WO2024093821A1 - 倒闸操作机器人以及用于倒闸操作的控制方法 - Google Patents

倒闸操作机器人以及用于倒闸操作的控制方法 Download PDF

Info

Publication number
WO2024093821A1
WO2024093821A1 PCT/CN2023/127135 CN2023127135W WO2024093821A1 WO 2024093821 A1 WO2024093821 A1 WO 2024093821A1 CN 2023127135 W CN2023127135 W CN 2023127135W WO 2024093821 A1 WO2024093821 A1 WO 2024093821A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric control
control cabinet
switching operation
slider
fingertip
Prior art date
Application number
PCT/CN2023/127135
Other languages
English (en)
French (fr)
Inventor
华瑾
高雅
张雪薇
张耘
杨晶
辛大欣
Original Assignee
西安工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安工业大学 filed Critical 西安工业大学
Publication of WO2024093821A1 publication Critical patent/WO2024093821A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/02Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/20Interlocking, locking, or latching mechanisms
    • H01H9/26Interlocking, locking, or latching mechanisms for interlocking two or more switches

Definitions

  • the present invention relates to the field of robots, and in particular to a switching operation robot and a control method for the switching operation.
  • the combustion system of circulating fluidized bed boiler is a controlled object with distributed parameters, nonlinearity, time-varying, large lag, and multi-variable coupling. It is difficult to control the combustion and has a low automatic commissioning rate.
  • the cold standby switching equipment includes the operation control system, cold air valve and bed exhaust valve, circulating pump, air blower, coal conveying equipment;
  • the hot standby switching equipment includes: operation control system, coal conveying equipment, air blower, circulating pump, cyclone separator, conveying pipe, conveying screw and other equipment.
  • the existing substation cannot effectively monitor the power distribution room corresponding to the equipment of the circulating fluidized bed denitrification process of coal secondary development equipment, and the medium-voltage circuit breaker will generate arcs when switching between the experimental position and the working position during the switching operation process. The slightest operating error will cause personal injury. This not only leads to a heavy inspection burden for personnel, but also fails to eliminate equipment failures in time, which may cause chemical plants to have serious problems. Hazardous gas leakage may cause harm to people.
  • the purpose of the embodiments of the present disclosure is to provide a switching operation robot and a control method for switching operation to solve the problems existing in the prior art.
  • An embodiment of the present disclosure provides a switching operation robot, including a chassis moving device, a detection device is arranged in the chassis moving device, the detection device at least includes a laser radar and a laser ranging device, a first operating platform is arranged on the chassis moving device, a pan-tilt camera, a control device, a positioning device and a mechanical arm are arranged on the first operating platform, and an execution device is arranged at the end of the mechanical arm, the positioning device is used to convert the working mode of the medium-voltage circuit breaker in the electric control cabinet, and the execution device is used to execute at least the opening and closing operation of the electric control cabinet door and the switching control of the medium-voltage circuit breaker.
  • the first operating platform includes a bottom, and a plurality of side portions perpendicular to the bottom are arranged on the bottom to enclose a space, so that the first operating platform has a first opening and a second opening at the top and the side, respectively.
  • the positioning device is arranged in the space and performs a positioning operation in the direction of the second opening, and the gimbal camera and the robotic arm are arranged on the upper end surface of the side portion opposite to the second opening.
  • the positioning device includes a base, on which a Y-axis motor and an X-axis base plate are arranged, and the Y-axis motor cooperates with a first screw slider device to drive the X-axis base plate to move along the Y-axis direction; a frame and an X-axis motor are arranged on the X-axis base plate, and a Z-axis base plate is arranged in the frame, and the Z-axis base plate and the X-axis base plate are arranged perpendicular to each other, and the X-axis motor cooperates with a second screw slider device to drive the Z-axis base plate to move along the X-axis direction in the frame; a Z-axis motor and a linear module are arranged on the Z-axis base plate, and a torsion device is arranged on the linear module, and the Z-axis motor is connected to the linear module through a coupling and can adjust the torsion device to move along the Z-axis
  • the second screw slider device includes a screw, which is connected to the output shaft of the X-axis motor through a coupling, and is connected to the first positioning slider through a nut on the screw, and the first positioning slider is connected to the Z-axis base plate.
  • Slide rails are also arranged above and below the frame, and a second positioning slider is arranged on the slide rail 2315, and the second positioning slider is connected to the Z-axis base plate.
  • the torsion device includes a trolley position drive motor, a reducer and a third positioning slider.
  • the third positioning slider is arranged on the linear module and connected to the reducer through a connecting plate.
  • the reducer is connected to the trolley position drive motor.
  • a rotatable torsion head is arranged on the reducer. When the trolley position drive motor is driven, the transmission direction and output torque are changed by the reducer to realize the function of rotating the torsion head in a predetermined direction.
  • the actuator includes a connecting plate, a second operating platform is arranged on the first side of the connecting plate, a first fingertip portion, a second fingertip portion and a fixed portion are arranged on the second operating platform, the first fingertip portion and the second fingertip portion can move relative to the fixed portion to achieve clamping of an operating key, the first fingertip portion is a touch fingertip portion for achieving the user's touch task, and the second fingertip portion is a buckle plate fingertip portion for achieving the opening and closing operations of the door of the electric control cabinet and the switching operations of the relay in the electric control cabinet.
  • a first guide rail and a second guide rail are arranged on the second operating platform, and the arrangement direction of the first guide rail and the second guide rail is the same as the extension direction of the fixing portion.
  • a first slider is slidably arranged on the guide rail, the first fingertip portion is arranged on the first slider, a second slider is slidably arranged on the second guide rail, the second fingertip portion is arranged on the second slider, a first rack is arranged on the side of the first slider facing the fixed portion, a second rack is arranged on the side of the second slider facing the fixed portion, a gear set is arranged on the fixed portion, and the gear set is meshed with the first rack and the second rack.
  • the first fingertip portion includes a first vertical segment and a first horizontal segment, the first horizontal segment is disposed on the first sliding block and connected to the bottom of the first vertical segment, a first side of an upper end portion of the first vertical segment has a first recess, and a second side of an upper end portion of the first vertical segment has a first inclined surface and a second inclined surface, the first inclined surface and the second inclined surface face different directions respectively and are connected to each other.
  • the second fingertip portion includes a second vertical section and a second horizontal section, wherein the second horizontal section is arranged on the second slider and connected to the bottom of the second vertical section, a fixing plate is arranged on the second vertical section, a U-shaped portion is arranged at the upper end of the second vertical section, a clamping portion is arranged at the bottom of the second vertical section, the U-shaped portion and the clamping portion are used to clamp an operation key, the operation key is fitted on the fixing plate, a second recess is formed between the upper end surface of the U-shaped portion and the fixing plate, a rectangular guide opening structure is formed between the lower end surface of the U-shaped portion and the upper end surface of the clamping portion to realize the clamping of the operation key, after the first fingertip portion and the second fingertip portion are aligned and fitted, the first recess on the first fingertip portion and the second recess on the second fingertip portion surround to form a circular recess, the locking portion of the operation key protrudes from the upper end surface of
  • the embodiment of the present disclosure further provides a control method for switching operation, which is applied to any of the switching operation robots described above, comprising:
  • a scene map is constructed and the chassis moving device is controlled to move to a specified position;
  • the actuator on the robot arm is controlled to perform door opening and closing and switch operations.
  • the disclosed embodiment utilizes robots to replace manual operation and maintenance in the switching operation process, thereby monitoring the distribution room in real time and promptly eliminating equipment failures. It can also prevent harmful gas leakage from chemical plants from causing harm to personnel, thereby improving the efficiency of secondary utilization and output and system stability.
  • FIG1 is a schematic structural diagram of a switching operation robot provided by an embodiment of the present disclosure.
  • FIG2 is a schematic structural diagram of a switching operation robot provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a positioning device in a switching operation robot provided by an embodiment of the present disclosure
  • FIG4 is a schematic diagram of an electric control cabinet in an embodiment of the present disclosure.
  • FIG5 is a schematic diagram of a method of an electric control cabinet in an embodiment of the present disclosure.
  • FIG6 is a schematic diagram of the arrangement of switches in an electric control cabinet in an embodiment of the present disclosure.
  • FIG7 is a schematic diagram of the steps of a control method for switching operation provided by an embodiment of the present disclosure.
  • FIG8 is a schematic diagram of the steps of a control method for switching operation provided by an embodiment of the present disclosure.
  • FIG9 is a schematic diagram of the structure of the execution device according to an embodiment of the present disclosure.
  • FIG10 is a schematic structural diagram of a first fingertip portion in the execution device according to an embodiment of the present disclosure.
  • FIG11 is a schematic structural diagram of a second fingertip portion in the execution device according to an embodiment of the present disclosure.
  • FIG12 is a schematic diagram of the structure of an operating key according to an embodiment of the present disclosure.
  • FIG13 is a schematic diagram of a second fingertip performing a pinch plate operation according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram showing the operation of the operating key by the executing device according to an embodiment of the present disclosure.
  • the present disclosure provides a switching operation robot, which is used to implement switching operation on the electric control cabinet in the substation.
  • electrical equipment is divided into three states: operation, standby (cold standby and hot standby), and maintenance.
  • the process of changing the equipment from one state to another is called Switching is the operation to achieve switching.
  • the electrical equipment is switched from one state to another or the system changes its operating mode by operating the disconnector, circuit breaker, and hanging or removing the ground wire.
  • Figures 4 and 5 show schematic diagrams of the control panel of the electric control cabinet, on which relevant devices are arranged in sequence, for example, including a—switch protection device, b—intelligent operation device, c—power meter, d—accident indication, e—grounding alarm, f—energy storage indication, g—opening indication, h—closing indication, i—remote control indication, j—protection tripping, k—main body protection tripping, l—continuous tripping of low-voltage side, m—standby indication, n—medium-voltage circuit breaker, and o—working mode switching switch.
  • the structure of the switching operation robot for performing switching operation on the above-mentioned electric control cabinet is shown in Figures 1 and 2, which includes a chassis moving device 100.
  • the chassis moving device 100 can be, for example, a Mecanum wheel omnidirectional moving device.
  • a wheel portion 120 is arranged at the lower part of the chassis moving device 100, which can drive the switching operation robot to move.
  • a detection device 110 is arranged in the chassis moving device 100.
  • the detection device 110 here includes at least a laser radar and a laser ranging device, wherein the laser ranging device here can sample the distance information of obstacles in a certain direction, and the laser radar continuously changes the measuring direction of the ranging part through the rotation of the motor part, thereby realizing all-round measurement of the surrounding environment and generating planar point cloud information.
  • a first operating platform 200 is arranged on the chassis moving device 100, and a pan-tilt camera 210, a control device 220, a positioning device 230, a mechanical arm 240 and a power supply device 260 are arranged on the first operating platform 200, and an execution device 250 is arranged at the end of the mechanical arm 240.
  • the execution device 250 here includes relatively arranged fingertips, so that the operating key can be fixed and the lock body on the cabinet door can be opened through the clamping action of the fingertips, and the switch in the electric control cabinet can also be operated through the fingertips.
  • the first operating platform 200 includes a bottom 201, and a plurality of side portions 202 arranged perpendicular to the bottom 201 are arranged on the bottom 201 to enclose a space, so that the first operating platform 200 has a first opening 203 and a second opening 204 at the top and the side, respectively, wherein the positioning device 230 is arranged in the space and performs positioning operation in the direction of the second opening 204, and the pan-tilt camera 210 and the mechanical arm 240 are arranged on the upper end surface of the side portion 202 opposite to the second opening.
  • the positive operation direction of the mechanical arm 240 and the installation opening of the positioning device 230 are arranged relatively at the two sides of the chassis moving device 100.
  • the pan-tilt camera 210 here can be, for example, a visual acquisition device with two degrees of freedom controlled by a pan-tilt.
  • the positioning device 230 here can determine the position of the medium-voltage circuit breaker control trolley, and rotate the handle through the output shaft to operate the working mode switch o to switch the working mode of the medium-voltage circuit breaker n in the electric control cabinet.
  • the installation position of the positioning device 230 here is set and installed depending on the operating height of the medium-voltage circuit breaker n that needs to be operated on site.
  • the positioning device 230 can complete the movement in the left and right, front and back, up and down directions and finally realize the adjustment of the opponent car's position. It includes a base 2301, on which a Y-axis motor 2302 and an X-axis base plate 2303 are arranged.
  • the Y-axis motor 2302 cooperates with the first screw slider device to drive the X-axis base plate 2303 to move along the Y-axis direction.
  • a frame 2304 and an X-axis motor 2305 are arranged on the X-axis base plate 2303, and a Z-axis base plate 2306 is arranged in the frame 2304.
  • the Z-axis base plate 2306 and the X-axis base plate 2305 are arranged perpendicular to each other, wherein the X-axis motor 2305 cooperates with the second screw slider device to drive the Z-axis base plate 2306 to move along the X-axis direction within the frame.
  • the second screw slider device includes a screw 2312, the screw 2312 is connected to the output shaft of the X-axis motor 2305 through a coupling 2320, the screw 2312 is connected to the first positioning slider 2314 through a nut 2313, and the first positioning slider 2314 is connected to the Z-axis bottom plate 2306.
  • slide rails 2315 are provided above and below the frame 2304, and a second positioning slider 2316 is provided on the slide rails 2315, and the second positioning slider 2316 is connected to the Z-axis bottom plate 2306.
  • a Z-axis motor 2307 and a linear module 2308 are arranged on the Z-axis base plate 2306, and a torsion device is arranged on the linear module 2308.
  • the Z-axis motor 2307 is connected to the linear module 2308 via a coupling 2320 and can adjust the torsion device to move along the Z-axis direction.
  • the twisting device includes a trolley position drive motor 2309, a reducer 2310 and a third positioning slider 2311.
  • the third positioning slider 2311 is arranged on the linear module 2308 and connected to the reducer 2310 through a connecting plate 2317.
  • the reducer 2310 here can be a right-angle planetary reducer.
  • the reducer 2310 is connected to the trolley position drive motor 2309.
  • a rotatable twisting head 2318 is arranged on the reducer 2310.
  • the execution device 250 on the mechanical arm 240 is used to specifically execute the switching operation, and the switching operation here includes, for example, the knob control of the intelligent operation device b, the switch control of the medium-voltage circuit breaker n, the opening and closing operation of the electric control cabinet door, and the position control of the medium-voltage circuit breaker trolley, etc.
  • a binocular depth camera is set in the execution device 250, which cooperates with the switching operation through the binocular depth vision acquisition method.
  • the actuator 250 includes a connecting plate 1, wherein the connecting plate 1 is connected to the mechanical arm of the switching operation robot so as to facilitate the setting of the actuator on the mechanical arm, and a second operating platform 2 is set on the first side of the connecting plate 1, and a first fingertip portion 10, a second fingertip portion 20 and a fixing portion 30 are set on the second operating platform 2, wherein the first fingertip portion 10 and the second fingertip portion 20 are respectively set on both sides of the fixing portion 30.
  • the first fingertip portion 10 and the second fingertip portion 20 can move relative to the fixing portion 30 to realize the clamping operation of the operating key, and the operating key can realize the operation of the relay in the electric control cabinet.
  • the first fingertip 10 is a touch fingertip, which is used to implement the user's touch tasks, for example, the user can query the working status of the relay protection device and the alarm release instruction by operating the first fingertip 10;
  • the second fingertip 20 is a pinch plate fingertip, which is used to implement the door opening and closing operation of the electric control cabinet and the switch execution operation of the relay in the electric control cabinet.
  • the weight of the first fingertip 10 and the second fingertip 20 here can be, for example, 0.66KG, and the combined stroke of the two fingertips is 53mm.
  • a first guide rail 3 and a second guide rail 4 are provided on the second operating platform 2, and the setting direction of the first guide rail 3 and the second guide rail 4 is the same as the extension direction of the fixing portion 30, a first slider 5 is slidably provided on the first guide rail 3, the first fingertip portion 10 is provided on the first slider 5, a second slider 6 is slidably provided on the second guide rail 4, and the second fingertip portion 20 is provided on the second slider 6, so that the first fingertip 10 and the second fingertip 20 can move closer or farther by sliding.
  • a driving device is provided in the second operating platform 2, which is connected to the corresponding first slider 5 and the second slider 6.
  • a first rack 7 is provided on the side of the first slider 5 facing the fixed portion 30
  • a second rack 8 is provided on the side of the second slider 6 facing the fixed portion 30
  • a gear set is provided on the fixed portion 30, and the gear set is meshed with the first rack 7 and the second rack 8.
  • the extension direction of the first rack 7 and the second rack 8 is consistent with the sliding direction of the first slider 6 and the second slider 7, so that the relative sliding of the first fingertip portion 10 and the second fingertip portion 20 can be more stable.
  • the first fingertip portion 10 includes a first vertical segment 11 and a first horizontal segment 12 , wherein the first horizontal segment 12 is disposed on the first sliding block 5 and connected to the bottom of the first vertical segment 11 .
  • the first side of the upper end of the first vertical section 11 has a first recess 111
  • the second side of the upper end of the first vertical section 11 has a first inclined surface 112 and a second inclined surface 113, wherein the first inclined surface 112 and the second inclined surface 113 face different directions respectively, and the first inclined surface 112 and the second inclined surface 113 are connected to each other.
  • first groove 1121 and a second groove 1131 are respectively provided on the first inclined surface 112 and the second inclined surface 113.
  • the first groove 1121 and the second groove 1131 here adopt a groove structure with a depth of 1 mm, and a touch unit is provided in the first groove 112 and the second groove 113.
  • the diameter of the touch unit here is 22 mm.
  • the width of a fingertip of a human body is generally 20.2 mm, if only one groove is provided, the fingertip of the user may interfere with the edge of the touch unit during the pressing process.
  • a silicone pad may be pasted in the first groove 1121 and the second groove 1131.
  • the touch unit may be damaged when it is in hard contact with the touch unit. Therefore, a 3 mm thick adhesive silicone pad (whose hardness can reach 60-70 HRC) may be used to provide a buffering effect.
  • flexible sensing materials such as hydrogels having a piezoresistive effect may be disposed in the first groove 1121 and the second groove 1131 , so that the stability of the fingertip operation can be fed back based on the piezoresistive change value.
  • the second fingertip portion 20 includes a second vertical segment 21 and a second horizontal segment 22, wherein the second horizontal segment 22 is disposed on the second slider 6 and connected to the bottom of the second vertical segment 21.
  • the second fingertip portion 20 here is used to implement the opening and closing operation of the electric control cabinet door and the opening and closing operation of the relay in the electric control cabinet.
  • the relay is located in the electric control cabinet. Considering that the door of the electric control cabinet is equipped with a straight lock, the user needs to unlock the door with the operating key before opening or closing the door. If the actuator first clamps the key and then completes the door opening and closing operation, it will not only increase the working time, but also fail to effectively press the door when closing the door by locking the door with the key alone, and there will be problems of misoperation. Therefore, the operating key can be pre- First, fix it on the second fingertip 20 , and in particular, fix it on the second vertical section 21 .
  • a fixing plate 213 is provided on the second vertical section 21, a U-shaped portion 211 is provided at the upper end of the second vertical section 21, and a clamping portion 212 is provided at the bottom of the second vertical section 21.
  • the U-shaped portion 211 and the clamping portion 212 are used to clamp an operating key 100 for opening the electrical cabinet door, and the operating key 100 is fitted on the fixing plate 213.
  • a second recess 214 is formed between the upper end surface of the U-shaped portion 211 and the fixing plate 213, and the first recess 111 and the second recess 214 are relatively matched.
  • the operating key 100 is used to open a key lock on an electric control cabinet, for example, and includes a key handle 110 and a key rod 120, wherein the cross-sectional size of the key handle 110 is larger than the cross-sectional size of the key rod 120, and a locking portion 130 is provided at the distal end of the key rod 120.
  • a rectangular guide opening structure is formed between the lower end surface of the U-shaped portion 211 and the upper end surface of the clamping portion 212 to realize the clamping of the operating key 100.
  • the key handle 110 of the key 100 is clamped in the guide opening structure, and the key rod 120 of the key 100 passes through the U-shaped portion 211 and is fixed by the U-shaped portion 211.
  • the first recess 111 on the first fingertip portion 10 and the second recess 214 on the second fingertip portion 20 surround to form a circular recess, and the locking portion 130 protrudes from the upper end surface of the U-shaped portion 211 to be located in the circular recess.
  • a through hole 101 is set on the key handle 110 of the operating key 100, and a connecting hole 2131 is set on the fixing plate 213.
  • a fastener can be passed through the connecting hole 2131 and the through hole 101 in sequence to fix the operating key 100 more stably and ensure the setting accuracy of the operating key 100.
  • the outer diameter of the locking portion 130 is 28 mm
  • the longitudinal axis direction of the operating key 100 is at the center of rotation
  • a 4 mm deep circular recess is added to the top of the first fingertip portion 10 and the second fingertip portion 20 with the operating key 100 as the axis.
  • the inner diameter of the circular recess here is 29 mm, so that the operating key 100 can be embedded in the lock hole of the key lock on the cabinet door.
  • the bottom part of the circular recess formed by the first fingertip portion 10 and the second fingertip portion 20 contacts the smooth surface on the outside of the key lock, which can play a role in pressing the door to ensure the connection between the operating key 100 and the key lock.
  • the depth of the key hole on the key lock is 6.5mm, and the operation key 100 is finally protruded 2.5mm from the circular recess.
  • the top of the first fingertip 10 and the second fingertip 20 are 1mm away from the cabinet door, which can ensure that the cabinet door will not be hit when rotating to unlock, and prevent the interference between the 10KV switch operation and the buckle plate operation of the relay caused by the top of the fingertip of the operation key 100 protruding too much.
  • a clip portion 215 for operating the switch of the relay is also provided at the upper end portion of the second vertical section 21, and the clip portion 215 is arranged toward the direction of the electric control cabinet.
  • the clip portion 215 here is especially arranged according to the active part of the relay in the electric control cabinet, and the clip portion 215 has an arc portion 216, and the arc portion 216 is arranged to fit the curve of the active part of the relay, so that the clip portion 215 can better clamp the active part of the relay.
  • the active part of the relay is at a large distance from the edge of the relay, and the end of the clip portion 215 can extend into the gap therebetween.
  • the curvature of the arc portion 216 of the clip portion 215 is greater than the curvature of the contour of the active part, and a 1-2mm barb is provided at the end to prevent the active part of the relay from slipping out of the track during the action of the clip.
  • an outer bevel is provided on the clip portion 215 to reduce the requirement for the rotation angle of the end of the clip portion 215.
  • the operation key 100 can be operated through the second fingertip portion 20, as shown in Figure 14, Figures 14a and 14c are the "zero" position clamping state based on the fingertip portion in this embodiment, and Figure 14b is the default initial "zero" position clamping state of the fingertip portion.
  • Figure 14a and 14c are the "zero" position clamping state based on the fingertip portion in this embodiment
  • Figure 14b is the default initial "zero" position clamping state of the fingertip portion.
  • the operation key 100 is rotated by the end of the mechanical arm operation execution device to achieve unlocking, so the operation key 100 must be at the center of rotation.
  • the clamping position of the operation key 100 in this embodiment is adjustable. When the operation key 100 is rotated to unlock, the clamping position can be adjusted so that the operation key 100 is at the center of rotation.
  • the default total stroke of the two fingertips is 80mm.
  • the corresponding two sliders and racks are at the extreme positions on both sides, and the clamping position cannot be adjusted. Therefore, the total stroke of the two fingertips must be reduced.
  • the width of the 10KV rotary switch is 10mm
  • the above total stroke must be greater than 10mm. This embodiment can shorten the total stroke of the two fingertips to 53mm.
  • a bracket 40 is provided on the second side of the connecting plate 1
  • a depth camera 50 is provided on the bracket 40, through which the cabinet door and the switch of the electric control cabinet can be visually captured, so as to cooperate with the two fingertips to realize related operations.
  • the depth camera 50 here weighs about 200g, so the structure on the camera side will not affect the center of gravity of the execution device.
  • the autonomous navigation movement of the chassis moving device 100 enables the switching operation robot to move to a predetermined position in front of a designated electric control cabinet that needs switching operation in the process link, and implements the switching operation through the execution device 250.
  • the control device 220 can implement multiple functions such as laser radar data analysis, dynamic environment mapping and autonomous navigation, calibration between the chassis moving device and the electric control cabinet to be operated, and hand-eye calibration.
  • the dynamic environment mapping and autonomous navigation functions here include multiple functions such as map creation, robot positioning, path planning, and path tracking motion control so that the robot can quickly and accurately reach the target position of the path planning when working.
  • the calibration between the chassis moving device and the electric control cabinet to be operated is mainly used to determine the robot coordinate system and the basic coordinate system before the switching operation and determine the posture relationship between the two.
  • the hand-eye calibration function is mainly used to determine the camera coordinate system and the robot arm coordinate system and determine the posture relationship between the two.
  • the switching operation robot is mainly used for the switching operation of the electric control cabinet in the power distribution room of the equipment involved in the circulating fluidized bed denitrification process.
  • the switching operation here includes at least the following three types, namely: the 10kV switch cold standby to hot standby situation, the 10kV switch hot standby to cold standby situation and the switch control emergency cut-off situation.
  • the second embodiment of the present disclosure provides a control method for switching operation.
  • the following description takes the case where a 10 kV switch is switched from cold standby to hot standby as an example.
  • the control method includes:
  • the predetermined condition in this embodiment refers to the condition that the state of the power distribution room of the substation requires the cold standby of the 10kV switch to be converted to hot standby.
  • the scene map here generally refers to the indoor scene map of the power distribution room including the electric control cabinet.
  • the control of the chassis moving device to move to the specified position is used to move the switching operation robot to the predetermined position in front of the predetermined electric control cabinet where the switching operation is required in the process flow through the autonomous navigation movement of the chassis moving device 100.
  • an indoor scene map of the power distribution room with the functional attribute information of the electric control cabinet is constructed according to, for example, a semantic segmentation network algorithm.
  • the chassis moving device 100 is controlled to move to the specified position of the predetermined electric control cabinet where the switching operation is required through autonomous navigation through, for example, a laser radar SLAM algorithm.
  • the medium voltage circuit breaker in the electric control cabinet is controlled to be in the working position mode at the designated position.
  • the image data of the electric control cabinet can be collected by the binocular depth camera on the execution device 250, and combined with, for example, the SSD target detection algorithm, it can be detected that the switch protection device a at the top of the control panel of the electric control cabinet has no alarm signal.
  • the working modes of the medium-voltage circuit breaker n in the electric control cabinet include the experimental position mode and the working position mode
  • the image data of the medium-voltage circuit breaker n is collected by the binocular depth camera on the execution device 250, and the distance between the medium-voltage circuit breaker n and the panel of the electric control cabinet in the observation window on the operation panel of the electric control cabinet is detected, and whether the medium-voltage circuit breaker n is in the experimental position mode is determined based on the distance.
  • the binocular depth camera can also be used to obtain the image of the intelligent operating device b on the electric control cabinet in the image data, and determine whether the knife switch on the operating panel of the intelligent operating device b is located at a predetermined position and whether the opening and closing knob on the operating panel is at the "zero" position.
  • the medium voltage circuit breaker n in the electric control cabinet can be controlled to be in the working position mode.
  • the chassis moving device 100 is controlled to align with the control panel of the electric control cabinet after, for example, one rotation.
  • the distance information between the chassis moving device 100 and the electric control cabinet fed back by the laser distance measuring device on the chassis moving device 100 and the quaternion information corresponding to the two-dimensional code of the electric control cabinet are solved to obtain the X-axis and Y-axis movement information of the positioning device 230 when the chassis moving device 100 is horizontally aligned with the electric control cabinet, and the chassis moving device 100 is controlled to move from the specified position to the predetermined two-dimensional code ID mark position.
  • the moving distances of the Y-axis and Z-axis of the positioning device 230 are adjusted so that the output shaft of the trolley position driving motor in the X-axis direction of the positioning device 230 is aligned with the working mode switching switch o on the control panel of the electric control cabinet.
  • the working mode switching switch o is connected to the trolley in the electric control cabinet, and the trolley controls the medium voltage circuit breaker n to switch between two working modes through a lead screw slider.
  • the output shaft of the trolley position driving motor of the positioning device 230 is controlled to rotate the working mode switching switch o clockwise to drive the medium voltage circuit breaker n to move through the trolley so that the medium voltage circuit breaker n is adjusted to the working position mode.
  • the image data of the medium-voltage circuit breaker n can be further collected by the binocular depth camera on the actuator 250, and the length of the screw in the screw module connected to the trolley in the observation window is obtained to determine whether the medium-voltage circuit breaker n is in the working position mode.
  • the position information of the pre-operation side panel in the electric control cabinet in the robot coordinate system and the trajectory planning of the robot arm are determined.
  • the switching operation is mainly to open the door of the electric control cabinet and operate the switch on the pre-operation side panel in the electric control cabinet through the actuator 250 on the robot arm 240.
  • the chassis moving device 100 is first controlled to rotate one circle and then align with the electric control cabinet for position calibration.
  • the distance information from the electric control cabinet fed back by the laser ranging device in the chassis moving device 100 and the quaternion information corresponding to the two-dimensional code of the electric control cabinet are algorithmically solved to obtain the X-axis and Y-axis movement information of the chassis moving device 100 when it is horizontally aligned with the electric control cabinet, and the chassis moving device 100 is controlled to move to the two-dimensional code ID mark position, thereby completing the position calibration between the chassis moving device 100 and the electric control cabinet to be operated, and at the same time, the functional attribute information of the electric control cabinet can be obtained.
  • the hand-eye calibration method is used to determine the pose information of the pre-operation side panel in the electric control cabinet in the robot coordinate system. Specifically, it is necessary to perform hand-eye calibration before controlling the robot arm 240 and the execution device 250 to perform the switching operation task.
  • the Jacobian matrix is used to determine the pose relationship between the camera coordinate system and the robot coordinate system, so as to determine the pose information of the pre-operation side panel of the electric control cabinet in the robot coordinate system when the switching operation robot performs the switching operation.
  • trajectory planning for related tasks can also be performed for the robot arm.
  • the trajectory planning here can be determined based on the execution device 250 and the door of the electric control cabinet and the position of the keyhole thereon, as well as the switch position in the electric control cabinet.
  • the trajectory here can be the trajectory of opening and closing the door, or the trajectory of the switch operation.
  • the actuator 250 is controlled to open and close the cabinet door and perform switch operations. Specifically, based on the posture information of the pre-operation side panel and the trajectory planning of the robot arm, according to the position information of the keyhole on the cabinet door, the actuator 250 is inserted into the keyhole to open the cabinet door of the electric control cabinet, and the operation key for the cabinet door is pre-set in the actuator 250.
  • the fingertip portion controlling the execution device 250 uses the binocular depth camera on the execution device 250 to determine the switch position of the secondary small switch on the pre-operation side panel and controls the switch position of the secondary small switch on the pre-operation side panel by using the binocular depth camera on the execution device 250.
  • the fingertip closes the secondary small switch.
  • the secondary small switch 1 on the pre-operation side panel in the 10kV electric control cabinet represents 1QF
  • 2 represents 2QF
  • 4 represents 4QF
  • 5 represents 5QF. In this way, according to the task instructions for the electric control cabinet and the position information of different secondary small switches obtained, the execution device 250 is used to close the selected secondary small switch.
  • the fingertip controlling the execution device 250 can also close the door of the electric control cabinet. Specifically, after the operation of closing the secondary small switch is completed, the execution device 250 is used to close the door of the electric control cabinet according to the trajectory planning of the robot arm for closing the door and the position information of the keyhole on the door of the electric control cabinet collected by the binocular depth camera.
  • step S104 the following steps are further included:
  • the chassis moving device is controlled to move to the QR code ID mark position, and the medium voltage circuit breaker is adjusted to be in the experimental position mode.
  • the actuator 250 can also be used to switch the control mode of the 10kV switch to "remote".
  • the chassis moving device 100 is controlled to rotate one circle and then align with the electric control cabinet for re-position calibration.
  • the distance information from the electric control cabinet fed back by the laser distance measuring device in the chassis moving device 100 and the quaternion information corresponding to the two-dimensional code of the electric control cabinet are algorithmically solved to obtain the movement information of the X-axis and Y-axis of the positioning device 230 when the chassis moving device 100 is horizontally aligned with the electric control cabinet, and the chassis moving device 100 is controlled to move to the two-dimensional code ID mark position.
  • the moving distance of the Y-axis and Z-axis of the positioning device 230 is adjusted so that the output shaft of the trolley position drive motor is aligned with the working mode switching switch o.
  • the trolley position drive motor is controlled to rotate counterclockwise to drive the medium-voltage circuit breaker n to move to the experimental position mode through the trolley.
  • the binocular depth camera of the actuator 250 can also be used to collect image data of the medium-voltage circuit breaker n, and the length of the screw in the screw module connected to the trolley in the observation window can be obtained by detection, so as to determine that the medium-voltage circuit breaker n is in the experimental position mode.
  • step S101 i.e., when the predetermined conditions are met, as shown in FIG8 , constructing a scene map and controlling the chassis moving device to move to a specified position is as follows:
  • a local grid map is obtained based on the point cloud information collected by the laser radar on the chassis mobile device.
  • the point cloud radar data collected by the laser radar in the detection device 110 is subjected to simultaneous localization and mapping (SLAM) to achieve preliminary mapping, thereby obtaining a local grid map.
  • SLAM simultaneous localization and mapping
  • the likelihood domain model of the lidar is used to map the detected point cloud data of obstacles to the global map coordinate system based on the Bayes method.
  • the Bayes method is a statistical data fusion algorithm that estimates the unknown state vector based on conditional probability.
  • the octomap_server function package of ROS is used to convert the 3D point cloud image into a 2D grid image through projection transformation. The mapping relationship between the grid and the origin coordinates is determined by comparing them. When a grid is occupied, the status of the surrounding grids is checked. If the number of occupied states exceeds a certain threshold, the grid is considered to be occupied; otherwise, it is considered to be idle.
  • the odometer can be combined with the Cartographer algorithm based on the point cloud of the lidar.
  • the scene map is constructed based on the information of the vehicle and the odometer (Odometry) to obtain a local grid map, and its own state can also be estimated.
  • a semantic segmentation map is obtained based on the video stream captured by the pan-tilt camera on the chassis mobile device. Specifically, the video stream of the indoor scene is captured by the pan-tilt camera, and the key frames in the video stream are extracted by the visual word bag model to obtain an image with rich information. Then, the image is semantically segmented using a semantic segmentation network based on a multi-scale attention mechanism, and finally a semantic segmentation map with semantic information is obtained.
  • relevant pictures of the distribution room can be used as training images to extract features in the pictures of the distribution room to construct a visual word bag model
  • a feature extraction algorithm is used to extract visual features of the image from the training image; then all visual words are used to cluster the extracted visual features, and each pixel in the image is regarded as a visual word, and a vocabulary library is established based on all visual words; finally, key frames are extracted from the video stream captured by the gimbal camera, and the visual word with the shortest distance to each visual feature of the key frame image is searched in the vocabulary library, and the frequency of the visual features in the key frame image appearing in the vocabulary library is counted to form feature information expressing the key frame.
  • the attention mechanism structure can be used here to focus on important information and weaken secondary information, and the attention mechanism structure can be integrated into the semantic segmentation network to further improve the segmentation accuracy of the model, thereby obtaining a semantic segmentation model with higher accuracy of distribution room target recognition.
  • the image feature information of targets such as people and electric control cabinets extracted by the visual word bag model is used as the input of the semantic segmentation network, and the information of targets such as people and electric control cabinets that need to be monitored in the distribution room environment is obtained by using the attention mechanism module fused in the semantic segmentation network, and these feature information are fused by the multi-scale feature fusion method to obtain deep feature information.
  • the semantic segmentation information is used to improve the prediction accuracy of the model in the process of extracting spatial position features, output the decision amount of the next action, and improve the cognitive ability of the distribution room environment status.
  • the depth image containing spatial information and the historical continuous state sequence of the distribution room environment containing temporal information are used as the input data of the network model.
  • the spatial position features and temporal context features of the scene are extracted and fused through the convolutional network and LSTM respectively, so as to obtain the semantic segmentation map.
  • S203 Acquire a global grid map and a navigation path based on the local grid map and the semantic segmentation map.
  • a navigation path is obtained based on the local grid map and the semantic segmentation map.
  • the local grid map can be updated based on the semantic segmentation map obtained by the gimbal camera, so as to complete SLAM mapping according to the environment of the distribution room and obtain a global grid map.
  • the grids at the same position in the local grid map obtained by the lidar and the semantic segmentation map established by the semantic segmentation network are fused and updated to complete synchronous positioning and mapping.
  • task information is obtained based on the obtained distribution room environment and the location of the target electric control cabinet is determined.
  • the D* algorithm is used for path planning, movement to the target electric control cabinet location is achieved, and posture correction is performed. Specifically, based on the constructed distribution room map and task information, the D* algorithm is used to avoid obstacles in the distribution room. and people, and perform path planning to get the best route.
  • the chassis moving device 100 is controlled to move to the position of the target electric control cabinet, and then the posture of the switching operation robot is corrected, and the switching operation robot is adjusted to a position where it can be aligned with the panel of the electric control cabinet and at an appropriate distance from the electric control cabinet, so that the distance between the robot arm and the control panel is appropriate when operating.
  • steps S101-S104 can be referred to to implement relevant operations when it is necessary to convert the 10kV switch from hot standby to cold standby.
  • steps S101-S104 can be implemented according to the following steps.
  • the brief operation process is opposite to the operation process of converting the 10kV switch from cold standby to hot standby.
  • the specific method is as follows:
  • the chassis mobile device 100 is controlled by laser radar and SLAM algorithm to move and navigate to the predetermined position of the electric control cabinet required for switching operation.
  • the above steps refer to step S101 of the first embodiment.
  • the trolley position driving motor in the positioning device 230 is controlled to rotate the working mode switching switch clockwise to drive the trolley to move to the working position mode.
  • the trolley can also be determined to be in the working position mode through the image data of the medium voltage circuit breaker n. The above steps refer to step S102 of the first embodiment.
  • step S3 control the chassis moving device 100 to rotate one circle and then aim at the electric control cabinet, and control the chassis moving device 100 to move to the QR code ID mark position; in addition, hand-eye calibration can also be performed to obtain the position information of the pre-operation side panel on the electric control cabinet in the robot coordinate system, and then the robot arm performs task trajectory planning.
  • step S103 of the first embodiment control the chassis moving device 100 to rotate one circle and then aim at the electric control cabinet, and control the chassis moving device 100 to move to the QR code ID mark position; in addition, hand-eye calibration can also be performed to obtain the position information of the pre-operation side panel on the electric control cabinet in the robot coordinate system, and then the robot arm performs task trajectory planning.
  • the door of the electric control cabinet is opened using the actuator 250, the fingertip of the actuator 250 is controlled to close and the position information of the secondary small switch inside the cabinet of the electric control cabinet is collected using the binocular depth camera, and then the secondary small switch is opened using the actuator 250.
  • the cabinet door of the electric control cabinet is closed using the actuator 250.
  • the chassis moving device 100 is controlled to rotate one circle and then align with the electric control cabinet, and the chassis moving device 100 is controlled to move to the QR code ID mark position, and the medium voltage circuit breaker n is controlled to move and switch between the two working modes through the trolley and the lead screw slider, that is, the trolley is driven to move to the experimental position mode, and finally the binocular depth camera can be used to determine that the trolley is in the experimental position mode.
  • the above steps refer to step S104 of the first embodiment.
  • steps S101-S104 can be referred to to implement relevant operations when an emergency occurs in the switch cabinet.
  • the brief operation process is as follows:
  • step S11 when an emergency occurs in the electric control cabinet of the power distribution room, according to the map of the power distribution room built by the semantic composition algorithm, the chassis mobile device 100 is controlled by the laser radar SLAM algorithm to move and navigate to the location of the faulty electric control cabinet.
  • the above steps refer to step S101 of the first embodiment.
  • step S12 using the SSD target detection algorithm to detect the alarm signal of the switch protection device at the top of the control panel of the electric control cabinet.
  • the above steps refer to step S102 of the first embodiment.
  • the above steps refer to steps S103 and S104 of the first embodiment.
  • the disclosed embodiment utilizes robots to replace manual operation and maintenance in the switching operation process, thereby monitoring the distribution room in real time and promptly eliminating equipment failures. It can also prevent harmful gas leakage from chemical plants from causing harm to personnel, thereby improving the efficiency of secondary utilization and output and system stability.
  • the second embodiment of the present disclosure provides a control device for switching operation, which is applied to a switching operation robot, and includes a map navigation module, a mode adjustment module, a motion determination module, and an execution control module, wherein:
  • a map navigation module is used to construct a scene map and control the chassis mobile device to move to a specified location when predetermined conditions are met;
  • a mode adjustment module used for controlling the medium voltage circuit breaker in the electric control cabinet to be in a working position mode at the specified position
  • the motion determination module is used to determine the position information of the pre-operation side panel in the electric control cabinet in the robot coordinate system and the trajectory planning of the robot arm;
  • the execution control module is used to control the execution device on the robot arm to open and close the cabinet door and perform switch operations based on the posture information and the trajectory planning.
  • map navigation module includes:
  • a first acquisition unit is used to acquire a local grid map based on point cloud information collected by a laser radar on a chassis mobile device;
  • a second acquisition unit is used to acquire a semantic segmentation map based on a video stream collected by a pan/tilt camera on the chassis mobile device;
  • the third acquisition unit is used to acquire a global grid map and a navigation path based on the local grid map and the semantic segmentation map.
  • mode adjustment module is also used for:
  • the mode adjustment module includes:
  • a first mode control unit is used for, when the chassis moving device is in a designated position and the medium voltage circuit breaker is in an experimental position mode, to obtain the movement information of the X-axis and Y-axis of the positioning device on the chassis moving device when the chassis moving device is horizontally aligned with the electric control cabinet by solving the distance information between the chassis moving device and the electric control cabinet and the quaternion information of the two-dimensional code corresponding to the electric control cabinet, and to control the chassis moving device to move from the designated position to a predetermined two-dimensional code ID mark position;
  • the second mode control unit is used to adjust the moving distances of the Y-axis and Z-axis of the positioning device after the chassis moving device is located at the QR code ID mark position, so that the output shaft of the trolley position driving motor of the positioning device in the X-axis direction is aligned with the working mode switching switch on the control panel of the electric control cabinet, and the output shaft of the trolley position driving motor of the positioning device is controlled to rotate the working mode switching switch clockwise.
  • the medium voltage circuit breaker is moved by a trolley to adjust to the working position mode.
  • mode condition module is also used for:
  • the opening and closing knob on the operating panel is in the "zero" position.
  • the motion determination module includes:
  • a posture information determination unit used for determining the posture relationship between the camera coordinate system and the robot coordinate system using a Jacobian matrix, so as to determine the posture information of the pre-operation side panel in the robot coordinate system when performing a switching operation;
  • the trajectory planning unit is used to perform trajectory planning based on position and task for the robot arm, wherein the position at least includes the position of the actuator on the robot arm, the door of the electric control cabinet and the position of the keyhole thereon, and the switch position determination in the electric control cabinet.
  • execution control module includes:
  • a switch cabinet control unit used to open the cabinet door of the electric control cabinet by inserting an operating key on an actuator into the key hole according to the position of the key hole on the cabinet door of the electric control cabinet;
  • a switch control unit is used to determine the switch position of the secondary small switch selected on the pre-operation side panel through the binocular depth camera on the execution device and close the secondary small switch by controlling the fingertip on the execution device.
  • the disclosed embodiment utilizes robots to replace manual operation and maintenance in the switching operation process, thereby monitoring the distribution room in real time and promptly eliminating equipment failures. It can also prevent harmful gas leakage from chemical plants from causing harm to personnel, thereby improving the efficiency of secondary utilization and output and system stability.
  • the third embodiment of the present disclosure provides a storage medium, which is a computer-readable medium and stores a computer program.
  • the computer program is executed by a processor, the method provided by the first embodiment of the present disclosure is implemented, including the following steps S21 to S24:
  • the disclosed embodiment utilizes robots to replace manual operation and maintenance in the switching operation process, thereby monitoring the distribution room in real time and promptly eliminating equipment failures. It can also prevent harmful gas leakage from chemical plants from causing harm to personnel, thereby improving the efficiency of secondary utilization and output and system stability.
  • a fourth embodiment of the present disclosure provides an electronic device, the electronic device at least comprising a memory and a processor, the memory storing a computer program, the processor executing the computer program in the memory
  • the steps of the electronic device computer program are as follows S31 to S34:
  • the disclosed embodiment utilizes robots to replace manual operation and maintenance in the switching operation process, thereby monitoring the power distribution room in real time, and timely eliminating equipment failures, and preventing harmful gas leakage from chemical plants from causing harm to personnel, thereby improving the efficiency of secondary utilization and output and system stability.
  • the above-mentioned storage medium may be included in the above-mentioned electronic device; or it may exist independently without being assembled into the electronic device.
  • the storage medium carries one or more programs.
  • the electronic device obtains at least two Internet Protocol addresses; sends a node evaluation request including at least two Internet Protocol addresses to a node evaluation device, characterized in that the node evaluation device selects an Internet Protocol address from the at least two Internet Protocol addresses and returns it; receives the Internet Protocol address returned by the node evaluation device; characterized in that the obtained Internet Protocol address indicates an edge node in a content distribution network.
  • the storage medium carries one or more programs, and when the one or more programs are executed by the electronic device, the electronic device: receives a node evaluation request including at least two Internet Protocol addresses; selects an Internet Protocol address from at least two Internet Protocol addresses; and returns the selected Internet Protocol address; characterized in that the received Internet Protocol address indicates an edge node in a content distribution network.
  • Computer program code for performing operations of the present disclosure may be written in one or more programming languages, or a combination thereof, including, but not limited to, object-oriented programming languages, such as Java, Smalltalk, C++, and conventional procedural programming languages, such as "C" or similar programming languages.
  • the program code may be executed entirely on the passenger computer, partially on the passenger computer, as a stand-alone software package, partially on the passenger computer and partially on a remote computer, or entirely on a remote computer or server.
  • the remote computer may be connected to the passenger computer via any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., via the Internet using an Internet service provider).
  • LAN local area network
  • WAN wide area network
  • Internet service provider e.g., via the Internet using an Internet service provider
  • the storage medium disclosed above may be a computer-readable signal medium or a computer-readable storage medium or any combination of the two.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above.
  • Computer-readable storage media may include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage Component, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium containing or storing a program, which may be used by or in combination with an instruction execution system, device or device.
  • a computer-readable signal medium may include a data signal propagated in a baseband or as part of a carrier wave, characterized in that it carries a computer-readable program code.
  • This propagated data signal may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any storage medium other than a computer-readable storage medium, which may send, propagate, or transmit a program for use by or in combination with an instruction execution system, device or device.
  • the program code contained on the storage medium may be transmitted using any suitable medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
  • each square box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function.
  • the functions marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two square boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved.
  • each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs a specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.
  • the units involved in the embodiments described in the present disclosure may be implemented by software or hardware.
  • the characteristic is that the name of a unit does not constitute a limitation on the unit itself in some cases.
  • exemplary types of hardware logic components include: field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips (SOCs), complex programmable logic devices (CPLDs), and the like.
  • FPGAs field programmable gate arrays
  • ASICs application specific integrated circuits
  • ASSPs application specific standard products
  • SOCs systems on chips
  • CPLDs complex programmable logic devices
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, device, or equipment.
  • a machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • a machine-readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or equipment, or any suitable combination of the foregoing.
  • a more specific example of a machine-readable storage medium may include an electrical connection based on one or more lines, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or flash memory erasable programmable read-only memory
  • CD-ROM portable compact disk read-only memory
  • CD-ROM compact disk read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manipulator (AREA)

Abstract

本公开实施例提供一种倒闸操作机器人以及用于倒闸操作的控制方法,所述倒闸操作机器人包括底盘移动装置,在底盘移动装置内设置探测装置,探测装置至少包括激光雷达和激光测距装置,在底盘移动装置上设置第一操作平台,在第一操作平台上设置云台相机、控制装置、寻位装置以及机械臂,在机械臂的端部设置执行装置,寻位装置用于对电控柜内的中压断路器的工作模式进行转换,执行装置用于至少执行电控柜柜门的开闭操作和中压断路器的开关控制。本公开实施例在倒闸操作流程中利用机器人代替人工进行运维,从而实时对配电室监控,并且及时能够切除设备故障,还能够避免化工厂有害气体泄漏对人员造成伤害,提高二次利用与产出的效能和系统稳定性。

Description

倒闸操作机器人以及用于倒闸操作的控制方法 技术领域
本发明涉及机器人领域,尤其是涉及一种倒闸操作机器人以及用于倒闸操作的控制方法。
背景技术
工业化进程的加速离不开机器人技术的蓬勃发展,根据相关统计资料显示,2018年我国工业机器人累计产量突破15万台,较2015年同比增长258.5%。我国虽然是世界第一大工业机器人市场,但我国工业领域使用机器人密度远远低于美国、日本、德国等发达国家。使用工业机器人的工业领域只占少数,在一些高危高风险和重复操作的工作中,工业机器人发挥着重要的作用。
尤其在我国煤炭资源仍然处于生产和消费的主导地位的情况下,采\燃煤企业中,燃煤二次利用技术多数采用循环流化床(CFB)锅炉燃煤技术,然而水平输渣机频繁积灰、跳闸,严重制约着锅炉的正常运行,影响燃煤效能。燃煤化工二次利用电力供给系统由人工运维,但当循环流化床脱硝工艺场内设备实施过程出现故障时,会存在运维人员到场不及时,化学气体泄漏等问题,导致二次利用技术失败。
循环流化床锅炉(CFB)锅炉燃烧系统又是一个分布参数、非线性、时变、大滞后、多变量耦合的被控对象,燃烧控制困难,自动投运率低。针对
循环流化床锅炉的冷备和热备工作流程如下:
冷备工作流程:
1.关闭循环泵和送风机,同时开启床层排气阀和减压阀,使锅炉处于负压状态,防止床料和气体进入锅炉;
2.关闭燃煤输送设备,避免煤粉流入循环流化床;
3.开启冷风阀和床层排气阀,尽快将循环泵内的床料和床层内的残余空气放出,确保锅炉内部的床层和炉膛是真正的冷却状态;
4.监测锅炉内部的温度、压力、流量等参数,确保锅炉处于安全状态。
热备工作流程:
1.开启燃煤输送设备并启动碎煤机,将煤粉送入旋风分离器和输送管;
2.启动送风机,将空气送入旋风分离器和循环泵;
3.增加循环泵的流量和速度,使床料和煤粉在低温氧化反应的基础上,最终进入高温燃烧环节;
4.监测系统的压力、温度和流量等参数,确保锅炉正常运行。
上述冷备和热备过程中涉及部分设备需要实现切换,其中,冷备切换设备包括操作控制系统、冷风阀和床层排气阀、循环泵、送风机、燃煤输送设备;热备切换设备包括:操作控制系统、燃煤输送设备、送风机、循环泵、旋风分离器、输送管、输送螺旋等设备。
现有的变电站无法对煤二次开发利用装备循环流化床脱硝工艺所及的设备对应的供给配电室进行有效监控,并且在倒闸操作流程中涉及到中压断路器在实验位与工作位切换时会产生电弧,稍有操作失误会带来人员伤害。这样,不但导致人员巡检负担较重,并且还不能及时切除设备故障,可能造成化工厂有 害气体泄漏对人员造成伤害。
发明内容
本公开实施例的目的在于提供一种倒闸操作机器人以及用于倒闸操作的控制方法,以解决现有技术中存在的问题。
为了解决上述技术问题,本公开的实施例采用了如下技术方案:
本公开实施例提供一种倒闸操作机器人,包括底盘移动装置,在所述底盘移动装置内设置探测装置,所述探测装置至少包括激光雷达和激光测距装置,在所述底盘移动装置上设置第一操作平台,在所述第一操作平台上设置云台相机、控制装置、寻位装置以及机械臂,在所述机械臂的端部设置执行装置,所述寻位装置用于对电控柜内的中压断路器的工作模式进行转换,所述执行装置用于至少执行电控柜柜门的开闭操作和所述中压断路器的开关控制。
在一些实施例中,所述第一操作平台包括底部,在所述底部上设置多个与所述底部垂直设置的侧部以内围成一空间,使得所述第一操作平台在上方和侧方各具有第一开口和第二开口,所述寻位装置设置在所述空间内并向所述第二开口的方向实现寻位操作,所述云台相机和所述机械臂设置在与所述第二开口相对的所述侧部的上端面上。
在一些实施例中,所述寻位装置包括底座,在所述底座上设置Y轴电机和X轴底板,通过所述Y轴电机配合第一丝杆滑块装置驱动所述X轴底板沿Y轴方向移动;在所述X轴底板上设置框架和X轴电机,在所述框架中设置Z轴底板,所述Z轴底板与所述X轴底板相互垂直设置,所述X轴电机配合第二丝杆滑块装置驱动所述Z轴底板在所述框架内沿X轴方向移动;在所述Z轴底板上设置Z轴电机和直线模组,在所述直线模组上设置扭转装置,所述Z轴电机通过联轴器与所述直线模组连接并能够调节所述扭转装置沿Z轴方向移动。
在一些实施例中,所述第二丝杆滑块装置包括丝杆,所述丝杆与所述X轴电机的输出轴通过联轴器连接,在所述丝杆上通过螺母与第一寻位滑块连接,所述第一寻位滑块与所述Z轴底板连接,在所述框架的上方和下方还设置滑轨,在所述滑轨2315上设置第二寻位滑块,所述第二寻位滑块与所述Z轴底板连接。
在一些实施例中,所述扭转装置包括手车位置驱动电机、减速机以及第三寻位滑块,所述第三寻位滑块设置在所述直线模组上并通过连接板与所述减速机连接,所述减速机与所述手车位置驱动电机连接,所述减速机上设置可旋转的扭转头,当所述手车位置驱动电机驱动时,通过所述减速机改变传动方向和输出力矩以实现所述扭转头沿预定方向旋转的功能。
在一些实施例中,所述执行装置包括连接板,所述连接板上的第一侧设置第二操作平台,所述第二操作平台上设置第一指尖部、第二指尖部以及固定部,所述第一指尖部和所述第二指尖部能够相对所述固定部而相互移动以实现对操作钥匙的夹持,所述第一指尖部为用于实现用户的触控任务的触控指尖部,所述第二指尖部为用于实现对电控柜的开关门操作以及对于电控柜中的继电器的开关操作的扣板指尖部。
在一些实施例中,在所述第二操作平台设置第一导轨和第二导轨,所述第一导轨和所述第二导轨的设置方向与所述固定部的延伸方向相同,在所述第一 导轨上滑动设置第一滑块,所述第一指尖部设置在第一滑块上,在所述第二导轨上滑动设置第二滑块,所述第二指尖部设置在第二滑块上,所述第一滑块面对所述固定部的侧面上设置第一齿条,所述第二滑块面对所述固定部的侧面上设置第二齿条,所述固定部上设置齿轮组,所述齿轮组与所述第一齿条和所述第二齿条相互啮合。
在一些实施例中,所述第一指尖部包括第一竖直段和第一水平段,所述第一水平段设置在所述第一滑块上并与所述第一竖直段的底部连接,所述第一竖直段的上端部的第一侧具有第一凹部,所述第一竖直段的上端部的第二侧具有第一斜面和第二斜面,所述第一斜面和所述第二斜面分别面对不同的方向且相互连接。
在一些实施例中,所述第二指尖部包括第二竖直段和第二水平段,其中,所述第二水平段设置在所述第二滑块上并与所述第二竖直段的底部连接,所述第二竖直段上设置固定板,所述第二竖直段的上端部设置U型部,所述第二竖直段的底部设置卡接部,所述U型部和所述卡接部用于卡接操作钥匙,所述操作钥匙贴合设置在所述固定板上,所述U型部的上端面和所述固定板之间形成第二凹部,所述U型部的下端面和所述卡接部的上端面之间形成矩形的导向口结构以实现对所述操作钥匙进行卡位,所述第一指尖部和所述第二指尖部对准贴合后,所述第一指尖部上的所述第一凹部和所述第二指尖部上的所述第二凹部围绕形成圆形凹部,所述操作钥匙的锁止部突出所述U型部的上端面以位于所述圆形凹部中,在所述第二竖直段的上端部还设置扣板部,所述扣板部朝向所述电控柜的方向设置,所述扣板部具有一圆弧部,所述圆弧部与继电器的活动部位的曲线拟合设置。
本公开实施例还提供一种用于倒闸操作的控制方法,应用于上述任一项所述倒闸操作机器人,包括:
当满足预定条件的情况下,构建场景地图并控制底盘移动装置移动到指定位置;
在所述指定位置处控制电控柜中的中压断路器处于工作位置模式;
确定电控柜内的预操作侧面板在机器人坐标系下的位姿信息以及机械臂的轨迹规划;
基于所述位姿信息和所述轨迹规划,控制机械臂上的执行装置进行柜门开闭和开关操作。
本公开实施例在倒闸操作流程中利用机器人代替人工进行运维,从而实时对配电室监控,并且及时能够切除设备故障,还能够避免化工厂有害气体泄漏对人员造成伤害,提高二次利用与产出的效能和系统稳定性。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的倒闸操作机器人的结构示意图;
图2是本公开实施例提供的倒闸操作机器人的结构示意图;
图3是本公开实施例提供的倒闸操作机器人中寻位装置的结构示意图;
图4是本公开实施例中电控柜的示意图;
图5是本公开实施例中电控柜的方法示意图;
图6是本公开实施例中电控柜中开关的布置示意图;
图7是本公开实施例提供的用于倒闸操作的控制方法的步骤示意图;
图8是本公开实施例提供的用于倒闸操作的控制方法的步骤示意图;
图9是本公开实施例的所述执行装置的结构示意图;
图10是本公开实施例的所述执行装置中第一指尖部的结构示意图;
图11是本公开实施例的所述执行装置中第二指尖部的结构示意图;
图12是本公开实施例的操作钥匙的结构示意图;
图13是本公开实施例的第二指尖部执行扣板操作的示意图;
图14是本公开实施例的所述执行装置对所述操作钥匙的操作示意。
具体实施方式
此处参考附图描述本公开的各种方案以及特征。
应理解的是,可以对此处申请的实施例做出各种修改。因此,上述说明书不应该视为限制,而仅是作为实施例的范例。本领域的技术人员将想到在本公开的范围和精神内的其他修改。
包含在说明书中并构成说明书的一部分的附图示出了本公开的实施例,并且与上面给出的对本公开的大致描述以及下面给出的对实施例的详细描述一起用于解释本公开的原理。
通过下面参照附图对给定为非限制性实例的实施例的优选形式的描述,本公开的这些和其它特性将会变得显而易见。
还应当理解,尽管已经参照一些具体实例对本公开进行了描述,但本领域技术人员能够确定地实现本公开的很多其它等效形式,它们具有如权利要求所述的特征并因此都位于借此所限定的保护范围内。
当结合附图时,鉴于以下详细说明,本公开的上述和其他方面、特征和优势将变得更为显而易见。
此后参照附图描述本公开的具体实施例;然而,应当理解,所申请的实施例仅仅是本公开的实例,其可采用多种方式实施。熟知和/或重复的功能和结构并未详细描述以避免不必要或多余的细节使得本公开模糊不清。因此,本文所申请的具体的结构性和功能性细节并非意在限定,而是仅仅作为权利要求的基础和代表性基础用于教导本领域技术人员以实质上任意合适的详细结构多样地使用本公开。
本说明书可使用词组“在一种实施例中”“在另一个实施例中”“在又一实施例中”或“在其他实施例中”,其均可指代根据本公开的相同或不同实施例中的一个或多个。
本公开实施例提供一种倒闸操作机器人,所述倒闸操作机器人用于对变电站内的电控柜实现倒闸操作,其中,一般的电气设备分为运行、备用(冷备用及热备用)、检修三种状态,其中,将设备由一种状态转变为另一种状态的过程叫 倒闸,为实现倒闸所进行的操作叫倒闸操作。在倒闸操作中,通过操作隔离开关、断路器以及挂、拆接地线等将电气设备从一种状态转换为另一种状态或使系统改变运行方式。
图4和图5示出所述电控柜的控制面板的示意图,所述控制面板上依次设置相关装置,例如包括a—开关保护装置,b—智能操作装置,c—电力仪表,d—事故指示,e—接地报警,f—储能指示,g—分闸指示,h—合闸指示,i—遥控指示,j—保护跳闸,k—本体保护跳闸,l—连跳低压侧,m—备用指示,n—中压断路器,o—工作模式切换开关。
本实施例中,用于针对上述电控柜进行倒闸操作的所述倒闸操作机器人的结构如图1和图2所示,其包括底盘移动装置100,所述底盘移动装置100例如可以是麦克纳姆轮全向移动装置,例如在所述底盘移动装置100的下部设置例如轮部120,其能带动所述倒闸操作机器人实现移动,在所述底盘移动装置100内设置探测装置110,这里的所述探测装置110至少包括激光雷达和激光测距装置,其中,这里的所述激光测距装置可以采样某一方位的障碍物的距离信息,所述激光雷达通过电机部的旋转不断改变所述测距部的测量方位,从而实现对周围环境全方位测量,并产生平面点云信息。
进一步地,在所述底盘移动装置100上设置第一操作平台200,在所述第一操作平台200上设置云台相机210、控制装置220、寻位装置230、机械臂240以及电源装置260,在所述机械臂240的端部设置执行装置250,这里的所述执行装置250包括相对设置的指尖部,以通过所述指尖部的夹持作用固定操作钥匙以及打开柜门上的锁体,还能够通过所述指尖部针对电控柜内的开关进行操作。
具体地,所述第一操作平台200包括底部201,在所述底部201上设置多个与所述底部201垂直设置的侧部202以内围成一空间,使得所述第一操作平台200在上方和侧方各具有第一开口203和第二开口204,其中,所述寻位装置230设置在所述空间内并向所述第二开口204的方向实现寻位操作,所述云台相机210和所述机械臂240设置在与所述第二开口相对的所述侧部202的上端面上。此外,由于寻求机构重心与机械臂重心之间的分配,结合考虑电控柜高度与所述倒闸操作机器人的整机重心,优选使得所述机械臂240的操作正方向和所述寻位装置230安装开口处在所述底盘移动装置100的两侧位置相对设置。
需要说明的是,这里的所述云台相机210例如可以是通过云台控制的具有两自由度的视觉采集装置。这里的所述寻位装置230能够实现中压断路器控制手车位置的确定,并通过输出轴旋转手柄以对所述工作模式切换开关o执行操作,以对所述电控柜内的所述中压断路器n的工作模式进行转换。为此,这里的所述寻位装置230的安装位置取决于现场需要操作的所述中压断路器n的操作高度进行设置和安装。
如图3所示,所述寻位装置230能够完成左右、前后、上下方向上的移动并最后实现对手车位置的调节,其包括底座2301,在所述底座2301上设置Y轴电机2302和X轴底板2303,通过所述Y轴电机2302配合第一丝杆滑块装置可以驱动所述X轴底板2303沿Y轴方向移动。
进一步地,在所述X轴底板2303上设置框架2304和X轴电机2305,在所述框架2304中设置Z轴底板2306,所述Z轴底板2306与所述X轴底板2305相互垂直设置,其中,所述X轴电机2305配合第二丝杆滑块装置可以驱动所述Z轴底板2306在所述框架内沿X轴方向移动。
进一步地,所述第二丝杆滑块装置包括丝杆2312,所述丝杆2312与所述X轴电机2305的输出轴通过联轴器2320连接,在所述丝杆2312上通过螺母2313与第一寻位滑块2314连接,所述第一寻位滑块2314与所述Z轴底板2306连接。此外,在所述框架2304的上方和下方还设置滑轨2315,在所述滑轨2315上设置第二寻位滑块2316,所述第二寻位滑块2316与所述Z轴底板2306连接。
在所述Z轴底板2306上设置Z轴电机2307和直线模组2308,在所述直线模组2308上设置扭转装置,所述Z轴电机2307通过联轴器2320与所述直线模组2308连接并能够调节所述扭转装置沿Z轴方向移动。
所述扭转装置包括手车位置驱动电机2309、减速机2310以及第三寻位滑块2311,所述第三寻位滑块2311设置在所述直线模组2308上并通过连接板2317与所述减速机2310连接,这里的所述减速机2310可以是直角转角行星减速机,所述减速机2310与所述手车位置驱动电机2309连接,所述减速机2310上设置可旋转的扭转头2318,当所述手车位置驱动电机2309驱动时,通过所述减速机2310改变传动方向和输出力矩,从而实现所述扭转头2318沿预定方向旋转的功能。
此外,这里的所述机械臂240上的所述执行装置250用于具体执行倒闸操作,这里的所述倒闸操作例如包括所述智能操作装置b的旋钮控制,所述中压断路器n的开关控制,电控柜柜门的开闭操作以及中压断路器手车位置控制等。此外,在所述执行装置250中设置双目深度相机,其通过双目深度视觉采集方式配合执行倒闸操作。
具体地,如图9所示,所述执行装置250,其包括连接板1,这里的所述连接板1与所述倒闸操作机器人的机械臂连接以便于将所述执行装置设置在机械臂上,在所述连接板1上的第一侧设置第二操作平台2,在所述第二操作平台2上设置第一指尖部10、第二指尖部20以及固定部30,这里的所述第一指尖部10和所述第二指尖部20分别设置在所述固定部30的两侧。这里的所述第一指尖部10和所述第二指尖部20能够相对所述固定部30而相互移动以实现对操作钥匙的夹持操作,这里的操作钥匙能够实现对于电控柜中的继电器进行操作。
具体地,所述第一指尖部10为触控指尖部,其用于实现用户的触控任务,例如用户能够通过操作所述第一指尖部10以查询继电保护装置的工作状态和解除警报指令等;所述第二指尖部20为扣板指尖部,其用于实现对电控柜的开关门操作以及对于电控柜中继电器的开关执行操作。这里的所述第一指尖部10和所述第二指尖部20的重量例如可以是0.66KG,两个指尖部的综合行程为53mm。
进一步地,在所述第二操作平台2设置第一导轨3和第二导轨4,所述第一导轨3和所述第二导轨4的设置方向与所述固定部30的延伸方向相同,在所述第一导轨3上滑动设置第一滑块5,所述第一指尖部10设置在第一滑块5上,在所述第二导轨4上滑动设置第二滑块6,所述第二指尖部20设置在第二滑块 6上,这样所述第一指尖部10和所述第二指尖部20能够通过滑动相对靠近或者远离。为了实现所述第一指尖部10和所述第二指尖部20的移动,所述第二操作平台2中设置有驱动装置,其与对应的所述第一滑块5和所述第二滑块6连接。
进一步地,在所述第一滑块5面对所述固定部30的侧面上设置第一齿条7,在所述第二滑块6面对所述固定部30的侧面上设置第二齿条8,在所述固定部30上设置齿轮组,所述齿轮组与所述第一齿条7和所述第二齿条8相互啮合,这里的所述第一齿条7和所述第二齿条8的延伸方向与所述第一滑块6和所述第二滑块7的滑动方向一致,这样能够使得所述第一指尖部10和所述第二指尖部20的相对滑动更加稳定。
如图10所示,所述第一指尖部10包括第一竖直段11和第一水平段12,其中,所述第一水平段12设置在所述第一滑块5上并与所述第一竖直段11的底部连接。
具体地,所述第一竖直段11的上端部的第一侧具有第一凹部111,所述第一竖直段11的上端部的第二侧具有第一斜面112和第二斜面113,这里所述第一斜面112和所述第二斜面113分别面对不同的方向,其中,所述第一斜面112和所述第二斜面113相互连接。
进一步地,在所述第一斜面112和所述第二斜面113上分别设置第一凹槽1121和第二凹槽1131,这里的所述第一凹槽1121和所述第二凹槽1131采用深度为1mm的凹槽结构,在所述第一凹槽112和所述第二凹槽113中设置触控单元。在一个具体的实施方式中,这里的所述触控单元的直径为22mm,这里考虑到人体的指尖宽度一般为20.2mm,如果只设置一个凹槽则在按压过程中用户的指尖可能与所述触控单元的边缘发生干涉,通过在不同的两个斜面上分别设置两个凹槽,不仅解决了按压时存在的干涉问题,同时双凹槽结构可以从不同角度完成不同的触控任务。
在另一个实施方式中,可以在所述第一凹槽1121和所述第二凹槽1131内通过粘贴方式设置硅胶垫。这里考虑到指尖材料的硬度高,与所述触控单元采用硬连接接触时有可能损坏所述触控单元,因此可以采用厚度为3mm的背胶硅胶垫(其硬度可以达到60-70HRC),从而通过设置硅胶垫以起到缓冲作用。
在另一些实施例中,在所述第一凹槽1121和所述第二凹槽1131中还可以设置具有压阻效应的水凝胶等柔性传感材料,从而还能够基于按压阻变值反馈指尖操作的稳定情况。
进一步地,如图11所示,所述第二指尖部20包括第二竖直段21和第二水平段22,其中,所述第二水平段22设置在所述第二滑块6上并与所述第二竖直段21的底部连接。这里的所述第二指尖部20用于实现对电控柜柜门的开关操作以及对于电控柜中继电器的开关执行操作。
具体地,这里的所述继电器位于电控柜中,考虑到电控柜的柜门上设置一字锁,用户需要开关门就需要先用操作钥匙开锁。如果通过执行装置首先夹取钥匙再完成开关门操作,不仅会增加工作时间,而且关门时单独通过钥匙锁门则无法有效按压柜门同时还会存在误操作问题,因此,可以将所述操作钥匙预 先固定在第二指尖部20上,尤其可以固定在所述第二竖直段21上。
具体地,所述第二竖直段21上设置固定板213,所述第二竖直段21的上端部设置U型部211,所述第二竖直段21的底部设置卡接部212,这里的所述U型部211和所述卡接部212用于卡接用于开启电气柜门的操作钥匙100,所述操作钥匙100贴合设置在所述固定板213上。此外,所述U型部211的上端面和所述固定板213之间形成第二凹部214,这里的所述第一凹部111和所述第二凹部214相对匹配设置。
其中,如图12所示,所述操作钥匙100用于打开例如电控柜上的钥匙锁,其包括钥匙把110和钥匙杆120,其中所述钥匙把110的截面尺寸大于所述钥匙杆120的截面尺寸,在所述钥匙杆120的远端部设置锁止部130。
具体地,所述U型部211的下端面和所述卡接部212的上端面之间形成矩形的导向口结构以实现对所述操作钥匙100进行卡位,具体地,所述钥匙100的所述钥匙把110卡接在所述导向口结构中,所述钥匙100的所述钥匙杆120穿过所述U型部211并通过所述U型部211固定。
当所述第一指尖部10和所述第二指尖部20对准贴合后,所述第一指尖部10上的所述第一凹部111和所述第二指尖部20上的所述第二凹部214围绕形成圆形凹部,所述锁止部130突出所述U型部211的上端面以位于所述圆形凹部中
此外,为了提升所述操作钥匙100更加稳定地设置在所述第二指尖部20上,所述操作钥匙100的所述钥匙把110上设置通孔101,所述固定板213上设置连接孔2131,可以通过紧固件依次穿过所述连接孔2131和所述通孔101以将所述操作钥匙100更稳定地固定,并且保证所述操作钥匙100的设置精度。
在一个具体的实施方式中,所述锁止部130的外径为28mm,所述操作钥匙100的纵轴方向处于旋转中心位置,以所述操作钥匙100为轴心在所述第一指尖部10和所述第二指尖部20的2的顶部增加4mm深的圆形凹部,这里的所述圆形凹部的内径29mm,这样可以将所述操作钥匙100嵌入柜门上的钥匙锁的锁孔中,同时所述第一指尖部10和所述第二指尖部20形成的所述圆形凹部的底面部分与钥匙锁外侧的光滑面接触,能够起到压门的作用以保证所述操作钥匙100和钥匙锁之间的连接。
此外,考虑到所述钥匙锁突出所述电控柜的操作面板5mm设置,所述钥匙锁上的锁孔的深度为6.5mm,这样设置所述操作钥匙100最终突出所述圆形凹部2.5mm。这样,当所述圆形凹部的底面部分与所述钥匙锁的外侧光滑面接触时,所述第一指尖部10和所述第二指尖部20的顶部距离柜门1mm,这样能够保证旋转开锁时不会碰到柜门,又防止了所述操作钥匙100突出指尖部的顶部过多造成的10KV开关操作和对于继电器的扣板操作之间发生干涉。
进一步地,如图13所示,在所述第二竖直段21的上端部还设置用于针对继电器的开关进行操作的扣板部215,所述扣板部215朝向所述电控柜的方向设置,具体地,这里的所述扣板部215尤其根据电控柜中的继电器的活动部位设置,所述扣板部215具有一圆弧部216,所述圆弧部216与继电器的活动部位的曲线拟合设置,使得所述扣板部215能较好地卡位所述继电器的活动部位。
在实际操作中,所述继电器的活动部位与所述继电器的边缘距离较大,所述扣板部215的末端可以伸入其间的缝隙,所述扣板部215的所述圆弧部216的曲率大于活动部位的轮廓的曲率,且末端有1-2mm的倒钩设置,防止在扣板动作过程中继电器的活动部位滑出轨道,此外,所述扣板部215上设置外斜面可以减小所述扣板部215的末端对旋转角度的要求。
具体地,基于所述第二指尖部20的结构从而通过所述第二指尖部20能够实现操作所述操作钥匙100,如图14所示,图14a和图14c为本实施例中基于指尖部的“零”位夹持状态,图14b为默认指尖部初始的“零”位夹持状态。考虑到在倒闸操作中,通过所述机械臂操作执行装置的末端旋转所述操作钥匙100以实现开锁,所以操作钥匙100必须处于旋转中心。本实施例的对于所述操作钥匙100的夹持位置可调节,在旋转所述操作钥匙100开锁时,可以通过调节夹持位置,使得所述操作钥匙100处于旋转中心。
此外,默认的两个指尖部的总行程是80mm,当两个指尖部处于“零”位夹持状态时,对应的两个滑块和齿条处于两侧极限位置,无法调节夹持位置。因此,必须减小两个指尖部的总行程。考虑到10KV旋转开关的宽度10mm,因此,上述总行程必须大于10mm,本实施例能够缩短两个指尖部的总行程至53mm。
此外,在所述连接板1的第二侧设置支架40,在所述支架40上设置深度相机50,通过所述深度相机能够对电控柜的柜门以及开关处进行视觉采集,从而配合两个指尖部实现相关操作。考虑到所述执行装置的结构以轻量化为主,这里的所述深度相机50重量约200g,因此对于相机侧的结构不会影响执行装置的重心。
通过所述底盘移动装置100的自主导航移动使得所述倒闸操作机器人移动到流程环节中需要倒闸操作的指定电控柜前的预定位置并通过所述执行装置250实现倒闸操作。具体地,在进行到达需要倒闸操作的预定电控柜前的自主导航的过程中,所述控制装置220能够实现激光雷达的数据分析、动态环境建图与自主导航、所述底盘移动装置与待操作的电控柜之间的标定、手眼标定等多种功能。
其中,这里的动态环境建图与自主导航功能包括例如地图创建、机器人定位、路径规划以及路径跟踪运动控制等多个功能以使得能够实现所述机器人在工作时快速精确到达路径规划的目标位置。所述底盘移动装置与待操作的电控柜之间的标定主要用于确定倒闸操作前的机器人坐标系与基础坐标系以及确定两者之间的位姿关系。所述手眼标定功能主要用于确定相机坐标系与机械臂坐标系以及确定两者之间的位姿关系。
在本实施例中,所述倒闸操作机器人主要用于循环流化床脱硝工艺中涉及设备的供给配电室内的电控柜的倒闸操作,这里的倒闸操作至少包括以下三种,分别是:10kV开关冷备用转热备用情况、10kV开关热备用转冷备用情况和开关控制紧急切断情况。。
本公开的第二实施例提供一种用于倒闸操作的控制方法,下面的描述以10kV开关冷备用转热备用情况为例,如图7所示,所述控制方法包括:
S101,当满足预定条件的情况下,构建场景地图并控制所述底盘移动装置 移动到指定位置。
在本步骤中,当满足预定条件的情况下,构建场景地图并控制所述底盘移动装置移动到指定位置。在本实施例中的所述预定条件是指变电站的配电室的状态需要将10kV开关的冷备用转热备用的条件。当然,也可以是10kV开关热备用转冷备用和开关柜紧急情况等其他条件。这里的场景地图一般是指包括电控柜在内的配电室的室内场景地图。
这里的控制所述底盘移动装置移动到指定位置用于通过所述底盘移动装置100的自主导航移动使得所述倒闸操作机器人移动到工艺流程环节中需要倒闸操作的预定电控柜前的预定位置。具体地,当配电室的状态需要将10kV开关的冷备用转热备用时,根据例如语义分割网络算法构建带有电控柜功能属性信息的配电室的室内场景地图。进一步地通过例如激光雷达SLAM算法控制所述底盘移动装置100通过自主导航移动至需要进行倒闸操作的预定电控柜的指定位置处。
S102,在所述指定位置处控制电控柜中的中压断路器处于工作位置模式。
在本步骤中,在所述指定位置处控制电控柜中的中压断路器处于工作位置模式。为了更顺利地实现倒闸操作,在本步骤之前,当所述倒闸操作机器人移动至指定位置处,还可以通过所述执行装置250上的双目深度相机采集所述电控柜的图像数据,并结合例如SSD目标检测算法检测所述电控柜的控制面板的最上端的开关保护装置a未出现报警信号。
进一步地,考虑到这里的电控柜中的中压断路器n的工作模式包括实验位置模式和工作位置模式,在本步骤之前,还需要确定所述电控柜中的中压断路器n是否处于实验位置模式。具体地,通过所述执行装置250上的双目深度相机采集所述中压断路器n的图像数据,检测电控柜的操作面板上观察窗口内所述中压断路器n靠近所述电控柜的面板之间的距离,基于所述距离确定所述中压断路器n是否处于实验位置模式。
此外,在本步骤之前,还可以通过所述双目深度相机在图像数据中获取所述电控柜上的所述智能操作装置b的图像,并确定所述智能操作装置b的操作面板上的刀闸是否位于预定位置以及操作面板上的分合闸旋是否钮位于“零”位。
优选地,当上述条件都满足后,可以控制所述电控柜中的所述中压断路器n处于工作位置模式。具体地,在本步骤中,控制所述底盘移动装置100例如旋转一周后与所述电控柜的控制面板对准,具体地,当所述倒闸操作机器人处于指定位置后,通过所述底盘移动装置100上的激光测距装置反馈的与所述电控柜之间的距离信息与对应于所述电控柜的二维码的四元数信息进行解算以获得所述底盘移动装置100水平对准所述电控柜时所述寻位装置230的X轴和Y轴的移动信息,并控制所述底盘移动装置100从所述指定位置移动至预定的二维码ID标记位。
进一步地,当所述底盘移动装置100位于二维码ID标记位后,调整所述寻位装置230的Y轴和Z轴的移动距离,使所述寻位装置230的X轴方向上的手车位置驱动电机的输出轴对准所述电控柜的控制面板上的工作模式切换开关o, 这里的所述工作模式切换开关o与所述电控柜内的手车连接,所述手车通过丝杠滑块以控制所述中压断路器n在两个工作模式中切换。具体地,在本步骤中,通过控制所述寻位装置230的手车位置驱动电机的输出轴沿顺时针转动所述工作模式切换开关o以通过手车带动所述中压断路器n移动从而使得所述中压断路器n调节到工作位置模式。
具体地,在使得所述中压断路器n调节到工作位置模式后,进一步地还可以通过所述执行装置250上的所述双目深度相机采集所述中压断路器n的图像数据,通过获取与手车相连的丝杠模块中丝杆在观察窗口中的长度,以此来确定所述中压断路器n处于工作位置模式。
S103,确定电控柜内的预操作侧面板在机器人坐标系下的位姿信息以及所述机械臂的轨迹规划。
在本步骤中,确定电控柜内的预操作侧面板在机器人坐标系下的位姿信息以及所述机械臂的轨迹规划。这里的倒闸操作主要是通过所述机械臂240上的所述执行装置250打开所述电控柜的柜门以及对所述电控柜内的预操作侧面板上的开关进行操作。
具体地,首先控制所述底盘移动装置100例如旋转一周后对准所述电控柜进行位置校准,例如通过所述底盘移动装置100内的所述激光测距装置反馈的与所述电控柜的距离信息与对应于所述电控柜的二维码的四元数信息进行算法解算得到所述底盘移动装置100水平对准所述电控柜时的X轴和Y轴移动信息,并控制所述底盘移动装置100移动至二维码ID标记位,从而完成所述底盘移动装置100与待操作的所述电控柜之间的位置标定,同时还可以获取所述电控柜的功能属性信息。
进一步地,利用手眼标定方式确定所述电控柜内的预操作侧面板在机器人坐标系下的位姿信息。具体地,需要在控制所述机械臂240以及所述执行装置250执行倒闸操作任务前进行手眼标定,具体地利用雅克比矩阵确定相机坐标系与机器人坐标系之间的位姿关系,从而确定所述倒闸操作机器人进行倒闸操作时所述电控柜的预操作侧面板在机器人坐标系下的位姿信息。进一步地,在本步骤中,还可以针对所述机械臂进行相关任务的轨迹规划,这里的轨迹规划可以基于所述执行装置250和所述电控柜的柜门以及其上钥匙孔的位置以及电控柜内的开关位置确定,这里的轨迹可以是对于柜门的开关门的轨迹,也可以是开关操作的轨迹。
S104,基于所述位姿信息和所述轨迹规划,控制所述执行装置进行柜门开闭和开关操作。
在本步骤中,基于所述位姿信息和所述轨迹规划,控制所述执行装置250进行柜门开闭和开关操作。具体地,基于预操作侧面板的所述位姿信息和所述机械臂的所述轨迹规划,根据获得的柜门上的钥匙孔的位置信息,采用所述执行装置250插入到所述钥匙孔中从而打开所述电控柜的柜门,这里的用于柜门的操作钥匙事先设置在所述执行装置250中。
进一步地,控制所述执行装置250的所述指尖部利用所述执行装置250上的所述双目深度相机确定所述预操作侧面板上的二次小开关的开关位并通过所 述指尖部闭合二次小开关。具体地,首先控制所述执行装置250的指尖部闭合,并利用所述双目深度相机采集所述预操作侧面板上的二次小开关位置信息,从而确定二次小开关的开关位。如图6所示,10kV电控柜内的预操作侧面板上的二次小开关1表示的是1QF、2表示的是2QF、4表示的是4QF、5表示的是5QF。这样根据对于电控柜的任务指示以及所获得的不同二次小开关的位置信息,并使用所述执行装置250闭合选择的二次小开关。
在完成闭合二次小开关的操作之后,控制所述执行装置250的指尖部还可以关闭所述电控柜的柜门。具体地,完成闭合二次小开关的操作之后,根据所述机械臂的关门的轨迹规划,结合所述双目深度相机采集的所述电控柜的柜门上的钥匙孔的位置信息,使用所述执行装置250关闭所述电控柜的柜门。
优选地,在上述步骤S104之后,还包括以下步骤:
控制所述底盘移动装置移动至二维码ID标记位,调节所述中压断路器处于实验位置模式。
在本步骤中之前,还可以采用所述执行装置250将10kV开关的控制方式切至“远方”。具体地,在本步骤中,控制所述底盘移动装置100旋转一周后对准所述电控柜进行再次位置校准,例如通过所述底盘移动装置100内的所述激光测距装置反馈的与所述电控柜的距离信息与对应于所述电控柜的二维码的四元数信息进行算法解算得到所述底盘移动装置100水平对准所述电控柜时所述寻位装置230的X轴和Y轴的移动信息,并控制所述底盘移动装置100移动至二维码ID标记位。进一步地,调节所述寻位装置230的Y轴和Z轴的移动距离,使其手车位置驱动电机的输出轴对准所述工作模式切换开关o。具体地,控制手车位置驱动电机逆时针转动,以通过手车带动所述中压断路器n移动至实验位置模式。
进一步地,还可以通过所述执行装置250的所述双目深度相机采集所述中压断路器n的图像数据,通过检测得到与手车相连的丝杠模块中丝杆在观察窗口中的长度,以此来确定所述中压断路器n处于实验位置模式。
进一步地,所述S101步骤即当满足预定条件的情况下,如图8所示,构建场景地图并控制所述底盘移动装置移动到指定位置的具体方法如下:
S201,基于底盘移动装置上的激光雷达采集的点云信息获取局部栅格地图。
在本步骤中,基于底盘移动装置上的激光雷达采集的点云信息获取局部栅格地图。具体地,将所述探测装置110中的激光雷达采集的点云雷达数据进行同步定位与地图构建(SLAM)以实现初步建图,从而获取局部栅格地图。
进一步地,利用所述激光雷达的似然域模型,基于Bayes方法将检测到的对于障碍物的点云数据映射到全局地图坐标系上。这里对于Bayes方法,其是以条件概率为基础来估计未知状态向量的统计数据融合算法。利用ROS自带的octomap_server功能包,通过投影变换将3D点云图转化为2D栅格图。经过比较栅格与origin坐标来确定出两者间的映射关系。当栅格被占用时,针对周边栅格状态进行检查。倘若占用状态数量超过了某个阈值,便认为此栅格为占用状态;反之,则认为其为空闲状态。
此外,还可以采用结合里程计,通过Cartographer算法根据激光雷达的点云 信息和里程计(Odometry)的信息,对场景地图进行构建以获取局部栅格地图,同时还可以对自身状态进行估计。
S202,基于底盘移动装置上的云台相机采集的视频流获取语义分割图。
在本步骤中,基基于底盘移动装置上的云台相机采集的视频流获取语义分割图。具体地,通过所述云台相机采集室内场景的视频流,通过视觉词袋模型提取视频流中的关键帧以获取具有丰富信息的图像,然后利用基于多尺度注意力机制的语义分割网络对图像进行语义分割,最终获取具有语义信息的语义分割图。
具体地,例如可以采用配电室的相关图片作为训练图像,以对配电室的图片中的特征进行提取以构建视觉词袋模型,例如采用特征提取算法从训练图像中提取图像的视觉特征;然后利用所有的视觉单词对提取的视觉特征进行聚类,将每一个图像中的像素点都作为一个视觉单词,根据所有视觉单词建立词汇库;最后对所述云台相机采集的视频流进行关键帧提取,并在词汇库中寻找与该关键帧图像每一个视觉特征距离最短的视觉单词,统计关键帧的图像中的视觉特征在词汇库中所出现的频率,形成表达该关键帧的特征信息。
在对图像进行语义分割的过程中,这里可以采用注意力机制结构,以具有能够关注重要信息并弱化次要信息的作用,并且将注意力机制结构融合在语义分割网络中,进一步提高该模型的分割精度,从而获取具有更高精度的配电室目标识别度的语义分割模型。
进一步地,将通过视觉词袋模型提取的人、电控柜等目标的图像特征信息作为语义分割网络的输入,利用语义分割网络中融合的注意力机制模块获取配电室环境中所需要监测的人、电控柜等目标的信息,并将这些特征信息经过多尺度特征融合方法进行特征融合,得到深度特征信息。这样,在提取空间位置特征的过程中利用语义分割信息提高模型预测精度,输出下一步动作的决策量,提高配电室环境状态的认知能力。
最后通过加入LSTM网络,将包含空间信息的深度图像以及包含时间信息的配电室环境历史连续状态序列作为网络模型的输入数据,通过卷积网络和LSTM分别提取并融合场景的空间位置特征和时间上下文特征,从而实现获取语义分割图。
S203,基于所述局部栅格地图和所述语义分割图获取全局栅格地图以及导航路径。
在本步骤中,基于所述局部栅格地图和所述语义分割图获取导航路径。具体地,在通过Bayes方法融合基于激光雷达获取的所述局部栅格地图的基础上,可以基于所述云台相机获取的语义分割图更新所述局部栅格地图,从而根据配电室的环境完成SLAM建图,得到全局栅格地图。在本步骤中融合通过所述激光雷达获取的局部栅格地图和由语义分割网络建立的语义分割图中对相同位置的栅格并进行更新,以完成同步定位与建图。
进一步地,依据获得的配电室环境得到任务信息并确定目标电控柜的位置,利用D*算法进行路径规划,运动到达目标的电控柜位置,并进行位姿矫正。具体地,根据所建的配电室地图与任务信息,采用D*算法避开配电室中的障碍物 和人,并进行路径规划以得到最佳的路线。
这样当确定好路线之后,控制该所述底盘移动装置100移动到目标的电控柜的位置,再对所述倒闸操作机器人进行位姿矫正,调整所述倒闸操作机器人到能够与电控柜的面板对齐并距离电控柜适当的位置,这样以便机械臂进行操作时与所述控制面板之间的距离合适。
在另一个实施方式中,可以参照上述步骤S101-S104实现在需要将10kV开关热备用转冷备用时实现相关操作,例如可以按照以下步骤实现,简要的操作流程与所述将10kV开关冷备用转热备用操作流程相反,具体方式如下:
S1,根据语义构图算法所建的配电的室内地图,通过激光雷达以及SLAM算法控制所述底盘移动装置100移动导航至所需倒闸操作的电控柜的预定位置处。上述步骤参见第一实施例的步骤S101。
S2,采用SSD目标检测算法检测10kV开关在实验位置模式,采用所述执行装置250将10kV开关控制方式切至“0”位;控制所述底盘移动装置100底盘旋转一周后对准电控柜,并控制所述底盘移动装置100移动至二维码ID标记位;通过手车以及丝杠滑块控制所述中压断路器n在两个工作模式中移动切换。
进一步地,控制所述寻位装置230中的手车位置驱动电机顺时针转动所述工作模式切换开关以带动手车移动至工作位置模式。还可以通过所述中压断路器n的图像数据,确定手车处于工作位置模式。上述步骤参见第一实施例的步骤S102。
S3,控制所述底盘移动装置100旋转一周后对准电控柜,并控制所述底盘移动装置100移动至二维码ID标记位;此外,还可以进行手眼标定,获得电控柜上的预操作侧面板在机器人坐标系下的位姿信息,然后对所述机械臂进行任务的轨迹规划。上述步骤参见第一实施例的步骤S103。
S4,根据获得的电控柜控制面板上钥匙孔的位置信息,使用所述执行装置250打开电控柜的柜门,控制执行装置250的指尖部闭合并利用所述双目深度相机采集所述电控柜的柜体内部的二次小开关位置信息,然后采用所述执行装置250打开二次小开关。在完成打开二次小开关操作之后,根据所述双目深度相机采集的电控柜的柜门信息,采用所述执行装置250关闭电控柜的柜门。
最后控制所述底盘移动装置100旋转一周后对准所述电控柜,并控制所述底盘移动装置100移动至二维码ID标记位,通过手车和丝杠滑块控制所述中压断路器n在两个工作模式中移动切换,也就是带动手车移动至实验位置模式,最后还可以利用所述双目深度相机确定手车处于实验位置模式。上述步骤参见第一实施例的步骤S104。
在另一个实施方式中,可以参照上述步骤S101-S104实现在需要当开关柜发生紧急情况时实现相关操作,简要的操作流程如下:
S11,当配电室的电控柜发生紧急情况时,根据语义构图算法所建的配电室内地图,通过激光雷达SLAM算法控制所述底盘移动装置100移动导航至故障的电控柜位置前。上述步骤参见第一实施例的步骤S101。
S12,采用SSD目标检测算法检测所述电控柜的所述控制面板最上端的开关保护装置的报警信号。上述步骤参见第一实施例的步骤S102。
S13,控制所述底盘移动装置100旋转一周后对准电控柜,并控制所述底盘移动装置100移动至二维码ID标记位,此时还可以进行手眼标定,获取所述电控柜的预操作侧面板上的分合闸旋钮在机器人坐标系下的位姿信息,然后对所述机械臂进行任务的轨迹规划,最后采用所述执行装置完成紧急分闸操作以及时切除故障回路。上述步骤参见第一实施例的步骤S103和S104。
本公开实施例在倒闸操作流程中利用机器人代替人工进行运维,从而实时对配电室监控,并且及时能够切除设备故障,还能够避免化工厂有害气体泄漏对人员造成伤害,提高二次利用与产出的效能和系统稳定性。
基于与上述第一实施例相同的发明构思,本公开的第二实施例提供了一种用于倒闸操作的控制装置,应用于倒闸操作机器人,其包括地图导航模块、模式调节模块、运动确定模块以及执行控制模块,其中:
地图导航模块,用于当满足预定条件的情况下,构建场景地图并控制底盘移动装置移动到指定位置;
模式调节模块,用于在所述指定位置处控制电控柜中的中压断路器处于工作位置模式;
运动确定模块,用于确定电控柜内的预操作侧面板在机器人坐标系下的位姿信息以及机械臂的轨迹规划;
执行控制模块,用于基于所述位姿信息和所述轨迹规划,控制机械臂上的执行装置进行柜门开闭和开关操作。
进一步地,所述地图导航模块包括:
第一获取单元,用于基于底盘移动装置上的激光雷达采集的点云信息获取局部栅格地图;
第二获取单元,用于基于底盘移动装置上的云台相机采集的视频流获取语义分割图;
第三获取单元,用于基于所述局部栅格地图和所述语义分割图获取全局栅格地图以及导航路径。
进一步地,所述模式调节模块还用于:
基于所述中压断路器的图像数据检测电控柜的操作面板上观察窗口内所述中压断路器靠近所述操作面板之间的距离;
基于所述距离确定所述中压断路器是否处于实验位置模式。
进一步地,所述模式调节模块,包括:
第一模式控制单元,用于当所述底盘移动装置处于指定位置且所述中压断路器处于实验位置模式时,通过与所述电控柜之间的距离信息与对应于所述电控柜的二维码的四元数信息进行解算以获得所述底盘移动装置水平对准所述电控柜时,所述底盘移动装置上的寻位装置的X轴和Y轴的移动信息,并控制所述底盘移动装置从所述指定位置移动至预定的二维码ID标记位;
第二模式控制单元,用于当所述底盘移动装置位于二维码ID标记位后,调整所述寻位装置的Y轴和Z轴的移动距离,使所述寻位装置的X轴方向上的手车位置驱动电机的输出轴对准所述电控柜的控制面板上的工作模式切换开关,通过控制所述寻位装置的手车位置驱动电机的输出轴沿顺时针转动所述工作模 式切换开关以通过手车带动所述中压断路器移动从而调节到工作位置模式。
进一步地,所述模式条件模块还用于:
确定所述电控柜的智能操作装置的操作面板上的刀闸是否位于预定位置和/或
所述操作面板上的分合闸旋是否钮位于“零”位。
进一步地,所述运动确定模块包括:
位姿信息确定单元,用于利用雅克比矩阵确定相机坐标系与机器人坐标系之间的位姿关系,以确定进行倒闸操作时所述预操作侧面板在机器人坐标系下的位姿信息;
轨迹规划单元,用于针对机械臂进行基于位置和任务的轨迹规划,所述位置至少包括所述机械臂上的执行装置的位置、所述电控柜的柜门以及其上钥匙孔的位置以及电控柜内的开关位置确定。
进一步地,所述执行控制模块包括:
开关柜控制单元,用于根据所述电控柜的柜门上的钥匙孔的位置,通过执行装置上的操作钥匙插入到所述钥匙孔中以打开所述电控柜的柜门;
开关控制单元,用于通过所述执行装置上的双目深度相机确定所述预操作侧面板上选择的二次小开关的开关位并通过控制所述执行装置上的指尖部闭合所述二次小开关。
本公开实施例在倒闸操作流程中利用机器人代替人工进行运维,从而实时对配电室监控,并且及时能够切除设备故障,还能够避免化工厂有害气体泄漏对人员造成伤害,提高二次利用与产出的效能和系统稳定性。
本公开的第三实施例提供了一种存储介质,该存储介质为计算机可读介质,存储有计算机程序,该计算机程序被处理器执行时实现本公开第一实施例提供的方法,包括如下步骤S21至S24:
S21,当满足预定条件的情况下,构建场景地图并控制底盘移动装置移动到指定位置;
S22,在所述指定位置处控制电控柜中的中压断路器处于工作位置模式;
S23,确定电控柜内的预操作侧面板在机器人坐标系下的位姿信息以及机械臂的轨迹规划;
S24,基于所述位姿信息和所述轨迹规划,控制机械臂上的执行装置进行柜门开闭和开关操作。
进一步地,该计算机程序被处理器执行时实现本公开第一实施例提供的其他方法。
本公开实施例在倒闸操作流程中利用机器人代替人工进行运维,从而实时对配电室监控,并且及时能够切除设备故障,还能够避免化工厂有害气体泄漏对人员造成伤害,提高二次利用与产出的效能和系统稳定性。
本公开的第四实施例提供了一种电子设备,该电子设备至少包括存储器和处理器,存储器上存储有计算机程序,处理器在执行存储器上的计算机程序时 实现本公开任意实施例提供的方法。示例性的,电子设备计算机程序步骤如下S31至S34:
S31,当满足预定条件的情况下,构建场景地图并控制底盘移动装置移动到指定位置;
S32,在所述指定位置处控制电控柜中的中压断路器处于工作位置模式;
S33,确定电控柜内的预操作侧面板在机器人坐标系下的位姿信息以及机械臂的轨迹规划;
S34,基于所述位姿信息和所述轨迹规划,控制机械臂上的执行装置进行柜门开闭和开关操作。进一步地,处理器还执行上述第四实施例中的计算机程序。
本公开实施例在倒闸操作流程中利用机器人代替人工进行运维,从而实时对配电室监控,并且及时能够切除设备故障,还能够避免化工厂有害气体泄漏对人员造成伤害,提高二次利用与产出的效能和系统稳定性。上述存储介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述存储介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:获取至少两个网际协议地址;向节点评价设备发送包括至少两个网际协议地址的节点评价请求,其特征在于,节点评价设备从至少两个网际协议地址中,选取网际协议地址并返回;接收节点评价设备返回的网际协议地址;其特征在于,所获取的网际协议地址指示内容分发网络中的边缘节点。
或者,上述存储介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:接收包括至少两个网际协议地址的节点评价请求;从至少两个网际协议地址中,选取网际协议地址;返回选取出的网际协议地址;其特征在于,接收到的网际协议地址指示内容分发网络中的边缘节点。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在乘客计算机上执行、部分地在乘客计算机上执行、作为一个独立的软件包执行、部分在乘客计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到乘客计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
需要说明的是,本公开上述的存储介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器 件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其特征在于承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何存储介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。存储介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其特征在于,单元的名称在某种情况下并不构成对该单元本身的限定。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征 与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
此外,虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实施例中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。
以上对本公开多个实施例进行了详细说明,但本公开不限于这些具体的实施例,本领域技术人员在本公开构思的基础上,能够做出多种变型和修改实施例,这些变型和修改都应落入本公开所要求保护的范围。

Claims (10)

  1. 一种倒闸操作机器人,其特征在于,包括底盘移动装置,在所述底盘移动装置内设置探测装置,所述探测装置至少包括激光雷达和激光测距装置,在所述底盘移动装置上设置第一操作平台,在所述第一操作平台上设置云台相机、控制装置、寻位装置以及机械臂,在所述机械臂的端部设置执行装置,所述寻位装置用于对电控柜内的中压断路器的工作模式进行转换,所述执行装置用于至少执行电控柜柜门的开闭操作和所述中压断路器的开关控制。
  2. 根据权利要求1所述的倒闸操作机器人,其特征在于,所述第一操作平台包括底部,在所述底部上设置多个与所述底部垂直设置的侧部以内围成一空间,使得所述第一操作平台在上方和侧方各具有第一开口和第二开口,所述寻位装置设置在所述空间内并向所述第二开口的方向实现寻位操作,所述云台相机和所述机械臂设置在与所述第二开口相对的所述侧部的上端面上。
  3. 根据权利要求1所述的倒闸操作机器人,其特征在于,所述寻位装置包括底座,在所述底座上设置Y轴电机和X轴底板,通过所述Y轴电机配合第一丝杆滑块装置驱动所述X轴底板沿Y轴方向移动;在所述X轴底板上设置框架和X轴电机,在所述框架中设置Z轴底板,所述Z轴底板与所述X轴底板相互垂直设置,所述X轴电机配合第二丝杆滑块装置驱动所述Z轴底板在所述框架内沿X轴方向移动;在所述Z轴底板上设置Z轴电机和直线模组,在所述直线模组上设置扭转装置,所述Z轴电机通过联轴器与所述直线模组连接并能够调节所述扭转装置沿Z轴方向移动。
  4. 根据权利要求3所述的倒闸操作机器人,其特征在于,所述第二丝杆滑块装置包括丝杆,所述丝杆与所述X轴电机的输出轴通过联轴器连接,在所述丝杆上通过螺母与第一寻位滑块连接,所述第一寻位滑块与所述Z轴底板连接,在所述框架的上方和下方还设置滑轨,在所述滑轨上设置第二寻位滑块,所述第二寻位滑块与所述Z轴底板连接。
  5. 根据权利要求3所述的倒闸操作机器人,其特征在于,所述扭转装置包括手车位置驱动电机、减速机以及第三寻位滑块,所述第三寻位滑块设置在所述直线模组上并通过连接板与所述减速机连接,所述减速机与所述手车位置驱动电机连接,所述减速机上设置可旋转的扭转头,当所述手车位置驱动电机驱动时,通过所述减速机改变传动方向和输出力矩以实现所述扭转头沿预定方向旋转的功能。
  6. 根据权利要求3所述的倒闸操作机器人,其特征在于,所述执行装置包括连接板,所述连接板上的第一侧设置第二操作平台,所述第二操作平台上设置第一指尖部、第二指尖部以及固定部,所述第一指尖部和所述第二指尖部能够相对所述固定部而相互移动以实现对操作钥匙的夹持,所述第一指尖部为用于实现用户的触控任务的触控指尖部,所述第二指尖部为用于实现对电控柜的开关门操作以及对于电控柜中的继电器的开关操作的扣板指尖部。
  7. 根据权利要求6所述的倒闸操作机器人,其特征在于,在所述第二操作平台设置第一导轨和第二导轨,所述第一导轨和所述第二导轨的设置方向与所述固定部的延伸方向相同,在所述第一导轨上滑动设置第一滑块,所述第一指尖部设置在第一滑块上,在所述第二导轨上滑动设置第二滑块,所述第二指尖部 设置在第二滑块上,所述第一滑块面对所述固定部的侧面上设置第一齿条,所述第二滑块面对所述固定部的侧面上设置第二齿条,所述固定部上设置齿轮组,所述齿轮组与所述第一齿条和所述第二齿条相互啮合。
  8. 根据权利要求7所述的倒闸操作机器人,其特征在于,所述第一指尖部包括第一竖直段和第一水平段,所述第一水平段设置在所述第一滑块上并与所述第一竖直段的底部连接,所述第一竖直段的上端部的第一侧具有第一凹部,所述第一竖直段的上端部的第二侧具有第一斜面和第二斜面,所述第一斜面和所述第二斜面分别面对不同的方向且相互连接。
  9. 根据权利要求8所述的倒闸操作机器人,其特征在于,所述第二指尖部包括第二竖直段和第二水平段,其中,所述第二水平段设置在所述第二滑块上并与所述第二竖直段的底部连接,所述第二竖直段上设置固定板,所述第二竖直段的上端部设置U型部,所述第二竖直段的底部设置卡接部,所述U型部和所述卡接部用于卡接操作钥匙,所述操作钥匙贴合设置在所述固定板上,所述U型部的上端面和所述固定板之间形成第二凹部,所述U型部的下端面和所述卡接部的上端面之间形成矩形的导向口结构以实现对所述操作钥匙进行卡位,所述第一指尖部和所述第二指尖部对准贴合后,所述第一指尖部上的所述第一凹部和所述第二指尖部上的所述第二凹部围绕形成圆形凹部,所述操作钥匙的锁止部突出所述U型部的上端面以位于所述圆形凹部中,在所述第二竖直段的上端部还设置扣板部,所述扣板部朝向所述电控柜的方向设置,所述扣板部具有一圆弧部,所述圆弧部与继电器的活动部位的曲线拟合设置。
  10. 一种用于倒闸操作的控制方法,应用于权利要求1-9中任一项所述倒闸操作机器人,其特征在于,包括:
    当满足预定条件的情况下,构建场景地图并控制底盘移动装置移动到指定位置;
    在所述指定位置处控制电控柜中的中压断路器处于工作位置模式;
    确定电控柜内的预操作侧面板在机器人坐标系下的位姿信息以及机械臂的轨迹规划;
    基于所述位姿信息和所述轨迹规划,控制机械臂上的执行装置进行柜门开闭和开关操作。
PCT/CN2023/127135 2023-06-09 2023-10-27 倒闸操作机器人以及用于倒闸操作的控制方法 WO2024093821A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310682648.0A CN116631793A (zh) 2023-06-09 2023-06-09 倒闸操作机器人以及用于倒闸操作的控制方法
CN202310682648.0 2023-06-09

Publications (1)

Publication Number Publication Date
WO2024093821A1 true WO2024093821A1 (zh) 2024-05-10

Family

ID=87616992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127135 WO2024093821A1 (zh) 2023-06-09 2023-10-27 倒闸操作机器人以及用于倒闸操作的控制方法

Country Status (2)

Country Link
CN (1) CN116631793A (zh)
WO (1) WO2024093821A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116631793A (zh) * 2023-06-09 2023-08-22 西安工业大学 倒闸操作机器人以及用于倒闸操作的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130231779A1 (en) * 2012-03-01 2013-09-05 Irobot Corporation Mobile Inspection Robot
CN110296656A (zh) * 2019-07-15 2019-10-01 三峡大学 基于机器视觉的开关柜自动倒闸装置及方法
CN113510712A (zh) * 2021-08-04 2021-10-19 国网浙江省电力有限公司嘉兴供电公司 一种变电站操作机器人的机械臂路径规划方法
CN116631793A (zh) * 2023-06-09 2023-08-22 西安工业大学 倒闸操作机器人以及用于倒闸操作的控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130231779A1 (en) * 2012-03-01 2013-09-05 Irobot Corporation Mobile Inspection Robot
CN110296656A (zh) * 2019-07-15 2019-10-01 三峡大学 基于机器视觉的开关柜自动倒闸装置及方法
CN113510712A (zh) * 2021-08-04 2021-10-19 国网浙江省电力有限公司嘉兴供电公司 一种变电站操作机器人的机械臂路径规划方法
CN116631793A (zh) * 2023-06-09 2023-08-22 西安工业大学 倒闸操作机器人以及用于倒闸操作的控制方法

Also Published As

Publication number Publication date
CN116631793A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2024093821A1 (zh) 倒闸操作机器人以及用于倒闸操作的控制方法
Lu et al. Mobile robot for power substation inspection: A survey
US9463574B2 (en) Mobile inspection robot
CN105150210B (zh) 一种用于遥操作人机交互的虚拟管道动态避障控制方法
Allan et al. Robotic systems applied to power substations-a state-of-the-art survey
CN117270545B (zh) 基于卷积神经网络的变电所轮式巡检机器人及方法
Merkt et al. Robust shared autonomy for mobile manipulation with continuous scene monitoring
Guo et al. Design and control of the open apple-picking-robot manipulator
Dong et al. A review of indoor-orbital electrical inspection robots in substations
Khanna et al. Path planning and obstacle avoidance in dynamic environments for cleaning robots
Xie et al. Maximizing the probability of task completion for redundant robots experiencing locked joint failures
CN116852350B (zh) 用于倒闸操作的控制方法以及控制装置
Son et al. A convex programming approach to the base placement of a 6-DOF articulated robot with a spherical wrist
CN113752265B (zh) 一种机械臂避障路径规划方法、系统及装置
CN106003104A (zh) 一种适用于多约束条件下视觉信息导引的机械臂规划方法
Byrne et al. An intelligent configuration-sampling based local motion planner for robotic manipulators
Wagner et al. Reachability analysis for cooperative processing with industrial robots
Xin et al. A trajectory planning method based on feedforward compensation and quintic polynomial interpolation
Zhang et al. A visual slam system with laser assisted optimization
Du et al. Optimal base placement and motion planning for mobile manipulators
CN110271012A (zh) 一种用于变电站sf6检测的机器人及机器人系统
Wu et al. Robot control system for live maintenance of substation equipment
Zhang et al. Research on Vision Accurate Positioning and Algorithm of Automatic Maintenance Robot for Unmanned Power Distribution Room
CN113538568B (zh) 一种机器人倒闸操作图像处理方法及变电站机器人
Yang et al. Inverse kinematics of redundant manipulator used in tele-operation