WO2024094070A1 - 传输的指示方法、设备和系统 - Google Patents

传输的指示方法、设备和系统 Download PDF

Info

Publication number
WO2024094070A1
WO2024094070A1 PCT/CN2023/129094 CN2023129094W WO2024094070A1 WO 2024094070 A1 WO2024094070 A1 WO 2024094070A1 CN 2023129094 W CN2023129094 W CN 2023129094W WO 2024094070 A1 WO2024094070 A1 WO 2024094070A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
indication information
parameter set
item
information
Prior art date
Application number
PCT/CN2023/129094
Other languages
English (en)
French (fr)
Inventor
高翔
董昶钊
刘显达
张哲宁
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024094070A1 publication Critical patent/WO2024094070A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of communications, and in particular to a transmission indication method, device and system.
  • the sending behavior of a terminal device is scheduled by a network device.
  • the network device needs to indicate to the terminal device through indication information the number of spatial layers (also called the number of transmission streams) corresponding to the uplink data sent, the precoding matrix such as the Transmitted Precoding Matrix Indicator (TPMI), and the corresponding antenna port such as the Demodulation Reference Signal (DMRS) port, so that when the terminal device sends uplink data, it uses the precoding matrix corresponding to the TPMI on the corresponding time-frequency and other resources, and sends the uplink data and DMRS according to the indicated DMRS port and number of spatial layers.
  • TPMI Transmitted Precoding Matrix Indicator
  • DMRS Demodulation Reference Signal
  • the existing indication method can only support uplink transmission of spatial layer numbers 1 to 4 at most.
  • the number of devices with 8-antenna capabilities is increasing. These devices can support transmission of spatial layer numbers 1 to 8.
  • there is currently no indication method that supports transmission of spatial layer numbers 1 to 8 obtaining an indication method that supports transmission of spatial layer numbers 1 to 8 and can effectively save the transmission overhead of the indication method has become an urgent problem to be solved.
  • the present application provides a transmission indication method, device and system, which can indicate the transmission of spatial layer numbers 1 to 8 and can effectively reduce the transmission overhead.
  • the present application provides a transmission indication method, comprising:
  • first indication information indicates a first spatial layer number and a first precoding matrix and a first antenna port corresponding to the first spatial layer number, and the first spatial layer number is one of spatial layer numbers 1 to 4;
  • second indication information indicates a second spatial layer number and a second precoding matrix corresponding to the second spatial layer number, and the second spatial layer number is one of spatial layer numbers 5 to 8.
  • the first number of spatial layers (also referred to as rank) includes rank1, rank2, rank3 or rank4, and the second number of spatial layers includes rank5, rank6, rank7 or rank8.
  • multiple optional precoding matrices are preset for each rank, so the indication message can indicate the corresponding precoding matrix from the multiple optional precoding matrices, such as the Transmitted Precoding Matrix Indicator (TPMI).
  • TPMI Transmitted Precoding Matrix Indicator
  • the first indication message indicates the first precoding matrix corresponding to any number of spatial layers from rank1 to rank4
  • the second indication message indicates the second precoding matrix corresponding to any number of spatial layers from rank5 to rank8.
  • the indication message will also indicate the antenna port.
  • the antenna port is a virtual port and can be a demodulation reference signal (Dedicated Demodulation Reference Signal, DMRS) port.
  • DMRS Dedicated Demodulation Reference Signal
  • the antenna port can be a DMRS port index combination.
  • the first indication message indicates the first antenna port corresponding to any number of spatial layers from rank1 to rank4, and the second indication message indicates the second antenna port corresponding to any number of spatial layers from rank5 to rank8.
  • the indication information may be a part of the field or part of the information in the signaling.
  • the signaling may be downlink control information (Downlink Control Information, DCI) signaling, or other signaling, such as uplink control information (Uplink Control Information, UCI) signaling, radio resource control (Radio Resource Control, RRC) signaling, etc.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • the format of the DCI signaling may be DCI format 0_0, DCI format 0_1, DCI format 0_2, or DCI format 1_0, DCI format 1_1 or DCI format 1_2.
  • the first indication information and the second indication information have different ways of dividing the fields, but can ensure that the total overhead of the fields of the indication information is the same when taking values of different ranks, thereby avoiding multiple blind tests of the control signaling by the second device terminal to reduce the complexity of processing.
  • the second indication information further indicates a second antenna port corresponding to the second number of spatial layers.
  • each rank such as rank5, rank6, rank7 or rank8, it is pre-agreed that each rank corresponds to an optional DMRS port index group.
  • the second indication information does not need to indicate the corresponding second antenna port, i.e., the second DMRS port index combination
  • there are multiple optional DMRS port index combinations such as rank7 corresponds to two optional DMRS port index combinations, and rank5, rank6 or rank8 are pre-agreed to correspond to one optional DMRS port index combination respectively.
  • the second indication information indicates the rank corresponding to multiple optional DMRS port index combinations, it is necessary to indicate the corresponding second DMRS port index combination, that is, when the second indication information corresponds to rank7, it is necessary to indicate the second DMRS port index combination, and when it corresponds to rank5, rank6 or rank8, no indication is required.
  • the first indication information includes a first field and a second field, the first field indicating an item in a first parameter set, each item in the first parameter set including the number of spatial layers and a precoding matrix, the first parameter set corresponding to the spatial layer numbers 1 to 4, the second field indicating an item in a second parameter set, each item in the second parameter set including an antenna port, and each of the spatial layer numbers 1 to 4 corresponds to one of the second parameter sets;
  • the second indication information includes a third field and a fourth field, the third field indicating an item in a third parameter set, each item in the third parameter set including a precoding matrix, each of the spatial layer numbers 5 to 8 corresponds to one of the third parameter sets, the fourth field indicating an item in a fourth parameter set, each item in the fourth parameter set including an antenna port and indicating the number of spatial layers, wherein the fourth parameter set corresponds to the spatial layer numbers 5 to 8.
  • the precoding matrix is an optional precoding matrix or an index of an optional precoding matrix
  • the antenna port is an optional antenna port or an index of an optional antenna port.
  • the first precoding matrix may be an item in the precoding matrix
  • the second precoding matrix may be an item in the precoding matrix.
  • the first antenna port may be an item in the antenna ports
  • the second antenna port may be an item in the antenna ports.
  • the first precoding matrix may be an item in the precoding matrix included in the first parameter set.
  • the first antenna port may be an item in the antenna ports included in the second parameter set corresponding to the first number of spatial layers.
  • the second precoding matrix may be an item in the precoding matrix included in the third parameter set corresponding to the second number of spatial layers.
  • the second antenna port may be an item in the antenna ports included in the fourth parameter set.
  • the first precoding matrix may be one of the precoding matrices included in the fifth parameter set corresponding to the first number of spatial layers.
  • the first antenna port may be one of the antenna ports included in the sixth parameter set corresponding to the first number of spatial layers.
  • the second precoding matrix may be one of the precoding matrices included in the seventh parameter set or the eighth parameter set corresponding to the second number of spatial layers.
  • the second antenna port may be one of the antenna ports included in the eighth parameter set.
  • the second field indicating an item in the second parameter set can also be understood as the second field indicating an item in the second parameter set corresponding to the first number of spatial layers.
  • the second parameter set corresponds to the spatial layer numbers 1 to 4.
  • the third field indicating an item in the third parameter set can also be understood as the third field indicating an item in the third parameter set corresponding to the second number of spatial layers.
  • the third parameter set corresponds to the spatial layer numbers 5 to 8.
  • the first indication information corresponds to the spatial layer number 5
  • the third field indicates an item in the third parameter set corresponding to the spatial layer number 5
  • the spatial layer numbers 6 to 8 are analogous.
  • the unequal number of optional parameters of the corresponding indication information of rank 1 to rank 4 and rank 5 to rank 8 are used to indicate through the first indication information and the second indication information respectively, which can save the overhead of the indication information.
  • the second indication information needs to indicate the selected TPMI and DMRS port index combination from a smaller number of optional TMPI and optional DMRS port index combinations.
  • the saved overhead can be used to carry the corresponding information of the second transport block (Transport Block, TB) that needs to be transmitted, thereby saving the overall overhead of the second indication information.
  • the first indication information and the second indication information both include a fifth field and a sixth field
  • the fifth field indicates first modulation and coding scheme (MCS) information, first redundancy version (RV) information and first new data indicator (NDI) information
  • the sixth field indicates second MCS information and second RV information
  • the second indication information also includes a seventh field
  • the seventh field indicates a second NDI; in the first indication information, the fifth field and the sixth field also indicate that the number of enabled TBs (or codewords (CW)) is one, and in the second indication information, the fifth field and the sixth field also indicate that the number of enabled TBs (or CWs) is two.
  • the ranks in different value intervals correspond to different numbers of TBs (or CWs), that is, when one TB (or CW) is enabled during data transmission, the first indication information indicates the MCS, RV and NDI information corresponding to one TB, and when two TBs (or CWs) are enabled during data transmission, the second indication information indicates the MCS, RV and NDI information corresponding to the two TBs.
  • the device that receives the indication information can determine a TB (or If one TB (or CW) is enabled, it is determined that the indication information is the first indication information; or, based on the MCS, RV and NDI information contained in the indication information, it is determined that two TBs (or CWs) are enabled, it is determined that the indication information is the second indication information.
  • the first indication information and the second indication information both include an eighth field, and the eighth field indicates a value of the first number of spatial layers or the second number of spatial layers.
  • the indication information needs to indicate different contents.
  • a field for determining the rank is added to both the first indication information and the second indication information. The value of the field corresponds to the number of spatial layers. If the first device sends the first indication information, the corresponding value from 1 to 4 is written in the rank field. If the second indication information is sent, the corresponding value from 5 to 8 is written in the rank field. Similarly, when the second device receives the indication information, it can also determine that the indication information is the first indication information according to the corresponding rank value between 1 and 4, or determine that the indication information is the second indication information according to the corresponding rank value between 5 and 8.
  • the first indication information includes a first field and a second field, the first field indicating an item in a fifth parameter set, each item in the fifth parameter set including a precoding matrix, and each of the spatial layer numbers 1 to 4 corresponds to one of the fifth parameter sets, the second field indicating an item in a sixth parameter set, each item in the sixth parameter set including an antenna port, and each of the spatial layer numbers 1 to 4 corresponds to one of the sixth parameter sets;
  • the second indication information includes a third field, the third field indicating an item in a seventh parameter set, each item in the seventh parameter set including a precoding matrix, and each of the spatial layer numbers 5 to 8 corresponds to one of the seventh parameter sets.
  • first field indicating an item in the fifth parameter set can also be understood as the first field indicating an item in the fifth parameter set corresponding to the first number of spatial layers.
  • the second field indicating an item in the sixth parameter set can also be understood as the second field indicating an item in the sixth parameter set corresponding to the first number of spatial layers.
  • the third field indicating an item in the seventh parameter set can also be understood as the third field indicating an item in the seventh parameter set corresponding to the second number of spatial layers.
  • the fifth parameter set and the sixth parameter set correspond to the spatial layer numbers 1 to 4.
  • the first field indicates an item in the fifth parameter set corresponding to the spatial layer number 1
  • the second field indicates an item in the sixth parameter set corresponding to the spatial layer number 1
  • the spatial layer numbers 2 to 4 are analogous
  • the seventh parameter set corresponds to the spatial layer numbers 5 to 8.
  • the third field indicates an item in the seventh parameter set corresponding to the spatial layer number 5
  • the spatial layer numbers 6 to 8 are analogous.
  • the first indication information includes a first field and a second field, the first field indicating an item in a fifth parameter set, each item in the fifth parameter set including a precoding matrix, and each of the spatial layer numbers 1 to 4 corresponds to one of the fifth parameter sets, the second field indicating an item in a sixth parameter set, each item in the sixth parameter set including an antenna port, and each of the spatial layer numbers 1 to 4 corresponds to one of the sixth parameter sets;
  • the second indication information includes a third field, the third field indicating an item in an eighth parameter set, each item in the eighth parameter set including a precoding matrix and the second antenna port, and each of the spatial layer numbers 5 to 8 corresponds to one of the eighth parameter sets.
  • first field indicating an item in the fifth parameter set can also be understood as the first field indicating an item in the fifth parameter set corresponding to the first number of spatial layers.
  • the second field indicating an item in the sixth parameter set can also be understood as the second field indicating an item in the sixth parameter set corresponding to the first number of spatial layers.
  • the third field indicating an item in the eighth parameter set can also be understood as the third field indicating an item in the eighth parameter set corresponding to the second number of spatial layers.
  • the fifth parameter set and the sixth parameter set correspond to the spatial layer numbers 1 to 4.
  • the first field indicates an item in the fifth parameter set corresponding to the spatial layer number 1
  • the second field indicates an item in the sixth parameter set corresponding to the spatial layer number 1
  • the spatial layer numbers 2 to 4 are analogous
  • the eighth parameter set corresponds to the spatial layer numbers 5 to 8.
  • the third field indicates an item in the eighth parameter set corresponding to the spatial layer number 5
  • the spatial layer numbers 6 to 8 are analogous.
  • the first indication information and the second indication information both include a fifth field, wherein the fifth field indicates first MCS information, first RV information, and first NDI information; the second information also includes a sixth field, wherein the sixth field indicates second MCS information, second RV information, and second NDI information.
  • the present application provides a transmission indication method, including:
  • first indication information indicates a first spatial layer number and a first precoding matrix and a first antenna port corresponding to the first spatial layer number, and the first spatial layer number is one of spatial layer numbers 1 to 4;
  • second indication information indicates a second spatial layer number and a second precoding matrix corresponding to the second spatial layer number, and the second spatial layer number is one of spatial layer numbers 5 to 8.
  • the second indication information further indicates a second antenna port corresponding to the second number of spatial layers.
  • the first indication information includes a first field and a second field, the first field indicating an item in a first parameter set, each item in the first parameter set including the number of spatial layers and a precoding matrix, the first parameter set corresponding to the spatial layer numbers 1 to 4, the second field indicating an item in a second parameter set, each item in the second parameter set including an antenna port, and each of the spatial layer numbers 1 to 4 corresponds to one of the second parameter sets;
  • the second indication information includes a third field and a fourth field, the third field indicating an item in a third parameter set, each item in the third parameter set including a precoding matrix, each of the spatial layer numbers 5 to 8 corresponds to one of the third parameter sets, the fourth field indicating an item in a fourth parameter set, each item in the fourth parameter set including an antenna port and indicating the number of spatial layers, wherein the fourth parameter set corresponds to the spatial layer numbers 5 to 8.
  • the second parameter set corresponds to the spatial layer numbers 1 to 4, and when the first indication information corresponds to the spatial layer number 1, the second field indicates an item in the second parameter set corresponding to the spatial layer number 1, and the spatial layer numbers 2 to 4 are analogous to this;
  • the third parameter set corresponds to the spatial layer numbers 5 to 8, and when the first indication information corresponds to the spatial layer number 5, the third field indicates an item in the third parameter set corresponding to the spatial layer number 5, and the spatial layer numbers 6 to 8 are analogous to this.
  • the first indication information and the second indication information both include an eighth field, and the eighth field indicates a value of the first number of spatial layers or the second number of spatial layers.
  • the first indication information and the second indication information both include a fifth field and a sixth field
  • the fifth field indicates first coding modulation mode MCS information, first redundant version RV information and first new data indication NDI information
  • the sixth field indicates second MCS information and second RV information
  • the second indication information also includes a seventh field
  • the seventh field indicates a second NDI; in the first indication information, the fifth field and the sixth field also indicate that the number of enabled transmission blocks TB is one, and in the second indication information, the fifth field and the sixth field also indicate that the number of enabled TBs is two.
  • the first indication information includes a first field and a second field, the first field indicating an item in a fifth parameter set, each item in the fifth parameter set including a precoding matrix, and each of the spatial layer numbers 1 to 4 corresponds to one of the fifth parameter sets, the second field indicating an item in a sixth parameter set, each item in the sixth parameter set including an antenna port, and each of the spatial layer numbers 1 to 4 corresponds to one of the sixth parameter sets;
  • the second indication information includes a third field, the third field indicating an item in a seventh parameter set, each item in the seventh parameter set including a precoding matrix, and each of the spatial layer numbers 5 to 8 corresponds to one of the seventh parameter sets.
  • the fifth parameter set and the sixth parameter set correspond to the spatial layer numbers 1 to 4, when the first indication information corresponds to the spatial layer number 1, the first field indicates an item in the fifth parameter set corresponding to the spatial layer number 1, the second field indicates an item in the sixth parameter set corresponding to the spatial layer number 1, and the spatial layer numbers 2 to 4 are analogous to this;
  • the seventh parameter set corresponds to the spatial layer numbers 5 to 8, when the first indication information corresponds to the spatial layer number 5, the third field indicates an item in the seventh parameter set corresponding to the spatial layer number 5, and the spatial layer numbers 6 to 8 are analogous to this.
  • the first indication information includes a first field and a second field, the first field indicating an item in a fifth parameter set, each item in the fifth parameter set including a precoding matrix, and each of the spatial layer numbers 1 to 4 corresponds to one of the fifth parameter sets, the second field indicating an item in a sixth parameter set, each item in the sixth parameter set including an antenna port, and each of the spatial layer numbers 1 to 4 corresponds to one of the sixth parameter sets;
  • the second indication information includes a third field, the third field indicating an item in an eighth parameter set, each item in the eighth parameter set including a precoding matrix and an antenna port, and each of the spatial layer numbers 5 to 8 corresponds to one of the eighth parameter sets.
  • the fifth parameter set and the sixth parameter set correspond to the spatial layer numbers 1 to 4, when the first indication information corresponds to the spatial layer number 1, the first field indicates an item in the fifth parameter set corresponding to the spatial layer number 1, the second field indicates an item in the sixth parameter set corresponding to the spatial layer number 1, and the spatial layer numbers 2 to 4 are analogous to this;
  • the eighth parameter set corresponds to the spatial layer numbers 5 to 8, when the first indication information corresponds to the spatial layer number 5, the third field indicates an item in the eighth parameter set corresponding to the spatial layer number 5, and the spatial layer numbers 6 to 8 are analogous to this.
  • the first indication information and the second indication information both include a fifth field, wherein the fifth field indicates first MCS information, first RV information, and first NDI information; the second information also includes a sixth field, wherein the sixth field indicates second MCS information, second RV information, and second NDI information.
  • the present application provides a first device, comprising at least one processor and a transceiver, wherein the at least one processor is coupled to the transceiver, and wherein when the at least one transceiver executes a program or an instruction, the control device implements the first aspect and the first
  • the first device may be a terminal device or a network device, or a chip in the terminal device or the network device.
  • the present application provides a second device, comprising at least one processor and a transceiver, wherein the at least one processor is coupled to the transceiver, and wherein when the at least one transceiver executes a program or instruction, the control device implements part or all of the operations in the second aspect and any possible implementation of the second aspect.
  • the second device may be a terminal device or a network device, or a chip in the terminal device or the network device.
  • the present application provides a communication device, the communication device comprising a communication port and a processor, the communication port is used to perform the transceiver operation involved in the method described in any of the above aspects and any possible implementation of any aspect, and the processor is used to perform other operations other than the transceiver operation involved in the method described in any of the above aspects and any possible implementation of any aspect.
  • the processor when the communication device described in the fifth aspect performs the method described in the first aspect as a first device, the processor is used to generate one of the first indication information and the second indication information, wherein the first indication information is used to indicate one of the number of spatial layers 1 to 4, and the corresponding first precoding matrix and the first antenna port; the second indication information is used to indicate one of the number of spatial layers 5 to 8, and the corresponding second precoding matrix.
  • the processor is used to interpret one of the first indication information and the second indication information.
  • the communication device may be a terminal device or a network device, or a chip in a terminal device or a network device.
  • the present application provides a communication method, which includes the method in the first aspect or any possible implementation of the first aspect, and the method in the second aspect or any possible implementation of the second aspect.
  • the present application provides a system, which includes: a first device and a second device, the first device is used to perform part or all of the operations in the first aspect and any possible implementation of the first aspect; the second device is used to perform part or all of the operations in the second aspect and any possible implementation of the second aspect.
  • the present application provides a computer-readable storage medium, which stores instructions, and when the computer-readable storage medium is executed on a processor, implements part or all of the operations included in the method described in any of the preceding aspects and any possible implementation method of any of the preceding aspects.
  • the present application provides a computer program product, which includes instructions that, when executed on a processor, implement part or all of the operations included in the method described in any of the preceding aspects and any possible implementation of any of the preceding aspects.
  • the present application provides a chip, comprising: a port circuit and a processor.
  • the port circuit is connected to the processor, and the processor is used to enable the chip to perform part or all of the operations included in the method described in any of the above aspects and any possible implementation of any of the above aspects.
  • FIG1 is a schematic diagram of a flow chart of a transmission indication method provided in an embodiment of the present application.
  • FIG1-A is a flow chart of another transmission indication method provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a DCI
  • FIG3 is a schematic diagram of first indication information provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of second indication information provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of another first indication information provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of another second indication information provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a first device 10 according to an embodiment of the present application.
  • FIG8 is a schematic structural diagram of a second device 20 according to an embodiment of the present application.
  • FIG9 is a schematic structural diagram of a first device 30 according to an embodiment of the present application.
  • FIG10 is a schematic structural diagram of a second device 40 according to an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of a device 50 provided in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the structure of a system provided in an embodiment of the present application.
  • a and/or B in this article is merely a description of the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects rather than to describe a specific order of objects.
  • a first target object and a second target object are used to distinguish different target objects rather than to describe a specific order of target objects.
  • words such as “exemplary” or “for example” are used to indicate examples, illustrations or descriptions. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present application should not be interpreted as being more preferred or more advantageous than other embodiments or designs. Specifically, the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific way.
  • multiple refers to two or more than two.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • the corresponding received signal vector at the receiving end can be expressed as:
  • the equivalent channel experienced is H.
  • the receiver can obtain an estimate of the equivalent channel H using a channel estimation algorithm (such as LS channel estimation, MMSE channel estimation, etc.), and then complete the multiple input and multiple output (MIMO) equalization and subsequent demodulation of the data signal based on the equivalent channel.
  • a channel estimation algorithm such as LS channel estimation, MMSE channel estimation, etc.
  • DMRS Downlink Reference Signal
  • R the number of spatial layers (also called the number of transmission layers, the number of transmission streams, the number of data streams or ranks).
  • one DMRS port corresponds to one rank.
  • the required antenna port (antenna port) can also be referred to as the number of DMRS ports R.
  • different DMRS ports are usually orthogonal ports, and the DMRS symbols corresponding to different DMRS ports are orthogonal in the frequency domain, time-frequency or code domain.
  • precoding is usually performed on the uplink multi-stream transmission signal.
  • x l represents the transmission data symbol corresponding to the lth spatial layer
  • the precoding matrix is W
  • the precoded transmission signal vector can be expressed as:
  • uplink transmission is when a terminal device sends data to a network device.
  • the precoding matrix used by the terminal device is usually indicated to the terminal device by the network device through indication information.
  • the precoding matrix W is usually selected from a preset precoding matrix set (also called a codebook).
  • NR New Radio
  • the network device sends an indication message to the terminal device to indicate the TPMI, that is, to indicate which of the preset precoding matrix sets the uplink precoding matrix to be used is.
  • the NR protocol defines different codebooks for 4 transmit antennas, rank 1 to rank 4.
  • the codebook may include 4 transmit antennas and a single transmission stream, i.e., a precoding matrix set corresponding to rank 1.
  • the codebook may include 4 transmit antennas and a transmission stream number of 2, i.e., a precoding matrix set corresponding to rank 2.
  • the codebook When further supporting a precoding matrix codebook with a maximum rank of 8 and a number of transmit antennas of 8, the codebook may be defined in the same manner as shown in Tables 1 and 2.
  • Each preset precoding matrix corresponds to a TPMI index, and different values of the number of transmission streams correspond to different tables (codebooks), which will not be described in detail here.
  • the corresponding relationships provided in the embodiments of the present application are all examples and are not limited to the data in the table.
  • Terminal devices such as user equipment (User Equipment, UE) will notify network devices such as base stations of the antenna capability. For different UE antenna capabilities, the TPMI value range that needs to be indicated is different. After the base station determines the UE's antenna capability, it indicates the corresponding TPMI.
  • FIG. 1 is a flow chart of a transmission indication method provided in an embodiment of the present application. As shown in FIG. 1 , the method includes:
  • the first device sends one of the first indication information and the second indication information, wherein the first indication information indicates the first spatial layer number and the first precoding matrix and the first antenna port corresponding to the first spatial layer number, and the first spatial layer number is one of the spatial layer numbers 1 to 4; the second indication information indicates the second spatial layer number and the second precoding matrix corresponding to the second spatial layer number, and the second spatial layer number is one of the spatial layer numbers 5 to 8.
  • the second indication information is also used to indicate a second antenna port corresponding to the second number of spatial layers.
  • the first indication information and the second indication information may be collectively referred to as indication information
  • the first spatial layer number includes rank1, rank2, rank3 or rank4
  • the second spatial layer number includes rank5, rank6, rank7 or rank8.
  • the indication information may be used for TPMI or precoding matrix indication, and may also be used for channel sounding reference signal (Sounding Reference Signal, SRS) resource indication (Sounding Resource indicator, SRI), for example, in the method of the present invention, TPMI is replaced with SRI, such as the first indication information indicates one of rank1 to rank4, and the corresponding first SRI and first antenna port, and the second indication information indicates one of rank5 to rank8, and the corresponding second SRI and second antenna port.
  • SRS Sounding Reference Signal
  • SRI Sounding Resource indicator
  • the indication information indicates that the antenna port may be a DMRS port index combination, or other reference signal ports, such as SRS ports, phase tracking reference signals (Phase-Tracking Reference Signals, PTRS) ports, channel state information reference signals (Channel State Information-Reference Signal, CSI-RS) ports, etc., wherein the DMRS port in the embodiment of the present application represents a DMRS port index combination, and the first antenna port indicated by the first indication information refers to a DMRS port index combination. Similarly, the second antenna port provided in the present application also indicates a DMRS port index combination.
  • the embodiment of the present application is described by combining TPMI and DMRS port indexes using indication information.
  • Other indication information and ports may refer to the examples of the embodiment of the present application and will not be described in detail, but are all within the protection scope of the present application.
  • FIG. 1-A is a flow chart of another transmission indication method provided in an embodiment of the present application. As shown in FIG. 1-A , the method includes:
  • the second device receives one of the first indication information and the second indication information, wherein the first indication information indicates the first spatial layer number and the first precoding matrix and the first antenna port corresponding to the first spatial layer number, and the first spatial layer number is one of the spatial layer numbers 1 to 4; the second indication information indicates the second spatial layer number and the second precoding matrix corresponding to the second spatial layer number, and the second spatial layer number is one of the spatial layer numbers 5 to 8.
  • the first device sends the first indication information, and the second device receives the first indication information.
  • the first device sends the second indication information, and the second device receives the second indication information.
  • the content carried and indicated by the indication information received by the second device are the same as those sent by the first device.
  • the method of the embodiment of the present application is explained by taking the first device as an uplink transmission device of the second device as an example.
  • the first device is a network device and the second device is a terminal device.
  • the method that is, the indication information provided in the method, can also be applied to the scenario where the first device is a downlink transmission device of the second device.
  • the first device is a terminal device and the second device is a network device.
  • Sending downlink indication information can be obtained by analogy with the embodiment of the uplink transmission sending indication information of the embodiment of the present application, and will not be elaborated on, but it is within the scope of protection of the present application.
  • the first device is a network device
  • the second device is a terminal device
  • the first spatial layer numbers 1 to 4 can also be represented as ranks 1 to 4.
  • the second spatial layer number 5 to 8 can also be expressed as rank5 to rank8, including rank5, rank6, rank7 and rank8
  • the precoding matrix includes TPMI, taking the first precoding matrix as the first TPMI and the second precoding matrix as the second TPMI as an example
  • the antenna port includes DMRS port, taking the first antenna port as the first DMRS port and the second antenna port as the second DMRS port as an example.
  • the uplink rank, TPMI and DMRS port indication method supported by the NR protocol can be expanded from a maximum of rank 4 to a maximum of rank 8 uplink transmission. Since one CW (or one TB) corresponds to a maximum of four spatial layers, when the rank corresponding to the data indicating the scheduling is one of rank 1 to rank 4, the number of enabled CWs (or TBs) is one, and one TB or one corresponding MCS is transmitted during data transmission. When the rank corresponding to the data indicating the scheduling is one of rank 5 to rank 8, the number of enabled CWs (or TBs) is two, and two TBs or two corresponding MCSs are transmitted during data transmission. Furthermore, the CW provided in the embodiment of the present application may also be a TB, which is not limited to the description in the text.
  • DCI is used to indicate the transmission parameters corresponding to the scheduling of uplink or downlink data transmission (such as PUSCH or PDSCH), such as the rank corresponding to the data transmission, the precoding matrix, the DMRS port, etc.
  • FIG2 is a schematic diagram of a DCI.
  • the DCI includes fields corresponding to the combination of MCS, RV, NDI, TPMI, rank and DMRS port index as shown in FIG2.
  • the corresponding scheduled data is any rank value from rank1 to rank8
  • the DCI includes fields of MCS information, RV information and NDI information corresponding to two CWs (or TBs), and also includes fields of TPMI+rank and DMRS port.
  • This indication method wastes the bit overhead occupied by the fields of MCS information, RV information and NDI information of one CW (or TB) when transmitting at any rank from rank1 to rank4, which only needs to indicate the transmission requirements of the corresponding MCS information, RV information and NDI information of one CW (or TB).
  • the MCS information (marked as MCS TB1 in the figure, occupying 5 bits), RV information (marked as RV TB1 in the figure, occupying 2 bits) and NDI information (marked as NDI TB1 in the figure, occupying 1 bit) corresponding to TB1 in DCI
  • the MCS information (marked as MCS TB2 in the figure, occupying 5 bits), RV information (marked as RV TB2 in the figure, occupying 2 bits) and NDI information (marked as NDI TB2 in the figure, occupying 1 bit) corresponding to TB2
  • TPMI+rank (occupying 8 bits) and DMRS port (occupying 4 bits)
  • the bit overhead occupied by the field of MCS information, RV information and NDI information is wasted, that is, 8 bits.
  • the corresponding TPMI and DMRS port index combination required for transmission is not distinguished.
  • the maximum bit overhead required for the transmission of the two intervals must be met. According to the above example, 28 bits of overhead are required each time, resulting in a large overhead of the indication.
  • Figures 3 and 4 are schematic diagram of the first indication information provided by the embodiment of the present application
  • Figure 4 is a schematic diagram of the second indication information provided by the embodiment of the present application.
  • the bit overhead occupied by each field in the embodiment of the present application and the accompanying drawings is only an example and is not limited to this.
  • the indication information can be a part of the DCI, and the information carried by the indication information can be used to distinguish that the information indicates that the rank belongs to the range of rank 1 to rank 4, which is the first indication information, or the information carried by the indication information can be used to distinguish that the information indicates that the rank belongs to the range of rank 5 to rank 8, which is the second indication information, and then the corresponding information is obtained according to the format of the preset first indication information or the second indication information and the content of the indication.
  • the first indication information includes a first field (which may be the precoding information and spatial layers (Precoding information and #layers) shown in Figure 3, or may be written as (Precoding information and number of spatial layers) Precoding information and number of layers field, occupying 8 bits) and a second field (which may be the antenna port (antenna port) shown in Figure 3, occupying 4 bits), wherein the first field indicates an item in the first parameter set, each item in the first parameter set includes the number of spatial layers and a precoding matrix, such as TPMI, and further, when the first field indicates an item in the first parameter set, it may indicate a precoding matrix or an index of the precoding matrix.
  • a first field which may be the precoding information and spatial layers (Precoding information and #layers) shown in Figure 3, or may be written as (Precoding information and number of spatial layers) Precoding information and number of layers field, occupying 8 bits
  • a second field which may be the antenna port (antenna port) shown in Figure 3, occupying 4 bits
  • the second field indicates an item in the second parameter set, each item in the second parameter set includes an antenna port, such as a DMRS port, and each spatial layer number in the spatial layer numbers 1 to 4 corresponds to a second parameter set. Further, when the second field indicates an item in the second parameter set, the indication may be a DMRS port index combination.
  • the precoding matrix included in the first parameter set corresponds to the optional precoding matrix of rank 1 to rank 4, and the antenna port corresponds to the optional antenna port of rank 1 to rank 4, such as the optional DMRS port index combination;
  • the precoding matrix included in the second parameter set corresponds to the optional precoding matrix of rank 5 to rank 8, and the antenna port corresponds to the optional antenna port of rank 5 to rank 8, such as the optional DMRS port index combination, etc.
  • the first indication information and the second indication information provided in the present application indicate a precoding matrix or a DMRS port index combination by indicating an index.
  • the parameter set provided in the present application may be a table as listed in the embodiment, or may be in other forms.
  • the first parameter set may be as shown in Table 3, where each item includes a rank and a TPMI value.
  • Table 3 is a set of TPMI values corresponding to rank 1, rank 2, rank 3 and rank 4 respectively.
  • the bit field mapped to index is the index column indicated by the indication information.
  • the first column is the index indicated by the indication information when all transmitting antennas can transmit in full coherent mode
  • the second column is the rank value and TPMI index that the terminal can support when supporting full coherent transmission
  • the third column is the index of all transmitting antennas.
  • the fourth column is the rank value and TPMI index that can be supported when the terminal supports partially coherent transmission capability
  • the fifth column is the index indicated by the indication information when all transmitting antennas are incoherently transmitted
  • the sixth column is the rank value and TPMI index that can be supported when the terminal has incoherent transmission. Further, after determining the index of TPMI, the TPMI can be determined according to the corresponding rank value and TPMI index, referring to the precoding matrix set in the above example.
  • the corresponding precoding matrix of rank1 is searched, that is, Table 1, and the corresponding TPMI5 is obtained.
  • the TPMI indexes and rank values of rank 1 to rank 4 are jointly encoded in a table.
  • the TPMI index and rank value can be obtained through one index.
  • rank 1 to rank 4 there are 248 candidate values of rank and TPMI index, which requires 8 bits of indication overhead.
  • each item that is, each row includes relevant parameters of a DMRS port index combination
  • Table 4 is a set of DMRS port index combinations corresponding to rank 1
  • Table 5 is a set of DMRS port index combinations corresponding to rank 2
  • Table 6 is a set of DMRS port index combinations corresponding to rank 3
  • Table 7 is a set of DMRS port index combinations corresponding to rank 4.
  • the Value index column can be used for the second field to indicate an item in the second parameter set.
  • the second column is the number of DMRS CDM groups without data mapping (Number of DMRS CDM group(s)without data), indicating the number of code division multiplexing (Code Division Multiplexing, CDM) that cannot currently multiplex data.
  • the value range of this field is as follows:
  • the value of the field represents the value interpreted according to the binary code
  • the third column is the DMRS port (DMRS port(s))
  • the number of bits used in this column depends on the range of values in the table
  • the fourth column is the number of orthogonal frequency division multiplexing (OFDM) symbols (Number of front-load symbols) occupied by DMRS.
  • the maximum number of DMRS symbols is 1, and the second field corresponds to 4 bits of indication overhead.
  • the maximum number of DMRS symbols is 2, and the second field corresponds to 5 bits of indication overhead.
  • the second device can obtain the rank value based on the first field and select the corresponding set table of DMRS port index combinations, such as obtaining rank 4, corresponding to the indication of the second field in Table 7. If the index value indicated by the second field is 3, the number of DMRS CDM groups without data mapping is 2, the DMRS ports are 0, 2, 4, 6, and the number of OFDM symbols occupied by DMRS is 2.
  • the second indication information includes a third field and a fourth field, and the third field (which may be a precoding information field as shown in FIG4, occupying 5 bits) indicates an item in the third parameter set, and the third parameter
  • Each item in the set includes a precoding matrix, such as TPMI, and each spatial layer in the number of spatial layers 5 to 8 corresponds to a third parameter set.
  • the fourth field (which can be the antenna port and spatial layer (antenna port and#layers) shown in Figure 4, or can be written as the antenna port and number of spatial layers (antenna port and number of layers) field, occupying 3 bits) indicates an item in the fourth parameter set, and each item in the fourth parameter set includes an antenna port, such as a DMRS port index combination, and indicates the number of spatial layers, wherein the fourth parameter set corresponds to the number of spatial layers 5 to 8. That is to say, the fourth parameter set can be as shown in Table 8, each item, that is, each row includes relevant parameters of a DMRS port or a DMRS port index combination. Table 8 is a set of DMRS port index combinations corresponding to rank 5 to rank 8.
  • the relevant parameters in Table 8 can refer to Tables 4 to 7.
  • the indication information indicates an item of the fourth parameter activation, in the DMRS port column of Table 8 corresponding to the item
  • the number of spatial layers indicated by the item can be determined, that is, the number of DMRS port index combinations contained in the DMRS port(s) is the corresponding number of spatial layers, that is, the candidate rows where values 0 and 1 are located in Table 8 correspond to rank 5, the candidate rows where values 2 and 3 are located correspond to rank 6, the candidate rows where values 4 and 5 are located correspond to rank 7, and the candidate rows where Value 6 and 7 are located correspond to rank 8.
  • the fourth field of the second indication information corresponds to an indication value of 3
  • the corresponding DMRS ports are 0, 1, 2, 3, 4, 6, and the number of DMRS port index combinations is 6, corresponding to rank 6.
  • the third parameter set can be shown in Tables 9 to 12.
  • Each third parameter set corresponds to the index of a TPMI of a rank.
  • Table 9 is the index set of TPMI corresponding to rank 5
  • Table 10 is the index set of TPMI corresponding to rank 6
  • Table 11 is the index set of TPMI corresponding to rank 7
  • Table 12 is the index set of TPMI corresponding to rank 8.
  • Tables 9 to 12 illustrate the third parameter set using the fully coherent codebook as an example. For rank 5 to rank 8, they correspond to the indexes of 32, 24, 16, and 8 TPMIs, respectively.
  • 5 bits are required to indicate the overhead.
  • bit field mapping index in Tables 9 to 12 and the corresponding query index method for each item in the fully coherent transmission, partially coherent transmission, and incoherent transmission can refer to the fully coherent transmission, coherent transmission, and incoherent transmission supported by different antenna capabilities in the above examples.
  • the second device can select a set of corresponding TMPI indexes based on the rank value obtained from the fourth field, and then determine the index of the TMPI according to the indication of the third field, and then obtain the TMPI through Tables 1 and 2. For example, if rank 6 is obtained by referring to the above example, the index of the TMPI is determined in Table 10.
  • the first indication information and the second indication information both include a fifth field (TB1 as shown in FIG. 3 and FIG. 4 ) and the sixth field (TB2 as shown in Figures 3 and 4),
  • the fifth field indicates the first MCS information (MCS corresponding to TB1 in Figures 3 and 4, occupying 5 bits)
  • the first RV information RV corresponding to TB1 in Figures 3 and 4, occupying 2 bits
  • the first NDI information NDI corresponding to TB1 in Figures 3 and 4, occupying 1 bit
  • the sixth field indicates the second MCS information (MCS corresponding to TB2 in Figures 3 and 4, occupying 5 bits
  • the second RV information RV corresponding to TB2 in Figures 3 and 4, occupying 2 bits
  • the second indication information also includes the seventh field (NDI for CW2 as shown in Figure 4, occupying 1 bit), which is used to indicate the second NDI.
  • the second indication information can also set a reserved field, occupying 3 bits. Referring to Figures 3 and 4 to compare the first indication information and the second indication information, it can be seen that the indication information provided in the embodiment of the present application occupies a total of 27 bits, which can effectively save the indication overhead.
  • the MCS field corresponds to the preset coding rate and modulation order combination in the MCS table in Table 13, which is used to indicate the scheduled MCS
  • the NDI field is used to indicate whether the scheduled PUSCH or PDSCH is new data or retransmitted data
  • the RV is used to indicate the redundant version information of the code corresponding to the scheduled data.
  • rank is divided into two value intervals, namely, rank 1 to rank 4 and rank 5 to rank 8, and first indication information is used to indicate rank 1 to rank 4 and their corresponding parameters, and second indication information is used to indicate rank 5 to rank 8 and their corresponding parameters.
  • first indication information is used to indicate rank 1 to rank 4 and their corresponding parameters
  • second indication information is used to indicate rank 5 to rank 8 and their corresponding parameters.
  • whether the network device sends the first indication message or the second indication message to the terminal device can be determined by the number of CWs (or TBs) enabled in the indication message. If one CW (or TB) is enabled, the first indication message is sent, and if two CWs (or TBs) are enabled, the second indication message is sent.
  • the number of codewords supported by the indication message such as DCI for different rank value intervals is Different, when the rank value is rank1 to rank4, as shown in Figure 3, the indication message indicates one CW (or TB), and when the rank value is rank5 to rank8, as shown in Figure 4, the indication message indicates two CWs (or TBs).
  • the network device needs to send a first DCI to the terminal device; if the uplink transmission of the terminal device needs to be sent on a spatial layer between rank 5 and rank 8, the network device needs to send a second DCI to the terminal device.
  • the network device can first determine that a maximum of 2 CW transmissions can be enabled, and then configure high-level signaling, which is used to indicate that the maximum number of CWs scheduled by DCI is 2.
  • the terminal device can interpret the values of the MCS field and the RV field from the received indication message to determine the number of enabled CWs (or TBs), and then determine the value range to which the rank belongs, and then determine that the DCI is interpreted according to the first DCI based on rank1 to rank4, or, determine that the DCI is interpreted according to the second DCI based on rank5 to rank8.
  • the fifth field and the sixth field are also used to indicate that the number of enabled transmission blocks CW (or TB) is one
  • the fifth field and the sixth field are also used to indicate that the number of enabled CW (or TB) is two, that is, based on the first indication information, it indicates that only one CW (or TB) of data is transmitted during data transmission, and the second indication information indicates that two CW (or TB) of data are transmitted during data transmission.
  • a high-level signaling is configured, which is used to indicate that the maximum number of CWs scheduled by the DCI is 1, representing that one CW (or TB) is enabled, and the first indication information with a rank value range of rank 1 to rank 4 is sent.
  • parameter sets indicated by the various indication information exemplified in the embodiments of the present application and the corresponding methods of ranks in different value ranges can be pre-stored and retrieved or saved for use in actual usage scenarios.
  • the embodiment of the present application adopts different indication information field design methods for rank 1 to rank 4 and rank 5 to rank 8.
  • a common field including the MCS field and RV field corresponding to TB1 and the NDI field of TB1 and the MCS field and RV field corresponding to TB2 is set, which is used for the terminal device to identify the rank interval according to the indication of the common field, determine whether the indication information is the first indication information or the second indication information, and obtain the indication content according to the agreed formats of various indication information.
  • the rank value of the value interval and the corresponding DMRS port index combination index combination are jointly indicated in one set, which can reduce the overhead while obtaining the rank value and the corresponding DMRS port index combination index.
  • an independent design of a third parameter total corresponding to each rank value is used to further reduce the indication overhead, and the saved overhead can be used to carry the NDI of TB2.
  • the embodiment of the present application has different rank value ranges of rank 1 to rank 4 and rank 5 to rank 8, and the corresponding indication information, such as the division method of the DCI field, is different, but the total overhead of the DCI field under different ranks is guaranteed to be the same, and the total overhead of the DCI field under different ranks is aligned, thereby avoiding more blind detection of control signaling by the terminal device and reducing the processing complexity.
  • the significant difference in the number of optional TPMIs and the number of optional DMRS port index combination indexes in the range of rank 5 to rank 8 compared with rank 1 to rank 4 is fully utilized, and the indication overhead of the indication information is saved through different collection forms and indication methods.
  • the rank value range is implicitly included in the DCI, which enables the terminal device to identify the information corresponding to different DCIs based on the rank value range, which saves overhead and ensures the accurate transmission of the indication information.
  • the indication information provided by the embodiment of the present application is shown in FIG. 5 and FIG. 6.
  • the bit overhead occupied by each field in the embodiment of the present application and the accompanying drawings is only an example and is not limited thereto.
  • FIG. 5 is a schematic diagram of another first indication information provided by the embodiment of the present application
  • FIG. 6 is a schematic diagram of another second indication information provided by the embodiment of the present application.
  • the first indication information The first and second indication information both include an eighth field (the rank field in FIG. 5 and FIG. 6 ), which is used to indicate the value of the number of spatial layers. For example, if the field is 000, it is interpreted as 1, that is, the value in the rank field is 1, and the indication information corresponds to rank 1.
  • the value interpreted from the binary code filled in the field corresponds to the value of the rank.
  • the corresponding rank value of the first indication information can be 1 to 4
  • the corresponding rank value of the second indication information can be 5 to 8.
  • the indication overhead of the eighth field is 3 bits.
  • the terminal device After receiving the indication information, the terminal device can determine whether the indication information is the first indication information or the second indication information according to the rank value corresponding to the indication information, and obtain the content of the indication information according to the information format agreed upon by different indication information.
  • the agreed format can refer to the following example:
  • the first indication information is shown in Figure 5, including a first field (which may be the Precoding information field shown in Figure 5, occupying 7 bits) and a second field (which may be the antennaport field shown in Figure 5, occupying 4 bits).
  • the first field indicates an item in the fifth parameter set.
  • Each item in the fifth parameter set includes a precoding matrix, such as TPMI.
  • Each spatial layer in the number of spatial layers 1 to 4 corresponds to a fifth parameter set.
  • the fifth parameter set can be as shown in Tables 14 to 17, wherein each index of field mapped to index corresponds to an index of TPMI, Table 14 is a set of indexes corresponding to TPMI of rank 1, Table 15 is a set of indexes corresponding to TPMI of rank 2, Table 16 is a set of indexes corresponding to TPMI of rank 3, and Table 17 is a set of indexes corresponding to TPMI of rank 4.
  • the bit field mapping index is an index column.
  • the first column, the third column, and the fifth column are indexes indicated by indication information
  • the second column is the index value of TPMI in full coherence
  • the fourth column is the index of TPMI in partially coherent transmission
  • the sixth column is the index of TPMI in incoherent transmission.
  • the TPMI can be determined according to the corresponding rank value, referring to the precoding matrix set in the above example.
  • the fifth parameter set corresponding to the TPMI index in Tables 14 to 17 can correspond independently to each rank value. That is, each rank value from rank 1 to rank 4 corresponds to a TPMI index table. Taking the fully coherent codebook as an example, the number of TPMI indexes contained in rank 1 to rank 4 are 72, 76, 56, and 44, respectively, requiring 7 bits to indicate the overhead.
  • the second field of the first indication information indicates an item in the sixth parameter set, and each item of the sixth parameter set includes an antenna port, such as a DMRS port index combination.
  • each item of the sixth parameter set includes an antenna port, such as a DMRS port index combination.
  • Each spatial layer in the number of spatial layers 1 to 4 corresponds to a sixth parameter set.
  • Each item of the sixth parameter set, that is, each row, is used to indicate the relevant information of the corresponding DMRS port index combination.
  • Table 4 is a set of DMRS port index combinations corresponding to rank 1
  • Table 5 is a set of DMRS port index combinations corresponding to rank 2
  • Table 6 is a set of DMRS port index combinations corresponding to rank 3
  • Table 7 is a set of DMRS port index combinations corresponding to rank 4.
  • the second indication information is shown in Figure 6.
  • the second indication information includes a third field (the third field can be precoding information and antenna port (Precoding information and antenna port), or as shown in Figure 6, the third field can also be precoding information/DMRS port (Precoding information/DMRS ports), occupying 5 bits).
  • the third field can be precoding information and antenna port (Precoding information and antenna port), or as shown in Figure 6, the third field can also be precoding information/DMRS port (Precoding information/DMRS ports), occupying 5 bits).
  • scheduling requirements such as time domain or frequency domain, it is stipulated by the protocol or preset by the protocol.
  • each rank from rank 5 to rank 8 corresponds to a preset DMRS port index combination
  • the third field indicates an item in the seventh parameter set
  • each item of the seventh parameter set includes a precoding matrix, such as TPMI
  • each rank from rank 5 to rank 8 corresponds to a seventh parameter set.
  • the seventh parameter set can refer to Tables 9 to 12.
  • Table 9 is an index set corresponding to TPMI for rank 5
  • Table 10 is an index set corresponding to TPMI for rank 6
  • Table 11 is an index set corresponding to TPMI for rank 7
  • Table 12 is an index set corresponding to TPMI for rank 8.
  • the seventh parameter set refers to the example of the third parameter set.
  • the indexes of 32, 24, 16, and 8 TPMIs correspond respectively. Since the preset rank 5 to rank 8 corresponds to a DMRS port index combination, there is no need for indication between the network device and the terminal device, and the corresponding information of the DMRS port index combination can also be determined according to the DMRS port index combination corresponding to each rank from rank 5 to rank 8 specified by the protocol or preset by the protocol. For example, as shown in the preset corresponding relationship in Table 18, the number of DMRS CDM groups without data mapping corresponding to rank 5 to rank 8 is 2, the number of OFDM symbols occupied by DMRS is 1, and the number of ports in the DMRS port corresponds to the rank value. For example, if there are 5 DMRS ports in the value 0 row, it corresponds to rank 5, and if there are 5 DMRS ports in the value 1 row, it corresponds to rank 6, and so on.
  • each rank corresponds to a preset plurality of DMRS port index combinations.
  • the third field is also used to indicate one of the eighth parameter sets.
  • Each item of the eighth parameter set includes a precoding matrix such as TPMI, and an antenna port such as a DMRS port index combination.
  • Each of the spatial layer numbers 5 to 8 corresponds to an eighth parameter set.
  • the protocol specifies that in rank5 to rank8, rank5, Rank 6 and rank 8 correspond to one DMRS port index combination respectively, and rank 7 corresponds to two DMRS port index combinations, which can fully utilize the reserved fields in the indication information and allow rank 7 to realize flexible configuration of the DMRS port index combination.
  • the indication information of rank 5, rank 6 and rank 8 is sent, the above example can be used.
  • the indication information of rank 7 is sent, the seventh parameter set indicated by the third field is as shown in Table 19 to obtain the information of the DMRS port index combination, and then according to one of the items in the eighth parameter set indicated by the third field, the index of the TPMI and the index of the DMRS port index combination are determined in Table 20.
  • Table 19 is the seventh parameter set corresponding to rank 7, such as the DMRS port index combination correspondence table
  • Table 20 is the eighth parameter set corresponding to rank 7, such as the TPMI index and DMRS port index combination joint indication table.
  • the first indication information and the second indication information both include a fifth field (TB1 as shown in Figures 5 and 6), the fifth field indicates the first MCS information (as shown in Figures 5 and 6 corresponding to the MCS of TB1, occupying 5 bits), the first RV information (as shown in Figures 5 and 6 corresponding to the RV of TB1, occupying 2 bits) and the first NDI information (as shown in Figures 5 and 6 corresponding to the NDI of TB1, occupying 1 bit).
  • the fifth field indicates the first MCS information (as shown in Figures 5 and 6 corresponding to the MCS of TB1, occupying 5 bits)
  • the first RV information as shown in Figures 5 and 6 corresponding to the RV of TB1, occupying 2 bits
  • the first NDI information as shown in Figures 5 and 6 corresponding to the NDI of TB1, occupying 1 bit.
  • the second indication information also includes a sixth field
  • the sixth field indicates the second MCS information (as shown in Figure 6 corresponding to the MCS of TB2, occupying 5 bits), the second RV information (as shown in Figure 6 corresponding to the RV of TB2, occupying 2 bits), and the second NDI (as shown in Figure 6 corresponding to the NDI of TB2, occupying 1 bit), and by comparing the first indication information and the second indication information with Figures 5 and 6, it can be seen that the indication information provided in the embodiment of the present application occupies a total of 24 bits, which can effectively save the overhead of the indication.
  • the MCS field refers to Table 13
  • the RV and NDI can refer to the above example
  • the reserved field can refer to Figure 4, which will not be repeated here.
  • a rank field is provided to indicate the rank value.
  • the network device sends the first indication information whose rank value belongs to rank 1 to rank 4. After receiving the indication information, the terminal device determines that the indication information is the first indication information according to the rank value, and can interpret it according to the division method of the indication information field corresponding to rank 1 to rank 4. Similarly, If the network device sends the second indication information whose rank value belongs to rank 5 to rank 8, after receiving the indication information, the terminal device determines that the indication information is the second indication information according to the rank value, and can interpret it according to the division method of the indication information field corresponding to rank 5 to rank 8.
  • the terminal device does not need to distinguish whether the indication information is the first indication information or the second indication information, and can determine the parameter set corresponding to rank 7 according to the rank value, such as rank 7, to obtain the TPMI and DMRS port.
  • the rank value can be determined.
  • the indication information is provided with a common field, namely the fifth field, including the MCS, NDI and RV information corresponding to TB1.
  • the number of optional DMRS port index combinations corresponding to each rank value can be constrained to be 1 or 2, and then the DMRS port index combination and the TPMI index are jointly indicated to achieve the purpose of reducing the overhead.
  • the saved overhead can carry the MCS, NDI and RV information corresponding to TB2 that the indication information of rank 5 to rank 8 needs to carry.
  • the embodiment of the present application utilizes the characteristics that there are differences in the number of TPMI indexes and DMRS port index data in the rank 1 to rank 4 value interval and the rank 5 to rank 8 value interval, that is, rank 5 to rank 8 need to indicate the selected TPMI and DMRS port index combination from a smaller number of optional TMPI and optional DMRS port index combinations, and indicate corresponding to different parameter sets, thereby reducing the overall indication information overhead.
  • an independent TPMI index table corresponds to the rank 1 to rank 4, which also effectively reduces the indication overhead.
  • each rank corresponds to only one or two DMRS port index combinations.
  • the indication of TPMI index and DMRS port combination can be realized with a small indication overhead.
  • the overhead saved by TPMI indication and DMRS port combination indication is then used to indicate the MCS, NDI, and RV information of TB2, thereby reducing the overall overhead of indication information.
  • the embodiment of the present application further provides a first device, as shown in FIG. 7, which is a schematic diagram of the structure of the first device 10 of the embodiment of the present application.
  • the first device 10 shown in FIG. 7 includes a transceiver unit 101 and a processing unit 102.
  • the first device 10 can be used to execute the method S101 in the above embodiment.
  • the first device 10 is equivalent to the network device exemplified in the method.
  • the first device 10 is equivalent to the terminal device.
  • the indication message sent by the first device 10 includes a first indication message and a second indication message.
  • the first indication message and the second indication message can refer to the examples in the above embodiment.
  • the embodiment of the present application also provides a second device, as shown in FIG8 , which is a schematic diagram of the structure of the second device 20 of the embodiment of the present application.
  • the second device 20 shown in FIG8 includes a transceiver unit 201 and a processing unit 202.
  • the second device 20 can be used to execute the method S102 in the above embodiment.
  • the second device 20 is equivalent to the terminal device exemplified in the method.
  • the second device 20 is equivalent to the network device.
  • the indication message sent by the second device 20 includes a first indication message and a second indication message.
  • the first indication message and the second indication message can refer to the examples in the above embodiment.
  • the network device provided in the embodiment of the application may be a base station, a transmission reception point (TRP), or a gNB.
  • the terminal device provided in the embodiment of the application may be a user terminal device (Customer Premise Equipment, CPE) or UE.
  • CPE Customer Premise Equipment
  • the division of units in the embodiments of the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • the functional units in the embodiments of the present application can be integrated into one processing unit, or each unit can exist physically separately, or two or more units can be integrated into one unit.
  • the transceiver unit 101 and the processing unit 102 can be the same unit or different units; the transceiver unit 201 and the processing unit 202 can be the same unit or different units.
  • the above-mentioned integrated units can be implemented in the form of hardware, such as a chip, or in the form of software functional units.
  • the embodiment of the present application further provides a first device 30, as shown in FIG. 9, which is a schematic diagram of the structure of the first device 30 of the embodiment of the present application.
  • the first device 30 includes a communication interface 301 and a processor 302 connected to the communication interface 301.
  • the communication interface 301 can be a device such as a transceiver.
  • the communication interface 301 can be used to execute the method in the above embodiment, and the processor 302 can be used to generate the indication information provided by the embodiment.
  • the communication interface 301 executes the operation of method S101, and the processor 302 is used to execute operations other than the transceiver operation performed by the first device 30 in the method.
  • the embodiment of the present application also provides a second device 40, as shown in Figure 10, which is a schematic diagram of the structure of the second device 40 of the embodiment of the present application.
  • the second device 40 includes a communication interface 401 and a processor 402 connected to the communication interface 401.
  • the communication interface 401 can be a device such as a transceiver.
  • the communication interface 401 can be used to execute the method in the above embodiment, and the processor 402 can be used to interpret the indication information provided by the embodiment.
  • the communication interface 401 executes the operation of method S101, and the processor 402 is used to execute operations other than the transceiver operation performed by the second device 40 in the method.
  • the embodiment of the present application further provides a device 50, as shown in FIG. 11, which is a schematic diagram of the structure of a device 50 provided in the embodiment of the present application.
  • the device 50 may include a processor 501, a memory 502 coupled to the processor 501, and a transceiver 503.
  • the transceiver 503 may be a communication interface, an optical module, etc., for receiving messages or data information, etc.
  • the processor 501 may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and a NP, for executing the forwarding processing related steps in the device exemplified in the above embodiment.
  • CPU central processing unit
  • NP network processor
  • the processor may also be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the processor 501 may refer to one processor or may include multiple processors.
  • the memory 502 may include a volatile memory, such as a random-access memory (RAM); the memory may also include a non-volatile memory, such as a read-only memory (ROM), a flash memory, a hard disk drive (HDD) or a solid-state drive (SSD); the memory 502 may also include a combination of the above-mentioned types of memories.
  • the memory 502 may refer to one memory or may include multiple memories for storing program instructions.
  • the memory 502 stores computer-readable instructions, and the computer-readable instructions include multiple software modules, such as a sending module, a processing module and a receiving module.
  • the processor 501 may perform corresponding operations according to the instructions of each software module.
  • the operation performed by a software module actually refers to the operation performed by the processor 501 according to the instructions of the software module.
  • the processor 501 may also store program codes or instructions for executing the embodiments of the present application. In this case, the processor 501 does not need to read the program codes or instructions from the memory 502.
  • the device 50 can be used to execute the methods in the above embodiments. Specifically, the device 50 can be used as a network device to execute the operation of method S101 executed by the first device, and the device 50 can be used as a terminal device to execute the operation of method S102 executed by the second device.
  • the transceiver 503 is used to execute one of sending the first indication information and the second indication information, wherein the first indication information is used to indicate one of the number of spatial layers 1 to 4, and the corresponding first precoding matrix and the first antenna port, and the second indication information is used to indicate one of the number of spatial layers 5 to 8, and the corresponding second precoding matrix.
  • the transceiver 503 is used to receive one of the first indication information and the second indication information.
  • An embodiment of the present application further provides a computer-readable storage medium, in which instructions are stored.
  • the computer-readable storage medium is executed on a processor, part or all of the operations in any of the methods described in any of the aforementioned embodiments are implemented.
  • An embodiment of the present application also provides a computer program product, including a computer program, which, when executed on a processor, implements part or all of the operations of any of the methods described in any of the aforementioned embodiments.
  • the present application also provides a system, as shown in FIG12, which is a schematic diagram of the structure of a system provided by the present application, including a first device 60 and a second device 70, wherein the first device 60 is a first device having a structure corresponding to FIG7, FIG9 or FIG11, and the second device 70 is a first device having a structure corresponding to FIG8, FIG10 or FIG11.
  • the above system is used to implement part or all of the operations in any of the methods described in any of the above embodiments.
  • the system provided in the embodiment of the present application can be applicable to, but not limited to, a Long Term Evolution (LTE) system, a NR system and future mobile communication systems, wherein the system includes a network device and a user device.
  • the network device and the user device have multiple transmitting antennas and receiving antennas.
  • An embodiment of the present application also provides another communication system, including at least one memory and at least one processor, the at least one memory stores instructions, and the at least one processor executes the instructions so that the communication system implements part or all of the operations of any of the methods described in any of the aforementioned embodiments.
  • the method provided in the embodiment of the present application can also be applied to similar wireless communication systems, such as WiFi, World Interoperability for Microwave Access (WiMAX), and MIMO systems related to the 3rd Generation Partnership Project (3GPP).
  • WiFi World Interoperability for Microwave Access
  • WiMAX World Interoperability for Microwave Access
  • 3GPP 3rd Generation Partnership Project
  • the present application also provides a chip, including an interface circuit and a processor.
  • the interface circuit is connected to the processor, and the processor is used to enable the chip to perform part or all of the operations in any of the methods described in any of the above embodiments.
  • An embodiment of the present application also provides a chip system, including: a processor, the processor is coupled to a memory, the memory is used to store programs or instructions, when the program or instructions are executed by the processor, the chip system implements part or all of the operations of any one of the methods described in any of the aforementioned embodiments.
  • the processor in the chip system may be one or more.
  • the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, etc.
  • the processor may be a general purpose The processor is used to read the software code stored in the memory.
  • the memory in the chip system may also be one or more.
  • the memory may be integrated with the processor or may be separately arranged with the processor, which is not limited in the embodiments of the present application.
  • the memory may be a non-transient processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip or may be arranged on different chips respectively.
  • the embodiments of the present application do not specifically limit the type of memory and the arrangement of the memory and the processor.
  • the chip system can be an FPGA, an ASIC, a system on chip (SoC), a CPU, an NP, a digital signal processing circuit (DSP), a microcontroller (MCU), a programmable logic device (PLD), or other integrated chips.
  • SoC system on chip
  • DSP digital signal processing circuit
  • MCU microcontroller
  • PLD programmable logic device
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of units is only a logical business division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each business unit in each embodiment of the present application can be integrated into a processing unit, or each unit can exist physically separately, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or in the form of software business units.
  • the integrated unit is implemented in the form of a software business unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • all or part of the technical solution of the present application can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions to enable a computer device (which can be a personal computer, server, or network device, etc.) to execute all or part of the steps of the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk and other media that can store program code.
  • Computer-readable media include computer storage media and communication media, wherein communication media include any media that facilitates the transmission of computer programs from one place to another.
  • Storage media can be any available media that a general or special-purpose computer can access.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输的指示方法、设备和系统,该方法包括:发送第一指示信息和第二指示信息中的一种,其中,所述第一指示信息指示第一空间层数目以及所述第一空间层数目对应的第一预编码矩阵和第一天线端口,所述第一空间层数目为空间层数目1到4之一;所述第二指示信息指示第二空间层数目以及所述第二空间层数目对应的第二预编码矩阵,所述第二空间层数目为空间层数目5到8之一,且能有效减少传输的开销。

Description

传输的指示方法、设备和系统
本申请要求于2022年11月05日提交中国专利局、申请号为202211380169.5、申请名称为“传输的指示方法、设备和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种传输的指示方法、设备和系统。
背景技术
在通信技术领域中,对于上行传输,终端设备的发送行为受到网络设备的调度,网络设备需要通过指示信息,指示终端设备发送上行数据对应的空间层数目(也称为传输流数目)、预编码矩阵如发送预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)以及对应的天线端口如解调参考信号(Demodulation Reference Signal,DMRS)端口,以使得终端设备在发送上行的数据时,在对应的时频等资源上,采用TPMI对应的预编码矩阵,按照指示的DMRS端口和空间层数目,对上行数据和DMRS进行发送。
基于现有的指示方法最大只能支持空间层数目1到4的上行传输,但随着设备能力的逐步提升,具备8天线能力的设备日益增多,这些设备可以支持空间层数目1到8的传输,鉴于目前还没有支持空间层数目1到8的传输的指示方法,因此,获得支持空间层数目1到8的传输的指示方法,且能有效节省该指示方法的传输开销成为亟待解决的问题。
发明内容
本申请提供了一种传输的指示方法、设备和系统,能够指示空间层数目1到8的传输,且能有效减少传输的开销。
第一方面,本申请提供了一种传输的指示方法,包括:
发送第一指示信息和第二指示信息中的一种,其中,所述第一指示信息指示第一空间层数目以及所述第一空间层数目对应的第一预编码矩阵和第一天线端口,所述第一空间层数目为空间层数目1到4之一;所述第二指示信息指示第二空间层数目以及所述第二空间层数目对应的第二预编码矩阵,所述第二空间层数目为空间层数目5到8之一。
其中,第一空间层数目(也可以称作rank)包括rank1、rank2、rank3或rank4,第二空间层数目包括rank5、rank6、rank7或rank8。考虑到更好地适配不同的信道条件或传输需求,对于每个rank对应预设了多个可选的预编码矩阵,因此指示消息中可以从所述多个可选的预编码矩阵中指示对应的预编码矩阵,如发送预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)。为了区分说明,第一指示消息指示rank1到rank4中任一空间层数目对应的第一预编码矩阵,第二指示消息指示rank5到rank8中任一空间层数目对应的第二预编码矩阵。同时,为了估计数据传输对应的等效信道,用于对接收的信号进行检测,指示消息还会指示天线端口,天线端口是虚拟的端口,可以是一个解调参考信号(Dedicated Demodulation Reference Signal,DMRS)端口,本申请中天线端口可以是DMRS端口索引组合,同理,为了区分说明,第一指示消息指示rank1到rank4中任一空间层数目对应的第一天线端口,第二指示消息指示rank5到rank8中任一空间层数目对应的第二天线端口。
进一步地,指示信息可以是信令中的一部分字段或者一部分信息。所述信令可以是下行控制信息(Downlink Control Information,DCI)信令,还可以是其他的信令,如上行控制信息(Uplink Control Information,UCI)信令,无线资源控制(Radio Resource Control,RRC)信令等。如果是DCI信令,DCI信令的格式可以是DCI format 0_0,DCI format 0_1,DCI format 0_2,还可以是DCI format 1_0,DCI format 1_1或者DCI format 1_2。
第一指示信息和第二指示信息的对于字段的划分方式不同,但能够保证在不同rank取值,指示信息的字段的总开销相同,从而可以避免第二设备终端多次对控制信令的盲测,以降低处理的复杂度。
在一种可能实现的方式中,所述第二指示信息还指示所述第二空间层数目对应的第二天线端口。
对于每个rank,如rank5、rank6、rank7或rank8,预先约定好分别对应一个可选的DMRS端口索引组 合的场景,第二指示信息不用指示对应的第二天线端口即第二DMRS端口索引组合,对于rank5、rank6、rank7或rank8中的一个或几个rank中的每一个rank取值,对应有多个可选的DMRS端口索引组合的情况,如rank7对应两个可选的DMRS端口索引组合,rank5、rank6或rank8预先约定好分别对应一个可选的DMRS端口索引组合的情况,第二指示信息指示对应多个可选的DMRS端口索引组合的rank时,需要指示对应的第二DMRS端口索引组合,即,第二指示信息对应rank7时,需指示第二DMRS端口索引组合,对应rank5、rank6或rank8时,不用指示。
在一种可能实现的方式中,第一指示信息包括第一字段和第二字段,所述第一字段指示第一参数集合中的一项,所述第一参数集合的每一项包括空间层数目和预编码矩阵,所述第一参数集合对应所述空间层数目1到4,所述第二字段指示第二参数集合中的一项,所述第二参数集合的每一项包括天线端口,所述空间层数目1到4中每个所述空间层数目对应一个所述第二参数集合;第二指示信息包括第三字段和第四字段,所述第三字段指示第三参数集合中的一项,所述第三参数集合的每一项包括预编码矩阵,所述空间层数目5到8中每个所述空间层数目对应一个所述第三参数集合,所述第四字段指示第四参数集合中的一项,所述第四参数集合的每一项包括天线端口,并指示空间层数目,其中,所述第四参数集合对应所述空间层数目5到8。
所述预编码矩阵是可选的预编码矩阵或者可选预编码矩阵的索引,所述天线端口是可选的天线端口或者可选天线端口的索引。所述第一预编码矩阵可以是所述预编码矩阵中的一项,所述第二预编码矩阵可以是所述预编码矩阵中的一项。所述第一天线端口可以是所述天线端口中的一项,所述第二天线端口可以是所述天线端口中的一项。具体地,所述第一预编码矩阵可以是第一参数集合包含的所述预编码矩阵中的一项。所述第一天线端口可以是第一空间层数目对应的第二参数集合包含的所述天线端口中的一项。所述第二预编码矩阵可以是第二空间层数目对应的第三参数集合包含的所述预编码矩阵中的一项。所述第二天线端口可以是第四参数集合包含的所述天线端口中的一项。
所述第一预编码矩阵可以是第一空间层数目对应的第五参数集合包含的所述预编码矩阵中的一项。所述第一天线端口可以是第一空间层数目对应的第六参数集合包含的所述天线端口中的一项。所述第二预编码矩阵可以是第二空间层数目对应的第七参数集合或者第八参数集合包含的所述预编码矩阵中的一项。所述第二天线端口可以是第八参数集合包含的所述天线端口中的一项。
进一步地,所述第二字段指示第二参数集合中的一项也可以理解为所述第二字段指示所述第一空间层数目对应的第二参数集合中的一项。所述第二参数集合对应所述空间层数目1到4,当第一指示信息对应空间层数目1,所述第二字段指示空间层数目1对应的第二参数集合中的一项,空间层数目2到空间层数目4以此类推;所述第三字段指示第三参数集合中的一项也可以理解为所述第三字段指示所述第二空间层数目对应的第三参数集合中的一项。所述第三参数集合对应所述空间层数目5到8,当第一指示信息对应空间层数目5,所述第三字段指示空间层数目5对应的第三参数集合中的一项,空间层数目6到空间层数目8以此类推。
由于rank 5到rank8与rank 1到rank4相比,可选的预编码矩阵数目,以及可选天线端口索引组合数目的明显减少,因此,通过不同的参数集合归类后,利用rank 1到rank4和rank 5到rank8对应指示信息可选参数数目不均等的特征,分别通过第一指示信息和第二指示信息进行指示,能够节省指示信息的开销。如,第二指示信息需要从数目较少的可选的TMPI和可选的DMRS端口索引组合中指示选择的TPMI和DMRS端口索引组合,节省的开销可以用于承载其需要传输的第二个传输块(Transport Block,TB)的相应信息,进而节省整体的第二指示信息的开销。
在一种可能实现的方式中,所述第一指示信息和所述第二指示信息均包括第五字段和第六字段,第五字段指示第一编码调制方式(Modulation and coding scheme,MCS)信息、第一冗余版本(Redundancy Version,RV)信息和第一新数据指示(New Data Indicator,NDI)信息,第六字段指示第二MCS信息、第二RV信息,所述第二指示信息还包括第七字段,所述第七字段指示第二NDI;所述第一指示信息中,所述第五字段和所述第六字段还指示使能的TB(或码字(codeword,CW))个数为一个,所述第二指示信息中,所述第五字段和所述第六字段还指示使能的TB(或CW)个数为两个。
由于第一指示信息和第二指示信息对应的rank取值区间不同,不同取值区间的rank对应不同个数的TB(或CW),即当数据传输时使能一个TB(或CW),第一指示信息指示一个TB对应的MCS、RV和NDI信息,当数据传输时使能两个TB(或CW),第二指示信息指示两个TB对应的MCS、RV和NDI信息。因此接收到指示信息的设备,可以根据指示信息中包含的MCS、RV和NDI信息确定一个TB(或 CW)被使能,则确定该指示信息是第一指示信息,或者,根据指示信息中包含的MCS、RV和NDI信息,确定两个TB(或CW)被使能,则确定该指示信息是第二指示信息。
在一种可能实现的方式中,所述第一指示信息和所述第二指示信息均包括第八字段,所述第八字段指示所述第一空间层数目或所述第二空间层数目的取值。
基于rank值所属于的rank的取值范围不同,指示信息需要指示的内容不同,在第一指示信息和第二指示信息中均增加的了确定rank的字段,该字段的数值对应空间层数目,若第一设备发送第一指示信息,则rank字段中写入1到4中的对应取值,发送第二指示信息,则rank字段中写入5到8中的对应取值,同理,第二设备接收到指示信息时,也可根据对应的rank取值在1到4之间确定指示信息为第一指示信息,或根据对应的rank取值在5到8之间确定指示信息为第二指示信息。
在一种可能实现的方式中,所述第一指示信息包括第一字段和第二字段,所述第一字段指示第五参数集合中的一项,所述第五参数集合的每一项包括预编码矩阵,所述空间层数目1到4中每个空间层数目对应一个所述第五参数集合,所述第二字段指示第六参数集合中的一项,所述第六参数集合的每一项包括天线端口,所述空间层数目1到4中每个所述空间层数目对应一个所述第六参数集合;所述第二指示信息包括第三字段,所述第三字段指示第七参数集合中的一项,所述第七参数集合的每一项包括预编码矩阵,所述空间层数目5到8中每个所述空间层数目对应一个所述第七参数集合。
进一步地,所述第一字段指示第五参数集合中的一项也可以理解为所述第一字段指示所述第一空间层数目对应的第五参数集合中的一项。所述第二字段指示第六参数集合中的一项也可以理解为所述第二字段指示所述第一空间层数目对应的第六参数集合中的一项。所述第三字段指示第七参数集合中的一项也可以理解为所述第三字段指示所述第二空间层数目对应的第七参数集合中的一项。所述第五参数集合和所述第六参数集合对应所述空间层数目1到4,当第一指示信息对应空间层数目1,所述第一字段指示空间层数目1对应的第五参数集合中的一项,所述第二字段指示空间层数目1对应的第六参数集合中的一项,空间层数目2到空间层数目4以此类推;所述第七参数集合对应所述空间层数目5到8,当第一指示信息对应空间层数目5,所述第三字段指示空间层数目5对应的第七参数集合中的一项,空间层数目6到空间层数目8以此类推。
在一种可能实现的方式中,所述第一指示信息包括第一字段和第二字段,所述第一字段指示第五参数集合中的一项,所述第五参数集合的每一项包括预编码矩阵,所述空间层数目1到4中每个空间层数目对应一个所述第五参数集合,所述第二字段指示第六参数集合中的一项,所述第六参数集合的每一项包括天线端口,所述空间层数目1到4中每个所述空间层数目对应一个所述第六参数集合;第二指示信息包括第三字段,所述第三字段指示第八参数集合中的一项,所述第八参数集合的每一项包括预编码矩阵和所述第二天线端口,所述空间层数目5到8中每个所述空间层数目对应一个所述第八参数集合。
进一步地,所述第一字段指示第五参数集合中的一项也可以理解为所述第一字段指示所述第一空间层数目对应的第五参数集合中的一项。所述第二字段指示第六参数集合中的一项也可以理解为所述第二字段指示所述第一空间层数目对应的第六参数集合中的一项。所述第三字段指示第八参数集合中的一项也可以理解为所述第三字段指示所述第二空间层数目对应的第八参数集合中的一项。所述第五参数集合和所述第六参数集合对应所述空间层数目1到4,当第一指示信息对应空间层数目1,所述第一字段指示空间层数目1对应的第五参数集合中的一项,所述第二字段指示空间层数目1对应的第六参数集合中的一项,空间层数目2到空间层数目4以此类推;所述第八参数集合对应所述空间层数目5到8,当第一指示信息对应空间层数目5,所述第三字段指示空间层数目5对应的第八参数集合中的一项,空间层数目6到空间层数目8以此类推。
在一种可能实现的方式中,所述第一指示信息和所述第二指示信息均包括第五字段,所述第五字段指示第一MCS信息、第一RV信息和第一NDI信息;所述第二信息还包括第六字段,所述第六字段指示第二MCS信息、第二RV信息和第二NDI信息。
第二方面,本申请提供了一种传输的指示方法,包括:
接收第一指示信息和第二指示信息中的一种,其中,所述第一指示信息指示第一空间层数目以及所述第一空间层数目对应的第一预编码矩阵和第一天线端口,所述第一空间层数目为空间层数目1到4之一;所述第二指示信息指示第二空间层数目以及所述第二空间层数目对应的第二预编码矩阵,所述第二空间层数目为空间层数目5到8之一。
在一种可能实现的方式中,所述第二指示信息还指示所述第二空间层数目对应的第二天线端口。
在一种可能实现的方式中,第一指示信息包括第一字段和第二字段,所述第一字段指示第一参数集合中的一项,所述第一参数集合的每一项包括空间层数目和预编码矩阵,所述第一参数集合对应所述空间层数目1到4,所述第二字段指示第二参数集合中的一项,所述第二参数集合的每一项包括天线端口,所述空间层数目1到4中每个所述空间层数目对应一个所述第二参数集合;第二指示信息包括第三字段和第四字段,所述第三字段指示第三参数集合中的一项,所述第三参数集合的每一项包括预编码矩阵,所述空间层数目5到8中每个所述空间层数目对应一个所述第三参数集合,所述第四字段指示第四参数集合中的一项,所述第四参数集合的每一项包括天线端口,并指示空间层数目,其中,所述第四参数集合对应所述空间层数目5到8。
进一步地,所述第二参数集合对应所述空间层数目1到4,当第一指示信息对应空间层数目1,所述第二字段指示空间层数目1对应的第二参数集合中的一项,空间层数目2到空间层数目4以此类推;所述第三参数集合对应所述空间层数目5到8,当第一指示信息对应空间层数目5,所述第三字段指示空间层数目5对应的第三参数集合中的一项,空间层数目6到空间层数目8以此类推。
在一种可能实现的方式中,所述第一指示信息和所述第二指示信息均包括第八字段,所述第八字段指示所述第一空间层数目或所述第二空间层数目的取值。
在一种可能实现的方式中,所述第一指示信息和所述第二指示信息均包括第五字段和第六字段,第五字段指示第一编码调制方式MCS信息、第一冗余版本RV信息和第一新数据指示NDI信息,第六字段指示第二MCS信息、第二RV信息,所述第二指示信息还包括第七字段,所述第七字段指示第二NDI;所述第一指示信息中,所述第五字段和所述第六字段还指示使能的传输块TB个数为一个,所述第二指示信息中,所述第五字段和所述第六字段还指示使能的TB个数为两个。
在一种可能实现的方式中,所述第一指示信息包括第一字段和第二字段,所述第一字段指示第五参数集合中的一项,所述第五参数集合的每一项包括预编码矩阵,所述空间层数目1到4中每个空间层数目对应一个所述第五参数集合,所述第二字段指示第六参数集合中的一项,所述第六参数集合的每一项包括天线端口,所述空间层数目1到4中每个所述空间层数目对应一个所述第六参数集合;所述第二指示信息包括第三字段,所述第三字段指示第七参数集合中的一项,所述第七参数集合的每一项包括预编码矩阵,所述空间层数目5到8中每个所述空间层数目对应一个所述第七参数集合。
进一步地,所述第五参数集合和所述第六参数集合对应所述空间层数目1到4,当第一指示信息对应空间层数目1,所述第一字段指示空间层数目1对应的第五参数集合中的一项,所述第二字段指示空间层数目1对应的第六参数集合中的一项,空间层数目2到空间层数目4以此类推;所述第七参数集合对应所述空间层数目5到8,当第一指示信息对应空间层数目5,所述第三字段指示空间层数目5对应的第七参数集合中的一项,空间层数目6到空间层数目8以此类推。
在一种可能实现的方式中,所述第一指示信息包括第一字段和第二字段,所述第一字段指示第五参数集合中的一项,所述第五参数集合的每一项包括预编码矩阵,所述空间层数目1到4中每个空间层数目对应一个所述第五参数集合,所述第二字段指示第六参数集合中的一项,所述第六参数集合的每一项包括天线端口,所述空间层数目1到4中每个所述空间层数目对应一个所述第六参数集合;第二指示信息包括第三字段,所述第三字段指示第八参数集合中的一项,所述第八参数集合的每一项包括预编码矩阵和天线端口,所述空间层数目5到8中每个所述空间层数目对应一个所述第八参数集合息包括第三字段,所述第三字段指示第八参数集合中的一项,所述第八参数集合的每一项包括预编码矩阵和天线端口,所述第八参数集合对应所述空间层数目5到8。
进一步地,所述第五参数集合和所述第六参数集合对应所述空间层数目1到4,当第一指示信息对应空间层数目1,所述第一字段指示空间层数目1对应的第五参数集合中的一项,所述第二字段指示空间层数目1对应的第六参数集合中的一项,空间层数目2到空间层数目4以此类推;所述第八参数集合对应所述空间层数目5到8,当第一指示信息对应空间层数目5,所述第三字段指示空间层数目5对应的第八参数集合中的一项,空间层数目6到空间层数目8以此类推。
在一种可能实现的方式中,所述第一指示信息和所述第二指示信息均包括第五字段,所述第五字段指示第一MCS信息、第一RV信息和第一NDI信息;所述第二信息还包括第六字段,所述第六字段指示第二MCS信息、第二RV信息和第二NDI信息。
第三方面,本申请提供一种第一设备,包括至少一个处理器和收发器,所述至少一个处理器和所述收发器耦合,其特征在于,所述至少一个收发器执行程序或指令时,所述控制装置实现如第一方面以及第一 方面任一可能的实现方式的部分或全部操作。该第一设备可以是终端设备或网络设备,也可以是终端设备或网络设备中的芯片。
第四方面,本申请提供一种第二设备,包括至少一个处理器和收发器,所述至少一个处理器和所述收发器耦合,其特征在于,所述至少一个收发器执行程序或指令时,所述控制装置实现如第二方面以及第二方面任一可能的实现方式中的部分或全部操作。该第二设备可以是终端设备或网络设备,也可以是终端设备或网络设备中的芯片。
第五方面,本申请提供一种通信设备,所述通信设备包括通信端口和处理器,所述通信端口用于执行前述任一方面所述的方法以及任一方面的任一可能的实现方式中所涉及的收发操作,所述处理器用于执行以上任一方面所述的方法以及任一方面的任一可能的实现方式中所涉及的除收发操作之外的其它操作。例如,第五方面所述的通信设备作为第一设备执行第一方面所述的方法时,所述处理器用于生产第一指示信息和第二指示信息中的一种,其中,所述第一指示信息用于指示空间层数目1到4之一,及对应的第一预编码矩阵和第一天线端口;所述第二指示信息用于指示空间层数目5到8之一,及对应的第二预编码矩阵。第五方面所述的通信设备作为第二设备执行第二方面所述的方法时,所述处理器用于解读所述第一指示信息和所述第二指示信息中的一种。该通信设备可以是终端设备或网络设备,也可以是终端设备或网络设备中的芯片。
第六方面,本申请提供了一种通信方法,该方法包括第一方面或者第一方面任一可能的实现方式中的方法,以及第二方面或者第二方面任一可能的实现方式中的方法。
第七方面,本申请提供了一种系统,该系统包括:第一设备和第二设备,该第一设备用于执行第一方面以及第一方面任一可能的实现方式中的部分或全部操作;所述第二设备用于执行第二方面以及第二方面任一可能的实现方式中的部分或全部操作。
第八方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在处理器上运行时,实现前述任一方面所述的方法以及前述任一方面的任一可能的实现方式中所包括的部分或全部操作。
第九方面,本申请提供了一种计算机程序产品,所述计算机程序产品包含指令,当其在处理器上运行时,实现前述任一方面所述的方法以及前述任一方面的任一可能的实现方式中所包括的部分或全部操作。
第十方面,本申请提供了一种芯片,包括:端口电路和处理器。所述端口电路和所述处理器相连接,所述处理器用于使得所述芯片执行前述任一方面所述的方法以及前述任一方面的任一可能的实现方式中所包括的部分或全部操作。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的传输的指示方法的流程示意图;
图1-A是本申请实施例提供的另一种传输的指示方法的流程示意图;
图2是一种DCI的示意图;
图3是本申请实施例提供的第一指示信息的示意图;
图4是本申请实施例提供的第二指示信息的示意图;
图5是本申请实施例提供的另一种第一指示信息的示意图;
图6是本申请实施例提供的另一种第二指示信息的示意图;
图7是本申请实施例的第一设备10的结构示意图;
图8是本申请实施例的第二设备20的结构示意图;
图9是本申请实施例的第一设备30的结构示意图;
图10是本申请实施例的第二设备40的结构示意图;
图11是本申请实施例提供的一种设备50的结构示意图;
图12是本申请实施例提供的一种系统的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
为了便于理解,下面先对本申请实施例所使用到的相关名词或术语进行解释说明,说明以适应场景中的设备设置于发送端和接收端为例:
1、DMRS
是接收端进行等效信道估计的参考信号,假设DMRS信号为s,在通常情况下,DMRS与传输数据进行相同的预编码处理(即采用相同的预编码矩阵P),那么接收端等效接收信号为y=HPs+n,接收端可以基于DMRS估计等效信道HP进行数据的检测。
2、解调DMRS
用于估计数据信道,如物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或物理下行共享信道(Physical Downlink Shared Channel,PDSCH),或估计控制信道,如物理上行控制信道(Physical Uplink Control Channel,PUCCH)或物理下行控制信道(Physical Downlink Control Channel,PDCCH)经历的等效信道矩阵,从而用于数据的检测和解调。以PUSCH为例,DMRS通常与发送的数据信号采用相同的预编码,从而保证DMRS与数据经历相同的等效信道。假设发送端发送的DMRS向量为s,发送的数据符号向量为x,DMRS与数据进行相同的预编码操作(即乘以相同的预编码矩阵P),接收端相应的接收信号向量可以表示为:
数据:y=HPx+n=H x+n
DMRS:r=HPs+n=H s+n
其中,对于数据信号和参考信号,经历的等效信道均为H。接收端基于已知的DMRS向量s,利用信道估计算法(如LS信道估计,MMSE信道估计等)可以获得对等效信道H的估计,再基于等效信道完成数据信号的多输入多输出(Multiple Input and Multiple Output,MIMO)均衡和后续解调。
由于DMRS用于估计等效信道H,其维度为NR×R,其中NR为接收天线数目,R为空间层数目(也称为传输层数目,传输流数目,数据流数目或rank)。通常来说,一个DMRS端口与一个rank相对应,对于rank为R的MIMO传输,需要的天线端口(antenna port)也可以称为DMRS端口数目为R。为了保证信道估计的质量,通常不同DMRS端口为正交端口,不同DMRS端口对应的DMRS符号在频域、时频或码域正交。
3、TPMI
对于MIMO系统,为了有效保证上行数据的传输性能,通常会对上行多流发送信号进行预编码处理。假设终端侧发送的数据符号向量为x=[x1,x2,…,xL]T,其中xl表示第l个空间层对应的发送数据符号,假设预编码矩阵为W,预编码后的发送信号向量可以表示为:
其中,表示第j个发送天线对应的发送符号。在一些实际使用的场景中,以上行传输是由终端设备向网络设备发送数据等为例,终端设备采用的预编码矩阵通常是由网络设备通过指示信息指示给终端设备的,综合考虑到预编码矩阵的指示开销和性能,对于codebook based系统,预编码矩阵W通常从预设的预编码矩阵集合(也称为码本codebook)中选取。以新空口(New Radio,NR)协议为例,对于单天线单 传输流传输系统,W=1。对于多天线系统,网络设备给终端设备发送指示信息指示TPMI,即指示需要使用的上行预编码矩阵是预设的预编码矩阵集合的哪一个。如,NR协议针对4个发送天线,rank1到rank4定义了不同的码本,如表1所示,码本可以包括4个发送天线、单传输流即rank1对应的预编码矩阵集合,如表2所示,码本可以包括4个发送天线、传输流数目2即rank2对应的预编码矩阵集合。在进一步支持发送天线数目为8,最大rank 8的预编码矩阵码本时,码本的定义方式可以同目前表1和表2所示的方式一样,每个预设的预编码矩阵与一个TPMI索引对应,且传输流数目的不同取值对应不同的表(码本),在此不展开详述,本申请实施例提供的对应关系均为举例说明,不以表中的数据为限定。
表1
表2

在一些实例中,由于终端设备的体积、成本等不同,终端设备的天线架构和能力也具有差异,因此基于终端设备不同的发送天线能力,预设的预编码矩阵集合中包含的预编码矩阵可以分为所有发送天线非相干传输(Non Coherent)、所有发送天线支持部分相干传输(Partial Coherent)和所有发送天线全相干传输(Full Coherent),其中,天线能力为所有发送天线非相干传输,可以对应表1中TPMI index=0~3,对应表2中TPMI索引=0~5,天线能力为所有发送天线支持部分相干传输,可以对应表1中TPMI索引=4~11,对应表2中TPMI索引=6~13,天线能力为所有发送天线全相干传输,对应表1中TPMI索引=12~27,对应表2中TPMI索引=14~21,等等,终端设备如用户设备(User Equipment,UE)会将天线能力通知网络设备,如基站,对于不同的UE天线能力,需要指示的TPMI取值范围不同,基站确定UE的天线能力后,对应指示TPMI。
图1是本申请实施例提供的传输的指示方法的流程示意图,如图1所示,该方法包括:
S101、第一设备发送第一指示信息和第二指示信息中的一种,其中,第一指示信息指示第一空间层数目以及第一空间层数目对应的第一预编码矩阵和第一天线端口,第一空间层数目为空间层数目1到4之一;第二指示信息指示第二空间层数目以及第二空间层数目对应的第二预编码矩阵,第二空间层数目为空间层数目5到8之一。
进一步地,第二指示信息还用于指示第二空间层数目对应的第二天线端口。
在本申请实施例中,第一指示信息和第二指示信息均可以统称为指示信息,第一空间层数目包括rank1、rank2、rank3或rank4,第二空间层数目包括rank5、rank6、rank7或rank8。
在一些示例中,指示信息可以进行TPMI或预编码矩阵指示,也可以用于信道探测参考信号(Sounding Reference Signal,SRS)资源指示(Sounding Resource indicator,SRI),例如对于本发明中的方法中将TPMI替换为SRI,如第一指示信息指示rank1到rank4中的一个,及对应的第一SRI和第一天线端口,第二指示信息指示rank5到rank8中的一个,及对应的第二SRI和第二天线端口。指示信息指示天线端口可以是DMRS端口索引组合,还可以是其他的参考信号端口,如SRS端口,相位跟踪参考信号(Phase-Tracking Reference Signals,PTRS)端口,信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)端口等,其中,DMRS端口在本申请实施例中,代表的是DMRS端口索引组合,第一指示信息指示的第一天线端口是指一种DMRS端口索引组合。同理,本申请中提供的第二天线端口也指示了一种DMRS端口索引组合。本申请实施例以指示信息进行TPMI和DMRS端口索引组合进行说明,其他的指示信息及端口均可参照本申请实施例的各例,不展开赘述,但均在本申请保护范围之内。
图1-A是本申请实施例提供的另一种传输的指示方法的流程示意图,如图1-A所示,该方法包括:
S102、第二设备接收第一指示信息和第二指示信息中的一种,其中,第一指示信息指示第一空间层数目以及第一空间层数目对应的第一预编码矩阵和第一天线端口,第一空间层数目为空间层数目1到4之一;第二指示信息指示第二空间层数目以及第二空间层数目对应的第二预编码矩阵,第二空间层数目为空间层数目5到8之一。
举例来说,第一设备发送第一指示信息,第二设备对应接收第一指示信息,同理,第一设备发送第二指示信息,第二设备对应接收第二指示信息。第二设备接收到的指示信息携带的内容和指示的内容与第一设备发送的相同。
本申请实施例的方法以第一设备是第二设备的上行传输设备为例进行说明,如第一设备是网络设备,第二设备是终端设备,本方法即本方法中提供的指示信息也可以应用在第一设备是第二设备的下行传输设备的场景中,如第一设备是终端设备,第二设备是网络设备,发送下行指示信息可以参照本申请实施例上行传输发送指示信息的实施例类推得到,不再展开赘述,但在本申请保护范围之内。
举例来说,第一设备是网络设备,第二设备是终端设备,第一空间层数目1到4也可以表示为rank1到 rank4,包括rank1、rank2、rank3和rank4,第二空间层数目5到8也可以表示为rank5到rank8,包括rank5、rank6、rank7和rank8,预编码矩阵包括TPMI,以第一预编码矩阵为第一TPMI,第二预编码矩阵为第二TPMI举例,天线端口包括DMRS端口,以第一天线端口为第一DMRS端口,第二天线端口为第二DMRS端口举例。
在一种可能实现的方式中,可以将NR协议支持的上行rank,TPMI以及DMRS端口指示方法从最大rank4扩展为最大rank 8的上行传输,由于一个CW(或者一个TB)最大对应4个空间层,因此,网络设备对于指示调度的数据对应的rank是rank 1到rank4之一时,使能的CW(或TB)数为一个,在数据传输的时候时传输一个TB或对应一个MCS,对于指示调度的数据对应的rank是rank 5到rank8之一时,使能的CW(或TB)为两个,在数据传输的时候时传输两个TB或对应两个MCS。进一步地,本申请实施例中提供的CW也可以是TB,不以文中描述为限定。
在一些实际的场景中,DCI用于指示上行或下行数据传输(如PUSCH或PDSCH)对应调度的传输参数,如数据传输对应的rank,预编码矩阵,DMRS端口等,图2是一种DCI的示意图,DCI中包含如图2所示,用于指示MCS、RV、NDI、TPMI、rank和DMRS端口索引组合对应的字段,在对应调度的数据为rank1到rank8中任一rank取值时,或者该DCI对应指示的rank取值为rank1到rank8中任一个rank值时,DCI中都包括两个CW(或TB)对应的MCS信息、RV信息和NDI信息的字段,还包括TPMI+rank的字段和DMRS端口的字段。这种指示方式,对于在rank1到rank4中任一rank传输时,只需要指示一个CW(或TB)的对应的MCS信息、RV信息和NDI信息的传输需求来说,浪费了一个CW(或TB)的MCS信息、RV信息和NDI信息的字段占的比特开销。参照图2举例来说,DCI中TB1对应的MCS信息(图中标记为MCS TB1,占5比特)、RV信息(图中标记为RV TB1,占2比特)和NDI信息(图中标记为NDI TB1,占1比特),TB2对应的MCS信息(图中标记为MCS TB2,占5比特)、RV信息(图中标记为RV TB2,占2比特)和NDI信息(图中标记为NDI TB2,占1比特),TPMI+rank(占8比特)和DMRS端口(占4比特),在rank1到rank4中任一rank传输时,浪费一个MCS信息、RV信息和NDI信息的字段占的比特开销,即8比特。且对于rank1到rank4,和rank5和rank8这两个rank取值区间来说,传输时需要的对应的TPMI和DMRS端口索引组合也未加区分,指示消息每次传输时,都需满足两个区间传输要求的最大比特开销,按照上述举例,每次都需要28比特的开销,造成指示的开销较大。
为了有效的减少指示的开销,本申请实施例提供的指示信息如图3所示和图4所示,图3是本申请实施例提供的第一指示信息的示意图,图4是本申请实施例提供的第二指示信息的示意图,本申请实施例及附图中各字段所占用的比特开销仅为示例,不以此为限制,指示信息可以是DCI中的一部分,可以通过指示信息携带的信息区分出该信息指示rank属于rank 1到rank4区间,是第一指示信息,或者,通过指示信息携带的信息区分出该信息指示rank属于rank5到rank8区间,是第二指示信息,进而根据预设的第一指示信息或第二指示信息的格式和指示的内容获得对应的信息。
如图3所示,第一指示信息,包括第一字段(可以是图3所示的预编码信息和空间层(Precoding information and#layers),也可以写作(预编码信息和空间层数目)Precoding information and number of layers字段,占8比特)和第二字段(可以是图3所示的天线端口(antenna port),占4比特),其中,第一字段指示第一参数集合中的一项,第一参数集合的每一项包括空间层数目和预编码矩阵,如TPMI,进一步地,第一字段指示第一参数集合中的一项时,指示的可以是预编码矩阵,也可以是预编码矩阵的索引。
第二字段指示第二参数集合中的一项,第二参数集合的每一项包括天线端口,如DMRS端口,空间层数目1到4中每个空间层数目对应一个第二参数集合。进一步地,第二字段指示第二参数集合中的一项时,指示的可以是DMRS端口索引组合。
本申请实施例中,参数集合里,如第一参数集合包含的预编码矩阵对应是rank 1到rank4的可选预编码矩阵,天线端口对应rank 1到rank4的可选天线端口,如可选DMRS端口索引组合,第二参数集合包含的预编码矩阵对应是rank 5到rank8的可选预编码矩阵,天线端口对应rank 5到rank8的可选天线端口,如可选DMRS端口索引组合等。
可选地,本申请提供的第一指示信息和第二指示信息通过指示一个索引,指示预编码矩阵或者DMRS端口索引组合。进一步地,本申请提供的参数集合可以是如实施例中列举的表格,也可以是其他的形式。
第一参数集合可以如表3所示,每一项中包括一个rank和一个TPMI的取值,
表3是rank 1、rank2、rank3和rank4分别对应TPMI的取值的集合,表3中,位字段映射索引(Bit field mapped to index)为指示信息指示的索引列,从表3左边数起,第一列为所有发送天线可以全相干传输时指示信息指示的索引,第二列为终端支持全相干传输时可支持的rank取值和TPMI的索引,第三列为所有发送 天线支持部分相干传输时指示信息指示的索引,第四列为终端支持部分相干传输能力时可支持的rank取值和TPMI的索引,第五列为所有发送天线非相干传输时指示信息指示的索引,第六列为终端具有非相干传输时可支持的rank取值和TPMI的索引,进一步地,确定TPMI的索引后可以根据对应的rank取值和TPMI的索引,参照上例的预编码矩阵集合确定TPMI,如,假设终端能力对应是支持部分相干传输,第一字段指示第一参数集合中的一项是位字段映射索引为5,可以根据该指示得到1layer:TPMI=5,即rank1和TPMI5,对应查找rank1的预编码矩阵,即表1,得到TPMI5对应的
表3








参照表3,rank 1到rank4的TPMI索引和rank的取值联合编码在一张表格中,DCI指示时,通过一个索引就可以得到TPMI的索引和rank的取值,以全相干码本为例,对于rank 1到rank4,rank和TPMI索引的候选值有248种,需要8比特指示开销。
对于第二参数集合,如表4到表7所示,其中每一项即每一行包括一个DMRS端口索引组合的相关参数,表4是rank 1对应DMRS端口索引组合的集合,表5是rank 2对应DMRS端口索引组合的集合,表6是rank 3对应DMRS端口索引组合的集合,表7是rank4对应DMRS端口索引组合的集合,表4到表7中,Value索引列,可以用于第二字段指示第二参数集合中的某一项,第二列没有数据映射的DMRS CDM组的数量(Number of DMRS CDM group(s)without data),表示当前不能复用数据的码分复用(Code Division Multiplexing,CDM)的数目,该字段的取值范围为含义如下:
值为1时,表示当前CDM组0对应的RE不能复用数据;
值为2时,表示当前CDM组0和CDM组1对应的RE,都不能复用数据;
值为3时,表示当前CDM组0、CDM组1和CDM组2对应的RE,都不能复用数据。
其中,字段的取值表示根据二进制码解读出的数值,第三列DMRS端口(DMRS port(s)),该列的中用多少比特取决于表格中值的范围,第四列DMRS占用的正交频分复(Orthogonal Frequency Division Multiplexing,OFDM)符号数目(Number of front-load symbols)。表4到表7均以dmrs-Type=1,最大DMRS符号数为2为例,对第二参数集合中各参数进行示例,第二字段对应指示开销为4比特。对于dmrs-Type=1,最大DMRS符号数为1为,第二字段对应指示开销为3比特,对于dmrs-Type=2,最大DMRS符号数为1为,第二字段对应指示开销为4比特,对于dmrs-Type=2,最大DMRS符号数为2为,第二字段对应指示开销为5比特。
表4
表5
表6
表7
在一些实例中,第二设备接收到第一指示信息后,可以基于第一字段得到rank值,选择对应的DMRS端口索引组合的集合表,如得到rank4,对应在表7中根据第二字段的指示,如第二字段指示的索引值为3,则得到没有数据映射的DMRS CDM组的数量为2,DMRS端口为0,2,4,6,DMRS占用的OFDM符号数目为2。
对于rank5到rank8的指示,参照图4所示,第二指示信息包括第三字段和第四字段,第三字段(可以是如图4所示的预编码信息(Precoding information)字段,占5比特)指示第三参数集合中的一项,第三参数 集合的每一项包括预编码矩阵,如TPMI,空间层数目5到8中每个空间层对应一个第三参数集合,第四字段(可以是图4所示的天线端口和空间层(antenna port and#layers),也可以写作天线端口和空间层数目(antenna port and number of layers)字段,占3比特)指示第四参数集合中的一项,第四参数集合的每一项包括天线端口,如DMRS端口索引组合,并指示空间层数目,其中,第四参数集合对应空间层数目5到8。也就是说,第四参数集合可以如表8所示,每一项即每一行包括一个DMRS端口的相关参数或者DMRS端口索引组合,表8是rank 5到rank8对应DMRS端口索引组合的集合,表8中的相关参数可以参照表4到表7,不同的是,指示信息若指示第四参数激活的某一项,在该项对应的表8的DMRS端口列中,可以确定该项对应指示的空间层数目,即DMRS port(s)中包含的DMRS端口索引组合数目为对应的空间层数目,即,表8中值0和1所在的候选行对应rank5,值2和3所在的候选行对应rank6,值4和5所在的候选行对应rank7,Value6和7所在的候选行对应rank8,举例来说,如果第二指示信息的第四字段对应指示了值为3,那么对应的DMRS端口是0,1,2,3,4,6,DMRS端口索引组合数目为6,对应rank6。
表8
第三参数集合可以如表9到表12所示,每个第三参数集合分别对应一个rank的TPMI的索引,表9是rank 5对应TPMI的索引集合,表10是rank 6对应TPMI的索引集合,表11是rank 7对应TPMI的索引集合,表12是rank8对应TPMI的索引集合。表9到表12以全相干码本为例对第三参数集合进行示例,对于rank 5到rank8,分别对应32、24、16、8个TPMI的索引,在第二指示信息中,需要5比特指示开销。表9到表12中的位字段映射索引和对应的全相干传输、部分相干传输和非相干传输中的各项的对照查询索引方法,可以参照上述举例中不同天线能力支持的全相干传输、相干传输和非相干传输。
表9

表10

表11

表12
在一些实例中,第二设备接收到第二指示信息后,可以基于第四字段得到的rank值,选择对应的TMPI的的索引的集合,进而根据第三字段的指示确定TMPI的索引,再通过如表1和表2得到TMPI,举例来说,如参照上例得到rank6,则在表10中确定TMPI的索引。
进一步地,如图3和图4所示,第一指示信息和第二指示信息均包括第五字段(如图3和图4所示的TB1) 和第六字段(如图3和图4所示的TB2),第五字段指示第一MCS信息(如图3和图4对应TB1的MCS,占5比特)、第一RV信息(如图3和图4中对应TB1的RV,占2比特)和第一NDI信息(如图3和图4中对应TB1的NDI,占1比特),第六字段指示第二MCS信息(如图3和图4对应TB2的MCS,占5比特)、第二RV信息(如图3和图4中对应TB2的RV,占2比特),第二指示信息还包括第七字段(如图4所示的NDI for CW2,占1比特),用于指示第二NDI,考虑到将指示信息的比特长度固定,便于传输,第二指示信息还可以设置保留(reserved)字段,占3比特。参照图3、图4对比第一指示信息和第二指示信息,可以看出,本申请实施例提供的指示信息,共占27比特,能够有效的节省指示的开销。
其中,MCS字段对应如表13的MCS表格中预设的编码码率和调制阶数组合,用于指示调度的MCS,NDI字段用于指示调度的PUSCH或PDSCH是新传的数据还是重传的数据,RV用于指示调度的数据对应的编码的冗余版本信息。
表13
本申请实施例通过将rank划分为2个取值区间,即分别划为rank 1到rank4与rank 5到rank8两个取值区间,分别用第一指示信息指示rank 1到rank4及其对应的参数,第二指示信息指示rank 5到rank8及其对应的参数,虽然不同取值区间指示信息需要指示的内容不完全相同,但可以参照图3和图4,将指示信息按照不同的划分方式划分字段,以保证不同rank取值下,指示信息的总开销相同。
进一步地,以上行传输为例,网络设备向终端设备发送第一指示消息还是第二指示消息,可以通过指示消息中使能的CW(或TB)个数进行判断,使能一个CW(或TB)发送的是第一指示消息,使能两个CW(或TB)发送的是第二指示消息。举例来说,指示消息如DCI对于不同的rank取值区间,支持的码字个数 不同,rank取值在rank1到rank4时,如图3所示,指示消息指示一个CW(或TB),rank取值在rank5到rank8时,如图4所示,指示消息指示两个CW(或TB)。在一些实例中,如果终端设备的上行传输需要在rank1到rank4之间的空间层上发送,网络设备需向终端设备发送第一DCI,如果终端设备的上行传输需要在rank5到rank8之间的空间层上发送,网络设备需向终端设备发送第二DCI,网络设备可以先确定最大可以有2个CW传输被使能,则配置高层信令,该高层信令用于指示DCI调度的最大CW的数目为2,该高层信令可以是maxNrofCodeWordsScheduledByDCI,其中,再根据两个CW(或TB)对应的MCS指示和RV指示信息是否取值为IMCS=26且rvid=1发送对应DCI进行指示,举例来说,如果每个TB对应的MCS信息和RV信息都没有IMCS=26且rvid=1的特殊取值,对应两个TB被使能,发送第二DCI,如果有一个TB对应的IMCS=26且rvid=1的特殊取值,则该TB未被使能,发送第一DCI。同理,终端设备可以从接收到的指示消息中,解读MCS字段和RV字段的取值,来确定使能的CW(或TB)个数,进而判断rank所属的取值区间,再根据rank1到rank4确定该DCI根据第一DCI进行解读,或者,根据rank5到rank8确定该DCI根据第二DCI进行解读。
一种示例,由于第一指示信息中,第五字段和第六字段还用于指示使能的传输块CW(或TB)个数为一个,第二指示信息中,第五字段和第六字段还用于指示使能的CW(或TB)个数为两个,也就是说,基于第一指示信息,表示数据传输时只有一个CW(或TB)的数据被传输,第二指示信息表述数据传输时有两个CW(或TB)的数据被传输,终端设备接收到指示信息时,可以先在第一CW(或TB)对应的MCS字段和RV字段以及第二CW(或TB)对应的MCS字段和RV字段中确认有无一组IMCS=26且rvid=1特殊取值,如果有一组取值为IMCS=26且rvid=1,则确定rank取值为1~4中的一个取值,该指示信息是第一指示信息,指示的是rank1到rank4的空间层传输的方法,且如图3中一个TB对应的MCS信息和RV信息对应的取值MCS=26且rvid=1,则该TB对应的字段是无意义的;如果第一CW(或TB)对应的MCS字段和RV字段以及第二CW(或TB)对应的MCS字段和RV字段中没有一组取值为IMCS=26且rvid=1,则确定rank取值为5~8中的一个取值,该指示信息是第二指示信息,指示的是rank5到rank8的空间层传输的方法,且TB1对应的MCS/RV/NDI字段、TB2对应的MCS/RV字段上均有信息,该第二指示信息中还有一个NDI for CW2字段指示NDI。
在一种可能实现的方式中,如果网络设备确定最大可以有1个CW传输被使能,则配置高层信令,该高层信令用于指示DCI调度的最大CW的数目为1,代表1个CW(或TB)被使能,则发送rank的取值范围是rank1到rank4的第一指示信息。
进一步地,本申请实施例举例的各指示信息指示的参数集合及不同取值区间的rank的对应方式都可以先进行预存,在实际使用场景中调取或保存使用。
本申请实施例针对rank 1到rank4、和rank 5到rank8采用了不同的指示信息字段设计方法,对于所有的rank取值,设置公共字段(包括TB1对应的MCS字段、RV字段以及TB1的NDI字段和TB2对应的MCS字段、RV字段),用于终端设备根据公共字段的指示识别rank区间,确定指示信息是第一指示信息还是第二指示信息,并根据约定的各种指示信息的格式得到指示的内容。另一方面,由于rank 5到rank8中,不同rank取值对应的DMRS端口索引组合的索引可供候选的数目很少,因此对该取值区间的rank取值,和对应的DMRS端口索引组合索引组合在一个集合中联合指示,可以实现降低开销的同时,获知rank取值和对应的DMRS端口索引组合索引。另一方面,在获知rank取值后,对于rank 5到rank8的第三参数集合,使用针对每个rank取值单独对应一个第三参数合计的独立设计,进一步地降低指示开销,节省出的开销可以用于承载TB2的NDI。
本申请实施例通过对rank 1到rank4,和rank 5到rank8两种rank取值范围不同,对应指示信息,如DCI字段的划分方式不同,但保证不同rank取值下DCI字段的总开销相同,对齐了不同rank下的DCI字段总开销,从而可以避免终端设备更多次数的控制信令的盲检测,降低处理复杂度。同时,充分利用rank5到rank8区间内,与rank 1到rank4相比,可选的TPMI数目,以及可选的DMRS端口索引组合索引数目的显著差异,通过不同的集合形式和指示方式,节省指示信息的指示开销。此外,DCI中隐式地包含了rank的取值区间,能够使得终端设备基于rank取值区间来识别不同的DCI对应的信息,既节省了开销又能保障指示信息的准确传输。
在一种可能实现的方式中,本申请实施例提供的指示信息如图5所示和图6所示,本申请实施例及附图中各字段所占用的比特开销仅为示例,不以此为限制,图5是本申请实施例提供的另一种第一指示信息的示意图,图6是本申请实施例提供的另一种第二指示信息的示意图,如图5和图6所示,第一指示信息 和第二指示信息均包括第八字段(图5和图6中的rank字段),该字段用于指示空间层数目的取值,如字段为000,解读为1,即rank字段中取值为1,则该指示信息对应指示rank1。如字段为001,解读为2,rank字段的取值是2等,综上,字段中填入的二进制码解读出的数值对应为rank的数值。本申请实施例中,第一指示信息的对应的rank取值可以是1到4,第二指示信息对应的rank取值可以是5到8,第八字段的指示开销为3比特。
终端设备接收到指示信息后,可以根据指示信息对应的rank取值,确定该指示信息是第一指示信息还是第二指示信息,根据不同指示信息约定的信息格式获得指示信息的内容,约定的格式可以参考下例:
第一指示信息如图5所示,包括第一字段(可以是图5所示的Precoding information字段,占7比特)和第二字段(可以是图5所示的antennaport字段,占4比特),第一字段指示第五参数集合中的一项,第五参数集合的每一项包括预编码矩阵,如TPMI,空间层数目1到4中每个空间层对应一个第五参数集合。也就是说,第五参数集合可以如表14到表17所示,其中field mapped to index的每一索引对应一个TPMI的索引,表14是rank 1对应TPMI的索引的集合,表15是rank2对应TPMI的索引的集合,表16是rank 3对应TPMI的索引的集合,表17是rank4对应TPMI的索引的集合,以表14举例,位字段映射索引为索引列,从表14左边数起,第一列、第三列和第五列为指示信息指示的索引,第二列为全相干时TPMI的索引取值,第四列为部分相干传输时TPMI的索引,第六列为非相干传输时TPMI的索引,进一步地,确定TPMI的索引后可以根据对应的rank取值,参照上例的预编码矩阵集合确定TPMI。
由于第一指示信息中有rank字段,指示rank的取值,因此表14到表17中,对应TPMI索引的第五参数集合可以与每种rank取值独立对应的。即rank 1到rank4的每个rank取值对应一张TPMI索引表。以全相干码本为例,rank 1到rank4包含TPMI的索引数目分别为72、76、56、44,需要7比特指示开销。
表14


表15


表16


表17


第一指示信息的第二字段指示第六参数集合中的一项,第六参数集合的每一项包括天线端口,如DMRS端口索引组合,对于第六参数集合,可以参照表4到表7,空间层数目1到4中每个空间层对应一个第六参数集合,第六参数集合的每一项即每一行用于指示对应的DMRS端口索引组合的相关信息,表4是rank 1对应DMRS端口索引组合的集合,表5是rank 2对应DMRS端口索引组合的集合,表6是rank 3对应DMRS端口索引组合的集合,表7是rank4对应DMRS端口索引组合的集合,对于第六参数集合可以参照第二参数集合,在此不展开赘述。
第二指示信息如图6所示,第二指示信息包括第三字段(第三字段可以是预编码信息和天线端口(Precoding information and antenna port),或如图6中所示,第三字段也可以是预编码信息/DMRS端口(Precoding information/DMRS ports),占5比特),在一些实际应用的场景中,根据时域或者频域等调度需求,由协议规定或者协议预设,在rank5到rank8之间的rank传输时,每个rank对应预设一个DMRS端口索引组合或每个rank对应预设多个DMRS端口索引组合。举例来说,对于rank5到rank8中每一个rank对应预设一个DMRS端口索引组合的情况,第三字段指示第七参数集合中的一项,第七参数集合的每一项包括预编码矩阵,如TPMI,rank5到rank8中每个rank对应一个第七参数集合,第七参数集合可以参考表9到表12,表9是rank 5对应TPMI的索引集合,表10是rank 6对应TPMI的索引集合,表11是rank 7对应TPMI的索引集合,表12是rank8对应TPMI的索引集合。第七参数集合参照第三参数集合的示例,如以全相干码本为例,对于rank 5到rank8,分别对应32、24、16、8个TPMI的索引,由于预设rank5到rank8对应一个DMRS端口索引组合,网络设备和终端设备之间不需要指示,也可以根据协议规定或者协议预设的rank 5到rank8中各rank对应的DMRS端口索引组合,来确定DMRS端口索引组合的相应信息。举例来说,如预设的对应关系参照表18,rank5到rank8对应的没有数据映射的DMRS CDM组的数量均为2,DMRS占用的OFDM符号数目均为1,DMRS端口中的端口个数对应rank值,如值0行的DMRS端口有5个,对应rank5,值1行的DMRS端口有5个则对应rank6,以此类推。
表18
在一些实际应用的场景中,根据时域或者频域等调度需求,由协议规定或者协议预设,在rank5到rank8之间的rank传输时,每个rank对应预设多个DMRS端口索引组合时,第三字段还用于指示第八参数集合中的一项,第八参数集合的每一项包括预编码矩阵如TPMI,和天线端口,如DMRS端口索引组合,空间层数目5到8中每个空间层数目对应一个第八参数集合,举例来说,协议规定rank5到rank8中,rank5、 rank6和rank8分别各对应一个DMRS端口索引组合,rank7对应两个DMRS端口索引组合,这样既可以充分利用指示信息中的保留字段,又可以让rank7实现DMRS端口索引组合的灵活配置。这种情况下,如果发送rank5、rank6和rank8的指示信息,则可以参数上例,如果发送rank7的指示信息,则第三字段指示的第七参数集合如表19得到DMRS端口索引组合的信息,再根据第三字段指示的第八参数集合中的一项,在表20中确定TPMI的索引和DMRS端口索引组合的索引。表19为rank 7对应的第七参数集合,如DMRS端口索引组合对应关系表,表20为rank 7对应的第八参数集合,如TPMI索引和DMRS端口索引组合联合指示表。
表19
表20

进一步地,如图5和图6所示,第一指示信息和第二指示信息均包括第五字段(如图5和图6所示的TB1),第五字段指示第一MCS信息(如图5和图6对应TB1的MCS,占5比特)、第一RV信息(如图5和图6中对应TB1的RV,占2比特)和第一NDI信息(如图5和图6中对应TB1的NDI,占1比特)。如图6所示,第二指示信息还包括第六字段,第六字段指示第二MCS信息(如图6对应TB2的MCS,占5比特)、第二RV信息(如图6中对应TB2的RV,占2比特),和第二NDI(如图对应TB2的NDI,,占1比特),参照图5、图6对比第一指示信息和第二指示信息,可以看出,本申请实施例提供的指示信息,共占24比特,能够有效的节省指示的开销。其中,MCS字段参照表13,RV和NDI均可参照上例,保留字段可以参照图4,在此不再赘述。
本申请实施例提供的第一指示信息和第二指示信息中,设有rank字段,可以指示的rank的取值。网络设备发送rank取值属于rank 1到rank4的第一指示信息,终端设备在接收到指示信息后,根据rank取值,确定该指示信息是第一指示信息,可以按照rank 1到rank4对应的指示信息字段划分方式进行解读,同理, 如果网络设备发送rank取值属于rank 5到rank8的第二指示信息,终端设备在接收到指示信息后,根据rank取值,确定该指示信息是第二指示信息,可以按照rank 5到rank8对应的指示信息字段划分方式进行解读。或者,参照上述实施例的参数集合,终端设备不需分辨该指示信息是第一指示信息或第二指示信息,可以根据rank取值,如rank7,确定该rank7对应的参数集合得到TPMI和DMRS端口。
由于指示信息中包括rank字段,可以确定rank的取值。对于所有的rank取值,指示信息设置有公共字段即第五字段,包括TB1对应的MCS、NDI和RV信息,对于rank 5到rank8的取值对应的第二指示信息,可以通过约束每种rank取值下,对应可选的DMRS端口索引组合数目为1或者2个,再对该DMRS端口索引组合与TPMI索引进行联合指示,实现降低开销的目的,节省的开销可以承载rank5到rank8的指示信息需要承载的TB2对应的MCS、NDI和RV信息。本申请实施例通过利用rank 1到rank4取值区间和rank 5到rank8取值区间不同的TPMI索引数目和DMRS端口端口索引数据存在差异的特征,即rank 5到rank8需要从数目较少的可选的TMPI和可选的DMRS端口索引组合中指示选择的TPMI和DMRS端口索引组合,对应不同的参数集合进行指示,降低整体指示信息的开销。另外,对于rank 1到rank4每个rank取值对应独立的一个TPMI索引表,也有效降低了指示的开销。对于rank 5到rank8,基于DMRS端口索引数目较少以及rank 5~8TPMI索引数目对于不同rank有较大差异的特征,例如每个rank对应的DMRS端口索引组合仅有一个或者两个,通过将TPMI和DMRS端口进行联合指示,可以以较小的指示开销实现TPMI索引和DMRS端口组合2种信息的指示。再利用TPMI指示和DMRS端口组合指示节省下的开销指示TB2的MCS、NDI、RV信息的指示,降低了指示信息的整体开销。
此外,本申请实施例还提供了一种第一设备,如图7所示,图7是本申请实施例的第一设备10的结构示意图。图7所示的第一设备10包括收发单元101、处理单元102。该第一设备10可以用于执行以上实施例中的方法S101。当第一设备10用于上行传输指示,执行以上实施例中的方法S101时,第一设备10相当于该方法中例举的网络设备,当第一设备10用于下行传输指示,执行以上实施例中的方法S101时,第一设备10相当于终端设备。该第一设备10发送的指示消息包括第一指示消息和第二指示消息,该第一指示消息和第二指示消息可以参照上述实施例中的举例。
本申请实施例还提供了一种第二设备,如图8所示,图8是本申请实施例的第二设备20的结构示意图。图8所示的第二设备20包括收发单元201、处理单元202。该第二设备20可以用于执行以上实施例中的方法S102。当第二设备20用于上行传输指示,执行以上实施例中的方法S102时,第二设备20相当于该方法中例举的终端设备,当第二设备20用于下行传输指示,执行以上实施例中的方法S102时,第二设备20相当于网络设备。该第二设备20发送的指示消息包括第一指示消息和第二指示消息,该第一指示消息和第二指示消息可以参照上述实施例中的举例。
申请实施例提供的网络设备可以是基站、收发节点(Transmission Reception point,TRP)、或gNB。本申请实施例提供的终端设备可以是用户终端设备(Customer Premise Equipment,CPE)或UE。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。本申请实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。例如,上述实施例中,收发单元101和处理单元102可以是同一个单元,也可以是不同的单元;收发单元201和处理单元202可以是同一个单元,也可以是不同的单元。上述集成的单元既可以采用硬件的形式实现,例如芯片,也可以采用软件功能单元的形式实现。
此外,本申请实施例还提供了一种第一设备30,参见图9所示,图9是本申请实施例的第一设备30的结构示意图。该第一设备30包括通信接口301和与通信接口301连接的处理器302。通信接口301可以是收发器一类的装置。通信接口301可以用于执行以上实施例中的方法,处理器302可以用于生成实施例提供的指示信息。具体来说,该通信接口301执行方法S101的操作,处理器302用于执行方法中第一设备30所执行的收发操作以外的操作。
本申请实施例还提供了一种第二设备40,参见图10所示,图10是本申请实施例的第二设备40的结构示意图。该第二设备40包括通信接口401和与通信接口401连接的处理器402。通信接口401可以是收发器一类的装置。通信接口401可以用于执行以上实施例中的方法,处理器402可以用于解读实施例提供的指示信息。具体来说,该通信接口401执行方法S101的操作,处理器402用于执行方法中第二设备40所执行的收发操作以外的操作。
此外,本申请实施例还提供了一种设备50,参见图11所示,图11是本申请实施例提供的一种设备50的结构示意图。如图11所示,设备50可以包括处理器501,与所述处理器501耦合连接的存储器502,收发器503。收发器503可以是通信接口,光模块等,用于接收报文或数据信息等。处理器501可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合,用于执行上述实施例所举例的设备中转发处理相关步骤。处理器还可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。处理器501可以是指一个处理器,也可以包括多个处理器。存储器502可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器502还可以包括上述种类的存储器的组合。存储器502可以是指一个存储器,也可以包括多个存储器,用于存储程序指令。在一个实施方式中,存储器502中存储有计算机可读指令,所述计算机可读指令包括多个软件模块,例如发送模块,处理模块和接收模块。处理器501执行各个软件模块后可以按照各个软件模块的指示进行相应的操作。在本实施例中,一个软件模块所执行的操作实际上是指处理器501根据所述软件模块的指示而执行的操作。可选地,处理器501也可以存储执行本申请实施例方案的程序代码或指令,在这种情况下处理器501不需要到存储器502中读取程序代码或指令。
该设备50可以用于执行以上实施例中的方法。具体来说,该设备50可以作为网络设备执行方法S101由第一设备执行的操作,设备50可以作为终端设备执行方法S102由第二设备执行的操作。例如,当设备50作为第一设备执行时,所述收发器503用于执行发送第一指示信息和第二指示信息中的一种,其中,第一指示信息用于指示空间层数目1到4之一,及对应的第一预编码矩阵和第一天线端口,第二指示信息用于指示空间层数目5到8之一,及对应的第二预编码矩阵。当设备50作为第二设备执行时,所述收发器503用于接收第一指示信息和第二指示信息中的一种。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在处理器上运行时,实现前述实施例中任一实施例所述的方法中任一方法中的部分或全部操作。
本申请实施例还提供了一种计算机程序产品,包括计算机程序,当其在处理器上运行时,实现前述实施例中任一实施例所述的方法中任一方法中的部分或全部操作。
本申请实施例还提供一种系统,参见图12所示,图12是本申请实施例提供的一种系统的结构示意图,包括第一设备60和第二设备70,第一设备60是结构如图7、图9或图11对应的第一设备,第二设备70是结构如图8、图10或图11对应的第一设备。上述系统用于实现前述实施例中任一实施例所述的方法中任一方法中的部分或全部操作。
本申请实施例提供的系统,可以适用但不限于长期演进(Long Term Evolution,LTE)系统、NR系统及其未来移动通信系统中,系统中包含网络设备和用户设备。网络设备和用户设备具有多根发送天线和接收天线。
本申请实施例还提供了另一种通信系统,包括至少一个存储器和至少一个处理器,该至少一个存储器存储有指令,该至少一个处理器执行所述指令,使得所述通信系统实现前述实施例中任一实施例所述的方法中任一方法中的部分或全部操作。
本申请实施例提供的方法还可以适用于类似的无线通信系统中,如wifi、全球微波互联接入(World Interoperability for Microwave Access,WiMAX)、以及第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)相关的MIMO系统等。
本申请实施例还提供了一种芯片,包括:接口电路和处理器。所述接口电路和所述处理器相连接,所述处理器用于使得所述芯片执行前述实施例中任一实施例所述的方法中任一方法中的部分或全部操作。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现前述实施例中任一实施例所述的方法中任意一个方法中的部分或全部操作。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通 用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请实施例并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是FPGA,可以是ASIC,还可以是系统芯片(system on chip,SoC),还可以是CPU,还可以是NP,还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑业务划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各业务单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件业务单元的形式实现。
集成的单元如果以软件业务单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的业务可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些业务存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本申请的具体实施方式而已。
以上,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (22)

  1. 一种传输的指示方法,其特征在于,包括:
    发送第一指示信息和第二指示信息中的一种,
    其中,所述第一指示信息指示第一空间层数目以及所述第一空间层数目对应的第一预编码矩阵和第一天线端口,所述第一空间层数目为空间层数目1到4之一;
    所述第二指示信息指示第二空间层数目以及所述第二空间层数目对应的第二预编码矩阵,所述第二空间层数目为空间层数目5到8之一。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第二指示信息还指示所述第二空间层数目对应的第二天线端口。
  3. 根据权利要求2所述的方法,其特征在于,
    第一指示信息包括第一字段和第二字段,所述第一字段指示第一参数集合中的一项,所述第一参数集合的每一项包括空间层数目和预编码矩阵,所述第一参数集合对应所述空间层数目1到4,所述第二字段指示第二参数集合中的一项,所述第二参数集合的每一项包括天线端口,所述空间层数目1到4中每个所述空间层数目对应一个所述第二参数集合;
    第二指示信息包括第三字段和第四字段,所述第三字段指示第三参数集合中的一项,所述第三参数集合的每一项包括预编码矩阵,所述空间层数目5到8中每个所述空间层数目对应一个所述第三参数集合,所述第四字段指示第四参数集合中的一项,所述第四参数集合的每一项包括天线端口,并指示空间层数目,其中,所述第四参数集合对应所述空间层数目5到8。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一指示信息和所述第二指示信息均包括第五字段和第六字段,第五字段指示第一编码调制方式MCS信息、第一冗余版本RV信息和第一新数据指示NDI信息,第六字段指示第二MCS信息、第二RV信息,所述第二指示信息还包括第七字段,所述第七字段指示第二NDI;
    所述第一指示信息中,所述第五字段和所述第六字段还指示使能的传输块TB个数为一个,所述第二指示信息中,所述第五字段和所述第六字段还指示使能的TB个数为两个。
  5. 根据权利要求1所述的方法,其特征在于,
    所述第一指示信息包括第一字段和第二字段,所述第一字段指示第五参数集合中的一项,所述第五参数集合的每一项包括预编码矩阵,所述空间层数目1到4中每个空间层数目对应一个所述第五参数集合,所述第二字段指示第六参数集合中的一项,所述第六参数集合的每一项包括天线端口,所述空间层数目1到4中每个所述空间层数目对应一个所述第六参数集合;
    所述第二指示信息包括第三字段,所述第三字段指示第七参数集合中的一项,所述第七参数集合的每一项包括预编码矩阵,所述空间层数目5到8中每个所述空间层数目对应一个所述第七参数集合。
  6. 根据权利要求2所述的方法,其特征在于,
    所述第一指示信息包括第一字段和第二字段,所述第一字段指示第五参数集合中的一项,所述第五参数集合的每一项包括预编码矩阵,所述空间层数目1到4中每个空间层数目对应一个所述第五参数集合,所述第二字段指示第六参数集合中的一项,所述第六参数集合的每一项包括天线端口,所述空间层数目1到4中每个所述空间层数目对应一个所述第六参数集合;
    第二指示信息包括第三字段,所述第三字段指示第八参数集合中的一项,所述第八参数集合的每一项包括预编码矩阵和所述第二天线端口,所述空间层数目5到8中每个所述空间层数目对应一个所述第八参数集合。
  7. 根据权利要求5或6所述的方法,其特征在于,
    所述第一指示信息和所述第二指示信息均包括第五字段,所述第五字段指示第一MCS信息、第一RV信息和第一NDI信息;
    所述第二信息还包括第六字段,所述第六字段指示第二MCS信息、第二RV信息和第二NDI信息。
  8. 根据权利要求5至7任一项所述的方法,其特征在于,
    所述第一指示信息和所述第二指示信息均包括第八字段,所述第八字段指示所述第一空间层数目或所述第二空间层数目的取值。
  9. 一种传输的指示方法,其特征在于,包括:
    接收第一指示信息和第二指示信息中的一种,
    其中,所述第一指示信息指示第一空间层数目以及所述第一空间层数目对应的第一预编码矩阵和第一天线端口,所述第一空间层数目为空间层数目1到4之一;
    所述第二指示信息指示第二空间层数目以及所述第二空间层数目对应的第二预编码矩阵,所述第二空间层数目为空间层数目5到8之一。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第二指示信息还指示所述第二空间层数目对应的第二天线端口。
  11. 根据权利要求10所述的方法,其特征在于,
    第一指示信息包括第一字段和第二字段,所述第一字段指示第一参数集合中的一项,所述第一参数集合的每一项包括空间层数目和预编码矩阵,所述第一参数集合对应所述空间层数目1到4,所述第二字段指示第二参数集合中的一项,所述第二参数集合的每一项包括天线端口,所述空间层数目1到4中每个所述空间层数目对应一个所述第二参数集合;
    第二指示信息包括第三字段和第四字段,所述第三字段指示第三参数集合中的一项,所述第三参数集合的每一项包括预编码矩阵,所述空间层数目5到8中每个所述空间层数目对应一个所述第三参数集合,所述第四字段指示第四参数集合中的一项,所述第四参数集合的每一项包括天线端口,并指示空间层数目,其中,所述第四参数集合对应所述空间层数目5到8。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第一指示信息和所述第二指示信息均包括第五字段和第六字段,第五字段指示第一编码调制方式MCS信息、第一冗余版本RV信息和第一新数据指示NDI信息,第六字段指示第二MCS信息、第二RV信息,所述第二指示信息还包括第七字段,所述第七字段指示第二NDI;
    所述第一指示信息中,所述第五字段和所述第六字段还指示使能的传输块TB个数为一个,所述第二指示信息中,所述第五字段和所述第六字段还指示使能的TB个数为两个。
  13. 根据权利要求9所述的方法,其特征在于,
    所述第一指示信息包括第一字段和第二字段,所述第一字段指示第五参数集合中的一项,所述第五参数集合的每一项包括预编码矩阵,所述空间层数目1到4中每个空间层数目对应一个所述第五参数集合,所述第二字段指示第六参数集合中的一项,所述第六参数集合的每一项包括天线端口,所述空间层数目1到4中每个所述空间层数目对应一个所述第六参数集合;
    所述第二指示信息包括第三字段,所述第三字段指示第七参数集合中的一项,所述第七参数集合的每一项包括预编码矩阵,所述空间层数目5到8中每个所述空间层数目对应一个所述第七参数集合。
  14. 根据权利要求10所述的方法,其特征在于,
    所述第一指示信息包括第一字段和第二字段,所述第一字段指示第五参数集合中的一项,所述第五参数集合的每一项包括预编码矩阵,所述空间层数目1到4中每个空间层数目对应一个所述第五参数集合,所述第二字段指示第六参数集合中的一项,所述第六参数集合的每一项包括天线端口,所述空间层数目1到4中每个所述空间层数目对应一个所述第六参数集合;
    第二指示信息包括第三字段,所述第三字段指示第八参数集合中的一项,所述第八参数集合的每一项包括预编码矩阵和天线端口,所述空间层数目5到8中每个所述空间层数目对应一个所述第八参数集合。
  15. 根据权利要求13或14所述的方法,其特征在于,
    所述第一指示信息和所述第二指示信息均包括第五字段,所述第五字段指示第一MCS信息、第一RV信息和第一NDI信息;
    所述第二信息还包括第六字段,所述第六字段指示第二MCS信息、第二RV信息和第二NDI信息。
  16. 根据权利要求13至15任一项所述的方法,其特征在于,
    所述第一指示信息和所述第二指示信息均包括第八字段,所述第八字段指示所述第一空间层数目或所述第二空间层数目的取值。
  17. 一种第一设备,包括至少一个处理器和收发器,所述至少一个处理器和所述收发器耦合,其特征在于,所述至少一个收发器执行程序或指令时,所述控制装置实现如权利要求1至8任一项所述的方法。
  18. 一种第二设备,包括至少一个处理器和收发器,所述至少一个处理器和所述收发器耦合,其特征在于,所述至少一个收发器执行程序或指令时,所述控制装置实现如权利要求9至16任一项所述的方法。
  19. 一种通信装置,其特征在于,所述通信装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得根据权利要求1至8中任一项所述的方法被实现,或者使得根据权利 要求9至16中任一项所述的方法被实现。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当所述指令被处理器运行时,使得根据权利要求1至8中任一项所述的方法被实现,或者使得根据权利要求9至16中任一项所述的方法被实现。
  21. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被处理器运行时,使得根据权利要求1至8中任一项所述的方法被实现,或者使得根据权利要求9至16中任一项所述的方法被实现。
  22. 一种系统,其特征在于,包括:
    权利要求17所述的第一设备;
    权利要求18所述的第二设备。
PCT/CN2023/129094 2022-11-05 2023-11-01 传输的指示方法、设备和系统 WO2024094070A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211380169.5 2022-11-05
CN202211380169.5A CN117997495A (zh) 2022-11-05 2022-11-05 传输的指示方法、设备和系统

Publications (1)

Publication Number Publication Date
WO2024094070A1 true WO2024094070A1 (zh) 2024-05-10

Family

ID=90896286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129094 WO2024094070A1 (zh) 2022-11-05 2023-11-01 传输的指示方法、设备和系统

Country Status (2)

Country Link
CN (1) CN117997495A (zh)
WO (1) WO2024094070A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102165714A (zh) * 2008-08-27 2011-08-24 Lg电子株式会社 在无线通信系统中传送控制信息的方法
CN102859896A (zh) * 2010-02-23 2013-01-02 Lg电子株式会社 在支持上行链路多天线传输的无线通信系统中提供用于上行链路传输的控制信息的方法和设备
CN108234096A (zh) * 2016-12-21 2018-06-29 华为技术有限公司 参考信号的发送和接收方法,接入网设备和终端设备
CN113055138A (zh) * 2019-12-26 2021-06-29 大唐移动通信设备有限公司 一种指示消息传输方法和通信设备
CN113497645A (zh) * 2020-04-03 2021-10-12 大唐移动通信设备有限公司 一种预编码矩阵指示、确定方法、设备及介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102165714A (zh) * 2008-08-27 2011-08-24 Lg电子株式会社 在无线通信系统中传送控制信息的方法
CN102859896A (zh) * 2010-02-23 2013-01-02 Lg电子株式会社 在支持上行链路多天线传输的无线通信系统中提供用于上行链路传输的控制信息的方法和设备
CN108234096A (zh) * 2016-12-21 2018-06-29 华为技术有限公司 参考信号的发送和接收方法,接入网设备和终端设备
CN113055138A (zh) * 2019-12-26 2021-06-29 大唐移动通信设备有限公司 一种指示消息传输方法和通信设备
CN113497645A (zh) * 2020-04-03 2021-10-12 大唐移动通信设备有限公司 一种预编码矩阵指示、确定方法、设备及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Codebook based transmission for UL", 3GPP DRAFT; R1-1716209 UL MIMO CODEBOOK FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 17 September 2017 (2017-09-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051339667 *

Also Published As

Publication number Publication date
CN117997495A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US11239950B2 (en) Method for configuring channel state information reporting band and communications apparatus
US12034658B2 (en) Method, device, and storage medium for configuring starting symbol position of uplink data channel
WO2017050295A1 (zh) 一种多天线信道测量方法和装置
WO2020220330A1 (zh) 无线通信的方法、终端设备和网络设备
CN102447524B (zh) 信息指示的方法及设备
EP3365984B1 (en) Dynamic precoding of shared reference signals
US10511411B2 (en) Method for configuring channel state information reporting band and communications apparatus
WO2020063365A1 (zh) 上行传输方法、上行传输的调度方法和设备
CN111817798B (zh) 一种信道测量方法和通信装置
WO2015035578A1 (zh) 配置信道状态信息参考信号的方法和基站
US11101957B2 (en) Reference signal sending method and apparatus
US11445396B2 (en) Channel measurement method and apparatus
WO2021018209A1 (zh) 一种dmrs端口指示方法及装置
CN110933747B (zh) 一种资源配置方法及通信装置
EP2612458A1 (en) Joint coding method based on binary tree and coder
US11290906B2 (en) Channel measurement method
JP2024521095A (ja) Uci多重化のための方法及び装置
WO2016026507A1 (en) Periodical feedback design for three-dimensional multiple-input multiple-output (3d-mimo)
JP2024519341A (ja) プリコーディング情報
WO2022082775A1 (zh) 一种信道状态信息上报方法及装置
WO2017185982A1 (zh) 准共位置类型的处理方法、装置及计算机存储介质
WO2024094070A1 (zh) 传输的指示方法、设备和系统
CN111970036A (zh) 一种通信方法及通信装置
CN108418662B (zh) 一种参考信号的发送方法、接收方法及相关设备
WO2018196589A1 (zh) 数据发送方法、数据接收方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884996

Country of ref document: EP

Kind code of ref document: A1