
面或第六方面或第八方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第二方面或第四方面或第六方面或第八方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第二方面或第四方面或第六方面或第八方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第二方面或第四方面或第六方面或第八方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第二方面或第四方面或第六方面或第八方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第二方面或第四方面或第六方面或第八方面任意可能的设计或实现方式中的方法。
可以理解地,上述第九方面和第十方面中,处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。此外,以上处理器可以为一个或多个,存储器可以为一个或多个。存储器可以与处理器集成在一起,或者存储器与处理器分离设置。在具体实现过程中,存储器可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第十一方面,本申请提供一种通信系统,该通信系统可以包括上述第九方面所提供的通信装置和上述第十方面所提供的通信装置。
第十二方面,本申请提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面至第八方面的任一方面或该方面可能的设计中的方法。
第十三方面,本申请提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面至第八方面的任一方面或该方面可能的设计中的方法。
第十四方面,本申请提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面至第八方面的任一方面或该方面可能的设计中的方法。
图1为本申请实施例适用的一种网络架构示意图;
图2为本申请实施例提供的DMRS资源映射示意图;
图3A为本申请实施例提供的配置类型1单符号扩展获得的DMRS端口的图样;
图3B为本申请实施例提供的配置类型1双符号扩展获得的DMRS端口的图样;
图4A为本申请实施例提供的配置类型2单符号扩展获得的DMRS端口的图样;
图4B为本申请实施例提供的配置类型2双符号扩展获得的DMRS端口的图样;
图5为本申请实施例提供的一种时频资源映射方法的示意图;
图6为本申请实施例提供的另一种时频资源映射方法的示意图;
图7为本申请实施例提供的一种通信方法所对应的流程示意图;
图8为本申请实施例中所涉及的装置的可能的示例性框图;
图9为本申请实施例提供的一种网络设备的结构示意图;
图10为本申请实施例提供的一种终端设备的结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图1为本申请实施例应用的通信系统的架构示意图。如图1所示,通信系统1000包括网络设备100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,网络设备100可以包括至少一个网络设备,如图1中的110a和110b,还可以包括至少一个终端设备,如图1中的120a-120j。其中,110a
是基站,110b是微站,120a、120e、120f和120j是手机,120b是汽车,120c是加油机,120d是布置在室内或室外的家庭接入节点(home access point,HAP),120g是笔记本电脑,120h是打印机,120i是无人机。
图1中,终端设备可以与网络设备相连,网络设备可以与核心网中的核心网设备连接。核心网设备与网络设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线网络设备的功能。终端设备和终端设备之间以及网络设备和网络设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
下面对网络设备和终端设备进行介绍。
(1)网络设备
网络设备,为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。一些网络设备的举例为:下一代基站(next generation nodeB,gNB)、下一代演进的基站(next generation evolved nodeB,Ng-eNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),网络设备还可以是卫星,卫星还可以称为高空平台、高空飞行器、或卫星基站。网络设备还可以是其他具有网络设备功能的设备,例如,网络设备还可以是设备到设备(device to device,D2D)通信中担任网络设备功能的设备。网络设备还可以是未来可能的通信系统中的网络设备。
在一些部署中,网络设备可以包括集中式单元(centralized unit,CU)和(distributed unit,DU)。网络设备还可以包括有源天线单元(active antenna unit,AAU)。CU实现网络设备的部分功能,DU实现网络设备的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。其中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
(2)终端设备
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
此外,同一个终端设备或网络设备,在不同应用场景中可以提供不同的功能。比如,图1中的手机
包括120a、120e、120f和120j。其中,手机120a可以接入基站110a,连接汽车120b,与手机120e直连通信以及接入到HAP;手机120e可以接入HAP以及与手机120a直连通信;手机120f可以接入为微站110b,连接笔记本电脑120g,连接打印机120h;手机120j可以控制无人机120i。
网络设备和终端设备的角色可以是相对的。例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到网络设备100的终端设备120j来说,终端设备120i是基站;但对于基站110a来说,120i是终端设备,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,网络设备和终端设备都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端设备功能的通信装置。
网络设备和终端设备可以是固定位置的,也可以是可移动的。网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间、网络设备和网络设备之间、终端设备和终端设备之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫兹(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
上述图1所示意的通信系统可以支持各种无线接入技术(radio access technology,RAT),例如图1所示意的通信系统可以为第四代(4th generation,4G)通信系统(也可以称为长期演进(long term evolution,LTE)通信系统),5G通信系统(也可以称为新无线(new radio,NR)通信系统),或者是面向未来的演进系统。本申请实施例描述的通信系统以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面先对本申请实施例所涉及的相关技术特征进行解释说明。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
一、DMRS
在图1所示意的通信系统中,网络设备可以通过控制信道(比如PDCCH)向终端设备发送控制信息,从而为终端设备分配数据信道的传输参数,数据信道比如可以为PDSCH或PUSCH。示例性地,控制信息可以指示数据信道所映射的时域符号和/或频域资源块(resource block,RB),进而网络设备和终端设备在该分配的时频资源上,可以通过数据信道传输下行数据(比如PDSCH携带的数据)和/或上行数据(比如PUSCH携带的数据)。其中,本申请实施例中的时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,或者也可以是离散傅里叶变换扩频OFDM(discrete fourier transform-spread-OFDM,DFT-s-OFDM)符号。
进一步地,控制信道(比如PDCCH)或数据信道(比如PDSCH或PUSCH)中还可以携带参考信号,比如解调参考信号(demodulation reference signal,DMRS)。以数据信道为例,DMRS可用于估计数据信道所承载的数据信号的等效信道,从而用于数据信道中数据的检测和解调。DMRS通常与数据进行相同的信号处理,如预编码等,从而保证DMRS与数据经历相同的等效信道。
目前,DMRS可用于估计数据信道(如PDSCH或PUSCH)或控制信道(如PDCCH)经历的等效信道,或者用于估计数据信道(如PDSCH)或控制信道(如PDCCH)经历的等效信道矩阵,从而用于数据的检测和解调。信道可以对经历的信号产生一定的加权或者是改变(例如,幅度的改变、相位的改变或者频率的改变等)。信道也可以称为信道响应,信道响应可以通过信道响应系数表示。假设发送端发送的DMRS向量为s,发送的数据信号(或称数据符号)向量为x,DMRS与数据进行相同的预编码(比如乘以相同的预编码矩阵P),预编码后的数据信号和DMRS同时传输并经历相同的信道。接收端相应的接收信号向量可以表示为:
数据:
DMRS:
其中,y表示接收端接收到的数据信号向量,r表示接收端接收到的DMRS向量,H表示数据信号和
DMRS实际经历的信道,P表示预编码矩阵,n表示噪声信号向量。
由于数据和DMRS经历的等效信道均为因此,接收端可基于已知的DMRS向量s,利用信道估计算法获得对等效信道的估计,其中DMRS向量是由多个DMRS端口对应的DMRS符号构成;进而,接收端可基于等效信道可以完成数据的检测和解调。其中,信道估计算法比如可以为最小二乘(least square,LS)信道估计算法、最小均方误差(minimum mean square error,MMSE)信道估计算法或者是基于离散傅里叶变换(discrete fourier transform,DFT)/逆离散傅里叶变换(inverse DFT,IDFT)的时延域信道估计算法。
二、DMRS端口
端口可以是指天线端口(antenna port),端口可以理解为被接收端所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个端口,每个虚拟天线可以为多个物理天线的加权组合。用于发送参考信号的端口可以称为参考信号端口,参考信号比如可以为DMRS、信道状态信息参考信号(channel state information reference signal,CSI-RS)或探测参考信号(sounding reference signal,SRS),具体不做限定。
以DMRS端口为例,不同DMRS端口可以通过不同索引(或者说端口号)进行区分。比如,针对于一个DMRS端口,该DMRS端口的索引可以为1000+X,X的取值可以为大于或等于0的整数。1000+X也可以记为X,当DMRS端口的索引可以为1000+X时,该DMRS端口可以称为DMRS端口1000+X,或者也可以称为DMRS端口X。也就是说,本申请实施例中,1000+X和X可以理解为同一DMRS端口的索引。
下文中将以端口为DMRS端口为例进行描述,可以理解的是,本申请实施例提供的方法除适用于DMRS端口外,也可以适用于其它可能的参考信号端口,比如CSI-RS端口、SRS端口。
三、DMRS端口的时频资源映射
对于一个DMRS端口来说,该DMRS端口可以与一个或多个DMRS信号符号(也可称为DMRS调制符号,或简称为DMRS符号)对应。为了对不同的时频资源进行信道估计,可以在多个时频资源内发送该DMRS端口对应的多个DMRS符号。以及,为了保证信道估计的质量,通常不同DMRS端口为正交端口,以避免不同DMRS端口之间的干扰。
一个DMRS端口对应的多个DMRS符号可以对应一个DMRS序列,一个DMRS序列包括多个DMRS序列元素。一个DMRS端口对应的DMRS序列可通过时频资源映射规则,与对应的掩码序列相乘后映射到对应的时频资源上。比如,对于DMRS端口p,其对应的DMRS序列中的第m个DMRS序列元素r(m),可按照时频资源映射规则映射至索引为(k,l)p,μ的资源元素(resource element,RE)上。其中,索引为(k,l)p,μ的RE可在时域上对应一个时隙内的索引为l的时域符号,在频域上对应索引为k的子载波。其中,时频资源映射规则可以满足如下公式1:
k′=0,1;
n=0,1,...;
l′=0,1; 公式1
k′=0,1;
n=0,1,...;
l′=0,1; 公式1
其中,p为DMRS端口索引(即端口索引值),μ为子载波间隔参数,为映射至索引为(k,l)p,μ的RE上的DMRS端口p对应的DMRS符号,为功率缩放因子或功率控制因子,wt(l′)为索引为l′的
时域符号对应的时域掩码序列元素,wf(k′)为索引为k′的子载波对应的频域掩码序列元素,m=2n+k′,Δ为子载波偏移因子,为DMRS符号占用的起始时域符号的符号索引或参考时域符号的符号索引。
进一步地,DMRS端口p对应的wf(k′)、wt(l′)及Δ的取值与DMRS的配置类型有关,具体可以参见有关DMRS的配置类型的描述。
四、DMRS的配置类型
DMRS的配置类型可以包括配置类型1(type1)和配置类型2(type2),不同配置类型支持的正交DMRS端口个数和时频资源映射规则不同。下面分别对配置类型1和配置类型2进行介绍。
(1)配置类型1
针对于配置类型1,DMRS端口p对应的wf(k′)、wt(l′)及Δ的取值可以根据如下表1确定。
表1:Type1 DMRS端口对应的参数取值
其中,λ为DMRS端口p所属的码分复用(code divide multiplexing,CDM)组(也可以称为正交复用组)的索引,同一CDM组内的DMRS端口占用的时频资源相同。其中,“DMRS端口占用的时频资源”也可以替换为“DMRS端口对应的时频资源”或“DMRS端口映射的时频资源”。
基于上述时频资源映射规则(即公式1)和表1中各参数的取值,可以确定不同DMRS端口对应的DMRS序列所映射的时频资源,如图2中的(a)所示。其中,DMRS端口占用的时域符号长度(或者说DMRS端口占用的时域符号数量)可以为1或2,当DMRS端口占用的时域符号长度为1时,可以称为单符号DMRS,当DMRS端口占用的时域符号长度为2时,可以称为双符号DMRS。下面分别针对单符号DMRS和双符号DMRS进行介绍。
(1.1)单符号DMRS
对于单符号DMRS(对应l’=0),最大支持4个正交DMRS端口。4个正交DMRS端口可分为2个CDM组,分别为CDM组0和CDM组1。其中,CDM组0包含DMRS端口0和DMRS端口1;CDM组1包含DMRS端口2和DMRS端口3。CDM组0和CDM组1频分复用(映射在不同的频域资源上)。CDM组内包含的DMRS端口映射在相同的时频资源上。CDM组内包含的DMRS端口对应的DMRS序列通过掩码序列进行区分,从而保证CDM组内DMRS端口的正交性,抑制不同DMRS端口上传输的DMRS之间的干扰。其中,掩码序列可以为正交掩码(orthogonal cover code,OCC)序列。
具体来说,DMRS端口0和DMRS端口1位于相同的RE内,在频域以梳齿的方式进行资源映射,即DMRS端口0和DMRS端口1占用的相邻的频域资源之间间隔一个子载波。对于一个DMRS端口,频域上占用的相邻2个子载波对应一个长度为2的频域掩码序列,比如可以为(+1,+1)或(+1,-1);时域上占用的一个时域符号对应一个长度为1的时域掩码序列,比如可以为(+1);根据频域掩码序列和时域掩码序列可得到该DMRS端口对应的掩码序列的长度为2(该DMRS端口对应的掩码序列可以由频域掩码序列和时域掩码序列通过克罗内科乘积构成)。例如,对于时域符号0对应的子载波0和子载波2,DMRS端口0和DMRS端口1可以通过长度为2的掩码序列进行码分复用。其中,DMRS端口0对应的掩码序列为(+1,+1),DMRS端口1对应的掩码序列为(+1,-1)。
类似地,DMRS端口2和DMRS端口3位于相同的RE内,在频域以梳齿的方式映射在DMRS端口0和DMRS端口1未占用的RE上。例如,对于时域符号0对应的子载波1和子载波3,DMRS端口2和DMRS端口3可以通过长度为2的掩码序列进行码分复用。其中,DMRS端口2对应的掩码序列为(+1,+1),DMRS端口3对应的掩码序列为(+1,-1)。
(1.2)双符号DMRS
对于双符号DMRS(对应l’=0或1),最大支持8个正交DMRS端口。8个正交DMRS端口分为2个CDM组,分别为CDM组0和CDM组1。其中,CDM组0包含DMRS端口0、DMRS端口1、DMRS端口4和DMRS端口5;CDM组1包含DMRS端口2、DMRS端口3、DMRS端口6和DMRS端口7。CDM组0和CDM组1是频分复用,CDM组内包含的DMRS端口映射在相同的时频资源上,CDM组内包含的DMRS端口对应的DMRS序列通过掩码序列进行区分。
具体来说,DMRS端口0、DMRS端口1、DMRS端口4和DMRS端口5位于相同的RE内,在频域以梳齿的方式进行资源映射,即DMRS端口0、DMRS端口1、DMRS端口4和DMRS端口5占用的相邻的频域资源之间间隔一个子载波。对于一个DMRS端口,频域上占用的相邻2个子载波对应一个长度为2的频域掩码序列,比如可以为(+1,+1)或(+1,-1);时域上占用的相邻2个时域符号对应一个长度为2的时域掩码序列,比如可以为(+1,+1)或(+1,-1);根据频域掩码序列和时域掩码序列可得到该DMRS端口对应的掩码序列的长度为4(该DMRS端口对应的掩码序列可以由频域掩码序列和时域掩码序列通过克罗内科乘积构成)。例如,对于时域符号0和时域符号1对应的子载波0和子载波2,DMRS端口0、DMRS端口1、DMRS端口4和DMRS端口5可以通过长度为4的掩码序列进行码分复用。其中,DMRS端口0对应的掩码序列为(+1,+1,+1,+1),DMRS端口1对应的掩码序列为(+1,+1,-1,-1),DMRS端口4对应的掩码序列为(+1,-1,+1,-1),DMRS端口5对应的掩码序列为(+1,-1,-1,+1)。
类似地,DMRS端口2、DMRS端口3、DMRS端口6和DMRS端口7位于相同的RE内,在频域以梳齿的方式映射在DMRS端口0、DMRS端口1、DMRS端口4和DMRS端口5未占用的子载波上。对于时域符号0和时域符号1对应的子载波1和子载波3,DMRS端口2、DMRS端口3、DMRS端口6和DMRS端口7可以通过长度为4的掩码序列进行码分复用。其中,DMRS端口2对应的掩码序列为(+1,+1,+1,+1),DMRS端口3对应的掩码序列为(+1,+1,-1,-1),DMRS端口6对应的掩码序列为(+1,-1,+1,-1),DMRS端口7对应的掩码序列为(+1,-1,-1,+1)。
(2)配置类型2
针对于配置类型2,DMRS端口p对应的wf(k′)、wt(l′)及Δ的取值可以根据表2确定。
表2:type2 DMRS端口对应的参数取值
其中,λ为DMRS端口p所属的CDM组的索引,同一CDM组内的DMRS端口占用的时频资源相同。
基于上述时频资源映射规则(即公式1)和表1中各参数的取值,可以确定不同DMRS端口对应的DMRS序列所映射的时频资源,如图2中的(b)所示。其中,DMRS端口占用的时域符号长度可以为1或2,当DMRS端口占用的时域符号长度为1时,可以称为单符号DMRS,当DMRS端口占用的时域符号
长度为2时,可以称为双符号DMRS。下面分别针对单符号DMRS和双符号DMRS进行介绍。
(2.1)单符号DMRS
对于单符号DMRS,最大支持6个正交DMRS端口。6个正交DMRS端口分为3个CDM组,分别为CDM组0、CDM组1和CDM组2。其中,CDM组0包含DMRS端口0和DMRS端口1;CDM组1包含DMRS端口2和DMRS端口3;CDM组2包含DMRS端口4和DMRS端口5。CDM组间是频分复用,CDM组内包含的DMRS端口所对应的DMRS映射在相同的时频资源上。CDM组内包含的DMRS端口对应的DMRS序列通过掩码序列进行区分。对于一个DMRS端口,其对应的DMRS序列在频域上映射在多个包含连续2个子载波的资源子块内,相邻的资源子块之间在频域间隔4个子载波。
具体来说,DMRS端口0和DMRS端口1位于相同的RE内,在频域以梳齿的方式进行资源映射。以频域资源粒度为1RB为例,DMRS端口0和DMRS端口1占用子载波0、子载波1、子载波6和子载波7。DMRS端口2和DMRS端口3占用子载波2、子载波3、子载波8和子载波9。DMRS端口4和DMRS端口5占用子载波4、子载波5、子载波10和子载波11。对于一个CDM组内包含的2个DMRS端口,其在相邻的2个子载波内通过长度为2的掩码序列进行码分复用,比如2个DMRS端口对应的掩码序列分别为(+1,+1)、(+1,-1)。
(2.2)双符号DMRS
对于双符号DMRS,最大支持12个正交DMRS端口。12个正交DMRS端口分为3个CDM组,其中CDM组0包含DMRS端口0、DMRS端口1、DMRS端口6和DMRS端口7;CDM组1包含DMRS端口2、DMRS端口3、DMRS端口8和DMRS端口9;CDM组2包含DMRS端口4、DMRS端口5、DMRS端口10和DMRS端口11。CDM组间是频分复用,CDM组内包含的DMRS端口所对应的DMRS映射在相同的时频资源上。CDM组内包含的DMRS端口对应的DMRS序列通过掩码序列进行区分。对于一个DMRS端口,其对应的DMRS序列在频域映射在多个包含连续2个子载波的资源子块内,相邻的资源子块之间在频域间隔4个子载波。
具体来说,DMRS端口0、DMRS端口1、DMRS端口6和DMRS端口7位于相同的RE内,在频域以梳齿的方式进行资源映射。以频域资源粒度为1RB为例,DMRS端口0、DMRS端口1、DMRS端口6和DMRS端口7占用时域符号0和时域符号1对应的子载波0、子载波1、子载波6和子载波7。DMRS端口2、DMRS端口3、DMRS端口8和DMRS端口9占用时域符号1和时域符号2对应的子载波2、子载波3、子载波8和子载波9。DMRS端口4、DMRS端口5、DMRS端口10和DMRS端口11占用时域符号1和时域符号2对应的子载波4、子载波5、子载波10和子载波11。对于一个CDM组内包含的4个DMRS端口,其在2个时域符号对应的相邻的2个子载波内通过长度为4的掩码序列进行码分复用,比如4个DMRS端口对应的掩码序列分别为(+1,+1,+1,+1)、(+1,+1,-1,-1)、(+1,-1,+1,-1)、(+1,-1,-1,+1)。
五、扩充DMRS端口
基于上述描述可知,配置类型1支持的最大正交DMRS端口数目为8,配置类型2支持的最大正交DMRS端口数目为12。当在相同时频资源上同时传输多路并行数据流时,每一路数据流可以称为一个空间层或空间流或传输流,一个DMRS端口可以与一个空间层或传输流对应。比如,V个空间层包括空间层0和空间层1,当网络设备为终端设备分配的DMRS端口索引为“0,1”时,空间层0对应DMRS端口0,空间层1对应DMRS端口1;当网络设备为终端设备分配的DMRS端口索引为“2,3”时,空间层0对应DMRS端口2,空间层1对应DMRS端口3。
然而,随着无线通信设备的部署更加密集,终端设备的数量进一步增长,对MIMO传输流数提出了更高的需求(大于12个传输流),但最大12个DMRS端口难以保证大于12个传输流的传输的较好性能,因此,为了支持更多的传输流数,需要对DMRS端口进行扩充。
扩充DMRS端口的方法可以有多种。比如,可以通过码分复用的方式来扩充DMRS端口,或者也可以通过频分复用的方式来扩充DMRS端口。其中,码分复用是在相同的时频资源内引入更多的正交DMRS端口,下面以通过码分复用的方式来扩充DMRS端口为例,对扩充DMRS端口的相关内容进行介绍。
本申请实施例中,当采用码分复用的方式扩充DMRS端口后,如表3-1或表3-2所示,配置类型1、单符号DMRS最大可以支持8个端口,配置类型1、双符号DMRS最大可以支持16个端口,配置类型2、单符号DMRS最大可以支持12个端口,配置类型2、双符号DMRS最大可以支持24个端口。
表3-1:不同配置类型对应的现有DMRS端口和新增DMRS端口
表3-2:不同配置类型对应的现有DMRS端口和新增DMRS端口
下面介绍扩充DMRS端口后的时频资源映射规则
针对于现有DMRS端口来说,一个现有DMRS端口对应的DMRS序列可以通过时频资源映射规则,与对应的掩码序列相乘后映射到对应的时频资源上。相应的,针对于新增DMRS端口来说,一个新增DMRS端口对应的DMRS序列可以通过时频资源映射规则,与对应的掩码序列相乘后映射到对应的时频资源上。
比如,对于DMRS端口p,其对应的DMRS序列中的第m个DMRS序列元素r(m),可按照时频资源映射规则映射至索引为(k,l)p,μ的资源元素(resource element,RE)上。其中,索引为(k,l)p,μ的RE可在时域上对应一个时隙内的索引为l的时域符号,在频域上对应索引为k的子载波。其中,新增DMRS端口的时频资源映射规则有多种实现方式,下面DMRS端口以PDSCH端口为例进行介绍。
实现方式一
在实现方式一中,时频资源映射规则可以满足如下公式2.1、公式2.2、公式2.3、公式2.4。
公式2.1如下:
其中,
k′=0,1;
n=0,1,…
l′=0,1;
k′=0,1;
n=0,1,…
l′=0,1;
其中,p为DMRS端口的索引,μ为子载波间隔参数,为映射至索引为(k,l)p,μ的RE上端口p对应的DMRS符号,为功率因子,wt(l′)为索引为l’的时域符号对应的时域掩码序列元素,wf(k′)为索引为k’的子载波对应的频域掩码序列元素。Δ为子载波偏移因子,为DMRS符号占用的起
始时域符号的符号索引或参考时域符号的符号索引。
公式2.2如下:
其中,
k′=0,1,2,3;
n=0,1,…
l′=0,1;
k′=0,1,2,3;
n=0,1,…
l′=0,1;
其中,公式2.2和公式2.1的区别在于子载波的索引k’对应的取值不同。
公式2.3如下:
其中,
k′=0,1;
n=0,1,…
l′=0,1;
i∈0,1,2,3。
k′=0,1;
n=0,1,…
l′=0,1;
i∈0,1,2,3。
其中,t(i)表示抗干扰序列(或称为掩码元素),i为序列索引,适用于不同additional符号之间干扰随机化。公式2.3相对于公式2.1增加了t(i)。其中,t(i)的取值可以根据表4确定。
表4
公式2.4如下:
其中,
k′=0,1,2,3;
n=0,1,…
l′=0,1;
i∈0,1,2,3。
k′=0,1,2,3;
n=0,1,…
l′=0,1;
i∈0,1,2,3。
其中,t(i)表示抗干扰序列(或称为掩码元素),i为序列索引,适用于不同additional符号之间干扰随机化。公式2.4相对于公式2.2增加了i(i)。其中,t(i)的取值可以根据表4确定。
相应的,进一步地,上述公式2.1-公式2.4中,DMRS端口p对应的wf(k′)、wt(l′)及Δ的取值与
DMRS的配置类型以及所采用的序列类型有关,具体可以参见下文中的描述。
方案1:干扰随机化序列
在方案1中,频域掩码wf(k′)的取值(即OCC索引的值)可以根据表5-1确定。
表5-1频域掩码wf(k′)的取值
针对type1,DMRS端口p对应的wf(k′)和wt(l′)及Δ的取值可以根据OCC索引的值查询表5-2确定。
例如,当采用Type1单符号配置,且DMRS端口p为端口0至端口3、端口8至端口11中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)及Δ的取值可通过表5-2确定。示例性的,DMRS端口p为端口1008时,则端口1008对应的wf(k′)掩码取值对应的OCC索引为#2,相应的,端口1008对应的频域掩码wf(k′)为(+1,+j,-1,-j),端口1008对应的时域掩码为(+1)。
又如,当采用Type1双符号配置,且DMRS端口p为端口0至端口7、端口8至端口15中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表5-2确定。示例性的,DMRS端口p为端口1008时,则端口1008对应的wf(k′)掩码取值对应的OCC索引为#2,相应的,端口1008对应的频域掩码wf(k′)为(+1,+j,-1,-j),端口1008对应的时域掩码为(+1,+j)。
表5-2 PDSCH DMRS端口对应的参数取值(type 1 R18)
针对type2,DMRS端口p对应的wf(k′)和wt(l′)的取值wt(l′)及Δ的取值可以根据OCC索引的值查询表5-3确定。
例如,当采用Type2 DMRS单符号配置时,当DMRS端口p为端口0至端口5、端口12至端口17中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表5-3确定。
又如,当采用Type2 DMRS双符号配置时,且DMRS端口p为端口0至端口11、端口12至端口
23中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表5-3确定。
表5-3 PDSCH DMRS端口对应的参数取值(type 2 R18)
方案2:Walsh序列
在方案2中,频域掩码wf(k′)的取值(即OCC索引的值)可以根据表6-1确定。
针对type1,DMRS端口p对应的wf(k′)和wt(l′)及Δ的取值可以根据OCC索引的值查询表6-2确定。
例如,当采用Type1单符号配置,且DMRS端口p为端口0至端口3、端口8至端口11中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)及Δ的取值可通过表6-2确定。
又如,当采用Type1双符号配置,且DMRS端口p为端口0至端口7、端口8至端口15中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表6-2确定。
表6-1频域掩码wf(k′)
表6-2 PDSCH DMRS端口对应的参数取值(type 1 R18)
针对type2,DMRS端口p对应的wf(k′)和wt(l′)的取值wt(l′)及Δ的取值可以根据OCC索引的值查询表6-3确定。
例如,当采用Type2 DMRS单符号配置时,当DMRS端口p为端口0至端口5、端口12至端口17中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表6-3确定。
又如,当采用Type2 DMRS双符号配置时,且DMRS端口p为端口0至端口11、端口12至端口23中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表6-3确定。
表6-3 PDSCH DMRS端口对应的参数取值(type 1 R18)
方案3:DFT序列
在方案1中,频域掩码wf(k′)的取值(即OCC索引的值)可以根据表7-1确定。
表7-1频域掩码wf(k′)
针对type1,DMRS端口p对应的wf(k′)和wt(l′)及Δ的取值可以根据OCC索引的值查询表7-2确定。例如,当采用Type1单符号配置,且DMRS端口p为端口0至端口3、端口8至端口11中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)及Δ的取值可通过表7-2确定。
又如,当采用Type1双符号配置,且DMRS端口p为端口0至端口7、端口8至端口15中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表7-2确定。
表7-2 PDSCH DMRS端口对应的参数取值(type 1 R18)
针对type2,DMRS端口p对应的wf(k′)和wt(l′)的取值wt(l′)及Δ的取值可以根据OCC索引的值查询表7-3确定。
例如,当采用Type2 DMRS单符号配置时,当DMRS端口p为端口0至端口5、端口12至端口17中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表7-3确定。
又如,当采用Type2 DMRS双符号配置时,且DMRS端口p为端口0至端口11、端口12至端口23中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表7-3确定。
表7-3 PDSCH DMRS端口对应的参数取值(type 1 R18)
实现方式二
在实现方式二中,时频资源映射规则可以满足如下公式3.1和公式3.2。
公式3.1如下:
其中,
k′=0,1;
n=0,1,…
l′=0,1;
k′=0,1;
n=0,1,…
l′=0,1;
其中,p为DMRS端口的索引,μ为子载波间隔参数,为映射至索引为(k,l)的RE上的DMRS端口p对应的DMRS符号,为功率因子,wt(l′)为索引为l′的时域符号对应的时域掩码序列元素,wf(k′)为索引为k′的子载波对应的频域掩码序列元素。Δ为子载波偏移因子,为DMRS符号占用的起始时域符号的符号索引或参考时域符号的符号索引。b(n mod 2)为外层掩码序列,其中,针对于R15现有DMRS端口,b(0)=1,b(1)=1;针对于R18新增DMRS端口,b(0)=1,b(1)=-1,或者b(0)=-1,b(1)=1。
其中,b(n mod 2)外层频域掩码索引可以根据表8-1确定。
表8-1
公式3.2如下:
其中,
k′=0,1;
n=0,1,…
l′=0,1;
i∈0,1,2,3。
k′=0,1;
n=0,1,…
l′=0,1;
i∈0,1,2,3。
其中,t(i)表示抗干扰序列(或称为掩码元素),i为序列索引,适用于不同additional符号之间干扰随机化。公式3.2相对于公式3.1增加了t(i)。其中,t(i)的取值可以根据上述表4确定。
实现方式三
在实现方式三中,时频资源映射规则可以满足如下公式4.1和公式4.2。
其中,公式4.1如下:
其中,
k′=0,1;
n=0,1,…
l′=0,1;
k′=0,1;
n=0,1,…
l′=0,1;
其中,p为DMRS端口的索引,μ为子载波间隔参数,为映射至索引为(k,l)的RE上的DMRS端口p对应的DMRS符号,为功率因子,wt(l′)为索引为l′的时域符号对应的时域掩码序列元素,wf(k′)为索引为k′的子载波对应的频域掩码序列元素。Δ为子载波偏移因子,为DMRS符号占用的起始时域符号的符号索引或参考时域符号的符号索引。b((2n+k′)mod 4)为外层掩码序列,外层频域掩码(FD-OCC)索引可以根据表9-1确定。外层时域掩码(TD-OCC)索引可以根据表9-2确定。其中,i是指不相邻的DMRS符号的相对索引,或不同的additional DMRS符号组之间的相对索引。可以理解的是,上述公式的频域掩码wf(k′)b((2n+k′)mod 4),还可以表示成实现方式1中wf(k′)和实现方式2中wf(k′)b(n mod 2)中的形式。
其中,公式4.2如下:
其中,
k′=0,1;
n=0,1,…
l′=0,1;
i∈0,1,2,3。
k′=0,1;
n=0,1,…
l′=0,1;
i∈0,1,2,3。
其中,t(i)表示抗干扰序列(或称为掩码元素),i为序列索引,适用于不同additional符号之间干扰随机化。公式4.2相对于公式4.1增加了t(i)。其中,t(i)的取值可以根据上述表4确定。
表9-1
表9-2
在本申请实施例中,实现方式二和实现方式三可以采用相同的序列实现FD-OCC增强,包括但不限于以下方案:
方案1:干扰随机化序列
针对type1,DMRS端口p对应的wf(k′)、wt(l′)及Δ的取值可以根据表10-1确定。
例如,当采用Type1单符号配置,且DMRS端口p为端口0至端口3、端口8至端口11中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)及Δ的取值可通过表10-1确定。
又如,当采用Type1双符号配置,且DMRS端口p为端口0至端口7、端口8至端口15中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表10-1确定。
针对type2,DMRS端口p对应的wf(k′)、wt(l′)及Δ的取值可以根据表10-2确定。
例如,当采用Type2 DMRS单符号配置时,当DMRS端口p为端口0至端口5、端口12至端口17中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表10-2确定。
又如,当采用Type2 DMRS双符号配置时,且DMRS端口p为端口0至端口11、端口12至端口23中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表10-2确定。
表10-1不同PDSCH DMRS端口对应的参数取值(type 1 R18)
表10-2不同PDSCH DMRS端口对应的参数取值(type 2 R18)
方案2:Walsh序列
针对type1,DMRS端口p对应的wf(k′)、wt(l′)及Δ的取值可以根据表11-1确定。
例如,当采用Type1单符号配置,且DMRS端口p为端口0至端口3、端口8至端口11中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)及Δ的取值可通过表11-1确定。
又如,当采用Type1双符号配置,且DMRS端口p为端口0至端口7、端口8至端口15中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表11-1确定。
针对type2,DMRS端口p对应的wf(k′)、wt(l′)及Δ的取值可以根据表11-2确定。
例如,当采用Type2 DMRS单符号配置时,当DMRS端口p为端口0至端口5、端口12至端口17
中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表11-2确定。
又如,当采用Type2 DMRS双符号配置时,且DMRS端口p为端口0至端口11、端口12至端口23中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表11-2确定。
表11-1不同PDSCH DMRS端口对应的参数取值(type 1 R18)
表11-2不同PDSCH DMRS端口对应的参数取值(type 2 R18)
方案3:DFT序列
针对type1,DMRS端口p对应的wf(k′)、wt(l′)及Δ的取值可以根据表12-1确定。
例如,当采用Type1单符号配置,且DMRS端口p为端口0至端口3、端口8至端口11中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)及Δ的取值可通过表12-1确定。
又如,当采用Type1双符号配置,且DMRS端口p为端口0至端口7、端口8至端口15中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表12-1确定。
针对type2,DMRS端口p对应的wf(k′)、wt(l′)及Δ的取值可以根据表12-2确定。
例如,当采用Type2 DMRS单符号配置时,当DMRS端口p为端口0至端口5、端口12至端口17中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表12-2确定。
又如,当采用Type2 DMRS双符号配置时,且DMRS端口p为端口0至端口11、端口12至端口23中的任意一个端口时,DMRS端口p对应的wf(k′)和wt(l′)的取值可通过表12-2确定。
表12-1不同PDSCH DMRS端口对应的参数取值(type 1 R18)
表12-2不同PDSCH DMRS端口对应的参数取值(type 2 R18)
在表5-1至表12-2中,p=1000+端口索引数值。其中,对配置类型1单符号对应的端口0、端口1、端口4、和端口5,端口0、端口1、端口4、和端口5对应的DMRS图样如图3A所示;对配置类型1双符号对应的端口8、端口9、端口12、和端口13,端口8、端口9、端口12、和端口13对应的DMRS图样如图3B所示。其中,对配置类型2单符号对应的端口0、端口1、端口6、和端口7,端口0、端口1、端口6、和端口7对应的DMRS图样如图4A所示;对配置类型2双符号对应的端口12、端口13、端口18、和端口19,端口12、端口13、端口18、和端口19对应的DMRS图样如图4B所示。
可以理解的是上述表格同样适用于PUSCH端口,对于PUSCH端口索引由1000~1023换为0~23即可。
下面结合具体的示例进行说明。
情况1、前置单符号+addition1符号
如图5中的(a)所示,在Type1 DMRS配置下,当前置DMRS符号采用单符号,且附加DMRS数量为1时,其中前置DMRS符号以符号2为例,附加符号以符号7为例。
如图5中的(b)所示,在Type2 DMRS配置下,当前置DMRS符号采用单符号,且附加DMRS数量为1时,其中前置DMRS符号以符号2为例,附加符号以符号7为例。
实施方式1,DMRS序列通过干扰随机化序列或DFT序列实现。
如表13-1所示,以Type1 CDM组0中的端口为例,在符号2中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、
子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+j,-1,-j};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-j,-1,+j}。
在符号7中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,-j,1,j};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,j,1,-j}。
以此类推,在符号2和符号7中,端口0、端口1、端口8、端口9在子载波8、子载波10、子载波12和子载波14对应的频域OCC,以及在符号2和符号7中,端口0、端口1、端口8、端口9在子载波16、子载波18、子载波20和子载波22对应的频域OCC,可以根据表13-1确定。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表13-1 type1 CDM组0
如表13-2所示,以Type1 CDM组1中的端口为例,在符号2中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-j,-1,+j}。
在符号7中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,-j,1,j};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,j,1,-j}。
以此类推,在符号2和符号7中,端口2、端口3、端口10、端口11在子载波9、子载波11、子载波13和子载波15对应的频域OCC,以及在符号2和符号7中,端口2、端口3、端口10、端口11在子载波17、子载波19、子载波21和子载波23对应的频域OCC,可以根据表13-2确定。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表13-2 type1 CDM组1
如表13-3所示,以Type2 CDM组0中的端口为例,在符号2中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-j,-1,+j}。
在符号7中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,-j,1,j};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,j,1,-j}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表13-3 type2 CDM组0
如表13-4所示,以Type2 CDM组1中的端口为例,在符号2中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+j,-1,-j};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-j,-1,+j}。
在符号7中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,-j,1,j};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,j,1,-j}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表13-4 type2 CDM组1
如表13-5所示,以Type2 CDM组2中的端口为例,在符号2中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+j,-1,-j};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-j,-1,+j}。
在符号7中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,-j,1,j};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,j,1,-j}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表13-5 type2 CDM组2
实施方式2,DMRS序列通过Walsh序列实现。
如表14-1所示,以type1的CDM组0中的端口为例,在符号2中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,-1,-1};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,-1,+1}。
在符号7中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{1,1,-1,-1};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{1,-1,-1,1}。
以此类推,在符号2和符号7中,端口0、端口1、端口8、端口9在子载波8、子载波10、子载波12和子载波14对应的频域OCC,以及在符号2和符号7中,端口0、端口1、端口8、端口9在子载波16、子载波18、子载波20和子载波22对应的频域OCC,可以根据表14-1确定。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表14-1 type1 CDM组0
如表14-2所示,以Type1 CDM组1中的端口为例,在符号2中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,-1,+1}。
在符号7中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{1,1,-1,-1};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{1,-1,-1,1}。
以此类推,在符号2和符号7中,端口2、端口3、端口10、端口11在子载波9、子载波11、子载波13和子载波15对应的频域OCC,以及在符号2和符号7中,端口2、端口3、端口10、端口11在子载波17、子载波19、子载波21和子载波23对应的频域OCC,可以根据表14-2确定。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表14-2 type1 CDM组1
如表14-3所示,以Type2 CDM组0中的端口为例,在符号2中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,-1,+1}。
在符号7中,现有的端口2在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口10在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口11在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,-1,+1}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表14-3 type2 CDM组0
如表14-4所示,以Type2 CDM组1中的端口为例,在符号2中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,-1,-1};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,-1,+1}。
在符号7中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,-1,-1};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,-1,+1}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表14-4 type2 CDM组1
如表14-5所示,以Type2 CDM组2中的端口为例,在符号2中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,-1,-1};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,-1,+1}。
在符号7中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,-1,-1};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,-1,+1}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表14-5 type2 CDM组2
情况2、前置双符号+addition1组
如图6中的(a)所示,在Type1 DMRS配置下,当前置DMRS符号采用双符号,且附加DMRS数量为1时,其中前置DMRS符号以符号2和符号3为例,附加符号组以符号10、符号11为例。
如图6中的(b)所示,在Type2 DMRS配置下,当前置DMRS符号采用双符号,且附加DMRS数量为1时,其中前置DMRS符号以符号2和符号3为例,附加符号组以符号10、符号11为例。
实施方式1,DMRS序列通过干扰随机化序列实现。
如表15-1所示,以Type1 CDM组0中的端口为例,在符号2中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};现有的端口4在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+j,-1,-j};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-j,-1,+j};新增的端口12在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+j,-1,-j};新增的端口13在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-j,-1,+j}。
在符号3中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};现有的端口4在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,-1,-1,-1};现有的端口5在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,+1,-1,+1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+j,-1,-j,+1};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+j,1,-j,-1};新增的端口12在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-j,+1,+j,-1};新增的端口13在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-j,-1,j,+1}。
在符号10中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};现有的端口4在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+j,-1,-j};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-j,-1,+j};新增的端口12在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+j,-1,-j};新增的端口13在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-j,-1,+j}。
在符号11中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};现有的端口4在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,-1,-1,-1};现有的端口5在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,+1,-1,+1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+j,-1,-j,+1};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+j,1,-j,-1};新增的端口12在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-j,+1,+j,-1};新增的端口13在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-j,-1,j,+1}。
以此类推,在符号2、符号3、符号10和符号11中,端口0、端口1、端口8、端口9、端口12、和端口13在子载波8、子载波10、子载波12和子载波14对应的频域OCC,以及在符号2和符号7中,
端口0、端口1、端口8、端口9、端口12、和端口13在子载波16、子载波18、子载波20和子载波22对应的频域OCC,可以根据表15-1确定。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表15-1 type1 CDM0
如表15-2所示,以Type1 CDM组1中的端口为例,在符号2中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口7在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-j,-1,+j};新增的端口14在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口15在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-j,-1,+j}。
在符号3中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,-1,-1,-1};现有的端口7在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,+1,-1,+1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+j,-1,-j,+1};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+j,1,-j,-1};新增的端口14在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-j,+1,+j,-1};新增的端口15在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-j,-1,j,+1}。
在符号10中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口7在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-j,-1,+j};新增的端口14在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口15在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-j,-1,+j}。
在符号11中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域
OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,-1,-1,-1};现有的端口7在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,+1,-1,+1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+j,-1,-j,+1};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+j,1,-j,-1};新增的端口14在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-j,+1,+j,-1};新增的端口15在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-j,-1,j,+1}。
以此类推,在符号2、符号3、符号10和符号11中,端口2、端口3、端口10、端口11、端口14和端口15在子载波9、子载波11、子载波13和子载波15对应的频域OCC,以及在符号2和符号7中,端口2、端口3、端口10、端口11、端口14和端口15在子载波17、子载波19、子载波21和子载波23对应的频域OCC,可以根据表15-2确定。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表15-2 type1 CDM1
如表15-3所示,以Type2 CDM组0中的端口为例,在符号2中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口7在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-j,-1,+j};新增的端口18在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口19在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-j,-1,+j}。
在符号3中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,-1,-1,-1};现有的端口7在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,+1,-1,+1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+j,-1,-j,+1};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+j,1,-j,-1};新增的端口18在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-j,+1,+j,-1};新增的端口19在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-j,-1,j,+1}。
在符号10中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口7在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-j,-1,+j};新增的端口18在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口19在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-j,-1,+j}。
在符号11中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,-1,-1,-1};现有的端口7在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,+1,-1,+1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+j,-1,-j,+1};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+j,1,-j,-1};新增的端口18在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-j,+1,+j,-1};新增的端口19在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-j,-1,j,+1}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表15-3 type2 CDM0
如表15-4所示,以Type2 CDM组1中的端口为例,在符号2中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};现有的端口8在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口9在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+j,-1,-j};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-j,-1,+j};新增的端口20在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+j,-1,-j};新增的端口21在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-j,-1,+j}。
在符号3中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};现有的端口8在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,-1,-1,-1};现有的端口9在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,+1,-1,+1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+j,-1,-j,+1};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+j,1,-j,-1};新增的端口20在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-j,+1,+j,-1};新增的端口21在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-j,-1,j,+1}。
在符号10中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};现有的端口8在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口9在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+j,-1,-j};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-j,-1,+j};新增的端口20在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+j,-1,-j};新增的端口21在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-j,-1,+j}。
在符号11中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};现有的端口8在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,-1,-1,-1};现有的端口9在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,+1,-1,+1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+j,-1,-j,+1};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+j,1,-j,-1};新增的端口20在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-j,+1,+j,-1};新增的端口21在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-j,-1,j,+1}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表15-4 type2 CDM1
如表15-5所示,以Type2 CDM组2中的端口为例,在符号2中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};现有的端口10在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口11在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+j,-1,-j};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-j,-1,+j};新增的端口22在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+j,-1,-j};新增的端口23在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-j,-1,+j}。
在符号3中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};现有的端口10在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,-1,-1,-1};现有的端口11在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,+1,-1,+1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+j,-1,-j,+1};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+j,1,-j,-1};新增的端口22在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-j,+1,+j,-1};新增的端口23在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-j,-1,j,+1}。
在符号10中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域
OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};现有的端口10在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口11在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+j,-1,-j};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-j,-1,+j};新增的端口22在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+j,-1,-j};新增的端口23在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-j,-1,+j}。
在符号11中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};现有的端口10在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,-1,-1,-1};现有的端口11在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,+1,-1,+1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+j,-1,-j,+1};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+j,1,-j,-1};新增的端口22在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-j,+1,+j,-1};新增的端口23在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-j,-1,j,+1}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表15-5 type2 CDM2
实施方式2,DMRS序列通过Walsh序列实现。
如表16-1所示,以Type1 CDM组0中的端口为例,在符号2中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};现有的端口4在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,-1,-1};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,-1,+1};新增的端口12在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,-1,-1};新增的端口13在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,-1,+1}。
在符号3中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};现有的端口4在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,-1,-1,-1};现有的端口5在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,+1,-1,+1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,-1,-1};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,-1,1};新增的端口12在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,-1,+1,+1};新增的端口13在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,1,1,-1}。
在符号10中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};现有的端口4在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,-1,-1};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,-1,+1};新增的端口12在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,-1,-1};新增的端口13在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,-1,+1}。
在符号11中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};现有的端口4在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,-1,-1,-1};现有的端口5在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,+1,-1,+1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,-1,-1};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,-1,1};新增的端口12在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,-1,+1,+1};新增的端口13在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,1,1,-1}。
以此类推,在符号2、符号3、符号10和符号11中,端口0、端口1、端口8、端口9、端口12、和端口13在子载波8、子载波10、子载波12和子载波14对应的频域OCC,以及在符号2和符号7中,端口0、端口1、端口8、端口9、端口12、和端口13在子载波16、子载波18、子载波20和子载波22对应的频域OCC,可以根据表16-1确定。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表16-1 type1 CDM0
如表16-2所示,以Type1 CDM组1中的端口为例,在符号2中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口7在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,-1,+1};新增的端口14在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口15在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,-1,+1}。
在符号3中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,-1,-1,-1};现有的端口7在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,+1,-1,+1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,-1,1};新增的端口14在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,-1,+1,+1};新增的端口15在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,1,1,-1}。
在符号10中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口7在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,-1,+1};新增的端口14在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口15在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,-1,+1}。
在符号11中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,-1,-1,-1};现有的端口7在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,+1,-1,+1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,-1,1};新增的端口14在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,-1,+1,+1};新增的端口15在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,1,1,-1}。
以此类推,在符号2、符号3、符号10和符号11中,端口2、端口3、端口10、端口11、端口14和端口15在子载波9、子载波11、子载波13和子载波15对应的频域OCC,以及在符号2和符号7中,端口2、端口3、端口10、端口11、端口14和端口15在子载波17、子载波19、子载波21和子载波23对应的频域OCC,可以根据表15-2确定。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表16-2 type1 CDM1
如表16-3所示,以type2 CDM组0中的端口为例,在符号2中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口7在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,-1,+1};新增的端口18在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口19在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,-1,+1}。
在符号3中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,-1,-1,-1};现有的端口7在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,+1,-1,+1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,-1,1};新增的端口18在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,-1,+1,+1};新增的端口19在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,1,1,-1}。
在符号10中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口7在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,-1,+1};新增的端口18在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口19在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,-1,+1}。
在符号11中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,-1,-1,-1};现有的端口7在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,+1,-1,+1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,-1,-1};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,-1,1};新增的端口18在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,-1,+1,+1};新增的端口19在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,1,1,-1}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表16-3 type2 CDM0
如表16-4所示,以Type2 CDM组1中的端口为例,在符号2中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、
子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};现有的端口8在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口9在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,-1,-1};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,-1,+1};新增的端口20在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,-1,-1};新增的端口21在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,-1,+1}。
在符号3中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};现有的端口8在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,-1,-1,-1};现有的端口9在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,+1,-1,+1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,-1,-1};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,-1,1};新增的端口20在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,-1,+1,+1};新增的端口21在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,1,1,-1}。
在符号10中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};现有的端口8在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口9在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,-1,-1};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,-1,+1};新增的端口20在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,-1,-1};新增的端口21在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,-1,+1}。
在符号11中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};现有的端口8在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,-1,-1,-1};现有的端口9在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,+1,-1,+1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,-1,-1};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,-1,1};新增的端口20在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,-1,+1,+1};新增的端口21在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,1,1,-1}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表16-4 type2 CDM1
如表16-5所示,以Type2 CDM组2中的端口为例,在符号2中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};现有的端口10在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口11在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,-1,-1};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,-1,+1};新增的端口22在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,-1,-1};新增的端口23在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,-1,+1}。
在符号3中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};现有的端口10在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,-1,-1,-1};现有的端口11在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,+1,-1,+1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,-1,-1};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,-1,1};新增的端口22在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,-1,+1,+1};新增的端口23在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,1,1,-1}。
在符号10中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};现有的端口10在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口11在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,-1,-1};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,-1,+1};新增的端口22在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,-1,-1};新增的端口23在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,-1,+1}。
在符号11中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};现有的端口10在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,-1,-1,-1};现有的端口11在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,+1,-1,+1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,-1,-1};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,-1,1};新增的端口22在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,-1,+1,+1};新增的端口23在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,1,1,-1}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表16-5 type2 CDM2
实施方式3,DMRS序列通过DFT序列实现。
如表17-1所示,以type1 CDM组0中的端口为例,在符号2中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};现有的端口4在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+j,-1,-j};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-j,-1,+j};新增的端口12在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+j,-1,-j};新增的端口13在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-j,-1,+j}。
在符号3中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};现有的端口4在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,-1,-1,-1};现有的端口5在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,+1,-1,+1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,-j,1,+j};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,+j,1,-j};新增的端口12在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,-j,+1,+j};新增的端口13在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,j,1,-j}。
在符号10中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};现有的端口4在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+j,-1,-j};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-j,-1,+j};新增的端口12在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+j,-1,-j};新增的端口13在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-j,-1,+j}。
在符号11中,现有的端口0在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{+1,-1,+1,-1};现有的端口4在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,-1,-1,-1};现有的端口5在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,+1,-1,+1};新增的端口8在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,-j,1,+j};新增的端口9在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,+j,1,-j};新增的端口12在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,-j,+1,+j};新增的端口13在子载波0、子载波2、子载波4和子载波6上分别对应频域OCC{-1,j,1,-j}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表17-1 type1 CDM0
如表17-2所示,以type1 CDM组1中的端口为例,在符号2中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口7在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-j,-1,+j};新增的端口14在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口15在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-j,-1,+j}。
在符号3中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,-1,-1,-1};现有的端口7在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,+1,-1,+1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,-j,1,+j};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,+j,1,-j};新增的端口14在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,-j,+1,+j};新增的端口15在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,j,1,-j}。
在符号10中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口7在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-j,-1,+j};新增的端口14在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口15在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-j,-1,+j}。
在符号11中,现有的端口2在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,-1,-1,-1};现有的端口7在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,+1,-1,+1};新增的端口10在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,-j,1,+j};新增的端口11在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,+j,1,-j};新增的端口14在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,-j,+1,+j};新增的端口15在子载波1、子载波3、子载波5和子载波7上分别对应频域OCC{-1,j,1,-j}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表17-2 type1 CDM1
如表17-3所示,以type2 CDM组0中的端口为例,在符号2中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口7在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-j,-1,+j};新增的端口18在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口19在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-j,-1,+j}。
在符号3中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,-1,-1,-1};现有的端口7在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,+1,-1,+1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,-j,+1,j};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,+j,+1,-j};新增的端口18在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,-j,+1,+j};新增的端口19在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,j,1,-j}。
在符号10中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口7在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-j,-1,+j};新增的端口18在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+j,-1,-j};新增的端口19在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-j,-1,+j}。
在符号11中,现有的端口0在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,+1,+1,+1};现有的端口1在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{+1,-1,+1,-1};现有的端口6在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,-1,-1,-1};现有的端口7在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,+1,-1,+1};新增的端口12在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,-j,+1,j};新增的端口13在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,+j,+1,-j};新增的端口18在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,-j,+1,+j};新增的端口19在子载波0、子载波1、子载波6和子载波7上分别对应频域OCC{-1,j,1,-j}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现
码域正交。
表17-3 type2 CDM0
如表17-4所示,以type2 CDM组1中的端口为例,在符号2中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};现有的端口8在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口9在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+j,-1,-j};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-j,-1,+j};新增的端口20在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+j,-1,-j};新增的端口21在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-j,-1,+j}。
在符号3中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};现有的端口8在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,-1,-1,-1};现有的端口9在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,+1,-1,+1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,-j,+1,j};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,+j,+1,-j};新增的端口20在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,-j,+1,+j};新增的端口21在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,j,1,-j}。
在符号10中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};现有的端口8在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口9在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+j,-1,-j};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-j,-1,+j};新增的端口20在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+j,-1,-j};新增的端口21在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-j,-1,+j}。
在符号11中,现有的端口2在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,+1,+1,+1};现有的端口3在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{+1,-1,+1,-1};现有的端口8在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,-1,-1,-1};现有的端口9在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,+1,-1,+1};新增的端口14在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,-j,+1,j};新增的端口15在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,+j,+1,-j};新增的端口20在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,-j,+1,+j};新增的端口21在子载波2、子载波3、子载波8和子载波9上分别对应频域OCC{-1,j,1,-j}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表17-4 type2 CDM1
如表17-5所示,以type2 CDM组2中的端口为例,在符号2中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};现有的端口10在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口11在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+j,-1,-j};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-j,-1,+j};新增的端口22在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+j,-1,-j};新增的端口23在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-j,-1,+j}。
在符号3中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};现有的端口10在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,-1,-1,-1};现有的端口11在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,+1,-1,+1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,-j,+1,j};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,+j,+1,-j};新增的端口22在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,-j,+1,+j};新增的端口23在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,j,1,-j}。
在符号10中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};现有的端口10在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口11在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+j,-1,-j};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-j,-1,+j};新增的端口22在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+j,-1,-j};新增的端口23在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-j,-1,+j}。
在符号11中,现有的端口4在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,+1,+1,+1};现有的端口5在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{+1,-1,+1,-1};现有的端口10在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,-1,-1,-1};现有的端口11在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,+1,-1,+1};新增的端口16在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,-j,+1,j};新增的端口17在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,+j,+1,-j};新增的端口22在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,-j,+1,+j};新增的端口23在子载波4、子载波5、子载波10和子载波11上分别对应频域OCC{-1,j,1,-j}。
这样,新增端口对应的DMRS与现有端口对应的DMRS可通过4长的频域OCC进行区分,实现码域正交。
表17-5 type2 CDM2
可以理解的是,以上所有表格均以PDSCH为例,对于PUSCH端口索引由1000~1023换为0~23即可。
基于上述相关技术特征的描述,当网络设备和终端设备通过控制信道或数据信道进行通信时,网络设备需要向终端设备指示为终端设备分配的端口。以及,本申请实施例将针对扩充DMRS端口后,网络设备如何向终端设备指示为终端设备分配的DMRS端口进行研究。本申请实施例提出的该方法不仅可以适用于DMRS的端口指示,还可以适用于其它的参考信号的端口指示,本申请实施例以网络设备向终端设备指示DMRS端口为例,进行详细介绍。
需要注意的是,在本申请实施例中的涉及的“端口n”、“Pn”、“Port n”均指的是端口号为n或端口索引值为n的端口,n为大于0的整数,n的最大取值可以取决于端口的总数,此外,若本申请实施例中网络设备向终端设备发送的解调参考信号为DMRS时,那么网络设备向终端设备指示的端口均可以理解为DMRS端口。
通常情况下,在扩充DMRS端口后,接入网设备为终端设备分配的DMRS端口可以全部是现有端口,或者也可以全部是新增端口,又或者也可以是一部分为现有端口,另一部分为新增端口。其中,现有的DMRS端口对应2长频域正交掩码,若网络设备为终端设备分配的DMRS端口为现有的端口,由于现有的端口在同一个CDM组内相邻2个子载波的掩码序列是正交的,可以通过这种正交性消除干扰信道,提升终端设备进行信道估计时的抗干扰能力。现有的DMRS端口对应4长频域正交掩码,若网络设备为终端设备分配的DMRS端口为新增的端口,由于新增的端口在同一个CDM组内相邻4个子载波的掩码序列是正交的,可以通过这种正交性消除干扰信道,提升终端设备进行信道估计时的抗干扰能力。但4长频域正交掩码的抗干扰能力弱于2长频域正交掩码的抗干扰能力。因此,如何使新增的端口具备2长频域正交掩码的抗干扰能力,便于终端设备灵活选择端口进行信道估计,以达到较好的信道估计效果,是本领域技术人员亟需解决的问题。
有鉴于此,本申请实施例提供的一种通信方法,用于对网络设备为终端设备分配的端口中的部分端口的频域正交掩码长度进行灵活指示,以便于终端设备灵活选择端口进行信道估计,以达到较好的信道估计效果。例如在一个CDM内使用的端口小于4个端口时,终端设备选择频域正交掩码长度为2长的端口进行信道估计可取得较好的信道估计效果。
图7示出了本申请实施例提供的一种通信方法所对应的流程示意图,如图7所示,该方法的流程可以包括:
S701:网络设备向第一终端设备发送RRC信令,RRC信令用于指示DMRS的配置类型和/或DMRS的最大长度。相应的,第一终端设备接收第二信令。
其中,DMRS的最大长度可以理解DMRS占用的最大符号或DMRS占用的符号数。
示例性地,该解调参考信号为DMRS。该第二信令可以为RRC消息,或者该第二信令承载于RRC消息中,例如该第二信令可以包括RRC消息中的配置类型字段和占用的最大符号数字段。
可以理解的是,步骤S701是可选的步骤。因为DMRS的类型和/或DMRS的最大长度可以是默认配置的,或者可以是网络设备向第一终端设备指示的。当网络设备向第一终端设备指示DMRS的类型和/或DMRS的最大长度时,网络设备执行步骤S701。
S702:网络设备向第一终端设备发送第一指示信息,该第一指示信息用于指示M个端口中的至少一个第一端口对应的频域正交掩码长度。相应地,该第一终端设备可以接收第一指示信息。
在本申请实施例中,M个端口即网络设备为第一终端设备分配的端口。其中,M为大于等于1的正整数。M个端口属于第一端口集合和/或第二端口集合。相应的,“M个端口属于第一端口集合和/或第二端口集合”可以理解为网络设备为第一终端设备分配的端口属于第一端口集合,或者,网络设备为
第一终端设备分配的端口属于第二端口集合,或者,网络设备为第一终端设备分配的端口属于第一端口集合和第二端口集合。
在本申请实施例中,第一端口集合可以理解为扩增端口的集合,即R18端口;第二端口集合可以理解为现有端口的集合,即R15端口。以及,“掩码长度”可以包括第一掩码长度和第二掩码长度。在本申请实施例中,所述第一端口集合对应的第二掩码长度与所述第二端口集合对应的第二掩码长度相同。在一种可能的实施方式中,所述掩码长度为第一掩码长度时,掩码长度为4长或2长。
其中,第一掩码为频域掩码,第二掩码为时域掩码。所述频域掩码为第一时频资源映射规则中的Wf(f),所述时域掩码为所述第一时频资源映射规则中的wt(l′);所述第一时频资源映射规则满足如下公式:
k′=0,1
n=0,1,…
k′=0,1
n=0,1,…
其中,p为端口索引值,μ为子载波间隔参数,为映射至索引为(k,l)p,μ(k,l)的资源粒子RE上的解调参考信号DMRS端口p对应的解调参考信号DMRS,为功率系数,wt(l′)为索引为l′的时域符号对应的时域掩码,Wf(f)为索引为k′的子载波对应的频域掩码,f=2·(n mod 2)+k′,m=2n+k′,m为参考信号序列中第m个元素,l表示一个时隙内包含的正交频分复用OFDM符号索引,为所述DMRS符号占用的起始时域符号的符号索引或参考时域符号的符号索引,Δ为子载波偏移因子。
示例性的,对于解调参考信号类型为type1的端口,wt(l′)和Wf(f)的具体取值可以根据表A1确定;对于解调参考信号类型为type2的端口,wt(l′)和Wf(f)的具体取值可以根据表A2确定。
表A1
表A2
以及,在本申请实施例中,M个端口即网络设备为终端设备分配的端口。其中,M为大于等于1的正整数。相应的,“M个端口属于第一端口集合和/或第二端口集合”可以理解为网络设备为终端设备分配的端口属于第一端口集合,或者,网络设备为终端设备分配的端口属于第二端口集合,或者,网络设备为终端设备分配的端口属于第一端口集合和第二端口集合。可选的,在M个端口属于第一端口集合和第二端口集合时,第一端口集合对应的掩码长度和第二端口集合对应的掩码长度不同。示例性的,第一端口集合对应的掩码长度为4长,第二端口集合对应的掩码长度为2长。又示例性的,第一端口集合对应的掩码长度为6长,第二端口集合对应的掩码长度为4长。
在本申请实施例提供的方案中,网络设备向终端设备发送第一指示信息,第一指示信息用于指示M个端口中的第一端口对应的掩码长度;其中,M个端口属于第一端口集合和/或第二端口集合,第一端口集合对应的掩码长度为第一长度,第二端口集合对应的掩码长度为第二长度。如此,该终端设备可以知晓第一端口对应的掩码长度,便于终端设备灵活选择端口进行信道估计,以达到较好的信道估计效果。例如在一个CDM内使用的端口小于4个端口时,终端设备选择掩码长度为2长的端口进行信道估计可取得较好的信道估计效果。并且,本申请方案中网络设备可以灵活地向终端设备指示的M个端口可以属于现有端口集合和/或扩增的端口集合,且扩增的端口集合中的端口可复用现有端口集合中的端口对应的时频资源和序列,因此,网络设备可以灵活地向终端设备指示从不同端口集合中配对的端口,既可保证终端设备能达到信道估计能力,也可使得组合端口的数量最大化。
在一种可能的实施方式中,所述第一端口集合包括第八端口和第九端口,所述第八端口和所述第九端口对应的4长频域掩码正交;
其中,所述4长频域掩码正交包括在一个码分复用CDM组内连续4个子载波上对应的频域掩码正交。进一步的,4长频域掩码正交满足以下公式:
其中,表示所述第八端口的第一频域掩码,表示所述第九端口的第二
频域掩码,f表示频域位置。
在一种可能的实施方式中,所述第二端口集合包括第十端口和第十一端口,所述第十端口和所述第十一端口对应的2长频域掩码正交;其中,所述2长频域掩码正交包括在一个CDM组内连续2个子载波上对应的频域掩码正交;进一步的,所述2长频域掩码正交满足以下公式:
其中,表示所述第十端口对应的第一频域掩码;表示所述第十一端口对应的第二频域掩码,f表示频域位置。
在另一种可能的实施方式中,第一端口集合包括第八端口和第九端口,所述第八端口和所述第九端口对应的6长频域掩码正交;其中,所述6长频域掩码正交包括在一个码分复用CDM组内连续6个子载波上对应的频域掩码正交。进一步的,6长频域掩码正交满足以下公式:
其中,表示第八端口对应的第一频域掩码,表示第九端口对应的第二频域掩码,f表示频域位置。
示例性地,网络设备可以通过媒体接入控制(media access control,MAC)层的消息(如MAC控制元素(control element,CE))或者物理层的消息(如下行控制信息(Downlink control information,DCI))向第一终端设备发送该第一指示信息。该第一指示信息可以为媒体接入控制MAC层的消息(如CE)或者物理层的消息(如DCI);或者该第一指示信息可以承载于媒体接入控制MAC层的消息(如CE)或者物理层的消息(如DCI)中,本申请对此不做具体限定。在一种实施方式中,该第一指示信息承载于第一信令。可选的,第一信令中还可以包括用于指示不承载数据的CDM组数量和解调参考信号占用的符号数的指示信息。
可选的,第一信令中还可以包括用于指示上述M个端口的索引的指示信息。如此,第一终端设备可以知晓网络设备为其分配的DMRS端口。
在本申请实施例中的,网络设备通过第一指示信息向第一终端设备指示M个端口中的第一端口对应的掩码长度,有多种实施方式。
实施方式1,所述第一指示信息包括第一比特域;所述第一指示信息用于指示M个端口中的第一端口对应的掩码长度,包括:所述第一比特域用于指示所述第一端口对应的掩码长度。
一种可能的实施方式中,所述第一比特域包含一个第一比特,所述第一比特用于指示第一端口对应的掩码长度。示例性的,M个端口以4个端口为例,这4个中有2个端口(即第一端口)的掩码长度需要指示,则第一比特可以用于指示这2个端口对应的掩码长度。
又一种可能的实施方式中,所述第一比特域包含一个第一比特,所述第一比特用于指示所述M个端口对应的掩码长度。示例性的,M个端口以4个端口,第一比特可以用于指示这4个端口对应的掩码长度。
又一种可能的实施方式中,所述第一比特域包括位图,所述位图用于指示所述第一端口对应的掩码长度。进一步的,在一种可能的实施方式中,所述位图包含N个比特,所述N大于或等于所述M,所述N个比特中的第i个比特用于指示所述M个端口中第i个端口对应的第一掩码长度,i∈{1,M}。可选的,所述N个比特包括M个比特,所述M个比特中存在取值不同的至少两个比特;其中,所述M个比特为所述N个比特中的第1个比特至第M个比特。
例如,位图中包括N个比特,其中N=4,M=2,相应的N个比特中的第1个比特用于指示M个端口中的第1个端口对应的频域掩码长度为2,N个比特中的第2个比特用于指示M个端口中的第2个端口对应的频域掩码长度为4。
又如,位图中包括N个比特,其中N=4,M=4,相应的,N个比特中的第1个比特用于指示M个端口中的第1个端口对应的频域掩码长度为2,N个比特中的第2个比特用于指示M个端口中的第2个端口对应的频域掩码长度为4,N个比特中的第3个比特用于指示M个端口中的第3个端口对应的频域掩码长度为4,N个比特中的第4个比特用于指示M个端口中的第4个端口对应的频域掩码长度为4。
进一步的,在实施方式1中,所述第一指示信息可以承载于第一信令,所述第一信令还包括第二指示信息;所述第二指示信息用于指示第一取值,所述第一取值关联第一端口索引组,所述第一端口索引组包括所述M个端口的索引;其中,所述M为大于或等于1的正整数。示例性的,第一信令可以为DCI。
实施方式2,所述第一指示信息用于指示M个端口中的第一端口对应的掩码长度,包括:所述第一指示信息用于指示第一取值,所述第一取值关联第一端口索引组;所述第一端口索引组包括所述M个端口的索引,所述第一端口的索引对应第一标识符,第一标识符用于指示所述第一端口对应的掩码长度;其中,所述M为大于或等于1的正整数。
实施方式3,所述第一指示信息用于指示M个端口中的第一端口对应的掩码长度,包括:所述第一指示信息用于指示第一取值,所述第一取值关联第一端口索引组;所述第一端口索引组包括所述M个端口的索引,所述第一端口的索引用于指示所述第一端口对应的掩码长度;其中,所述M为大于或等于1的正整数。
在一些实施例中,上述S702可以替换为:网络设备向第一终端设备发送第一信令,第一信令用于指示M个端口中的第一端口的端口索引,以及指示第二端口的分配状态信息;其中,所述第二端口与所述第一端口属于相同的码分复用CDM组。相应的,第一终端设备接收第一信令。
在本申请实施例中,所述第二端口的分配状态包括所述第二端口被分配,或,所述第二端口未被分配。以及,第二端口的分配状态信息可以理解为第二端口是否被调度给其他终端。
相应的,第一信令包括所述第一指示信息,所述第一指示信息用于指示所述第二端口的分配状态信息。可选的,所述第一指示信息还用于指示所述第一端口的端口索引。在一种可能的实施方式中,所述第一指示信息用于指示所述第二端口的分配状态信息,包括:所述第一指示信息用于指示所述第二端口被分配给第二终端设备,或者,所述第一指示信息用于指示所述第二端口未被分配给第二终端设备。
类似的,在本申请实施例中,网络设备通过第一指示信息向第一终端设备指示所述第二端口的分配状态信息,包括但不限于以下实施方式:
实施方式1,所述第一指示信息包括第一比特域;所述第一指示信息用于指示所述第二端口的分配状态信息,包括:所述第一比特域用于指示所述第二端口的分配状态信息。
在一种可能的实施方式中,所述第一比特域包含一个第一比特,所述第一比特用于指示所述第二端口的分配状态信息。
在另一种可能的实施方式中,所述第一比特域包含一个第一比特,所述第一比特用于指示所述M个端口对应的所述第二端口的分配状态信息。
在另一种可能的实施方式中,所述第一比特域包括位图;所述第一指示信息用于指示所述第二端口的分配状态信息,包括:所述位图用于指示所述第二端口的分配状态信息。进一步的,在一种可能的实施方式中,所述位图包含N个比特,所述N大于所述M,所述N个比特中的第i个比特用于指示所述M个端口中第i个端口对应的所述第二端口的分配状态信息;其中,所述i∈{1,M}。其中,所述N个比特包括M个比特,所述M个比特中存在取值不同的至少两个比特;其中,所述M个比特为所述N个比特中的第1个比特至第M个比特。其中,M个端口中第i个端口对应的第二端口可以理解为,存在一个第二端口与M个端口中第i个端口同属于相同的CDM组。
例如,位图中包括N个比特,其中N=4,M=2,相应的N个比特中的第1个比特用于指示M个端口中的第1个端口对应的第二端口的分配状态信息,N个比特中的第2个比特用于指示M个端口中的第2个端口对应的第二端口的分配状态信息。
又如,位图中包括N个比特,其中N=4,M=4,相应的,N个比特中的第1个比特用于指示M个
端口中的第1个端口对应的第二端口的分配状态信息,N个比特中的第2个比特用于指示M个端口中的第2个端口对应的第二端口的分配状态信息,N个比特中的第3个比特用于指示M个端口中的第3个端口对应的第二端口的分配状态信息,N个比特中的第4个比特用于指示M个端口中的第4个端口对应的第二端口的分配状态信息。
在实施方式1中,在一种可能的实施方式中,所述第一信令还包括第二指示信息;所述第二指示信息用于指示第一取值,所述第一取值关联第一端口索引组,所述第一端口索引组包括所述M个端口的索引。
实施方式2,所述第一指示信息用于指示所述第二端口的分配状态信息,包括:所述第一指示信息用于指示第一取值,所述第一取值关联第一端口索引组;所述第一端口索引组包括所述第一端口的索引,所述第一端口的索引对应第一标识符,所述第一标识符用于指示所述第二端口的分配状态信息。
在一种可能的实施方式中,所述第一标识符用于指示所述第二端口的分配状态信息,包括:所述第一标识符用于指示所述第二端口对应的4长正交掩码中2长不正交的掩码被分配给第二终端设备,或者,所述第一标识符用于指示所述第二端口对应的4长正交掩码中2长不正交的掩码未被分配给第二终端设备。
为了便于理解,下面分别以实施例1和实施例2对本申请实施例提供的通信方法进一步介绍:
实施例1
情况1,第一指示信息包括第一比特域,通过第一比特域指示第一端口对应的掩码长度。
情况1.1,第一比特域包括一个第一比特,第一比特用于指示第一端口对应的掩码长度。示例性的,M个端口以4个端口为例,这4个中有2个端口(即第一端口)的掩码长度需要指示,则第一比特可以用于指示这2个端口对应的掩码长度。示例性的,第一比特指示的信息可以如表18-1所示,当第一比特指示的频域正交掩码(frequency domain orthogonal cover code,FD-OCC)长度字段取值为0时,则这2个端口的频域正交掩码长度为2长;当第一比特指示的FD-OCC长度字段取值为1时,则这2个端口对应的频域正交掩码长度为4长。
情况1.2,第一比特域包括一个第一比特,第一比特用于指示M个端口对应的掩码长度。示例性的,M个端口以4个端口为例,则第一比特可以用于指示这4个端口对应的掩码长度。示例性的,第一比特指示的信息可以如表18-1所示,当第一比特指示的FD-OCC长度字段取值为0时,则这2个端口的频域正交掩码长度为2长;当第一比特指示的FD-OCC长度字段取值为1时,则这2个端口对应的频域正交掩码长度为4长。
表18-1
情况1.3,第一比特域包括位图,位图用于指示第一端口对应的掩码长度。进一步的,在一种可能的实施方式中,位图包含N个比特,N大于或等于M,N个比特中的第i个比特用于指示M个端口中第i个端口对应的第一掩码长度,i∈{1,M}。可选的,N个比特包括M个比特,M个比特中存在取值不同的至少两个比特;其中,M个比特为N个比特中的第1个比特至第M个比特。
例如,位图中包括N个比特,其中N=4,M=2,相应的N个比特中的第1个比特用于指示M个端口中的第1个端口对应的频域掩码长度为2,N个比特中的第2个比特用于指示M个端口中的第2个端口对应的频域掩码长度为4。
又如,位图中包括N个比特,其中N=4,M=4,相应的,N个比特中的第1个比特用于指示M个端口中的第1个端口对应的频域掩码长度为2,N个比特中的第2个比特用于指示M个端口中的第2个端口对应的频域掩码长度为4,N个比特中的第3个比特用于指示M个端口中的第3个端口对应的频域掩码长度为4,N个比特中的第4个比特用于指示M个端口中的第4个端口对应的频域掩码长度为4。
一种示例中,如表18-2所示,位图中包括N个比特,其中N=4,M个端口中的至少一个端口包括最大4个端口,比特1用于指示第一端口对应的频域正交掩码长度,比特2用于指示第二端口对应的频域正交掩码长度,比特3用于指示第三端口对应的频域正交掩码长度,比特4用于指示第四端口对应的频域正交掩码长度。当比特1指示的取值为0时,该第一端口对应的频域正交掩码长度为2长;当比特
1指示的取值为1时,第一端口对应的频域正交掩码长度为4长。类似的,当比特2指示的取值为0时,该第二端口对应的频域正交掩码长度为2长;当比特2指示的取值为1时,第二端口对应的频域正交掩码长度为4长。类似的,当比特3指示的取值为0时,该第三端口对应的频域正交掩码长度为2长;当比特2指示的取值为1时,第三端口对应的频域正交掩码长度为4长。类似的,当比特4指示的取值为0时,该第四端口对应的频域正交掩码长度为2长;当比特2指示的取值为1时,第四端口对应的频域正交掩码长度为4长。
例如,M个端口包括端口0、端口1、端口8和端口9,第一端口为端口0,当比特1指示的取值为0时,该端口0对应的频域正交掩码长度为2长;当比特1指示的取值为1时,端口0对应的频域正交掩码长度为4长。类似的,第二端口为端口1,当比特2指示的取值为0时,该端口1对应的频域正交掩码长度为2长;当比特2指示的取值为1时,端口1对应的频域正交掩码长度为4长。类似的,第三端口为端口8,当比特3指示的取值为0时,该端口8对应的频域正交掩码长度为2长;当比特2指示的取值为1时,端口8对应的频域正交掩码长度为4长。类似的,第四端口为端口9,当比特4指示的取值为0时,端口9对应的频域正交掩码长度为2长;当比特2指示的取值为1时,端口9对应的频域正交掩码长度为4长。
又如,M个端口包括端口2和端口3,第一端口为端口2,当比特1指示的取值为0时,该端口2对应的频域正交掩码长度为2长;当比特1指示的取值为1时,端口2对应的频域正交掩码长度为4长。类似的,第二端口为端口3,当比特2指示的取值为0时,该端口3对应的频域正交掩码长度为2长;当比特2指示的取值为1时,端口3对应的频域正交掩码长度为4长。
表18-2
情况2,所述第一指示信息包括第一比特域;所述第一指示信息用于指示所述第二端口的分配状态信息,包括:所述第一比特域用于指示所述第二端口的分配状态信息。
情况2.1,所述第一比特域包含一个第一比特,所述第一比特用于指示第二端口的分配状态信息。示例性的,M个端口以4个端口为例,这4个端口包括端口9,端口9和端口0(即第二端口)在一个CDM组,则第一比特可以用于指示端口0对应的掩码长度。示例性的,第一比特指示的信息可以如表19-1所示,当第一比特指示的分配状态信息字段取值为0时,则端口0被分配;当第一比特指示的分配状态信息字段取值为1时,则端口0未被分配。
情况2.2,所述第一比特域包含一个第一比特,所述第一比特用于指示所述M个端口对应的所述第二端口的分配状态信息。示例性的,M个端口以4个端口为例,这4个端口均存在对应第二端口,则第一比特可以用于指示这4个第二端口的分配状态信息。示例性的,第一比特指示的信息可以如表19-1所示,当第一比特指示的分配状态信息字段取值为0时,则这4个第二端口被分配;当第一比特指示的分配状态信息字段取值为1时,则这4个第二端口未被分配。
情况2.3,所述第一比特域包括位图;所述第一指示信息用于指示所述第二端口的分配状态信息,包括:所述位图用于指示所述第二端口的分配状态信息。进一步的,在一种可能的实施方式中,所述位图包含N个比特,所述N大于所述M,所述N个比特中的第i个比特用于指示所述M个端口中第i个端口对应的所述第二端口的分配状态信息;其中,所述i∈{1,M}。其中,所述N个比特包括M个比特,所述M个比特中存在取值不同的至少两个比特;其中,所述M个比特为所述N个比特中的第1个比特至第M个比特。其中,M个端口中第i个端口对应的第二端口可以理解为,存在一个第二端口与M个端口中第i个端口同属于相同的CDM组。
例如,位图中包括N个比特,其中N=4,M=2,相应的N个比特中的第1个比特用于指示M个端口中的第1个端口对应的第二端口的分配状态信息,N个比特中的第2个比特用于指示M个端口中的第2个端口对应的第二端口的分配状态信息。
又如,位图中包括N个比特,其中N=4,M=4,相应的,N个比特中的第1个比特用于指示M个端口中的第1个端口对应的第二端口的分配状态信息,N个比特中的第2个比特用于指示M个端口中
的第2个端口对应的第二端口的分配状态信息,N个比特中的第3个比特用于指示M个端口中的第3个端口对应的第二端口的分配状态信息,N个比特中的第4个比特用于指示M个端口中的第4个端口对应的第二端口的分配状态信息。
一种示例中,位图指示的信息如表19-2所示,当比特1指示的取值为0时,该M个端口中的第1个端口对应的第二端口已被分配;当比特1指示的取值为1时,该M个端口中的第1个端口对应的第二端口未被分配。类似的,当比特2指示的取值为0时,该M个端口中的第1个端口对应的第二端口已被分配;当比特2指示的取值为1时,该M个端口中的第1个端口对应的第二端口未被分配。类似的,当比特3指示的取值为0时,该M个端口中的第1个端口对应的第二端口已被分配;当比特3指示的取值为1时,该M个端口中的第1个端口对应的第二端口未被分配。类似的,当比特4指示的取值为0时,该M个端口中的第1个端口对应的第二端口已被分配;当比特4指示的取值为1时,该M个端口中的第1个端口对应的第二端口未被分配。
例如,M个端口包括端口0、端口1、端口8和端口9,第一端口为端口0,当比特1指示的取值为0时,该端口0对应的频域正交掩码长度为2长;当比特1指示的取值为1时,端口0对应的频域正交掩码长度为4长。类似的,第二端口为端口1,当比特2指示的取值为0时,该端口1对应的频域正交掩码长度为2长;当比特2指示的取值为1时,端口1对应的频域正交掩码长度为4长。类似的,第三端口为端口8,当比特3指示的取值为0时,该端口8对应的频域正交掩码长度为2长;当比特2指示的取值为1时,端口8对应的频域正交掩码长度为4长。类似的,第四端口为端口9,当比特4指示的取值为0时,端口9对应的频域正交掩码长度为2长;当比特2指示的取值为1时,端口9对应的频域正交掩码长度为4长。
又如,M个端口包括端口2和端口3,第一端口为端口2,当比特1指示的取值为0时,该端口2对应的频域正交掩码长度为2长;当比特1指示的取值为1时,端口2对应的频域正交掩码长度为4长。类似的,第二端口为端口3,当比特2指示的取值为0时,该端口3对应的频域正交掩码长度为2长;当比特2指示的取值为1时,端口3对应的频域正交掩码长度为4长。
下面以情况1为例结合具体的示例进一步介绍。
表19-1
表19-2
示例1.1,表20-1为DMRS type1单符号对应的DMRS表格,若网络设备向终端设备指示的M个端口包括取值为2对应的端口0和端口1,端口0和端口1为R15端口,第一指示信息包括第一比特,结合表18-1可知,当第一比特指示的取值为0时,则端口0和端口1对应的FD-OCC长度为4;当第一比特指示的取值为1时,则端口0和端口1对应的FD-OCC长度为2。
示例1.2,表20-1为DMRS type1单符号对应的DMRS表格,若网络设备向终端设备指示的M个端口包括索引为2对应的端口0和端口1,端口0和端口1为R15端口,结合表18-2可知,第一指示信息包括位图,位图以4比特为例,当位图中的比特1指示的取值为0时,则端口0对应的FD-OCC长度为4,当位图中的比特1指示的取值为1时,则端口0对应的FD-OCC长度为2;当位图中的比特2指示的取值为0时,则端口1对应的FD-OCC长度为4,当位图中的比特2指示的取值为1时,则端口1对应的FD-OCC长度为2。
表20-1 dmrs-Type=1,maxLength=1对应DMRS端口表
示例2.1,表20-2为DMRS type1双符号对应的DMRS表格,若网络设备向终端设备指示的M个端口包括取值为8对应的端口2和端口3,端口2和端口3为R15端口,第一指示信息包括第一比特,结合表18-1可知,当第一比特指示的取值为0时,则端口2和端口3对应的FD-OCC长度为4;当第一比特指示的取值为1时,则端口2和端口3对应的FD-OCC长度为2。
示例2.2,表20-2为DMRS type1单符号对应的DMRS表格,若网络设备向终端设备指示的M个端口包括取值为8对应的端口2和端口3,端口2和端口3为R15端口,结合表18-2可知,第一指示信息包括位图,位图以4比特为例,当位图中的比特1指示的取值为0时,则端口2对应的FD-OCC长度为4,当位图中的比特1指示的取值为1时,则端口2对应的FD-OCC长度为42;当位图中的比特2指示的取值为0时,则端口3对应的FD-OCC长度为4,当位图中的比特2指示的取值为1时,则端口3对应的FD-OCC长度为2。
表20-2 dmrs-Type=1,maxLength=2对应DMRS端口表
示例3.1,表20-3为DMRS type2单符号对应的DMRS表格,若网络设备向终端设备指示的M个端口包括取值为19对应的端口4和端口5,端口4和端口5为R15端口,第一指示信息包括第一比特,结合表18-1可知,当第一比特指示的取值为0时,则端口4和端口5对应的FD-OCC长度为4;当第一比特指示的取值为1时,则端口4和端口5对应的FD-OCC长度为2。
示例3.2,表20-3为DMRS type1单符号对应的DMRS表格,若网络设备向终端设备指示的M个端口包括取值为19对应的端口4和端口5,端口4和端口5为R15端口,第一指示信息包括位图,位图以4比特为例,当位图中的比特1指示的取值为0时,则端口4对应的FD-OCC长度为4,当位图中的比特1指示的取值为1时,则端口4对应的FD-OCC长度为2;当位图中的比特2指示的取值为0时,则端口5对应的FD-OCC长度为4,当位图中的比特2指示的取值为1时,则端口5对应的FD-OCC长度为2。
表20-3 dmrs-Type=2,maxLength=1对应DMRS端口表
示例4.1,表20-4为DMRS type2双符号对应的DMRS表格,若网络设备向终端设备指示的M个端口包括取值为43对应的端口2、端口3和端口8,第一指示信息包括第一比特,结合表18-1可知,当第一比特指示的取值为0时,则端口2、端口3和端口8对应的FD-OCC长度为4;当第一比特指示的取值为1时,则端口2、端口3和端口8对应的FD-OCC长度为2。
示例4.2,表20-4为DMRS type1单符号对应的DMRS表格,若网络设备向终端设备指示的M个端口包括取值为43对应的端口2、端口3和端口8,结合表18-2可知,第一指示信息包括位图,位图以4比特为例,当位图中的比特1指示的取值为0时,则端口2对应的FD-OCC长度为2,当位图中的比特1指示的取值为1时,则端口2对应的FD-OCC长度为4;当位图中的比特2指示的取值为0时,则端口3对应的FD-OCC长度为4,当位图中的比特2指示的取值为1时,则端口3对应的FD-OCC长度为2;当位图中的比特3指示的取值为0时,则端口8对应的FD-OCC长度为4,当位图中的比特3指示的取值为1时,则端口8对应的FD-OCC长度为2。
表20-4 dmrs-Type=2,maxLength=2对应DMRS端口表
在本申请实施中,实施例1的表18-1、表18-2、表19-1、表19-2还可以结合实施例2的表21-9、表22-9、表23-9、表24-A9、和表24-B9确定网络设备指定的第一端口的掩码长度或第二端口的分配状态信息。
实施例2
情况1,第一指示信息用于指示M个端口中的第一端口对应的掩码长度
情况1.1,第一指示信息用于指示M个端口中的第一端口对应的掩码长度,包括:第一指示信息用于指示第一取值,第一取值关联第一端口索引组;第一端口索引组包括M个端口的索引,第一端口的索引对应第一标识符,第一标识符用于指示第一端口对应的掩码长度;其中,M为大于或等于1的正整数。
情况1.2,第一指示信息用于指示M个端口中的第一端口对应的掩码长度,包括:第一指示信息用于指示第一取值,第一取值关联第一端口索引组;第一端口索引组包括M个端口的索引,第一端口的索引用于指示第一端口对应的掩码长度;其中,M为大于或等于1的正整数。
情况2,第一指示信息用于指示第二端口的分配状态信息,包括:第一指示信息用于指示第一取值,第一取值关联第一端口索引组;第一端口索引组包括第一端口的索引,第一端口的索引对应第一标识符,第一标识符用于指示第二端口的分配状态信息。
在一种可能的实施方式中,第一标识符用于指示第二端口的分配状态信息,包括:第一标识符用于指示第二端口对应的4长正交掩码中2长不正交的掩码被分配给第二终端设备,或者,第一标识符用于指示第二端口对应的4长正交掩码中2长不正交的掩码未被分配给第二终端设备。
在实施例二的实施方式1中,第一指示信息用于指示M个端口中的至少一个第一端口对应的FD-OCC长度,包括:第一指示信息可以用于指示M个端口的索引,M个端口中的至少一个端口的索引对应第一标识符,第一标识符用于指示至少一个第一端口对应的掩码长度。
本申请实施例中,第二端口与第一端口属于同一个CDM组,FD-OCC长度也可以理解为第二端口的分配状态(即第二端口是否被分配给第二终端设备)或调度情况(即第二端口是否被调度给第二终端设备)。
下面结合DMRS的配置类型和DMRS占用的最大符号数,介绍第一端口的掩码长度对应的指示方法。
一、若网络设备向终端设备配置的DMRS类型为type1,且DMRS占用一个符号,则网络设备可以通过第一指示信息向终端设备指示表21-1至表21-9中的内容,进而终端设备可以根据第一指示信息结合表21-1至表21-9,确定网络设备为其分配的端口,以及这些端口对应的FD-OCC长度。在表21-1至表21-9中,未指示端口对应的FD-OCC长度默认为4长。在其他可能的实施例中,未指示端口对应的FD-OCC长度也可以默认为2长或6长,本申请实施例不作限制。其中,R18的默认FD-OCC长度可以通过上述公式2.1~2.4对应的表5.1-表7.3确定。
表21-1占用6比特,由表21-1可知,同一端口的FD-OCC长度可以动态切换(例如,网络设备可以通过DCI信令指示第一终端设备切换)。在一种可能的实施方式中,第一指示信息承载于第一信令,第一信令还包括第二指示信息,第二指示信息用于指示第一取值,第一取值关联第一端口索引组,第一端口索引组包括M个端口的索引。其中,第一取值可以理解为表21-1中行的取值。
在一种可能的实施方式中,在第一取值包括第一值和/或第二值时,第一端口索引组包括第三端口的索引;在第一取值包括第一值时,第三端口对应的掩码长度为第一长度;在第一取值包括第二值时,第三端口对应的掩码长度为第二长度。如此,第三端口的掩码长度可以动态切换。可选的,第一长度为2,第二长度为4。
例如,以端口0为例,在表21-1中,当第一取值为0和29时,M个端口的索引包括端口0的索引;其中,第一取值为0时,端口0的FD-OCC长度为4长;第一取值为29时,端口0的索引对应第一标识符(即FD-OCC2),第一标识符指示端口0对应的FD-OCC长度为2长。
又如,以端口0为例,在表21-1中,当第一取值为3和32时,M个端口的索引包括端口0的索引;其中,第一取值为3时,端口0的FD-OCC长度为4长;第一取值为32时,端口0的索引对应第一标识符(即FD-OCC2),第一标识符指示端口0对应的FD-OCC长度为2长。
又如,以端口1为例,在表21-1中,当第一取值为1和30时,M个端口的索引包括端口1的索引;其中,第一取值为1时,端口1的FD-OCC长度为4长;第一取值为30时,端口1的索引对应第一标识符(即FD-OCC2),第一标识符指示端口1对应的FD-OCC长度为2长。
又如,以端口1为例,在表21-1中,当第一取值为4和33时,M个端口的索引包括端口1的索引;其中,第一取值为4时,端口1的FD-OCC长度为4长;第一取值为33时,端口1的索引对应第一标识符(即FD-OCC2),第一标识符指示端口1对应的FD-OCC长度为2长。
又如,以端口0和端口1为例,在表21-1中,当第一取值为2和31时,M个端口的索引包括端口0和端口1的索引;其中,第一取值为2时,端口0和端口1的FD-OCC长度为4长;第一取值为31时,端口0和端口1的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0和端口1对应的FD-OCC长度为2长。
又如,以端口0和端口1为例,在表21-1中,当第一取值为7和34时,M个端口的索引包括端口0和端口1的索引;其中,第一取值为7时,端口0和端口1的FD-OCC长度为4长;第一取值为34时,端口0和端口1的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0和端口1对应
的FD-OCC长度为2长。
又如,以端口2为例,在表21-1中,当第一取值为5和35时,M个端口的索引包括端口2的索引;其中,第一取值为5时,端口2的FD-OCC长度为4长;第一取值为33时,端口2的索引对应第一标识符(即FD-OCC2),第一标识符指示端口2对应的FD-OCC长度为2长。
又如,以端口3为例,在表21-1中,当第一取值为6和36时,M个端口的索引包括端口3的索引;其中,第一取值为6时,端口3的FD-OCC长度为4长;第一取值为36时,端口3的索引对应第一标识符(即FD-OCC2),第一标识符指示端口3对应的FD-OCC长度为2长。
又如,以端口2和端口3为例,在表21-1中,当第一取值为8和37时,M个端口的索引包括端口2和端口3的索引;其中,第一取值为8时,端口2和端口3的FD-OCC长度为4长;第一取值为37时,端口2和端口3的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口2和端口3对应的FD-OCC长度为2长。
又如,以端口0、端口2和端口3为例,在表21-1中,当第一取值为38时,M个端口的索引包括端口0、端口2和端口3的索引,端口0、端口2和端口3的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0、端口2和端口3对应的FD-OCC长度为2长;第一取值为8时,M个端口的索引包括端口2和端口3的索引,端口2和端口3的FD-OCC长度为4长;第一取值为3时,M个端口的索引包括端口0的索引,端口0的FD-OCC长度为4长。
又如,以端口0、端口1、端口2和端口3为例,在表21-1中,当第一取值为10和39时,M个端口的索引包括端口0、端口1、端口2和端口3的索引;其中,第一取值为10时,端口0、端口1、端口2和端口3的FD-OCC长度为4长;第一取值为39时,端口0、端口1、端口2和端口3的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0、端口1、端口2和端口3对应的FD-OCC长度为2长。
在一种可能的实施方式中,在第一取值包括第三值时,所述第二端口和所述第三端口对应的4长频域掩码正交,且所述第二端口和所述第三端口对应的2长频域掩码不正交。其中,所述第二端口和所述第三端口在一个相同的CDM组内。如此,R15端口和R18端口可以配对在一个CDM组内。由表21-1可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。例如,假设端口0被分配给其他终端,M个端口可以包括40行或41行中对应的端口1和端口9,端口1和端口9属于同一个CDM组,但端口1和端口9对应的4长频域掩码正交,但端口1和端口9对应的2长频域掩码不正交。或者,40行或41行中对应的端口可以替换为端口0和端口8。
在一种可能的实施方式中,在所述第一取值包括第四值时,所述第一端口索引组包括至少一个第四端口和至少一个第五端口的索引;所述至少一个第四端口对应的掩码长度为第一长度,所述至少一个第五端口对应的掩码长度第二长度。如此,同一个第一端口索引组中的不同端口可以对应不同的掩码长度。可选的,第一长度为2,第二长度为4。相应的,上述第一标识符用于指示第一端口对应的掩码长度,包括:第一标识符用于指示第一端口的掩码长度为2长。以及,由表21-1可知,第一取值为第一值时,第一取值关联的M个端口的FD-OCC长度可以不同,即表21-1的同一行中的端口可以对应不同的FD-OCC长度。
例如,第一取值为42行或43行时,M个端口可以包括42行或43行中对应的端口0、端口1和端口9,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长,端口9的FD-OCC长度为4长。或者,42行或43行中对应的端口可以替换为端口0、端口1和端口8,其中端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长,端口8的FD-OCC长度为4长。
又如,第一取值为44行或45行时,M个端口可以包括44行或45行中对应的端口0和端口1,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长。或者,44行或45行中对应的端口仍然为端口0和端口1,但端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长。
在一种可能的实施方式中,网络设备获取第一天线端口集合;第一天线端口集合包括至少一个端口索引组集合,至少一个端口索引组集合中的第一端口索引组集合包含的端口索引各不相同;第一端口索引组为第一端口索引组集合中的任一端口索引组;其中,第一端口索引组集合包含的端口索引总数为G,G为大于或等于1,且小于或等于K的正整数;K与解调参考信号DMRS的类型有关。
示例性的,第一天线端口集合可以包括第一端口索引组、第二端口索引组、第三端口索引组,第一端口索引组包括端口0、端口1、和端口8的索引,第二端口索引组包括端口2、端口3、和端口10的索引,第三端口索引组包括端口9和端口11的索引。进一步的,K还与解调参考信号的最大长度关联;相应的,方法还包括:网络设备向第一终端设备发送第二信令,第二信令用于指示解调参考信号的类型和/或解调参考信号的最大长度。进而第一终端设备还可以通过第二信令确定解调参考信号的类型和/或解调参考信号的最大长度。
在一种可能的实施方式中,K的取值为8,12,16,或24中的任一项。具体的,解调参考信号的类型为第一类型,且解调参考信号的最大长度为1时,K的取值为8;或者,解调参考信号的类型为第一类型,且解调参考信号的最大长度为2时,K的取值为16;或者,解调参考信号的类型为第二类型,且解调参考信号的最大长度为1时,K的取值为12;或者,解调参考信号的类型为第二类型,且解调参考信号的最大长度为2时,K的取值为24。
以及,由表21-1可知,对于type1单符号R18端口,K=8,表21-1包括type1单符号R18端口支持的最大8流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于8,且分配给每个终端的数量小于等于4。具体可以通过表21-1中12-45行中的至少一行实现。
例如,网络设备可以向终端设备1指示20行的端口0、端口1、和端口8,以及向终端设备2指示25行的端口2、端口3、和端口10,以及向终端设备3指示27行的端口9和端口11。即网络设备向终端设备1指示了3流,向终端设备2指示了3流,向终端设备3指示了2流,形成了8流传输配对。
又如,网络设备向终端设备1指示28行的端口8、端口9、端口10、和端口11,以及向终端设备2指示31行的端口0和端口1,以及向终端设备3指示37行的端口2和端口3,即网络设备向终端设备1指示了4流,向终端设备2指示了2流,向终端设备3指示了2流,形成了8流传输配对。
又如,网络设备向终端设备1指示28行的端口8、端口9、端口10、和端口11,以及向终端设备2指示39行的端口0、端口1、端口2和端口3,即网络设备向终端设备1指示了4流,向终端设备2指示了4流,形成了8流传输配对。
在一种可能的实施方式中,所述第一端口索引组属于第一天线端口集合和第二天线端口集合;其中,所述第二天线端口集合是所述第一天线端口集合的子集。示例性的,第一天线端口集合可以包括第一端口索引组、第二端口索引组、和第三端口索引组,第二天线端口集合包括第一端口索引组和第二端口索引组。因此,第二天线端口集合是第一天线端口集合的子集。以及,由表21-1可知,type1单符号R15端口,K=4,表21-1包括type1单符号R15端口支持的最大4流传输的端口索引组,具体可以通过表21-1中0-11行中的至少一行实现,且每一行对应的端口数小于等于4。
例如,网络设备可以向终端设备1指示2行的端口0和端口1,以及向终端设备2指示8行的端口2和端口3,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。又如,网络设备可以向终端设备1指示5行的端口0,以及向终端设备2指示6行的端口3,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。
其中,现有协议规定,网络设备向终端设备1指示9行的端口0、端口1和端口2,或,指示10行的端口0、端口1、端口2和端口3,或,指示11行的端口0、端口1和端口2时,2行、9行、11行对应的端口仅用于单UE传输,因此只有终端设备1被调度,即没有其他终端与终端设备1在同一时频资源上被调度。
可选的,表21-1中可以不包括R15端口对应的取值集合(R15端口的端口组合对应的行)。也就是说,即表21-1中的0~11行可以删除。
表21-1 Type1-E or Type1-R18,maxlength=1
在另一种可能的实施方式中,所述第一端口索引组属于第一天线端口集合和第二天线端口集合;其中,所述第二天线端口集合包含至少一个天线端口子集合,所述至少一个天线端口子集合在第二天线端口集合中的补集是第一天线端口集合的子集。其中,所述至少一个天线端口子集合包含的端口索引组用于单用户MIMO传输。示例性的,第一天线端口集合可以包括第一端口索引组、第二端口索引组、和第三端口索引组,第二天线端口集合中的至少一个天线端口子集合包括第一端口索引组、第二端口索引组、和第三端口索引组,且第二端口索引组用于单用户MIMO传输。因此,只有第一端口索引组和第二端口索引组是第一天线端口集合的子集。
在另一种可能的实施方式中,所述第一端口索引组属于第一天线端口集合和第二天线端口集合;其中,但所述第二天线端口集合不是所述第一天线端口集合的子集。示例性的,第一天线端口集合可以包括第一端口索引组、第二端口索引组、和第三端口索引组,第二天线端口集合包括第四端口索引组。因此,第二天线端口集合不是第一天线端口集合的子集。第一天线端口集合为R18对应的表格,第二天线端口集合为R15对应的表格,第一天线端口集合如表21-9所示,第一天线端口集合不包括为R15对应的表格。
表21-2占用6比特,在表21-2中,未指示的端口对应的FD-OCC长度默认为4长。由表21-2可知,同一端口的FD-OCC长度可以动态切换。具体的示例,请参见表21-1中的相关描述。
以及,由表21-2可知,表21-1包括type1的R18端口支持的最大8流传输,且网络设备分配给配对终端设备的端口总数小于等于8,具体可以通过表21-1中12-45行中的至少一行实现,且每一个行对应的M个端口的数量小于等于4。具体的示例,请参见表21-1中的相关描述。
以及,表21-2中所有行都用于MU。也就是说,网络设备可以向终端设备指示表21-2中任意多行对应的端口组合,实现多个终端的MU。例如,网络设备向终端设备1指示7行的端口0和端口1,以及向终端设备2指示11行的端口8和端口9,可以实现终端设备1和终端设备2的配对。
表21-2 Type1-E or Type1-R18,maxlength=1
表21-3和表21-2区别在于,表21-3中包括端口组合对应的行数相对于表21-2较少,进而使得表21-3只需占用5bit,可以节省资源开销。
表21-3Type1-E or Type1-R18,maxlength=1
表21-4占用6比特,由表21-4可知,同一端口的FD-OCC长度可以动态切换。具体的示例,请参见表21-1中的相关描述。
以及,由表21-4可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,
但2长频域掩码不正交的序列对应的端口组合。例如,假设端口0被分配给其他终端,M个端口可以包括36行或37行中对应的端口1和端口9,端口1和端口9属于同一个CDM组,但端口1和端口9对应的4长频域掩码正交,但端口1和端口9对应的2长频域掩码不正交。或者,36行或37行中对应的端口替换为端口0和端口8。
以及,由表21-4可知,对于type1的R18端口最大支持8流传输,即表21-4中包括8流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于8,且每一个行对应的M个端口的数量小于等于4。具体的示例,请参见表21-1中的相关描述。
以及,表21-4中所有行都用于MU。也就是说,网络设备可以向终端设备指示表21-4中任意多行对应的端口组合,实现多个终端的MU。例如,网络设备向终端设备1指示7行的端口0和端口1,以及向终端设备2指示11行的端口8和端口9,可以实现终端设备1和终端设备2的配对。
表21-4 Type1-E or Type1-R18,maxlength=1
表21-5和表21-4区别在于,表21-4中包括端口组合对应的行数相对于表21-4较少,进而使得表21-4只需占用5bit。其中,30行或31行中对应的端口为端口1和端口9,且30行或31行中对应的端口替换为端口0和端口8。
表21-5 Type1-E or Type1-R18,maxlength=1
表21-6占用5比特,由表21-6可知,对于type1的R18端口最大支持8流传输,即表21-6中包括8流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于8,且每一个行对应的M个端口的数量小于等于4。具体的示例,请参见表21-1中的相关描述。
以及,由表21-6可知,表21-6包括R15端口支持的最大4流传输的任意端口组合,具体可以通过表21-6中0-11行中的至少一行实现,且每一行对应的端口数小于等于4。例如,网络设备可以向终端设备1指示2行的端口0和端口1,以及向终端设备2指示8行的端口2和端口3,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。其中,现有协议规定,网络设备向终端设备1指示9行的端口0、端口1和端口2,或,指示10行的端口0、端口1、端口2和端口3,或,指示11行的端口0、端口1和端口2时,2行、9行、11行对应的端口仅用于单UE传输,因此只有终端设备1被调度,即没有其他终端与终端设备1在同一时频资源上被调度。
表21-6 Type1-E or Type1-R18,maxlength=1
表21-7占用5比特,由表21-7可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。例如,假设端口0被分配给其他终端,M个端口可以包括29行或30行对应的端口1和端口9,端口1和端口9属于同一个CDM组,但端口1和端口9对应的4长频域掩码正交,但端口1和端口9对应的2长频域掩码不正交。或者,29行或30行中对应的端口可以替换为端口0和端口8。
以及,由表21-7可知,对于type1的R18端口最大支持8流传输,即表21-7中包括8流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于8,且每一个行对应的M个端口的数量小于等于4。具体的示例,请参见表21-1中的相关描述。
以及,由表21-7可知,表21-7包括R15端口支持的最大4流传输的任意端口组合,具体可以通过表21-7中0-11行中的至少一行实现,且每一行对应的端口数小于等于4。例如,网络设备可以向终端设备1指示2行的端口0和端口1,以及向终端设备2指示8行的端口2和端口3,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。其中,现有协议规定,网络设备向终端设备1指示9行的端口0、端口1和端口2,或,指示10行的端口0、端口1、端口2和端口3,或,指示11行的端口0、端口1和端口2时,2行、9行、11行对应的端口仅用于单UE传输,因此只有终端设备1被调度,即没有其他终端与终端设备1在同一时频资源上被调度。
表21-7 Type1-E or Type1-R18,maxlength=1
表21-8占用5比特,由表21-8可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域
掩码正交,但2长频域掩码不正交的序列对应的端口组合。例如,假设端口0被分配给其他终端,M个端口可以包括29行或30行对应的端口1和端口9,端口1和端口9属于同一个CDM组,但端口1和端口9对应的4长频域掩码正交,但端口1和端口9对应的2长频域掩码不正交。或者,29行或30行中对应的端口可以替换为端口0和端口8。
以及,由表21-8可知,对于type1的R18端口最大支持8流传输,即表21-8中包括8流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于8,且每一个行对应的M个端口的数量小于等于4。具体的示例,请参见表21-1中的相关描述。
以及,表21-8中所有行都用于MU。也就是说,网络设备可以向终端设备指示表21-2中任意多行对应的端口组合,实现多个终端的MU。例如,网络设备向终端设备1指示7行的端口0和端口1,以及向终端设备2指示19行的端口8和端口9,可以实现终端设备1和终端设备2的配对。
表21-8 Type1-E or Type1-R18,maxlength=1
表21-9占用5比特,由表21-9可知,对于type1的R18端口最大支持8流传输,即表21-8中包括8流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于8,且每一个行对应的M个端口的数量小于等于4。具体的示例,请参见表21-1中的相关描述。
以及,表21-9中不包括R15端口对应的取值集合(R15端口的端口组合对应的行)。
相应的,表21-9可以结合前文实施例一的表18-1至表19-2使用。例如,网络设备向终端设备指示9行的端口0、端口1、端口8、和端口9,相应的,若网络设备指示第一DCI字段的取值为0,则端口0、端口1、端口8、和端口9对应的4长正交掩码已被分配给其他终端,或者,端口0、端口1、端口8、和端口9对应的FD-OCC长度为2长;若网络设备指示第一DCI字段的取值为1,则端口0、端口1、端口8、和端口9对应的4长正交掩码未被分配给其他终端,或者,端口0、端口1、端口8、和端口9对应的FD-OCC长度为4长。
表21-9 Type1-E or Type1-R18,maxlength=1
二、若网络设备向终端设备配置的DMRS类型为type1,且DMRS占用2个符号,则网络设备可以通过第一指示信息向终端设备指示表22-1至表22-9中的内容,进而终端设备可以根据第一指示信息结合表22-1至表22-9,确定网络设备为其分配的端口,以及这些端口的对应的FD-OCC长度。在表22-1
至表22-9中,未指示端口对应的FD-OCC长度默认为4长。在其他可能的实施例中,未指示端口对应的FD-OCC长度也可以默认为2长或6长,本申请实施例不作限制。其中,R18的默认FD-OCC长度可以通过上述公式2.1~2.4对应的表5.1-7.3确定。
表22-1占用7比特,由表22-1可知,同一端口的FD-OCC长度可以动态切换(例如,网络设备可以通过DCI信令指示终端设备切换)。在一种可能的实施方式中,第一指示信息承载于第一信令,第一信令还包括第二指示信息,第二指示信息用于指示第一取值,第一取值关联第一端口索引组,第一端口索引组包括M个端口的索引。其中,第一取值可以理解为表22-1中行的取值。
例如,以端口0为例,在表22-1中,当第一取值为0和29时,M个端口的索引包括端口0的索引;其中,第一取值为0时,端口0的FD-OCC长度为4长;第一取值为29时,端口0的索引对应第一标识符(即FD-OCC2),第一标识符指示端口0对应的FD-OCC长度为2长。
又如,以端口0为例,在表22-1中,当第一取值为3和32时,M个端口的索引包括端口0的索引;其中,第一取值为3时,端口0的FD-OCC长度为4长;第一取值为32时,端口0的索引对应第一标识符(即FD-OCC2),第一标识符指示端口0对应的FD-OCC长度为2长。
又如,以端口1为例,在表22-1中,当第一取值为1和30时,M个端口的索引包括端口1的索引;其中,第一取值为1时,端口1的FD-OCC长度为4长;第一取值为30时,端口1的索引对应第一标识符(即FD-OCC2),第一标识符指示端口1对应的FD-OCC长度为2长。
又如,以端口1为例,在表22-1中,当第一取值为4和33时,M个端口的索引包括端口1的索引;其中,第一取值为4时,端口1的FD-OCC长度为4长;第一取值为33时,端口1的索引对应第一标识符(即FD-OCC2),第一标识符指示端口1对应的FD-OCC长度为2长。
又如,以端口0和端口1为例,在表22-1中,当第一取值为2和31时,M个端口的索引包括端口0和端口1的索引;其中,第一取值为2时,端口0和端口1的FD-OCC长度为4长;第一取值为31时,端口0和端口1的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0和端口1对应的FD-OCC长度为2长。
又如,以端口0和端口1为例,在表22-1中,当第一取值为7和34时,M个端口的索引包括端口0和端口1的索引;其中,第一取值为7时,端口0和端口1的FD-OCC长度为4长;第一取值为34时,端口0和端口1的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0和端口1对应的FD-OCC长度为2长。
又如,以端口2为例,在表22-1中,当第一取值为5和35时,M个端口的索引包括端口2的索引;其中,第一取值为5时,端口2的FD-OCC长度为4长;第一取值为33时,端口2的索引对应第一标识符(即FD-OCC2),第一标识符指示端口2对应的FD-OCC长度为2长。
又如,以端口3为例,在表22-1中,当第一取值为6和36时,M个端口的索引包括端口3的索引;其中,第一取值为6时,端口3的FD-OCC长度为4长;第一取值为36时,端口3的索引对应第一标识符(即FD-OCC2),第一标识符指示端口3对应的FD-OCC长度为2长。
又如,以端口2和端口3为例,在表22-1中,当第一取值为8和37时,M个端口的索引包括端口2和端口3的索引;其中,第一取值为8时,端口2和端口3的FD-OCC长度为4长;第一取值为37时,端口2和端口3的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口2和端口3对应的FD-OCC长度为2长。
又如,以端口0、端口2和端口3为例,在表22-1中,当第一取值为38时,M个端口的索引包括端口0、端口2和端口3的索引,端口0、端口2和端口3的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0、端口2和端口3对应的FD-OCC长度为2长;第一取值为8时,M个端口的索引包括端口2和端口3的索引,端口2和端口3的FD-OCC长度为4长;第一取值为3时,M个端口的索引包括端口0的索引,端口0的FD-OCC长度为4长。
又如,以端口0、端口1、端口2和端口3为例,在表22-1中,当第一取值为10和39时,M个端口的索引包括端口0、端口1、端口2和端口3的索引;其中,第一取值为10时,端口0、端口1、端口2和端口3的FD-OCC长度为4长;第一取值为39时,端口0、端口1、端口2和端口3的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0、端口1、端口2和端口3对应的FD-OCC长度为2长。
又如,以端口0为例,在表22-1中,当第一取值为46和82时,M个端口的索引包括端口0的索
引;其中,第一取值为46时,端口0的FD-OCC长度为4长;第一取值为82时,端口0的索引对应第一标识符(即FD-OCC2),第一标识符指示端口0对应的FD-OCC长度为2长。
又如,以端口1为例,在表22-1中,当第一取值为47和83时,M个端口的索引包括端口1的索引;其中,第一取值为47时,端口1的FD-OCC长度为4长;第一取值为83时,端口1的索引对应第一标识符(即FD-OCC2),第一标识符指示端口1对应的FD-OCC长度为2长。
又如,以端口2为例,在表22-1中,当第一取值为48和84时,M个端口的索引包括端口2的索引;其中,第一取值为48时,端口2的FD-OCC长度为4长;第一取值为84时,端口2的索引对应第一标识符(即FD-OCC2),第一标识符指示端口2对应的FD-OCC长度为2长。
又如,以端口3为例,在表22-1中,当第一取值为49和85时,M个端口的索引包括端口3的索引;其中,第一取值为49时,端口3的FD-OCC长度为4长;第一取值为85时,端口3的索引对应第一标识符(即FD-OCC2),第一标识符指示端口3对应的FD-OCC长度为2长。
又如,以端口4为例,在表22-1中,当第一取值为50和86时,M个端口的索引包括端口4的索引;其中,第一取值为50时,端口4的FD-OCC长度为4长;第一取值为86时,端口4的索引对应第一标识符(即FD-OCC2),第一标识符指示端口4对应的FD-OCC长度为2长。
又如,以端口5为例,在表22-1中,当第一取值为51和87时,M个端口的索引包括端口5的索引;其中,第一取值为51时,端口5的FD-OCC长度为4长;第一取值为87时,端口5的索引对应第一标识符(即FD-OCC2),第一标识符指示端口5对应的FD-OCC长度为2长。
依次类推,88行至99行对应的端口的FD-OCC长度也可以动态切换。
以及,由表22-1可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。
例如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括40行或41行中对应的端口1和端口9,端口1和端口9属于同一个CDM组,但端口1和端口9对应的4长频域掩码正交,但端口1和端口9对应的2长频域掩码不正交。或者,40行或41行中对应的端口可以替换为端口0和端口8。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括100行中对应的端口1和端口9,端口1和端口9属于同一个CDM组,但端口1和端口9对应的4长频域掩码正交,但端口1和端口9对应的2长频域掩码不正交。其中,100行中对应的端口可以替换为端口0和端口8。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括101行中对应的端口1、端口5和端口9,端口1、端口5和端口9属于同一个CDM组,但端口1、端口5和端口9对应的4长频域掩码正交,但端口1、端口5和端口9对应的2长频域掩码不正交。其中,101行中对应的端口可以替换为端口0、端口4和端口8。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括102行中对应的端口1、端口5、端口9和端口13,端口1、端口5、端口9和端口13属于同一个CDM组,但端口1、端口5、端口9和端口13对应的4长频域掩码正交,但端口1、端口5、端口9和端口13对应的2长频域掩码不正交。其中,102行中对应的端口可以替换为端口0、端口4、端口8和端口12。
以及,由表22-1可知,第一取值为第一值时,第一取值关联的M个端口的FD-OCC长度可以不同,即表22-1的同一行中的端口可以对应不同的FD-OCC长度。
例如,第一取值为42行或43行时,M个端口可以包括42行或43行中对应的端口0、端口1和端口9,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长,端口9的FD-OCC长度为4长。或者,42行或43行中对应的端口可以替换为端口0、端口1和端口8,其中端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长,端口8的FD-OCC长度为4长。
又如,第一取值为44行或45行时,M个端口可以包括44行或45行中对应的端口0和端口1,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长。或者,44行或45行中对应的端口仍然为端口0和端口1,但端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长。
又如,第一取值为103行时,M个端口可以包括103行中对应的端口0和端口1,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长。其中,103行中对应的端口可以替换为端口0和端口5,其中端口0的FD-OCC长度为2长,端口5的FD-OCC长度为4长。或者,103行中对应的端口可以替换为端口0和端口9,其中端口0的FD-OCC长度为2长,端口9的FD-OCC长度为4长。或者,103行中对应的端口可以替换为端口0和端口13,其中端口0的FD-OCC长度为2长,端口13的FD-OCC长度为4长。或者,103行中对应的端口可以替换为端口0和端口1,其中端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长。或者,103行中对应的端口可以替换为端口1和端口4,其中端口1的FD-OCC长度为2长,端口4的FD-OCC长度为4长。或者,103行中对应的端口可以替换为端口1和端口8,其中端口1的FD-OCC长度为2长,端口8的FD-OCC长度为4长。或者,103行中对应的端口可以替换为端口1和端口12,其中端口1的FD-OCC长度为2长,端口12的FD-OCC长度为4长。
又如,第一取值为104行时,M个端口可以包括104行中对应的端口0、端口1和端口13,端口0的FD-OCC长度为2长,端口1和端口13的FD-OCC长度为4长。其中,104行中对应的端口可以替换为端口0、端口5和端口13,其中端口0的FD-OCC长度为2长,端口5和端口13的FD-OCC长度为4长。或者,104行中对应的端口可以替换为端口0、端口5和端口9,其中端口0的FD-OCC长度为2长,端口5和端口9的FD-OCC长度为4长。或者,104行中对应的端口可以替换为端口0、端口1和端口9,其中端口0的FD-OCC长度为2长,端口5和端口9的FD-OCC长度为4长。或者,104行中对应的端口可以替换为端口1、端口4和端口12,其中端口1的FD-OCC长度为2长,端口4和端口12的FD-OCC长度为4长。或者,104行中对应的端口可以替换为端口0、端口1、和端口12,其中端口1的FD-OCC长度为2长,端口0和端口12的FD-OCC长度为4长。或者,104行中对应的端口可以替换为端口1、端口4和端口8,其中端口1的FD-OCC长度为2长,端口4和端口8的FD-OCC长度为4长。或者,104行中对应的端口可以替换为端口0、端口1、和端口8,其中端口1的FD-OCC长度为2长,端口0和端口8的FD-OCC长度为4长。
又如,第一取值为105行时,M个端口可以包括105行中对应的端口0、端口1、端口5和端口9,端口0的FD-OCC长度为2长,端口1、端口5和端口9的FD-OCC长度为4长。其中,105行中对应的端口可以替换为端口0、端口1、端口5和端口13,其中端口0的FD-OCC长度为2长,端口1、端口5和端口13的FD-OCC长度为4长。或者,105行中对应的端口可以替换为端口0、端口1、端口9和端口13,其中端口0的FD-OCC长度为2长,端口1、端口9和端口13的FD-OCC长度为4长。或者,105行中对应的端口可以替换为端口0、端口1、端口4和端口8,其中端口1的FD-OCC长度为2长,端口0、端口4和端口8的FD-OCC长度为4长。或者,105行中对应的端口可以替换为端口0、端口1、端口4和端口12,其中端口1的FD-OCC长度为2长,端口0、端口4和端口12的FD-OCC长度为4长。或者,105行中对应的端口可以替换为端口0、端口1、端口8和端口12,其中端口1的FD-OCC长度为2长,端口0、端口8和端口12的FD-OCC长度为4长。
又如,第一取值为106行时,M个端口可以包括106行中对应的端口0、端口4和端口1,端口0和端口4的FD-OCC长度为2长,端口1的FD-OCC长度为4长。其中,106行中对应的端口可以替换为端口0、端口4和端口5,端口0和端口4的FD-OCC长度为2长,端口5的FD-OCC长度为4长。或者,106行中对应的端口可以替换为端口0、端口4和端口9,端口0和端口4的FD-OCC长度为2长,端口9的FD-OCC长度为4长。或者,106行中对应的端口可以替换为端口0、端口4和端口13,端口0和端口4的FD-OCC长度为2长,端口13的FD-OCC长度为4长。或者,106行中对应的端口可以替换为端口1、端口5和端口4,端口1和端口5的FD-OCC长度为2长,端口4的FD-OCC长度为4长。或者,106行中对应的端口可以替换为端口1、端口5和端口8,端口1和端口5的FD-OCC长度为2长,端口8的FD-OCC长度为4长。或者,106行中对应的端口可以替换为端口0、端口1、端口5和端口4,端口1和端口5的FD-OCC长度为2长,端口0和端口4的FD-OCC长度为4长。或者,106行中对应的端口可以替换为端口1、端口5和端口12,端口1和端口5的FD-OCC长度为2长,端口12的FD-OCC长度为4长。
又如,第一取值为107行时,M个端口可以包括107行中对应的端口0、端口4、端口9和端口13,端口0和端口4的FD-OCC长度为2长,端口9和端口13的FD-OCC长度为4长。其中,107行中对应的端口可以替换为端口0、端口4、端口5和端口13,端口0和端口4的FD-OCC长度为2长,端口
5和端口13的FD-OCC长度为4长。或者,107行中对应的端口可以替换为端口0、端口4、端口5和端口9,端口0和端口4的FD-OCC长度为2长,端口5和端口9的FD-OCC长度为4长。或者,107行中对应的端口可以替换为端口8、端口1、端口5和端口12,端口1和端口5的FD-OCC长度为2长,端口8和端口12的FD-OCC长度为4长。或者,107行中对应的端口可以替换为端口4、端口1、端口5和端口12,端口1和端口5的FD-OCC长度为2长,端口4和端口12的FD-OCC长度为4长。或者,107行中对应的端口可以替换为端口4、端口1、端口5和端口8,端口1和端口5的FD-OCC长度为2长,端口4和端口8的FD-OCC长度为4长。或者,107行中对应的端口可以替换为端口0、端口1、端口5和端口4,端口1和端口5的FD-OCC长度为2长,端口0和端口4的FD-OCC长度为4长。
以及,由表22-1可知,对于type1双符号R18端口支持的最大16流传输,且网络设备分配给配对终端设备的端口总数小于等于16,且分配给每个终端的数量小于等于4。具体可以通过表22-1中的12~107行实现。
例如,网络设备可以向终端设备1指示20行的端口0、端口1、和端口8,以及向终端设备2指示25行的端口2、端口3、和端口10,以及向终端设备3指示27行的端口9和端口11。即网络设备向终端设备1指示了3流,向终端设备2指示了3流,向终端设备3指示了2流,形成了8流传输配对。
又如,网络设备可以向终端设备1指示15行的端口0、端口1、和端口8,以及向终端设备2指示61行的端口2、端口3、和端口6,以及向终端设备3指示81行的端口7、端口12、和端口13,以及向终端设备4指示80行的端口10、端口11、端口14和端口15。即网络设备向终端设备1指示了3流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示4流,形成了16流传输配对。
其中,81行对应的端口可以替换为端口5、端口14、和端口15。相应的,网络设备可以向终端设备1指示78行的端口7、端口10、和端口11,以及向终端设备2指示61行的端口2、端口3、和端口6,以及向终端设备3指示81行的端口5、端口14、和端口15,以及向终端设备4指示79行的端口8、端口9、端口12和端口13。即网络设备向终端设备1指示了3流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示4流,形成了16流传输配对。
以及,由表22-1可知,表22-1包括type1双符号R15端口支持的最大8流传输的任意端口组合,且分配给每个终端的端口数小于等于4。具体可以通过表22-1中的0~11行实现。例如,网络设备可以向终端设备1指示2行的端口0和端口1,以及向终端设备2指示8行的端口2和端口3,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。又如,网络设备可以向终端设备1指示5行的端口0,以及向终端设备2指示6行的端口3,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。其中,现有协议规定,网络设备向终端设备1指示9行的端口0、端口1和端口2,或,指示10行的端口0、端口1、端口2和端口3,或,指示11行的端口0、端口1和端口2,或,指示64行的端口0、端口2、端口4和端口6时,9行、10行、11行、64行对应的端口仅用于单UE传输,因此只有终端设备1被调度,即没有其他终端与终端设备1在同一时频资源上被调度。
可选的,表22-1中可以不包括R15端口对应的取值集合(R15端口的端口组合对应的行)。也就是说,即表22-1中的0~11行可以删除。
表22-1 Type1-E or Type1-R18,maxlength=2
表22-2占用7比特,由表22-2可知,同一端口的FD-OCC长度可以动态切换(例如,网络设备可以通过DCI信令指示终端设备切换)。具体的示例请参见表22-1的相关描述。
以及,由表22-2可知,对于type1双符号R18端口支持的最大16流传输,且网络设备分配给配对终端设备的端口总数小于等于16,且分配给每个终端的数量小于等于4。
例如,网络设备可以向终端设备1指示12行的端口0、端口1、和端口8,以及向终端设备2指示22行的端口2、端口3、和端口10,以及向终端设备3指示24行的端口9和端口11。即网络设备向终端设备1指示了3流,向终端设备2指示了3流,向终端设备3指示了2流,形成了8流传输配对。
又如,网络设备可以向终端设备1指示12行的端口0、端口1、和端口8,以及向终端设备2指示51行的端口2、端口3、和端口6,以及向终端设备3指示70行的端口7、端口12、和端口13,以及向终端设备4指示69行的端口10、端口11、端口14和端口15。即网络设备向终端设备1指示了3流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示4流,形成了16流传输配对。
其中,70行对应的端口可以替换为端口5、端口14、和端口15。相应的,网络设备可以向终端设备1指示67行的端口7、端口10、和端口11,以及向终端设备2指示51行的端口2、端口3、和端口6,以及向终端设备3指示70行的端口5、端口14、和端口15,以及向终端设备4指示68行的端口8、端口9、端口12和端口13。即网络设备向终端设备1指示了3流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示4流,形成了16流传输配对。
以及,表22-2中的所有行都用于MU。就是说,网络设备可以向终端设备指示表22-2中任意多行对应的端口组合,实现多个终端的MU。例如,网络设备向终端设备1指示7行的端口0和端口1,以及向终端设备2指示11行的端口8和端口9,可以实现终端设备1和终端设备2的配对。
表22-2 Type1-E or Type1-R18,maxlength=2
表22-3与表22-2的区别在于,表22-3中仅包含同一端口的FD-OCC长度可以动态切换对应的三个示例(即60行、61行和62行),如此使得表22-3占用的比特数为6,而表22-2占用7比特,因此表22-3所需消耗的比特数较少。
表22-3Type1-E or Type1-R18,maxlength=2
表22-4占用7比特,由表22-4可知,同一端口的FD-OCC长度可以动态切换(例如,网络设备可以通过DCI信令指示终端设备切换)。具体的示例请参见表22-1的相关描述。
以及,由表22-4可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。
例如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括37行或38行中对应的端口1和端口9,端口1和端口9属于同一个CDM组,但端口1和端口9对应的4长频域掩码正交,但端口1和端口9对应的2长频域掩码不正交。或者,37行或38行中对应的端口可以替换为端口0和端口8。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括92行中对应的端口1和端口9,端口1和端口9属于同一个CDM组,但端口1和端口9对应的4长频域掩码正交,但端口1和端口9对应的2长频域掩码不正交。其中,92行中对应的端口可以替换为端口0和端口8。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括93行中
对应的端口1、端口5和端口9,端口1、端口5和端口9属于同一个CDM组,但端口1、端口5和端口9对应的4长频域掩码正交,但端口1、端口5和端口9对应的2长频域掩码不正交。其中,93行中对应的端口可以替换为端口0、端口4和端口8。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括94行中对应的端口1、端口5、端口9和端口13,端口1、端口5、端口9和端口13属于同一个CDM组,但端口1、端口5、端口9和端口13对应的4长频域掩码正交,但端口1、端口5、端口9和端口13对应的2长频域掩码不正交。其中,94行中对应的端口可以替换为端口0、端口4、端口8和端口12。
以及,由表22-4可知,对于type1的R18端口最大支持16流传输,即表22-4中包括16流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于16,且每一个行对应的M个端口的数量小于等于4。
例如,网络设备可以向终端设备1指示12行的端口0、端口1、和端口8,以及向终端设备2指示22行的端口2、端口3、和端口10,以及向终端设备3指示24行的端口9和端口11。即网络设备向终端设备1指示了3流,向终端设备2指示了3流,向终端设备3指示了2流,形成了8流传输配对。
又如,网络设备可以向终端设备1指示12行的端口0、端口1、和端口8,以及向终端设备2指示54行的端口2、端口3、和端口6,以及向终端设备3指示73行的端口7、端口12、和端口13,以及向终端设备4指示72行的端口10、端口11、端口14和端口15。即网络设备向终端设备1指示了3流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示4流,形成了16流传输配对。
其中,73行对应的端口可以替换为端口5、端口14、和端口15。相应的,网络设备可以向终端设备1指示70行的端口7、端口10、和端口11,以及向终端设备2指示54行的端口2、端口3、和端口6,以及向终端设备3指示73行的端口5、端口14、和端口15,以及向终端设备4指示71行的端口8、端口9、端口12和端口13。即网络设备向终端设备1指示了3流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示4流,形成了16流传输配对。
以及,表22-4中的所有行都用于MU。就是说,网络设备可以向终端设备指示表21-4中任意多行对应的端口组合,实现多个终端的MU。例如,网络设备向终端设备1指示7行的端口0和端口1,以及向终端设备2指示11行的端口8和端口9,可以实现终端设备1和终端设备2的配对。
表22-4 Type1-E or Type1-R18,maxlength=2
表22-5占用7比特。表22-5与表22-4的区别在于,表22-5中仅包含同一端口的FD-OCC长度可以动态切换对应的三个示例(即61行、62行和63行),以及仅包含R15端口和R18端口在一个CDM组内MU对应的三个示例(即64行、65行和66行)。使得表22-5占用6比特,而表22-4占用7比特,因此表22-5相对于表22-4可以减少比特消耗。
表22-5 Type1-E or Type1-R18,maxlength=2
表22-6占用6比特,由表22-6可知,对于type1双符号R18端口支持的最大16流传输,且网络设备分配给配对终端设备的端口总数小于等于16,且分配给每个终端的数量小于等于4。具体的示例,请参见表22-1中的相关描述。
以及,由表22-6可知,表22-6包括type1双符号R15端口支持的最大8流传输的任意端口组合,且分配给每个终端的端口数小于等于4。具体可以通过表22-6中的0~11行实现。例如,网络设备可以向终端设备1指示2行的端口0和端口1,以及向终端设备2指示8行的端口2和端口3,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。又如,网络设备可以向终端设备1指示5行的端口0,以及向终端设备2指示6行的端口3,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。其中,现有协议规定,网络设备向终端设备1指示9行的端口0、端口1和端口2,或,指示10行的端口0、端口1、端口2和端口3,或,指示11行的端口0、端口1和端口2,或,指示46行的端口0、端口2、端口4和端口6时,9行、10行、11行、46行对应的端口仅用于单UE传输,因此只有终端设备1被调度,即没有其他终端与终端设备1在同一时频资源上被调度。
表22-6 Type1-E or Type1-R18,maxlength=2
表22-7占用6比特,由表22-7可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。
例如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括61行中对应的端口1和端口9,端口1和端口9属于同一个CDM组,但端口1和端口9对应的4长频域掩码正交,但端口1和端口9对应的2长频域掩码不正交。其中,61行中对应的端口可以替换为端口0和端口8。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括62行中对应的端口1、端口5和端口9,端口1、端口5和端口9属于同一个CDM组,但端口1、端口5和端口9对应的4长频域掩码正交,但端口1、端口5和端口9对应的2长频域掩码不正交。其中,62行中对应的端口可以替换为端口0、端口4和端口8。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括63行中对应的端口1、端口5、端口9和端口13,端口1、端口5、端口9和端口13属于同一个CDM组,但端口1、端口5、端口9和端口13对应的4长频域掩码正交,但端口1、端口5、端口9和端口13对应的2长频域掩码不正交。其中,63行中对应的端口可以替换为端口0、端口4、端口8和端口12。
以及,由表22-7可知,对于type1双符号R18端口最大支持16流传输,即表22-7中包括16流传
输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于16,且每一个行对应的M个端口的数量小于等于4。具体的示例,请参见表22-1中的相关描述。
以及,由表22-7可知,表22-7包括type1双符号R15端口支持的最大4流传输的任意端口组合,且每一端口组合(即表22-7中的每一行)对应的端口数小于等于4,即表22-7中的0~11行。例如,网络设备可以向终端设备1指示2行的端口0和端口1,以及向终端设备2指示8行的端口2和端口3,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。又如,网络设备可以向终端设备1指示5行的端口0,以及向终端设备2指示6行的端口3,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。其中,现有协议规定,网络设备向终端设备1指示9行的端口0、端口1和端口2,或,指示10行的端口0、端口1、端口2和端口3,或,指示11行的端口0、端口1和端口2,或,指示43行的端口0、端口2、端口4和端口6时,9行、10行、11行、43行对应的端口仅用于单UE传输,因此只有终端设备1被调度,即没有其他终端与终端设备1在同一时频资源上被调度。
表22-7 Type1-E or Type1-R18,maxlength=2
表22-8占用6比特,由表22-8可知,对于type1双符号R18端口最大支持16流传输,即表22-4中包括16流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于16,且每一个行对应的M个端口的数量小于等于4。
例如,网络设备可以向终端设备1指示12行的端口0、端口1、和端口8,以及向终端设备2指示22行的端口2、端口3、和端口10,以及向终端设备3指示24行的端口9和端口11。即网络设备向终端设备1指示了3流,向终端设备2指示了3流,向终端设备3指示了2流,形成了8流传输配对。
又如,网络设备可以向终端设备1指示12行的端口0、端口1、和端口8,以及向终端设备2指示40行的端口2、端口3、和端口6,以及向终端设备3指示59行的端口7、端口12、和端口13,以及
向终端设备4指示58行的端口10、端口11、端口14和端口15。即网络设备向终端设备1指示了3流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示4流,形成了16流传输配对。
其中,59行对应的端口可以替换为端口5、端口14、和端口15。相应的,网络设备可以向终端设备1指示56行的端口7、端口10、和端口11,以及向终端设备2指示40行的端口2、端口3、和端口6,以及向终端设备3指示59行的端口5、端口14、和端口15,以及向终端设备4指示56行的端口8、端口9、端口12和端口13。即网络设备向终端设备1指示了3流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示4流,形成了16流传输配对。
以及,表22-8中的所有行都用于MU。就是说,网络设备可以向终端设备指示表21-8中任意多行对应的端口组合,实现多个终端的MU。例如,网络设备向终端设备1指示7行的端口0和端口1,以及向终端设备2指示11行的端口8和端口9,可以实现终端设备1和终端设备2的配对。
表22-8 Type1-E or Type1-R18,maxlength=2
表22-9占用6比特,由表22-9可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。
例如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括17行或18行中对应的端口1和端口9,端口1和端口9属于同一个CDM组,但端口1和端口9对应的4长频域掩码正交,但端口1和端口9对应的2长频域掩码不正交。或者,17行或18行中对应的端口可以替换为端口0和端口8
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括40行中对应的端口1和端口9,端口1和端口9属于同一个CDM组,但端口1和端口9对应的4长频域掩码正交,但端口1和端口9对应的2长频域掩码不正交。其中,40行中对应的端口可以替换为端口0和端口8。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括41行中对应的端口1、端口5和端口9,端口1、端口5和端口9属于同一个CDM组,但端口1、端口5和端口9对应的4长频域掩码正交,但端口1、端口5和端口9对应的2长频域掩码不正交。其中,41行中对应的端口可以替换为端口0、端口4和端口8。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括42行中对应的端口1、端口5、端口9和端口13,端口1、端口5、端口9和端口13属于同一个CDM组,但端口1、端口5、端口9和端口13对应的4长频域掩码正交,但端口1、端口5、端口9和端口13对应的2长频域掩码不正交。其中,42行中对应的端口可以替换为端口0、端口4、端口8和端口12。
以及,由表22-9可知,第一取值为第一值时,第一取值关联的M个端口的FD-OCC长度可以不同,即表22-9的同一行中的端口可以对应不同的FD-OCC长度。例如表22-9中的19行-22行、43行-47行,具体的细节描述请参见表22-1中的相关描述。
以及,由表22-9可知,对于type1双符号R18端口最大支持16流传输,即表22-9中包括16流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于16,且分配给每个终端端口数量小于等于4。具体的示例,请参见表22-1中的相关描述。
以及,由表22-9可知,表22-9中不包括R15端口对应的端口组合。
相应的,表22-9可以结合前文实施例一的表18-1至表19-1使用。例如,网络设备向终端设备指示9行的端口0、端口1、端口8、和端口9,相应的,若网络设备指示第一DCI字段的取值为0,则端口0、端口1、端口8、和端口9对应的4长正交掩码已被分配给其他终端,或者,端口0、端口1、端口8、和端口9对应的FD-OCC长度为2长;若网络设备指示第一DCI字段的取值为1,则端口0、端口1、端口8、和端口9对应的4长正交掩码未被分配给其他终端,或者,端口0、端口1、端口8、和端口9对应的FD-OCC长度为4长。
表22-9 Type1-E or Type1-R18,maxlength=2
三、若网络设备向终端设备配置的DMRS类型为type2,且DMRS占用单符号,则网络设备可以通过第一指示信息向终端设备指示表23-1至表23-9中的内容,进而终端设备可以根据第一指示信息结合表23-1至表23-9,确定网络设备为其分配的端口,以及这些端口的对应的FD-OCC长度。其中,R18的默认FD-OCC长度可以通过上述公式2.1~2.4对应的表5.1-表7.3确定。
表23-1占用7比特,在表23-1中,未指示的端口对应的FD-OCC长度默认为4长。由表23-1可知,同一端口的FD-OCC长度可以动态切换(例如,网络设备可以通过DCI信令指示终端设备切换)。在一种可能的实施方式中,第一指示信息承载于第一信令,第一信令还包括第二指示信息,第二指示信息用于指示第一取值,第一取值关联M个端口的索引。其中,第一取值可以理解为表23-1中行的索引。
例如,以端口0为例,在表23-1中,当第一取值为0和57时,M个端口的索引包括端口0的索引;其中,第一取值为0时,端口0的FD-OCC长度为4长;第一取值为57时,端口0的索引对应第一标识符(即FD-OCC2),第一标识符指示端口0对应的FD-OCC长度为2长。
又如,以端口0为例,在表23-1中,当第一取值为3和60时,M个端口的索引包括端口0的索引;其中,第一取值为3时,端口0的FD-OCC长度为4长;第一取值为60时,端口0的索引对应第一标识符(即FD-OCC2),第一标识符指示端口0对应的FD-OCC长度为2长。
又如,以端口1为例,在表23-1中,当第一取值为1和58时,M个端口的索引包括端口1的索引;其中,第一取值为1时,端口1的FD-OCC长度为4长;第一取值为58时,端口1的索引对应第一标识符(即FD-OCC2),第一标识符指示端口1对应的FD-OCC长度为2长。
又如,以端口1为例,在表23-1中,当第一取值为4和61时,M个端口的索引包括端口1的索引;其中,第一取值为4时,端口1的FD-OCC长度为4长;第一取值61时,端口1的索引对应第一标识符(即FD-OCC2),第一标识符指示端口1对应的FD-OCC长度为2长。
又如,以端口0和端口1为例,在表23-1中,当第一取值为2和59时,M个端口的索引包括端口0和端口1的索引;其中,第一取值为2时,端口0和端口1的FD-OCC长度为4长;第一取值为59时,端口0和端口1的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0和端口1对应的FD-OCC长度为2长。
又如,以端口0和端口1为例,在表23-1中,当第一取值为7和64时,M个端口的索引包括端口0和端口1的索引;其中,第一取值为7时,端口0和端口1的FD-OCC长度为4长;第一取值为64时,端口0和端口1的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0和端口1对应的FD-OCC长度为2长。
又如,以端口2为例,在表23-1中,当第一取值为5和62时,M个端口的索引包括端口2的索引;其中,第一取值为5时,端口2的FD-OCC长度为4长;第一取值为62时,端口2的索引对应第一标识符(即FD-OCC2),第一标识符指示端口2对应的FD-OCC长度为2长。
又如,以端口3为例,在表23-1中,当第一取值为6和63时,M个端口的索引包括端口3的索引;其中,第一取值为6时,端口3的FD-OCC长度为4长;第一取值为63时,端口3的索引对应第一标识符(即FD-OCC2),第一标识符指示端口3对应的FD-OCC长度为2长。
又如,以端口2和端口3为例,在表23-1中,当第一取值为8和65时,M个端口的索引包括端口2和端口3的索引;其中,第一取值为8时,端口2和端口3的FD-OCC长度为4长;第一取值为65时,端口2和端口3的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口2和端口3对应的FD-OCC长度为2长。
依次类推,66行-79行对应端口的FD-OCC长度参见的示例描述。
以及,由表23-1可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。例如,假设端口0被分配给其他终端,M个端口可以包括80行、81行或82行中的任一项对应的端口1和端口13,端口1和端口13属于同一个CDM组,但端口1和端口13对应的4长频域掩码正交,但端口1和端口13对应的2长频域掩码不正交。或者,80行、81行或82行中的任一项对应的端口可以替换为端口0和端口12。
以及,由表23-1可知,第一取值为第一值时,第一取值关联的M个端口的FD-OCC长度可以不同,即表23-1的同一行中的端口可以对应不同的FD-OCC长度。
例如,第一取值为83、84、85中的任一项时,M个端口可以包括83、84、85中的任一项对应的端口0、端口1和端口13,端口0的FD-OCC长度为2长,端口1和端口13的FD-OCC长度为4长。或者,83、84、85中的任一项对应的端口可以替换为端口0、端口1和端口12,其中端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长,端口12的FD-OCC长度为4长。
又如,第一取值为86、87、88中的任一项时,M个端口可以包括86、87、88中的任一项对应的端口0和端口1,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长。或者,8端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长。
以及,由表23-1可知,表23-1包括type2单符号的R18端口支持的最大12流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于8,且分配给每个终端的端口数量小于等于4。即表23-1中的24~56行中的任意多行对应的端口组合。
例如,网络设备可以向终端设备1指示54行的端口13、端口15、和端口17,以及向终端设备2指示52行的端口4、端口5、和端口16,以及向终端设备3指示47行的端口2、端口3和端口14,以及向终端设备4指示42行的端口0、端口1和端口12,即网络设备向终端设备1指示了3流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示了3流,形成了12流传输配对。
又如,网络设备向终端设备1指示52行的端口4、端口5、和端口16,以及向终端设备2指示55行或56行的端口13和端口15,以及向终端设备3指示8行的端口2和端口3,即网络设备向终端设备1指示了3流,向终端设备2指示了2流,向终端设备3指示了3流,形成了8流传输配对。
以及,由表23-1可知,表23-1包括type2单符号R15端口最大支持的6流传输的任意端口组合,且每个端口组合对应的端口数小于等于4,即表23-1中的0~23行中每一行对应的端口数小于4。
例如,网络设备可以向终端设备1指示2行的端口0和端口1,以及向终端设备2指示8行的端口2和端口3,形成了4流传输配对,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。
又如,网络设备可以向终端设备1指示5行的端口0,以及向终端设备2指示6行的端口3,形成了4流传输配对,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。
又如,网络设备可以向终端设备1指示22行的端口0、端口1、端口2和端口3,以及向终端设备2指示19行的端口4和端口5,形成了6流传输配对,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。
其中,现有协议规定,网络设备向终端设备1指示9行的端口0、端口1和端口2,或,指示10行的端口0、端口1、端口2和端口3,或,指示11行的端口0、端口1和端口2时,2行、9行、11行、23行对应的端口仅用于单UE传输,因此只有终端设备1被调度,即没有其他终端与终端设备1在同一时频资源上被调度。
可选的,表23-1中可以不包括R15端口对应的取值集合(R15端口的端口组合对应的行)。也就是说,即表23-1中的0~23行可以删除。
表23-1 Type2-E or Type2-R18,maxlength=1
表23-2占用7比特,在表23-2中,未指示的端口对应的FD-OCC长度默认为4长。由表23-2可知,同一端口的FD-OCC长度可以动态切换。在一种可能的实施方式中,第一指示信息承载于第一信令,第一信令还包括第二指示信息,第二指示信息用于指示第一取值,第一取值关联M个端口的索引。其中,第一取值可以理解为表23-2中行的索引。具体的示例,请参见表23-1中的相关描述。
以及,由表23-2可知,对于type2的R18端口最大支持12流传输,即表23-2中包括12流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于8,且每一个行对应的M个端口的数量小于等于4。具体的示例,请参见表23-1中的相关描述。
以及,表23-2中所有行都用于MU。也就是说,网络设备可以向终端设备指示表23-2中任意多行对应的端口组合,实现多个终端的MU。例如,网络设备向终端设备1指示7行的端口0和端口1,以及向终端设备2指示17行的端口2和端口3,可以实现终端设备1和终端设备2的配对。
表23-2 Type2-E or Type2-R18,maxlength=1
表23-3和表23-2区别在于,表23-3中包括端口组合对应的行数相对于表23-2较少,进而表23-3只需占用6bit,而表23-2需占用7bit,因此表23-3可以节省资源开销。
表23-3 Type2-E or Type2-R18,maxlength=1
表23-4占用7比特,在表23-4中,未指示的端口对应的FD-OCC长度默认为4长。由表23-1可知,同一端口的FD-OCC长度可以动态切换(例如,网络设备可以通过DCI信令指示终端设备切换)。在一种可能的实施方式中,第一指示信息承载于第一信令,第一信令还包括第二指示信息,第二指示信息用于指示第一取值,第一取值关联M个端口的索引。其中,第一取值可以理解为表23-1中行的索引。具体的示例请参见表23-1的相关描述。
以及,由表23-4可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。具体的示例请参见表23-1的相关描述。
以及,由表23-4可知,对于type1的R18端口最大支持12流传输,即表23-1中包括12流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于8,且每一个行对应的M个端口的数量小于等于4。即表23-1中的24~56行中的任意多行对应的端口组合。具体的示例请参见表23-1的相关描述。
以及,由表23-4可知,表23-1包括R15端口最大支持的6流传输的任意端口组合,且所有的行都用于MU。
表23-4 Type2-E or Type2-R18,maxlength=1
表23-5相对于表23-4的区别在于,表23-5中包含的端口组合数量较少,使得表23-5只需占用6比特,而表23-4只需占用7比特,因此表23-5相对于表23-4可以减少比特消耗。
表23-5 Type2-E or Type2-R18,maxlength=1
表23-6占用6比特,由表23-6可知,表23-6包括type2单符号R18端口最大支持12流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于8,且每一个行对应的M个端口的数量小于等于4。即表23-6中的24~56行中的任意多行对应的端口组合。具体的示例,请参见表23-1的相关描述。
以及,由表23-6可知,表23-6包括type2单符号R15端口最大支持的6流传输的任意端口组合,且每一端口组合对应的端口数小于等于4,即表23-6中的0~23行任一行对应的端口数小于4。具体的示例,请参见表23-1的相关描述。
表23-6 Type2-E or Type2-R18,maxlength=1
表23-7占用6比特,由表23-7可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。例如,假设端口0被分配给其他终端,M个端口可以包括57行、58行或59行中的任一项对应的端口1和端口13,端口1和端口13属于同一个CDM组,但端口1和端口13对应的4长频域掩码正交,但端口1和端口13对应的2长频域掩码不正交。或者,57行、58行或59行中的任一项对应的端口可以替换为端口0和端口12。
由表23-7可知,表23-7包括type2单符号的R18端口最大支持12流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于8,且每一个行对应的M个端口的数量小于等于4。即表23-7中的24~56行中的任意多行对应的端口组合。具体的示例,请参见表23-1的相关描述。
以及,由表23-7可知,表23-7包括type2单符号R15端口最大支持的6流传输的任意端口组合,且每一端口组合对应的端口数小于等于4,即表23-7中的0~23行任一行对应的端口数小于4。具体的示例,请参见表23-1的相关描述。
表23-7 Type2-E or Type2-R18,maxlength=1
表23-8占用6比特,由表23-8可知,对于type2单符号R18端口最大支持12流传输,即表23-8中包括12流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于8,且每一个行对应的M个端口的数量小于等于4。即表23-8中的24~56行中的任意多行对应的端口组合。具体的示例,请参见表23-1的相关描述。
以及,由表23-8可知,表23-8包括type2单符号R15端口最大支持的6流传输的端口组合,且这些端口组合均用于MU。具体的示例,请参见表23-1的相关描述。
表23-8 Type2-E or Type2-R18,maxlength=1
表23-9占用6比特,由表23-9可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。例如,假设端口0被分配给其他终端,M个端口可以包括34行、35行或36行中的任一项对应的端口1和端口13,端口1和端口13属于同一个CDM组,但端口1和端口13对应的4长频域掩码正交,但端口1和端口13对应的2长频域掩码不正交。或者,34行、35行或36行中的任一项对应的端口可以替换为端口0和端口12。
以及,由表23-9可知,第一取值为第一值时,第一取值关联的M个端口的FD-OCC长度可以不同,即表23-9的同一行中的端口可以对应不同的FD-OCC长度。
例如,第一取值为37、38、39中的任一项时,M个端口可以包括37、38、39中的任一项对应的端口0、端口1和端口13,端口0的FD-OCC长度为2长,端口1和端口13的FD-OCC长度为4长。或者,37、38、39中的任一项对应的端口可以替换为端口0、端口1和端口12,其中端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长,端口12的FD-OCC长度为4长。
又如,第一取值为40、41、42中的任一项时,M个端口可以包括40、41、42中的任一项对应的端口0和端口1,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长。或者,8端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长。
以及,由表23-9可知,对于type2单符号R18端口最大支持12流传输,即表23-9中包括12流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于8,且每一个行对应的M个端口的数量小于等于4。即表23-9中的0~33行中的任意多行对应的端口组合。具体的示例,请参见表23-1中的相关描述。
以及,由表23-9可知,表23-9不包括R15端口最大支持的端口组合。
相应的,表23-9可以结合前文实施例一的表18-1、表18-2、表19-1、表19-2使用。例如,网络设备向终端设备指示5行的端口0、端口1、端口12、和端口13,相应的,若网络设备指示第一DCI字段的取值为0,则端口0、端口1、端口12、和端口13对应的4长正交掩码已被分配给其他终端,或者,端口0、端口1、端口12、和端口13对应的FD-OCC长度为2长;若网络设备指示第一DCI字段的取值为1,则端口0、端口1、端口12、和端口13对应的4长正交掩码未被分配给其他终端,或者,端口0、端口1、端口12、和端口13对应的FD-OCC长度为4长。
表23-9 Type2-E or Type2-R18,maxlength=1
四、若网络设备向终端设备配置的DMRS类型为type2,且DMRS占用双符号,则网络设备可以通过第一指示信息向终端设备指示表24-A1至表24-A9中的内容,进而终端设备可以根据第一指示信息结合表24-A1至表24-A9,确定网络设备为其分配的端口,以及这些端口的对应的FD-OCC长度。在表24-A1至表24-A9中,未指示的端口对应的FD-OCC长度默认为4长。其中,R18的默认FD-OCC长度可以通过上述公式2.1~2.4对应的表5.1-表7.3确定。
表24-A1占用8比特,由表24-A1可知,同一端口的FD-OCC长度可以动态切换(例如,网络设备可以通过DCI信令指示终端设备切换)。在一种可能的实施方式中,第一指示信息承载于第一信令,第一信令还包括第二指示信息,第二指示信息用于指示第一取值,第一取值关联M个端口的索引。其中,第一取值可以理解为表24-A1中行的索引。
例如,以端口0为例,在表24-A1中,当第一取值为0和91时,M个端口的索引包括端口0的索引;其中,第一取值为0时,端口0的FD-OCC长度为4长;第一取值为91时,端口0的索引对应第一标识符(即FD-OCC2),第一标识符指示端口0对应的FD-OCC长度为2长。
又如,以端口0为例,在表24-A1中,当第一取值为3和94时,M个端口的索引包括端口0的索引;其中,第一取值为3时,端口0的FD-OCC长度为4长;第一取值为94时,端口0的索引对应第一标识符(即FD-OCC2),第一标识符指示端口0对应的FD-OCC长度为2长。
又如,以端口1为例,在表24-A1中,当第一取值为1和92时,M个端口的索引包括端口1的索引;其中,第一取值为1时,端口1的FD-OCC长度为4长;第一取值为92时,端口1的索引对应第一标识符(即FD-OCC2),第一标识符指示端口1对应的FD-OCC长度为2长。
又如,以端口1为例,在表24-A1中,当第一取值为4和95时,M个端口的索引包括端口1的索引;其中,第一取值为4时,端口1的FD-OCC长度为4长;第一取值为95时,端口1的索引对应第一标识符(即FD-OCC2),第一标识符指示端口1对应的FD-OCC长度为2长。
又如,以端口0和端口1为例,在表24-A1中,当第一取值为2和93时,M个端口的索引包括端口0和端口1的索引;其中,第一取值为2时,端口0和端口1的FD-OCC长度为4长;第一取值为93时,端口0和端口1的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0和端口1对应的FD-OCC长度为2长。
又如,以端口0和端口1为例,在表24-A1中,当第一取值为7和98时,M个端口的索引包括端口0和端口1的索引;其中,第一取值为7时,端口0和端口1的FD-OCC长度为4长;第一取值为98时,端口0和端口1的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0和端口1对应的FD-OCC长度为2长。
又如,以端口2为例,在表24-A1中,当第一取值为5和96时,M个端口的索引包括端口2的索引;其中,第一取值为5时,端口2的FD-OCC长度为4长;第一取值为96时,端口2的索引对应第一标识符(即FD-OCC2),第一标识符指示端口2对应的FD-OCC长度为2长。
又如,以端口3为例,在表24-A1中,当第一取值为6和97时,M个端口的索引包括端口3的索引;其中,第一取值为6时,端口3的FD-OCC长度为4长;第一取值为97时,端口3的索引对应第一标识符(即FD-OCC2),第一标识符指示端口3对应的FD-OCC长度为2长。
又如,以端口2和端口3为例,在表24-A1中,当第一取值为8和99时,M个端口的索引包括端口2和端口3的索引;其中,第一取值为8时,端口2和端口3的FD-OCC长度为4长;第一取值为99时,端口2和端口3的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口2和端口3对应的FD-OCC长度为2长。
又如,以端口0、端口1、端口2和端口3为例,在表24-A1中,当第一取值为10和101时,M个端口的索引包括端口0、端口1、端口2和端口3的索引;其中,第一取值为10时,端口0、端口1、端口2和端口3的FD-OCC长度为4长;第一取值为101时,端口0、端口1、端口2和端口3的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0、端口1、端口2和端口3对应的FD-OCC长度为2长。
依次类推,100行、102行至113行、152行至209行对应的端口的FD-OCC长度也可以动态切换。
以及,由表24-A1可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。
例如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括114行、115行、116行或210行中任一项对应的端口1和端口13,端口1和端口13属于同一个CDM组,但端口1和端口13对应的4长频域掩码正交,但端口1和端口13对应的2长频域掩码不正交。或者,114行、115行、116行或210行中任一项对应的端口可以替换为端口0和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括211行中对应的端口1、端口7和端口13,端口1、端口7和端口13属于同一个CDM组,端口1、端口7和端口13对应的4长频域掩码正交,但端口1、端口7和端口13对应的2长频域掩码不正交。其中,211行中对应的端口可以替换为端口0、端口6和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括212行中对应的端口1、端口7、端口13和端口19,端口1、端口7、端口13和端口19属于同一个CDM组,端口1、端口7、端口13和端口19对应的4长频域掩码正交,但端口1、端口7、端口13和端口19对应的2长频域掩码不正交。其中,212行中对应的端口可以替换为端口0、端口6、端口12和端口18。
以及,由表24-A1可知,第一取值为第一值时,第一取值关联的M个端口的FD-OCC长度可以不同,即表24-A1的同一行中的端口可以对应不同的FD-OCC长度。
例如,第一取值为117行、118行或119行中任一项时,M个端口可以包括117行、118行或119行中任一项对应端口0、端口1和端口13,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长,端口13的FD-OCC长度为4长。或者,117行、118行或119行中任一项对应的端口可以替换为端口0、端口1和端口12,其中端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长,端口12的FD-OCC长度为4长。
又如,第一取值为120行、121行或122行中任一项时,M个端口可以包括120行、121行或122行中任一项中对应的端口0和端口1,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长。或者,120行、121行或122行中任一项对应的端口仍然为端口0和端口1,但端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长。
又如,第一取值为213行或218行时,M个端口可以包括213行或218行对应端口0和端口1,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长。其中,213行或218行中对应的端口可以替换为端口0和端口7,其中端口0的FD-OCC长度为2长,端口7的FD-OCC长度为4长。或者,213行或218行中对应的端口可以替换为端口0和端口19,其中端口0的FD-OCC长度为2长,端口19的FD-OCC长度为4长。或者,213行或218行中对应的端口可以替换为端口0和端口13,其中端口0的FD-OCC长度为2长,端口13的FD-OCC长度为4长。或者,213行或218行中对应的端口仍然为端口0和端口1,但端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长。或者,213行或218行中对应的端口可以替换为端口1和端口6,其中端口1的FD-OCC长度为2长,端口6的FD-OCC长度为4长。或者,213行或218行中对应的端口可以替换为端口1和端口18,其中端口1的FD-OCC长度为2长,端口18的FD-OCC长度为4长。或者,213行或218行中对应的端口可以替换为端口1和端口12,其中端口1的FD-OCC长度为2长,端口12的FD-OCC长度为4长。
又如,第一取值为214行或219行时,M个端口可以包括214行或219行中对应的端口0、端口1和端口13,端口0的FD-OCC长度为2长,端口1和端口13的FD-OCC长度为4长。其中,214行或219行中对应的端口可以替换为端口0、端口1和端口19,其中端口0的FD-OCC长度为2长,端口1和端口19的FD-OCC长度为4长。或者,214行或219行中对应的端口可以替换为端口0、端口1和端口7,其中端口0的FD-OCC长度为2长,端口1和端口7的FD-OCC长度为4长。或者,214行或219行中对应的端口可以替换为端口0、端口13和端口19,其中端口0的FD-OCC长度为2长,端口13和端口19的FD-OCC长度为4长。或者,214行或219行中对应的端口可以替换为端口0、端口7和端口19,其中端口0的FD-OCC长度为2长,端口7和端口19的FD-OCC长度为4长。或者,214行或219行中对应的端口可以替换为端口1、端口6和端口12,其中端口1的FD-OCC长度为2长,端口6和端口12的FD-OCC长度为4长。或者,214行或219行中对应的端口可以替换为端口1、端口12、和端口18,其中端口1的FD-OCC长度为2长,端口12和端口18的FD-OCC长度为4长。或者,214行或219行中对应的端口可以替换为端口1、端口6和端口18,其中端口1的FD-OCC长度为2长,端口6和端口18的FD-OCC长度为4长。
又如,第一取值为215行或220行时,M个端口可以包括215行或220行中对应的端口0、端口1、端口7和端口13,端口0的FD-OCC长度为2长,端口1、端口7和端口13的FD-OCC长度为4长。其中,215行或220行中对应的端口可以替换为端口0、端口1、端口7和端口19,其中端口0的FD-OCC长度为2长,端口1、端口7和端口19的FD-OCC长度为4长。或者,215行或220行中对应的端口可以替换为端口0、端口1、端口7和端口19,其中端口0的FD-OCC长度为2长,端口1、端口7和端口19的FD-OCC长度为4长。或者,215行或220行中对应的端口可以替换为端口0、端口1、端口13和端口19,其中端口0的FD-OCC长度为2长,端口1、端口13和端口19的FD-OCC长度为4长。或者,215行或220行中对应的端口可以替换为端口0、端口1、端口6和端口12,其中端口1的FD-OCC长度为2长,端口0、端口6和端口12的FD-OCC长度为4长。或者,215行或220行中对应的端口可以替换为端口0、端口1、端口12和端口18,其中端口1的FD-OCC长度为2长,端口0、端口12和端口18的FD-OCC长度为4长。或者,215行或220行中对应的端口可以替换为端口0、端口1、端口6和端口18,其中端口1的FD-OCC长度为2长,端口0、端口6和端口18的FD-OCC长度为4长。
又如,第一取值为216行或221行时,M个端口可以包括216行或221行中对应的端口0、端口6和端口1,端口0和端口6的FD-OCC长度为2长,端口1的FD-OCC长度为4长。其中,216行或221行中对应的端口可以替换为端口0、端口6和端口7,端口0和端口7的FD-OCC长度为2长,端口7的FD-OCC长度为4长。或者,216行或221行中对应的端口可以替换为端口0、端口6和端口13,端口0和端口6的FD-OCC长度为2长,端口13的FD-OCC长度为4长。或者,216行或221行中对应的端口可以替换为端口0、端口6和端口19,端口0和端口6的FD-OCC长度为2长,端口19的FD-OCC长度为4长。或者,216行或221行中对应的端口可以替换为端口1、端口7和端口6,端口1和端口7的FD-OCC长度为2长,端口6的FD-OCC长度为4长。或者,216行或221行中对应的端口可以替换为端口1、端口7和端口12,端口1和端口7的FD-OCC长度为2长,端口12的FD-OCC长度为4长。或者,216行或221行中对应的端口可以替换为端口0、端口1、和端口7,端口1和端口7的FD-OCC长度为2长,端口0的FD-OCC长度为4长。
又如,第一取值为217行或222行时,M个端口可以包括217行或222行中对应的端口0、端口6、端口13和端口19,端口0和端口6的FD-OCC长度为2长,端口13和端口19的FD-OCC长度为4长。其中,217行或222行中对应的端口可以替换为端口0、端口6、端口7和端口19,端口0和端口6的FD-OCC长度为2长,端口7和端口19的FD-OCC长度为4长。或者,217行或222行中对应的端口可以替换为端口0、端口6、端口7和端口13,端口0和端口6的FD-OCC长度为2长,端口7和端口13的FD-OCC长度为4长。或者,217行或222行中对应的端口可以替换为端口1、端口7、端口12和端口18,端口1和端口7的FD-OCC长度为2长,端口18和端口12的FD-OCC长度为4长。或者,217行或222行中对应的端口可以替换为端口1、端口7、端口6和端口18,端口1和端口7的FD-OCC长度为2长,端口18和端口6的FD-OCC长度为4长。或者,217行或222行中对应的端口可以替换为端口0、端口1、端口6和端口7,端口1和端口7的FD-OCC长度为2长,端口0和端口6的FD-OCC长度为4长。
以及,由表24-A1可知,对于type2的R18端口最大支持24流传输,即表24-A1中包括24流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于24,且每一个行对应的M个端口的数量小于等于4。即表24-A1中的58行-217行对应的端口组合。
例如,网络设备可以向终端设备1指示113行的端口0、端口1、端口2、和端口3,以及向终端设备2指示141行的端口7、端口12、和端口13,以及向终端设备3指示147行或148行的端口9、端口18、和端口19,以及向终端设备4指示145行的端口14、端口15、端口20和端口21,以及向终端设备5指示146行的端口16、端口17、端口22和端口23,以及向终端设备6指示171行的端口4和端口5,以及向终端设备7指示182行的端口6,以及向终端设备8指示193行的端口10和端口11,以及向终端设备9指示184行的端口8;即网络设备向终端设备1指示4流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示4流,向终端设备5指示4流,向终端设备6指示2流,向终端设备7指示1流,向终端设备8指示2流,向终端设备9指示1流,形成了24流传输配对。其中,147行或148行对应的端口可以替换为端口7、端口20、和端口21。
又如,网络设备向终端设备1指示的所述第一端口索引组包括端口18、端口19、和端口20的索引,网络设备向终端设备2指示的第二端口索引组包括端口21、端口22、和端口23的索引,网络设备向终端设备3指示的第三端口索引组包括端口7、端口12和端口13的索引,网络设备向终端设备4指示的第四端口索引组包括端口14、端口15、和端口20的索引,网络设备向终端设备5指示的第五端口索引组包括端口11、端口16、和端口17的索引,网络设备向终端设备6指示的第六端口索引组包括端口2、端口3、和端口8的索引,网络设备向终端设备7指示的第七端口索引组包括端口0、端口1和端口6的索引,网络设备向终端设备8指示的第八端口索引组包括端口4、端口5、和端口10的索引。如此,可以形成了24流传输配对。
以及,由表24-A1可知,表24-A1包括R15端口支持的12流传输的任意端口组合,且每一端口组合(即表24-A1中的每一行)对应的端口数小于等于4,即表24-A1中的0~57行。例如,网络设备可以向终端设备1指示2行的端口0和端口1,以及向终端设备2指示8行的端口2和端口3,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。又如,网络设备可以向终端设备1指示5行的端口0,以及向终端设备2指示6行的端口3,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。其中,现有协议规定,网络设备向终端设备1指示9行的端口0、端口1和端口2,或,指示10行的端口0、端口1、端口2和端口3,或,指示11行的端口0、端口1和端口2,或,指示23行的端口0和端口2时,9行、10行、11行、23行对应的端口仅用于单UE传输,因此只有终端设备1被调度,即没有其他终端与终端设备1在同一时频资源上被调度。
可选的,表24-A1中可以不包括R15端口对应的取值集合(R15端口的端口组合对应的行)。也就是说,即表24-A1中的0~57行可以删除。
表24-A1 Type2-E or Type2-R18,maxlength=2
表24-A2占用8比特,由表24-A1可知,同一端口的FD-OCC长度可以动态切换(例如,网络设备可以通过DCI信令指示终端设备切换)。具体的示例,请参见表24-A1的相关描述。
以及,由表24-A2可知,对于type2双符号的R18端口最大支持24流传输,即表24-A1中包括24流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于24,且每一个行对应的M个端口的数量小于等于4。即表24-A1中的57行-200行对应的端口组合。
例如,网络设备可以向终端设备1指示113行的端口0、端口1、端口2、和端口3,以及向终端设备2指示131行的端口7、端口12、和端口13,以及向终端设备3指示137行或138行的端口9、端口18、和端口19,以及向终端设备4指示135行的端口14、端口15、端口20和端口21,以及向终端设备5指示136行的端口16、端口17、端口22和端口23,以及向终端设备6指示161行的端口4和端口5,以及向终端设备7指示172行的端口6,以及向终端设备8指示183行的端口10和端口11,以及向终端设备9指示174行的端口8;即网络设备向终端设备1指示4流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示4流,向终端设备5指示4流,向终端设备6指示2流,向终端设备7指示1流,向终端设备8指示2流,向终端设备9指示1流,形成了24流传输配对。其中,137行或138行对应的端口可以替换为端口7、端口20、和端口21。
以及,由表24-A2可知,表24-A2包括type2双符号R15端口支持的12流传输的端口组合,且所有的行均用于MU。
表24-A2 Type2-E or Type2-R18,maxlength=2
表24-A3与表24-2的区别在于,表24-A3中同一端口的FD-OCC长度可以动态切换对应的示例相对于表24-A2较A少。
表24-A3 Type2-E or Type2-R18,maxlength=2
表24-A4占用8比特,在表24-A4中,未指示的端口对应的FD-OCC长度默认为4长。由表24-A1可知,同一端口的FD-OCC长度可以动态切换(例如,网络设备可以通过DCI信令指示终端设备切换)。
在一种可能的实施方式中,第一指示信息承载于第一信令,第一信令还包括第二指示信息,第二指示信息用于指示第一取值,第一取值关联M个端口的索引。其中,第一取值可以理解为表24-A4中行的索引。例如90行-118行,142行-192行。具体的示例,请参见表24-A1的相关描述。
以及,由表24-A4可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。
例如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括113行、114行、115行或203行中任一项对应的端口1和端口13,端口1和端口13属于同一个CDM组,但端口1和端口13对应的4长频域掩码正交,但端口1和端口13对应的2长频域掩码不正交。或者,113行、114行、115行或203行中任一项对应的端口可以替换为端口0和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括204行中对应的端口1、端口7和端口13,端口1、端口7和端口13属于同一个CDM组,端口1、端口7和端口13对应的4长频域掩码正交,但端口1、端口7和端口13对应的2长频域掩码不正交。其中,204行中对应的端口可以替换为端口0、端口6和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括205行中对应的端口1、端口7、端口13和端口19,端口1、端口7、端口13和端口19属于同一个CDM组,端口1、端口7、端口13和端口19对应的4长频域掩码正交,但端口1、端口7、端口13和端口19对应的2长频域掩码不正交。其中,205行中对应的端口可以替换为端口0、端口6、端口12和端口18。
以及,由表24-A4可知,对于type2双符号的R18端口最大支持24流传输,即表24-A1中包括24流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于24,且每一个行对应的M个端口的数量小于等于4。即表24-A1中的57行-200行对应的端口组合。
例如,网络设备可以向终端设备1指示113行的端口0、端口1、端口2、和端口3,以及向终端设备2指示131行的端口7、端口12、和端口13,以及向终端设备3指示137行或138行的端口9、端口18、和端口19,以及向终端设备4指示135行的端口14、端口15、端口20和端口21,以及向终端设备5指示136行的端口16、端口17、端口22和端口23,以及向终端设备6指示161行的端口4和端口5,以及向终端设备7指示172行的端口6,以及向终端设备8指示183行的端口10和端口11,以及向终端设备9指示174行的端口8;即网络设备向终端设备1指示4流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示4流,向终端设备5指示4流,向终端设备6指示2流,向终端设备7指示1流,向终端设备8指示2流,向终端设备9指示1流,形成了24流传输配对。其中,137行或138行对应的端口可以替换为端口7、端口20、和端口21。
以及,由表24-A4可知,表24-A4包括type2双符号R15端口支持的12流传输的端口组合,且所有的行均用于MU。
表24-A4 Type2-E or Type2-R18,maxlength=2
表24-A5与表24-A4的区别在于,表24-A5中同一端口的FD-OCC长度可以动态切换对应的示相对于表24-A4较少。
表24-A5 Type2-E or Type2-R18,maxlength=2
表24-A6占用7比特,由表24-A6可知,对于type2的R18端口最大支持24流传输,即表24-A6中包括24流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于24,且每一个行对应的M个端口的数量小于等于4。即表24-A6中的58行-217行对应的端口组合。具体的示例请参见表24-A1的相关描述。
以及,由表24-A6可知,表24-A6包括R15端口支持的12流传输的任意端口组合,且每一端口组合对应的端口数小于等于4,且所有行均用于MU。
表24-A6 Type2-E or Type2-R18,maxlength=2
表24-A7占用8比特,由表24-A7可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。
例如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括91行、92行、93行或123行中任一项对应的端口1和端口13,端口1和端口13属于同一个CDM组,但端口1和端口13对应的4长频域掩码正交,但端口1和端口13对应的2长频域掩码不正交。或者,91行、92行、93行或123行中任一项对应的端口可以替换为端口0和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括124行中对应的端口1、端口7和端口13,端口1、端口7和端口13属于同一个CDM组,端口1、端口7和端口13对应的4长频域掩码正交,但端口1、端口7和端口13对应的2长频域掩码不正交。其中,124行中对应的端口可以替换为端口0、端口6和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括125行中对应的端口1、端口7、端口13和端口19,端口1、端口7、端口13和端口19属于同一个CDM组,端口1、端口7、端口13和端口19对应的4长频域掩码正交,但端口1、端口7、端口13和端口19对应的2长频域掩码不正交。其中,125行中对应的端口可以替换为端口0、端口6、端口12和端口18。
以及,由表24-A7可知,对于type2的R18端口最大支持24流传输,即表24-A6中包括24流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于24,且每一个行对应的M个端口的数量小于等于4。即表24-A6中的58行-125行对应的端口组合。具体的示例请参见表24-A1的相关描述。
以及,由表24-A7可知,表24-A6包括R15端口支持的4流传输的任意端口组合,且每一端口组合(即表24-A6中的每一行)对应的端口数小于等于4。
表24-A7 Type2-E or Type2-R18,maxlength=2
表24-A8占用7比特,由表24-A8可知,对于type2的R18端口最大支持24流传输,即表24-A6中包括24流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于24,且每一个行对应的M个端口的数量小于等于4。即表24-A6中的58行-118行对应的端口组合。具体的示例请参见表24-A1的相关描述。
以及,由表24-A8可知,表24-A8包括R15端口支持的12流传输的任意端口组合,且每一端口组合(即表24-A6中的每一行)对应的端口数小于等于4,即0行-56行,且所有行均用于MU。
表24-A8 Type2-E or Type2-R18,maxlength=2
表24-A9占用7比特,由表24-A9可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。
例如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括34行、35行、36行或72行中任一项对应的端口1和端口13,端口1和端口13属于同一个CDM组,但端口1和端口13对应的4长频域掩码正交,但端口1和端口13对应的2长频域掩码不正交。或者34行、35行、36行或72行中任一项对应的端口可以替换为端口0和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括73行中对应的端口1、端口7和端口13,端口1、端口7和端口13属于同一个CDM组,端口1、端口7和端口13对应的4长频域掩码正交,但端口1、端口7和端口13对应的2长频域掩码不正交。其中,73行中对应的端口可以替换为端口0、端口6和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括74行中对应的端口1、端口7、端口13和端口19,端口1、端口7、端口13和端口19属于同一个CDM组,端口1、端口7、端口13和端口19对应的4长频域掩码正交,但端口1、端口7、端口13和端口19对应的2长频域掩码不正交。其中,74行中对应的端口可以替换为端口0、端口6、端口12和端口18。
以及,由表24-A9可知,第一取值为第一值时,第一取值关联的M个端口的FD-OCC长度可以不同,即表24-A9的同一行中的端口可以对应不同的FD-OCC长度。
例如,第一取值为37行、38行或39行中任一项时,M个端口可以包括37行、38行或39行中任一项对应端口0、端口1和端口13,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长,端口13的FD-OCC长度为4长。或者,37行、38行或39行中任一项对应的端口可以替换为端口0、端口1和端口12,其中端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长,端口12的FD-OCC长度为4长。
又如,第一取值为40行、41行或42行中任一项时,M个端口可以包括40行、41行或42行中任一项中对应的端口0和端口1,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长。或者,40行、41行或42行中任一项对应的端口仍然为端口0和端口1,但端口0的FD-OCC长度为4长,端
口1的FD-OCC长度为2长。
又如,第一取值为75行或80行时,M个端口可以包括75行或80行对应端口0和端口1,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长。其中,75行或80行中对应的端口可以替换为端口0和端口7,其中端口0的FD-OCC长度为2长,端口7的FD-OCC长度为4长。或者,75行或80行中对应的端口可以替换为端口0和端口19,其中端口0的FD-OCC长度为2长,端口19的FD-OCC长度为4长。或者,75行或80行中对应的端口可以替换为端口0和端口13,其中端口0的FD-OCC长度为2长,端口13的FD-OCC长度为4长。或者,75行或80行中对应的端口仍然为端口0和端口1,但端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长。或者,75行或80行中对应的端口可以替换为端口1和端口6,其中端口1的FD-OCC长度为2长,端口6的FD-OCC长度为4长。或者,75行或80行中对应的端口可以替换为端口1和端口18,其中端口1的FD-OCC长度为2长,端口18的FD-OCC长度为4长。或者,75行或80行中对应的端口可以替换为端口1和端口12,其中端口1的FD-OCC长度为2长,端口12的FD-OCC长度为4长。
又如,第一取值为76行或81行或81行时,M个端口可以包括76行或81行或81行中对应的端口0、端口1和端口13,端口0的FD-OCC长度为2长,端口1和端口13的FD-OCC长度为4长。其中,76行或81行或81行中对应的端口可以替换为端口0、端口1和端口19,其中端口0的FD-OCC长度为2长,端口1和端口19的FD-OCC长度为4长。或者,76行或81行或81行中对应的端口可以替换为端口0、端口1和端口7,其中端口0的FD-OCC长度为2长,端口1和端口7的FD-OCC长度为4长。或者,76行或81行或81行中对应的端口可以替换为端口0、端口13和端口19,其中端口0的FD-OCC长度为2长,端口13和端口19的FD-OCC长度为4长。或者,76行或81行或81行中对应的端口可以替换为端口0、端口7和端口9,其中端口0的FD-OCC长度为2长,端口7和端口9的FD-OCC长度为4长。或者,76行或81行或81行中对应的端口可以替换为端口1、端口6和端口12,其中端口1的FD-OCC长度为2长,端口6和端口12的FD-OCC长度为4长。或者,76行或81行或81行中对应的端口可以替换为端口0、端口1、和端口12,其中端口1的FD-OCC长度为2长,端口0和端口12的FD-OCC长度为4长。或者,76行或81行或81行中对应的端口可以替换为端口1、端口6和端口18,其中端口1的FD-OCC长度为2长,端口6和端口18的FD-OCC长度为4长。
又如,第一取值为77行或82行时,M个端口可以包括77行或82行中对应的端口0、端口1、端口7和端口13,端口0的FD-OCC长度为2长,端口1、端口7和端口13的FD-OCC长度为4长。其中,77行或82行中对应的端口可以替换为端口0、端口1、端口7和端口19,其中端口0的FD-OCC长度为2长,端口1、端口7和端口19的FD-OCC长度为4长。或者,77行或82行中对应的端口可以替换为端口0、端口1、端口7和端口19,其中端口0的FD-OCC长度为2长,端口1、端口7和端口19的FD-OCC长度为4长。或者,77行或82行中对应的端口可以替换为端口0、端口1、端口13和端口19,其中端口0的FD-OCC长度为2长,端口1、端口13和端口19的FD-OCC长度为4长。或者,77行或82行中对应的端口可以替换为端口0、端口1、端口6和端口12,其中端口1的FD-OCC长度为2长,端口0、端口6和端口12的FD-OCC长度为4长。或者,77行或82行中对应的端口可以替换为端口0、端口1、端口12和端口18,其中端口1的FD-OCC长度为2长,端口0、端口12和端口18的FD-OCC长度为4长。或者,77行或82行中对应的端口可以替换为端口0、端口1、端口6和端口18,其中端口1的FD-OCC长度为2长,端口0、端口6和端口18的FD-OCC长度为4长。
又如,第一取值为78行或83行时,M个端口可以包括78行或83行中对应的端口0、端口6和端口1,端口0和端口6的FD-OCC长度为2长,端口1的FD-OCC长度为4长。其中,78行或83行中对应的端口可以替换为端口0、端口6和端口7,端口0和端口7的FD-OCC长度为2长,端口7的FD-OCC长度为4长。或者,78行或83行中对应的端口可以替换为端口0、端口6和端口13,端口0和端口6的FD-OCC长度为2长,端口13的FD-OCC长度为4长。或者,78行或83行中对应的端口可以替换为端口0、端口6和端口19,端口0和端口6的FD-OCC长度为2长,端口19的FD-OCC长度为4长。或者,78行或83行中对应的端口可以替换为端口1、端口7和端口6,端口1和端口7的FD-OCC长度为2长,端口6的FD-OCC长度为4长。或者,78行或83行中对应的端口可以替换为端口1、端口7和端口12,端口1和端口7的FD-OCC长度为2长,端口12的FD-OCC长度为4长。或者,78行或83行中对应的端口可以替换为端口0、端口1、端口6和端口7,端口1和端口7的FD-OCC长度为2长,端口0和端口6的FD-OCC长度为4长。
又如,第一取值为79行或84行时,M个端口可以包括79行或84行中对应的端口0、端口6、端口13和端口19,端口0和端口6的FD-OCC长度为2长,端口13和端口19的FD-OCC长度为4长。其中,79行或84行中对应的端口可以替换为端口0、端口6、端口7和端口19,端口0和端口6的FD-OCC长度为2长,端口7和端口19的FD-OCC长度为4长。或者,79行或84行中对应的端口可以替换为端口0、端口6、端口7和端口13,端口0和端口6的FD-OCC长度为2长,端口7和端口13的FD-OCC长度为4长。或者,79行或84行中对应的端口可以替换为端口1、端口7、端口12和端口18,端口1和端口7的FD-OCC长度为2长,端口18和端口12的FD-OCC长度为4长。或者,79行或84行中对应的端口可以替换为端口1、端口7、端口6和端口18,端口1和端口7的FD-OCC长度为2长,端口18和端口6的FD-OCC长度为4长。或者,79行或84行中对应的端口可以替换为端口0、端口1、端口6和端口7,端口1和端口7的FD-OCC长度为2长,端口0和端口6的FD-OCC长度为4长。
以及,由表24-A9可知,对于type2的R18端口最大支持24流传输,即表24-A9中包括24流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于24,且每一个行对应的M个端口的数量小于等于4。即表24-A9中的0行-79行对应的端口组合。具体的示例请参见表24-A1的相关描述。
相应的,表24-A9可以结合前文实施例一的表18-1、表18-2、表19-1、表19-2使用。例如,网络设备向终端设备指示5行的端口0、端口1、端口12、和端口13,相应的,若网络设备指示第一DCI字段的取值为0,则端口0、端口1、端口12、和端口13对应的4长正交掩码已被分配给其他终端,或者,端口0、端口1、端口12、和端口13对应的FD-OCC长度为2长;若网络设备指示第一DCI字段的取值为1,则端口0、端口1、端口12、和端口13对应的4长正交掩码未被分配给其他终端,或者,端口0、端口1、端口12、和端口13对应的FD-OCC长度为4长。
表24-A9 Type2-E or Type2-R18,maxlength=2
在另一种可能的实施方式中,若网络设备向终端设备配置的DMRS类型为type2,且DMRS占用双符号,则网络设备可以通过第一指示信息向终端设备指示表24-B1至表24-B9中的内容,进而终端设备可以根据第一指示信息结合表24-B1至表24-B9,确定网络设备为其分配的端口,以及这些端口的对应的FD-OCC长度。
表24-B1占用8比特,在表24-B1中,未指示的端口对应的FD-OCC长度默认为4长。由表24-B1可知,同一端口的FD-OCC长度可以动态切换(例如,网络设备可以通过DCI信令指示终端设备切换)。在一种可能的实施方式中,第一指示信息承载于第一信令,第一信令还包括第二指示信息,第二指示信息用于指示第一取值,第一取值关联M个端口的索引。其中,第一取值可以理解为表24-B1中行的索引。
例如,以端口0为例,在表24-B1中,当第一取值为0和91时,M个端口的索引包括端口0的索引;其中,第一取值为0时,端口0的FD-OCC长度为4长;第一取值为91时,端口0的索引对应第一标识符(即FD-OCC2),第一标识符指示端口0对应的FD-OCC长度为2长。
又如,以端口0为例,在表24-B1中,当第一取值为3和94时,M个端口的索引包括端口0的索引;其中,第一取值为3时,端口0的FD-OCC长度为4长;第一取值为94时,端口0的索引对应第一标识符(即FD-OCC2),第一标识符指示端口0对应的FD-OCC长度为2长。
又如,以端口1为例,在表24-B1中,当第一取值为1和92时,M个端口的索引包括端口1的索引;其中,第一取值为1时,端口1的FD-OCC长度为4长;第一取值为92时,端口1的索引对应第一标识符(即FD-OCC2),第一标识符指示端口1对应的FD-OCC长度为2长。
又如,以端口1为例,在表24-B1中,当第一取值为4和95时,M个端口的索引包括端口1的索引;其中,第一取值为4时,端口1的FD-OCC长度为4长;第一取值为95时,端口1的索引对应第一标识符(即FD-OCC2),第一标识符指示端口1对应的FD-OCC长度为2长。
又如,以端口0和端口1为例,在表24-B1中,当第一取值为2和93时,M个端口的索引包括端口0和端口1的索引;其中,第一取值为2时,端口0和端口1的FD-OCC长度为4长;第一取值为93时,端口0和端口1的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0和端口1对应的FD-OCC长度为2长。
又如,以端口0和端口1为例,在表24-B1中,当第一取值为7和98时,M个端口的索引包括端口0和端口1的索引;其中,第一取值为7时,端口0和端口1的FD-OCC长度为4长;第一取值为98时,端口0和端口1的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0和端口1对应的FD-OCC长度为2长。
又如,以端口2为例,在表24-B1中,当第一取值为5和96时,M个端口的索引包括端口2的索引;其中,第一取值为5时,端口2的FD-OCC长度为4长;第一取值为96时,端口2的索引对应第一标识符(即FD-OCC2),第一标识符指示端口2对应的FD-OCC长度为2长。
又如,以端口3为例,在表24-B1中,当第一取值为6和97时,M个端口的索引包括端口3的索引;其中,第一取值为6时,端口3的FD-OCC长度为4长;第一取值为97时,端口3的索引对应第一标识符(即FD-OCC2),第一标识符指示端口3对应的FD-OCC长度为2长。
又如,以端口2和端口3为例,在表24-B1中,当第一取值为8和99时,M个端口的索引包括端口2和端口3的索引;其中,第一取值为8时,端口2和端口3的FD-OCC长度为4长;第一取值为99时,端口2和端口3的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口2和端口3对应的FD-OCC长度为2长。
又如,以端口0、端口1、端口2和端口3为例,在表24-B1中,当第一取值为10和101时,M个端口的索引包括端口0、端口1、端口2和端口3的索引;其中,第一取值为10时,端口0、端口1、端口2和端口3的FD-OCC长度为4长;第一取值为101时,端口0、端口1、端口2和端口3的索引分别对应第一标识符(即FD-OCC2),第一标识符指示端口0、端口1、端口2和端口3对应的FD-OCC长度为2长。
依次类推,100行、102行至113行、150行至207行对应的端口的FD-OCC长度也可以动态切换。
以及,由表24-B1可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。
例如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括114行、115行、116行或208行中任一项对应的端口1和端口13,端口1和端口13属于同一个CDM组,但端口1和端口13对应的4长频域掩码正交,但端口1和端口13对应的2长频域掩码不正交。或者,114行、115行、116行或208行中任一项对应的端口可以替换为端口0和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括209行中对应的端口1、端口7和端口13,端口1、端口7和端口13属于同一个CDM组,端口1、端口7和端口13对应的4长频域掩码正交,但端口1、端口7和端口13对应的2长频域掩码不正交。其中,209行中对应的端口可以替换为端口0、端口6和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括210行中对应的端口1、端口7、端口13和端口19,端口1、端口7、端口13和端口19属于同一个CDM组,端口1、端口7、端口13和端口19对应的4长频域掩码正交,但端口1、端口7、端口13和端口19对应的2长频域掩码不正交。其中,210行中对应的端口可以替换为端口0、端口6、端口12和端口18。
以及,由表24-B1可知,第一取值为第一值时,第一取值关联的M个端口的FD-OCC长度可以不同,即表24-B1的同一行中的端口可以对应不同的FD-OCC长度。
例如,第一取值为117行、118行或119行中任一项时,M个端口可以包括117行、118行或119行中任一项对应端口0、端口1和端口13,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长,端口13的FD-OCC长度为4长。或者,117行、118行或119行中任一项对应的端口可以替换为端口0、端口1和端口12,其中端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长,端口12的FD-OCC长度为4长。
又如,第一取值为120行、121行或122行中任一项时,M个端口可以包括120行、121行或122行中任一项中对应的端口0和端口1,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长。或者,120行、121行或122行中任一项对应的端口仍然为端口0和端口1,但端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长。
又如,第一取值为211行或216行时,M个端口可以包括211行或216行对应端口0和端口1,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长。其中,211行或216行中对应的端口可以替换为端口0和端口7,其中端口0的FD-OCC长度为2长,端口7的FD-OCC长度为4长。或者,211行或216行中对应的端口可以替换为端口0和端口19,其中端口0的FD-OCC长度为2长,端口19的FD-OCC长度为4长。或者,211行或216行中对应的端口可以替换为端口0和端口13,其中端口0的FD-OCC长度为2长,端口13的FD-OCC长度为4长。或者,211行或216行中对应的端口仍然为端口0和端口1,但端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长。或者,211行或216行中对应的端口可以替换为端口1和端口6,其中端口1的FD-OCC长度为2长,端口6的FD-OCC长度为4长。或者,211行或216行中对应的端口可以替换为端口1和端口18,其中端口1的FD-OCC长度为2长,端口18的FD-OCC长度为4长。或者,211行或216行中对应的端口可以替换为端口1和端口12,其中端口1的FD-OCC长度为2长,端口12的FD-OCC长度为4长。
又如,第一取值为212行或217行时,M个端口可以包括212行或217行中对应的端口0、端口1和端口13,端口0的FD-OCC长度为2长,端口1和端口13的FD-OCC长度为4长。其中,212行或217行中对应的端口可以替换为端口0、端口1和端口19,其中端口0的FD-OCC长度为2长,端口1和端口19的FD-OCC长度为4长。或者,212行或217行中对应的端口可以替换为端口0、端口1和端口7,其中端口0的FD-OCC长度为2长,端口1和端口7的FD-OCC长度为4长。或者,212行或217行中对应的端口可以替换为端口0、端口13和端口19,其中端口0的FD-OCC长度为2长,端口13和端口19的FD-OCC长度为4长。或者,212行或217行中对应的端口可以替换为端口0、端口7和端口9,其中端口0的FD-OCC长度为2长,端口7和端口9的FD-OCC长度为4长。或者,212行或217行中对应的端口可以替换为端口1、端口6和端口12,其中端口1的FD-OCC长度为2长,端口6和端口12的FD-OCC长度为4长。或者,212行或217行中对应的端口可以替换为端口0、端口1、
和端口12,其中端口1的FD-OCC长度为2长,端口0和端口12的FD-OCC长度为4长。或者,212行或217行中对应的端口可以替换为端口1、端口6和端口18,其中端口1的FD-OCC长度为2长,端口6和端口18的FD-OCC长度为4长。
又如,第一取值为213行或218行时,M个端口可以包括213行或218行中对应的端口0、端口1、端口7和端口13,端口0的FD-OCC长度为2长,端口1、端口7和端口13的FD-OCC长度为4长。其中,213行或218行中对应的端口可以替换为端口0、端口1、端口7和端口19,其中端口0的FD-OCC长度为2长,端口1、端口7和端口19的FD-OCC长度为4长。或者,213行或218行中对应的端口可以替换为端口0、端口1、端口7和端口19,其中端口0的FD-OCC长度为2长,端口1、端口7和端口19的FD-OCC长度为4长。或者,213行或218行中对应的端口可以替换为端口0、端口1、端口13和端口19,其中端口0的FD-OCC长度为2长,端口1、端口13和端口19的FD-OCC长度为4长。或者,213行或218行中对应的端口可以替换为端口0、端口1、端口6和端口12,其中端口1的FD-OCC长度为2长,端口0、端口6和端口12的FD-OCC长度为4长。或者,213行或218行中对应的端口可以替换为端口0、端口1、端口12和端口18,其中端口1的FD-OCC长度为2长,端口0、端口12和端口18的FD-OCC长度为4长。或者,213行或218行中对应的端口可以替换为端口0、端口1、端口6和端口18,其中端口1的FD-OCC长度为2长,端口0、端口6和端口18的FD-OCC长度为4长。
又如,第一取值为214行或219行时,M个端口可以包括214行或219行中对应的端口0、端口6和端口1,端口0和端口6的FD-OCC长度为2长,端口1的FD-OCC长度为4长。其中,214行或219行中对应的端口可以替换为端口0、端口6和端口7,端口0和端口7的FD-OCC长度为2长,端口7的FD-OCC长度为4长。或者,214行或219行中对应的端口可以替换为端口0、端口6和端口13,端口0和端口6的FD-OCC长度为2长,端口13的FD-OCC长度为4长。或者,214行或219行中对应的端口可以替换为端口0、端口6和端口19,端口0和端口6的FD-OCC长度为2长,端口19的FD-OCC长度为4长。或者,214行或219行中对应的端口可以替换为端口1、端口7和端口6,端口1和端口7的FD-OCC长度为2长,端口6的FD-OCC长度为4长。或者,214行或219行中对应的端口可以替换为端口1、端口7和端口12,端口1和端口7的FD-OCC长度为2长,端口12的FD-OCC长度为4长。或者,214行或219行中对应的端口可以替换为端口0、端口1、端口6和端口7,端口1和端口7的FD-OCC长度为2长,端口0和端口6的FD-OCC长度为4长。
又如,第一取值为215行或220行时,M个端口可以包括105行中对应的端口0、端口6、端口13和端口19,端口0和端口6的FD-OCC长度为2长,端口13和端口19的FD-OCC长度为4长。其中,215行或220行中对应的端口可以替换为端口0、端口6、端口7和端口19,端口0和端口6的FD-OCC长度为2长,端口7和端口19的FD-OCC长度为4长。或者,215行或220行中对应的端口可以替换为端口0、端口6、端口7和端口13,端口0和端口6的FD-OCC长度为2长,端口7和端口13的FD-OCC长度为4长。或者,215行或220行中对应的端口可以替换为端口1、端口7、端口12和端口18,端口1和端口7的FD-OCC长度为2长,端口18和端口12的FD-OCC长度为4长。或者,215行或220行中对应的端口可以替换为端口1、端口7、端口6和端口18,端口1和端口7的FD-OCC长度为2长,端口18和端口6的FD-OCC长度为4长。或者,215行或220行中对应的端口可以替换为端口0、端口1、端口6和端口7,端口1和端口7的FD-OCC长度为2长,端口0和端口6的FD-OCC长度为4长。
以及,由表24-B1可知,对于type2的R18端口最大支持24流传输,即表24-B1中包括24流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于24,且每一个行对应的M个端口的数量小于等于4。即表24-B1中的58行-215行对应的端口组合。
例如,网络设备可以向终端设备1指示113行的端口0、端口1、端口2、和端口3,以及向终端设备2指示141行的端口7、端口12、和端口13,以及向终端设备3指示147行或148行的端口9、端口18、和端口19,以及向终端设备4指示145行的端口14、端口15、端口20和端口21,以及向终端设备5指示146行的端口16、端口17、端口22和端口23,以及向终端设备6指示169行的端口4和端口5,以及向终端设备7指示180行的端口6,以及向终端设备8指示191行的端口10和端口11,以及向终端设备9指示182行的端口8;即网络设备向终端设备1指示4流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示4流,向终端设备5指示4流,向终端设备6指示2流,
向终端设备7指示1流,向终端设备8指示2流,向终端设备9指示1流,形成了24流传输配对。其中,147行或148行对应的端口可以替换为端口7、端口20、和端口21。
以及,由表24-B1可知,表24-B1包括R15端口支持的4流传输的任意端口组合,且每一端口组合(即表24-B1中的每一行)对应的端口数小于等于4,即表24-B1中的0~57行。例如,网络设备可以向终端设备1指示2行的端口0和端口1,以及向终端设备2指示8行的端口2和端口3,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。又如,网络设备可以向终端设备1指示5行的端口0,以及向终端设备2指示6行的端口3,实现终端设备1和终端设备2在同一个时隙内同时调度(即在同一个时频资源上调度)。其中,现有协议规定,网络设备向终端设备1指示9行的端口0、端口1和端口2,或,指示10行的端口0、端口1、端口2和端口3,或,指示11行的端口0、端口1和端口2,或,指示23行的端口0和端口2时,9行、10行、11行、23行对应的端口仅用于单UE传输,因此只有终端设备1被调度,即没有其他终端与终端设备1在同一时频资源上被调度。
可选的,表24-B1中可以不包括R15端口对应的取值集合(R15端口的端口组合对应的行)。也就是说,即表24-B1中的0~57行可以删除。
表24-B1 Type2-E or Type2-R18,maxlength=2
表24-B2占用8比特,在表24-B2中,未指示的端口对应的FD-OCC长度默认为4长。由表24-B1可知,同一端口的FD-OCC长度可以动态切换(例如,网络设备可以通过DCI信令指示终端设备切换)。在一种可能的实施方式中,第一指示信息承载于第一信令,第一信令还包括第二指示信息,第二指示信息用于指示第一取值,第一取值关联M个端口的索引。其中,第一取值可以理解为表24-B2中行的索引。例如90行-112行,140行-197行。具体的示例,请参见表24-B1的相关描述。
以及,由表24-B2可知,对于type2的R18端口最大支持24流传输,即表24-B1中包括24流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于24,且每一个行对应的M个端口的数量小于等于4。即表24-B1中的57行-197行对应的端口组合。
例如,网络设备可以向终端设备1指示113行的端口0、端口1、端口2、和端口3,以及向终端设备2指示131行的端口7、端口12、和端口13,以及向终端设备3指示137行或138行的端口9、端口18、和端口19,以及向终端设备4指示135行的端口14、端口15、端口20和端口21,以及向终端设备5指示136行的端口16、端口17、端口22和端口23,以及向终端设备6指示159行的端口4和端口5,以及向终端设备7指示172行的端口6,以及向终端设备8指示181行的端口10和端口11,以及向终端设备9指示172行的端口8;即网络设备向终端设备1指示4流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示4流,向终端设备5指示4流,向终端设备6指示2流,向终端设备7指示1流,向终端设备8指示2流,向终端设备9指示1流,形成了24流传输配对。其中,137行或138行对应的端口可以替换为端口7、端口20、和端口21。
以及,由表24-B2可知,表24-B2包括R15端口支持的4流传输的端口组合,且所有的行均用于MU。
表24-B2 Type2-E or Type2-R18,maxlength=2
表24-B3与表24-B2的区别在于,同一端口的FD-OCC长度可以动态切换对应的示例仅包括三行(即90行、91行、92行),因此表24-B3占用7比特,而表24-B2占用8比特,因此表24-B3可以减少比特消耗。
表24-B3 Type2-E or Type2-R18,maxlength=2
表24-B4占用8比特,在表24-B4中,未指示的端口对应的FD-OCC长度默认为4长。由表24-B1可知,同一端口的FD-OCC长度可以动态切换(例如,网络设备可以通过DCI信令指示终端设备切换)。在一种可能的实施方式中,第一指示信息承载于第一信令,第一信令还包括第二指示信息,第二指示信息用于指示第一取值,第一取值关联M个端口的索引。其中,第一取值可以理解为表24-B4中行的索引。例如90行-118行,142行-192行。具体的示例,请参见表24-B1的相关描述。
以及,由表24-B4可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。
例如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括113行、114行、115行或201行中任一项对应的端口1和端口13,端口1和端口13属于同一个CDM组,但端口1和端口13对应的4长频域掩码正交,但端口1和端口13对应的2长频域掩码不正交。或者,113行、114行、115行或201行中任一项对应的端口可以替换为端口0和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括202行中对应的端口1、端口7和端口13,端口1、端口7和端口13属于同一个CDM组,端口1、端口7和端口13对应的4长频域掩码正交,但端口1、端口7和端口13对应的2长频域掩码不正交。其中,202行中对应的端口可以替换为端口0、端口6和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括203行中对应的端口1、端口7、端口13和端口19,端口1、端口7、端口13和端口19属于同一个CDM组,端口1、端口7、端口13和端口19对应的4长频域掩码正交,但端口1、端口7、端口13和端口19
对应的2长频域掩码不正交。其中,203行中对应的端口可以替换为端口0、端口6、端口12和端口18。
以及,由表24-B4可知,对于type2的R18端口最大支持24流传输,即表24-B1中包括24流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于24,且每一个行对应的M个端口的数量小于等于4。即表24-B1中的57行-203行对应的端口组合。
例如,网络设备可以向终端设备1指示112行的端口0、端口1、端口2、和端口3,以及向终端设备2指示134行的端口7、端口12、和端口13,以及向终端设备3指示140行或141行的端口9、端口18、和端口19,以及向终端设备4指示138行的端口14、端口15、端口20和端口21,以及向终端设备5指示139行的端口16、端口17、端口22和端口23,以及向终端设备6指示162行的端口4和端口5,以及向终端设备7指示173行的端口6,以及向终端设备8指示184行的端口10和端口11,以及向终端设备9指示175行的端口8;即网络设备向终端设备1指示4流,向终端设备2指示了3流,向终端设备3指示了3流,向终端设备4指示4流,向终端设备5指示4流,向终端设备6指示2流,向终端设备7指示1流,向终端设备8指示2流,向终端设备9指示1流,形成了24流传输配对。
以及,由表24-B4可知,表24-B4包括R15端口支持的4流传输的端口组合,且所有的行均用于MU。
表24-B4 Type2-E or Type2-R18,maxlength=2
表24-B5与表24-B4的区别在于,同一端口的FD-OCC长度可以动态切换对应的示例仅包括三行(即90行、91行、92行),因此表24-B5占用7比特,而表24-B4占用8比特,因此表24-B5可以减少比特消耗。
表24-B5 Type2-E or Type2-R18,maxlength=2
表24-B6占用7比特,由表24-B6可知,对于type2的R18端口最大支持24流传输,即表24-B6中包括24流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于24,且每一个行对应的M个端口的数量小于等于4。即表24-B6中的58行-117行对应的端口组合。具体的示例请参见表24-B1的相关描述。
以及,由表24-B6可知,表24-B6包括R15端口支持的4流传输的任意端口组合,且每一端口组合(即表24-B6中的0-57行中的任一行)对应的端口数小于等于4,且所有行均用于MU。
表24-B6 Type2-E or Type2-R18,maxlength=2
表24-B7占用7比特,由表24-B7可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。
例如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括91行、92行、93行或121行中任一项对应的端口1和端口13,端口1和端口13属于同一个CDM组,但端口1和端口13对应的4长频域掩码正交,但端口1和端口13对应的2长频域掩码不正交。或者,91行、92行、93行或121行中任一项对应的端口可以替换为端口0和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括122行中对应的端口1、端口7和端口13,端口1、端口7和端口13属于同一个CDM组,端口1、端口7和端口13对应的4长频域掩码正交,但端口1、端口7和端口13对应的2长频域掩码不正交。其中,124行中对应的端口可以替换为端口0、端口6和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括123行中对应的端口1、端口7、端口13和端口19,端口1、端口7、端口13和端口19属于同一个CDM组,端口1、端口7、端口13和端口19对应的4长频域掩码正交,但端口1、端口7、端口13和端口19对应的2长频域掩码不正交。其中,125行中对应的端口可以替换为端口0、端口6、端口12和端口18。
以及,由表24-B7可知,对于type2的R18端口最大支持24流传输,即表24-B6中包括24流传输
的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于24,且每一个行对应的M个端口的数量小于等于4。即表24-B6中的58行-123行对应的端口组合。具体的示例请参见表24-B1的相关描述。
以及,由表24-B7可知,表24-B6包括R15端口支持的4流传输的任意端口组合,且每一端口组合(即表24-B6中0-57行中的任一行)对应的端口数小于等于4。
表24-B7 Type2-E or Type2-R18,maxlength=2
表24-B8占用7比特,由表24-B8可知,对于type2的R18端口最大支持24流传输,即表24-B6中包括24流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于24,且每一个行对应的M个端口的数量小于等于4。即表24-B6中的58行-116行对应的端口组合。具体的示例请参见表24-B1的相关描述。
以及,由表24-B8可知,表24-B8包括R15端口支持的4流传输的部分端口组合,且这些端口组合(即表24-B6中的0-56行中任一行)对应的端口数小于等于4,且0-56行对应的端口组合均用于MU。
表24-B8 Type2-E or Type2-R18,maxlength=2
表24-B9占用7比特,由表24-B9可知,R15端口和R18端口可以在一个CDM组内MU。也就是说,当网络设备向终端设备指示的M个端口属于R15端口集合和R18端口集合时,M个端口包括4长频域掩码正交,但2长频域掩码不正交的序列对应的端口组合。
例如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括33行、34行、35行或69行中任一项对应的端口1和端口13,端口1和端口13属于同一个CDM组,但端口1和端口13对应的4长频域掩码正交,但端口1和端口13对应的2长频域掩码不正交。或者33行、34行、35行或72行中任一项对应的端口可以替换为端口0和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括70行中对应的端口1、端口7和端口13,端口1、端口7和端口13属于同一个CDM组,端口1、端口7和端口13对应的4长频域掩码正交,但端口1、端口7和端口13对应的2长频域掩码不正交。其中,70行中对应的端口可以替换为端口0、端口6和端口12。
又如,假设端口0被分配给其他终端,网络设备分配给当前终端设备的M个端口可以包括71行中对应的端口1、端口7、端口13和端口19,端口1、端口7、端口13和端口19属于同一个CDM组,端口1、端口7、端口13和端口19对应的4长频域掩码正交,但端口1、端口7、端口13和端口19对应的2长频域掩码不正交。其中,71行中对应的端口可以替换为端口0、端口6、端口12和端口18。
以及,由表24-B9可知,第一取值为第一值时,第一取值关联的M个端口的FD-OCC长度可以不同,即表24-B9的同一行中的端口可以对应不同的FD-OCC长度。
例如,第一取值为36行、37行、或38行中任一项时,M个端口可以包括36行、37行、或38行中任一项对应端口0、端口1和端口13,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长,端口13的FD-OCC长度为4长。或者36行、37行、或38行中任一项对应的端口可以替换为端口0、端口1和端口12,其中端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长,端口12的FD-OCC长度为4长。
又如,第一取值为39行、40行、或41行中任一项时,M个端口可以包括39行、40行、或41行中任一项中对应的端口0和端口1,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长。或者,39行、40行、或41行中任一项对应的端口仍然为端口0和端口1,但端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长。
又如,第一取值为72行或77行时,M个端口可以包括72行或77行对应端口0和端口1,端口0的FD-OCC长度为2长,端口1的FD-OCC长度为4长。其中,72行或77行中对应的端口可以替换为端口0和端口7,其中端口0的FD-OCC长度为2长,端口7的FD-OCC长度为4长。或者,72行或77行中对应的端口可以替换为端口0和端口19,其中端口0的FD-OCC长度为2长,端口19的FD-OCC长度为4长。或者,72行或77行中对应的端口可以替换为端口0和端口13,其中端口0的FD-OCC长度为2长,端口13的FD-OCC长度为4长。或者,72行或77行中对应的端口仍然为端口0和端口1,但端口0的FD-OCC长度为4长,端口1的FD-OCC长度为2长。或者,72行或77行中对应的端口可以替换为端口1和端口6,其中端口1的FD-OCC长度为2长,端口6的FD-OCC长度为4长。或者,72行或77行中对应的端口可以替换为端口1和端口18,其中端口1的FD-OCC长度为2长,端口18的FD-OCC长度为4长。或者,72行或77行中对应的端口可以替换为端口1和端口12,其中端口1的FD-OCC长度为2长,端口12的FD-OCC长度为4长。
又如,第一取值为73行或78行时,M个端口可以包括73行或78行中对应的端口0、端口1和端口13,端口0的FD-OCC长度为2长,端口1和端口13的FD-OCC长度为4长。其中,73行或78行中对应的端口可以替换为端口0、端口1和端口19,其中端口0的FD-OCC长度为2长,端口1和端口19的FD-OCC长度为4长。或者,73行或78行中对应的端口可以替换为端口0、端口1和端口7,其中端口0的FD-OCC长度为2长,端口1和端口7的FD-OCC长度为4长。或者,73行或78行中对应的端口可以替换为端口0、端口13和端口19,其中端口0的FD-OCC长度为2长,端口13和端口19的FD-OCC长度为4长。或者,73行或78行中对应的端口可以替换为端口0、端口7和端口19,其中端口0的FD-OCC长度为2长,端口7和端口19的FD-OCC长度为4长。或者,73行或78行中对应的端口可以替换为端口1、端口6和端口12,其中端口1的FD-OCC长度为2长,端口6和端口12的FD-OCC长度为4长。或者,73行或78行中对应的端口可以替换为端口0、端口1、和端口12,其中端口1的FD-OCC长度为2长,端口0和端口12的FD-OCC长度为4长。或者,73行或78行中对应的端口可以替换为端口1、端口6和端口18,其中端口1的FD-OCC长度为2长,端口6和端口18的FD-OCC长度为4长。
又如,第一取值为74行或79行时,M个端口可以包括74行或79行中对应的端口0、端口1、端口7和端口13,端口0的FD-OCC长度为2长,端口1、端口7和端口13的FD-OCC长度为4长。其中,74行或79行中对应的端口可以替换为端口0、端口1、端口7和端口19,其中端口0的FD-OCC长度为2长,端口1、端口7和端口19的FD-OCC长度为4长。或者,74行或79行中对应的端口可以替换为端口0、端口1、端口7和端口19,其中端口0的FD-OCC长度为2长,端口1、端口7和端口19的FD-OCC长度为4长。或者,74行或79行中对应的端口可以替换为端口0、端口1、端口13和端口19,其中端口0的FD-OCC长度为2长,端口1、端口13和端口19的FD-OCC长度为4长。或者,74行或79行中对应的端口可以替换为端口0、端口1、端口6和端口12,其中端口1的FD-OCC长度为2长,端口0、端口6和端口12的FD-OCC长度为4长。或者,74行或79行中对应的端口可以替换为端口0、端口1、端口12和端口18,其中端口1的FD-OCC长度为2长,端口0、端口12和端口18的FD-OCC长度为4长。或者,74行或79行中对应的端口可以替换为端口0、端口1、端口6和端口18,其中端口1的FD-OCC长度为2长,端口0、端口6和端口18的FD-OCC长度为4长。
又如,第一取值为75行或80行时,M个端口可以包括75行或80行中对应的端口0、端口6和端口1,端口0和端口6的FD-OCC长度为2长,端口1的FD-OCC长度为4长。其中,75行或80行中对应的端口可以替换为端口0、端口6和端口7,端口0和端口7的FD-OCC长度为2长,端口7的FD-OCC
长度为4长。或者,75行或80行中对应的端口可以替换为端口0、端口6和端口13,端口0和端口6的FD-OCC长度为2长,端口13的FD-OCC长度为4长。或者,75行或80行中对应的端口可以替换为端口0、端口6和端口19,端口0和端口6的FD-OCC长度为2长,端口19的FD-OCC长度为4长。或者,75行或80行中对应的端口可以替换为端口1、端口7和端口6,端口1和端口7的FD-OCC长度为2长,端口6的FD-OCC长度为4长。或者,75行或80行中对应的端口可以替换为端口1、端口7和端口12,端口1和端口7的FD-OCC长度为2长,端口12的FD-OCC长度为4长。或者,75行或80行中对应的端口可以替换为端口0、端口1、端口6和端口7,端口1和端口7的FD-OCC长度为2长,端口0和端口6的FD-OCC长度为4长。
又如,第一取值为76行或81行时,M个端口可以包括76行或81行中对应的端口0、端口6、端口13和端口19,端口0和端口6的FD-OCC长度为2长,端口13和端口19的FD-OCC长度为4长。其中,76行或81行中对应的端口可以替换为端口0、端口6、端口7和端口19,端口0和端口6的FD-OCC长度为2长,端口7和端口19的FD-OCC长度为4长。或者,76行或81行中对应的端口可以替换为端口0、端口6、端口7和端口13,端口0和端口6的FD-OCC长度为2长,端口7和端口13的FD-OCC长度为4长。或者,76行或81行中对应的端口可以替换为端口1、端口7、端口12和端口18,端口1和端口7的FD-OCC长度为2长,端口18和端口12的FD-OCC长度为4长。或者,76行或81行中对应的端口可以替换为端口1、端口7、端口6和端口18,端口1和端口7的FD-OCC长度为2长,端口18和端口6的FD-OCC长度为4长。或者,76行或81行中对应的端口可以替换为端口0、端口1、端口6和端口7,端口1和端口7的FD-OCC长度为2长,端口0和端口6的FD-OCC长度为4长。
以及,由表24-B9可知,对于type2的R18端口最大支持24流传输,即表24-B9中包括24流传输的任意端口组合,且网络设备分配给配对终端设备的端口总数小于等于24,且每一个行对应的M个端口的数量小于等于4。即表24-B9中的0行-76行或81行对应的端口组合。具体的示例请参见表24-B1的相关描述。
相应的,表24-B9可以结合前文实施例一的表18-1、表18-2、表19-1、表19-2使用。例如,网络设备向终端设备指示5行的端口0、端口1、端口12、和端口13,相应的,若网络设备指示第一DCI字段的取值为0,则端口0、端口1、端口12、和端口13对应的4长正交掩码已被分配给其他终端;若网络设备指示第一DCI字段的取值为1,则端口0、端口1、端口12、和端口13对应的4长正交掩码未被分配给其他终端。
表24-B9 Type2-E or Type2-R18,maxlength=2
一种可能的实施方式中,网络设备还可以接收来自第一终端设备的第三指示信息,第三指示信息用于表征第一终端设备支持第一能力包括第一终端设备支持掩码长度切换,掩码长度切换包括使用第一信令进行掩码长度切换;其中,第一指示信息承载与第一信令,使用第一信令进行掩码长度切换包括使用第一指示信息进行掩码长度切换。其中,第一终端设备支持掩码长度切换,可以理解为第一终端设备支持同一个DMRS端口索引对应不同的掩码长度,掩码长度可以是2或者4。示例性的,第一端口索引组包括端口0的端口索引时,端口0的掩码长度是2;第二端口索引组包括端口0的端口索引时,端口0的掩码长度是4。
在一种可能的实施方式中,M个端口中的任一端口属于第二端口集合时,网络设备还可以接收来自第一终端设备的第四指示信息,第四指示信息用于指示第一终端设备支持第二能力;其中,第二能力包括M个端口中的任一端口与第十二端口占用的时频资源相同;第十二端口属于第一端口集合。
在本申请实施例中,“K与解调参考信号DMRS的类型有关”可以理解为不同DMRS类型对应的最大正交端口数为K。DMRS类型为Type1,最大长度为1时,K=8;DMRS类型为Type1,最大长度为2时,K=16;DMRS类型为Type2,最大长度为1时,K=12;DMRS类型为Type2,最大长度为2时,K=24。
在本申请实施例中,天线端口集合包括的任意两个端口索引组对应的无数据的DMRS CDM组数量相同。当解调参考信号的最大长度为2时,天线端口集合包括的任意两个端口索引组对应的前置符号数相同。下面以上述表21-6、表22-6、表23-6、表24-A6对应拆分的表格为例,进行解释说明。
在本申请实施例中,上述表21-6还可以拆分为表25-1至表25-8。在解调参考信号的类型为第一类型(Type 1),且解调参考信号的最大长度(maxLength)为1,天线端口集合中包含的端口索引组对应的M取值为1-8中的任一项。
其中,M取值为1时,天线端口集合为表25-1,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行)、第六端口索引组(即Value为5对应的行)、第七端口索引组(即Value为6对应的行)、第八端口索引组(即Value为7对应的行)、第九端口索引组(即Value为8对应的行)、第十端口索引组(即Value为9对应的行)、第十一端口索引组(即Value为10对应的行)、十二端口索引组(即Value为11对应的行);第一端口索引组包括端口0,第一端口索引组对应的无数据的DMRS CDM组数量为1;第二端口索引组包括端口1,第二端口索引组对应的无数据的DMRS CDM组数量为1;第三端口索引组包括端口0,第三端口索引组对应的无数据的DMRS CDM组数量为2;第四端口索引组包括端口1,第四端口索引组对应的无数据的DMRS CDM组数量为2;第五端口索引组包括端口2,第五端口索引组对应的无数据的DMRS CDM组数量为2;第六端口索引组包括端口3,第六端口索引组对应的无数据的DMRS CDM组数量为2;第七端口索引组包括端口8,第七端口索引组对应的无数据的DMRS CDM组数量为1;第八端口索引组包括端口9,第八端口索引组对应的无数据的DMRS CDM组数量为1;第九端口索引组包括端口8,第九端口索引组对应的无数据的DMRS CDM组数量为2;第十端口索引组包括端口9,第十端口索引组对应的无数据的DMRS CDM组数量为2;第十一端口索引组包括端口10,第十一端口索引组对应的无数据的DMRS CDM组数量为1;第十二端口索引组包括端口11,第十二端口索引组对应的对应无数据的DMRS CDM组数量为1。
其中,M取值为2时,天线端口集合为表25-2,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行)、第六端口索引组(即Value为5对应的行)、第七端口索引组(即Value为6对应的行)、第八端口索引组(即Value为7对应的行);第一端口索引组包括端口0和端口1,第一端口索引组对应的无数据的DMRS CDM组数量为1;第二端口索引组包括端口0和端口1,第二端口索引组对应的无数据的DMRS CDM组数量为2;第三端口索引组包括端口2和端口3,第三端口索引组对应的无数据的DMRS CDM组数量为2;第四端口索引组包括端口0和端口2,第四端口索引组对应的无数据的DMRS CDM组数量为2;第五端口索引组包括端口8和端口9,第五端口索引组对应的无数据的DMRS CDM组数量为1;第六端口索引组包括端口8和端口9,第六端口索引组对应的无数据的DMRS CDM组数量为2;第七端口索引组包括端口10和端口11,第七端口索引组对应的无数据的DMRS CDM组数量为2;第八端口索引组包括端口9和端口11,第八端口索引组对应的对应无数据的DMRS CDM组数量为2。其中,M取值为3时,天线端口集合为表25-3,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行);第一端口索引组包括端口0、端口1和端口2,第一端口索引组对应的无数据的DMRS CDM组数量为2;第二端口索引组包括端口0、端口1和端口8,第二端口索引组对应的无数据的DMRS CDM组数量为1;第三端口索引组包括端口0、端口1和端口8,第三端口索引组对应的无数据的DMRS CDM组数量为2;第四端口索引组包括端口2、端口3和端口10,第四端口索引组对应的对应无数据的DMRS CDM组数量为2。
其中,M取值为4时,天线端口集合为表25-4,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行);第一端口索引组包括端口0、端口1、端口2和端口3,第一端口索引组对应的无数据的DMRS CDM组数量为2;第二端口索引组包括端口8、端口9、端口10和端口11,第二端口索引组对应的无数据的DMRS CDM组数量为2;第三端口索引组包括端口0、端口1、端口8和端口9,第三端口索引组对应的无数据的DMRS CDM组数量为1;第四端口索引组包括端口0、端口1、端口8和端口9,第四端口索引组对应的无数据的DMRS CDM组数量为2;第五端口索引组包括端口2、端口3、端口10和端口11,第五端口索引组对应的无数据的DMRS CDM组数量为2。
其中,M取值为5时,天线端口集合为表25-5,天线端口集合中包含第一端口索引组(即Value为0对应的行),第一端口索引组包括端口0、端口1、端口2、端口3和端口8,第一端口索引组对应的无数据的DMRS CDM组数量为2。
其中,M取值为6时,天线端口集合为表25-6,天线端口集合中包含第一端口索引组(即Value为0对应的行),第一端口索引组包括端口0、端口1、端口2、端口3、端口8、和端口10,第一端口索引组对应的无数据的DMRS CDM组数量为2。
其中,M取值为7时,天线端口集合为表25-7,天线端口集合中包含第一端口索引组(即Value为0对应的行),第一端口索引组包括端口0、端口1、端口2、端口3、端口8、端口9、和端口10,第一端口索引组对应的无数据的DMRS CDM组数量为2。
其中,M取值为8时,天线端口集合为表25-8,天线端口集合中包含第一端口索引组(即Value为0对应的行),第一端口索引组包括端口0、端口1、端口2、端口3、端口8、端口9、端口10、和端口11,第一端口索引组对应的无数据的DMRS CDM组数量为2。
表25-1:dmrs类型=Type1,maxLength=1,M=1
表25-2:dmrs类型=Type1,maxLength=1,M=2
表25-3:dmrs类型=Type1,maxLength=1,M=3
表25-4:dmrs类型=Type1,maxLength=1,M=4
表25-5:dmrs类型=Type1,maxLength=1,M=5
表25-6:dmrs类型=Type1,maxLength=1,M=6
表25-7:dmrs类型=Type1,已配置增强型dmrs类型,maxLength=1,M=7
表25-8:dmrs类型=Type1,maxLength=1,M=8
本申请实施例中,上述表22-6还可以拆分为表26-1至表26-8。在解调参考信号的类型为第一类型(Type 1),且解调参考信号的最大长度(maxLength)为2,天线端口集合中包含的端口索引组对应的M取值为1-8中的任一项。
其中,M取值为1时,天线端口集合为表26-1,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行)、第六端口索引组(即Value为5对应的行)、第七端口索引组(即Value为6对应的行)、第八端口索引组(即Value为7对应的行)、第九端口索引组(即Value为8对应的行)、第十端口索引组(即Value为9对应的行)、第十一端口索引组(即Value为10对应的行)、十二端口索引组(即Value为11对应的行)、第十三端口索引组(即Value为12对应的行)、第十四端口索引组(即Value为13对应的行)、第十五端口索引组(即Value为14对应的行)、第十六端口索引组(即Value为15对应的行)、第十七端口索引组(即Value为16对应的行)、第十八端口索引组(即Value为17对应的行)、第十九端口索引组(即Value为18对应的行)、第二十端口索引组(即Value为19对应的行)、第二十一端口索引组(即Value为20对应的行)、第二十二端口索引组(即Value为21对应的行)、第二十三端口索引组(即Value为22对应的行)、第二十四端口索引组(即Value为23对应的行)、第二十五端口索引组(即Value为24对应的行)、第二十六端口索引组(即Value为25对应的行)、第二十七端口索引组(即Value为26对应的行)、第二十八端口索引组(即Value为27对应的行);其中,第一端口索引组包括端口0,第一端口索引组对应的无数据的DMRS CDM组数量为1,第一端口索引组对应的前置符号数为1;第二端口索引组包括端口1,第二端口索引组对应的无数据的DMRS CDM组数量为1,第二端口索引组对应的前置符号数为1;第三端口索引组包括端口0,第三端口索引组对应的无数据的DMRS CDM组数量为2,第三端口索引组对应的前置符号数为1;第四端口索引组包括端口1,第四端口索引组对应的无数据的DMRS CDM组数量为2,第四端口索引组对应的前置符号数为1;第五端口索引组包括端口2,第五端口索引组对应的无数据的DMRS CDM组数量为2,第五端口索引组对应的前置符号数为1;第六端口索引组包括端口3,第六端口索引组对应的无数据的DMRS CDM组数量为2,第五端口索引组对应的前置符号数为1;第七端口索引组包括端口0,第七端口索引组对应的无数据的DMRS CDM组数量为2,第七端口索引组对应的前置符号数为2;第八端口索引组包括端口1,第八端口索引组对应的无数据的DMRS CDM组数量为2,第八端口索引组对应的前置符号数为2;第九端口索引组包括端口2,第九端口索引组对应的无数据的DMRS CDM组数量为2,第九端口索引组对应的前置符号数为2;第十端口索引组包括端口3,第十端口索引组对应的无数据的DMRS CDM组数量为2,第十端口索引组对应的前置符号数为2;第十一端口索引组包括端口4,第十一端口索引组对应的无数据的DMRS CDM组数量为2,第十一端口索引组对应的前置符号数为2;第十二端口索引组包括端口5,第十二端口索引组对应的对应无数据的DMRS CDM组数量为2,第十一端口索引组对应的前置符号数为2;第十三端口索引组包括端口6,第十三端口索引组对应的对应无数据的DMRS CDM组数量为2,第十三端口索引组对应的前置符号数为2;第十四端口索引组包括端口7,第十四端口索引组对应的对应无数据的DMRS CDM组数量为2,第十四端口索引组对应的前置符号数为2;第十五端口索引组包括端口8,第十五端口索引组对应的对应无数据的DMRS CDM组数量为1,第十五端口索引组对应的前置符号数为1;第十六端口索引组包括端口9,第十六端口索引组对应的对应无数据的DMRS CDM组数量为1,第十六端口索引组对应的前置符号数为1;第十七端口索引组包括端口8,第十七端口索引组对应的对应无数据的DMRS CDM组数量为2,第十七端口索引组对应的前置符号数为1;第十八端口索引组包括端口9,第十八端口索引组对应的对应无数据的DMRS CDM组数量为2,第十八端口索引组对应的前置符号数为1;第十九端口索引组包括端口10,第十九端口索引组对应的对应无数据的DMRS CDM组
数量为2,第十九端口索引组对应的前置符号数为1;第二十端口索引组包括端口11,第二十端口索引组对应的对应无数据的DMRS CDM组数量为2,第二十端口索引组对应的前置符号数为1;第二十一端口索引组包括端口8,第二十一端口索引组对应的对应无数据的DMRS CDM组数量为2,第二十一端口索引组对应的前置符号数为2;第二十二端口索引组包括端口9,第二十二端口索引组对应的对应无数据的DMRS CDM组数量为2,第二十二端口索引组对应的前置符号数为2;第二十三端口索引组包括端口10,第二十三端口索引组对应的对应无数据的DMRS CDM组数量为2,第二十三端口索引组对应的前置符号数为2;第二十四端口索引组包括端口11,第二十四端口索引组对应的对应无数据的DMRS CDM组数量为2,第二十四端口索引组对应的前置符号数为2;第二十五端口索引组包括端口12,第二十五端口索引组对应的对应无数据的DMRS CDM组数量为2,第二十五端口索引组对应的前置符号数为2;第二十六端口索引组包括端口13,第二十六端口索引组对应的对应无数据的DMRS CDM组数量为2,第二十六端口索引组对应的前置符号数为2;第二十七端口索引组包括端口14,第二十七端口索引组对应的对应无数据的DMRS CDM组数量为2,第二十七端口索引组对应的前置符号数为2;第二十八端口索引组包括端口15,第二十八端口索引组对应的对应无数据的DMRS CDM组数量为2,第二十八端口索引组对应的前置符号数为2。
其中,M取值为2时,天线端口集合为表26-2,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行)、第六端口索引组(即Value为5对应的行)、第七端口索引组(即Value为6对应的行)、第八端口索引组(即Value为7对应的行)、第九端口索引组(即Value为8对应的行)、第十端口索引组(即Value为9对应的行)、第十一端口索引组(即Value为10对应的行)、十二端口索引组(即Value为11对应的行)、第十三端口索引组(即Value为12对应的行)、第十四端口索引组(即Value为13对应的行)、第十五端口索引组(即Value为14对应的行)、第十六端口索引组(即Value为15对应的行)、第十七端口索引组(即Value为16对应的行)、第十八端口索引组(即Value为17对应的行);其中,第一端口索引组包括端口0和端口1,第一端口索引组对应的无数据的DMRS CDM组数量为1,第一端口索引组对应的前置符号数为1;第二端口索引组包括端口0和端口1,第二端口索引组对应的无数据的DMRS CDM组数量为2,第二端口索引组对应的前置符号数为1;第三端口索引组包括端口2和端口3,第三端口索引组对应的无数据的DMRS CDM组数量为2,第三端口索引组对应的前置符号数为1;第四端口索引组包括端口0和端口2,第四端口索引组对应的无数据的DMRS CDM组数量为2,第四端口索引组对应的前置符号数为1;第五端口索引组包括端口0和端口1,第五端口索引组对应的无数据的DMRS CDM组数量为2,第五端口索引组对应的前置符号数为2;第六端口索引组包括端口2和端口3,第六端口索引组对应的无数据的DMRS CDM组数量为2,第六端口索引组对应的前置符号数为2;第七端口索引组包括端口4和端口5,第七端口索引组对应的无数据的DMRS CDM组数量为2,第七端口索引组对应的前置符号数为2;第八端口索引组包括端口6和端口7,第八端口索引组对应的对应无数据的DMRS CDM组数量为2,第八端口索引组对应的前置符号数为2;第九端口索引组包括端口0和端口4,第九端口索引组对应的无数据的DMRS CDM组数量为2,第九端口索引组对应的前置符号数为2;第十端口索引组包括端口2和端口6,第十端口索引组对应的对应无数据的DMRS CDM组数量为2,第十端口索引组对应的前置符号数为2;第十一端口索引组包括端口8和端口9,第十一端口索引组对应的无数据的DMRS CDM组数量为1,第十一端口索引组对应的前置符号数为1;第十二端口索引组包括端口8和端口9,第十二端口索引组对应的对应无数据的DMRS CDM组数量为2,第十二端口索引组对应的前置符号数为1;第十三端口索引组包括端口10和端口11,第十三端口索引组对应的对应无数据的DMRS CDM组数量为2,第十三端口索引组对应的前置符号数为1;第十四端口索引组包括端口8和端口9,第十四端口索引组对应的对应无数据的DMRS CDM组数量为2,第十四端口索引组对应的前置符号数为2;第十五端口索引组包括端口10和端口11,第十五端口索引组对应的对应无数据的DMRS CDM组数量为2,第十五端口索引组对应的前置符号数为2;第十六端口索引组包括端口12和端口13,第十六端口索引组对应的对应无数据的DMRS CDM组数量为2,第十六端口索引组对应的前置符号数为2;第十七端口索引组包括端口14和端口15,第十七端口索引组对应的对应无数据的DMRS CDM组数量为2,第十七端口索引组对应的前置符号数为2;第十八端口索引组包括端口9和端口11,第十八端口索引组对应的对应无数据的DMRS CDM组数量为2,第十八端口索引组对应的前
置符号数为1。
其中,M取值为3时,天线端口集合为表26-3,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行)、第六端口索引组(即Value为5对应的行)、第七端口索引组(即Value为6对应的行)、第八端口索引组(即Value为7对应的行)、第九端口索引组(即Value为8对应的行);其中,第一端口索引组包括端口0、端口1和端口2,第一端口索引组对应的无数据的DMRS CDM组数量为2,第一端口索引组对应的前置符号数为1;第二端口索引组包括端口0、端口1和端口4,第二端口索引组对应的无数据的DMRS CDM组数量为2,第二端口索引组对应的前置符号数为2;第三端口索引组包括端口2、端口3和端口6,第三端口索引组对应的无数据的DMRS CDM组数量为2,第三端口索引组对应的前置符号数为2;第四端口索引组包括端口0、端口1和端口8,第四端口索引组对应的对应无数据的DMRS CDM组数量为1,第四端口索引组对应的前置符号数为1;第五端口索引组包括端口0、端口1和端口8,第五端口索引组对应的对应无数据的DMRS CDM组数量为2,第五端口索引组对应的前置符号数为1;第六端口索引组包括端口2、端口3和端口10,第六端口索引组对应的对应无数据的DMRS CDM组数量为2,第六端口索引组对应的前置符号数为1;第七端口索引组包括端口5、端口8和端口9,第七端口索引组对应的对应无数据的DMRS CDM组数量为2,第七端口索引组对应的前置符号数为2;第八端口索引组包括端口7、端口10和端口11,第八端口索引组对应的对应无数据的DMRS CDM组数量为2,第八端口索引组对应的前置符号数为2;第九端口索引组包括端口7、端口11和端口12,第九端口索引组对应的对应无数据的DMRS CDM组数量为2,第九端口索引组对应的前置符号数为2。
其中,M取值为4时,天线端口集合为表26-4,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行)、第六端口索引组(即Value为5对应的行)、第七端口索引组(即Value为6对应的行)、第八端口索引组(即Value为7对应的行)、第九端口索引组(即Value为8对应的行);其中,第一端口索引组包括端口0、端口1、端口2和端口3,第一端口索引组对应的无数据的DMRS CDM组数量为2,第一端口索引组对应的前置符号数为1;第二端口索引组包括端口0、端口1、端口4和端口5,第二端口索引组对应的无数据的DMRS CDM组数量为2,第二端口索引组对应的前置符号数为2;第三端口索引组包括端口2、端口3、端口6和端口7,第三端口索引组对应的无数据的DMRS CDM组数量为1,第三端口索引组对应的前置符号数为2;第四端口索引组包括端口0、端口2、端口4和端口6,第四端口索引组对应的无数据的DMRS CDM组数量为2,第四端口索引组对应的前置符号数为2;第五端口索引组包括端口8、端口9、端口12和端口13,第五端口索引组对应的无数据的DMRS CDM组数量为2,第五端口索引组对应的前置符号数为2;第六端口索引组包括端口10、端口11、端口14和端口15,第六端口索引组对应的无数据的DMRS CDM组数量为2,第六端口索引组对应的前置符号数为2;第七端口索引组包括端口0、端口1、端口8和端口9,第七端口索引组对应的无数据的DMRS CDM组数量为1,第七端口索引组对应的前置符号数为1;第八端口索引组包括端口0、端口1、端口8和端口9,第八端口索引组对应的无数据的DMRS CDM组数量为2,第八端口索引组对应的前置符号数为1;第九端口索引组包括端口2、端口3、端口10和端口11,第九端口索引组对应的无数据的DMRS CDM组数量为2,第九端口索引组对应的前置符号数为1。
其中,M取值为5时,天线端口集合为表26-5,天线端口集合中包含第一端口索引组(即Value为0对应的行)和第二端口索引组(即Value为1对应的行);其中,第一端口索引组包括端口0、端口1、端口2、端口3和端口4,第一端口索引组对应的无数据的DMRS CDM组数量为2,第一端口索引组对应的前置符号数为2;第二端口索引组包括端口0、端口1、端口4、端口5和端口8,第二端口索引组对应的无数据的DMRS CDM组数量为1,第二端口索引组对应的前置符号数为2。
其中,M取值为6时,天线端口集合为表26-6,天线端口集合中包含第一端口索引组(即Value为0对应的行)和第二端口索引组(即Value为1对应的行);其中,第一端口索引组包括端口0、端口1、端口2、端口3、端口4、和端口6,第一端口索引组对应的无数据的DMRS CDM组数量为2,第一端口索引组对应的前置符号数为2;第二端口索引组包括端口0、端口1、端口4、端口5、端口8和端口9,第二端口索引组对应的无数据的DMRS CDM组数量为1,第二端口索引组对应的前置符号数
为2。
其中,M取值为7时,天线端口集合为表26-7,天线端口集合中包含第一端口索引组(即Value为0对应的行)和第二端口索引组(即Value为1对应的行);其中,第一端口索引组包括端口0、端口1、端口2、端口3、端口4、端口5、和端口6,第一端口索引组对应的无数据的DMRS CDM组数量为2,第一端口索引组对应的前置符号数为2;第二端口索引组包括端口0、端口1、端口4、端口5、端口8、端口9和端口12,第二端口索引组对应的无数据的DMRS CDM组数量为1,第二端口索引组对应的前置符号数为2。
其中,M取值为8时,天线端口集合为表26-8,天线端口集合中包含第一端口索引组(即Value为0对应的行)和第二端口索引组(即Value为1对应的行);其中,第一端口索引组包括端口0、端口1、端口2、端口3、端口4、端口5、端口6和端口7,第一端口索引组对应的无数据的DMRS CDM组数量为2,第一端口索引组对应的前置符号数为2;第二端口索引组包括端口0、端口1、端口4、端口5、端口8、端口9、端口12和端口13,第二端口索引组对应的无数据的DMRS CDM组数量为1,第二端口索引组对应的前置符号数为2。
表26-1:dmrs类型=Type1,maxLength=2,M=1
表26-2:dmrs类型=Type1,maxLength=2,M=2
表26-3:dmrs类型=Type1,maxLength=2,M=3
表26-4:dmrs类型=Type1,maxLength=2,M=4
表26-5:dmrs类型=Type1,maxLength=2,M=5
表26-6:dmrs类型=Type1,maxLength=2,M=6
表26-7:dmrs类型=Type1,maxLength=2,M=7
表26-8:dmrs类型=Type1,maxLength=2,M=8
本申请实施例中,上述表23-6还可以拆分为表27-1至表27-8。在解调参考信号的类型为第二类型(Type 2),且解调参考信号的最大长度(maxLength)为1,天线端口集合中包含的端口索引组对应的M取值为1-8中的任一项。
其中,M取值为1时,天线端口集合为表27-1,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行)、第六端口索引组(即Value为5对应的行)、第七端口索引组(即Value为6对应的行)、第八端口索引组(即Value为7对应的行)、第九端口索引组(即Value为8对应的行)、第十端口索引组(即Value为9对应的行)、第十一端口索引组(即Value为10对应的行)、十二端口索引组(即Value为11对应的行)、第十三端口索引组(即Value为12对应的行)、第十四端口索引组(即Value为13对应的行)、第十五端口索引组(即Value为14对应的行)、第十六端口索引组(即Value为15对应的行)、第十七端口索引组(即Value为16对应的行)、第十八端口索引组(即Value为17对应的行)、第十九端口索引组(即Value为18对应的行)、第二十端口索引组(即Value为19对应的行)、第二十一端口索引组(即Value为20对应的行)、第二十二端口索引组(即Value为21对应的行)、第二十三端口索引组(即Value为22对应的行)、第二十四端口索引组(即Value为23对应的行);其中,第一端口索引组包括端口0,第一端口索引组对应的无数据的DMRS CDM组数量为1;第二端口索引组包括端口1,第二端口索引组对应的无数据的DMRS CDM组数量为1;第三端口索引组包括端口0,第三端口索引组对应的无数据的DMRS CDM组数量为2;第四端口索引组包括端口1,第四端口索引组对应的无数据的DMRS CDM组数量为2;第五端口索引组包括端口2,第五端口索引组对应的无数据的DMRS CDM组数量为2;第六端口索引组包括端口3,第六端口索引组对应的无数据的DMRS CDM组数量为2;第七端口索引组包括端口0,第七端口索引组对应的无数据的DMRS CDM组数量为3;第八端口索引组包括端口1,第八端口索引组对应的无数据的DMRS CDM组数量为3;第九端口索引组包括端口2,第九端口索引组对应的无数据的DMRS CDM组数量为3;第十端口索引组包括端口3,第十端口索引组对应的无数据的DMRS CDM组数量为3;第十一端口索引组包括端口4,第十一端口索引组对应的无数据的DMRS CDM组数量为3;第十二端口索引组包括端口5,第十二端口索引组对应的对应无数据的DMRS CDM组数量为3;第十三端口索引组包括端口12,第十三端口索引组对应的无数据的DMRS CDM组数量为1;第十四端口索引组包括端口13,第十四端口索引组对应的无数据的DMRS CDM组数量为1;第十五端口索引组包括端口12,第十五端口索引组对应的无数据的DMRS CDM组数量为2;第十六端口索引组包括端口13,第十六端口索引组对应的无数据的DMRS CDM组数量为2;第十七端口索引组包括端口14,第十七端口索引组对应的无数据的DMRS CDM组数量为2;第十八端口索引组包括端口15,第十八端口索引组对应的无数据的DMRS CDM组数量为2;第十九端口索引组包括端口12,第十九端口索引组对应的无数据的DMRS CDM组数量为3;第二十端口索引组包括端口13,第二十端口索引组
对应的无数据的DMRS CDM组数量为3;第二十一端口索引组包括端口14,第二十一端口索引组对应的无数据的DMRS CDM组数量为3;第二十二端口索引组包括端口15,第二十二端口索引组对应的无数据的DMRS CDM组数量为3;第二十三端口索引组包括端口16,第二十三端口索引组对应的无数据的DMRS CDM组数量为3;第二十四端口索引组包括端口17,第二十四端口索引组对应的对应无数据的DMRS CDM组数量为3。
其中,M取值为2时,天线端口集合为表27-2,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行)、第六端口索引组(即Value为5对应的行)、第七端口索引组(即Value为6对应的行)、第八端口索引组(即Value为7对应的行)、第九端口索引组(即Value为8对应的行)、第十端口索引组(即Value为9对应的行)、第十一端口索引组(即Value为10对应的行)、十二端口索引组(即Value为11对应的行)、第十三端口索引组(即Value为12对应的行)、第十四端口索引组(即Value为13对应的行)、第十五端口索引组(即Value为14对应的行);其中,第一端口索引组包括端口0和端口1,第一端口索引组对应的无数据的DMRS CDM组数量为1;第二端口索引组包括端口0和端口1,第二端口索引组对应的无数据的DMRS CDM组数量为2;第三端口索引组包括端口2和端口3,第三端口索引组对应的无数据的DMRS CDM组数量为2;第四端口索引组包括端口0和端口1,第四端口索引组对应的无数据的DMRS CDM组数量为3;第五端口索引组包括端口2和端口3,第五端口索引组对应的无数据的DMRS CDM组数量为3;第六端口索引组包括端口4和端口5,第六端口索引组对应的无数据的DMRS CDM组数量为3;第七端口索引组包括端口0和端口2,第七端口索引组对应的无数据的DMRS CDM组数量为2;第八端口索引组包括端口12和端口13,第八端口索引组对应的对应无数据的DMRS CDM组数量为1;第九端口索引组包括端口12和端口13,第九端口索引组对应的无数据的DMRS CDM组数量为2;第十端口索引组包括端口14和端口15,第十端口索引组对应的无数据的DMRS CDM组数量为2;第十一端口索引组包括端口12和端口13,第十一端口索引组对应的无数据的DMRS CDM组数量为3;第十二端口索引组包括端口14和端口15,第十二端口索引组对应的无数据的DMRS CDM组数量为3;第十三端口索引组包括端口16和端口17,第十三端口索引组对应的无数据的DMRS CDM组数量为3;第十四端口索引组包括端口13和端口15,第十四端口索引组对应的无数据的DMRS CDM组数量为3;第十五端口索引组包括端口13和端口15,第十五端口索引组对应的无数据的DMRS CDM组数量为2。
其中,M取值为3时,天线端口集合为表27-3,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行)、第六端口索引组(即Value为5对应的行)、第七端口索引组(即Value为6对应的行)、第八端口索引组(即Value为7对应的行)、第九端口索引组(即Value为8对应的行)、第十端口索引组(即Value为9对应的行);第一端口索引组包括端口0、端口1和端口2,第一端口索引组对应的无数据的DMRS CDM组数量为2;第二端口索引组包括端口0、端口1和端口2,第二端口索引组对应的无数据的DMRS CDM组数量为3;第三端口索引组包括端口3、端口4和端口5,第三端口索引组对应的无数据的DMRS CDM组数量为3;第四端口索引组包括端口0、端口1和端口12,第四端口索引组对应的对应无数据的DMRS CDM组数量为1;第五端口索引组包括端口0、端口1和端口12,第五端口索引组对应的对应无数据的DMRS CDM组数量为2;第六端口索引组包括端口2、端口3和端口14,第六端口索引组对应的对应无数据的DMRS CDM组数量为2;第七端口索引组包括端口0、端口1和端口12,第七端口索引组对应的对应无数据的DMRS CDM组数量为3;第八端口索引组包括端口2、端口3和端口14,第八端口索引组对应的对应无数据的DMRS CDM组数量为3;第九端口索引组包括端口4、端口5和端口16,第九端口索引组对应的对应无数据的DMRS CDM组数量为3;第十端口索引组包括端口13、端口15和端口17,第十端口索引组对应的对应无数据的DMRS CDM组数量为3。
其中,M取值为4时,天线端口集合为表27-4,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行)、第六端口索引组(即Value为5对应的行)、第七端口索引组(即Value为6对应的行)、第八端口索引组(即Value为7对应的行);第一端口索引组包括端口0、端口1、端口2和端口3,第一端口索引组对应的无数据
的DMRS CDM组数量为2;第二端口索引组包括端口0、端口1、端口2和端口3,第二端口索引组对应的无数据的DMRS CDM组数量为3;第三端口索引组包括端口0、端口1、端口12和端口13,第三端口索引组对应的无数据的DMRS CDM组数量为1;第四端口索引组包括端口0、端口1、端口12和端口13,第四端口索引组对应的无数据的DMRS CDM组数量为2;第五端口索引组包括端口2、端口3、端口14和端口15,第五端口索引组对应的无数据的DMRS CDM组数量为2;第六端口索引组包括端口0、端口1、端口12和端口13,第六端口索引组对应的无数据的DMRS CDM组数量为3;第七端口索引组包括端口2、端口3、端口14和端口15,第七端口索引组对应的无数据的DMRS CDM组数量为3;第八端口索引组包括端口4、端口5、端口6和端口17,第八端口索引组对应的无数据的DMRS CDM组数量为3。
其中,M取值为5时,天线端口集合为表27-5,天线端口集合中包含第一端口索引组(即Value为0对应的行)、和第二端口索引组(即Value为1对应的行);第一端口索引组包括端口0、端口1、端口2、端口3和端口4,第一端口索引组对应的无数据的DMRS CDM组数量为3;第二端口索引组包括端口0、端口1、端口2、端口3和端口12,第二端口索引组对应的无数据的DMRS CDM组数量为2。
其中,M取值为6时,天线端口集合为表27-6,天线端口集合中包含第一端口索引组(即Value为0对应的行)、和第二端口索引组(即Value为1对应的行);第一端口索引组包括端口0、端口1、端口2、端口3、端口4和端口5,第一端口索引组对应的无数据的DMRS CDM组数量为3;第二端口索引组包括端口0、端口1、端口2、端口3、端口12和端口13,第二端口索引组对应的无数据的DMRS CDM组数量为2。
其中,M取值为7时,天线端口集合为表27-7,天线端口集合中包含第一端口索引组(即Value为0对应的行);第一端口索引组包括端口0、端口1、端口2、端口3、端口12、端口13和端口14,第一端口索引组对应的无数据的DMRS CDM组数量为2。
其中,M取值为8时,天线端口集合为表27-8,天线端口集合中包含第一端口索引组(即Value为0对应的行);第一端口索引组包括端口0、端口1、端口2、端口3、端口12、端口13、端口14和端口15,第一端口索引组对应的无数据的DMRS CDM组数量为2。
表27-1:dmrs类型=Type2,maxLength=1,M=1
表27-2:dmrs类型=Type2,maxLength=1,M=2
表27-3:dmrs类型=Type2,maxLength=1,M=3
表27-4:dmrs类型=Type2,maxLength=1,M=4
表27-5:dmrs类型=Type2,maxLength=1,M=5
表27-6:dmrs类型=Type2,maxLength=1,M=6
表27-7:dmrs类型=Type2,maxLength=1,M=7
表27-8:dmrs类型=Type2,maxLength=1,M=8
本申请实施例中,上述表24-A6还可以拆分为表28-1至表28-8。在解调参考信号的类型为第二类型(Type 2),且解调参考信号的最大长度(maxLength)为2,天线端口集合中包含的端口索引组对应的M取值为1-8中的任一项。
其中,M取值为1时,天线端口集合为表28-1,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行)、第六端口索引组(即Value为5对应的行)、第七端口索引组(即Value为6对应的行)、第八端口索引组(即Value为7对应的行)、第九端口索引组(即Value为8对应的行)、第十端口索引组(即Value为9对应的行)、第十一端口索引组(即Value为10对应的行)、十二端口索引组(即Value为11对应的行)、第十三端口索引组(即Value为12对应的行)、第十四端口索引组(即Value为13对应的行)、第十五端口索引组(即Value为14对应的行)、第十六端口索引组(即Value为15对应的行)、第十七端口索引组(即Value为16对应的行)、第十八端口索引组(即Value为17对应的行)、第十九端口索引组(即Value为18对应的行)、第二十端口索引组(即Value为19对应的行)、第二十一端口索引组(即Value为20对应的行)、第二十二端口索引组(即Value为21对应的行)、第二十三端口索引组(即Value为22对应的行)、第二十四端口索引组(即Value为23对应的行)、第二十五端口索引组(即Value为24对应的行)、第二十六端口索引组(即Value为25对应的行)、第二十七端口索引组(即Value为26对应的行)、第二十八端口索引组(即Value为27对应的行)、第二十九端口索引组(即Value为28对应的行)、第三十端口索引组(即Value为29对应的行)、第三十一端口索引组(即Value为30对应的行)、第三十二端口索引组(即Value为31对应的行)、第三十三端口索引组(即Value为32对应的行)、第三十四端口索引组(即Value为33对应的行)、第三十五端口索引组(即Value为34对应的行)、第三十六端口索引组(即Value为35对应的行)、第三十七端口索引组(即Value为36对应的行)、第三十八端口索引组(即Value为37对应的行)、第三十九端口索引组(即Value为38对应的行)、第四十端口索引组(即Value为39对应的行)、第四十一端口索引组(即Value为40对应的行)、第四十二端口索引组(即Value为41对应的行)、第四十三端口索引组(即Value为42对应的行)、第四十四端口索引组(即Value为43对应的行)、第四十五端口索引组(即Value为44对应的行)、第四十六端口索引组(即Value为45对应的行)、第四十七端口索引组(即Value为46对应的行)、和第四十八端口索引组(即
Value为47对应的行)、第四十九端口索引组(即Value为48对应的行)、第五十端口索引组(即Value为49对应的行)、第五十一端口索引组(即Value为50对应的行)、和第五十二端口索引组(即Value为51对应的行);其中,第一端口索引组包括端口0,第一端口索引组对应的无数据的DMRS CDM组数量为1,第一端口索引组对应的前置符号数为1;第二端口索引组包括端口1,第二端口索引组对应的无数据的DMRS CDM组数量为1,第二端口索引组对应的前置符号数为1;第三端口索引组包括端口0,第三端口索引组对应的无数据的DMRS CDM组数量为2,第三端口索引组对应的前置符号数为1;第四端口索引组包括端口1,第四端口索引组对应的无数据的DMRS CDM组数量为2,第四端口索引组对应的前置符号数为1;第五端口索引组包括端口2,第五端口索引组对应的无数据的DMRS CDM组数量为2,第五端口索引组对应的前置符号数为1;第六端口索引组包括端口3,第六端口索引组对应的无数据的DMRS CDM组数量为2,第五端口索引组对应的前置符号数为1;第七端口索引组包括端口0,第七端口索引组对应的无数据的DMRS CDM组数量为3,第七端口索引组对应的前置符号数为1;第八端口索引组包括端口1,第八端口索引组对应的无数据的DMRS CDM组数量为3,第八端口索引组对应的前置符号数为1;第九端口索引组包括端口2,第九端口索引组对应的无数据的DMRS CDM组数量为3,第九端口索引组对应的前置符号数为1;第十端口索引组包括端口3,第十端口索引组对应的无数据的DMRS CDM组数量为3,第十端口索引组对应的前置符号数为1;第十一端口索引组包括端口4,第十一端口索引组对应的无数据的DMRS CDM组数量为3,第十一端口索引组对应的前置符号数为1;第十二端口索引组包括端口5,第十二端口索引组对应的对应无数据的DMRS CDM组数量为3,第十一端口索引组对应的前置符号数为1;第十三端口索引组包括端口0,第十三端口索引组对应的对应无数据的DMRS CDM组数量为3,第十三端口索引组对应的前置符号数为2;第十四端口索引组包括端口1,第十四端口索引组对应的对应无数据的DMRS CDM组数量为3,第十四端口索引组对应的前置符号数为2;第十五端口索引组包括端口2,第十五端口索引组对应的对应无数据的DMRS CDM组数量为3,第十五端口索引组对应的前置符号数为2;第十六端口索引组包括端口3,第十六端口索引组对应的对应无数据的DMRS CDM组数量为3,第十六端口索引组对应的前置符号数为2;第十七端口索引组包括端口4,第十七端口索引组对应的对应无数据的DMRS CDM组数量为3,第十七端口索引组对应的前置符号数为2;第十八端口索引组包括端口5,第十八端口索引组对应的对应无数据的DMRS CDM组数量为3,第十八端口索引组对应的前置符号数为2;第十九端口索引组包括端口6,第十九端口索引组对应的对应无数据的DMRS CDM组数量为3,第十九端口索引组对应的前置符号数为2;第二十端口索引组包括端口7,第二十端口索引组对应的对应无数据的DMRS CDM组数量为3,第二十端口索引组对应的前置符号数为2;第二十一端口索引组包括端口8,第二十一端口索引组对应的对应无数据的DMRS CDM组数量为3,第二十一端口索引组对应的前置符号数为2;第二十二端口索引组包括端口9,第二十二端口索引组对应的对应无数据的DMRS CDM组数量为3,第二十二端口索引组对应的前置符号数为2;第二十三端口索引组包括端口10,第二十三端口索引组对应的对应无数据的DMRS CDM组数量为3,第二十三端口索引组对应的前置符号数为2;第二十四端口索引组包括端口11,第二十四端口索引组对应的对应无数据的DMRS CDM组数量为3,第二十四端口索引组对应的前置符号数为2;第二十五端口索引组包括端口0,第二十五端口索引组对应的对应无数据的DMRS CDM组数量为1,第二十五端口索引组对应的前置符号数为2;第二十六端口索引组包括端口1,第二十六端口索引组对应的对应无数据的DMRS CDM组数量为1,第二十六端口索引组对应的前置符号数为2;第二十七端口索引组包括端口6,第二十七端口索引组对应的对应无数据的DMRS CDM组数量为1,第二十七端口索引组对应的前置符号数为2;第二十八端口索引组包括端口7,第二十八端口索引组对应的对应无数据的DMRS CDM组数量为1,第二十八端口索引组对应的前置符号数为2;第二十九端口索引组包括端口12,第二十九端口索引组对应的对应无数据的DMRS CDM组数量为1,第二十九端口索引组对应的前置符号数为1;第三十端口索引组包括端口13,第三十端口索引组对应的对应无数据的DMRS CDM组数量为1,第三十端口索引组对应的前置符号数为1;第三十一端口索引组包括端口12,第三十一端口索引组对应的对应无数据的DMRS CDM组数量为2,第三十一端口索引组对应的前置符号数为1;第三十二端口索引组包括端口13,第三十二端口索引组对应的对应无数据的DMRS CDM组数量为2,第三十二端口索引组对应的前置符号数为1;第三十三端口索引组包括端口14,第三十三端口索引组对应的对应无数据的DMRS CDM组数量为2,第三十三端口索引组对应的前置符号数为1;第三十四端口索引组包括端口15,第三十四端口索引组对应的对应无数据的
DMRS CDM组数量为2,第三十四端口索引组对应的前置符号数为1;第三十五端口索引组包括端口12,第三十五端口索引组对应的对应无数据的DMRS CDM组数量为3,第三十五端口索引组对应的前置符号数为1;第三十六端口索引组包括端口13,第三十六端口索引组对应的对应无数据的DMRS CDM组数量为3,第三十六端口索引组对应的前置符号数为1;第三十七端口索引组包括端口14,第三十七端口索引组对应的对应无数据的DMRS CDM组数量为3,第三十七端口索引组对应的前置符号数为1;第三十八端口索引组包括端口15,第三十八端口索引组对应的对应无数据的DMRS CDM组数量为3,第三十八端口索引组对应的前置符号数为1;第三十九端口索引组包括端口16,第三十九端口索引组对应的对应无数据的DMRS CDM组数量为3,第三十九端口索引组对应的前置符号数为1;第四十端口索引组包括端口17,第四十端口索引组对应的对应无数据的DMRS CDM组数量为3,第四十端口索引组对应的前置符号数为1;第四十一端口索引组包括端口12,第四十一端口索引组对应的对应无数据的DMRS CDM组数量为3,第四十一端口索引组对应的前置符号数为2;第四十二端口索引组包括端口13,第四十二端口索引组对应的对应无数据的DMRS CDM组数量为3,第四十二端口索引组对应的前置符号数为2;第四十三端口索引组包括端口14,第四十三端口索引组对应的对应无数据的DMRS CDM组数量为3,第四十三端口索引组对应的前置符号数为2;第四十四端口索引组包括端口15,第四十四端口索引组对应的对应无数据的DMRS CDM组数量为3,第四十四端口索引组对应的前置符号数为2;第四十五端口索引组包括端口16,第四十五端口索引组对应的对应无数据的DMRS CDM组数量为3,第四十五端口索引组对应的前置符号数为2;第四十六端口索引组包括端口17,第四十六端口索引组对应的对应无数据的DMRS CDM组数量为3,第四十六端口索引组对应的前置符号数为2;第四十七端口索引组包括端口18,第四十七端口索引组对应的对应无数据的DMRS CDM组数量为3,第四十七端口索引组对应的前置符号数为2;第四十八端口索引组包括端口19,第四十八端口索引组对应的对应无数据的DMRS CDM组数量为3,第四十八端口索引组对应的前置符号数为2;第四十九端口索引组包括端口20,第四十九端口索引组对应的对应无数据的DMRS CDM组数量为3,第四十九端口索引组对应的前置符号数为2;第五十端口索引组包括端口21,第五十端口索引组对应的对应无数据的DMRS CDM组数量为3,第五十端口索引组对应的前置符号数为2;第五十一端口索引组包括端口22,第五十一端口索引组对应的对应无数据的DMRS CDM组数量为3,第五十一端口索引组对应的前置符号数为2;第五十二端口索引组包括端口23,第五十二端口索引组对应的对应无数据的DMRS CDM组数量为3,第五十二端口索引组对应的前置符号数为2。
其中,M取值为2时,天线端口集合为表28-2,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行)、第六端口索引组(即Value为5对应的行)、第七端口索引组(即Value为6对应的行)、第八端口索引组(即Value为7对应的行)、第九端口索引组(即Value为8对应的行)、第十端口索引组(即Value为9对应的行)、第十一端口索引组(即Value为10对应的行)、十二端口索引组(即Value为11对应的行)、第十三端口索引组(即Value为12对应的行)、第十四端口索引组(即Value为13对应的行)、第十五端口索引组(即Value为14对应的行)、第十六端口索引组(即Value为15对应的行)、第十七端口索引组(即Value为16对应的行)、第十八端口索引组(即Value为17对应的行)、第十九端口索引组(即Value为18对应的行)、第二十端口索引组(即Value为19对应的行)、第二十一端口索引组(即Value为20对应的行)、第二十二端口索引组(即Value为21对应的行)、第二十三端口索引组(即Value为22对应的行)、第二十四端口索引组(即Value为23对应的行)、第二十五端口索引组(即Value为24对应的行)、第二十六端口索引组(即Value为25对应的行)、第二十七端口索引组(即Value为26对应的行)、第二十八端口索引组(即Value为27对应的行)、第二十九端口索引组(即Value为28对应的行)、第三十端口索引组(即Value为29对应的行)、第三十一端口索引组(即Value为30对应的行)、第三十二端口索引组(即Value为31对应的行)、第三十三端口索引组(即Value为32对应的行);其中,第一端口索引组包括端口0和端口1,第一端口索引组对应的无数据的DMRS CDM组数量为1,第一端口索引组对应的前置符号数为1;第二端口索引组包括端口0和端口1,第二端口索引组对应的无数据的DMRS CDM组数量为2,第二端口索引组对应的前置符号数为1;第三端口索引组包括端口2和端口3,第三端口索引组对应的无数据的DMRS CDM组数量为2,第三端口索引组对应的前置符号数为1;第四端口索引组包括端口0和端口1,第四端口索引组对应的无数据的DMRS CDM组数量为3,
第四端口索引组对应的前置符号数为1;第五端口索引组包括端口2和端口3,第五端口索引组对应的无数据的DMRS CDM组数量为3,第五端口索引组对应的前置符号数为1;第六端口索引组包括端口4和端口5,第六端口索引组对应的无数据的DMRS CDM组数量为3,第六端口索引组对应的前置符号数为1;第七端口索引组包括端口0和端口2第七端口索引组对应的无数据的DMRS CDM组数量为2,第七端口索引组对应的前置符号数为1;第八端口索引组包括端口0和端口1,第八端口索引组对应的对应无数据的DMRS CDM组数量为3,第八端口索引组对应的前置符号数为2;第九端口索引组包括端口2和端口3,第九端口索引组对应的无数据的DMRS CDM组数量为3,第九端口索引组对应的前置符号数为2;第十端口索引组包括端口4和端口5,第十端口索引组对应的对应无数据的DMRS CDM组数量为3,第十端口索引组对应的前置符号数为2;第十一端口索引组包括端口6和端口7,第十一端口索引组对应的无数据的DMRS CDM组数量为3,第十一端口索引组对应的前置符号数为2;第十二端口索引组包括端口8和端口9,第十二端口索引组对应的对应无数据的DMRS CDM组数量为3,第十二端口索引组对应的前置符号数为2;第十三端口索引组包括端口10和端口11,第十三端口索引组对应的对应无数据的DMRS CDM组数量为3,第十三端口索引组对应的前置符号数为2;第十四端口索引组包括端口0和端口1,第十四端口索引组对应的对应无数据的DMRS CDM组数量为1,第十四端口索引组对应的前置符号数为2;第十五端口索引组包括端口6和端口7,第十五端口索引组对应的对应无数据的DMRS CDM组数量为1,第十五端口索引组对应的前置符号数为2;第十六端口索引组包括端口0和端口1,第十六端口索引组对应的对应无数据的DMRS CDM组数量为2,第十六端口索引组对应的前置符号数为2;第十七端口索引组包括端口2和端口3,第十七端口索引组对应的对应无数据的DMRS CDM组数量为2,第十七端口索引组对应的前置符号数为2;第十八端口索引组包括端口6和端口7,第十八端口索引组对应的对应无数据的DMRS CDM组数量为2,第十八端口索引组对应的前置符号数为2;第十九端口索引组包括端口8和端口9,第十九端口索引组对应的对应无数据的DMRS CDM组数量为2,第十九端口索引组对应的前置符号数为2;第二十端口索引组包括端口12和端口13,第二十端口索引组对应的对应无数据的DMRS CDM组数量为1,第二十端口索引组对应的前置符号数为1;第二十一端口索引组包括端口12和端口13,第二十一端口索引组对应的对应无数据的DMRS CDM组数量为2,第二十一端口索引组对应的前置符号数为1;第二十二端口索引组包括端口14和端口15,第二十一端口索引组对应的对应无数据的DMRS CDM组数量为2,第二十一端口索引组对应的前置符号数为1;第二十三端口索引组包括端口12和端口13,第二十三端口索引组对应的对应无数据的DMRS CDM组数量为3,第二十三端口索引组对应的前置符号数为1;第二十四端口索引组包括端口14和端口15,第二十四端口索引组对应的对应无数据的DMRS CDM组数量为3,第二十四端口索引组对应的前置符号数为1;第二十五端口索引组包括端口16和端口17,第二十五端口索引组对应的对应无数据的DMRS CDM组数量为3,第二十五端口索引组对应的前置符号数为1;第二十六端口索引组包括端口12和端口13,第二十六端口索引组对应的对应无数据的DMRS CDM组数量为3,第二十六端口索引组对应的前置符号数为2;第二十七端口索引组包括端口14和端口15,第二十七端口索引组对应的对应无数据的DMRS CDM组数量为3,第二十七端口索引组对应的前置符号数为2;第二十八端口索引组包括端口16和端口17,第二十八端口索引组对应的对应无数据的DMRS CDM组数量为3,第二十八端口索引组对应的前置符号数为2;第二十九端口索引组包括端口18和端口19,第二十九端口索引组对应的对应无数据的DMRS CDM组数量为3,第二十九端口索引组对应的前置符号数为2;第三十端口索引组包括端口20和端口21,第三十端口索引组对应的对应无数据的DMRS CDM组数量为3,第三十端口索引组对应的前置符号数为2;第三十一端口索引组包括端口22和端口23,第三十一端口索引组对应的对应无数据的DMRS CDM组数量为3,第三十一端口索引组对应的前置符号数为2;第三十二端口索引组包括端口13和端口15,第三十二端口索引组对应的对应无数据的DMRS CDM组数量为3,第三十二端口索引组对应的前置符号数为1;第三十三端口索引组包括端口13和端口15,第三十三端口索引组对应的对应无数据的DMRS CDM组数量为2,第三十三端口索引组对应的前置符号数为1。
其中,M取值为3时,天线端口集合为表28-3,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行)、第六端口索引组(即Value为5对应的行)、第七端口索引组(即Value为6对应的行)、第八端口索引组(即Value
为7对应的行)、第九端口索引组(即Value为8对应的行)、第十端口索引组(即Value为9对应的行)、第十一端口索引组(即Value为10对应的行)、十二端口索引组(即Value为11对应的行)、第十三端口索引组(即Value为12对应的行)、第十四端口索引组(即Value为13对应的行)、第十五端口索引组(即Value为14对应的行)、第十六端口索引组(即Value为15对应的行)、第十七端口索引组(即Value为16对应的行)、第十八端口索引组(即Value为17对应的行)、第十九端口索引组(即Value为18对应的行);其中,第一端口索引组包括端口0、端口1和端口2,第一端口索引组对应的无数据的DMRS CDM组数量为2,第一端口索引组对应的前置符号数为1;第二端口索引组包括端口0、端口1和端口2,第二端口索引组对应的无数据的DMRS CDM组数量为3,第二端口索引组对应的前置符号数为1;第三端口索引组包括端口3、端口4和端口5,第三端口索引组对应的无数据的DMRS CDM组数量为3,第三端口索引组对应的前置符号数为1;第四端口索引组包括端口0、端口1和端口6,第四端口索引组对应的对应无数据的DMRS CDM组数量为3,第四端口索引组对应的前置符号数为2;第五端口索引组包括端口2、端口3和端口8,第五端口索引组对应的对应无数据的DMRS CDM组数量为3,第五端口索引组对应的前置符号数为2;第六端口索引组包括端口4、端口5和端口10,第六端口索引组对应的对应无数据的DMRS CDM组数量为3,第六端口索引组对应的前置符号数为2;第七端口索引组包括端口0、端口1和端口12,第七端口索引组对应的对应无数据的DMRS CDM组数量为1,第七端口索引组对应的前置符号数为1;第八端口索引组包括端口0、端口1和端口12,第八端口索引组对应的对应无数据的DMRS CDM组数量为2,第八端口索引组对应的前置符号数为1;第九端口索引组包括端口2、端口3和端口14,第九端口索引组对应的对应无数据的DMRS CDM组数量为2,第九端口索引组对应的前置符号数为1;第十端口索引组包括端口0、端口1和端口12,第十端口索引组对应的对应无数据的DMRS CDM组数量为3,第十端口索引组对应的前置符号数为1;第十一端口索引组包括端口2、端口3和端口14,第十一端口索引组对应的对应无数据的DMRS CDM组数量为3,第十一端口索引组对应的前置符号数为1;第十二端口索引组包括端口4、端口5和端口16,第十二端口索引组对应的对应无数据的DMRS CDM组数量为3,第十二端口索引组对应的前置符号数为1;第十三端口索引组包括端口7、端口12和端口13,第十三端口索引组对应的对应无数据的DMRS CDM组数量为3,第十三端口索引组对应的前置符号数为2;第十四端口索引组包括端口9、端口14和端口15,第十四端口索引组对应的对应无数据的DMRS CDM组数量为3,第十四端口索引组对应的前置符号数为2;第十五端口索引组包括端口11、端口16和端口17,第十五端口索引组对应的对应无数据的DMRS CDM组数量为3,第十五端口索引组对应的前置符号数为2;第十六端口索引组包括端口9、端口18和端口19,第十六端口索引组对应的对应无数据的DMRS CDM组数量为3,第十六端口索引组对应的前置符号数为2;第十七端口索引组包括端口18、端口19和端口20,第十七端口索引组对应的对应无数据的DMRS CDM组数量为3,第十七端口索引组对应的前置符号数为2;第十八端口索引组包括端口21、端口22和端口23,第十八端口索引组对应的对应无数据的DMRS CDM组数量为3,第十八端口索引组对应的前置符号数为2;第十九端口索引组包括端口13、端口15和端口17,第十九端口索引组对应的对应无数据的DMRS CDM组数量为3,第十九端口索引组对应的前置符号数为1。
其中,M取值为4时,天线端口集合为表28-4,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行)、第四端口索引组(即Value为3对应的行)、第五端口索引组(即Value为4对应的行)、第六端口索引组(即Value为5对应的行)、第七端口索引组(即Value为6对应的行)、第八端口索引组(即Value为7对应的行)、第九端口索引组(即Value为8对应的行)、第十端口索引组(即Value为9对应的行)、第十一端口索引组(即Value为10对应的行)、十二端口索引组(即Value为11对应的行)、第十三端口索引组(即Value为12对应的行)、第十四端口索引组(即Value为13对应的行);其中,第一端口索引组包括端口0、端口1、端口2和端口3,第一端口索引组对应的无数据的DMRS CDM组数量为2,第一端口索引组对应的前置符号数为1;第二端口索引组包括端口0、端口1、端口2和端口3,第二端口索引组对应的无数据的DMRS CDM组数量为3,第二端口索引组对应的前置符号数为1;第三端口索引组包括端口0、端口1、端口6和端口7,第三端口索引组对应的无数据的DMRS CDM组数量为3,第三端口索引组对应的前置符号数为2;第四端口索引组包括端口2、端口3、端口8和端口9,第四端口索引组对应的无数据的DMRS CDM组数量为3,第四端口索引组对应的前置符号数为2;第五端口索引组包括端口4、端口5、端口10和端口11,第五端口索引组对应的无数据的DMRS CDM组数量
为3,第五端口索引组对应的前置符号数为2;第六端口索引组包括端口12、端口13、端口18和端口19,第六端口索引组对应的无数据的DMRS CDM组数量为3,第六端口索引组对应的前置符号数为2;第七端口索引组包括端口14、端口15、端口20和端口21,第七端口索引组对应的无数据的DMRS CDM组数量为3,第七端口索引组对应的前置符号数为2;第八端口索引组包括端口16、端口17、端口22和端口23,第八端口索引组对应的无数据的DMRS CDM组数量为3,第八端口索引组对应的前置符号数为2;第九端口索引组包括端口0、端口1、端口12和端口13,第九端口索引组对应的无数据的DMRS CDM组数量为1,第九端口索引组对应的前置符号数为1;第十端口索引组包括端口0、端口1、端口12和端口13,第十端口索引组对应的无数据的DMRS CDM组数量为2,第十端口索引组对应的前置符号数为1;第十一端口索引组包括端口2、端口3、端口14和端口15,第十一端口索引组对应的无数据的DMRS CDM组数量为2,第十一端口索引组对应的前置符号数为1;第十二端口索引组包括端口0、端口1、端口12和端口13,第十二端口索引组对应的无数据的DMRS CDM组数量为3,第十二端口索引组对应的前置符号数为1;第十三端口索引组包括端口2、端口3、端口14和端口15,第十三端口索引组对应的无数据的DMRS CDM组数量为3,第十三端口索引组对应的前置符号数为1;第十四端口索引组包括端口4、端口5、端口16和端口17,第十四端口索引组对应的无数据的DMRS CDM组数量为3,第十四端口索引组对应的前置符号数为1。
其中,M取值为5时,天线端口集合为表28-5,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行);其中,第一端口索引组包括端口0、端口1、端口2、端口3和端口4,第一端口索引组对应的无数据的DMRS CDM组数量为3,第一端口索引组对应的前置符号数为2;第二端口索引组包括端口0、端口1、端口2、端口3和端口6,第一端口索引组对应的无数据的DMRS CDM组数量为2,第二端口索引组对应的前置符号数为2;第三端口索引组包括端口0、端口1、端口6、端口7和端口12,第三端口索引组对应的无数据的DMRS CDM组数量为1,第三端口索引组对应的前置符号数为2。
其中,M取值为6时,天线端口集合为表28-6,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行)、第三端口索引组(即Value为2对应的行);其中,第一端口索引组包括端口0、端口1、端口2、端口3、端口4、和端口5,第一端口索引组对应的无数据的DMRS CDM组数量为3,第一端口索引组对应的前置符号数为2;第二端口索引组包括端口0、端口1、端口2、端口3、端口6和端口8,第二端口索引组对应的无数据的DMRS CDM组数量为2,第而端口索引组对应的前置符号数为2;第三端口索引组包括端口0、端口1、端口6、端口7、端口12和端口13,第三端口索引组对应的无数据的DMRS CDM组数量为1,第三端口索引组对应的前置符号数为2。
其中,M取值为7时,天线端口集合为表28-7,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行);其中,第一端口索引组包括端口0、端口1、端口2、端口3、端口6、端口7、和端口8,第一端口索引组对应的无数据的DMRS CDM组数量为2,第一端口索引组对应的前置符号数为2;第二端口索引组包括端口0、端口1、端口6、端口7、端口12、端口13和端口18,第二端口索引组对应的无数据的DMRS CDM组数量为1,第二端口索引组对应的前置符号数为2。
其中,M取值为8时,天线端口集合为表28-8,天线端口集合中包含第一端口索引组(即Value为0对应的行)、第二端口索引组(即Value为1对应的行);第一端口索引组包括端口0、端口1、端口2、端口3、端口6、端口7、端口8和端口9,第一端口索引组对应的无数据的DMRS CDM组数量为2,第一端口索引组对应的前置符号数为2;第二端口索引组包括端口0、端口1、端口6、端口7、端口12、端口13、端口18和端口19,第二端口索引组对应的无数据的DMRS CDM组数量为1,第二端口索引组对应的前置符号数为2。
表28-1:dmrs类型=Type2,maxLength=2,M=1
表28-2:dmrs类型=Type2,maxLength=2,M=2
表28-3:dmrs类型=Type2,maxLength=2,M=3
表28-4:dmrs类型=Type2,maxLength=2,M=4
表28-5:dmrs类型=Type2,maxLength=2,M=5
表28-6:dmrs类型=Type2,maxLength=2,M=6
表28-7:dmrs类型=2,maxLength=2,M=7
表28-8:dmrs类型=2,maxLength=2,M=8
上述主要从网络设备和终端设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,网络设备和终端设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和终端设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图8示出了本申请实施例中所涉及的装置的可能的示例性框图。如8图所示,装置800可以包括:处理单元802和通信单元803。处理单元802用于对装置800的动作进行控制管理。通信单元803用于支持装置800与其他设备的通信。可选地,通信单元803也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置800还可以包括存储单元801,用于存储装置800的程序代码和/或数据。
该装置800可以为上述实施例中的网络设备。处理单元802可以支持装置800执行上文中各方法示例中网络设备的动作。或者,处理单元802主要执行方法示例中网络设备的内部动作,通信单元803可以支持装置800与其它设备之间的通信。
比如,在一个实施例中,通信单元803用于:向终端设备发送第一指示信息,以及向终端设备发送第二指示信息。
该装置800可以为上述实施例中的终端设备。处理单元802可以支持装置800执行上文中各方法示例中终端设备的动作。或者,处理单元802主要执行方法示例中终端设备的内部动作,通信单元803可以支持装置800与其它设备之间的通信。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各操作或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是处理器,比如通用中央处理器(central processing unit,CPU),或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
参见图9,为本申请实施例提供的一种网络设备的结构示意图,该网络设备(或基站)可应用于如图1所示的通信系统中,执行上述方法实施例中网络设备的功能。如图9所示,网络设备900可包括一个或多个DU 901和一个或多个CU 902。所述DU 901可以包括至少一个天线9011,至少一个射频单元9012,至少一个处理器9013和至少一个存储器9014。所述DU 901部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU902可以包括至少一个处理器9022和至少一个存储器9021。
所述CU 902部分主要用于进行基带处理,对网络设备进行控制等。所述DU 901与CU 902可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 902为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 902可以用于控制网络设备执行上述方法实施例中关于网络设备的操作流程。
此外,可选的,网络设备900可以包括一个或多个射频单元,一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器9013和至少一个存储器9014,射频单元可以包括至少一个天线9011和至少一个射频单元9012,CU可以包括至少一个处理器9022和至少一个存储器9021。
在一个实例中,所述CU902可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器9021和处理器9022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU901可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器9014和处理器9013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图9所示的网络设备能够实现上述方法实施例中涉及网络设备的各个过程。图9所示的网络设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
参见图10,为本申请实施例提供的一种终端设备的结构示意图,该终端设备可应用于如图1所示的通信系统中,用于实现以上实施例中终端设备的操作。如图10所示,该终端设备包括:天线1010、
射频部分1020、信号处理部分1030。天线1010与射频部分1020连接。在下行方向上,射频部分1020通过天线1010接收网络设备(比如网络设备)发送的信息,将网络设备发送的信息发送给信号处理部分1030进行处理。在上行方向上,信号处理部分1030对终端设备的信息进行处理,并发送给射频部分1020,射频部分1020对终端设备的信息进行处理后经过天线1010发送给网络设备。
信号处理部分1030可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端设备操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端设备相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。
调制解调子系统可以包括一个或多个处理元件1031,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件1032和接口电路1033。存储元件1032用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件1032中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路1033用于与其它子系统通信。
该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为与处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图5中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现。存储元件可以是一个存储器,也可以是多个存储器的统称。
图10所示的终端设备能够实现上述方法实施例中涉及终端设备的各个过程。图10所示的终端设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一种”是指一种或者多种,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,
AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (126)
- 一种天线端口指示方法,其特征在于,包括:所述网络设备获取天线端口集合;所述天线端口集合包括至少一个端口索引组集合,所述至少一个端口索引组集合中的第一端口索引组集合包含的端口索引各不相同;所述第一端口索引组集合包含至少一个端口索引组,所述至少一个端口索引组包括M个端口索引;其中,所述M为大于或等于1的正整数;所述第一端口索引组集合包含的端口索引总数为G,G为大于或等于1,且小于或等于K的正整数;其中,所述K与解调参考信号DMRS类型有关;所述网络设备向第一终端设备发送第一指示信息,所述第一指示信息用于指示第一端口索引组。
- 根据权利要求1所述的方法,其特征在于,所述至少一个端口索引组集合包含的端口索引组集合数量为K,所述K个端口索引组集合中的第i个端口索引组集合包含的端口索引总数G与大于或等于1,且小于或等于K的正整数一一对应,i∈[1,K]。
- 根据权利要求1或2所述的方法,其特征在于,所述K的取值为8,12,16,或24中的任一项。
- 根据权利要求1-3任一项所述的方法,其特征在于,所述K还与所述解调参考信号的最大长度有关;所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为1时,所述K的取值为8;或者,所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为2时,所述K的取值为16;或者,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为1时,所述K的取值为12;或者,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为2时,所述K的取值为24。
- 根据权利要求1-4任一项所述的方法,其特征在于,所述第一端口索引组集合包括第一端口索引组、第二端口索引组、和第三端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括2个端口索引。
- 根据权利要求5所述的方法,其特征在于,所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为1时,所述第一端口索引组包括端口0、端口1、和端口8的索引,所述第二端口索引组包括端口2、端口3、和端口10的索引,所述第三端口索引组包括端口9和端口11的索引。
- 根据权利要求1-4任一项所述的方法,其特征在于,第一端口索引组集合包括第一端口索引组、第二端口索引组、第三端口索引组和第四端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括3个端口索引,所述第四端口索引组包括4个端口索引。
- 根据权利要求7所述的方法,其特征在于,所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为2时,所述第一端口索引组包括端口7、端口12、和端口13的索引,所述第二端口索引组包括端口0、端口1、和端口4的索引,所述第三端口索引组包括端口2、端口3和端口6的索引,所述第四端口索引组包括端口10、端口11、端口14和端口15的索引。
- 根据权利要求1-4任一项所述的方法,其特征在于,所述第一端口索引组集合包括第一端口索引组、第二端口索引组、第三端口索引组和第四端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括3个端口索引,所述第四端口索引组包括3个端口索引。
- 根据权利要求9所述的方法,其特征在于,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为1时,所述第一端口索引组包括端口13、端口15、和端口17的索引,所述第二端口索引组包括端口0、端口1、和端口12的索引,所述第三端口索引组包括端口4、端口5和端口16的索引,所述第四端口索引组包括端口2、端口3、和端口14的索引。
- 根据权利要求1-4任一项所述的方法,其特征在于,所述第一端口索引组集合包括第一端口索引组、第二端口索引组、第三端口索引组、第四端口索引组、第五端口索引组、第六端口索引组、第七 端口索引组、和第八端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括3个端口索引,所述第四端口索引组包括3个端口索引,第五端口索引组包括3个端口索引,所述第六端口索引组包括3个端口索引,所述第七端口索引组包括3个端口索引,所述第八端口索引组包括3个端口索引。
- 根据权利要求11所述的方法,其特征在于,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为2时,所述第一端口索引组包括端口18、端口19、和端口20的索引,所述第二端口索引组包括端口21、端口22、和端口23的索引,所述第三端口索引组包括端口7、端口12和端口13的索引,所述第四端口索引组包括端口9、端口14、和端口15的索引,所述第五端口索引组包括端口11、端口16、和端口17的索引,所述第六端口索引组包括端口2、端口3、和端口8的索引,所述第七端口索引组包括端口0、端口1和端口6的索引,所述第八端口索引组包括端口4、端口5、和端口10的索引。
- 根据权利要求1-12任一项所述的方法,其特征在于,所述第一指示信息用于指示第一端口索引组,包括所述第一指示信息用于指示第一取值,所述第一取值关联所述第一端口索引组。
- 根据权利要求13所述的方法,其特征在于,在所述第一取值包括第一值和/或第二值时,所述第一端口索引组包括第一端口的索引;在所述第一取值包括所述第一值时,所述第一端口对应的掩码长度为第一长度;在所述第一取值包括所述第二值时,所述第一端口对应的掩码长度为第二长度。
- 根据权利要求13或14所述的方法,其特征在于,在所述第一取值包括第三值时,所述第一端口索引组包括第二端口和第三端口的索引;其中,所述第二端口和所述第三端口对应的4长频域掩码正交,且所述第二端口和所述第三端口对应的2长频域掩码不正交。
- 根据权利要求15所述的方法,其特征在于,所述第二端口和所述第三端口在一个相同的CDM组内。
- 根据权利要求13-16任一项所述的方法,其特征在于,在所述第一取值包括第四值时,所述第一端口索引组包括至少一个第四端口和至少一个第五端口的索引;所述至少一个第四端口对应的掩码长度为第一长度,所述至少一个第五端口对应的掩码长度第二长度。
- 根据权利要求17所述的方法,其特征在于,所述至少一个第四端口的索引对应第一标识符,所述第一标识符用于指示所述至少一个第四端口的掩码长度为2长。
- 根据权利要求15-18任一项所述的方法,其特征在于,所述第一长度为2,所述第二长度为4。
- 根据权利要求1-19任一项所述的方法,其特征在于,所述第一端口索引组包括至少一个第一端口,所述至少一个第一端口属于第一端口集合,所述第一端口集合中的端口对应的第一掩码长度为4。
- 根据权利要求20所述的方法,其特征在于,所述第一掩码为Wf(f),所述第一端口集合对应的时频资源映射公式如下:
k′=0,1
n=0,1,…其中,p为端口索引值,μ为子载波间隔参数,为映射至索引为(k,l)p,μ(k,l)的资源粒子RE上的解调参考信号DMRS端口p对应的解调参考信号DMRS,为功率系数,wt(l′)为索引为l′的时域符号对应的时域掩码,Wf(f)为索引为k′的子载波对应的频域掩码,f=2·(n mod 2)+k′,m=2n+k′, m为参考信号序列中第m个元素,l表示一个时隙内包含的正交频分复用OFDM符号索引,为所述DMRS符号占用的起始时域符号的符号索引或参考时域符号的符号索引,Δ为子载波偏移因子。 - 根据权利要求1-19任一项所述的方法,其特征在于,所述第一端口索引组还包括至少一个第二端口,所述至少一个第二端口属于第二端口集合,所述第二端口集合中的端口对应的第一掩码长度为2。
- 根据权利要求22所述的方法,其特征在于,所述第一掩码为wf(k′),,所述第二端口集合对应的时频资源映射公式如下:
k′=0,1;
n=0,1,...;
l′=0,1;其中,p为端口索引值,μ为子载波间隔参数,为映射至索引为(k,l)p,μ的资源粒RE上的解调参考信号DMRS端口p对应的解调参考信号DMRS符号,为功率缩放因子或功率控制因子,wt(l′)为索引为l′的时域符号对应的时域掩码序列元素,wf(k′)为索引为k′的子载波对应的频域掩码序列元素,m=2n+k′,m为参考信号序列中第m个元素,l表示一个时隙内包含的正交频分复用OFDM符号索引,为所述DMRS符号占用的起始时域符号的符号索引或参考时域符号的符号索引,Δ为子载波偏移因子。 - 一种天线端口指示方法,其特征在于,包括:第一终端设备接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一端口索引组;所述第一端口索引组包括M个端口索引;其中,所述M为大于或等于1的正整数;其中,所述第一端口索引组为第一端口索引组集合中的一个端口索引组,所述第一端口索引组集合为所述天线端口集合中的一个端口索引组集合;所述天线端口集合包括所述至少一个端口索引组集合;其中,所述第一端口索引组集合包含的端口索引各不相同,所述第一端口索引组集合包含至少一个端口索引组,所述第一端口索引组集合包含的端口索引总数为G,G为大于或等于1,且小于或等于K的正整数;其中,所述K与解调参考信号DMRS类型有关。
- 一种通信方法,其特征在于,所述方法包括:网络设备向第一终端设备发送第一指示信息,所述第一指示信息用于指示M个端口中的第一端口对应的掩码长度;其中,所述M个端口属于第一端口集合和/或第二端口集合,所述第一端口集合对应的第一掩码长度为第一长度,所述第二端口集合对应的第一掩码长度为第二长度。
- 根据权利要求25所述的方法,其特征在于,所述M个端口属于第一端口集合和/或第二端口集合包括:所述M个端口属于第一端口集合,或者,所述M个端口属于第二端口集合,或者,所述M个端口中的第二端口属于第一端口集合,所述M个端口中除所述第二端口之外的端口属于第二端口集合。
- 根据权利要求25或26所述的方法,其特征在于,所述第一端口集合对应的第二掩码长度与所述第二端口集合对应的第二掩码长度相同。
- 根据权利要求27所述的方法,其特征在于,所述第一掩码为频域掩码,所述第二掩码为时域掩码。
- 根据权利要求28所述的方法,其特征在于,所述掩码长度为所述第一掩码长度时,第一掩码长度为4长或2长。
- 根据权利要求25-29任一项所述的方法,其特征在于,所述第一指示信息包括第一比特域;所述第一指示信息用于指示M个端口中的第一端口对应的掩码长度,包括:所述第一比特域用于指示所述第一端口对应的掩码长度。
- 根据权利要求30所述的方法,其特征在于,所述第一比特域包含一个第一比特,所述第一比特用于指示所述第一端口对应的掩码长度。
- 根据权利要求30所述的方法,其特征在于,所述第一比特域包含一个第一比特,所述第一比特用于指示所述M个端口对应的掩码长度。
- 根据权利要求30所述的方法,其特征在于,所述第一比特域包括位图;所述第一指示信息用于指示M个端口中的第一端口对应的掩码长度,包括:所述位图用于指示所述第一端口对应的掩码长度。
- 根据权利要求33所述的方法,其特征在于,所述位图包含N个比特,所述N大于所述M,所述N个比特中的第i个比特用于指示所述M个端口中第i个端口对应的第一掩码长度;其中,所述i∈{1,M}。
- 根据权利要求34所述的方法,其特征在于,所述N个比特包括M个比特,所述M个比特中存在取值不同的至少两个比特;其中,所述M个比特为所述N个比特中的第1个比特至第M个比特。
- 根据权利要求30-35任一项所述的方法,其特征在于,所述第一指示信息承载于第一信令,所述第一信令还包括第二指示信息;所述第二指示信息用于指示第一取值,所述第一取值关联第一端口索引组,所述第一端口索引组包括所述M个端口的索引;其中,所述M为大于或等于1的正整数。
- 根据权利要求25-29任一项所述的方法,其特征在于,所述第一指示信息用于指示M个端口中的第一端口对应的掩码长度,包括:所述第一指示信息用于指示第一取值,所述第一取值关联第一端口索引组;所述第一端口索引组包括所述M个端口的索引,所述第一端口的索引对应第一标识符,第一标识符用于指示所述第一端口对应的掩码长度;其中,所述M为大于或等于1的正整数。
- 根据权利要求25-29任一项所述的方法,其特征在于,所述第一指示信息用于指示M个端口中的第一端口对应的掩码长度,包括:所述第一指示信息用于指示第一取值,所述第一取值关联第一端口索引组;所述第一端口索引组包括所述M个端口的索引,所述第一端口的索引用于指示所述第一端口对应的掩码长度;其中,所述M为大于或等于1的正整数。
- 根据权利要求36-38任一项所述的方法,其特征在于,在所述第一取值包括第一值和/或第二值时,所述第一端口索引组包括第三端口的索引;在所述第一取值包括所述第一值时,所述第三端口对应的掩码长度为第一长度;在所述第一取值包括所述第二值时,所述第三端口对应的掩码长度为第二长度。
- 根据权利要求36-39任一项所述的方法,其特征在于,在所述第一取值包括第三值时,所述第一端口索引组包括第四端口和第五端口的索引;其中,所述四端口和所述第五端口对应的4长频域掩码正交,且所述第四端口和所述第五端口对应的2长频域掩码不正交。
- 根据权利要求36-40任一项所述的方法,其特征在于,在所述第一取值包括第四值时,所述第一端口索引组包括所述第一端口、第六端口和第七端口的索引;所述第一端口对应的掩码长度为第一长度,所述第六端口和所述第七端口对应的掩码长度第二长度。
- 根据权利要求39或41所述的方法,其特征在于,所述第一长度为2,所述第二长度为4。
- 根据权利要求41或42所述的方法,其特征在于,所述第一标识符用于指示所述第一端口对应的掩码长度,包括:所述第一标识符用于指示所述第一端口的掩码长度为2长。
- 根据权利要求36-43任一项所述的方法,其特征在于,所述方法还包括:所述网络设备获取第一天线端口集合;所述第一天线端口集合包括至少一个端口索引组集合,所述至少一个端口索引组集合中的第一端口索引组集合包含的端口索引各不相同;所述第一端口索引组为所述第一端口索引组集合中的任一端口索引组;其中,所述第一端口索引组集合包含的端口索引总数为G,G为大于或等于1,且小于或等于K的正整数;所述K与解调参考信号DMRS的类型有关。
- 根据权利要求44所述的方法,其特征在于,所述K还与解调参考信号的最大长度关联;所述方法还包括:所述网络设备向所述第一终端设备发送第二信令,所述第二信令用于指示所述解调参考信号的类型和/或所述解调参考信号的最大长度。
- 根据权利要求44或45所述的方法,其特征在于,所述K的取值为8,12,16,或24中的任一项。
- 根据权利要求44-46任一项所述的方法,其特征在于,所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为1时,所述K的取值为8;或者,所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为2时,所述K的取值为16;或者,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为1时,所述K的取值为12;或者,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为2时,所述K的取值为24。
- 根据权利要求25-47任一项所述的方法,其特征在于,所述第一端口索引组属于第一天线端口集合和第二天线端口集合;其中,所述第二天线端口集合是所述第一天线端口集合的子集。
- 根据权利要求25-47任一项所述的方法,其特征在于,所述第一端口索引组属于第一天线端口集合和第二天线端口集合;其中,所述第二天线端口集合包含至少一个天线端口子集合,所述至少一个天线端口子集合在第二天线端口集合中的补集是第一天线端口集合的子集。
- 根据权利要求25-49任一项所述的方法,其特征在于,所述方法还包括:所述网络设备接收来自所述第一终端设备的第三指示信息,所述第三指示信息用于表征所述第一终端设备支持第一能力,所述第一能力包括所述第一终端设备支持掩码长度切换,所述掩码长度切换包括使用第一信令进行掩码长度切换;其中,所述第一指示信息承载与所述第一信令,所述使用第一信令进行掩码长度切换包括使用所述第一指示信息进行掩码长度切换。
- 根据权利要求25-50任一项所述的方法,其特征在于,所述M个端口中的任一端口属于所述第二端口集合时,所述方法还包括:所述网络设备接收来自所述第一终端设备的第四指示信息,所述第四指示信息用于指示所述第一终端设备支持第二能力;其中,所述第二能力包括所述M个端口中的任一端口与第十二端口占用的时频资源相同;所述第十二端口属于所述第一端口集合。
- 根据权利要求25-51任一项所述的方法,其特征在于,所述第一端口集合包括第八端口和第九端口,所述第八端口和所述第九端口对应的4长频域掩码正交;其中,所述4长频域掩码正交包括在一个码分复用CDM组内连续4个子载波上对应的频域掩码正交。
- 根据权利要求52所述的方法,其特征在于,所述4长频域掩码正交满足以下公式:
其中,表示所述第八端口的第一频域掩码,表示所述第九端口的第二频域掩码,f表示频域位置。 - 根据权利要求25-51任一项所述的方法,其特征在于,所述第二端口集合包括第十端口和第十一端口,所述第十端口和所述第十一端口对应的2长频域掩码正交;其中,所述2长频域掩码正交包括在一个CDM组内连续2个子载波上对应的频域掩码正交。
- 根据权利要求54所述的方法,其特征在于,所述2长频域掩码正交满足以下公式:
其中,表示所述第十端口对应的第一频域掩码;表示所述第十一端口对应的第二频域掩码,f表示频域位置。 - 根据权利要求28所述的方法,其特征在于,所述频域掩码为第一时频资源映射规则中的Wf(f),所述时域掩码为所述第一时频资源映射规则中的wt(l′)所述第一时频资源映射规则满足如下公式:
k′=0,1
n=0,1,…其中,p为端口索引值,μ为子载波间隔参数,为映射至索引为(k,l)p,μ(k,l)的资源粒子RE上的解调参考信号DMRS端口p对应的解调参考信号DMRS,为功率系数,wt(l′)为索引为l′的时域符号对应的时域掩码,Wf(f)为索引为k′的子载波对应的频域掩码,f=2·(n mod 2)+k′,m=2n+k′,m为参考信号序列中第m个元素,l表示一个时隙内包含的正交频分复用OFDM符号索引,为所述DMRS符号占用的起始时域符号的符号索引或参考时域符号的符号索引,Δ为子载波偏移因子。 - 一种通信方法,其特征在于,所述方法包括:第一终端设备接收来自网络设备的第一指示信息,所述第一指示信息用于指示M个端口中的第一端口对应的掩码长度;其中,所述M个端口属于第一端口集合和/或第二端口集合,所述第一端口集合对应的第一掩码长度为第一长度,所述第二端口集合对应的第一掩码长度为第二长度。
- 根据权利要求57所述的方法,其特征在于,所述方法还包括:所述第一终端设备向所述网络设备发送第三指示信息,所述第三指示信息用于表征所述第一终端设备支持第一能力,所述第一能力包括所述第一终端设备支持掩码长度切换,所述掩码长度切换包括使用第一信令进行掩码长度切换;其中,所述第一指示信息承载与所述第一信令,所述使用第一信令进行掩码长度切换包括使用所述第一指示信息进行掩码长度切换。
- 根据权利要求57或58所述的方法,其特征在于,所述M个端口中的任一端口属于所述第二端口集合时,所述方法还包括:所述网络设备接收来自所述第一终端设备的第四指示信息,所述第四指示信息用于指示所述第一终端设备支持第二能力;其中,所述第二能力包括所述M个端口中的任一端口与第十二端口占用的时频资源相同;所述第十二端口属于所述第一端口集合。
- 一种通信方法,其特征在于,所述方法包括:网络设备向第一终端设备发送第一信令,第一信令用于指示M个端口中的第一端口的端口索引,以及指示第二端口的分配状态信息;其中,所述第二端口与所述第一端口属于相同的码分复用CDM组。
- 根据权利要求60所述的方法,其特征在于,所述第二端口的分配状态信息包括所述第二端口被分配,或,所述第二端口未被分配。
- 根据权利要求60或61所述的方法,其特征在于,第一信令包括所述第一指示信息,所述第一 指示信息用于指示所述第二端口的分配状态信息。
- 根据权利要求62所述的方法,其特征在于,所述第一指示信息还用于指示所述第一端口的端口索引。
- 根据权利要求62或63所述的方法,其特征在于,所述第一指示信息用于指示所述第二端口的分配状态信息,包括:所述第一指示信息用于指示所述第二端口被分配给第二终端设备,或者,所述第一指示信息用于指示所述第二端口未被分配给第二终端设备。
- 根据权利要求60-64任一项所述的方法,其特征在于,所述第一指示信息包括第一比特域;所述第一指示信息用于指示所述第二端口的分配状态信息,包括:所述第一比特域用于指示所述第二端口的分配状态信息。
- 根据权利要求65所述的方法,其特征在于,所述第一比特域包含一个第一比特,所述第一比特用于指示所述第二端口的分配状态信息。
- 根据权利要求65所述的方法,其特征在于,所述第一比特域包含一个第一比特,所述第一比特用于指示所述M个端口对应的所述第二端口的分配状态信息。
- 根据权利要求65所述的方法,其特征在于,所述第一比特域包括位图;所述第一指示信息用于指示所述第二端口的分配状态信息,包括:所述位图用于指示所述第二端口的分配状态信息。
- 根据权利要求68所述的方法,其特征在于,所述位图包含N个比特,所述N大于所述M,所述N个比特中的第i个比特用于指示所述M个端口中第i个端口对应的所述第二端口的分配状态信息;其中,所述i∈{1,M}。
- 根据权利要求69所述的方法,其特征在于,所述N个比特包括M个比特,所述M个比特中存在取值不同的至少两个比特;其中,所述M个比特为所述N个比特中的第1个比特至第M个比特。
- 根据权利要求65-70任一项所述的方法,其特征在于,所述第一信令还包括第二指示信息;所述第二指示信息用于指示第一取值,所述第一取值关联第一端口索引组,所述第一端口索引组包括所述M个端口的索引。
- 根据权利要求60-64任一项所述的方法,其特征在于,所述第一指示信息用于指示所述第二端口的分配状态信息,包括:所述第一指示信息用于指示第一取值,所述第一取值关联第一端口索引组;所述第一端口索引组包括所述第一端口的索引,所述第一端口的索引对应第一标识符,所述第一标识符用于指示所述第二端口的分配状态信息。
- 根据权利要求72所述的方法,其特征在于,所述第一标识符用于指示所述第二端口的分配状态信息,包括:所述第一标识符用于指示所述第二端口对应的4长正交掩码中2长不正交的掩码被分配给第二终端设备,或者,所述第一标识符用于指示所述第二端口对应的4长正交掩码中2长不正交的掩码未被分配给第二终端设备。
- 根据权利要求71-73任一项所述的方法,其特征在于,在所述第一取值包括第一值和/或第二值时,所述第一端口索引组包括第三端口的索引;在所述第一取值包括所述第一值时,所述第三端口对应的掩码长度为第一长度;在所述第一取值包括所述第二值时,所述第三端口对应的掩码长度为第二长度。
- 根据权利要求71-74任一项所述的方法,其特征在于,在所述第一取值包括第三值时,所述第一端口索引组包括第四端口和第五端口的索引;其中,所述四端口和所述第五端口对应的4长频域掩码正交,且所述四端口和所述第五端口对应的2长频域掩码不正交。
- 根据权利要求71-75任一项所述的方法,其特征在于,在所述第一取值包括第四值时,所述第一端口索引组包括所述第一端口、第六端口和第七端口的索引;所述第一端口对应的掩码长度为第一长度,所述第六端口和所述第七端口对应的掩码长度第二长度。
- 根据权利要求74或76所述的方法,其特征在于,所述第一长度为2,所述第二长度为4。
- 根据权利要求76或77所述的方法,其特征在于,所述第一标识符用于指示所述第一端口对应 的掩码长度,包括:所述第一标识符用于指示所述第一端口的掩码长度为2长。
- 根据权利要求71-78任一项所述的方法,其特征在于,所述方法还包括:所述网络设备获取第一天线端口集合;所述第一天线端口集合包括至少一个端口索引组集合,所述至少一个端口索引组集合中的第一端口索引组集合包含的端口索引各不相同;所述第一端口索引组为所述第一端口索引组集合中的任一端口索引组;其中,所述第一端口索引组集合包含的端口索引总数为G,G为大于或等于1,且小于或等于K的正整数;所述K与解调参考信号DMRS的类型有关。
- 根据权利要求79所述的方法,其特征在于,所述K还与解调参考信号的最大长度关联;所述方法还包括:所述网络设备向所述第一终端设备发送第二信令,所述第二信令用于指示所述DMRS的类型和/或所述DMRS的最大长度。
- 根据权利要求79或80所述的方法,其特征在于,所述K的取值为8,12,16,或24中的任一项。
- 根据权利要求79-81任一项所述的方法,其特征在于,所述DMRS类型为第一类型,且所述DMRS的最大长度为1时,所述K的取值为8;或者,所述DMRS的类型为第一类型,且所述DMRS的最大长度为2时,所述K的取值为16;或者,所述DMRS的类型为第二类型,且所述DMRS的最大长度为1时,所述K的取值为12;或者,所述DMRS的类型为第二类型,且所述DMRS的最大长度为2时,所述K的取值为24。
- 根据权利要求60-82任一项所述的方法,其特征在于,所述第一端口索引组属于第一天线端口集合和第二天线端口集合;其中,所述第二天线端口集合是所述第一天线端口集合的子集。
- 根据权利要求60-82任一项所述的方法,其特征在于,所述第一端口索引组属于第一天线端口集合和第二天线端口集合;其中,所述第二天线端口集合包含至少一个天线端口子集合,所述至少一个天线端口子集合在第二天线端口集合中的补集是第一天线端口集合的子集。
- 根据权利要求60-84任一项所述的方法,其特征在于,所述方法还包括:所述网络设备接收来自所述第一终端设备的第三指示信息,所述第三指示信息用于表征所述第一终端设备支持第一能力,所述第一能力包括所述第一终端设备支持掩码长度切换,所述掩码长度切换包括使用第一信令进行掩码长度切换;其中,所述第一指示信息承载与所述第一信令,所述使用第一信令进行掩码长度切换包括使用所述第一指示信息进行掩码长度切换。
- 根据权利要求60-85任一项所述的方法,其特征在于,所述M个端口中的任一端口属于第二端口集合时,所述方法还包括:所述网络设备接收来自所述第一终端设备的第四指示信息,所述第四指示信息用于指示所述第一终端设备支持第二能力;其中,所述第二能力包括所述M个端口中的任一端口与第十二端口占用的时频资源相同;所述第十二端口属于第一端口集合。
- 根据权利要求60-86任一项所述的方法,其特征在于,所述第一端口集合包括第八端口和第九端口,所述第八端口和所述第九端口对应的4长频域掩码正交;其中,所述4长频域掩码正交包括在一个码分复用CDM组内连续4个子载波上对应的频域掩码正交。
- 根据权利要求87所述的方法,其特征在于,所述4长频域掩码正交满足以下公式:
其中,表示所述第八端口的第一频域掩码,表示所述第九端口的第二频域掩码,f表示频域位置。 - 根据权利要求60-86任一项所述的方法,其特征在于,所述第二端口集合包括第十端口和第十 一端口,所述第十端口和所述第十一端口对应的2长频域掩码正交;其中,所述2长频域掩码正交包括在一个CDM组内连续2个子载波上对应的频域掩码正交。
- 根据权利要求89所述的方法,其特征在于,所述2长频域掩码正交满足以下公式:
其中,表示所述第十端口对应的第一频域掩码;表示所述第十一端口对应的第二频域掩码,f表示频域位置;所述M个端口属于第一端口集合和/或第二端口集合,所述第一端口集合对应的第一掩码长度为第一长度,所述第二端口集合对应的第一掩码长度为第二长度。 - 根据权利要求60-90任一项所述的方法,其特征在于,所述M个端口属于第一端口集合和/或第二端口集合包括:所述M个端口属于第一端口集合,或者,所述M个端口属于第二端口集合,或者,所述M个端口中的第二端口属于第一端口集合,所述M个端口中除所述第二端口之外的端口属于第二端口集合。
- 根据权利要求91所述的方法,其特征在于,所述第一端口集合对应的第二掩码长度与所述第二端口集合对应的第二掩码长度相同。
- 根据权利要求92所述的方法,其特征在于,所述第一掩码为频域掩码,所述第二掩码为时域掩码。
- 根据权利要求93所述的方法,其特征在于,所述频域掩码为第一时频资源映射规则中的Wf(f),所述时域掩码为所述第一时频资源映射规则中的wt(l′)所述第一时频资源映射规则满足如下公式:
k′=0,1
n=0,1,…其中,p为端口索引值,μ为子载波间隔参数,为映射至索引为(k,l)p,μ(k,l)的资源粒子RE上的解调参考信号DMRS端口p对应的解调参考信号DMRS,为功率系数,wt(l′)为索引为l′的时域符号对应的时域掩码,Wf(f)为索引为k′的子载波对应的频域掩码,f=2·(n mod 2)+k′,m=2n+k′,m为参考信号序列中第m个元素,l表示一个时隙内包含的正交频分复用OFDM符号索引,为所述DMRS符号占用的起始时域符号的符号索引或参考时域符号的符号索引,Δ为子载波偏移因子。 - 一种通信方法,其特征在于,所述方法包括:第一终端设备接收来自网络设备的第一信令,第一信令用于指示M个端口中的第一端口的端口索引,以及指示第二端口的分配状态信息;其中,所述第二端口与所述第一端口属于相同的码分复用CDM组。
- 根据权利要求95所述的方法,其特征在于,所述方法还包括:所述第一终端设备向所述网络设备发送第三指示信息,所述第三指示信息用于表征所述第一终端设备支持第一能力,所述第一能力包括所述第一终端设备支持掩码长度切换,所述掩码长度切换包括使用第一信令进行掩码长度切换;其中,所述第一指示信息承载与所述第一信令,所述使用第一信令进行掩码长度切换包括使用所述第一指示信息进行掩码长度切换。
- 根据权利要求95或96所述的方法,其特征在于,所述M个端口中的任一端口属于第二端口集合时,所述方法还包括:其中,所述第二能力包括所述M个端口中的任一端口与第十二端口占用的时频资源相同;所述第十二端口属于第一端口集合。
- 一种天线端口指示方法,其特征在于,包括:获取天线端口集合,所述天线端口集合包括至少一个端口索引组,所述一个端口索引组包括M个端口索引;其中,所述M为大于或等于1的正整数;所述天线端口集合包含的互不相同的端口索引数量为K,其中,所述K与解调参考信号DMRS类型有关,所述K为大于或等于1的正整数;发送第一指示信息,所述第一指示信息用于指示第一端口索引组,所述天线端口集合包括所述第一端口索引组。
- 一种天线端口指示方法,其特征在于,包括:接收第一指示信息,所述第一指示信息用于指示第一端口索引组,所述第一端口索引组包括M个端口索引;其中,所述M为大于或等于1的正整数;其中,所述第一端口索引组为天线端口集合中的一个端口索引组,所述天线端口集合包含的互不相同的端口索引数量为K,所述K与解调参考信号DMRS类型有关,所述K为大于或等于1的正整数。
- 根据权利要求98或99所述的方法,其特征在于,所述K的取值为8,12,16,或24中的任一项。
- 根据权利要求98-100中的任一项所述的方法,其特征在于,所述K还与所述解调参考信号的最大长度有关;所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为1时,所述K的取值为8;或者,所述解调参考信号的类型为第一类型,且所述解调参考信号的最大长度为2时,所述K的取值为16;或者,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为1时,所述K的取值为12;或者,所述解调参考信号的类型为第二类型,且所述解调参考信号的最大长度为2时,所述K的取值为24。
- 根据权利要求98-101中的任一项所述的方法,其特征在于,所述解调参考信号的类型为第一类型,所述解调参考信号的最大长度为1,所述天线端口集合中包含的端口索引组对应的M取值为1~8中的一项。
- 根据权利要求102所述的方法,其特征在于,所述天线端口集合中的至少一个端口索引组M取值为1,所述至少一个端口索引组包括第一端口索引组、第二端口索引组、第三端口索引组、第四端口索引组、第五端口索引组、第六端口索引组、第七端口索引组、第八端口索引组、第九端口索引组、第十端口索引组、第十一端口索引组、十二端口索引组;所述第一端口索引组包括端口0,所述第一端口索引组对应的无数据的DMRS CDM组数量为1;所述第二端口索引组包括端口1,所述第二端口索引组对应的无数据的DMRS CDM组数量为1;所述第三端口索引组包括端口0,所述第三端口索引组对应的无数据的DMRS CDM组数量为2;所述第四端口索引组包括端口1,所述第四端口索引组对应的无数据的DMRS CDM组数量为2;所述第五端口索引组包括端口2,所述第五端口索引组对应的无数据的DMRS CDM组数量为2;所述第六端口索引组包括端口3,所述第六端口索引组对应的无数据的DMRS CDM组数量为2;所述第七端口索引组包括端口8,所述第七端口索引组对应的无数据的DMRS CDM组数量为1;所述第八端口索引组包括端口9,所述第八端口索引组对应的无数据的DMRS CDM组数量为1;所述第九端口索引组包括端口8,所述第九端口索引组对应的无数据的DMRS CDM组数量为2;所述第十端口索引组包括端口9,所述第十端口索引组对应的无数据的DMRS CDM组数量为2;所述第十一端口索引组包括端口10,所述第十一端口索引组对应的无数据的DMRS CDM组数量为1;所述第十二端口索引组包括端口11,所述第十二端口索引组对应的对应无数据的DMRS CDM组数量为1。
- 根据权利要求102所述的方法,其特征在于,所述天线端口集合中的至少一个端口索引组M取值为2,所述至少一个端口索引组包括第一端口索引组、第二端口索引组、第三端口索引组、第四端口索引组、第五端口索引组、第六端口索引组、第七端口索引组、第八端口索引组;所述第一端口索引组包括端口0和端口1,所述第一端口索引组对应的无数据的DMRS CDM组数量为1;所述第二端口索引组包括端口0和端口1,所述第二端口索引组对应的无数据的DMRS CDM组数量为2;所述第三端口索引组包括端口2和端口3,所述第三端口索引组对应的无数据的DMRS CDM组数量为2;所述第四端口索引组包括端口0和端口2,所述第四端口索引组对应的无数据的DMRS CDM组数量为2;所述第五端口索引组包括端口8和端口9,所述第五端口索引组对应的无数据的DMRS CDM组数量为1;所述第六端口索引组包括端口8和端口9,所述第六端口索引组对应的无数据的DMRS CDM组数量为2;所述第七端口索引组包括端口10和端口11,所述第七端口索引组对应的无数据的DMRS CDM组数量为2;所述第八端口索引组包括端口9和端口11,所述第八端口索引组对应的对应无数据的DMRS CDM组数量为2。
- 根据权利要求102所述的方法,其特征在于,所述天线端口集合中的至少一个端口索引组M取值为3,所述至少一个端口索引组包括第一端口索引组、第二端口索引组、第三端口索引组、和第四端口索引组;所述第一端口索引组包括端口0、端口1和端口2,所述第一端口索引组对应的无数据的DMRS CDM组数量为2;所述第二端口索引组包括端口0、端口1和端口8,所述第二端口索引组对应的无数据的DMRS CDM组数量为1;所述第三端口索引组包括端口0、端口1和端口8,所述第三端口索引组对应的无数据的DMRS CDM组数量为2;所述第四端口索引组包括端口2、端口3和端口10,所述第四端口索引组对应的对应无数据的DMRS CDM组数量为2。
- 根据权利要求102所述的方法,其特征在于,所述天线端口集合中的至少一个端口索引组M取值为4,所述至少一个端口索引组包括第一端口索引组、第二端口索引组、第三端口索引组、第四端口索引组、和第五端口索引组;所述第一端口索引组包括端口0、端口1、端口2和端口3,所述第一端口索引组对应的无数据的DMRS CDM组数量为2;所述第二端口索引组包括端口8、端口9、端口10和端口11,所述第二端口索引组对应的无数据的DMRS CDM组数量为2;所述第三端口索引组包括端口0、端口1、端口8和端口9,所述第三端口索引组对应的无数据的DMRS CDM组数量为1;所述第四端口索引组包括端口0、端口1、端口8和端口9,所述第四端口索引组对应的无数据的DMRS CDM组数量为2;所述第五端口索引组包括端口2、端口3、端口10和端口11,所述第五端口索引组对应的无数据的DMRS CDM组数量为2。
- 根据权利要求102所述的方法,其特征在于,所述天线端口集合中的至少一个端口索引组M取值为5,所述至少一个端口索引组包括第一端口索引组,所述第一端口索引组包括端口0、端口1、端口2、端口3和端口8,所述第一端口索引组对应的无数据的DMRS CDM组数量为2。
- 根据权利要求102所述的方法,其特征在于,所述天线端口集合中的至少一个端口索引组M取值为6,所述至少一个端口索引组包括第一端口索引组,所述第一端口索引组包括端口0、端口1、端口2、端口3、端口8、和端口10,所述第一端口索引组对应的无数据的DMRS CDM组数量为2。
- 根据权利要求102所述的方法,其特征在于,所述天线端口集合中的至少一个端口索引组M取值为7,所述至少一个端口索引组包括第一端口索引组,所述第一端口索引组包括端口0、端口1、端口2、端口3、端口8、端口9、和端口10,所述第一端口索引组对应的无数据的DMRS CDM组数量为2。
- 根据权利要求102所述的方法,其特征在于,所述天线端口集合中的至少一个端口索引组M取值为8,所述至少一个端口索引组包括第一端口索引组,所述第一端口索引组包括端口0、端口1、端口2、端口3、端口8、端口9、端口10、和端口11,所述第一端口索引组对应的无数据的DMRS CDM组数量为2。
- 根据权利要求98-110中任一项所述的方法,其特征在于,所述天线端口集合包括的任意两个端口索引组的无数据的DMRS CDM组数量相同。
- 根据权利要求98-111中任一项的所述的方法,其特征在于,当所述DMRS的最大长度为2时,所述天线端口集合包括的任意两个端口索引组的前置符号数相同。
- 根据权利要求98-101中任一项所述的方法,其特征在于,所述天线端口集合包括第一端口索引组、第二端口索引组、和第三端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括2个端口索引,其中,所述第一端口索引组、第二端口索引组和第三端口索引组的端口索引各不相同。
- 根据权利要求113所述的方法,其特征在于,所述DMRS的类型为第一类型,所述DMRS的最大长度为1时,所述第一端口索引组包括端口0、端口1、和端口8的索引,所述第二端口索引组包括端口2、端口3、和端口10的索引,所述第三端口索引组包括端口9和端口11的索引。
- 根据权利要求98-101中任一项所述的方法,其特征在于,所述天线端口集合包括第一端口索引组、第二端口索引组、第三端口索引组和第四端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括3个端口索引,所述第四端口索引组包括4个端口索引,其中,所述第一端口索引组、第二端口索引组、和第三端口索引组和第四端口索引组的端口索引各不相同。
- 根据权利要求115所述的方法,其特征在于,所述DMRS的类型为第一类型,且所述DMRS的最大长度为2时,所述第一端口索引组包括端口7、端口12、和端口13的索引,所述第二端口索引组包括端口0、端口1、和端口4的索引,所述第三端口索引组包括端口2、端口3和端口6的索引,所述第四端口索引组包括端口10、端口11、端口14和端口15的索引。
- 根据权利要求98-101中任一项所述的方法,其特征在于,所述天线端口集合包括第一端口索引组、第二端口索引组、第三端口索引组和第四端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括3个端口索引,所述第四端口索引组包括3个端口索引,其中,所述第一端口索引组、第二端口索引组、和第三端口索引组和第四端口索引组的端口索引各不相同。
- 根据权利要求117所述的方法,其特征在于,所述DMRS的类型为第二类型,且所述DMRS的最大长度为1时,所述第一端口索引组包括端口13、端口15、和端口17的索引,所述第二端口索引组包括端口0、端口1、和端口12的索引,所述第三端口索引组包括端口4、端口5和端口16的索引,所述第四端口索引组包括端口2、端口3、和端口14的索引。
- 根据权利要求98-101任一项所述的方法,其特征在于,所述天线端口集合包括第一端口索引组、第二端口索引组、第三端口索引组、第四端口索引组、第五端口索引组、第六端口索引组、第七端口索引组、和第八端口索引组;其中,第一端口索引组包括3个端口索引,所述第二端口索引组包括3个端口索引,所述第三端口索引组包括3个端口索引,所述第四端口索引组包括3个端口索引,第五端口索引组包括3个端口索引,所述第六端口索引组包括3个端口索引,所述第七端口索引组包括3个端口索引,所述第八端口索引组包括3个端口索引,其中,所述第一端口索引组、第二端口索引组、和第三端口索引组和第四端口、第五端口索引组、第六端口索引组、第七端口索引组和第八端口索引组的端口索引各不相同。
- 根据权利要求119所述的方法,其特征在于,所述DMRS的类型为第二类型,且所述DMRS的最大长度为2时,所述第一端口索引组包括端口18、端口19、和端口20的索引,所述第二端口索引组包括端口21、端口22、和端口23的索引,所述第三端口索引组包括端口7、端口12和端口13的索引,所述第四端口索引组包括端口14、端口15、和端口20的索引,所述第五端口索引组包括端口11、端口16、和端口17的索引,所述第六端口索引组包括端口2、端口3、和端口8的索引,所述第七端口索引组包括端口0、端口1和端口6的索引,所述第八端口索引组包括端口4、端口5、和端口10的索引。
- 根据权利要求98-120中任一项所述的方法,其特征在于,所述第一端口索引组包括至少一个第一端口,所述至少一个第一端口属于第一端口集合,所述第一端口集合中的端口对应的第一掩码长度为4。
- 根据权利要求121所述的方法,其特征在于,所述第一掩码为Wf(f),所述第一端口集合对应的时频资源映射公式如下:
k′=0,1
n=0,1,…其中,p为端口索引值,μ为子载波间隔参数,为映射至索引为(k,l)p,μ(k,l)的资源粒子RE上的解调参考信号DMRS端口p对应的解调参考信号DMRS,为功率系数,wt(l′)为索引为l′的时域符号对应的时域掩码,Wf(f)为索引为k′的子载波对应的频域掩码,f=2·(n mod 2)+k′,m=2n+k′,m为参考信号序列中第m个元素,l表示一个时隙内包含的正交频分复用OFDM符号索引,为所述DMRS符号占用的起始时域符号的符号索引或参考时域符号的符号索引,Δ为子载波偏移因子。 - 根据权利要求98-122中任一项所述的方法,其特征在于,所述方法还包括:发送RRC信令,所述RRC信令用于指示所述DMRS的类型和/或最大长度。
- 一种通信装置,其特征在于,包括处理器,所述处理器和存储器耦合,所述存储器中存储有计算机程序;所述处理器用于调用所述存储器中的计算机程序,使得所述通信装置执行如权利要求1至123中任一所述的方法。
- 一种通信装置,其特征在于,包括用于实现如权利要求1至123中任一项所述的方法的单元或模块。
- 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求1至123中任一项所述方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211381977.3A CN116113053A (zh) | 2022-11-06 | 2022-11-06 | 一种通信方法及装置 |
CN202211381977.3 | 2022-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024094207A1 true WO2024094207A1 (zh) | 2024-05-10 |
Family
ID=86256863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/129837 WO2024094207A1 (zh) | 2022-11-06 | 2023-11-06 | 一种通信方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116113053A (zh) |
WO (1) | WO2024094207A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116528341B (zh) * | 2023-07-03 | 2023-09-26 | 深圳简谱技术有限公司 | 基站的功耗控制方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020056591A1 (en) * | 2018-09-18 | 2020-03-26 | Nec Corporation | Multi-trp transmission |
US20210337548A1 (en) * | 2018-08-03 | 2021-10-28 | Nec Corporation | Multi-trp communication |
WO2022082775A1 (zh) * | 2020-10-23 | 2022-04-28 | 华为技术有限公司 | 一种信道状态信息上报方法及装置 |
WO2022205022A1 (zh) * | 2021-03-30 | 2022-10-06 | 华为技术有限公司 | 用于传输参考信号的方法和装置 |
-
2022
- 2022-11-06 CN CN202211381977.3A patent/CN116113053A/zh active Pending
-
2023
- 2023-11-06 WO PCT/CN2023/129837 patent/WO2024094207A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210337548A1 (en) * | 2018-08-03 | 2021-10-28 | Nec Corporation | Multi-trp communication |
WO2020056591A1 (en) * | 2018-09-18 | 2020-03-26 | Nec Corporation | Multi-trp transmission |
WO2022082775A1 (zh) * | 2020-10-23 | 2022-04-28 | 华为技术有限公司 | 一种信道状态信息上报方法及装置 |
WO2022205022A1 (zh) * | 2021-03-30 | 2022-10-06 | 华为技术有限公司 | 用于传输参考信号的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN116113053A (zh) | 2023-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114556804B (zh) | 用于无线通信系统中的前传传输的设备和方法 | |
WO2019062585A1 (zh) | 一种资源调度方法、网络设备以及通信设备 | |
WO2024094207A1 (zh) | 一种通信方法及装置 | |
JP2023542177A (ja) | 無線通信システムにおけるフロントホール伝送のための装置及び方法 | |
JP7056846B2 (ja) | 復調参照信号のオーバーヘッドを低減するための方法および機器 | |
JP2022553031A (ja) | 無線通信システムにおける基地局のラジオユニットのリソースを管理するための装置及び方法 | |
WO2019228076A1 (zh) | 用于通信系统中干扰指示的方法及装置 | |
WO2022166240A1 (zh) | 一种通信方法及装置 | |
WO2023207476A1 (zh) | 一种通信方法、装置及设备 | |
KR20210058897A (ko) | 참조 신호 구성 방법 및 장치와, 시퀀스 구성 방법 및 장치 | |
WO2023011110A1 (zh) | 一种通信方法及装置 | |
JPWO2020013088A1 (ja) | アクセスポイント及び通信方法 | |
WO2017041590A1 (zh) | 一种传输信道状态信息的方法和装置 | |
WO2020019871A1 (zh) | 数据发送的方法及装置 | |
WO2022151404A1 (zh) | 基于接入回传一体化的通信方法及装置 | |
WO2017215605A1 (zh) | 用于交织多址接入通信的电子设备和方法 | |
CN109996339A (zh) | 一种通信方法及装置 | |
TWI652921B (zh) | 用戶設備及虛擬載波的操作方法 | |
WO2022205022A1 (zh) | 用于传输参考信号的方法和装置 | |
JP2022028882A (ja) | 無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム | |
WO2024032394A1 (zh) | 一种通信方法和装置 | |
WO2023207650A1 (zh) | 一种通信方法及装置 | |
WO2024208330A1 (zh) | 一种通信方法及装置 | |
WO2022067826A1 (zh) | 通信方法及装置 | |
WO2024208157A1 (zh) | 通信方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23885131 Country of ref document: EP Kind code of ref document: A1 |