WO2024093685A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2024093685A1
WO2024093685A1 PCT/CN2023/125480 CN2023125480W WO2024093685A1 WO 2024093685 A1 WO2024093685 A1 WO 2024093685A1 CN 2023125480 W CN2023125480 W CN 2023125480W WO 2024093685 A1 WO2024093685 A1 WO 2024093685A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
resources
information
cot
domain resources
Prior art date
Application number
PCT/CN2023/125480
Other languages
English (en)
French (fr)
Inventor
李君瑶
杨帆
张天虹
黄海宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093685A1 publication Critical patent/WO2024093685A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present application relates to the field of communications, and in particular to a communication method and device.
  • a terminal can access a channel for transmission.
  • a terminal can perform listen before talk (LBT) to access a channel.
  • LBT listen before talk
  • a device performs channel detection to determine whether the channel is idle for a period of time. When it is detected that the channel is idle for a period of time, LBT succeeds and the device can access the channel and transmit. If the channel is occupied (the channel is not idle), LBT fails and the device cannot access the channel for transmission.
  • LBT listen before talk
  • the terminal Due to the uncertainty of channel conditions, it is difficult for the terminal to access the channel in some cases. For example, in the case of a poor channel environment, the terminal may not be able to successfully access the channel, affecting the communication performance of the terminal.
  • the embodiments of the present application provide a communication method and apparatus that can improve the communication performance of a device.
  • the technical solution of the present application provides a communication method, which can be applied to a first device, which can be an independent device, or a module, chip, device, etc. in the device, wherein the method includes:
  • the first device initializes the first channel occupancy time COT; the first device sends first sharing indication information to the second device, wherein the first sharing indication information is used to indicate part or all of the frequency domain resources within the first frequency domain resources, and the part or all of the frequency domain resources are used to share with the second device, wherein the first frequency domain resources are the frequency domain resources occupied by the first device within the first COT; or the first frequency domain resources are the frequency domain resources included in the first COT.
  • the first device can determine the scope of shared resources during COT sharing. In this way, the first device can share part or all of the resources within the shared resource range with the second device. On the one hand, it can improve the resource utilization efficiency of the system, and on the other hand, it can improve the success rate of the second device's access to the channel and the communication performance.
  • the frequency domain resources included in the first COT may refer to all resources in a channel where the frequency domain resources occupied in the first COT are located.
  • the resources occupied by the first device may refer to frequency domain resources used by the first device for transmission, or resources shared with other devices. Occupy may also be replaced by reserve, select, use, or use for transmission.
  • channel can also be replaced by RB set.
  • the part or all of the frequency domain resources refers to one or more sub-channels contained in the first frequency domain resources.
  • the information of the frequency domain resources may be indicated by indicating the location information of the channel and/or the location information of the subchannel.
  • the location information may include at least one of the following: index, quantity, starting position, ending position, offset value.
  • the index, starting position, and ending position may be an index or position in the concept of a physical time slot, or an index or position in the concept of a logical time slot.
  • the offset value may be an offset value relative to the starting time slot of the COT or the starting time slot of the occupied resource.
  • the index may be indicated by any of FRIV, bitmap, bit information (binary state value), and the like.
  • the first device sends first sharing indication information to the second device, and the first sharing indication information is used to indicate part or all of the frequency domain resources in the first frequency domain resources, which means that the first device has the authority to share the resources in the COT, and can also be understood as at least one of the following methods:
  • the first device may indicate a shared resource to the second device, where the resource is a portion of frequency domain resources within at least one first frequency domain resource.
  • the frequency domain range of the first COT is the first frequency domain resource.
  • the frequency domain range that the first device has the authority to share is the first frequency domain resources.
  • the first device does not expect to share frequency domain resources other than the first frequency domain resources with other devices (such as the second device).
  • the second device does not expect to receive frequency domain resources other than the at least one first frequency domain resource shared by the first device
  • the frequency domain resources occupied by the first device in the first COT are smaller than the frequency domain resources included in the first COT, that is, there may be other devices that use the frequency domain resources in the first COT together with the first device.
  • the first sharing indication information further includes at least one of the following information: information about the shared time domain resource, identification information of the second device;
  • the identification information of the second device includes at least one of device ID, source ID, and destination ID.
  • the shared time domain resources include the time domain resources within the first COT.
  • the first device does not necessarily reserve these resources, and the first device can share them as long as they are within the COT. Therefore, it can be limited to within the COT, and the specification can be supplemented: Optionally, the time domain resources are selected or reserved for the first device.
  • the frequency domain resources occupied by the first device in the first COT are the frequency domain resources occupied by the first time slot of the first device in the first COT.
  • the frequency domain range of the initial COT of the first device is limited to the range of the first frequency domain resource.
  • different devices may have different intentions and behaviors on whether to meet the COT sharing conditions, whether to share COT with other devices, and how to share, which may cause the shared device to receive different COT sharing indication information, resulting in the shared device being unable to determine whether it can use the shared resources, how to determine the CPE, etc.
  • Dividing the frequency domain range of COT for different initial devices, that is, the frequency domain range that can be shared can solve the above problems.
  • the frequency domain resources occupied by the first device in the first COT are the frequency domain resources occupied by the first device in the time slot with the least number of frequency domain resources occupied by the first device in the first COT. In this way, the first device can share fewer frequency domain resources with other devices. Since the frequency domain resources used by UEs in different time slots may be different, limiting the minimum frequency domain range for each UE of FDM can avoid the two having rights to overlapping frequency domain resources, resulting in confusion in COT sharing rights and indication information.
  • the frequency domain resources occupied by the first device in the first COT are the frequency domain resources occupied by the first device in the time slot with the largest number of frequency domain resources occupied by the first device in the first COT.
  • the first device can share more frequency domain resources with other devices, which is beneficial for other devices to use shared resources for transmission and improve the communication performance of other devices.
  • the second frequency domain resource is the frequency domain resource occupied by the first device in the first time slot in the first COT
  • the third frequency domain resource is the frequency domain resource occupied by the third device in the first time slot of the initialized second COT
  • the second frequency domain resource and the third frequency domain resource are frequency-division multiplexed.
  • the first device and the second device form an initial FDM, that is, the two devices perform FDM in the first time slot of the initial COT.
  • the second frequency domain resource and the third frequency domain resource are located in the same time slot; or the first time slot in the first COT and the first time slot in the second COT are the same time slot.
  • the above design can also be expressed as: the first COT includes a first time domain resource in the time domain; the second COT includes a second time domain resource in the time domain; the first time unit of the first time domain resource is the same as the first time unit of the second time domain resource.
  • the first time unit of the first time domain resource can be the first time slot of the initial COT of the first device, and the first time unit of the second time domain resource can be the first time slot of the initial COT of the third device.
  • the frequency domain range and COT sharing rights of different devices can be determined, and it is clear which initial device's COT sharing indication information the shared device should follow to use COT resources for transmission, thereby ensuring the normal operation of the SL-U FDM mechanism and improving the system's resource utilization efficiency and channel access efficiency.
  • the first sharing indication information may be COT sharing indication information.
  • the fourth frequency domain resource is a frequency domain resource occupied by the first device in the first COT
  • the fifth frequency domain resource is a frequency domain resource occupied by the third device in the initialized second COT
  • the fourth frequency domain resources and the fifth frequency domain resources are included in the sixth frequency domain resources; the sixth frequency domain resources are used for transmission by the second device;
  • the sixth frequency domain resources also include seventh frequency domain resources, wherein the seventh frequency domain resources are located in the same channel (channel) as the fourth frequency domain resources and the fifth frequency domain resources and are different from the fourth frequency domain resources and the fifth frequency domain resources.
  • the fourth frequency domain resource refers to a resource that is not occupied/initialized by any device. For example, as shown in FIG9B (a), taking the first device as device 1, the fourth frequency domain resource is subchannel 1 that is not occupied/initialized by device 1.
  • the first device is mainly taken as device 1 as an example, but the first device is not limited to device 1. Unless otherwise specified, device 1 has the same meaning as the first device, or device 1 is an example of the first device.
  • the seventh resource in the sixth resource is optional. If the sixth resource does not include the seventh resource, it means that the resources obtained by the shared device (such as the second device) from the initial device are less than or equal to the resources occupied by the initial device. In this way, the probability of resource conflicts between devices can be reduced. If the sixth resource includes the seventh resource, it means that the resources obtained by the shared device from the initial device are greater than the resources occupied by the initial device. In this way, the shared device can obtain more resources, which helps to improve the communication performance of the shared device.
  • the resource used for transmission by the second device is located in the time domain range of the first COT and/or the second COT. Inside.
  • the frequency domain resources occupied by the first device and the third device are actually also applicable to multiple interpretations/understandings in the aforementioned design.
  • the method further includes: allowing the second device to use the shared resource for transmission when at least one of the following conditions is met:
  • the method further includes: allowing the second device to use the shared resource for transmission when at least one of the following conditions is met:
  • the first device and the third device both instruct the second device to use the shared resources for transmission through the sharing indication information. Sharing can only be done when all the initial devices indicate sharing, so as to avoid confusion caused by one initial device allowing sharing and another not allowing sharing. In addition, the following situation can be avoided: if device 1 shares with device 3 for transmission, because device 2 does not allow sharing and therefore uses the same resources for its own transmission, a collision will occur between device 2 and device 3.
  • any one of the first device and the third device instructs the second device to use the shared resources for transmission through the sharing indication information.
  • the shared resources can be indicated by fewer initial devices, which can reduce signaling overhead.
  • the first device instructs the second device to use the shared resources for transmission through the sharing indication information.
  • the first device is a home device, and COT sharing is uniformly indicated by a home device among multiple initial devices, which can reduce resource conflicts between devices as much as possible.
  • Allowing the second device to use the shared resource for transmission can also be expressed as: the first device can receive the transmission sent by the second device on the shared resource.
  • the description can be that the second device allows transmission on the shared resource, or the second device transmits on the shared resource.
  • the first device is a home device, and the first device satisfies at least one of the following first conditions:
  • the first device is a device that reserves resources first among multiple initial devices.
  • the first device is the first device among the multiple initial devices to reserve resources in accordance with the MCSt transmission method of multiple continuous time slots. In this way, considering that when a device reserves more time slots, there may be a need to share resources with other devices, the device that reserves or selects more time slots can be used as the home device.
  • the first device is the device with the longest duration of reserved resources in the time domain among the multiple initial devices. In this way, considering that when a device reserves more time slots, there may be a need to share resources with other devices, the device that reserves or selects more time slots can be used as the home device.
  • the first device is a device that allows sharing of resources with other devices.
  • the first device is a device with the highest channel access priority CAPC among the multiple initial devices.
  • the CAPC is indicated in the SCI during reservation, or the CAPC of the initial COT, or the SCI of the first time slot in the transmitted COT, or indicated in the COT shared information.
  • the first device is a device with the highest physical layer priority among the multiple initial devices.
  • the physical layer priority may also be called service priority.
  • the first device is the device with the longest channel occupation time COT among the multiple initial devices. In this way, considering that when a device reserves more time slots, there may be a need to share resources with other devices, the device that reserves or selects more time slots can be used as the home device.
  • the first device is a device with the lowest index of the sub-channel occupied by the multiple initial devices, the first device is a device with the longest cyclic prefix extension CPE among the multiple initial devices, the first device is a device with the most sub-channels among the multiple initial devices, and the first device is a device with L1 priority among the multiple initial devices;
  • the multiple initial devices include the first device and the third device.
  • the first device instructs the second device to use shared resources for transmission through sharing indication information, and the first device does not exclude the time-frequency domain resources of the second device when selecting resources.
  • the third device excludes the time-frequency domain resources of the second device when selecting resources (i.e., selects or reserves other frequency domain resources in the time slot where the second device is located).
  • the first device can exclude or not exclude the resources of the second device through the resource selection process to avoid resource collision with the second device.
  • sending first sharing indication information to the second device includes:
  • the second condition includes at least one of the following conditions:
  • the channel access priority of the second device is higher than that of the first device and/or the third device;
  • the broadcast type of the second device is multicast or broadcast, and the target devices include the first device and the third device;
  • the target device of the second device includes at least one of the first device and the third device;
  • the access channel priority of the second device is higher than that of the first device; in this manner, the first device is the home device;
  • the target device of the second device includes the first device.
  • the first device is the home device.
  • the first device can share resources within the COT with the second device under the second condition to improve the communication performance of the second device.
  • the time domain resources included in the first COT are first time domain resources
  • the time domain resources included in the second COT are second time domain resources
  • the duration of the first time domain resources is greater than the duration of the second time domain resources
  • any frequency domain resources on the third time domain resources can be shared by the first device to the second device, wherein the third time domain resources are resources that do not overlap with the first time domain resources and the second time domain resources in the time domain.
  • the COT sharing rights of this part of the frequency domain resources belong to the device with more time domain resources (such as the first device). In this way, the number of shared resources can be increased, which helps to improve the communication performance of the shared devices.
  • a communication method is provided.
  • the method may be applicable to a second device.
  • the second device may be an independent device, or a module, chip, device, etc. in the device.
  • the method includes:
  • the second device receives first sharing indication information from the first device, where the first sharing indication information includes information about part or all of the frequency domain resources in the first frequency domain resources, where the part or all of the frequency domain resources are used to share with the second device for transmission, wherein the first frequency domain resources are the frequency domain resources occupied by the first device in the initial first COT; or the first frequency domain resources are the frequency domain resources included in the first COT;
  • the second device transmits on the part or all of the resources.
  • the frequency domain resources occupied by the first device in the first COT are the frequency domain resources occupied by the first device in the first time slot in the first COT; or the frequency domain resources occupied by the first device in the time slot with the least number of frequency domain resources in the first COT; or the frequency domain resources occupied by the first device in the time slot with the largest number of frequency domain resources in the first COT.
  • the second frequency domain resources are the frequency domain resources occupied by the first device in the first time slot within the first COT
  • the third frequency domain resources are the frequency domain resources occupied by the third device in the first time slot of the initialized second COT
  • the second frequency domain resources and the third frequency domain resources are frequency division multiplexed.
  • the method further includes:
  • the second device receives second sharing indication information from the first device; the second sharing indication information includes information about a fourth frequency domain resource, where the fourth frequency domain resource is a frequency domain resource occupied by the first device in the first COT,
  • the second device receives third sharing indication information from the third device;
  • the third sharing indication information includes information about a fifth frequency domain resource, where the fifth frequency domain resource is a frequency domain resource occupied by the third device in the initialized second COT;
  • the second device transmits on the fourth frequency domain resources and the fifth frequency domain resources.
  • the fourth frequency domain resources and the fifth frequency domain resources are included in the sixth frequency domain resources; the sixth frequency domain resources are used for transmission by the second device; and/or the sixth frequency domain resources also include seventh frequency domain resources, wherein the seventh frequency domain resources are located in the same channel (channel) as the fourth frequency domain resources and the fifth frequency domain resources and are different from the fourth frequency domain resources and the fifth frequency domain resources.
  • the method further includes: when at least one of the following conditions is met, the second device may use the shared resource for transmission:
  • sharing indication information is used to instruct the second device to use shared resources for transmission; optionally, the sharing indication information of the first device and the third device is used to indicate a fourth frequency domain resource and a fifth frequency domain resource, respectively;
  • the sharing indication information is received from the first device.
  • the first device is a home device.
  • the receiving of sharing indication information may be understood as the first device or the third device instructing the second device to allow the use of shared resources for transmission.
  • sharing indication information COT sharing indication information, first sharing indication information, second sharing indication information, etc. can be replaced with each other.
  • the first device satisfies at least one of the following first conditions:
  • the first device is the device that reserves resources first among the multiple initial devices, the first device is the device that reserves resources first among the multiple initial devices in a multi-continuous time slot transmission MCSt mode, the first device is the device with the longest duration of reserved resources in the time domain among the multiple initial devices, and the first device is a device that allows resources to be shared with other devices;
  • the multiple initial devices include the first device and the third device.
  • the first device is a home device.
  • the second device instructs the fourth device to use shared resources for transmission through sharing indication information, and the second device does not exclude the time-frequency domain resources of the fourth device when selecting resources.
  • receiving first sharing indication information includes:
  • the second condition includes at least one of the following conditions:
  • the channel access priority of the second device is higher than that of the first device and/or the third device;
  • the broadcast type of the second device is multicast or broadcast, and the target devices include the first device and the third device;
  • the target device of the second device includes at least one of the first device and the third device;
  • the access channel priority of the second device is higher than that of the first device
  • the target device of the second device includes the first device.
  • the time domain resources included in the first COT are first time domain resources
  • the time domain resources included in the second COT are second time domain resources
  • the duration of the first time domain resources is greater than the duration of the second time domain resources
  • any frequency domain resources on the third time domain resources can be shared by the first device to the second device, wherein the third time domain resources are resources that do not overlap with the first time domain resources and the second time domain resources in the time domain.
  • a communication method may be applicable to a first device.
  • the first device may be an independent device, or a module, chip, or device in the device.
  • the method includes:
  • the first device determines CPE information, determines a starting position of transmission and/or a channel access type according to the CPE information, and performs channel access according to the starting position of transmission and/or the channel access type.
  • the CPE can be flexibly configured for the first device, thereby reducing the probability of resource collision between devices and increasing the flexibility of adopting different CPEs and/or corresponding LBT types between different devices or different transmissions.
  • the first device determines the CPE information, including: the first device obtains first information, and the first information is used to determine the CPE information.
  • the first device receives second indication information for indicating the CPE information.
  • different access types are associated with different first information, and/or different time slots are associated with different first information.
  • different CPEs can be flexibly configured for devices according to different situations, such as different time domain patterns or type1/type2, thereby reducing the probability of resource collisions between devices and increasing the flexibility of using different CPEs and/or corresponding LBT types between different devices or different transmissions.
  • the first device determines CPE information, including: when at least one of the first conditions is met, the first CPE is determined based on second information, and the second information is configured or pre-configured, and the first condition includes: the first transmission is CG transmission; or the first transmission is the first transmission; or FDM is not allowed in the resource pool; or there is no other transmission on other frequency domain resources in the time slot where the resources of the first transmission are located; or the resources of the first transmission include all frequency domain resources in the channel.
  • the first device can determine the CPE in different ways to increase flexibility.
  • the first device determines CPE information, including: the first device receives third information and/or fourth information; the first device determines the CPE information based on the third information and/or fourth information; the third information is used to indicate CPE information to the second device, and the fourth information is used to indicate CPE information to the third device.
  • the CPE information indicated by the third information is a CPE applicable to the initial COT of the second device or the resources reserved by the second device, or the CPE information includes: a CPE associated with the initial COT of the second device or the time slot within the resources reserved by the second device.
  • CPE information may be indicated separately in each time slot, which may be the same or different.
  • the CPE information indicated by the fourth information is a CPE applicable to the initial COT of the third device or the resources reserved by the third device, or the CPE information includes a CPE associated with a time slot within the initial COT of the third device or the resources reserved by the third device.
  • each time slot indicates a CPE respectively, which may be the same or different.
  • the first device can dynamically indicate the CPE information, and different shared devices can determine the CPE based on the indication, thereby increasing the flexibility of adopting different CPEs and/or corresponding LBT types between different devices or different transmissions.
  • a communication method which can be applied to a network device or an initial device, and the network device and the initial device can be independent A separate device, or a module, chip, device, etc. in a device, the method includes:
  • the second indication information is used to indicate CPE information.
  • CPE information is used to determine the starting position of transmission and/or the channel access type.
  • CPE information can be used to determine the CPE in the resource pool and/or to determine the CPE in the COT.
  • the CPE information is carried in at least one of RRC, first level or second level SCI.
  • CPE information may be indicated separately in each time slot, which may be the same or different.
  • a communication method may be applicable to a first device.
  • the first device may be an independent device, or a module, a chip, a device, etc. in the device.
  • the method includes:
  • the first device initiates a first COT, wherein the first device sends a first S-SSB in selected or reserved resources, or in a COT initiated based on selected or reserved resources.
  • Mode 1 (Condition 1): The resources selected or reserved by the first device include all frequency domain resources in the channel.
  • Mode 2 (Condition 2): When the resource pool where the first device is located is (pre) configured not to allow FDM, or not to allow FDM in the first time slot within the initial COT.
  • Mode 3 (Condition 3): When FDM does not actually occur in the transmission of the first device in any time slot within the COT or reserved resources, or FDM does not occur in the first time slot of the COT or reserved resources, or FDM does not occur between different devices in the same time domain resources, or there is no other transmission on other frequency domain resources in the time slot where the transmitted resources are located; or the transmitted resources include all frequency domain resources in the channel.
  • condition 3 When condition 3 is met, it means that the resources of the first device do not form FDM with the resources of other devices, so no resource conflict occurs.
  • the actual occurrence of FDM can be understood as there is no other transmission on other frequency domain resources in the time slot where the resource is located, or there is no FDM transmission in the time slot, or there is no transmission from other devices in the time slot where the resource is located.
  • Method 4 The frequency domain resources of the candidate resources for resource selection by the first device, or the frequency domain resources of the reserved resources, are the maximum number of frequency domain resources or the maximum frequency domain range required for any transmission within the COT, or the number of frequency domain resources required for S-SSB, or all frequency domain resources in the channel, such as all sub-channels in the channel.
  • the frequency domain resources (quantity) of the candidate resources for resource selection by the first device, or the frequency domain resources of the reserved resources are the number of frequency domain resources (sub-channels) required for S-SSB.
  • the frequency domain resources (number) of the candidate resources selected by the first device, or the frequency domain resources of the reserved resources are all the frequency domain resources (sub-channels) in the channel.
  • the first device can obtain as many frequency domain resources as possible, which is conducive to improving the transmission performance of the first device.
  • the time slot where the candidate resource or the reserved resource is located is a time slot used to send the S-SSB.
  • the frequency domain resources required for S-SSB are reserved.
  • device 1 selects or reserves resources, it selects or reserves at least the time slot where S-SSB is located, and other devices will exclude the time slot where S-SSB is located when selecting or reserving resources, that is, other devices will not transmit in the time slot where S-SSB is located. In this way, the resources of S-SSB of device 1 will not collide with the resources of other devices, and interference of device 1 to other devices can be avoided.
  • the subchannels to be used by S-SSB are reserved. For example, assuming that the frequency domain resources occupied by S-SSB in each time slot are the same, S-SSB needs to use 2 subchannels, then device 1 can select or reserve 2 subchannels. Subsequently, device 1 can transmit S-SSB on these 2 subchannels, or initialize the COT according to the selected or reserved 2 subchannels, and transmit S-SSB within the COT.
  • device 1 can reserve resources according to the maximum frequency domain resources or the largest frequency domain range required for any transmission within the COT, and reserve as many resources as possible for S-SSB.
  • COT has transmissions 1-5, among which transmission 5 requires the most frequency domain resources, assuming 5 subchannels 1-5, then device 1 can select or reserve 5 subchannels so as to reserve as many resources as possible for S-SSB.
  • device 1 reserves all sub-channels within the entire channel.
  • the device 1 may reserve all sub-channels where the S-SSB occupied resources are located.
  • a communication method is provided.
  • the method may be applicable to a second device.
  • the second device may be an independent device, or a module, a chip, a device, etc. in the device.
  • the method includes:
  • the second device receives the first S-SSB on the second resource.
  • the second resource is a resource selected or reserved by the first device, or is an initial COT of the first device based on the selected or reserved resource.
  • a communication method is provided.
  • the method may be applicable to a second device.
  • the second device may be an independent device, or a module, a chip, a device, etc. in the device.
  • the method includes:
  • the third resource does not overlap with the first resource, or the third resource does not overlap with all resources in the time slot excluding the first resource.
  • the first resource is any time-frequency resource selected or reserved by the first device for transmission, and/or the first device selects or reserves a time-frequency resource for sending S-SSB, and/or the first device selects or reserves a time-frequency resource of the first resource in the time domain for transmission. Selection or reservation can also be replaced by transmission, occupation, etc.
  • the second device excludes the first resource, or excludes all resources in the time slot where the first resource is located, further comprising: receiving first indication information from the first device, where the first indication information is used to indicate at least one of the following:
  • the first device sends time domain resource and/or frequency domain resource information of S-SSB.
  • a communication method may be applicable to a first device.
  • the first device may be an independent device, or a module, a chip, a device, etc. in the device.
  • the method includes:
  • the S-SSB is sent on the first resource.
  • the first resource is any time-frequency resource selected or reserved by the first device for transmission, and/or the first device selects or reserves a time-frequency resource for sending S-SSB, and/or the first device selects or reserves a time-frequency resource of the first resource in the time domain for transmission. Selection or reservation can also be replaced by transmission, occupation, etc.
  • a communication method is provided, which is applied to a first device, where the first device may be an independent device, or a module, a chip, a device, etc. in the device, wherein the method includes:
  • the first device performs channel access, and the first device sends or receives S-SSB and/or data.
  • the first device determines a fourth resource for sending the S-SSB in at least one of the following ways:
  • the S-SSB is sent independently on each channel used for data transmission or on each channel in the resource pool, except for the channel where the (pre)configured S-SSB frequency domain position is located.
  • the device abandons reception of the S-SSB in the first time slot.
  • the device shares part or all of the frequency domain resources of the first time slot on each channel used for data transmission with other devices, or uses it for its own data transmission.
  • S-SSB can be sent on each channel used for data transmission.
  • the first device determines a fourth resource for sending the S-SSB in at least one of the following ways:
  • the device intends to send an S-SSB in the first time slot, then on each channel used for data transmission or on each channel in the resource pool, except for the channel where the (pre)configured S-SSB frequency domain position is located, the S-SSB is sent independently or data is sent.
  • the device intends to receive S-SSB in the first time slot.
  • the device shares part or all of the frequency domain resources of the time slot on each channel used for data transmission, except for the channel where the (pre)configured S-SSB frequency domain position is located, with other devices.
  • S-SSB should be sent on each channel used for data transmission, or data should be sent, or part or all of the frequency domain resources of the time slot on each channel should be shared with other devices.
  • the frequency domain of 11 RBs is expanded to 12 RBs, wherein the highest or lowest RB is filled with zeros (set to zero), and the other 11 RBs are sent according to the existing structure.
  • the method is applicable to at least one of PSBCH, S-PSS, and S-SSS.
  • the method is applicable to PSBCH, At least one of S-PSS and S-SSS.
  • PSBCH is interlace transmitted and S-PSS/S-SSS is continuously transmitted; or, S-SSB is applicable for temporary exemption.
  • the bandwidth of S-PSS/S-SSS or frequency domain continuous transmission of S-SSB (PSBCH/S-PSS/S-SSS) in the unlicensed spectrum is less than 2MHz, which does not meet the OCB requirements.
  • the above method can make PSBCH, S-PSS, and S-SSS meet the 2MHz bandwidth requirement of OCB.
  • a communication method is provided, which is applied to a second device, where the second device may be an independent device, or a module, a chip, a device, etc. in the device, wherein the method includes:
  • the second device receives or sends the S-SSB and/or data.
  • the first device determines a fourth resource for the S-SSB in at least one of the following ways:
  • the S-SSB is sent independently on each channel used for data transmission or on each channel in the resource pool except the channel where the (pre)configured S-SSB frequency domain position is located.
  • the device abandons reception of the S-SSB in the first time slot.
  • the device shares part or all of the frequency domain resources of the first time slot on each channel used for data transmission with other devices, or uses it for its own data transmission.
  • S-SSB can be sent on each channel used for data transmission.
  • the first device determines a fourth resource for sending the S-SSB in at least one of the following ways:
  • the device intends to send an S-SSB in the first time slot, then on each channel used for data transmission or on each channel in the resource pool, except for the channel where the (pre)configured S-SSB frequency domain position is located, the S-SSB is sent independently or data is sent.
  • the device intends to receive S-SSB in the first time slot.
  • the device shares part or all of the frequency domain resources of the time slot on each channel used for data transmission, except for the channel where the (pre)configured S-SSB frequency domain position is located, with other devices.
  • S-SSB should be sent on each channel used for data transmission, or data should be sent, or part or all of the frequency domain resources of the time slot on each channel should be shared with other devices.
  • the frequency domain of 11 RB is expanded to 12 RB, wherein the highest or lowest RB is filled with zero (set to zero), and the other 11 RBs are sent according to the existing structure (see Table 7 below);
  • the method is applicable to at least one of PSBCH, S-PSS, and S-SSS.
  • the method is applicable to at least one of PSBCH, S-PSS, and S-SSS.
  • PSBCH is interlace transmitted and S-PSS/S-SSS is continuously transmitted; or, S-SSB is applicable for temporary exemption.
  • a communication method applied to a first device, the method comprising:
  • the first propagation type is a propagation type associated with the first side information
  • the first enabling information is enabling information associated with the first side information
  • the first sideline information is transmitted on the channel.
  • the channel access parameters are determined according to the first propagation type associated with the first side information and/or the first enabling information, so that the channel access parameters can better reflect the current channel status, and more accurate channel access parameters are obtained, which helps the first device access the channel and improves communication performance.
  • the seventh aspect further includes the first device determining the first propagation type and/or the first enabling information. For example, before determining the channel access parameter according to the first propagation type and/or the first enabling information, it is necessary to determine the first propagation type and/or the first enabling information.
  • the first side information is side data information, and the first propagation type is the propagation type indicated by the side control information corresponding to the side data information; and/or, the first side information is side data information, and the first enabling information is enabling information indicated by the side control information corresponding to the side data information; and/or, the first side information is side feedback information, and the first propagation type is the propagation type indicated by the side control information corresponding to the side data information associated with the feedback information; the first side information is side feedback information, and the first enabling information is enabling information indicated by the side control information corresponding to the side data information associated with the feedback information.
  • the side data information associated with the feedback information is second side information.
  • the sidelink data information includes PSSCH
  • the sidelink control information corresponding to the sidelink data information is first-order SCI and/or second-order SCI
  • the sidelink feedback information is PSFCH.
  • the first enabling information is indicated by a second-order SCI of the first device.
  • the first propagation type is indicated by a second-order SCI of the first device.
  • transmitting the first sideline information on the accessed channel includes: the channel accessed by transmitting the first sideline information is accessed according to a first CAPC to transmit the first sideline information.
  • the value of the contention window is determined according to the value of the first CAPC.
  • the contention window value CWp is determined according to the value p of the first CAPC.
  • the value p of the first CAPC belongs to at least any one of ⁇ 1, 2, 3, 4 ⁇ .
  • the first CAPC is the CAPC of the first device access channel and/or is indicated by the sideline control information of the first device.
  • the first propagation type and/or the first enabling information includes at least any one of: HARQ disabling, HARQ-enabled unicast, HARQ-enabled and ACK/NACK-based multicast, and HARQ-enabled and NACK-based multicast only.
  • the first transmission type includes at least any one of unicast, ACK/NACK-based multicast (also referred to as multicast option 2 or multicast opt2), NACK-based multicast (also referred to as multicast option 1 or multicast opt1), ACK-based multicast, and broadcast.
  • ACK/NACK-based multicast also referred to as multicast option 2 or multicast opt2
  • NACK-based multicast also referred to as multicast option 1 or multicast opt1
  • ACK-based multicast and broadcast.
  • the first enabling information includes at least any one of HARQ enabling, HARQ disabling, conflict indication enabling, and conflict indication disabling.
  • channel access parameters can be determined based on the first propagation type and/or the first enabling information associated with at least one transmission to obtain more accurate channel access parameters.
  • At least one transmission within the reference time duration may also be understood as at least one second sideline information within the reference time duration.
  • the first device determines the channel access parameters (for example, determines the contention window CWp), there is at least one transmission within the reference duration, and these transmissions are associated with at least one propagation type and/or enabling information.
  • the determined CWp values of transmissions of different propagation types may be the same or different.
  • the determined CWp values of transmissions of different enabling information may be the same or different. Therefore, a unified method for determining CWp is needed. It is a simple and direct method for the first device to determine CWp based on the propagation type of the first transmission (i.e., the first side information) of the first COT, which can obtain channel access parameters that better reflect the channel conditions.
  • the reference duration satisfies at least any one of the following in the time domain: the reference duration is after the last adjustment of CWp, the reference duration is before the determination of CWp, the reference duration start time slot is the first time slot of the second COT, and the reference duration start time slot is the time slot where the first HARQ-enabled transmission of the second COT is located.
  • the channel access parameters include a contention window value CWp or a listen-before-talk LBT type.
  • the first device determines at least one of the above channel access parameters according to the first propagation type and/or the first enabling information, and adaptively adjusts the channel access parameter according to the characteristics of the transmitted sideline information, wherein the value of the channel access parameter is related to the difficulty of channel access.
  • the purpose of adjusting CWp is to avoid collision with other UEs. For example, if the channel condition is poor, the value of CWp is increased, and the channel is monitored for a longer period of time to see if it is idle. For another example, if the channel condition is good, the value of CWp is reduced, and the channel is monitored for a shorter period of time to see if it is idle. For another example, if it is unknown whether the channel condition has changed since the last adjustment of CWp, the value of CWp is not changed.
  • Type 1 LBT (Type1 LBT) requires a longer channel access time, but is less likely to collide with other device resources.
  • Type 2 LBT (Type2 LBT) only requires a very short channel access time, but is subject to applicable conditions.
  • the channel monitoring durations corresponding to Type 2A ⁇ LBT, Type 2B LBT, and Type 2B LBT are all different. Determining the specific LBT type based on the first propagation type and/or the first enabling information can further ensure the flexibility and reliability of device access to the channel.
  • the method further includes: the first device determines a contention window CWp according to the first propagation type and/or the first enabling information associated with the first side information.
  • the first device initializes a first COT according to the channel access parameter associated with the first side information. For example, the channel is accessed according to the value CWp of the contention window (determined according to the first propagation type and/or the first enabling information associated with the first side information), or the first COT is initialized according to the value CWp of the contention window.
  • determining the LBT type according to the first propagation type and/or the first enabling information includes: determining the LBT type as one of type 1 channel access or type 2 channel access according to the first propagation type and/or the first enabling information; or determining the LBT type as one of type 2A channel access, type 2B channel access, and type 2C channel access according to the first propagation type and/or the first enabling information; or determining the LBT type as one of type 2A channel access and type 2B channel access according to the first propagation type and/or the first enabling information; or determining the LBT type as one of type 1 channel access, type 2A channel access, type 2B channel access, and type 2C channel access according to the first propagation type and/or the first enabling information.
  • the first device accesses the channel according to the determined LBT type to transmit the first sideline information.
  • the first side information is the first side information sent on the channel after accessing the channel.
  • the first device uses the parameters associated with the first side information to access the channel, or the first device uses the parameters associated with the first side information to initialize the first COT. In other words, the first device determines the channel access parameters based on the parameters associated with the first side information. This allows the first device to adaptively adjust the channel access parameters according to the characteristics of the transmitted first side information.
  • the first side information is the first side information transmitted after the accessed channel” can also be understood as at least any one of the following:
  • the first sideline information is the first transmission after accessing the channel, or the first sideline information is the transmission on the time slot where the first device accesses the channel, and/or the first sideline information is the transmission on the first time slot after the first device accesses the channel, and/or the first sideline information is the transmission on the second time slot after the first device accesses the channel, or the first sideline information is the first TB after accessing the channel, or the first sideline information is the first HARQ-enabled transmission after accessing the channel, or the first sideline information is the first transmission in the first COT, or the first sideline information is the first TB in the first COT, or the first sideline information is the transmission on the first time slot in the first COT, or the first sideline information is the transmission on the second time slot in the first COT, or the first sideline information is the first HARQ-enabled TB in the first COT, or the CPAC of the first sideline information is the CAPC of the initial COT.
  • the first side row information can also be understood as the first TB, and the two can be synonymous.
  • determining a channel access parameter according to the first propagation type and/or the first enabling information includes:
  • the parameters of channel access are determined according to the first feedback information, the first feedback information is feedback information associated with the second side information within the reference duration, and the second side information and the first side information satisfy at least one of the following: the second propagation type associated with the second side information is the same as the first propagation type of the first side information; the second enabling information associated with the second side information is the same as the first enabling information of the first side information; the second source identification ID of the second side information is the same as the first source ID of the first side information; the second destination ID of the second side information is the same as the first destination ID of the first side information; the second HARQ process of the second side information is the same as the first HARQ process of the first side information; the first side information is at least any one of the retransmission, periodic transmission, and retransmission of periodic transmission of the second side information; the first side information is at least any one of the retransmission reserved transmission, periodic reserved transmission, and periodic reserved retransmission reserved transmission of the second side information; the reserved resources indicated by the side control
  • Feedback information can reflect the quality of channel conditions. For example, if the first device receives an ACK, it means that the receiving UE of the first device can decode the received data, which means that the channel conditions are good. For another example, if the first device receives a NACK, it means that the receiving UE of the first device cannot correctly decode the received data, which means that the channel conditions are poor. For another example, if the first device does not receive any HARQ information after the last adjustment of CWp, the first device cannot determine whether the channel conditions have changed, and the value of CWp is not changed.
  • the second side information satisfies at least any one of the above items, which means that the service type of the first side information is the same as that of the second side information.
  • the service type of the first side information is the same as that of the second side information.
  • the first feedback information is feedback information associated with the second sideline information within a reference duration, including: the first feedback information is feedback information associated with the second sideline information in at least one transmission within the reference duration.
  • the second side information is located in the reference duration; and/or, the second side information is transmitted within the second COT; and/or, the second side information is the first side information transmitted within the second COT.
  • the reference duration is associated with the second COT.
  • the starting position of the reference duration is the starting position of the second COT, or the starting position of the reference duration is the starting position of the first HARQ-enabled sideline transmission in the second COT.
  • the second side information is multiple, and the multiple second side information includes third side information and fourth side information; and the method further includes:
  • the adjustment result corresponding to the third side row information is to adjust the value of the contention window to the minimum value, and the adjustment result corresponding to the fourth side row information is to maintain the value of the contention window, and it is determined that the value of the contention window is adjusted to the minimum value; or, the adjustment result corresponding to the third side row information is to adjust the value of the contention window to the minimum value, and the adjustment result corresponding to the fourth side row information is to increase the value of the contention window to a larger candidate value, and it is determined that the value of the contention window is adjusted to the minimum value; or, the adjustment result corresponding to the third side row information is to maintain the value of the contention window, and the adjustment result corresponding to the fourth side row information is to increase the value of the contention window to a larger candidate value, and it is determined to maintain the value of the contention window.
  • the adjustment result corresponding to the first feedback information of at least one second side-line information is to adjust the value of the contention window to the minimum value, and it is determined that the value of the contention window is adjusted to the minimum value; or, there are multiple second side-line information, and the adjustment result corresponding to the first feedback information of all second side-line information is to increase the value of the contention window to a larger candidate value, and it is determined that the value of the contention window is adjusted to the minimum value.
  • the CWp is preferentially adjusted to the minimum value among the multiple adjustment results, so that the first device can quickly access the channel.
  • CWp is preferentially adjusted to the maximum value of the multiple adjustment results.
  • the reference duration is determined based on a second channel occupancy time COT, and a channel access priority CAPC for initially using the second COT is greater than or equal to a first CPAC, wherein the first CAPC is associated with the first sideline information.
  • CAPC channel access priority
  • CAPC is associated with the difficulty of channel access. For example, if the value of CAPC is small, it is easier to access the channel; if the value of CAPC is large, it is more difficult to access the channel. Alternatively, if the value of CAPC is small, the channel can be accessed in a shorter time; if the value of CAPC is large, it takes a longer time to access the channel. Based on the CAPC initial COT that is the same as the first side information, it can better reflect whether it is easier to access the channel at present, and the CWp adjustment is more accurate.
  • the first device adjusts the CWp according to the first feedback information associated with the second side information within the reference duration when at least one of the following conditions is met: the first CAPC is equal to the second CAPC, the first CAPC is greater than the second CAPC, and the first CAPC is less than the second CAPC.
  • the first CAPC is the CAPC associated with the first side information.
  • the value of the first CAPC is p.
  • the first device can determine the CWp associated with the first CAPC.
  • the first device can initialize a first COT according to the first CAPC, and the first COT carries the first side information.
  • the second CAPC is the CAPC associated with the second sideline information.
  • the value of the second CAPC is p.
  • the second CAPC may be indicated by the sideline control information of the second sideline information, or may be indicated by the COT indication information of the second COT.
  • the first CAPC is the CAPC associated with the first sideline information
  • the first CAPC is the CAPC of the initial first COT
  • the first sideline information is the first transmission within the first COT
  • the first sideline information is the transmission within the first COT.
  • the method further includes: when the following third condition is met, determining the channel access parameters according to the values configured for the first device by the network device, or determining the channel access parameters according to the values preconfigured for the first device, or determining the channel access parameters according to predefined values, or not adjusting the channel access parameters.
  • the third condition includes at least one of the following conditions: no side information is detected within the reference duration; no second side information is detected within the reference duration; no first feedback information is detected; the propagation type of the side information within the reference duration is not the first propagation type; the enabling information of the side information within the reference duration is not the first enabling information.
  • the third condition can also be expressed as: there is no transmission of the second sideline information of the first propagation type and/or the first enabling information, which can be understood as: there is no transmission of the second sideline information of the first propagation type within the reference duration; and/or, there is no transmission of the second sideline information of the first enabling information within the reference duration; and/or, there is no transmission of feedback information corresponding to the second sideline information of the first propagation type within the second time; and/or, there is no transmission of feedback information corresponding to the second sideline information of the first enabling information within the second time.
  • not adjusting the channel access parameter may be, for example, not adjusting CWp.
  • a transmission whose propagation type is ACK/NACK-based multicast is detected within the reference duration, and the first device determines the CWp according to feedback information associated with the transmission whose propagation type is ACK/NACK-based multicast within the reference duration.
  • no transmission with a propagation type of ACK/NACK-based multicast is detected within the reference duration, and a transmission with a propagation type of unicast is detected within the reference duration, and the first device determines CWp based on feedback information associated with the transmission with a propagation type of unicast during the reference duration.
  • no transmission with a propagation type of ACK/NACK-based multicast or a transmission with a propagation type of unicast is detected within the reference duration
  • a transmission with a propagation type of NACK-based multicast only is detected within the reference duration
  • the first device determines CWp based on feedback information associated with the transmission with a propagation type of NACK-based multicast only during the reference duration.
  • the first device determines the channel access parameters according to the designed method.
  • the first device can determine the channel access parameters according to the methods in the above designs, which helps the first device access the channel.
  • CWp is determined according to the propagation type of the multiple second sideline information and/or the priority of the enabling information.
  • the first propagation type has the highest priority. That is, the propagation type associated with the second sideline information is the same as the first propagation type associated with the first sideline information, and the CWp is determined according to the first propagation type; or, the CWp is determined preferentially according to the first propagation type.
  • the first enabling information has the highest priority. That is, the enabling information associated with the second sideline information is the same as the first enabling information associated with the first sideline information, and the CWp is determined according to the first enabling information; or, the CWp is determined preferentially according to the first enabling information.
  • the propagation type associated with the transmission in the reference duration is the same as the first propagation type associated with the first sideline information, and the first propagation type has the highest priority.
  • the first propagation type has the highest priority and can also be understood as determining CWp according to the first propagation type.
  • the enabling information associated with the transmission within the reference duration is the same as the first enabling information associated with the first sideline information, and the first enabling information has the highest priority.
  • the first enabling information has the highest priority and can also be understood as determining CWp according to the first enabling information.
  • a transmission whose propagation type is ACK/NACK-based multicast is detected within the reference duration, and the first device determines the CWp according to feedback information associated with the transmission whose propagation type is ACK/NACK-based multicast within the reference duration.
  • no transmission with a propagation type of ACK/NACK-based multicast is detected within the reference duration, and a transmission with a propagation type of unicast is detected within the reference duration, and the first device determines CWp based on feedback information associated with the transmission with a propagation type of unicast during the reference duration.
  • no transmission with a propagation type of ACK/NACK-based multicast or a transmission with a propagation type of unicast is detected within the reference duration
  • a transmission with a propagation type of NACK-based multicast only is detected within the reference duration
  • the first device determines CWp based on feedback information associated with the transmission with a propagation type of NACK-based multicast only during the reference duration.
  • a communication method comprising:
  • the network device configures the value of the channel access parameter.
  • the first device determines the value of the channel access parameter according to the value configured by the network device.
  • the third condition can refer to the design of the above-mentioned related aspects and will not be repeated here.
  • a communication method comprising:
  • the first propagation type is a propagation type associated with the first side information, and/or, the first enabling information is enabling information associated with the first side information;
  • the first sideline information is transmitted.
  • the first side information in this aspect can refer to the first information in the above aspects.
  • the technical solution of the present application provides a communication device, comprising: an input device, a display screen, one or more processors, a memory, and one or more computer programs; wherein the processor is coupled to the input device, the processor and the memory, and the one or more computer programs are stored in the memory, and when the communication device is running, the processor executes the one or more computer programs stored in the memory so that the communication device executes the method described in any design of any of the above aspects.
  • the present application provides a device, which terminal includes a processor and a memory, the memory is used to store computer program code, the computer program code includes computer instructions, and when the processor executes the computer instructions, it executes the method described in any possible design of any of the above aspects of the present application.
  • the technical solution of the present application provides a computer-readable storage medium, including computer instructions.
  • the computer instructions When the computer instructions are executed on a communication device, the communication device executes the method described in any possible design of any of the above aspects.
  • the technical solution of the present application provides a computer program product, which, when executed on a communication device, enables the communication device to execute the method described in any possible design of any of the above aspects.
  • an embodiment of the present application provides a communication device, which can implement the method implemented by the first device in any of the above aspects or any possible designs, or implement the method implemented by the second device in any of the above aspects or any possible designs, or implement the method implemented by the third device in any of the above aspects or any possible designs.
  • the device includes corresponding units or components for executing the above methods.
  • the units included in the device can be implemented by software and/or hardware.
  • the device can be, for example, an independent device, or a component or baseband chip, chip system, or processor that can support the implementation of the above methods in the device.
  • the communication device includes a processor configured to support the communication device to perform the corresponding functions of the terminal device in the method shown above.
  • the communication device may also include a memory, which may be coupled to the processor and stores the necessary program instructions and data of the communication device.
  • the communication device also includes an interface circuit, which is used to support communication between the communication device and other terminal devices.
  • the communication device may include modular components such as a transceiver unit (or communication module, transceiver module) and a processing unit (or processing module), which can perform the corresponding functions of the first device in any of the above aspects or any possible designs, or the second aspect or any possible designs.
  • the transceiver unit may be a transmitter and a receiver, or a transceiver obtained by integrating the transmitter and the receiver.
  • the transceiver unit may include an antenna and a radio frequency circuit, etc.
  • the processing unit may be a processor, such as a baseband chip, etc.
  • the transceiver unit may be a radio frequency unit, and the processing unit may be a processor.
  • the transceiver unit may be an input and output interface of the chip system, and the processing unit may be a processor of the chip system, such as a central processing unit (CPU).
  • CPU central processing unit
  • the transceiver unit may be used to perform the receiving and/or sending actions performed by the first device in any aspect or any possible design thereof.
  • the processing unit may be used to perform actions other than receiving and sending performed by the first device in any aspect or any possible design thereof.
  • a communication system comprising the first device and the third device involved in any aspect, or comprising the second device, the first device and the third device.
  • a circuit is provided, the circuit being coupled to a memory, and the circuit being used to execute the method shown in any one of the above aspects or any one of its possible implementations.
  • the circuit may include a chip circuit.
  • FIGS. 1A-1G are schematic diagrams of scenes of related technologies
  • 2A-2D are schematic diagrams of a system architecture provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG4 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG5A and FIG5B are schematic diagrams of applicable scenarios provided by embodiments of the present application.
  • FIGS. 9A-9C are schematic diagrams of applicable scenarios provided by embodiments of the present application.
  • FIG9D is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG18A is a schematic diagram of an applicable scenario provided by an embodiment of the present application.
  • FIG18B is a flow chart of a communication method provided in an embodiment of the present application.
  • 21-22 are schematic flow charts of a communication method provided in an embodiment of the present application.
  • FIG23 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG. 24 is a schematic diagram of the structure of a chip system provided in an embodiment of the present application.
  • first and second and the like in the specification and drawings of this application are used to distinguish different objects, or to distinguish different processing of the same object, rather than to describe a specific order of objects.
  • At least one means one or more.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • A/B can mean A or B.
  • time domain resources may refer to time domain resources and/or frequency domain resources and/or time-frequency resources.
  • the granularity of time domain resources may be any of radio frames, subframes, time slots, mini-time slots, symbols, seconds, milliseconds, microseconds, etc.
  • the granularity of frequency domain resources may be any of RE, RB, interlace, subchannel, RB set, subcarrier, Hz, kHz, MHz, etc.
  • resource overlap in each embodiment of the present solution may refer to time domain resource overlap, and/or frequency domain resource overlap, and/or time-frequency domain resource overlap (i.e., simultaneous overlap in the time-frequency domain). In addition, it may also refer to partial overlap or full overlap. The same applies to resource conflict.
  • the description of the FDM of device 1 and device 2 can be extended to the FDM of more than 2 devices.
  • the action performed according to CAPC can be replaced by an action performed according to physical layer priority.
  • determining the home device according to CAPC can be replaced by determining the home device according to physical layer priority.
  • Dynamic channel access is applicable to scenarios such as SL terminals and heterogeneous system terminals transmitting on unlicensed spectrum.
  • Dynamic channel access includes two types of channel access, namely Type 1 channel access (also called Type 1 LBT) and Type 2 channel access (also called Type 2 LBT).
  • type1 LBT is a fallback-based LBT.
  • the fallback time may be related to the channel access priority class (CAPC).
  • the device can access the channel only when it detects that the channel is idle for a long time.
  • CAC channel access priority class
  • Type1 LBT may include the following two processes: channel sensing with a duration of Td (defer duration) and cyclic sensing.
  • Type 2 LBT includes three types: Type 2A, Type 2B, and Type 2C. Compared with the longer listening time required for Type 1 LBT, the device that implements Type 2 LBT can access the channel when it hears that the channel is idle for a short time (such as 16us or 25us), and the success rate of accessing the channel is improved compared to Type 1 LBT.
  • a short time such as 16us or 25us
  • Type2 LBT can be applied in the COT sharing scenario below.
  • Type 2C channel access The device can transmit without channel perception, and the maximum transmission time is 584us.
  • the three fields of frequency resource indication (freq resource assignment), time resource assignment, and resource reservation period (resource reservation period) in SCI can indicate resource reservation for retransmission and/or periodic transmission.
  • a COT can be initialized, which has a certain duration.
  • the COT can be shared for transmission between eNB/gNB/device(s).
  • COT sharing After the device performs the channel type 1 access process and initializes the COT, it can share resources that the device does not need to use with other devices. In some schemes, the other devices to be shared are required to have a transceiver relationship with the current device. For example, if other devices transmit unicast services, the receiving device should be the current device; if other devices transmit multicast/broadcast services, the receiving devices should include the current device. Before using the COT for transmission, other devices need to first perform the channel access process.
  • the device of the initial COT The device of the initial COT.
  • Multiple initial devices refer to the initial devices of the initial COT in the same time slot in the time domain, and FDM (different frequency domain resources) in the frequency domain.
  • the different frequency domain resources are located in the same channel (channel) or different channels.
  • FDM transmission refers to two transmissions that overlap in the time domain but do not overlap in the frequency domain.
  • FDM can be divided into FDM at the initial COT and FDM within the COT.
  • the FDM within the COT may include FDM (FDM caused by continuous transmission of the device) of the initial COT (which may be called the initial device) or FDM (FDM caused by continuous transmission of the device) shared by the COT (between the shared device and the initial device/between shared devices).
  • the terminal may receive and send information in two consecutive time slots, or the terminal may receive and send information in the same time slot. Therefore, symbols are needed for the terminal to perform transceiver conversion. For example, the terminal may receive and send PSSCH in two consecutive time slots, or the terminal may receive and send PSSCH and PSFCH in the same time slot. Symbols are needed for the terminal to perform transceiver conversion, that is, the processing time required for the RF to convert the receiving action into the sending action, or the processing time required to switch the sending action to the receiving action.
  • CPE refers to redundant transmission before the actual useful channel/signal transmission. It is often some redundant information or a copy of the useful channel/signal. In unlicensed spectrum transmission, such as NR-U and SL-U, it is usually considered that the end time of LBT is not always adjacent to the actual useful transmission resources in the time domain, so there may be channel loss or other risks. Therefore, the time proximity is guaranteed by sending CPE at the corresponding interval.
  • CPE can be configured or indicated according to signaling.
  • the application scenarios of CPE include the following two scenarios:
  • Scenario 1 As shown in Figure 1A, when the device initiates the COT, the Type 1 LBT is sent before the CPE (for example, CPE1).
  • the CPE sent before the transmission of LBT can be called the initial CPE.
  • CPE1 shown in Figure 1A can be called the initial CPE of the initial device.
  • Scenario 2 As shown in Figure 1A, within the COT, when the interval between the transmissions (such as transmission 1 and transmission 2) of the initial device (the device that initializes the COT) itself does not meet the requirements of LBT type 2A, 2B, and 2C for the interval between two transmissions, it is necessary to send a certain length of CPE (CPE2) before the actual useful transmission (such as transmission 2) to meet the interval requirements.
  • CPE2 CPE2
  • the sum of the CPE duration and the LBT duration is the duration of one symbol. Still taking Figure 1A as an example, assuming that the last symbol of time slot 1 is used as GAP, the initial device sends CPE after executing LBT type 2A.
  • the CPE carries part of the information that will actually be sent in transmission 2, which is equivalent to sending transmission 2 in advance.
  • the sum of the duration of CPE and the duration of LBT type 2A is the duration of the last symbol (for example, 72us).
  • the interval between transmission 1 and CPE (carrying part of the information to be transmitted in transmission 2) is the LBT duration, which is equivalent to sending the information in transmission 2 in advance, thereby reducing the actual interval between transmission 1 and transmission 2 (sent in advance) to meet the interval requirement (LBT duration) between two adjacent transmissions.
  • the CPE used by the device in the COT may be referred to as the CPE in the COT.
  • the CPE in the COT may include the CPE used by the initial device in the COT and the CPE used by the shared device in the COT.
  • device 1 performs 16us LBT
  • device 2 performs 25us LBT
  • device 1 completes LBT access to the channel, it starts to send CPE.
  • device 2 detects that the channel is busy, LBT fails, and cannot access the channel. It can be seen that when there are multiple devices, only the terminal with the longest CPE can access and transmit, and the terminal with the short CPE cannot access due to blocking.
  • the device can transmit it directly on the configured resources without performing other actions such as resource selection.
  • the scheduling granularity of PSCCH/PSSCH is one time slot in the time domain and one or more continuous subchannels in the frequency domain.
  • the transmitting device can send side information on this resource.
  • the side information includes at least one of PSCCH, PSSCH, PSFCH, DM-RS, CSI-RS, PT-RS, S-SSB, SCI, first-order SCI, second-order SCI, and CPE (CP extension, Cyclic Prefix extension).
  • PSCCH carries first-order SCI
  • PSSCH carries second-order SCI and/or data
  • PSFCH carries feedback information.
  • PSCCH/PSSCH includes PSCCH and/or PSSCH.
  • PSCCH carries the first-order SCI.
  • PSCCH and SCI have the same meaning.
  • PSCCH occupies two or three OFDM symbols starting from the second sideline symbol; in the frequency domain, the PRB carrying PSCCH starts from the lowest PRB of the lowest subchannel of the associated PSSCH, and the number of PRBs occupied by PSCCH is within the subband range of a PSSCH.
  • PSCCH consists of ⁇ 10, 12, 15, 20, 25 ⁇ RBs, and the specific value is indicated by RRC signaling or pre-configured.
  • PSSCH Physical Sidelink Shared Channel
  • PSSCH carries at least two of the second-order SCI, MAC CE, and data.
  • SCI can refer to first-order SCI and/or second-order SCI.
  • SCI refers to any one of first-order SCI, second-order SCI, first-order and second-order SCI.
  • time domain on resources without PSFCH, there are 12 symbols used to carry PSSCH; on resources with PSFCH, there are 9 symbols used to carry PSSCH. In the frequency domain, it occupies consecutive LsubCh subchannels.
  • the first OFDM symbol copies the information sent on the second symbol for automatic gain control (AGC).
  • AGC automatic gain control
  • PSFCH carries feedback information.
  • the penultimate and third OFDM symbols carry PSFCH.
  • the signal on the third-to-last symbol is a repetition of the signal on the penultimate symbol, so that the receiving device can make AGC adjustments.
  • the device may receive and send PSSCH in two consecutive time slots, or the device may receive and send PSSCH and PSFCH in the same time slot. Therefore, an additional symbol is required after the PSSCH and after the PSFCH symbol. Symbols are used for the device's transceiver conversion.
  • This symbol is located at the start symbol of the transmission, such as symbol 0 for PSCCH/PSSCH transmission, such as symbol 11 for PSFCH transmission. Since it is not possible to receive and decode data while performing AGC adjustment, the signal on the AGC symbol is a copy of the signal content on the next symbol. Since SL transmission maintains equal power on each symbol, the content of the remaining symbols can be received based on the result of automatic gain control of the AGC symbol.
  • NR SL communication is based on a resource pool.
  • a resource pool is a block of time-frequency resources dedicated to SL communication.
  • the frequency domain resources contained in the resource pool are continuous.
  • the time domain resources contained in the resource pool can be continuous or discontinuous.
  • Different resource pools are distinguished by RRC signaling.
  • the device receives on the receiving resource pool and sends on the sending resource pool. If the resource pools have the same resource pool index, it can be considered that the time-frequency resources of the resource pools are completely overlapped.
  • the SL resource pool can also be understood as: a resource set that can be used for SL transmission.
  • the resource pool can also be referred to as one or more RB sets (RB set), one or more channels (channel), one or more operating channels (Operating channel), one or more nominal channels (Nominal Channel Bandwidth) bandwidth (bandwith).
  • RB set RB sets
  • channels channels
  • OFT channel Operating Channel
  • nominal channels Nominal Channel Bandwidth bandwidth
  • continuous RBs in the frequency domain constitute subchannels.
  • the frequency domain of resources can be either continuous RBs (contiguous RBs) or interlaced RBs (interlaced RBs).
  • the basic unit of frequency domain resource allocation is a subchannel, where a subchannel consists of continuous RBs or interlaced RBs.
  • the basic unit of frequency domain resource allocation is a subchannel or interlacing, where a subchannel consists of continuous RBs and interlacing consists of interlaced RBs.
  • FIG1D an example of interlacing is shown in FIG1D .
  • the subcarrier spacing and corresponding CP length supported by R16NR SL are shown in Table 1.
  • Table 1 In order to reduce the complexity of device implementation, only one CP length type and one subcarrier spacing are configured on a sidecarrier.
  • Table 2 The number of RBs under different maximum transmission bandwidths and different SCSs is shown in Table 2.
  • a single subcarrier on a single OFDM symbol is the smallest unit of time-frequency resources, which is called a resource element (RE) in the protocol.
  • An RB refers to a frequency domain resource unit consisting of 12 consecutive subcarriers.
  • the smallest unit of scheduling can also be an RB.
  • the scheduling unit of PSFCH is 1 symbol in the time domain and 1 RB in the frequency domain.
  • the frequency domain granularity of PSCCH/PSSCH scheduling is subchannel or interleaving.
  • One subchannel consists of ⁇ 10, 12, 15, 20, 25, 50, 75, 100 ⁇ PRBs. The specific value is indicated by RRC signaling or pre-configured.
  • the bandwidth of the resource pool can be at least one of ⁇ 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 ⁇ MHz.
  • the maximum transmission bandwidth corresponds to different RB numbers, as shown in Table 2.
  • RB set has the same meaning as channel and is the frequency domain unit of COT.
  • a resource pool includes one or more RB sets.
  • One or more COTs For example, as shown in FIG1C , COT1 transmitted by RB set 0, and COT2 transmitted by RB set 1 and RB set 2.
  • the frequency domain unit of COT is one or more RB sets.
  • the RB set can also be called a channel.
  • the resource pool includes one channel, the channel bandwidth is 20MHz, and the resource pool bandwidth is 20MHz.
  • the resource pool includes 2 channels, the channel bandwidth is 20MHz, and the resource pool bandwidth is 40MHz.
  • the resource pool includes 5 channels, the channel bandwidth is 20MHz, and the resource pool bandwidth is 100MHz.
  • the frequency domain bandwidth of the RB set is 20 MHz.
  • the bandwidth of the resource pool is 20 MHz, and the resource pool contains 1 RB set.
  • the bandwidth of the resource pool is 50 MHz, and the resource pool contains 2 RB sets, which can be adjacent or non-adjacent in the frequency domain.
  • a device can transmit PSCCH and/or PSSCH on one RB set. For example, a device transmits PSCCH on A interlaces and PSSCH on B interlaces.
  • the device can transmit PSCCH and/or PSSCH on D adjacent RB sets in the resource pool.
  • the resource pool may also include a guard band, as shown by the shadow of 1C.
  • a guard band of 5, 6 or 7 RBs between each RB set.
  • RB set 0 to RB set 4 include 50, 50, 49, 50, and 50 RBs respectively, and there is a guard bandwidth of 6 RBs between each RB set.
  • the guard bandwidth is used to avoid mutual interference between different devices transmitting on adjacent RB sets.
  • Table 3 RB set and guard band for broadband transmission
  • the frequency domain of COT includes one or more RB sets.
  • COT also includes the guard bands between the multiple RB sets.
  • COT1 shown in 1C COT1 includes the resources in RB set 0, and does not include the resources in the guard band adjacent to the RB set.
  • COT2 shown in 1C COT2 includes the resources in RB set 1 and RB set 2, and also includes the resources in the guard band between RB set 1 and RB set 2.
  • Interlace m consists of common resource blocks (CRB) ⁇ m, M+m, 2M+m, 3M+m, ... ⁇ .
  • M is the number of interlaces, and m ⁇ 0,1,...,M-1 ⁇ .
  • BWP i and interleaving m The relationship between interleaved resource blocks, BWP i and interleaving m satisfies: Among them, Indicates the common resource block at the start of the BWP, which is the number of CBRs relative to common resource block 0. When there is no risk of confusion, the index ⁇ can be omitted. The device expects that the number of common resource blocks in the interlace contained in BWP i is not less than 10. For ease of expression, common resource block CRB can be understood as RB.
  • Resource allocation methods include continuous and interleaved methods. Among them, interleaving can also be recorded as interleaving, interlaced, progressive, and comb teeth.
  • One interleaving includes N discontinuous RBs, and the transmission bandwidth includes M interleavings.
  • the intervals between RBs in an interleaving can be the same or different.
  • the interval between RBs can be M RBs.
  • the horizontal axis represents the frequency domain
  • the unit is RB
  • the vertical axis represents the time domain, the unit is symbol.
  • RB can also be called PRB (physical resource block), that is, physical resource block.
  • the table lists the number of interlaces M and the number of PRBs in the interlace N. At least one combination of the number of interlaces M and the number of RBs in the interlace N may be determined according to configuration or pre-configuration.
  • Subchannels can also be composed of contiguous RB-based (CRB).
  • the service priority of a device is specifically the device transmission priority.
  • Priority can also be called service priority, L1 priority (L1priority), physical layer priority, priority carried in SCI, priority carried in first-order SCI, priority carried in SCI 2-C, priority corresponding to PSSCH associated with SCI, transmission priority, priority for sending PSSCH, priority for selecting resources, priority of logical channel, and the highest level of priority of logical channel.
  • service priority L1 priority (L1priority)
  • L1priority physical layer priority
  • priority carried in SCI priority carried in first-order SCI
  • priority carried in SCI 2-C priority corresponding to PSSCH associated with SCI
  • transmission priority priority for sending PSSCH
  • priority for selecting resources priority of logical channel
  • priority of logical channel priority of logical channel
  • the priority level and the priority value have a certain corresponding relationship, for example, the higher the priority level, the lower the corresponding priority value, or the lower the priority level, the lower the corresponding priority value.
  • the priority value range can be an integer of 1-8 or an integer of 0-7. If the priority value range is 1-8, the priority value of 1 represents the highest level of priority.
  • CAPC can also be translated as channel access priority class.
  • CAPC associates the importance of SL information and is used for the first type of LBT.
  • CAPC is the priority p in the first type of LBT.
  • the CAPC terminal device can also be used to determine whether the second SL information is transmitted within the COT initiated by the CAPC associated with the first SL information.
  • the CAPC level and the CAPC value have a certain correspondence, for example, the higher the CAPC level, the lower the corresponding CAPC value, or the lower the CAPC level, the lower the corresponding CAPC value.
  • the CAPC value can range from an integer of 1 to 4. When a lower CAPC value represents a higher level of CAPC, a CAPC value of 1 represents the highest level of CAPC. When a lower CAPC value represents a lower level of CAPC, a CAPC value of 1 represents the lowest level of CAPC.
  • priority may refer to either service priority or channel access priority (CAPC).
  • CAC channel access priority
  • Time domain resources include symbol, slot, mini-slot, partial slot, sub-frame, radio frame, sensing slot, etc.
  • Frequency domain resources include resource element (RE), resource block (RB), RB set (RB set), subchannel, resource pool (resource pool), bandwidth part (bandwidth part, BWP), carrier, channel, interlace, etc.
  • RE resource element
  • RB resource block
  • RB set RB set
  • subchannel resource pool
  • resource pool resource pool
  • bandwidth part bandwidth part
  • BWP bandwidth part
  • this document describes the resources for transmitting PSCCH/PSSCH by taking time domain resources as time slots and frequency domain resources as subchannels or interleaving.
  • Radio Frequency Allocation Regulations of the People's Republic of China in order to fully, reasonably and effectively utilize radio spectrum resources
  • the frequency bands are divided to ensure the normal operation of radio services and to prevent mutual interference between various radio services, radio stations and systems.
  • 2/3/4/4G and other technologies use authorized spectrum, which needs to be applied for by telecom operators before use, with little interference and safety.
  • SL-U SL communication on unlicensed spectrum
  • any one of Wi-Fi devices, Bluetooth devices, and Zigbee devices can be referred to as a heterogeneous system device for SL devices (the specification needs to define "heterogeneous system device").
  • Channel occupancy refers to the transmission of a device on one or more channels after performing the channel access process.
  • COT channel occupancy time
  • the frequency domain unit of COT is the channel, and the time domain unit is ms or time slot.
  • COT can be a time concept, that is, the time of SL transmission; it can also be a resource concept, that is, the time and frequency resources occupied by SL transmission.
  • COT and CO are the same concept.
  • the device can transmit on multiple adjacent or non-adjacent channels.
  • the transmission of a device on multiple channels can be understood as: the transmission of the device occupies 1 COT, and COT occupies multiple channels in the frequency domain; or, the transmission of the device occupies multiple COTs, and each COT occupies 1 channel in the frequency domain.
  • This COT can be called the initial COT of the network device or terminal device.
  • initial means initiated, initial, initialization or initiate.
  • the initial COT can also be translated as the created COT.
  • COT can be shared for transmission between devices (COT sharing).
  • the device with the initial COT can share COT with other devices, that is, it can be used for SL transmission of other devices.
  • the device with the initial COT and the device sharing COT occupy the channel for transmission for a continuous period of time.
  • COT sharing needs to meet corresponding conditions, such as the device with the initial COT is the receiving device or sending device of the device sharing COT, or the device with the initial COT and the device sharing COT are members of the same group.
  • the transmission of a device cannot exceed the maximum channel occupancy time limit (MCOT), denoted as T cot,p .
  • T cot,p the maximum channel occupancy time limit
  • the value of T cot,p is different, as shown in Table 5 or Table 6.
  • the transmission time does not exceed the maximum channel occupancy time T cot,p .
  • the transmission time of the device in the initial COT and the devices sharing the COT does not exceed the maximum channel occupancy time T cot,p .
  • p is the CAPC of the device in the initial COT; or, p is the CAPC with the smallest CAPC value among the devices transmitting in the COT.
  • LBT listen before talk
  • the device determines to use dynamic or semi-static channel access methods based on configuration or pre-configuration.
  • Dynamic channel access can also be called FBE (Frame Based Equipment) channel access. Or it can also be understood as: FBE accesses the channel through a dynamic access mode.
  • Semi-static channel access can also be called LBE (Load Based Equipment) channel access. Or it can also be understood as: LBE accesses the channel through a semi-static access mode. In SL-U, these two (or one of them) channel access methods should also be used.
  • Dynamic channel access is applicable to scenarios where SL terminals and heterogeneous system terminals transmit on unlicensed spectrum.
  • Dynamic channel access includes two types of channel access, namely Type 1 channel access and Type 2 channel access.
  • type 1 LBT is based on fallback LBT.
  • the fallback time is related to CAPC, and the channel needs to be idle for a long time before access.
  • Type 2 channel access includes three types, Type 2A, Type 2B, and Type 2C.
  • Type 2 LBT only requires a short channel idle time (such as 16us or 25us) for the device to access the channel. It is mainly used when COT is shared, and there are corresponding execution conditions, such as the device of the initial COT and the device sharing the COT mainly have a send-receive relationship.
  • Type 1 channel access (Type 1 channel access or Type 1 SL channel access)
  • Type 1 channel access can also be called Type 1 LBT. It consists of two parts: channel sensing (defer duration) of length Td and loop sensing.
  • the value of mp can be found in Table 5 or Table 6, where CW min,p ⁇ CW p ⁇ CW max,p is the contention window, and T cot,p is the maximum length of COT. CWmin,p is the minimum value of the contention window when CAPC is p, and CWmax,p is the maximum value of the contention window when CAPC is p.
  • Whether the channel is idle or busy is determined according to the channel detection threshold. For example, if the received power (detected power) is greater than the energy detection threshold X Thresh , the channel is busy. For another example, if the received power (detected power) is less than the energy detection threshold X Thresh , the channel is idle.
  • Cycle sensing is a cyclic process based on a counter N, which includes the following steps:
  • Step 3 Sense the channel within an additional sensing slot duration. If the sensing result is idle, proceed to step 4; otherwise, proceed to step 5.
  • Step 5 Sense the channel until a sensing slot in Td is detected to be busy, or until all sensing slots in Td are idle.
  • Step 6 If all sensing time slots in Td are idle, go to step 4; otherwise, go to step 5.
  • mp, CWmin,p and CWmax,p are determined based on the CAPC (denoted as p) associated with the network device or equipment transmission, as shown in Table 5 or Table 6:
  • the network device or terminal device maintains the contention window value CWp and adjusts the value of CWp according to the following steps before step 1:
  • the CWp value corresponding to each priority is increased to the next higher allowed value and used in step 2; otherwise, step 1 is executed.
  • the reference subframe k is the starting subframe of the most recent data transmission of the network device or terminal device on the channel.
  • Type 2 channel access (Type 2 channel access or Type 2 SL channel access)
  • Type 2 channel access includes three types: Type 2A, Type 2B, and Type 2C.
  • Type 2 LBT only requires the channel to be idle.
  • the UE can access the channel in a shorter time (such as 16us or 25us). It is mainly used when COT is shared and has corresponding execution conditions, such as the UE of the initial COT and the UE of the shared COT mainly have a sending and receiving relationship.
  • Type 2C channel access UE can transmit without channel perception, and the transmission time is up to 584us.
  • Semi-static channel access is applicable to scenarios where only SL terminals transmit on unlicensed spectrum.
  • the base station or device occupies the channel with a period of T x in every two consecutive radio frames.
  • the occupation starts at i ⁇ T x or i ⁇ T x +offset of the even-indexed radio frame.
  • the maximum duration of channel occupation is 0.95T x .
  • the last max (0.05T x , 100us) duration within the period T x is the idle time (idle duration) of the period.
  • the base station or device does not transmit during the idle time.
  • T x is configured or pre-configured, for example, at least any one of ⁇ 1, 2, 2.5, 4, 5, 10 ⁇ ms;
  • the frequency domain resource indication (Frequency resource assignment), time domain resource indication (Time resource assignment), and resource reservation period (Resource reservation period) fields in the SCI can indicate resource reservation for retransmission and/or periodic transmission.
  • the frequency domain indication field indicates the number and frequency domain positions of the subchannels for initial transmission and retransmission, such as the SCI on the R1 resource indicating the number and frequency domain positions of the subchannels of R1, R2, and R3.
  • the time domain indication field indicates the time interval between the retransmission resource and the initial transmission resource, such as the SCI on the R1 resource indicating the time interval from the end position of the R1 time slot to the end position of the R2 time slot and the time interval from the end position of the R1 time slot to the end position of the R3 time slot.
  • the resource reservation period field indicates the resource reservation period, such as the time interval between R1 and R4, the time interval between R2 and R5, and the time interval between R3 and R6 in FIG1E .
  • the time domain, frequency domain, and subchannel information of the 3 resources can be represented by frequency domain resource allocation and frequency domain resource allocation.
  • the first resource is the resource where the PSCCH/PSSCH is currently sent, and the last two resources are resources reserved for retransmission.
  • the UE can also periodically reserve periodic resources for the above 3 resources.
  • the "resources indicated by SCI" can be resources for currently sending PSCCH/PSSCH, retransmission reserved resources, or periodic reserved resources.
  • Figure 1E shows an example of retransmission reserved resources and periodic reserved resources.
  • the UE detects SCI on the R1 resource (indicated by the solid line) and reserves resources to be used for resource transmission (indicated by the dotted line).
  • the reserved period (or reserved interval) field in the SCI indicates one resource R4, which is the periodic reserved resource of R1. Since the frequency domain resources reserved for the period are the same, the time domain resources are an integer multiple of the period, which is equivalent to R2 reserving R5 for the period and R3 reserving R6 for the period. That is, although R4 has not been used for side transmission when the SCI on R1 is detected, it can also be regarded as R4 reserving R5 and R6.
  • the above process is called chain reservation.
  • Source ID Destination ID
  • the source layer 2 ID (Source Layer-2 ID or source L2 ID) is 24 bits.
  • the lower 8 bits (LSB part (8 bits)) of the layer 2 source ID are called the layer 1 source ID, which is the source ID (source ID) indicated in the SCI of the NR; the upper 16 bits (MSB part (16 bits)) are called SRC, which is indicated in the MAC header of the MAC CE.
  • the source ID in the control information can refer to the source ID indicated in the SCI of the NR, the SRC in the MAC header, and the layer 2 source ID.
  • the layer 2 destination identifier (Destination Layer-2 ID or destination L2 ID) is 24 bits.
  • the lower 16 bits (LSB part (16 bits)) of the layer 2 destination identifier are called the layer 1 destination identifier, which is the destination ID (destination ID) indicated in the SCI of the NR; the upper 8 bits (MSB part (8 bits)) are called DST, which is indicated in the MAC header of the MAC CE.
  • the destination identifier in the control information can refer to the destination ID indicated in the SCI, the DST in the MAC header, and the layer 2 destination identifier.
  • destination can also be used in general. Specifically, for unicast, destination represents a layer 2 source identifier and a layer 2 destination identifier pair; for broadcast and multicast, destination represents a layer 2 destination identifier.
  • determining the contention window CW p can also be understood as “maintaining the contention window CW p ", “updating the contention window CW p ", “adjusting the contention window CW p ", and the above concepts can be interchangeable with each other.
  • the UE adjusts the contention window CW p by the following method before step 1 of type 1 LBT.
  • "adjusting the contention window CW p" can also be understood as “maintaining the contention window CW p " or “updating the contention window CW p ".
  • Step 2 If there is HARQ-ACK feedback after the last CW p update, go to step 3. Otherwise, if the transmission after the Type 1 LBT after the last CW p update does not include retransmission, or the transmission is performed within Tw after the reference duration corresponding to the earliest UL channel occupancy, go to step 5; otherwise, go to step 4;
  • Step 3 Determine based on the HARQ-ACK feedback corresponding to the PUSCH within the reference duration of the most recent UL channel occupancy: in the HARQ-ACK feedback information of the PUSCH, if at least one of the feedback information based on the TB is ACK, or if at least 10% of the feedback information based on the CBG is ACK, then proceed to step 1; otherwise, proceed to step 4;
  • the UE adjusts the contention window CW p by the following method before step 1 of type 1 LBT. "Adjusting the contention window CW p " can also be understood as “maintaining the contention window CW p " or “updating the contention window CW p ".
  • Step 2 If there is HARQ-ACK feedback after the last CW p update, go to step 3; otherwise, if there is no retransmission or transmission within Tw after the reference duration corresponding to the earliest DL channel occupancy after the last CW p update, go to step 5; otherwise go to step 4;
  • Step 3 Determine according to the HARQ-ACK feedback information corresponding to the PDSCH within the reference duration occupied by the most recent DL channel: in the HARQ-ACK feedback information of the PDSCH, if at least one of the feedback information based on the TB is ACK, or if at least 10% of the feedback information based on the CBG is ACK, then proceed to step 1; otherwise, proceed to step 4;
  • the CW p adjustment step 2 for UL and DL is shown in FIG1F .
  • the CW p adjustment step 3 for UL and DL is shown in FIG1G .
  • the technical solution of the embodiment of the present application can be applied to cellular communication, Internet of Vehicles, terminal direct communication (such as sidelink (SL) communication), wireless fidelity (Wi-Fi) communication system or other systems.
  • the cellular communication system includes but is not limited to a new radio (NR) communication system, a long term evolution (LTE) system, and a subsequently evolved communication system (such as a 6G communication system, etc.).
  • NR new radio
  • LTE long term evolution
  • 6G communication system etc.
  • FIG2A shows an architecture of a communication system applicable to an embodiment of the present application.
  • the system may include a terminal (such as devices 1-3).
  • a direct communication link may be established between the terminal and surrounding terminals to achieve direct communication, such as: device 1 and device 2 may communicate directly.
  • the terminal may also be replaced by a terminal device, a device, a terminal apparatus, a device, etc.
  • a direct communication link established between terminals may be defined as SL, and an interface for direct communication between a terminal and surrounding terminals may be referred to as a PC5 port.
  • the communication system shown in FIG2A may further include a network device.
  • the terminal may send a message to the opposite terminal by means of a network device relay, such as: device 1 may send a message (such as a vehicle-to-everything (V2X) message) to the network device, and the network device may send the message to device 2.
  • V2X vehicle-to-everything
  • the communication link in which the terminal sends information to the network device can be defined as an uplink (UL).
  • the communication link through which the terminal receives information from the network device can be defined as a downlink (DL), and the interface between the terminal and the network device can be called a Uu interface.
  • the network architecture shown in FIG2A is only an exemplary architecture diagram, and the embodiment of the present application does not limit the number of devices included in the communication system shown in FIG2A.
  • the network shown in FIG2A may also include other functional entities, such as: application server (application server), core network equipment, etc., without limitation.
  • the network device in FIG. 2A can be used to implement functions such as wireless physical control functions, resource scheduling and wireless resource management, wireless access control, and mobility management.
  • the network device can be an access network (AN)/radio access network (RAN) device, or a device composed of multiple 5G-AN/5G-RAN nodes, or a base station (nodeB, NB), an evolution nodeB (eNB), a next generation base station (gNB), a transmission receive point (TRP), a transmission point (TP), and any other access node.
  • the device for implementing the function of the network device can be a network device, or a device that can support the network device to implement the function, such as a chip system.
  • the technical solution provided in the embodiment of the present application is described by taking the device for implementing the function of the network device as an example that the network device is an example.
  • the above-mentioned terminal is a terminal that is connected to the above-mentioned communication system and has a wireless transceiver function or a chip that can be set in the terminal.
  • the terminal can be a vehicle, which is not limited to any type of vehicle such as a car, bicycle, electric car, airplane, ship, train, high-speed rail, etc.
  • the vehicle can include an on-board device that can directly communicate with other devices.
  • the on-board device can be called a user equipment (user equipment) or a terminal.
  • the terminal may also be a user device, an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or a user device.
  • the terminal in the embodiments of the present application may be a mobile phone, a tablet computer, a computer with a wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, a mixed reality (MR) terminal, a vehicle user equipment (V equipment), a wireless terminal in industrial control, a wireless terminal in self-driving, a wireless terminal in remote medical, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, a vehicle-mounted terminal, an RSU with terminal function, etc.
  • VR virtual reality
  • AR augmented reality
  • MR mixed reality
  • V equipment vehicle user equipment
  • a wireless terminal in industrial control a wireless terminal in self-driving
  • a wireless terminal in remote medical a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, a vehicle-mounted terminal, an RSU with terminal function, etc.
  • the terminal of the present application can also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit built into the vehicle as one or more components or units.
  • the vehicle can implement the communication method provided by the present application through the built-in vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit.
  • FIG2B shows another example of a communication system applicable to the embodiment of the present application, in which a terminal may be a vehicle or a vehicle-mounted device, etc. Vehicles or vehicle-mounted devices, and network devices and vehicles may communicate according to the communication method provided in the embodiment of the present application.
  • FIG2C shows another example of a communication system applicable to an embodiment of the present application, in which a terminal may be an AR/VR/MR device, a processing device/display device (a mobile phone, a computer, a tablet, etc.), etc.
  • the AR/VR/MR device and the processing device/display device may communicate with each other according to the communication method provided in the embodiment of the present application.
  • Fig. 2D shows another example of a communication system applicable to the embodiment of the present application, which may be a Wi-Fi system.
  • a network device such as a router
  • a terminal or terminals may communicate with each other according to the communication method provided in the embodiment of the present application.
  • the device for implementing the function of the terminal may be the terminal itself, or a device capable of supporting the terminal to implement the function, such as a chip system.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the terminal or network device in the embodiment of the present application can be implemented by a communication device having the structure described in Figure 3.
  • Figure 3 is a schematic diagram of the hardware structure of the communication device provided in the embodiment of the present application.
  • the communication device 400 includes at least one processor 401, a memory 403 and at least one communication interface 404.
  • the memory 403 can also be included in the processor 401.
  • the processor 401 may be composed of one or more processing units, which may be a central processing unit (CPU), an application-specific integrated circuit (ASIC), or one or more An integrated circuit used to control the execution of the program of the present application.
  • processing units which may be a central processing unit (CPU), an application-specific integrated circuit (ASIC), or one or more An integrated circuit used to control the execution of the program of the present application.
  • the communication interface can be a module, a circuit, an interface or other device capable of implementing a communication function, used to communicate with other devices.
  • the communication interface can be an independently arranged transmitter, which can be used to send information to other devices, and the communication interface can also be an independently arranged receiver, which is used to receive information from other devices.
  • the communication interface can also be a component that integrates the functions of sending and receiving information, and the embodiment of the present application does not limit the specific implementation of the communication interface.
  • the memory 403 may be a read-only memory (ROM) or other types of storage modules that can store static information and instructions, a random access memory (RAM) or other types of storage modules that can dynamically store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), an optical disk, a magnetic disk or other magnetic storage device.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory may be independent and connected to the processor through a communication line.
  • the memory may also be integrated with the processor.
  • the memory 403 is used to store computer-executable instructions, and the computer-executable instructions can be called by one or more processing units in the processor 401 to execute corresponding steps in each method provided in the following embodiments.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application code, instructions, computer program or other names, which are not specifically limited in the embodiments of the present application.
  • the communication device 400 may include multiple processors, such as the processor 401 and the processor 407 in FIG. 3. Each of these processors may be a single-core processor or a multi-core processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • FIG3 is an exemplary structural diagram of a communication device. It should be understood that the communication device shown in the figure is only an example, and in actual applications the communication device may have more or fewer components than those shown in FIG3, may combine two or more components, or may have a different component configuration.
  • the communication device 400 may be a general device or a dedicated device, and the embodiment of the present application does not limit the type of the communication device 400.
  • the terminal may be a device having a similar structure to that shown in FIG.
  • the communication method provided in the embodiment of the present application includes the following steps:
  • a first device initializes a first COT.
  • a first COT can be initialized, which has a certain duration.
  • the first COT can be shared for transmission between eNB/gNB/device(s).
  • the frequency domain resource occupied in the first time slot in the first COT is the second frequency domain resource
  • the frequency domain resource occupied by the third device in the first time slot of the initialized second COT is the third frequency domain resource.
  • the second frequency domain resource and the third frequency domain resource can be frequency-division multiplexed, or the second frequency domain resource and the third frequency domain resource are not frequency-division multiplexed. The following is an introduction based on whether the second frequency domain resource and the third frequency domain resource are frequency-division multiplexed:
  • the second device includes device 3 and the third device is device 2 as an example, but the second device is not limited to device 3, and the third device is not limited to device 2.
  • device 3 has the same meaning as the second device, or device 3 is an example of the second device.
  • Device 2 has the same meaning as the third device, or device 2 is an example of the third device.
  • device 1 initializes the first COT, and the first COT includes time slots 1 to time slots 3.
  • Device 2 initializes the second COT, and the second COT includes time slots 1 and time slots 2.
  • the frequency domain resources (frequency domain resources with an index of 2) occupied by device 1 in the first time slot (time slot 1) in the first COT are frequency-division multiplexed with the frequency domain resources (frequency domain resources with an index of 1) occupied by device 2 in the first time slot (time slot 1) in the second COT.
  • the frequency domain resources of device 1 and device 2 can span multiple channels, or span multiple sub-channels within a channel.
  • the frequency domain resources of device 1 and device 2 are both in channel #1.
  • the frequency domain resources of device 1 are in channel #1, and the frequency domain resources of device 2 are in channel #2.
  • the frequency domain resources of device 1 include one or more sub-channels in channel #1, and one or more sub-channels in channel #2.
  • the frequency domain resources of device 2 include one or more sub-channels in channel #1, and one or more sub-channels in channel #2.
  • the embodiments of the present application do not limit the specific locations of the frequency domain resources of device 1 and device 2.
  • the device that has initialized the COT can be referred to as the initial device.
  • the second device that initializes the second COT can be referred to as an initial device.
  • device 1 initializes the first COT, and the first COT includes time slots 1 to time slots 3.
  • Device 2 initializes the second COT, and the second COT includes time slots 1 and time slots 2.
  • the frequency domain resources (frequency domain resources with an index of 2) occupied by device 1 in the first time slot (time slot 1) in the first COT and the frequency domain resources (frequency domain resources with an index of 1) occupied by device 2 in the first time slot (time slot 3) in the second COT are not frequency-division multiplexed.
  • the frequency domain resources (frequency domain resources indexed as 2) occupied by device 1 in the first time slot (time slot 1) within the first COT and the frequency domain resources (frequency domain resources indexed as 1) occupied by device 2 in the first time slot (time slot 4) within the second COT are not frequency division multiplexed.
  • the first device sends first sharing indication information to the second device.
  • the first sharing indication information includes information about part or all of the frequency domain resources within the first frequency domain resources, and the part or all of the frequency domain resources are used to share with the second device for transmission.
  • the first frequency domain resources are the frequency domain resources occupied by the first device within the first COT; or the first frequency domain resources are the frequency domain resources included in the first COT.
  • the first device after the first device initializes the first COT, it can share the resources in the first COT with other devices for transmission through the first sharing indication information.
  • the device that receives the sharing indication information from other devices and uses the shared resources indicated by the sharing indication information can be called a sharing device or a responding device.
  • the first device sends first sharing indication information to the second device, and the first sharing indication information includes information about part or all of the frequency domain resources in the first frequency domain resources, that is, the first device has the authority to share the resources in the COT, which can be understood as at least one of the following methods:
  • the first device may indicate a shared resource to the second device, where the resource is a portion of frequency domain resources within at least one first frequency domain resource.
  • the frequency domain range of the first COT is the first frequency domain resource.
  • the frequency domain range that the first device has the authority to share is the first frequency domain resources.
  • the first device does not expect to share frequency domain resources other than the first frequency domain resources with other devices (such as the second device).
  • the second device does not expect to receive frequency domain resources other than the at least one first frequency domain resource shared by device 1.
  • the resource sharing situation of the embodiment of the present application can be divided into the following four situations:
  • the initial device is device 1, and device 1 does not form FDM with other devices.
  • Device 1 can share its frequency domain resources in the frequency domain resources occupied by COT with device 3 (shared device).
  • device 1 occupies subchannel 1 of channel #1, device 1 can share subchannel 1 with device 3, and device 3 can transmit on subchannel 1.
  • device 1 occupies subchannels 1 and 2 of channel #1, and device 1 can share part or all of subchannels 1 and 2 with device 3.
  • device 1 occupies subchannel 1 of channel #1 and subchannel 1 of channel #2, and device 1 can share part or all of the occupied subchannels with device 3.
  • the initial device is device 1, and device 1 does not form FDM with other devices.
  • Device 1 can share part or all of the frequency domain resources included in the COT with device 3.
  • the initial COT of device 1 includes subchannels 1 and 2 of channel #1, and device 1 can share part or all of subchannels 1 and 2 (including subchannels occupied by device 1 in the COT and unoccupied subchannels) with device 3.
  • the initial COT of device 1 includes subchannels 1 and 2 of channel #1 and subchannels 1 and 2 of channel #2, and device 1 can share part or all of these four subchannels with device 3.
  • the initial COT of device 1 includes subchannels 1 and 2 of channel #1 and subchannel 2 of channel #2, and device 1 can share part or all of these four subchannels with device 3.
  • Case 3 The shared frequency domain resources contained in the shared device are less than or equal to the frequency domain resources occupied by multiple initial devices, and the resources of multiple initial devices are FDM-free.
  • FDM is initially performed between the resources of device 1 and device 2.
  • Device 1 and device 2 can share their respective frequency domain resources in the frequency domain resources occupied by COT with device 3 (shared device).
  • device 1 occupies subchannel 1 of channel #1, and device 1 can share subchannel 1 with device 3.
  • device 2 occupies subchannel 2 of channel #1, and device 2 can share subchannel 2 with device 3.
  • device 1 occupies subchannels 1 and 2 of channel #1, and device 1 can share part or all of subchannels 1 and 2 with device 3.
  • Device 2 occupies subchannel 2 of channel #2, and device 2 can share subchannel 2 with device 3.
  • device 1 occupies subchannel 1 of channel #1 and subchannel 1 of channel #2, and device 1 can share part or all of the occupied subchannels.
  • the channel is shared with device 3.
  • Device 2 occupies sub-channel 2 of channel #1 and sub-channel 2 of channel #2.
  • Device 2 can share part or all of the occupied sub-channels with device 3.
  • the frequency domain resources occupied by the first device in the first COT are the fourth frequency domain resources
  • the frequency domain resources occupied by the third device in the initialized second COT are the fifth frequency domain resources
  • the fourth frequency domain resources and the fifth frequency domain resources are included in the sixth frequency domain resources
  • the sixth frequency domain resources are used for transmission by the second device
  • the sixth frequency domain resources also include seventh frequency domain resources, wherein the seventh frequency domain resources are located in the same channel (channel) as the fourth frequency domain resources and the fifth frequency domain resources and are different from the fourth frequency domain resources and the fifth frequency domain resources.
  • case 4 can be seen in FIG9B , where the initial devices are device 1 and device 2, and device 1 (the first device) forms an FDM with device 2 (the third device).
  • Device 1 and device 2 can share part or all of the frequency domain resources included in their respective COTs with device 3.
  • the initial COT of device 1 includes subchannels 1, 2, and 3 of channel #1, and device 1 can share part or all of subchannels 1, 2, and 3 (including subchannel 2 (the fourth frequency domain resource) occupied by device 1 in the first COT and unoccupied subchannels 1 and 3) with device 3.
  • device 2 can also share all or part of the frequency domain resources in its initialized COT (including subchannel 3 (the fifth frequency domain resource) occupied by device 2 in the second COT and unoccupied subchannels 1 and 2) with device 3.
  • the shared resources (sixth frequency domain resources) of device 3 include not only the fourth frequency domain resources and the fifth frequency domain resources, but also the seventh frequency domain resources (unoccupied subchannel 1 in the COT).
  • the embodiments of the present application provide three methods for sharing resources.
  • the scenarios or situations to which the methods of the embodiments of the present application are applicable are not limited to the above four situations, but may also be other scenarios or situations.
  • any method of any embodiment of the present application may be applicable to other possible scenarios or situations, not limited to the listed scenarios or situations.
  • Method 1 When the first device instructs other devices to share COT, it only instructs to share part or all of the frequency domain resources occupied by itself in the initial first COT.
  • the frequency domain resources occupied by the first device in the first COT may be the frequency domain resources occupied by the first device in the first time slot in the first COT; or the frequency domain resources occupied by the first device in the last time slot in the first COT; or the frequency domain resources occupied by the first device in the time slot with the least number of frequency domain resources in the first COT; or the frequency domain resources occupied by the first device in the time slot with the largest number of frequency domain resources in the first COT; or the frequency domain resources occupied by the first device in the first COT.
  • the occupation may also be any of reservation, selection, use, and use for transmission.
  • the resources selected by the first device can be used by the first device for current transmission, and the resources reserved by the first device can be used by the first device for next transmission.
  • the frequency domain resources occupied by the first device in the first COT are not limited thereto, and all possible situations are not enumerated here.
  • the initial device 1 occupies subchannels 1, 2, and 4 in the first time slot (time slot 1) of the initial COT, and the initial device 1 can share all or part of the frequency domain resources in subchannels 1, 2, and 4 with other terminals.
  • the time slots in which device 1 occupies the least subchannels in the COT are time slots 9 and time slots 10 (each occupying two subchannels). Among them, device 1 occupies subchannels 2 and 4 in time slot 9, and occupies subchannels 1 and 4 in time slot 10.
  • Device 1 can share part or all of the frequency domain resources in subchannels 2 and 4 (a group of subchannels) with other devices. Alternatively, device 1 can share part or all of the frequency domain resources in subchannels 1 and 4 (a group of subchannels) with other devices. Alternatively, device 1 can determine the frequency domain resources for sharing with other devices based on these two groups of subchannels.
  • the time slot with the least sub-channels occupied by device 1 in the COT is time slot 2 (occupying four sub-channels).
  • Device 1 can share part or all of the frequency domain resources in the four sub-channels with other devices.
  • method 1 may be applicable to, but not limited to, non-FDM scenarios such as FIG. 7 , FIG. 8 or the like, or to FDM scenarios such as FIG. 9A , FIG. 9B or the like.
  • scenarios 1-4 of FIG. 7 to FIG. 9B are respectively introduced as examples:
  • the first sharing indication information may be COT sharing indication information.
  • device 3 can perform LBT type 1 to access the channel, or device 3 can reselect resources. That is, if device 3 does not receive the COT sharing indication information from device 1, or receives the COT sharing indication information indicating that the shared resources are not allowed to be used, device 3 can perform LBT type 1 to access the channel, or device 3 can reselect resources.
  • device 1 shares subchannel 1 occupied by itself in the COT with device 3
  • device 2 shares subchannel 2 occupied by itself in the COT with device 3
  • device 3 can transmit on subchannels 1 and 2 .
  • the shared device can determine the shared resources according to the sharing indication information of the initial device that allows COT sharing. That is, if device 3 receives the sharing indication information from initial device 1 and initial device 2 indicating that the shared resources are allowed to be used, device 3 can use the shared resources and try to perform LBT type 2 to access the channel and transmit.
  • the shared device (such as device 3) performs resource reselection.
  • device 1 and/or device 2 may consider that the conditions for COT sharing are not met, or that they do not have the authority to share COT, and device 1 and/or device 2 will not share the resources in the COT with device 3 through sharing indication information.
  • device 3 can receive sharing indication information from device 1 and device 2, then device 3 can try LBT type 2 channel access and transmission, otherwise use LBT type 1 access or perform resource reselection.
  • multiple initial devices such as device 1 and device 2 can share unoccupied sub-channels in COT with device 3 through joint indication, so as to increase the number of shared resources used by device 3 and improve the communication performance of device 3.
  • the COT sharing indication information includes at least one of the following information: shared time domain resources, shared frequency domain resources, identification information of the second device (including at least one of device ID, source ID, and destination ID).
  • the first device may indicate information about the channel where the frequency domain resource is located, and/or, indicate information about the subchannel where the frequency domain resource is located.
  • the information about the frequency domain resource may be indicated by indicating the location information of the channel and/or the location information of the subchannel.
  • the location information may include at least one of the following: index, quantity, starting position, ending position, offset value.
  • the index, starting position, and ending position may be an index or position in the concept of a physical time slot, or an index or position in the concept of a logical time slot.
  • the offset value may be an offset value relative to the starting time slot of the COT or the starting time slot of the occupied resource.
  • the index may be indicated by any of FRIV, bitmap, bit information (binary state value), etc.
  • the time domain resource shared by the first device is within the COT range of the first device itself (such as the maximum length of COT in the standard, such as 10ms), or the shared time domain resource is within the resource range selected or reserved by the first device.
  • the first device after the first device initially performs the first COT, it can occupy up to 10ms for transmission, but the first device may not have more transmission requirements, so the first device can only select or reserve a time domain resource such as 5ms, and can share the time domain resource (total duration of 5ms) with the second device.
  • the frequency domain resources shared by the first device with other devices are less than or equal to the frequency domain resources occupied by the first device in the first COT.
  • the resources occupied by the first device may refer to the frequency domain resources used for the first device to transmit itself, or the resources used to share with other devices.
  • the resources occupied by the first device may be resources selected or reserved by itself.
  • the home device may be determined based on the initial device, and the home device has the authority to share the COT.
  • the home device may be a dominant device, or the name may not be limited.
  • the home device means that only the device has the sharing authority of the COT.
  • only the home device can send COT sharing indication information, or the sharing determines whether it can be shared and/or the shared resources only according to the indication of the home device.
  • the home device can be determined according to at least one of the following rules (first condition).
  • the home device is the initial device that reserves resources first among the multiple initial devices
  • the home device is the device that first reserves resources in a multi-consecutive slots transmission (MCSt) mode among the multiple initial devices. In this mode, considering that when a device reserves more time slots, there may be a need to share resources with other devices, the device that reserves or selects more time slots can be used as the home device.
  • MCSt multi-consecutive slots transmission
  • the home device is a device whose reserved resources last the longest in the time domain (such as but not limited to the longest MCSt duration) among the multiple initial devices;
  • the home device indicates that resources are allowed to be shared with other devices through sharing identification information; for example, it is used to indicate that the device allows COT sharing or intends to perform COT sharing (sharing with other devices) in the reserved resources (allowing sharing does not mean actual sharing); the sharing identification information can be indicated when reserving resources.
  • the home device is a device with the lowest channel access priority CAPC among the multiple initial devices;
  • the home device is the device with the longest COT among the multiple initial devices; in this way, the COT sharing rights are given to this type of device, and the shared device can obtain more time domain resources (such as 10ms) and complete the transmission directly within 10ms without going through type 1 access, thereby maximizing the benefits of COT sharing.
  • the home device is the device that occupies the most resources among the multiple initial devices
  • the home device is an initial device that reserves initial time slot resources earliest among the multiple initial devices
  • the home device is the device with the lowest index of the occupied sub-channel among the multiple initial devices; in this manner, optionally, if the initial device occupies multiple sub-channels, the sub-channel with the lowest index among the occupied sub-channels may be used as the basis.
  • the first device is a device with the longest CPE among the multiple initial devices
  • the home device is a device that occupies the most sub-channels (for example, occupies the most sub-channels in the COT) among the multiple initial devices;
  • the home device is a device that occupies the most sub-channels in the first time slot of the COT among the multiple initial devices;
  • the home device is a device with the highest L1 priority or CAPC among the multiple initial devices;
  • the home terminal in the multiple initial devices has the right to share some or all resources in the COT.
  • the home device has the right to share all other resources in the COT with other devices, except for the resources used by itself and other initial devices that are initialized together.
  • some or all of the other resources can be shared.
  • Devices other than the home device in the multiple initial devices do not have the right to share resources and can only use the resources they occupy in the COT.
  • the belonging device may be determined by the initial devices (such as device 1 and device 2) of the initial COT. For example, only the belonging device needs to send sharing indication information.
  • the belonging device may be determined by the shared devices (such as device 3, device 4, and device 5) of the shared COT.
  • the initial devices such as device 1 and device 2) all send sharing indication information
  • the shared devices (device 3, device 4, and device 5) determine the belonging device and determine whether to allow COT sharing and/or sharing resources according to the instructions of the belonging device.
  • the sharing indication information sent by the initial device includes: shared time domain resources, shared frequency domain resources, and identification information of the second device (at least one of device ID, source ID, and destination ID).
  • time domain resources and frequency domain resources can be found in other embodiments and will not be repeated here.
  • method 1 may be applicable to non-FDM scenarios such as FIG. 7 , FIG. 8 or the like, or to FDM scenarios such as FIG. 9A , FIG. 9B or the like.
  • scenarios 1-4 of FIG. 7 to FIG. 9B are respectively introduced as examples:
  • device 3 can try LBT type 2 access and transmission, otherwise use LBT type 1 access or perform resource reselection. That is, when device 3 receives COT sharing indication information from device 1 and allows the use of shared resources, device 3 can try to access the channel and transmit through LBT type 2 on the indicated shared resources. In scenarios not involving FDM, device 1 can share all or part of the frequency domain resources in the COT with device 3.
  • the shared resources can be more than or equal to the frequency domain resources occupied by device 1 in the COT, and for example, in some scenarios such as shown in Figure 7, the shared resources can be less than or equal to the frequency domain resources occupied by device 1 in the COT.
  • device 3 can determine the belonging device (such as device 1), which means that only device 1 has the authority to share resources in COT, then device 3 can try LBT type2 access and transmission on the shared resources according to the instructions of device 1. That is, when device 3 receives COT sharing indication information from device 1 and device 2, allowing the use of shared resources, then device 3 can try to access the channel and transmit through LBT type2 on the indicated shared resources.
  • the belonging device (such as device 1) in device 1 or device 2 indicates that COT sharing is allowed, and device 3 tries LBT type2 access and transmission on the shared resources according to the instructions of device 1.
  • device 3 when device 3 receives COT sharing indication information from the belonging device (such as device 1) in device 1 or device 2, allowing the use of shared resources, then device 3 can try to access the channel and transmit through LBT type2 on the indicated shared resources. Otherwise, when device 3 cannot obtain shared resources, it uses LBT type1 access or performs resource reselection.
  • Method 3 When the first device instructs other devices to share COT, it may instruct to share part or all of the frequency domain resources within the first COT (including the frequency domain resources occupied by the first device itself within the first COT and/or the frequency domain resources not occupied by the first device itself within the first COT).
  • the above-mentioned shared resources may be part or all of the frequency domain resources within the channel (channel) where the resources occupied by the first device are located.
  • This method can be applied to FDM scenarios or non-FDM scenarios.
  • the sharing indication information sent by the initial device includes: shared time domain resources, shared frequency domain resources, and identification information of the second device (at least one of device ID, source ID, and destination ID).
  • device 3 can attempt LBT type 2 access and transmission, otherwise use LBT type 1 access or perform resource reselection. That is, when device 3 receives COT sharing indication information from any one of device 1 and device 2, allowing the use of shared resources, device 3 can attempt to access the channel and transmit through LBT type 2 on the indicated shared resources, otherwise use LBT type 1 access or perform resource reselection.
  • device 1 may exclude the time-frequency resources of device 3, or exclude all frequency domain resources on the time slot where the time-frequency resources are located, or exclude all frequency domain resources in the channel where the time-frequency resources are located on the time slot where the time-frequency resources are located, when selecting or reserving resources, and not transmit on the resources of device 3. For example, other frequency domain resources in the time slot where device 3 is located may be selected for transmission.
  • device 1 does not share resources with device 3, device 1 does not need to exclude the time-frequency resources of device 3 when selecting or reserving resources, and can select the time-frequency resources of device 3 for transmission.
  • the resources selected or reserved by device 1 are acquired based on perception. If device 2 needs to select resources that are FDM with the resources of device 1, the first time slot in the resources selected or reserved by device 2 should be aligned with the first time slot of the resources selected or reserved by device 1. In this way, device 2 and device 1 can initialize COT together, or the resources of device 1 and device 2 constitute initial FDM in the frequency domain.
  • the first time slot (time slot 1) of the resource selected or reserved by device 2 is aligned with the first time slot of the resource selected or reserved by device 1. In this way, device 2 can attempt LBT type 2 access. Otherwise, if the first time slot (time slot 1) of the resource selected or reserved by device 2 is not aligned with the first time slot of the resource selected or reserved by device 1, whether device 2 can access the channel depends mainly on whether device 1 shares resources with it. If device 1 does not share resources with device 2, device 2 can only attempt LBT type 2 access, and the success rate of accessing the channel is low.
  • the COT sharing rights of this part of the frequency domain resources belong to the terminal with more time domain resources.
  • the time domain resources included in the first COT of the device 1 are the first time domain resources (time slots 1, 2, and 3), and the time domain resources included in the second COT of the device 2 are the second time domain resources (time slots 1 and 2, and the duration of the first time domain resources is greater than the duration of the second time domain resources.
  • the resources that do not overlap the first time domain resources and the second time domain resources in the time domain are the third time domain resources (time slot 3). Any frequency domain resources on the third time domain resources (time slot 3) can be shared by the device 1 (first device) to the shared devices (second devices) such as the device 3.
  • the initial device sends the sharing indication information.
  • the second condition includes at least one of the following conditions:
  • the channel access priority of the second device is higher than that of the first device and/or the third device;
  • the broadcast type of the second device is multicast or broadcast, and the target devices include the first device and the third device;
  • the target device of the second device includes at least one of the first device and the third device;
  • the access channel priority of the second device is higher than that of the home device
  • the target device of the second device includes the home device.
  • the CAPC of the first device and the third device may refer to: the CAPC of the initial COT of the first device and the third device, or the CAPC indicated in the COT indication information.
  • the method 1 to the method 3 may be applicable to any of the following scenarios:
  • the resource pool is configured to allow (initial) FDM, initial FDM actually occurs, and the transmission does not fill the entire channel (FDM may occur). Otherwise, the frequency domain range of the initial COT of device 1 is the entire channel (filling the entire channel), that is, the resources in the entire channel belong to device 1, which can be used or shared with other terminals.
  • the first device can determine the scope of shared resources during COT sharing. In this way, the first device can share part or all of the resources within the shared resource range with the second device. On the one hand, it can improve the resource utilization efficiency of the system, and on the other hand, it can improve the success rate of the second device's access to the channel and the communication performance.
  • the mechanism of COT sharing may be:
  • Mechanism 1 Device 3 first reserves resources for its own transmission; when device 1 and/or device 2 (devices of the initial COT) select resources, they select resources based on the reserved resources of device 3, and can determine whether device 3 meets the COT sharing conditions and whether to share resources with device 3.
  • the starting position of the resources selected/reserved by device 1 and/or device 2 in the time domain is before the resources of device 3 .
  • the selected resources may include resources shared with device 3. If shared, device 1 and/or device 2 may not exclude resources reserved by device 3. If not shared, device 1 and/or device 2 may exclude resources reserved by device 3.
  • the selected resources may not include resources shared with device 3.
  • device 1 and/or device 2 excludes resources reserved by device 3.
  • Mechanism 2 Device 1 and/or device 2 (devices of the initial COT) first reserve resources; when device 3 selects resources, it can reserve the next time slot of the resources reserved by device 1 and/or device 2, or reserve resources FDM with the resources reserved by device 1 and/or device 2 so that device 1 and/or device 2 can share them with device 3.
  • the resources reserved by device 3 are located within the initial COT of device 1 and/or device 2 .
  • This embodiment can provide a method for configuring a CPE so that the actual interval between two transmissions meets the LBT duration and LBT blocking does not occur between transmissions using FDM resources. As shown in FIG9D , the method includes:
  • the first device determines CPE information.
  • the CPE information may refer to the CPE length, or the CPE start position, for example, the (pre-)configured CPE length or the CPE start position.
  • This embodiment may provide a method for configuring a CPE, and each method is introduced as follows:
  • Method 1 Different CPE and/or LBT type can be configured or pre-configured for the device for different situations.
  • the first device determines the CPE information, including: the first device acquires first information, the first information is used to determine the CPE information, different access types are associated with different first information, and/or different time slots are associated with different first information.
  • the CPE information includes CPE associated with a time slot (per slot).
  • terminals transmitting on different time slots in the resource pool may have different CPEs.
  • the CPE of device 1 when transmitting on time slot 1 is 50us
  • the CPE of device 1 when transmitting on time slot 2 is 60us.
  • the CPEs of type 1 LBT (corresponding to the device of the initial COT (initial device)) and type 2 LBT (corresponding to the device of the shared COT (shared device) or the device of the continuous transmission) can be configured or pre-configured separately.
  • device 1 executes type 1 LBT, initializes COT, and shares the resources in COT with device 3.
  • the CPE of device 1 and the CPE of device 3 can be configured separately.
  • the CPEs of device 1 and device 3 can be configured to be the same or different.
  • the CPE of type 1 LBT, the first CPE of type 2 LBT (corresponding to the device or transmission using COT shared resources) and the second CPE of type 2 LBT (corresponding to the transmission performed by the device of the initial COT within the COT, that is, the transmission on the time slot other than the first time slot in the transmission of the initial device in the COT, the CPE used when channel access needs to be performed) can be configured or pre-configured separately.
  • respectively configuring or pre-configuring may refer to respectively configuring or pre-configuring by different parameters.
  • the preconfigured results can be the same or different.
  • device 1 initializes COT and shares the resources in COT with device 3, and device 1 transmits in multiple time slots.
  • the multiple time slots are continuous.
  • the CPE used by device 1 before the transmission of Type1 LBT, the CPE used by device 1 to transmit in time slots other than the first time slot in COT, and the CPE of device 3 can be configured separately.
  • these three CPEs can be configured to be exactly the same or different, or partially the same or different.
  • the COT initialized by device 1 includes time slots 1-time slots 3 in the time domain, and device 1 is configured to use a CPE with a duration of T1 before the transmission of Type1 LBT, and a CPE with a duration of T2 when device 1 transmits in COT, and the CPE duration of device 3 is T3.
  • different CPEs can be flexibly configured for devices according to different situations (such as different time domain patterns or type1/type2), thereby reducing the probability of resource collisions between devices and increasing the flexibility of using different CPEs and/or corresponding LBT types between different devices or different transmissions.
  • Method 2 Do not use configured or pre-configured CPE when conditions are met, otherwise use configured or pre-configured CPE
  • the first device determines CPE information, including: when at least one of the first conditions is met, the first CPE is determined according to the second information, the second information is configured or pre-configured, and the first condition includes: the first transmission is CG transmission; or the first transmission is the first transmission; or FDM is not allowed in the resource pool; or there is no other transmission on other frequency domain resources in the time slot where the resources of the first transmission are located; or the resources of the first transmission include all frequency domain resources in the channel (meaning that FDM is not formed with the resources of other devices).
  • the initial transmission refers to a transmission without resource reservation before this transmission, or the resources used by the transmission have not been reserved by the terminal before.
  • FDM is not allowed in the resource pool, which can be achieved through configuration or pre-configuration.
  • There are no other transmissions on other frequency domain resources in the time slot where the resources of the first transmission are located which may mean that there is no FDM transmission in the time slot, or that there is only the first transmission in the time slot where the resources of the first transmission are located.
  • the FDM constraint is within the channel (channel) where the first transmission resource is located. That is, in this time slot, if there are other transmissions on other channels not used by the first transmission, they are not considered as FDM.
  • Method 3 Initial device dynamically indicates CPE and/or LBT type
  • the initial device determines and indicates the CPE when reserving resources for a transmission. In this way, other initial devices or shared devices can determine the CPE according to the indication of the initial device, so as to align their own CPE with the CPE of the initial device, thereby improving the success rate of accessing the channel.
  • the first device determines the CPE information, including: the first device receives third information and/or fourth information; the first device determines the CPE information according to the third information and/or fourth information; the third information is used for the second device to indicate the CPE information, and the fourth information is used for the third device to indicate the CPE information.
  • the CPE information indicated by the third information is a CPE applicable to the initial COT of the second device or the resources reserved by the second device, or the CPE information includes: a CPE associated with the initial COT of the second device or a time slot within the resources reserved by the second device.
  • the CPE information indicated by the fourth information is a CPE applicable to the initial COT of the third device or the resources reserved by the third device, or the CPE information includes a CPE associated with a time slot within the initial COT of the third device or the resources reserved by the third device.
  • each time slot indicates a CPE respectively, which may be the same or different.
  • CPE information may be indicated separately in each time slot, which may be the same or different.
  • the third information is carried in the first-level SCI or the second-level SCI of the second device, and/or the fourth information is carried in the first-level SCI or the second-level SCI of the third device.
  • the third information is carried in first COT sharing indication information, and the first COT sharing indication information is used to share resources within the initial COT of the second device.
  • the fourth information is carried in second COT sharing indication information, and the second COT sharing indication information is used to share resources within the initial COT of the third device.
  • the CPE of the COT for the next transmission is indicated, or when the initial COT is transmitted, the CPE of the current COT is indicated in the first time slot or multiple time slots.
  • the COT sharing indication information can also be called COT indication information, COT sharing information, COT structure information, etc.
  • the method in this embodiment may be used in combination with the corresponding method in Embodiment 1.
  • the first device determines a transmission starting position and/or a channel access type according to the CPE information.
  • the first device determines the CPE according to at least one of the above methods 1 to 3, and determines the starting position of the transmission and/or the length of the CPE and/or the starting position of the CPE according to the CPE.
  • the first device determines the starting position of transmission and/or the length of CPE and/or the starting position of CPE according to the CPE information indicated by the home device.
  • the definition of the home device may refer to S101 in the first embodiment.
  • S303 The first device performs channel access according to the starting position of the transmission and/or the channel access type.
  • S304 Send a first transmission.
  • the initial device uses the CPE determined and indicated by itself for transmission.
  • the CPE of the other initial devices needs to be aligned with the CPE of the initial device.
  • the CPE of the other devices also needs to be aligned with the CPE of the initial device.
  • device 1 initializes COT and indicates that the duration of the initial CPE is T1 through shared indication information.
  • Device 2 is initialized and forms an initial FDM with the resources of device 1.
  • the CPE of device 2 needs to be aligned with the CPE of device 1.
  • device 2 determines that the duration of its initial CPE (CPE4) is T1.
  • CPE4 the duration of its initial CPE
  • the duration of the initial CPE of device 1 is the same as that of the initial CPE of device 2, which can avoid blocked access due to different CPE durations of different devices (devices with short CPE cannot access), thereby increasing the probability of successful device access to the channel.
  • device 1 may also indicate the duration T2 of the CPE in the COT through the sharing indication information.
  • Device 2 is initialized and forms an intra-COT FDM with the resources of device 1 in the COT.
  • device 2 determines that the duration of its CPE (CPE5) in the COT is also T2.
  • device 1 may indicate the duration T2 of the CPE in the COT through the sharing indication information, and indicate through the sharing indication information that part of the resources in the COT is shared with device 3.
  • device 3 determines that the duration of its own CPE (CPE3) in the COT is also T2.
  • the shared device may determine its own CPE according to the indication, or the shared device may not determine its own CPE according to the indication.
  • all shared devices in the COT can determine a unified CPE according to the instructions of the initial device, and the CPEs between the shared devices are aligned, so that access between the shared devices is not blocked due to different CPEs.
  • the granularity of the initial device indication to the CPE is based on a per channel occupied time (per COT) indication.
  • the granularity of the initial device indicating the CPE is per slot. In this way, different CPEs can be indicated in different time slots, thereby improving the flexibility of indication.
  • the shared device transmits according to the CPE and/or LBT type indicated by the initial device. If two or more of the multiple initial devices indicate COT sharing, the shared device determines the CPE according to the indication of the home device.
  • the method for determining the home device from multiple initial devices can refer to the above embodiment, which will not be described in detail here.
  • the initial devices are device 1 and device 2, wherein both device 1 and device 2 indicate to share the resources in the COT with device 3 and device 4 through sharing indication information, wherein the sharing indication information carries CPE and/or LBT type.
  • Both device 3 and device 4 can determine the CPE according to the indication of the home device (such as device 2).
  • Case 2 The shared device does not determine the CPE based on the instructions of the initial device, but can determine the CPE by itself
  • the shared device may determine the CPE during resource selection or resource reservation.
  • the CPE of the shared device should be consistent with the CPE of the device that reserved resources first.
  • device 3 selects or reserves resources first.
  • shared device 4 selects or reserves resources, if it wants to select or reserve resources that form frequency division multiplexing with device 3, it needs to be aligned with the CPE of device 3, otherwise it may be blocked from access by device 3.
  • device 4 listens to the resource indication information of device 3, and aligns with the CPE of device 3 according to the resource indication information (which can indicate CPE).
  • the resource indication information which can indicate CPE
  • device 4 can indicate the CPE through the resource indication information. Subsequently, other devices can listen to the resource indication information of device 4 to learn the resources selected or reserved by the device, and learn the CPE of device 4.
  • the shared device when selecting or reserving resources, can align the CPEs between devices based on the resource indication information heard from other devices (such as shared devices), so that access congestion between devices is not caused by different CPEs, thereby improving the success rate of device access to the channel.
  • the device transmits in the resource pool, and at least one of the following conditions must be met:
  • the device when the resource pool enables FDM or FDM or COT sharing actually occurs, the device retains the last GAP symbol in the time slot during transmission.
  • the actual occurrence of FDM can be understood as that there is no other transmission on other frequency domain resources in the time slot where the resources of the first transmission are located, or there is no FDM transmission in the time slot, or there is only the first transmission in the time slot where the resources of the first transmission are located. In this way, in the FDM scenario, the GAP is not cancelled to avoid the failure of the FDM device channel access.
  • the device reserves the last GAP symbol in the time slot when transmitting, or does not allow the GAP to be cancelled, or does not cancel the GAP, or reserves the GAP.
  • the GAP symbol is reserved at the end of the previous time slot to reserve FDM time for the device, or, to reserve time for the shared device to perform channel access.
  • the device reserves the last GAP symbol of the last time slot transmission of multiple consecutive time slot transmissions. In this way, at least COT sharing can be performed, and other devices can select the next time slot to access.
  • resource pool enables continuous transmission and cancels GAP
  • FDM or COT sharing is not allowed.
  • the device performs resource selection or resource exclusion, all resources on the time slot where resources reserved by other devices are located are excluded, or all resources on the time slot where resources reserved by other devices performing multi-continuous time slot transmission or multi-continuous time slot resource reservation are located are excluded.
  • excluding reserved resources may also be expressed as: excluding candidate resources that overlap with the reserved resources.
  • At least one of the following conditions needs to be met before resource exclusion is performed:
  • the physical layer priority of the reserved resource is higher than the physical layer priority of the resource selection (or the value of the physical layer priority of the reserved resource is lower than the value of the physical layer priority of the resource selection); the RSRP or RSSI of the reserved resource is higher than a first threshold.
  • the first threshold is configured or preconfigured).
  • device 1 shares part of the frequency domain resources in time slot 2 of COT with device 3.
  • GAP cancellation is not allowed in the previous time slot (time slot 1) of transmission 2 (the starting position of the shared transmission).
  • device 3 can perform LBT in the GAP to access the channel. After accessing the channel, device 3 can use the shared time-frequency domain resources to send transmission 2 and subsequent transmissions.
  • the GAP of the last time slot in the multiple time slots cannot be canceled, so that other devices (such as shared device 3) can perform LBT through the GAP, thereby improving the success rate of other devices accessing the channel.
  • the above solution can reduce the probability of LBT blocking by aligning CPEs, ensure transmission in FDM scenarios, and improve communication performance and system efficiency.
  • the technical solution of this embodiment can be applied to IRB scenarios or other scenarios.
  • S-SSB When a device transmits S-SSB in a COT, or when a device transmits S-SSB in a selected or reserved resource, S-SSB may interfere with other devices.
  • This embodiment may have the following solutions. The following describes each solution by taking device 1 as an example of a device transmitting S-SSB.
  • FIG14 shows a flow chart of a communication method provided in an embodiment of the present application, the method comprising:
  • S401 A first device initializes a first COT.
  • Mode 1 (Condition 1): The resources selected or reserved by the first device include all frequency domain resources in the channel.
  • Mode 2 (Condition 2): When the resource pool where the first device is located is (pre) configured not to allow FDM, or not to allow FDM in the first time slot within the initial COT.
  • Mode 3 (Condition 3): When FDM does not actually occur in the transmission of the first device in any time slot within the COT or reserved resources, or FDM does not occur in the first time slot of the COT or reserved resources, or FDM does not occur between different devices in the same time domain resources, or there is no other transmission on other frequency domain resources in the time slot where the transmitted resources are located; or the transmitted resources include all frequency domain resources in the channel (meaning that FDM is not formed with the resources of other devices).
  • the frequency domain resources of the candidate resources for resource selection by the first device are the maximum number of frequency domain resources or the maximum frequency domain range required for any transmission within the COT, or, The number of frequency domain resources required for S-SSB, or all frequency domain resources in the channel, such as all sub-channels in the channel.
  • the time slot where the candidate resource or the reserved resource is located is a time slot used to send the S-SSB.
  • the frequency domain resources required for S-SSB are reserved.
  • device 1 selects or reserves resources, it selects or reserves at least the time slot where S-SSB is located, and other devices will exclude the time slot where S-SSB is located when selecting or reserving resources, that is, other devices will not transmit in the time slot where S-SSB is located. In this way, the resources of S-SSB of device 1 will not collide with the resources of other devices, and interference of device 1 to other devices can be avoided.
  • the subchannels to be used by S-SSB are reserved. For example, assuming that the frequency domain resources occupied by S-SSB in each time slot are the same, and S-SSB needs to use 2 subchannels, device 1 can select or reserve 2 subchannels. Subsequently, device 1 can transmit S-SSB on these 2 subchannels, or transmit S-SSB within COT (the COT is initialized according to the 2 selected or reserved subchannels).
  • device 1 can reserve resources according to the maximum frequency domain resources (or the largest frequency domain range) required for any transmission within the COT, and reserve as many resources as possible for S-SSB.
  • COT has transmissions 1-5, among which transmission 5 requires the most frequency domain resources (assuming 5 subchannels 1-5), then device 1 can select or reserve 5 subchannels so as to reserve as many resources as possible for S-SSB.
  • device 1 reserves all sub-channels within the entire channel.
  • device 1 may reserve all sub-channels where S-SSB occupied resources are located.
  • the resource allocation mode or resource occupation mode is IRB.
  • the first device sends a first S-SSB on a second resource.
  • the second resource is a resource selected or reserved by the first device, or is an initial COT of the first device based on the selected or reserved resource.
  • the embodiment of the present application also provides a communication method, in which the second device can exclude the first resource to avoid resource collision with the first device. As shown in FIG. 15 , the method includes:
  • the second device determines a third resource, where the third resource does not overlap with the first resource, or the third resource does not overlap with all resources in a time slot excluding a time slot where the first resource is located.
  • the first resource is any time-frequency resource selected or reserved by the first device for transmission, and/or the first device selects or reserves a time-frequency resource for sending S-SSB, and/or the first device selects or reserves a time-frequency resource of the first resource in the time domain for transmission. Selection or reservation can also be replaced by transmission, occupation, etc.
  • the second device excludes the first resource, or excludes all resources in the time slot where the first resource is located, further comprising: receiving first indication information from the first device, and performing resource exclusion according to the first indication information, wherein the first indication information is used to indicate at least one of the following:
  • the first device sends time domain resource and/or frequency domain resource information of S-SSB.
  • the first device as device 1, if device 1 is ready to send S-SSB in the selected or reserved resources, or in the COT initialized according to the selected or reserved resources, then other devices can avoid conflicts with the S-SSB of device 1 through resource selection or reservation.
  • the devices when other devices select or reserve resources, they exclude any time-frequency resources selected or reserved by device 1 for transmission (including resources for transmitting data and S-SSB), and/or exclude the time-frequency resources selected or reserved by device 1 for sending S-SSB (only excluding S-SSB resources), and/or exclude the time-frequency resources of the first resource (such as the first time slot) in the time domain selected or reserved by device 1 for transmission, and the time-frequency resources of other time slots do not need to be excluded.
  • the time slots where any resources selected or reserved for transmission by device 1 are located and/or exclude the time slots where resources selected or reserved by device 1 for sending S-SSB are located, and/or exclude Except for the time slot (the first time slot) where the first resource in the time domain selected or reserved for transmission by device 1 is located.
  • the first time slot where the selected or reserved resources are located is different from the first time slot where the resources selected or reserved for transmission by device 1 are located.
  • device 1 may indicate through a message that it will/will transmit the S-SSB within the resources selected or reserved for transmission, or within a COT initiated according to the selected or reserved resources.
  • the device 1 when the device 1 selects or reserves resources, at least one of the following is indicated in the first-level sidelink control information (SCI) or the second-level SCI; or, the device 1 indicates at least one of the following information in the first-level SCI or the second-level SCI in the first time slot selected or reserved, or in the first time slot of the COT initialized according to the selected or reserved resources:
  • SCI sidelink control information
  • the device 1 indicates at least one of the following information in the first-level SCI or the second-level SCI in the first time slot selected or reserved, or in the first time slot of the COT initialized according to the selected or reserved resources:
  • the S-SSB will be sent within the above resource or within the above COT range (e.g., indicated by 1 bit);
  • time domain resources and/or frequency domain resources can be indicated by at least one of a time domain resource indication value (TRIV), a frequency domain resource indication value (FRIV), and a bitmap.
  • TAV time domain resource indication value
  • FRIV frequency domain resource indication value
  • bitmap bitmap
  • the position of the time domain resource in a physical time slot (system frame), or in a logical time slot, or in a selected or reserved resource may be indicated.
  • the position may be an index.
  • SL-U is configured with time slots 0, 8, and 10 in 10 time slots, and the logical indexes of these three time slots may be 0, 1, and 2.
  • the time slots with logical indexes 0 and 1 are allocated to device 1 for sending S-SSB.
  • device 1 reserves 10 time slots and indicates that time slots 3-5 are used to send S-SSB.
  • the information of the frequency domain resource includes at least one of the channel (channel) and the sub-channel.
  • frequency domain resources may also be (pre)configured. In this way, blind detection in the frequency domain can be avoided.
  • the corresponding resources of device 1 are excluded, otherwise the corresponding resources of device 1 are not excluded.
  • the priority of the corresponding service of other devices is higher than the priority associated with the corresponding resource of device 1, then other devices can occupy the resources selected or reserved by device 1 for transmission to meet the transmission requirements of high-priority services.
  • the priority of the corresponding service of other devices is lower, other devices cannot preempt the resources of the device. It can be understood that the higher the priority, the smaller the priority value.
  • any resource of device 1 (the priority of each resource may be different), or the S-SSB of device 1, or the resources of device 1 as a whole, or the reference signal received power (RSRP) or received signal strength indication/indicator (RSSI) of the first resource of device 1 in the time domain is higher than a first threshold, other devices exclude the corresponding resources of device 1, otherwise the corresponding resources of device 1 are not excluded.
  • RSRP reference signal received power
  • RSSI received signal strength indication/indicator
  • device 1 when device 1 has selected or reserved resources and other devices detect that the signal strength of device 1 is high, they believe that device 1 has a great impact on themselves. Therefore, other devices need to exclude the resources of device 1 to avoid collision with device 1 and affect their own transmission performance. On the contrary, if other devices detect that the signal strength of device 1 is low, it means that device 1 has a small impact on themselves, and other devices may not exclude the resources of device 1. In this way, in some scenarios, other devices can occupy the resources of device 1 for transmission without being interfered by device 1, or the interference degree of device 1 is low, which can ensure normal transmission.
  • the first device sends an S-SSB on a third resource.
  • the second device receives the S-SSB on a third resource.
  • channel access LBT
  • device 1 sends S-SSB
  • other devices avoid conflict with device 1 through resource exclusion and resource selection.
  • a conflict occurs (device 1 transmits SSB, and other devices avoid it).
  • the device 1 can also avoid conflicts with devices that have reserved resources (sending or not sending S-SSB) through resource selection and exclusion processes (other devices transmit, and device 1 needs to avoid the resources of other devices when transmitting SSB).
  • the specific implementation method can be found in the above embodiment, which will not be repeated here.
  • the device may reselect resources.
  • resource reselection is performed by a device that does not send S-SSB, or by a device that sends S-SSB, or by a device with a lower CAPC, or by a device with a lower physical layer priority.
  • the above-mentioned S-SSB is an additional S-SSB, or a dynamic S-SSB, or a device-specific S-SSB.
  • the transmission of PSSCH/PSCCH is based on IRB, or the resource pool enables PSSCH/PSCCH transmission based on IRB, or the resource allocation mode or resource occupancy mode is IRB.
  • the transmission method of S-SSB includes at least one of the following: "PSBCH interlace transmission, S-PSS/S-SSS continuous transmission", "S-SSB (PSBCH and S-PSS/S-SSS) frequency domain repeated transmission, or, S-SSB frequency domain continuous transmission”.
  • the above resources selected or reserved by the device can be used for the transmission of at least one of PSSCH/PSCCH, S-SSB, and PSFCH.
  • the S-SSB transmission of the device is performed in the last time slot within the initial COT, or in the last time slot in the resources reserved by the device.
  • the device indicates at least one of the following in the first-level or second-level SCI: the time domain position of sending the S-SSB (time slot index, including a physical time slot index, a logical time slot index, or a relative index within the COT or within the reserved resources), the frequency domain position (RB set index or channel index), whether to send the S-SSB within the current COT or within the reserved resources (1 bit), the COT position (any of the total length of the COT, the starting position of the COT, the ending position of the COT, or the remaining duration of the COT), and the time domain position of the reserved resources (any of the starting position of the time domain, the ending position of the time domain, or the number of time slots).
  • time slot index including a physical time slot index, a logical time slot index, or a relative index within the COT or within the reserved resources
  • the frequency domain position RB set index or channel index
  • whether to send the S-SSB within the current COT or within the reserved resources (1 bit
  • the COT position any of
  • the SCI is located in the first time slot of the COT or reserved resources (used to indicate the S-SSB of the current COT or the S-SSB in the next transmission/reservation), or, is located in the last time slot of the COT or reserved resources.
  • This embodiment involves S-SSB OCB and channel loss, and can be decoupled from other embodiments, can be used in combination with other embodiments, or can be used alone.
  • the method may include:
  • S801 A first device initializes a first COT.
  • the first device sends an S-SSB on a fourth resource.
  • the second device receives the S-SSB on the fourth resource.
  • the first device determines a fourth resource for sending the S-SSB in at least one of the following ways:
  • the S-SSB is sent independently on each channel used for data transmission or on each channel in the resource pool, except for the channel where the (pre)configured S-SSB frequency domain position is located.
  • the device abandons reception of the S-SSB in the first time slot.
  • the device shares part or all of the frequency domain resources of the first time slot on each channel used for data transmission with other devices, or uses it for its own data transmission.
  • S-SSB can be sent on each channel used for data transmission.
  • the first device determines a fourth resource for sending the S-SSB in at least one of the following ways:
  • the S-SSB or data is sent independently on each channel used for data transmission or on each channel in the resource pool, except for the channel where the (pre)configured S-SSB frequency domain position is located.
  • the device intends to receive S-SSB in the first time slot.
  • the device shares part or all of the frequency domain resources of the time slot on each channel used for data transmission, except for the channel where the (pre)configured S-SSB frequency domain position is located, with its Alternatively, if it is intended not to send or receive S-SSB in the first time slot, S-SSB should be sent on each channel used for data transmission, or data should be sent, or part or all of the frequency domain resources of the time slot on each channel should be shared with other devices.
  • the frequency domain of 11 RB is expanded to 12 RB, wherein the highest or lowest RB is filled with zero (set to zero), and the other 11 RBs are sent according to the existing structure (see Table 7 below);
  • the method is applicable to at least one of PSBCH, S-PSS, and S-SSS.
  • the method is applicable to at least one of PSBCH, S-PSS, and S-SSS.
  • PSBCH is interlace transmitted and S-PSS/S-SSS is continuously transmitted; or, S-SSB is applicable for temporary exemption.
  • the bandwidth of S-PSS/S-SSS or frequency domain continuous transmission of S-SSB (PSBCH/S-PSS/S-SSS) in the unlicensed spectrum is less than 2MHz, which does not meet the OCB requirements.
  • the above method can make PSBCH, S-PSS, and S-SSS meet the 2MHz bandwidth requirement of OCB.
  • the device can adjust the CWp according to the corresponding transmission type and/or corresponding enabling information. Specifically, as shown in FIG17 , the method includes the following steps:
  • S201 Determine channel access parameters according to a first propagation type and/or first enabling information.
  • step S201 may be performed by the first device.
  • the process may further include S200, determining a first propagation type and/or first enabling information (not shown in the figure).
  • step S200 may be performed by the first device.
  • the second device is a receiving device of the first device, and/or the first device is a receiving device of the second device.
  • the first propagation type is a propagation type associated with the first side information, and/or the first enabling information is enabling information associated with the first side information.
  • the side transmission of the first propagation type is a transmission (such as sending) by the first device.
  • the first side information is at least any one of a retransmission, a periodic transmission, and a retransmission of a periodic transmission of the side transmission of the first propagation type.
  • the first side information is the first side information sent on the channel after accessing the channel.
  • the parameters of channel access include LBT type, channel access priority CAPC, contention window CW p , minimum value of contention window CW min,p , maximum value of contention window CW max,p , number of LBT cycles N, initial value of LBT cycle number N init , T d , T sl , T f , m p , maximum channel occupancy time T ulmcot,p , and at least any one in the candidate value list of contention window CW p .
  • the first device determines at least one of the above channel access parameters according to the first propagation type and/or the first enabling information, and adaptively adjusts the channel access parameter according to the characteristics of the transmitted sideline information, wherein the value of the channel access parameter is related to the difficulty of channel access.
  • the purpose of adjusting CWp is to avoid collision with other devices. For example, if the channel condition is poor, the value of CWp is increased, and the channel is monitored for a longer period of time to see if it is idle. For another example, if the channel condition is good, the value of CWp is reduced, and the channel is monitored for a shorter period of time to see if it is idle. For another example, if it is unknown whether the channel condition has changed since the last adjustment of CWp, the value of CWp is not changed.
  • Type 1 LBT (Type1 LBT) requires a longer channel access time, but is less likely to collide with other device resources.
  • Type 2 LBT (Type2 LBT) only requires a very short channel access time, but is subject to applicable conditions.
  • the channel monitoring durations corresponding to Type 2A LBT, Type 2B LBT, and Type 2B LBT are all different. Determining the specific LBT type based on the first propagation type and/or the first enabling information can further ensure the flexibility and reliability of device access to the channel.
  • CW and CWp may both refer to the contention window, or CW and CWp may both represent the value of the contention window.
  • CW represents the value of the contention window
  • the propagation types may include: unicast, ACK/NACK-based multicast (also known as multicast option 2 or multicast opt2), NACK-only based multicast (also known as multicast option 1 or multicast opt1), ACK-only based multicast, and broadcast.
  • the enabling information may include: HARQ enabling, HARQ disabling, conflict indication enabling, and conflict indication disabling.
  • HARQ enabling the second device transmits first feedback information (ACK and/or NACK) to the first device, or the first device transmits first feedback information (ACK and/or NACK) to the second device.
  • HARQ disabling the second device does not transmit first feedback information (such as ACK and/or NACK) to the first device; or the first device does not transmit first feedback information (such as ACK and/or NACK) to the second device.
  • conflict indication enabling the first device can receive a conflict indication, or the second device can receive a conflict indication.
  • conflict indication disabling the first device cannot receive a conflict indication, or the second device cannot receive a conflict indication.
  • the first propagation type is a propagation type associated with the first side information, which can also be understood as: the first propagation type is indicated by the first SCI of the first side information.
  • the first propagation type can be at least any one of unicast, multicast based on ACK/NACK (also called multicast option 2 or multicast opt2), multicast based only on NACK (also called multicast option 1 or multicast opt1), multicast based only on ACK, and broadcast.
  • the first SCI can be at least any one of a first-order SCI, a second-order SCI, and a MAC CE.
  • the first enabling information is enabling information associated with the first side information, which can also be understood as: the first enabling information is indicated by the second SCI of the first side information.
  • the first enabling information can be at least any one of HARQ enable, HARQ disable, conflict indication enable, and conflict indication disable.
  • the second SCI can be at least any one of first-order SCI, second-order SCI, and MAC CE.
  • the first device performs Type 1 channel access for transmitting the first sideline information.
  • the first device transmits the first side information (for example, the first side information is transmitted within the first COT), it is necessary to first determine the parameters of channel access and perform LBT according to the parameters of channel access (such as the value of the contention window CWp, etc.) to access the channel.
  • the first device can transmit side information (including the first side information, i.e., the first side information) within the initialized first COT.
  • the propagation type associated with the first side information is the first propagation type
  • the enabling information associated with the first side information is the first enabling information.
  • the first device can determine the parameters of channel access based on the first propagation type and/or the first enabling information.
  • the first sideline information is the first sideline information sent on the channel after accessing the channel.
  • the first device uses the parameters associated with the first side information to access the channel, or the first device uses the parameters associated with the first side information to initialize the first COT. In other words, the first device determines the channel access parameters based on the parameters associated with the first side information. This allows the first device to adaptively adjust the channel access parameters according to the characteristics of the transmitted first side information.
  • the first side information satisfies at least any one of the following situations: the first side information is transmitted on the time slot where the first device accesses the channel, and/or, the first side information is transmitted on the first time slot after the first device accesses the channel, and/or, the first side information is transmitted on the second time slot after the first device accesses the channel.
  • the first side information is transmitted in the first COT, and the first side information satisfies at least any one of the following conditions:
  • the first side information is a transmission on the first time slot of the first COT, and/or, the first side information is a transmission on the second time slot of the first COT, and/or, the first side information is the first TB sent in the first COT, and/or, the first side information is the first HARQ-enabled TB in the first COT.
  • the first side information can also be understood as the first TB, and the two can be replaced by the same meaning.
  • Channel access parameters are configured
  • the first device determines the channel access parameters (for example, determines the contention window CWp), there is at least one transmission within the reference duration, and these transmissions are associated with at least one propagation type and/or enabling information.
  • the determined CWp values of transmissions of different propagation types may be the same or different.
  • the determined CWp values of transmissions of different enabling information may be the same or different. Therefore, a unified method for determining CWp is needed. It is a simple and direct method for the first device to determine CWp based on the propagation type of the first transmission of the first COT (i.e., the first side information). That is, the CWp is determined according to the propagation type of the first side information.
  • determining the channel access parameter according to the first propagation type and/or the first enabling information can be implemented as follows: S201a, determining the first feedback information according to the first propagation type and/or the first enabling information, S201b, determining the channel access parameter according to the first feedback information.
  • the first feedback information is feedback information associated with the second side information in at least one transmission within the reference duration.
  • the second side information and the first side information satisfy at least one of the following:
  • the second propagation type associated with the second sideline information is the same as the first propagation type of the first sideline information
  • the second enabling information associated with the second side information is the same as the first enabling information of the first side information
  • the second source identification ID of the second side information is the same as the first source ID of the first side information
  • the second destination ID of the second side information is the same as the first destination ID of the first side information
  • the second HARQ process of the second sidelink information is the same as the first HARQ process of the first sidelink information
  • the first side information is at least any one of a retransmission, a periodic transmission, and a retransmission of a periodic transmission of the second side information;
  • the first side information is at least any one of a retransmission reservation transmission, a periodic reservation transmission, and a periodic reserved retransmission reservation transmission of the second side information;
  • the reserved resources indicated by the sidewalk control information of the second sidewalk information are used to transmit the first sidewalk information
  • the second sideline information and the first sideline information are both transmitted by the first device.
  • Feedback information can reflect the quality of channel conditions. For example, if the first device receives an ACK, it means that the receiving device of the first device can decode the received data, which means that the channel conditions are good. For another example, if the first device receives a NACK, it means that the receiving device of the first device cannot correctly decode the received data, which means that the channel conditions are poor. For another example, if the first device does not receive any HARQ information after the last adjustment of CWp, the first device cannot determine whether the channel conditions have changed, and the value of CWp is not changed.
  • the second side information associated with the first side information can be determined.
  • the first feedback information associated with the second side information is used to adjust the CWp more accurately. It can better reflect whether the current service is more likely to access the channel. It can better avoid collisions with transmissions of other devices in the resource pool.
  • the second side information is transmitted in the second COT, and the second side information satisfies at least any one of the following conditions: the second side information is transmitted in the first time slot of the second COT, and/or the second side information is transmitted in the second time slot of the second COT, and/or the second side information is transmitted in any time slot of the second COT, and/or the second side information is the first TB sent in the second COT, and/or the second side information is any TB in the second COT, and the second side information is the first HARQ-enabled TB in the second COT.
  • the second side information can also be understood as the second TB, and the two can be replaced by synonyms.
  • the second side information is the first TB in the second COT” can also be understood as the first device adjusting the CWp according to the feedback associated with the second side information in the previous COT with the same propagation type.
  • the previous COT with the same propagation type is the second COT.
  • the first device determines channel access parameters based on first feedback information associated with second sideline information in a reference duration; or, the first device determines channel access parameters based on feedback information associated with second sideline information in a reference duration.
  • the first device sends at least one second sideline information within a reference time duration; and/or, the first device receives at least one second sideline information within a reference time duration. Accordingly, the first device can receive first feedback information associated with the second sideline information; and/or, the first device can transmit first feedback information associated with the second sideline information.
  • the first device determines the parameters of channel access based on the first feedback information.
  • the sideline information can be PSCCH/PSSCH.
  • the sideline information can be PSFCH, such as at least any one of ACK, NACK, and conflict indication.
  • the first feedback information can belong to the second time in the time domain.
  • the channel access parameters can be, for example, the value of the contention window CWp or the channel access type.
  • the second sideline information is sent by the first device to the second device, and the first feedback information is sent by the second device to the first device; or Alternatively, the second side information is sent by the second device to the first device, and the first feedback information is sent by the first device to the second device.
  • the reference duration is a period of time after the last adjustment of the channel access parameter, and/or the reference duration is a period of time before the channel access parameter is determined in S201.
  • the reference duration includes at least one transmission TB1-TB5, wherein the propagation type of TB1 and TB4 is the same as the propagation type of the first side information (both are unicast (an example of the first propagation type)), and the enabling information of TB1 and TB4 is the same as the enabling information of the first side information (both are HARQ enabled (an example of the first enabling information)), then the first device can regard TB1 and TB4 in the reference duration as the second side information.
  • the feedback information associated with TB1 and TB4 is the first and fourth HARQ (first feedback information) in the second time.
  • the first device can determine the channel access parameters (such as the contention window value CWP) according to the first and fourth HARQ in the second time.
  • TB5 is unicast and HARQ is disabled (inconsistent with the enabling information of the first side information), then the first device does not adjust CWp according to the feedback information associated with TB5.
  • TB2 is multicast opt1 and HARQ is enabled, then the first device does not adjust CWp according to the feedback information associated with TB2. If TB3 is multicast opt2 and HARQ is enabled, the first device does not adjust CWp according to the feedback information associated with TB3.
  • the reference duration includes at least one transmission TB1-TB5, wherein the destination identifier of TB1 is the same as the destination identifier of the first side information, and the source identifier of TB1 is the same as the source identifier of the first side information, then the first device may regard TB1 within the reference duration as the second side information.
  • the feedback information associated with TB1 is the first feedback information.
  • the first device may determine the parameters of the channel access according to the first feedback information.
  • the second side information is TB1 within the reference duration, wherein the second destination ID of the second side information is the same as the first destination ID of the first side information, and the first device adjusts CWp according to the feedback information associated with TB1.
  • the fifth destination ID of the fifth side information carried by TB5 within the reference duration is different from the first destination ID of the first side information, and the first device does not adjust CWp according to the feedback information associated with TB5.
  • the feedback information may be at least any one of ACK, NACK, and a conflict indication.
  • the first feedback information may be at least any one of ACK, NACK, and a conflict indication.
  • the second side information within the reference duration is sent by the first device, and the first device determines CWp based on the received first feedback information.
  • CWp is determined based on the first feedback information received within the second time.
  • the first feedback information is feedback information associated with the second side information.
  • the second side information may be one or more.
  • the first feedback information associated with the second side information may be one or more.
  • the first side information is side data information and/or side control information sent by the first device, and the first device determines CWp based on the received first feedback information.
  • the second side information within the reference duration is received by the first device, and the first device determines CWp based on the sent feedback information.
  • CWp is determined based on the first feedback information sent within the second time.
  • the feedback information is feedback information associated with the second side information.
  • the second side information may be one or more.
  • the first feedback information may be one or more.
  • the first side information is side feedback information sent by the first device, and the first device determines CWp based on the sent first feedback information.
  • the feedback information may also be replaced by "feedback information", and the feedback information may be, for example but not limited to, the proportion of the feedback information.
  • the first device may determine the CWp according to the proportion of the feedback information.
  • the feedback information belongs to the second duration in the time domain.
  • the first feedback information may also be replaced by "first feedback information", and the first feedback information may be, for example but not limited to, the proportion of the first feedback information.
  • the first device may determine CWp according to the proportion of the first feedback information.
  • the first feedback information belongs to the second duration in the time domain.
  • the second propagation type is a propagation type associated with the second side information, which can also be understood as: the second propagation type can be indicated by the SCI of the second side information.
  • the second propagation type can be at least any one of unicast, multicast based on ACK/NACK (also called multicast option 2 or multicast opt2), multicast based only on NACK (also called multicast option 1 or multicast opt1), multicast based only on ACK, and broadcast.
  • the SCI of the second side information can be at least any one of a first-order SCI, a second-order SCI, and a MAC CE.
  • the reference duration is determined based on the second COT, and the second CAPC used to initialize the second COT is greater than or equal to the first CPAC, wherein the first CAPC is the CAPC associated with the first side information.
  • the value of the first CAPC is p.
  • the first device can determine the CWp associated with the first CAPC.
  • the first device can initialize the first COT based on the first CAPC, and the first COT carries the first side information.
  • CAPC is related to the difficulty of channel access. For example, a small CAPC value means it is easier to access the channel. If the CAPC value is large, it is more difficult to access the channel. Alternatively, if the CAPC value is small, it takes a shorter time to access the channel; if the CAPC value is large, it takes a longer time to access the channel.
  • the initial COT based on the same CAPC as the first side information can better reflect whether the current CAPC is easier to access the channel, and the CWp adjustment is more accurate. It can better avoid collisions with transmissions of other devices in the resource pool.
  • the first device adjusts the CWp according to the first feedback information associated with the second side information within the reference duration when at least one of the following conditions is met: the first CAPC is equal to the second CAPC, the first CAPC is greater than the second CAPC, and the first CAPC is less than the second CAPC.
  • the first CAPC is the CAPC associated with the first side information.
  • the value of the first CAPC is p.
  • the first device can determine the CWp associated with the first CAPC.
  • the first device can initialize a first COT according to the first CAPC, and the first COT carries the first side information.
  • the second CAPC is the CAPC associated with the second side information.
  • the value of the second CAPC is p.
  • the second CAPC can be indicated by the side control information of the second side information, and can also be indicated by the COT indication information of the second COT.
  • the first device can initialize the second COT according to the second CAPC, and the second COT carries the second side information.
  • the first device can share the second COT initialized by other devices according to the second CAPC, and the second COT carries the second side information.
  • the first device can share the second COT initialized by other devices, and the second COT carries the second side information.
  • the time domain where the second COT is located belongs to the reference duration (for example, the duration of the second COT is less than the reference duration); or, the reference duration belongs to the time domain where the second COT is located; or, all or part of the time domain of the second COT belongs to the reference duration.
  • the first sideline control information of the first sideline information indicates a first CAPC.
  • the second sideline control information of the second sideline information may indicate the second CAPC, or the COT indication information of the second COT indicates the second CAPC, or the COT sharing information of the second COT indicates the second CAPC.
  • the first device may adjust the CWp according to the first feedback information associated with the second side information in the second COT.
  • the second CAPC may also be smaller than the first CAPC.
  • S202 Transmit first sideline information on a channel.
  • step S202 may be performed by the first device.
  • channel access parameters determined in S201 are used to access the channel.
  • the first device transmits the first side information to the second device, and correspondingly, the second device receives the first side information.
  • An embodiment of the present application also provides a communication method, when there are multiple second sideline information, determining the parameters ultimately used for accessing the channel according to the adjustment results of each of the multiple second sideline information.
  • the CWp determined by the first feedback information associated with the plurality of second side information is different; for example, the plurality of second side information includes third side information and fourth side information; the method includes steps S701 and S702, wherein, as shown in FIG. 21, according to different conditions, the first device executes S701a or S701b or S701c in S701:
  • the adjustment result corresponding to the third side information is to adjust the value of the contention window to the minimum value
  • the adjustment result corresponding to the fourth side information is to maintain the value of the contention window, and it is determined to adjust the value of the contention window to the minimum value.
  • the third side information is, for example, the first second side information within the reference time duration
  • the fourth side information is, for example, the second second side information within the reference time duration.
  • the adjustment result corresponding to the third side information is to adjust the contention window value to the minimum value.
  • the adjustment result corresponding to the fourth side information is to increase the contention window value to a larger candidate value. It is determined to adjust the contention window value to the minimum value.
  • the adjustment result corresponding to the third side information is to maintain the value of the contention window
  • the adjustment result corresponding to the fourth side information is to increase the value of the contention window to a larger candidate value, and determine to maintain the value of the contention window.
  • the process may further include S200: determining the first propagation type and/or the first enabling information.
  • the CWp is determined according to feedback information (such as the first feedback information) associated with at least one second side information.
  • the result is any one of the following updated CWp results:
  • the priority order of the adjustment results is adjustment result 1, adjustment result 2, and adjustment result 3.
  • the result of the feedback information associated with the third side information determining CWp is adjustment result 1
  • the result of the feedback information associated with the fourth side information determining CWp is adjustment result 2
  • the first device determines CWp according to adjustment result 1.
  • the result of the feedback information associated with the third side information determining CWp is adjustment result 1
  • the result of the feedback information associated with the fourth side information determining CWp is adjustment result 3
  • the first device determines CWp according to adjustment result 1.
  • the result of the feedback information associated with the third side information determining CWp is adjustment result 2
  • the result of the feedback information associated with the fourth side information determining CWp is adjustment result 3, then the first device determines CWp according to adjustment result 2.
  • the order of the adjustment results is adjustment result 3, adjustment result 2, and adjustment result 1.
  • the result of the feedback information associated with the third side information determining CWp is adjustment result 1
  • the result of the feedback information associated with the fourth side information determining CWp is adjustment result 2
  • the first device determines CWp according to adjustment result 3.
  • the result of the feedback information associated with the third side information determining CWp is adjustment result 2
  • the result of the feedback information associated with the fourth side information determining CWp is adjustment result 3, then the first device determines CWp according to adjustment result 3.
  • the result of the feedback information associated with the third side information determining CWp is adjustment result 2
  • the result of the feedback information associated with the fourth side information determining CWp is adjustment result 3, then the first device determines CWp according to adjustment result 3.
  • the adjustment result may also be referred to as an update result.
  • the CWp determined by the first feedback information associated with the multiple second side information is different.
  • the first device determines the CWp according to the first feedback information associated with the last second side information in the reference duration, or determines the CWp according to the last first feedback information in time in the second time, or determines the CWp according to the first feedback information associated with the first second side information in the reference duration, or determines the CWp according to the first feedback information in time that is the first in time in the second time.
  • S702 Access the channel successfully and transmit the first sideline information.
  • step S702 may be performed by the first device. It can be understood that the channel access parameter determined in S701a or S701b or S701c in S701 is used to access the channel.
  • the first device transmits the first side information to the second device, and correspondingly, the second device receives the first side information.
  • the present application also provides a communication method, as shown in FIG22 , which includes:
  • the channel access parameters are determined according to the values configured for the first device by the network device, or the channel access parameters are determined according to the values preconfigured for the first device, or the channel access parameters are determined according to predefined values, or the channel access parameters are not adjusted.
  • the process may further include S200: determining the first propagation type and/or the first enabling information.
  • step S601 may be performed by the first device.
  • the third condition includes at least one of the following conditions: no side information is detected within the reference duration; no second side information is detected within the reference duration; no first feedback information is detected within the second time; no first feedback information is sent within the second time; the propagation type of the side information within the reference duration is not the first propagation type; the enabling information of the side information within the reference duration is not the first enabling information; the first feedback information within the second time is not the feedback information corresponding to the transmission of the first propagation type; the first feedback information within the second time is not the feedback information corresponding to the transmission of the first enabling information; there is no transmission of the first propagation type after the last update of CWp; and/or, there is no transmission of the first enabling information after the last update of CWp; and/or, there is no transmission of feedback information corresponding to the transmission of the first propagation type.
  • not adjusting the channel access parameter may be, for example, not adjusting CWp.
  • Failure to detect information may also be understood as failure to receive corresponding information or failure to successfully decode corresponding information.
  • the configured, preconfigured or predefined values include part or all of the values in Table 8 or Table 9 below.
  • S602 Access the channel successfully and transmit the first sidelink information.
  • step S602 may be performed by the first device.
  • channel access parameters determined in S601 are used to access the channel.
  • the first device transmits the first side information to the second device, and correspondingly, the second device receives the first side information.
  • the embodiment of the present application also provides a communication method, when there are multiple second sideline information, determining CWp according to the propagation type of the multiple second sideline information and/or the priority of the enabling information.
  • the first propagation type has the highest priority. That is, the propagation type associated with the second side information is the same as the first propagation type associated with the first side information, and CWp is determined according to the first propagation type; or, CWp is determined preferentially according to the first propagation type.
  • the first propagation type has the highest priority, which can also be understood as determining CWp according to the first feedback information of the second side information whose propagation type is the first propagation type.
  • the first enabling information has the highest priority. That is, the enabling information associated with the second side information is the same as the first enabling information associated with the first side information, and the CWp is determined according to the first enabling information; or, the CWp is determined preferentially according to the first enabling information.
  • the first enabling information has the highest priority, which can also be understood as determining the CWp according to the first feedback information of the second side information whose enabling information is the first enabling information.
  • determining CWp based on ACK/NACK-based multicast takes precedence over determining CWp based on unicast; and/or, determining CWp based on unicast takes precedence over determining CWp based on NACK-only multicast; and/or, determining CWp based on unicast takes precedence over determining CWp based on feedback-disabled side information; and/or, determining CWp based on NACK-only multicast takes precedence over determining CWp based on feedback-disabled side information.
  • Determining CWp based on ACK/NACK-based multicast can also be understood as determining CWp based on first feedback information of second side information of ACK/NACK-based multicast.
  • Determining CWp based on unicast can also be understood as determining CWp based on first feedback information of second side information of unicast.
  • Determining CWp based on NACK-only multicast can also be understood as determining CWp based on first feedback information of second side information of NACK-only multicast.
  • any method of each embodiment of this embodiment is used in combination or independently.
  • S101 and S102 shown in Figure 4 can be executed, that is, the method of embodiment two is first used to access the channel, and then the method of embodiment one is used to initialize the first COT and share the resources in the first COT.
  • the first device can execute S401 and S402 shown in Figure 14 to send S-SSB, and the first device can execute S102 shown in Figure 4 to share the resources in the first COT with other devices.
  • At least one step in S601 and S602 can be implemented in combination with the steps of other embodiments.
  • at least one step in S601 and S602 can be combined with S201 and/or S401.
  • S601 and S602 can be implemented separately.
  • the combination between any methods of each embodiment is not limited to this, and the methods formed by various combinations are within the protection scope of the embodiments of this application.
  • pre-configuration or (pre) configuration may refer to one or more of pre-definition, RRC configuration, DCI indication, and SCI indication.
  • the initial device (such as devices 1 and 2) can be multi-continuous time slot transmission (Multi-consecutive slots transmission, MCSt) or non-multi-continuous time slot transmission; or, the initial device uses one or more time slots for its own transmission; or, the number and position of frequency domain resources used by the initial device in each time slot are the same or different.
  • MCSt Multi-consecutive slots transmission
  • the embodiments of the present application do not limit the carrying method of messages and signaling.
  • steps in the method embodiment may be equivalently replaced by other possible steps.
  • some steps in the method embodiment may be optional and may be deleted in certain usage scenarios.
  • other possible steps may be added to the method embodiment.
  • the device in the embodiment of the present application includes a hardware structure and/or software module corresponding to each function in order to realize the above functions.
  • the embodiment of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the technical solution of the embodiment of the present application.
  • the embodiment of the present application can divide the functional units of the communication device according to the above method example.
  • each functional unit can be divided according to each function, or two or more functions can be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of software functional units. It should be noted that the division of units in the embodiment of the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • Some other embodiments of the present application provide a device, which may be the above-mentioned first device, second device, or third device, or corresponding components.
  • the device may include: a memory and one or more processors.
  • the memory is coupled to the processor.
  • the memory is used to store computer program code, and the computer program code includes computer instructions.
  • the processor executes the computer instructions, the device may perform the various functions or steps performed by the first device, the second device, or the third device in the above-mentioned method embodiment.
  • the structure of the device can refer to the structure of the device shown in Figure 2A.
  • the core structure of the device can be represented as the structure shown in Figure 23, and the device includes: a processing module 1301 and a storage module 1303.
  • the processing module 1301 may include at least one of a central processing unit (CPU), an application processor (AP) or a communication processor (CP).
  • the processing module 1301 may perform operations or data processing related to the control and/or communication of at least one of the other elements of the user communication device.
  • the storage module 1303 may include a volatile memory and/or a non-volatile memory.
  • the storage module is used to store at least one instruction or data related to other modules of the device.
  • a communication module 1305 is also included to support the device to communicate with other devices (through a communication network).
  • the communication module can be connected to a network via wireless communication or wired communication to communicate with other devices.
  • Wireless communication can use at least one of cellular communication protocols, such as long-term evolution (LTE), advanced long-term evolution (LTE-A), code division multiple access (CDMA), wideband code division multiple access (WCDMA), universal mobile telecommunications system (UMTS), wireless broadband (WiBro) or global mobile communication system (GSM).
  • Wireless communication may include, for example, short-range communication.
  • Short-range communication may include at least one of wireless fidelity (Wi-Fi), Bluetooth, near field communication (NFC), magnetic stripe transmission (MST) or GNSS.
  • the embodiment of the present application also provides a chip system, as shown in Figure 24, the chip system includes at least one processor 1401 and at least one interface circuit 1402.
  • the processor 1401 and the interface circuit 1402 can be interconnected through lines.
  • the interface circuit 1402 can be used to receive signals from other devices (such as a memory of a communication device).
  • the interface circuit 1402 can be used to send signals to other devices (such as processor 1401).
  • the interface circuit 1402 can read instructions stored in the memory and send the instructions to the processor 1401.
  • the communication device can perform the various steps in the above embodiments.
  • the chip system can also include other discrete devices, which is not specifically limited in the embodiment of the present application.
  • An embodiment of the present application also provides a computer storage medium, which includes computer instructions.
  • the communication device executes each function or step executed by the mobile phone in the above-mentioned method embodiment.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product When the computer program product is run on a computer, the computer is enabled to execute each function or step executed by the mobile phone in the above method embodiment.
  • each functional module is illustrated by way of example.
  • the above functions can be distributed to different functional modules as needed, that is, the internal structure of the device can be divided into different functional modules to complete all or part of the functions described above.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules or units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another device, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place or distributed in multiple different places. Some or all of the units may be selected according to actual needs to achieve the purpose of the present embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions to enable a device (which can be a single-chip microcomputer, chip, etc.) or a processor (processor) to execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,涉及通信技术领域,能够提升设备的通信性能。所述的方法包括:第一设备初始化第一信道占用时间COT;所述第一设备向第二设备发送第一共享指示信息,所述第一共享指示信息用于指示第一频域资源内的部分或全部频域资源,所述部分或全部频域资源用于共享给所述第二设备,其中,所述第一频域资源为所述第一设备在所述第一COT内占用的频域资源;或者所述第一频域资源为所述第一COT包括的频域资源。

Description

通信方法及装置
本申请要求于2022年11月4日提交国家知识产权局、申请号为202211379740.1、申请名称为“通信方法及装置”的中国专利申请优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及通信方法及装置。
背景技术
目前,终端可以接入信道进行传输。比如,终端可以执行先听后说(listen before talk,LBT)以接入信道。具体的,设备执行信道检测,来判断在一段时间内信道是否空闲,检测到在一段时间内信道空闲时,LBT成功,设备能够接入信道并进行传输。如果信道被占用(信道非空闲),LBT失败,设备无法接入信道进行传输。
由于信道条件不确定,终端某些情况下难以接入信道。比如,在信道环境差的情况下,终端很可能无法成功接入信道,影响终端的通信性能。
发明内容
本申请实施例提供通信方法及装置,能够提升设备的通信性能。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请技术方案提供通信方法,该方法可适用于第一设备,第一设备可以为独立的设备,或为设备中的模块,芯片,装置等,所述的方法包括:
第一设备初始化第一信道占用时间COT;所述第一设备向第二设备发送第一共享指示信息,所述第一共享指示信息用于指示第一频域资源内的部分或全部频域资源,所述部分或全部频域资源用于共享给所述第二设备,其中,所述第一频域资源为所述第一设备在所述第一COT内占用的频域资源;或者所述第一频域资源为所述第一COT包括的频域资源。
通过上述方法,第一设备可以确定COT共享时的共享资源范围,如此,第一设备可以将共享资源范围内的部分或全部资源共享给第二设备,一方面,能够提高系统的资源利用效率,一方面,能够提升第二设备接入信道的成功率以及通信性能。
可选地,第一COT包括的频域资源,可以指所述第一COT内占用的频域资源所在信道内的全部资源。
第一设备占用的资源,可以指用于第一设备自己进行传输的频域资源,或者,用于共享给其他设备的资源。占用,还可以替换为预留或选择或使用或用于传输。
本申请中,信道还可以替换为RB set。
可选地,所述部分或全部频域资源,指所述第一频域资源内包含的一个或多个子信道。
可选地,可以通过指示信道的位置信息和/或子信道的位置信息来指示频域资源的信息。其中所述位置信息可以包括以下至少一种:索引、数量、起始位置、结束位置、偏移值。其中,所述索引、起始位置、结束位置可以是物理时隙概念上索引或位置,或者逻辑时隙概念上的索引或位置。偏移值可以是相对于COT起始时隙或者占用的资源的起始时隙的偏移值。
可选地,索引可以通过FRIV、bitmap、比特信息(二进制状态值)等方式任一来指示。
本申请中,所述第一设备向第二设备发送第一共享指示信息,所述第一共享指示信息用于指示第一频域资源内的部分或全部频域资源,意味着第一设备具有权限共享COT内的资源,还可以理解为如下至少一种方式:
1.第一设备可以向第二设备指示共享资源,该资源为至少一个第一频域资源内的部分频域资源。
2.所述第一COT的频域范围是第一频域资源。
3.第一设备有权限共享的频域范围是第一频域资源。
4.第一设备不期望共享第一频域资源以外的频域资源给其他设备(比如第二设备)。
5.第二设备不期望接收到第一设备共享至少一个第一频域资源以外的频域资源
在一种可能的设计中,所述第一设备在第一COT内占用的频域资源小于所述第一COT包括的频域资源,即可能存在其他的设备与第一设备一起使用第一COT内的频域资源。
在一种可能的设计中,所述第一共享指示信息还包括如下至少一项信息:共享的时域资源的信息、所 述第二设备的标识信息;
可选地,第二设备的标识信息包括设备ID,source ID,destination ID中的至少一项。
其中,所述共享的时域资源包括所述第一COT内的时域资源。第一设备并不一定会预留这部分资源,只要在COT范围内第一设备就可以共享。因此这里可以限制在COT内,说明书可以补充:可选地,为第一设备选择或预留的时域资源。
在一种可能的设计中,所述第一设备在所述第一COT内占用的频域资源是所述第一设备在所述第一COT内的第一个时隙占用的频域资源。
如此,第一设备初始的COT的频域范围被限制在第一频域资源的范围内。考虑到可能存在多个设备在相同时隙的不同频域资源初始COT的情况,不同设备对于是否满足COT共享条件、是否打算共享COT给其他设备以及如何共享的意图和行为可能不同,可能导致共享设备接收到不同的COT共享指示信息,导致共享设备无法确定能否使用共享资源、如何确定CPE等。为不同初始设备划分COT的频域范围,也即可以共享的频域范围,可以解决上述问题。
或者在一种可能的设计中,所述第一设备在所述第一COT内占用的频域资源是所述第一设备在所述第一COT内占用的频域资源数量最少的时隙上占用的频域资源。如此,第一设备能够将更少的频域资源共享给其他设备。由于UE在不同时隙使用的频域资源可能不同,为FDM的每个UE限定最小的频域范围,可以避免两者对交叠的频域资源拥有权限,导致出现COT共享权限和指示信息上的混乱。
或者,所述第一设备在所述第一COT内占用的频域资源是所述第一设备在所述第一COT内占用的频域资源数量最多的时隙上占用的频域资源。如此,第一设备能够将更多的频域资源共享给其他设备,有利于其他设备使用共享资源进行传输,提升其他设备的通信性能。
在一种可能的设计中,第二频域资源是所述第一设备在所述第一COT内的第一个时隙上占用的频域资源,第三频域资源是第三设备在初始化的第二COT的第一个时隙上占用的频域资源,所述第二频域资源与所述第三频域资源之间频分复用。如此,第一设备与第二设备的资源之间可以频分复用,有利于提升系统的频谱利用率。
换言之,第一设备与第二设备构成初始FDM,即两个设备在初始COT的第一个时隙上FDM。或者,也可以理解为,所述第二频域资源与所述第三频域资源位于同一个时隙;或者,所述第一COT内第一个时隙与所述第二COT内第一个时隙为同一个时隙。
或者,上述设计也可以表述为:所述第一COT在时域上包括第一时域资源;所述第二COT在时域上包括第二时域资源;所述第一时域资源的第一个时间单元与所述第二时域资源的第一个时间单元相同。比如,第一时域资源的第一个时间单元可以是第一设备的初始COT的第一个时隙,第二时域资源的第一个时间单元可以是第三设备的初始COT的第一个时隙。
如此,针对信道内初始COT时不同设备之间频分复用传输的场景和需求,能够确定不同设备的COT的频域范围和COT共享权限,明确共享设备应遵循哪个初始设备的COT共享指示信息使用COT资源进行传输,保证了SL-U FDM机制的正常运行,提高了系统的资源利用效率以及信道接入效率。
可选地,第一共享指示信息可以为COT共享指示信息。
在一种可能的设计中,所述第四频域资源是所述第一设备在所述第一COT内占用的频域资源,第五频域资源是第三设备在初始化的第二COT内占用的频域资源;
所述第四频域资源和所述第五频域资源包括在第六频域资源中;所述第六频域资源用于所述第二设备进行传输;
和/或所述第六频域资源还包括第七频域资源,其中,所述第七频域资源与所述第四频域资源、所述第五频域资源位于相同信道(信道)且与所述第四频域资源、所述第五频域资源不同。
其中,第四频域资源指的就是没有设备占用/初始化的资源。比如,如图9B的(a),以第一设备为设备1为例,第四频域资源为未被设备1占用/初始化的子信道1。
本申请中,主要以第一设备为设备1为例,但第一设备不限于是设备1,在不额外说明的情况下,设备1与第一设备含义相同,或者,设备1为第一设备的一个举例。
第六资源中的第七资源为可选地。若第六资源没有包括第七资源,意味着,共享设备(比如第二设备)从初始设备获取的资源小于或等于初始设备占用的资源。如此,能够降低设备之间资源冲突的概率。若第六资源包括第七资源,意味着,共享设备从初始设备获取的资源大于初始设备占用的资源。如此,共享设备能够获取更多的资源,有助于提升共享设备的通信性能。
可选地,从时域上讲,该用于第二设备进行传输的资源,位于第一COT和/或第二COT的时域范围 内。
可选地,初始FDM的设备可以有两个或两个以上。
可选地,第一设备、第三设备占用的频域资源,实际上也适用于前述设计中的多种解释/理解方式。
可选地,在限定频域资源之间的关系时,并不约束频域资源是否位于同一个时隙。
在一种可能的设计中,所述的方法还包括:当满足如下条件中至少一项时,允许所述第二设备使用共享的资源进行传输:
在一种可能的设计中,所述的方法还包括:当满足如下条件中至少一项时,允许所述第二设备使用共享的资源进行传输:
所述第一设备与所述第三设备都通过共享指示信息指示所述第二设备使用共享的资源进行传输。所有初始设备都指示共享才能共享,避免出现一个初始设备允许共享、另一个不允许共享,造成混乱。此外,还可以避免下述情况:如果设备1共享给设备3进行发送,由于设备2不允许共享因此将相同资源用于自己的传输,则设备2和设备3将发生碰撞。
或者,所述第一设备与所述第三设备中的任意一个通过共享指示信息指示所述第二设备使用共享的资源进行传输。如此,可以通过较少的初始设备即可指示共享资源,可降低信令开销。
或者,所述第一设备通过共享指示信息指示所述第二设备使用共享的资源进行传输。此种情况下,第一设备为归属设备,通过多个初始设备中的一个归属设备统一指示进行COT共享,能够尽可能降低设备之间的资源冲突。
允许所述第二设备使用共享的资源进行传输,还可以表述为:第一设备可以在所述共享的资源上接收所述第二设备发送的传输。相应的,从对侧第二设备的角度描述可以为,第二设备允许在所述共享资源进行传输,或者,第二设备在所述共享资源进行传输。
在一种可能的设计中,第一设备为归属设备,所述第一设备满足如下至少一项第一条件:
所述第一设备是多个初始设备中最先预留资源的设备。
所述第一设备是所述多个初始设备中最先按照多连续时隙传输MCSt方式预留资源的设备。此种方式,考虑到设备预留较多的时隙时,可能有将资源共享给其他设备的需求,因此可以将预留或选择较多时隙的设备作为归属设备。
所述第一设备是所述多个初始设备中预留资源在时域上持续时间最长的设备。此种方式,考虑到设备预留较多的时隙时,可能有将资源共享给其他设备的需求,因此可以将预留或选择较多时隙的设备作为归属设备。
所述第一设备是允许将资源共享给其他设备的设备。
所述第一设备是所述多个初始设备中信道接入优先级CAPC最高的设备。可选地,CAPC是预留时SCI中指示的,或者初始COT的CAPC,或者传输的COT内第一个时隙的SCI指示的,或者COT共享信息里指示的。
所述第一设备是所述多个初始设备中物理层优先级最高的设备。可选地,物理层优先级也可以叫业务优先级。
所述第一设备是所述多个初始设备中信道占用时长COT最长的设备。此种方式,考虑到设备预留较多的时隙时,可能有将资源共享给其他设备的需求,因此可以将预留或选择较多时隙的设备作为归属设备。
所述第一设备是所述多个初始设备中占用子信道sub-channel的索引最低的设备,所述第一设备是所述多个初始设备中循环前缀扩展CPE最长的设备,所述第一设备是所述多个初始设备中占有最多子信道的设备,所述第一设备是所述多个初始设备中L1优先级的设备;
其中,所述多个初始设备包括所述第一设备和所述第三设备。
在一种可能的设计中,所述第一设备通过共享指示信息指示所述第二设备使用共享的资源进行传输,所述第一设备在资源选择时不排除所述第二设备的时频域资源。
在一种可能的设计中,第一设备不通过共享指示信息指示所述第二设备使用共享的资源进行传输的情况下,所述第三设备在资源选择时排除所述第二设备的时频域资源(即选择或预留第二设备所在时隙的其他频域资源。
如此,在不同场景下,第一设备能够通过资源选择过程排除或不排除第二设备的资源,以免与第二设备产生资源碰撞。
在一种可能的设计中,向第二设备发送第一共享指示信息,包括:
满足第二条件时,发送所述第一共享指示信息;
所述第二条件包括如下至少一项条件:
所述第二设备的信道接入优先级高于所述第一设备和/或所述第三设备;
所述第二设备的播类型为组播或广播,且目标设备包括所述第一设备和所述第三设备;
所述第二设备的目标设备包括所述第一设备和所述第三设备中的至少一个;
所述第二设备的接入信道优先级高于所述第一设备;此种方式中,第一设备为归属设备;
所述第二设备的目标设备包括所述第一设备,此种设计中,第一设备为归属设备。
如此,第一设备能够在第二条件下向第二设备共享COT内的资源,以提升第二设备的通信性能。
在一种可能的设计中,所述第一COT包含的时域资源为第一时域资源,所述第二COT包含的时域资源为第二时域资源,所述第一时域资源的持续时长大于所述第二时域资源的持续时长,第三时域资源上的任意频域资源可被所述第一设备共享给所述第二设备,其中,所述第三时域资源为所述第一时域资源与所述第二时域资源在时域上不重叠的资源。
如此,对于第一设备、第二设备两者在时域资源不重叠的资源,这部分频域资源的COT共享权限属于时域资源更多的设备(比如第一设备)。这样一来,能够增加共享资源的数量,有助于提升共享设备的通信性能。
第二方面,提供一种通信方法,该方法可适用于第二设备,第二设备可以为独立的设备,或为设备中的模块,芯片,装置等所述的方法包括:
第二设备从第一设备接收第一共享指示信息,所述第一共享指示信息包括第一频域资源内的部分或全部频域资源的信息,所述部分或全部频域资源用于共享给所述第二设备进行传输,其中,所述第一频域资源为第一设备在初始的第一COT内占用的频域资源;或者所述第一频域资源为所述第一COT包括的频域资源;
第二设备在所述部分或全部资源上进行传输。
在一种可能的设计中,所述第一设备在所述第一COT内占用的频域资源是所述第一设备在所述第一COT内的第一个时隙占用的频域资源;或者是所述第一设备在所述第一COT内占用的频域资源数量最少的时隙上占用的频域资源;或者是所述第一设备在所述第一COT内占用的频域资源数量最多的时隙上占用的频域资源。
在一种可能的设计中,第二频域资源是所述第一设备在所述第一COT内的第一个时隙上占用的频域资源,第三频域资源是第三设备在初始化的第二COT的第一个时隙上占用的频域资源,所述第二频域资源与所述第三频域资源之间频分复用。
在一种可能的设计中,所述方法还包括:
第二设备从第一设备接收第二共享指示信息;第二共享指示信息包括第四频域资源的信息,所述第四频域资源是所述第一设备在所述第一COT内占用的频域资源,
第二设备从第三设备接收第三共享指示信息;第三共享指示信息包括第五频域资源的信息,第五频域资源是第三设备在初始化的第二COT内占用的频域资源;
第二设备在所述第四频域资源以及所述第五频域资源上进行传输。
在一种可能的设计中,所述第四频域资源和所述第五频域资源包括在第六频域资源中;所述第六频域资源用于所述第二设备进行传输;和/或所述第六频域资源还包括第七频域资源,其中,所述第七频域资源与所述第四频域资源、所述第五频域资源位于相同信道(信道)且与所述第四频域资源、所述第五频域资源不同。
在一种可能的设计中,所述的方法还包括:当满足如下条件中至少一项时,所述第二设备可以使用共享的资源进行传输:
从所述第一设备与所述第三设备接收共享指示信息,所述共享指示信息均用于指示所述第二设备使用共享的资源进行传输;可选地,第一设备和第三设备的共享指示信息分别用于指示第四频域资源和第五频域资源;
从所述第一设备与所述第三设备中的任意一个接收共享指示信息;
从所述第一设备接收共享指示信息,此种方式中,第一设备是归属设备。
可选地,所述接收共享指示信息,可以理解为所述第一设备或第三设备指示第二设备允许使用共享的资源进行传输。
本申请中,共享指示信息、COT共享指示信息、第一共享指示信息、第二共享指示信息等可以相互替换。
在一种可能的设计中,所述第一设备满足如下至少一项第一条件:
所述第一设备是多个初始设备中最先预留资源的设备,所述第一设备是所述多个初始设备中最先按照多连续时隙传输MCSt方式预留资源的设备,所述第一设备是所述多个初始设备中预留资源在时域上持续时间最长的设备,所述第一设备是允许将资源共享给其他设备的设备;
其中,所述多个初始设备包括所述第一设备和所述第三设备。此种方式中,第一设备是归属设备。
在一种可能的设计中,所述第二设备通过共享指示信息指示第四设备使用共享的资源进行传输,所述第二设备在资源选择时不排除所述第四设备的时频域资源。
在一种可能的设计中,接收第一共享指示信息,包括:
满足第二条件时,接收所述第一共享指示信息;
所述第二条件包括如下至少一项条件:
所述第二设备的信道接入优先级高于所述第一设备和/或所述第三设备;
所述第二设备的播类型为组播或广播,且目标设备包括所述第一设备和所述第三设备;
所述第二设备的目标设备包括所述第一设备和所述第三设备中的至少一个;
所述第二设备的接入信道优先级高于所述第一设备;
所述第二设备的目标设备包括所述第一设备。
在一种可能的设计中,所述第一COT包含的时域资源为第一时域资源,所述第二COT包含的时域资源为第二时域资源,所述第一时域资源的持续时长大于所述第二时域资源的持续时长,第三时域资源上的任意频域资源可被所述第一设备共享给所述第二设备,其中,所述第三时域资源为所述第一时域资源与所述第二时域资源在时域上不重叠的资源。
第三方面,提供一种通信方法,该方法可适用于第一设备,第一设备可以为独立的设备,或为设备中的模块,芯片,装置等该方法包括:
第一设备确定CPE信息,根据所述CPE信息确定传输的起始位置和/或信道接入类型,并根据所述传输的起始位置和/或信道接入类型进行信道接入。
如此,能够灵活地为第一设备配置CPE,进而能够降低设备之间产生资源碰撞的概率,增加不同设备或不同传输之间采取不同的CPE和/或对应的LBT type的灵活性。
在一种可能的设计中,所述第一设备确定CPE信息,包括:所述第一设备获取第一信息,所述第一信息用于确定CPE信息。可选地,第一设备接收第二指示信息,用于指示CPE信息。
可选地,不同接入类型关联不同的第一信息,和/或,不同时隙关联不同的第一信息。
如此,能够针对不同的情况,比如不同的时域pattern或type1/type2灵活地为设备配置不同的CPE,进而能够降低设备之间产生资源碰撞的概率,增加不同设备或不同传输之间采取不同的CPE和/或对应的LBT type的灵活性。
在一种可能的设计中,所述第一设备确定CPE信息,包括:满足第一条件中的至少一项时,所述第一CPE根据第二信息确定,所述第二信息为配置或预配置的,所述第一条件包括:所述第一传输为CG传输;或所述第一传输为初次传输;或资源池内不允许FDM;或所述第一传输的资源所在时隙上的其他频域资源上没有其他传输;或第一传输的资源包括信道内的全部频域资源。
如此,在不同情况/场景下,第一设备可以采用不同的方式确定CPE,增加灵活性。
在一种可能的设计中,所述第一设备确定CPE信息,包括:所述第一设备接收第三信息和/或第四信息;所述第一设备根据所述第三信息和/或第四信息确定所述CPE信息;所述第三信息用于第二设备指示CPE信息,所述第四信息用于第三设备指示CPE信息。
在一种可能的设计中,所述第三信息指示的CPE信息,为适用于所述第二设备初始的COT或者第二设备预留的资源的CPE,或者,所述CPE信息包括:与所述第二设备初始的COT或者第二设备预留的资源内的时隙关联的CPE。
在一种可能的设计中,可以每个时隙分别指示CPE信息,可以相同或不同。
在一种可能的设计中,所述第四信息指示的CPE信息,为适用于所述第三设备初始的COT或者第三设备预留的资源的CPE,或者,所述CPE信息包括与所述第三设备初始的COT或者第三设备预留的资源内的时隙关联的CPE。可选地,每个时隙分别指示CPE,可以相同或不同。
如此,第一设备可以动态指示CPE信息,不同共享设备可以根据该指示确定CPE,增加不同设备或不同传输之间采取不同的CPE和/或对应的LBT type的灵活性。
第四方面,提供一种通信方法,该方法可适用于网络设备或初始设备,网络设备、初始设备可以为独 立的设备,或为设备中的模块,芯片,装置等,该方法包括:
发送第二指示信息,第二指示信息用于指示CPE信息。CPE信息是用于确定传输的起始位置和/或信道接入类型的。CPE信息是可以用于确定资源池的CPE,和/或用于确定COT内的CPE
可选地,CPE信息承载于RRC、第一级或第二级SCI中的至少一种。
可选地,可以每个时隙分别指示CPE信息,可以相同或不同。
第五方面,提供一种通信方法,该方法可适用于第一设备,第一设备可以为独立的设备,或为设备中的模块,芯片,装置等,该方法包括:
第一设备初始第一COT,所述第一设备在选择或预留的资源中,或者在根据选择或预留的资源初始的COT中,发送第一S-SSB。
在一种可能的设计中,所述发送第一S-SSB之前,确定满足以下条件中的至少一项:
方式1(条件1):所述第一设备选择或预留的资源包括信道中的全部频域资源。
也就意味着,当设备1的资源未与其他设备的资源形成FDM时,允许设备1在资源上发送S-SSB。如此,由于整个信道内不存在与设备1之间FDM的其他设备,因此不会对其他设备造成干扰。
方式2(条件2):所述第一设备所在的资源池(预)配置不允许FDM时,或不允许初始COT内的第一个时隙FDM。
方式3(条件3):所述第一设备的传输在COT或预留的资源内任何一个时隙上没有实际发生FDM时,或COT或预留的资源的第一个时隙没有发生FDM时,或没有发生不同设备在同样时域资源FDM,或所述传输的资源所在时隙上的其他频域资源上没有其他传输;或传输的资源包括信道内的全部频域资源。
满足条件3时,意味着第一设备的资源不与其他设备的资源形成FDM,因此不会产生资源冲突。
可选地,所述实际发生FDM可以理解为,所述资源所在时隙上的其他频域资源上没有其他传输,或者,所述时隙上没有FDM的传输,或者,所述资源所在时隙上没有其他设备的传输。
方式4:所述第一设备进行资源选择的候选资源的频域资源,或者预留的资源的频域资源,为COT内任意传输需要使用的最多的频域资源数量或最大的频域范围,或者,为S-SSB需要使用的频域资源数,或者,为信道内的全部频域资源,比如为信道内的全部子信道。
或者,所述第一设备进行资源选择的候选资源的频域资源(数量),或者预留的资源的频域资源,为S-SSB需要使用的频域资源数(子信道)。
或者,所述第一设备进行资源选择的候选资源的频域资源(数量),或者预留的资源的频域资源,为信道内的全部频域资源(子信道)。如此,第一设备能获得尽可能多的频域资源,有利于提升第一设备的传输性能。
可选地,所述候选资源或所述预留的资源,其所在的时隙为用于发送所述S-SSB的时隙。
可选地,如果设备1准备在选择或预留的资源中,或者在根据选择或预留的资源初始的COT中,发送S-SSB,那么设备1进行资源选择或资源预留时,至少在发送S-SSB的时隙上,按照S-SSB需要使用的频域资源进行预留。如此,设备1在选择或预留资源时,选择或预留至少S-SSB所在的时隙,则其他设备在选择或预留资源时,将排除S-SSB所在时隙,即其他设备不在S-SSB所在时隙进行传输。这样一来,设备1的S-SSB的资源与其他设备的资源不会产生碰撞,可避免设备1对其他设备的干扰。
或者,可选地,按S-SSB需要使用的子信道进行预留。比如,假设S-SSB在每个时隙占用的频域资源一样,S-SSB需要使用2个子信道,则设备1可以选择或预留2个子信道。后续,设备1可以在这2个子信道上传输S-SSB,或者,根据选择或预留的2个子信道初始化该COT,并在COT内传输S-SSB。
或者,可选地,设备1可以按照COT内任意传输需要使用的最多的频域资源,或最大的频域范围进行资源预留,尽可能多的为S-SSB预留资源。
示例性的,COT存在传输1-5,其中传输5需要使用的频域资源最多,假设为5个子信道1-5,则设备1可以选择或预留5个子信道,以便能够尽可能多的为S-SSB预留资源。
或者,可选地,设备1预留整个信道内的全部子信道。
或者,可选地,如果在IRB场景中,S-SSB需要占用连续频域资源,则设备1可以将S-SSB占用资源所在的全部子信道进行预留。
第六方面,提供一种通信方法,该方法可适用于第二设备,第二设备可以为独立的设备,或为设备中的模块,芯片,装置等,该方法包括:
第二设备在第二资源上接收第一S-SSB。
可选地,第二资源为第一设备选择或预留的资源,或者为第一设备在根据选择或预留的资源初始的COT。
第七方面,提供一种通信方法,该方法可适用于第二设备,第二设备可以为独立的设备,或为设备中的模块,芯片,装置等,该方法包括:
确定第三资源,并在第三资源上发送数据或S-SSB。
可选地,所述第三资源与第一资源不重叠,或者,该第三资源与排除第一资源所在的时隙上的全部资源不重叠。
其中,所述第一资源为第一设备选择或预留用于传输的任意时频资源,和/或,第一设备选择或预留用于发送S-SSB的时频资源,和/或,第一设备选择或预留用于传输的时域上第一个资源的时频资源。选择或预留,还可以替换为用于传输、占用等。
可选地,第二设备排除第一资源,或者,排除第一资源所在的时隙上的全部资源还包括:从所述第一设备接收第一指示信息,所述第一指示信息用于指示以下至少一项:
1bit标识信息,用于指示不允许其他设备选择与自己的资源FDM,或者,用于指示将在所述资源或所述COT范围内发送S-SSB;
所述第一设备发送S-SSB的时域资源和/或频域资源信息。
第八方面,提供一种通信方法,该方法可适用于第一设备,第一设备可以为独立的设备,或为设备中的模块,芯片,装置等,该方法包括:
在第一资源上发送S-SSB。
其中,所述第一资源为第一设备选择或预留用于传输的任意时频资源,和/或,第一设备选择或预留用于发送S-SSB的时频资源,和/或,第一设备选择或预留用于传输的时域上第一个资源的时频资源。选择或预留,还可以替换为用于传输、占用等。
第九方面,提供一种通信方法,应用于第一设备,第一设备可以为独立的设备,或为设备中的模块,芯片,装置等,所述的方法包括:
第一设备执行信道接入,第一设备发送或接收S-SSB和/或数据。
在一种可能的设计中,对于多信道场景,如果第一时隙为(预)配置的S-SSB时隙,且位于COT内,所述第一时隙位于资源池外,则第一设备通过如下至少一种方式确定用于发送S-SSB的第四资源:
可选地,如果设备打算在第一时隙发送S-SSB,则在除了(预)配置的S-SSB频域位置所在的信道外,用于数据传输的每个信道上或者在资源池内每个信道上独立发送S-SSB。
可选地,如果设备打算在第一时隙接收S-SSB,则设备放弃该第一时隙的S-SSB的接收。
可选地,设备将用于数据传输的每个信道上该第一时隙的部分或全部频域资源共享给其他设备,或者用于自己的数据传输。可选地,如果打算在第一时隙不发送也不接收S-SSB,则可以在用于数据传输的每个信道上发送S-SSB。
在一种可能的设计中,对于多信道场景,如果第一时隙为(预)配置的S-SSB时隙,且位于COT内,所述第一时隙位于资源池内,则第一设备通过如下至少一种方式确定用于发送S-SSB的第四资源:
可选地,如果设备打算在第一时隙发送S-SSB,则在除了(预)配置的S-SSB频域位置所在的信道外,用于数据传输的每个信道上或者在资源池内每个信道上,独立发送S-SSB或者发送数据
可选地,如果设备打算在第一时隙接收S-SSB。可选地,设备将除了(预)配置的S-SSB频域位置所在的信道之外的,用于数据传输的每个信道上该时隙的部分或全部频域资源共享给其他设备。可选地,如果打算在第一时隙不发送也不接收S-SSB,则应在用于数据传输的每个信道上发送S-SSB、或发送数据、或将每个信道上该时隙的部分或全部频域资源共享给其他设备
如此,在多信道场景中,保证每个信道上都有数据/S-SSB的发送或接收,以避免COT中断。
在一种可能的设计中,将11RB的频域扩展为12RB,其中,最高或最低的1个RB中填零(set to zero),其他11RB按照现有结构发送。
可选地,所述方式适用于PSBCH、S-PSS、S-SSS中的至少一项。可选地,在11RB的基础上频域额外扩展3个RE,则共11*12+3=134RE刚好满足15kHz下的2MHz,所述3个RE与现有结构11RB的最高频域一端相邻,或与最低频域的一端相邻,并将所述3个RE填零。可选地,所述方式适用于PSBCH、 S-PSS、S-SSS中的至少一项。
可选地,PSBCH interlace传输,S-PSS/S-SSS连续传输;或者,S-SSB适用于临时豁免。
当子载波间隔为15kHz时,相比于“PSBCH interlace传输,S-PSS/S-SSS连续传输”这一OCB方案中S-PSS/S-SSS,或者频域连续传输的S-SSB(PSBCH/S-PSS/S-SSS),在非授权频谱上的带宽都小于2MHz,不满足OCB要求。通过上述方法可以使得PSBCH、S-PSS、S-SSS满足OCB的2MHz带宽要求。
第十方面,提供一种通信方法,应用于第二设备,第二设备可以为独立的设备,或为设备中的模块,芯片,装置等,所述的方法包括:
第二设备接收或发送S-SSB和/或数据。
在一种可能的设计中,对于多信道场景,如果第一时隙为(预)配置的S-SSB时隙,且位于COT内,所述第一时隙位于资源池外,则第一设备通过如下至少一种方式确定用于S-SSB的第四资源:
可选地,如果设备打算在第一时隙发送S-SSB,则在除了(预)配置的S-SSB频域位置所在的信道外,用于数据发送传输的每个信道上或者在资源池内每个信道上独立发送S-SSB。
可选地,如果设备打算在第一时隙接收S-SSB,则设备放弃该第一时隙的S-SSB的接收。
可选地,设备将用于数据传输的每个信道上该第一时隙的部分或全部频域资源共享给其他设备,或者用于自己的数据传输。可选地,如果打算在第一时隙不发送也不接收S-SSB,则可以在用于数据传输的每个信道上发送S-SSB。
在一种可能的设计中,对于多信道场景,如果第一时隙为(预)配置的S-SSB时隙,且位于COT内,所述第一时隙位于资源池内,则第一设备通过如下至少一种方式确定用于发送S-SSB的第四资源:
可选地,如果设备打算在第一时隙发送S-SSB,则在除了(预)配置的S-SSB频域位置所在的信道外,用于数据传输的每个信道上或者在资源池内每个信道上,独立发送S-SSB或者发送数据
可选地,如果设备打算在第一时隙接收S-SSB。可选地,设备将除了(预)配置的S-SSB频域位置所在的信道之外的,用于数据传输的每个信道上该时隙的部分或全部频域资源共享给其他设备。可选地,如果打算在第一时隙不发送也不接收S-SSB,则应在用于数据传输的每个信道上发送S-SSB、或发送数据、或将每个信道上该时隙的部分或全部频域资源共享给其他设备
在一种可能的设计中,将11RB的频域扩展为12RB,其中,最高或最低的1个RB中填零(set to zero),其他11RB按照现有结构发送(参考下表7);
可选地,所述方式适用于PSBCH、S-PSS、S-SSS中的至少一项。可选地,在11RB的基础上频域额外扩展3个RE(则共11*12+3=134RE刚好满足15kHz下的2MHz),所述3个RE与现有结构11RB的最高频域一端相邻,或与最低频域的一端相邻,并将所述3个RE填零。可选地,所述方式适用于PSBCH、S-PSS、S-SSS中的至少一项。
可选地,PSBCH interlace传输,S-PSS/S-SSS连续传输;或者,S-SSB适用于临时豁免。
第十一方面,提供一种通信方法,应用于第一设备,所述的方法包括:
根据第一传播类型和/或所述第一使能信息确定信道接入的参数;所述第一传播类型为第一侧行信息关联的传播类型,和/或,所述第一使能信息为所述第一侧行信息关联的使能信息;
在所述信道上传输所述第一侧行信息。
如此,如果要传输第一侧行信息,则根据第一侧行信息关联的第一传播类型和/或所述第一使能信息确定信道接入的参数,使得信道接入的参数更能反映当前信道的状况,得到更准确的信道接入参数,有助于第一设备接入信道,提升通信性能。
可选地,第七方面还包括第一设备确定第一传播类型和/或所述第一使能信息。例如,在根据第一传播类型和/或所述第一使能信息确定信道接入的参数之前,需要确定第一传播类型和/或所述第一使能信息。
可选地,所述第一侧行信息为侧行数据信息,所述第一传播类型为侧行数据信息对应的侧行控制信息指示的传播类型;和/或,所述第一侧行信息为侧行数据信息,所述第一使能信息为侧行数据信息对应的侧行控制信息指示的使能信息;和/或,所述第一侧行信息为侧行反馈信息,所述第一传播类型为反馈信息关联的侧行数据信息对应的侧行控制信息指示的传播类型;所述第一侧行信息为侧行反馈信息,所述第一使能信息为反馈信息关联的侧行数据信息对应的侧行控制信息指示的使能信息。可选地,反馈信息关联的侧行数据信息为第二侧行信息。
可选地,侧行数据信息包括PSSCH,侧行数据信息对应的侧行控制信息为一阶SCI和/或二阶SCI,侧行反馈信息为PSFCH。
可选地,第一使能信息是第一设备的二阶SCI指示的。第一传播类型是第一设备的二阶SCI指示的。
可选地,在接入的信道上传输第一侧行信息包括:传输第一侧行信息接入的信道是根据第一CAPC接入信道传输第一侧行信息。可选地,根据所述第一CAPC的值确定竞争窗的值。
可选地,根据所述第一CAPC的值p确定竞争窗的值CWp。第一CAPC的值p属于{1,2,3,4}中的至少任意一项。其中,第一CAPC是第一设备接入信道的CAPC,和/或,第一设备的侧行控制信息指示的。
可选地,第一传播类型和/或第一使能信息包括:HARQ去使能、HARQ使能的单播、HARQ使能且基于ACK/NACK的组播、HARQ使能且仅基于NACK的组播中的至少任意一项。
可选地,第一传播类型包括单播、基于ACK/NACK的组播(还称为组播option 2或组播opt2)、仅基于NACK的组播(还称为组播option 1或组播opt1)、仅基于ACK的组播、广播中的至少任意一种
可选地,第一使能信息包括HARQ使能、HARQ去使能、冲突指示使能、冲突指示去使能中的至少任意一种。
在一种可能的设计中,参考持续时间内有至少一个传输,所述至少一个传输关联至少一种传播类型;根据至少一个传播类型中的第一播类型确定信道接入的参数;和/或,参考持续时间内有至少一个传输,所述至少一个传输关联至少一种使能信息;根据至少一个使能信息中的第一使能信息确定信道接入的参数。如此,当存在至少一个传输时,能够根据至少一个传输关联的第一传播类型和/或第一使能信息确定信道接入的参数,以得到更准确的信道接入参数。
可选地,参考持续时间内有至少一个传输还可以理解为参考持续时间内有至少一个第二侧行信息。
第一设备确定信道接入参数前(例如确定竞争窗CWp),参考持续时间内有至少一个传输,这些传输关联至少一种传播类型和/或使能信息。不同的传播类型的传输的确定的CWp值可能相同也可能不同。同理,不同的使能信息的传输的确定的CWp值可能相同也可能不同。因此,需要一种统一的确定CWp的方法。第一设备根据第一COT的首个传输(即第一侧行信息)的传播类型确定CWp是简单直接的方法,能够获得更加反映信道状况的信道接入参数。
可选地,参考持续时间在时域满足以下中的至少任意一项:参考持续时间上在上次调整CWp之后、参考持续时间在确定CWp之前、参考持续时间开始时隙为第二COT的首个时隙,参考持续时间开始时隙为第二COT的首个HARQ使能的传输所在时隙。
在一种可能的设计中,所述信道接入的参数包括竞争窗的值CWp或先听后说LBT类型。
第一设备根据第一传播类型和/或第一使能信息确定上述信道接入参数中的至少任意一种。根据所传输侧行信息的特性适应性调整信道接入参数。其中,信道接入参数的值与信道接入的难易程度有关。
以信道接入参数为竞争窗CWp为例,调整CWp是为了避免与其他UE碰撞。例如信道条件差,则增大CWp的值,多监听一段时间信道是否空闲。再例如,信道条件好,则减少CWp的值,少监听一段时间信道是否空闲。再例如,不知道上次调整CWp之后信道条件有没有改变,则不改变CWp的值。
以信道接入参数为LBT类型为例,类型1 LBT(Type1 LBT)需要更长的信道接入时间,但是比较不容易和其他设备资源碰撞。类型2 LBT(Type2 LBT)仅需要非常短的信道接入时间,但是有适用条件的限制。进一步,类型2A`LBT、类型2B LBT、类型2B LBT对应的信道监听时长均不相同。根据第一传播类型和/或第一使能信息确定具体的LBT类型可以进一步保证设备接入信道的灵活性和可靠性。
可选地,所述方法还包括:第一设备根据该第一侧行信息关联的第一传播类型和/或第一使能信息确定竞争窗CWp。第一设备根据第一侧行信息关联的信道接入参数初始第一COT。比如,根据所述竞争窗的值CWp(根据第一侧行信息关联的第一传播类型和/或第一使能信息确定)接入信道,或者,根据所述竞争窗的值CWp初始第一COT。
可选地,根据第一传播类型和/或第一使能信息确定LBT类型包括:根据第一传播类型和/或第一使能信息,确定LBT类型为类型1信道接入或者类型2信道接入中的一种;或者,根据第一传播类型和/或第一使能信息,确定LBT类型为类型2A信道接入、类型2B信道接入、类型2C信道接入中的一种;或者,根据第一传播类型和/或第一使能信息,确定LBT类型为类型2A信道接入、类型2B信道接入中的一种;或者,根据第一传播类型和/或第一使能信息,确定LBT类型为类型1信道接入、类型2A信道接入、类型2B信道接入、类型2C信道接入中的一种。第一设备根据确定的LBT类型接入信道传输第一侧行信息。
在一种可能的设计中,所述第一侧行信息是接入所述信道后在所述信道上发送的首个侧行信息。
第一设备使用第一侧行信息关联的参数接入信道,或者,第一设备使用第一侧行信息关联的参数初始第一COT。也就是说,第一设备基于第一侧行信息关联的参数确定信道接入参数。这可以让第一设备根据所传输的第一侧行信息的特性适应性调整信道接入参数。
可选地,“第一侧行信息是接入的信道后传输的首个侧行信息”还可以理解为以下中的至少任意一项:
第一侧行信息是接入信道后的第一次传输,或者,第一侧行信息为第一设备接入信道所在的时隙上的传输,和/或,第一侧行信息为第一设备接入信道后首个时隙上的传输,和/或,第一侧行信息为第一设备接入信道后第二个时隙上的传输,或者,第一侧行信息是接入信道后的首个TB,或者,第一侧行信息为接入信道后的首个HARQ使能的传输,或者,第一侧行信息是第一COT内的第一次传输,或者,第一侧行信息是第一COT内的首个TB,或者,第一侧行信息是第一COT内的首个时隙上的传输,或者,第一侧行信息是第一COT内的第二个时隙上的传输,或者,第一侧行信息为第一COT内的首个HARQ使能的TB,或者,第一侧行信息的CPAC是初始COT的CAPC。
其中,第一侧行信息还可以理解为第一TB,两者可以同义替换。
在一种可能的设计中,根据第一传播类型和/或所述第一使能信息确定信道接入的参数,包括:
根据所述第一传播类型和/或所述第一使能信息确定第一反馈信息;
根据第一反馈信息确定信道接入的参数,第一反馈信息是参考持续时间内的第二侧行信息关联的反馈信息,第二侧行信息与第一侧行信息满足以下中的至少任意一项:第二侧行信息关联的第二传播类型与第一侧行信息的第一传播类型相同;第二侧行信息关联的第二使能信息与第一侧行信息的第一使能信息相同;第二侧行信息的第二源标识ID与第一侧行信息的第一源ID相同;第二侧行信息的第二目的ID与第一侧行信息的第一目的ID相同;第二侧行信息的第二HARQ进程与第一侧行信息的第一HARQ进程相同;第一侧行信息为第二侧行信息的重传、周期传输、周期传输的重传中的至少任意一种;第一侧行信息为第二侧行信息的重传预留传输、周期预留传输、周期预留的重传预留传输中的至少任意一种;第二侧行信息的侧行控制信息指示的预留资源传输第一侧行信息;第二侧行信息与第一侧行信息都是第一设备传输的。
反馈信息可以反映信道条件的好坏。例如,如果第一设备收到了ACK,则说明第一设备的接收UE可以译码接收到的数据,这代表了信道条件较好。再例如,如果第一设备收到了NACK,则说明第一设备的接收UE不能正确译码接收到的数据,这代表了信道条件较差。再例如,上次调整CWp之后第一设备没收到任何HARQ信息,则第一设备无法判断信道条件有没有改变,则不改变CWp的值。
第二侧行信息满足以上中的至少任意一项意味着,第一侧行信息与第二侧行信息的业务类型相同,如此,根据业务类型相同的第二侧行信息关联的反馈信息,能够确定更加准确、更能反映信道状况的信道接入参数,有助于提升第一设备接入信道。
可选地,第一反馈信息是参考持续时间内的第二侧行信息关联的反馈信息,包括:第一反馈信息是参考持续时间内的至少一个传输中第二侧行信息关联的反馈信息。
可选地,第二侧行信息位于参考持续时间里;和/或,第二侧行信息在第二COT内传输;和/或,第二侧行信息是第二COT内传输的首个侧行信息。
可选地,参考持续时间关联第二COT。例如,参考持续时间的起始位置为第二COT的起始位置,或者,参考持续时间的起始位置为第二COT内首个HARQ使能的侧行传输的起始位置。
在一种可能的设计中,所述第二侧行信息为多个,所述多个第二侧行信息包括第三侧行信息、第四侧行信息;所述方法还包括:
所述第三侧行信息对应的调整结果为将竞争窗的值调整为最小值,所述第四侧行信息对应的调整结果为保持竞争窗的值,确定将竞争窗的值调整为最小值;或者,所述第三侧行信息对应的调整结果为将竞争窗的值调整为最小值,所述第四侧行信息对应的调整结果为将竞争窗的值增加到更大的候选值,确定将竞争窗的值调整为最小值;或者,所述第三侧行信息对应的调整结果为将保持竞争窗的值,所述第四侧行信息对应的调整结果为将竞争窗的值增加到更大的候选值,确定保持竞争窗的值。
可选地,另一些方案中,所述第二侧行信息为多个,至少一个第二侧行信息的第一反馈信息对应的调整结果为将竞争窗的值调整为最小值,确定将竞争窗的值调整为最小值;或者,所述第二侧行信息为多个,所有第二侧行信息的第一反馈信息对应的调整结果为将竞争窗的值增加到更大的候选值,确定将竞争窗的值调整为最小值。
也就是说,当多个第二侧行信息对应的多个CWp调整结果不同时,优先将CWp调整为多个调整结果中的最小值,以便于第一设备能够快速接入信道。
或者,在一种可能的设计中,当多个第二侧行信息对应的多个CWp调整结果不同时,优先将CWp调整为多个调整结果中的最大值。
在一种可能的设计中,所述参考持续时间是根据第二信道占用时间COT确定的,用于初始所述第二COT的信道接入优先级CAPC大于或等于第一CPAC,其中,所述第一CAPC是所述第一侧行信息关联的 CAPC。
CAPC关联了信道接入的难以程度,例如CAPC的值小,则较容易接入信道;CAPC的值大,则较难接入信道。或者,CAPC的值小,则较短时间就可以接入信道;CAPC的值大,则需要较长的时间才能接入信道。基于与第一侧行信息相同的CAPC初始的COT,更能反映当前是否更容易接入信道,CWp调整更准确。因此,根据与第一侧行信息相同(大于或小于或等于)CAPC初始的COT的参考持续时间里第一传播类型和/或第一使能信息的侧行传输关联的反馈信息调整CWp,能够获得更准确的CWp。可以更好的避免与资源池中其他设备的传输的碰撞。
可选地,满足以下条件中的至少一项,第一设备根据参考持续时间内第二侧行信息关联的第一反馈信息调整CWp:第一CAPC等于第二CAPC,第一CAPC大于第二CAPC第一CAPC小于第二CAPC。其中,所述第一CAPC是所述第一侧行信息关联的CAPC。其中,第一CAPC的值为p。第一设备可以确定第一CAPC关联的CWp。第一设备可以根据第一CAPC初始第一COT,该第一COT承载第一侧行信息。
其中,所述第二CAPC是所述第二侧行信息关联的CAPC。第二CAPC的值为p。该第二CAPC可以由第二侧行信的侧行控制信息指示,也可以由第二COT的COT指示信息指示。
可选地,“第一CAPC是第一侧行信息关联的CAPC”还可以理解为:第一CAPC是初始第一COT的CAPC,第一侧行信息是第一COT内的第一次传输,或者,第一侧行信息是第一COT内的传输。
在一种可能的设计中,所述的方法还包括:满足如下第三条件时,根据网络设备配置给所述第一设备的值确定所述信道接入的参数,或者,根据预配置给所述第一设备的值确定所述信道接入的参数,或者,根据预定义的值确定所述信道接入的参数,或者,不调整信道接入的参数。
所述第三条件包括如下至少一项条件:在参考持续时间内没检测到侧行信息;在参考持续时间内没检测到第二侧行信息;没检测到第一反馈信息;在参考持续时间内的侧行信息的传播类型不是所述第一传播类型;在参考持续时间内的侧行信息的使能信息不是所述第一使能信息。
第三条件还可以表达为:没有第一传播类型和/或第一使能信息的第二侧行信息传输,可以理解为:参考持续时间内没有第一传播类型的第二侧行信息传输;和/或,参考持续时间内没有第一使能信息的第二侧行信息传输;和/或,第二时间内没有第一传播类型的第二侧行信息对应的反馈信息传输;和/或,第二时间内没有第一使能信息的第二侧行信息对应的反馈信息传输。
可选地,不调整信道接入的参数例如可以是不调整CWp。
可选地,参考持续时间内检测到传播类型为基于ACK/NACK的组播的传输,第一设备根据参考持续时间传播类型为基于ACK/NACK的组播的传输关联的反馈信息确定CWp。
可选地,参考持续时间内未检测到传播类型为基于ACK/NACK的组播的传输,参考持续时间内检测到传播类型为单播的传输,第一设备根据参考持续时间传播类型为单播的传输关联的反馈信息确定CWp。
可选地,参考持续时间内未检测到传播类型为基于ACK/NACK的组播的传输或者传播类型为单播的传输,参考持续时间内检测到传播类型为仅基于NACK的组播的传输,第一设备根据参考持续时间传播类型为仅基于NACK的组播的传输关联的反馈信息确定CWp。
如此,在第三条件下,第一设备根据该设计的方法确定信道接入参数,不满足第三条件时,第一设备可以根据以上各设计中的方法确定信道接入参数,有助于第一设备接入信道。
可选地,当存在多个第二侧行信息,根据多个第二侧行信息的传播类型和/或使能信息的优先级确定CWp。
可选地,第一传播类型的优先级最高。也就是说,第二侧行信息关联的传播类型与第一侧行信息关联的第一传播类型相同,根据第一传播类型确定CWp;或者,优先按照第一传播类型确定CWp。
可选地,第一使能信息的优先级最高。也就是说,第二侧行信息关联的使能信息与第一侧行信息关联的第一使能信息相同,根据第一使能信息确定CWp;或者,优先按照第一使能信息确定CWp。
可选地,参考持续时间内的传输关联的传播类型与第一侧行信息关联的第一传播类型相同,第一传播类型的优先级最高。第一传播类型的优先级最高还可以理解为根据第一传播类型确定CWp。
可选地,参考持续时间内的传输关联的使能信息与第一侧行信息关联的第一使能信息相同,第一使能信息的优先级最高。第一使能信息的优先级最高还可以理解为根据第一使能信息确定CWp。
可选地,参考持续时间内检测到传播类型为基于ACK/NACK的组播的传输,第一设备根据参考持续时间传播类型为基于ACK/NACK的组播的传输关联的反馈信息确定CWp。
可选地,参考持续时间内未检测到传播类型为基于ACK/NACK的组播的传输,参考持续时间内检测到传播类型为单播的传输,第一设备根据参考持续时间传播类型为单播的传输关联的反馈信息确定CWp。
可选地,参考持续时间内未检测到传播类型为基于ACK/NACK的组播的传输或者传播类型为单播的传输,参考持续时间内检测到传播类型为仅基于NACK的组播的传输,第一设备根据参考持续时间传播类型为仅基于NACK的组播的传输关联的反馈信息确定CWp。
第十二方面,提供一种通信方法,所述的方法包括:
网络设备配置信道接入的参数的值,满足第三条件时,第一设备根据网络设备配置的值确定所述信道接入的参数的值。
其中,第三条件可参见上述相关方面的设计,这里不在赘述。
第十三方面,提供一种通信方法,包括:
根据至少一个传播类型中的第一播类型确定信道接入的参数;和/或,根据至少一个使能信息中的第一使能信息确定信道接入的参数。参考持续时间内有至少一个传输,所述至少一个传输关联至少一种使能信息;和/或,参考持续时间内有至少一个传输,所述至少一个传输关联至少一种传播类型;所述第一传播类型为第一侧行信息关联的传播类型,和/或,所述第一使能信息为所述第一侧行信息关联的使能信息;
传输第一侧行信息。
本方面中的第一侧行信息可参见上述各方面中的第一信息。
第十四方面,本申请技术方案提供一种通信设备,包括:输入设备、显示屏、一个或多个处理器、存储器、以及一个或多个计算机程序;其中,处理器与输入设备、处理器以及存储器均耦合,上述一个或多个计算机程序被存储在存储器中,当通信设备运行时,该处理器执行该存储器存储的一个或多个计算机程序,以使通信设备执行上述任一方面任一设计中所述的方法。
第十五方面,本申请提供一种装置,该终端包括处理器和存储器,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述处理器执行所述计算机指令时,执行如本申请上述任一方面任一可能设计中所述的方法。
第十六方面,本申请技术方案提供一种计算机可读存储介质,包括计算机指令,当计算机指令在通信设备上运行时,使得通信设备执行上述任一方面任一可能设计中所述的方法。
第十七方面,本申请技术方案提供一种计算机程序产品,当计算机程序产品在通信设备上运行时,使得通信设备执行上述任一方面任一可能设计中所述的方法。
第十八方面,本申请实施例提供一种通信装置,可以实现上述任一方面或其任一可能的设计中由第一设备实现的方法,或实现上述任一方面或其任一可能的设计中由第二设备实现的方法,或实现上述任一方面或其任一可能的设计中由第三设备实现的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为独立设备、或者为可支持设备中实现上述方法的部件或基带芯片、芯片系统、或处理器等。
示例性的,该通信装置包括处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与其他终端设备之间的通信。
示例性的,当通信装置用于实现第一设备功能时:
该通信装置可包括收发单元(或称通信模块、收发模块)和处理单元(或称处理模块)等等模块化组件,这些模块可以执行上述任一方面或其任一可能的设计、或第二方面或其任一可能的设计中第一设备的相应功能。当通信装置是第一设备时,收发单元可以是发送器和接收器,或发送器和接收器整合获得的收发器。收发单元可以包括天线和射频电路等,处理单元可以是处理器,例如基带芯片等。当通信装置是具有上述第一设备功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当通信装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器,例如:中央处理单元(central processing unit,CPU)。
收发单元可用于执行任一方面或其任一可能的设计中由第一设备执行的接收和/或发送的动作。处理单元可用于执行任一方面或其任一可能的设计中由第一设备执行的接收和发送以外的动作。
第十九方面,提供一种通信系统,该通信系统包括任一方面涉及的第一设备、第三设备。或者,包括第二设备、第一设备以及第三设备。
第二十方面,提供一种电路,该电路与存储器耦合,该电路被用于执行上述任一方面或其任意一种可能的实施方式中所示的方法。该电路可包括芯片电路。
附图说明
图1A-图1G为相关技术的场景示意图;
图2A-图2D为本申请实施例提供的系统架构的示意图;
图3为本申请实施例提供的一种通信设备的结构示意图;
图4为本申请实施例提供的一种通信方法的流程示意图;
图5A、图5B为本申请实施例提供的适用场景的示意图;
图6-图8为本申请实施例提供的适用场景的示意图;
图9A-图9C为本申请实施例提供的适用场景的示意图;
图9D为本申请实施例提供的通信方法的流程示意图;
图10-图13为本申请实施例提供的适用场景的示意图;
图14-图17为本申请实施例提供的通信方法的流程示意图;
图18A为本申请实施例提供的适用场景的示意图;
图18B为本申请实施例提供的通信方法的流程示意图;
图19-图20为本申请实施例提供的适用场景的示意图;
图21-图22为本申请实施例提供的通信方法的流程示意图;
图23为本申请实施例提供的一种通信装置的结构示意图;
图24为本申请实施例提供的一种芯片系统的结构示意图。
具体实施方式
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。
“至少一个”是指一个或者多个,
“多个”是指两个或两个以上。
“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。
字符“/”一般表示前后关联对象是一种“或”的关系,例如,A/B可以表示A或B。
此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例中,有时候下标如W1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本申请每个实施例中对名词、术语、表述的解释适用于本发明其他实施例。
本方案各个实施例可以独立实施或者基于某些内在联系结合实施。
本方案的每个实施例中,不同的实现方式可以结合实施或者独立实施。
本方案各实施例中有关资源的描述,除特别说明外,可以指时域资源,和/或,频域资源,和/或,时频资源。时域资源粒度可以为无线帧、子帧、时隙、迷你时隙、符号、秒、毫秒、微秒等任一。频域资源粒度可以为RE、RB、interlace、子信道、RB set、子载波、Hz、kHz、MHz等任一。
本方案各实施例中有关资源重叠的描述,可以指时域资源重叠,和/或频域资源重叠和/或时频域资源发生重叠(即时频域同时发生重叠)。此外,还可以为部分重叠或全部重叠。资源冲突同理。
本申请的各实施例,对于设备1和设备2FDM的表述,可以扩展到数量超过2个设备的FDM。
在一些实施例中,根据CAPC执行的动作,可以替换为根据物理层优先级执行。比如,根据CAPC确定归属设备,可以替换为:根据物理层优先级确定归属设备。
首先,对本申请实施例涉及的技术术语进行介绍:
1、LBT
1.1 Type1 LBT
在NR-U(非授权频谱上的NR通信)中包括两种信道接入模式,分别是动态(dynamic)的信道接入和半静态(semiStatic)的信道接入。动态的信道接入可适用于SL终端和异系统终端在非授权频谱上传输等场景。动态的信道接入包括两种信道接入类型,分别是Type1信道接入(还可以称为Type1 LBT)和Type2信道接入(还可称为Type2 LBT)。
其中,type1 LBT是基于回退的LBT,回退的时间可以与信道接入优先级(channel access priority class,CAPC)有关,设备在检测到信道长时间空闲的情况下才能接入信道。
Type1 LBT可包括如下两个过程:时长为Td的信道感知(defer duration)和循环感知。
1.2 Type2 LBT
Type 2 LBT包含三种类型,Type 2A、Type 2B、Type 2C。与执行Type1 LBT需要侦听较长时间相比,执行Type2 LBT的设备在侦听到信道空闲较短的时间(如16us或者25us)时就可以接入信道,接入信道的成功率相比Type1 LBT有所提升。
在一些方案中,Type2 LBT可以应用在下文的COT共享场景中。
Type 2A信道接入:设备在至少感知到感知间隔Tshort=25us内信道空闲后立即传输。
Type 2B信道接入:设备在感知到Tf=16us内信道空闲后立即传输。
Type 2C信道接入:设备不进行信道感知即可传输,传输时间最多584us。
2、重传预留和周期预留:
在NR的机制中,SCI中频域资源指示(freq设备ncy resource assignment)、时域资源指示(time resource assignment)、资源预留周期(resource reservation period)三个字段可以指示资源预留,用于重传和/或周期性传输。
3、信道占用时间(channel occupancy time,COT)
是指eNB/gNB/设备等设备执行信道接入过程后,可以初始化一个COT,该COT具有一定的时长。COT可以共享用于eNB/gNB/设备(s)之间的传输。
4、COT共享(sharing):设备执行信道type 1接入过程并初始化COT后,可以将本设备不需要使用的资源共享给其他设备。在一些方案中,要求被共享的其他设备与当前设备具有收发关系。例如,如果其他设备传输的是单播业务,接收设备应该是本设备;如果其他设备传输的是组播/广播业务,接收设备应该包括本设备。其他设备在使用该COT进行传输前,需要首先执行信道接入过程。
5.1、初始COT的设备
即初始COT的设备。多个初始设备是指时域上在同一时隙初始COT的初始设备,频域上是FDM(频域资源不同)的。所述不同频域资源位于同一信道(信道)内或不同的信道。
5.2、FDM传输:指2个传输在时域上存在重叠,频域上互不重叠。可选地,FDM可以分为初始COT时的FDM以及COT内的FDM。其中COT内的FDM可能包括初始COT的设备(可称为初始设备)连续传输的FDM(由于设备连续传输造成的FDM)或者COT共享的传输FDM(共享设备和初始设备之间/共享设备之间)。
5.3、时间间隙(GAP)
一些场景中,终端可能在连续两个时隙分别接收和发送信息,或者终端可能在同一个时隙分别接收和发送信息。因此,需要用于终端进行收发转换的符号。比如,终端可能在连续两个时隙分别接收和发送PSSCH,或者终端可能在同一个时隙分别接收和发送PSSCH和PSFCH,需要用于终端进行收发转换的符号,也就是射频将接收动作转换为发送动作需要的处理时间,或者,将发送动作切换为接收动作需要的处理时间。
6、循环前缀扩展(cyclic prefix extension,CPE)
CPE是指在实际有用信道/信号传输之前进行的冗余传输。往往是一些冗余信息或者有用信道/信号的复制。在非授权频谱传输中,例如NR-U、SL-U,通常是考虑到LBT结束的时刻并不一定总是与实际有用传输的资源在时域上相邻,从而可能会存在信道丢失或者其他风险,因此通过在相应的间隔上发送CPE保证时间上的相邻。CPE可以根据信令配置或者指示。
CPE的应用场景包括如下两个场景:
场景1:如图1A,设备初始COT时,Type1 LBT的传输之前发送CPE(比如CPE1)。Type1 LBT的传输之前发送的CPE,可以称为初始CPE,比如,图1A所示CPE1可以称为该初始设备的初始CPE。
场景2:如图1A,在COT内,初始设备(初始化COT的设备)自身的传输(比如传输1和传输2)之间的间隔不满足LBT type 2A、2B、2C对两个传输之间的间隔的要求时,需要在实际有用传输(比如传输2)前发送一定长度的CPE(CPE2)来满足间隔要求。
示例性的,CPE时长与LBT时长的总和为一个符号的时长。仍以图1A为例,假设时隙1的最后一个符号用作GAP,初始设备执行LBT type 2A之后发送CPE。该CPE携带实际将要在传输2中发送的部分信息,相当于传输2提前发送。CPE的时长与LBT type 2A的时长之和为该最后一个符号的时长(比如72us)。如此,可以保证传输1与CPE(携带将要在传输2中传输的部分信息)之间的间隔为LBT时长,相当于提前发送传输2中的信息,进而可以减小传输1与传输2(提前发送)之间的实际间隔,满足相邻两个传输之间的间隔要求(LBT时长)。
或者,在另一些场景中,初始设备自身的传输与共享设备(从初始设备获取共享资源,并使用共享资源进行传输)的传输之间的间隔不满足LBT type 2A、2B、2C对两个传输之间的间隔的要求时,需要在实际有用传输前发送一定长度的CPE来满足间隔要求。
本申请实施例中,设备在COT内使用的CPE,可以称为COT内CPE。COT内CPE可包括COT内初始设备使用的CPE和COT内共享设备使用的CPE。
在一些场景中,如图1B,以第一设备为设备1,第三设备为设备2为例,设备1执行16us的LBT,设备2执行25us的LBT,设备1做完LBT接入信道之后,开始发送CPE。此时,由于设备1已开始发送CPE,设备2仍在执行LBT,于是设备2检测到信道繁忙,LBT失败,无法接入信道。由此可见,当存在多个设备时,只有CPE最长的终端能够接入并传输,CPE短的终端由于被阻塞(blocking)而无法接入。
7、(预)配置调度(configured grant,CG)传输
该传输方式中,需要预配置一些资源,数据到达时,设备可以在配置的资源上直接传输,无需进行其他的资源选择等动作。
8、资源:
具体而言,是指时频资源。按照Rel-16/Rel-17NR协议,PSCCH/PSSCH的调度粒度在时域上单位为一个时隙,频域上单位为连续一个或者多个子信道。发送设备可以在该资源上发送侧行信息。侧行信息包括PSCCH、PSSCH、PSFCH、DM-RS、CSI-RS、PT-RS、S-SSB、SCI、一阶SCI、二阶SCI、CPE(CP extension,Cyclic Prefix extension)中的至少其中一种。PSCCH中承载一阶SCI,PSSCH中承载二阶SCI和/或数据,PSFCH承载反馈信息。其中PSCCH/PSSCH包括PSCCH和/或PSSCH。
8.1、物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)
PSCCH承载一阶SCI。为了便于描述,在不做区分时,PSCCH和SCI表示含义相同。在时域上,PSCCH占用从第二个侧行符号开始的两个或三个OFDM符号;在频域上,承载PSCCH的PRB从关联的PSSCH的最低子信道的最低PRB开始,且PSCCH占据的PRB个数在一个PSSCH的子带范围内。PSCCH由{10,12,15,20,25}个RB组成,具体取值由RRC信令指示或者预配置。
8.2、物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)
PSSCH承载二阶SCI、MAC CE和数据中的至少2种。SCI可以指一阶SCI和/或二阶SCI。为了便于描述,在不做区分时,SCI指一阶SCI、二阶SCI、一阶和二阶SCI中的任意一种。时域上,在没有PSFCH的资源上,有12个符号用于承载PSSCH;在有PSFCH的资源上,有9个符号用于承载PSSCH。频域上,占据连续LsubCh个子信道。另外,在一个时隙内,第一个OFDM符号复制第二个符号上发送的信息,用于自动增益控制(Automatic Gain Control,AGC)。
8.3、物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)
PSFCH承载反馈信息。在有PSFCH的资源上,倒数第二个和第三个OFDM符号承载PSFCH。倒数第三个符号上的信号是倒数第二个符号上信号的重复,以便接收设备进行AGC调整。
8.4、GAP符号
此外,设备可能在连续两个时隙分别接收和发送PSSCH,或者设备可能在同一个时隙分别接收和发送PSSCH和PSFCH。因此,在PSSCH后和PSFCH符号之后,均需要额外增加一 个符号用于设备的收发转换。
8.5、AGC符号
该符号位于传输的起始符号,例如PSCCH/PSSCH传输的符号0,例如PSFCH传输的符号11。由于不能一边进行AGC调整一边接收、译码数据。因此AGC符号上的信号是下一个符号上信号内容的复制。由于SL传输保持每个符号上的功率相等,因此可以基于AGC符号的自动增益控制的结果接收剩余符号的内容。
9、资源池和RB集合
NR SL通信基于资源池(resource pool)进行。所谓资源池指的是一块专用于SL通信的时频资源。资源池包含的频域资源是连续的。资源池包含的时域资源可以是连续的,也可以是不连续的。不同的资源池由RRC信令区分。设备在收资源池上接收,在发资源池上发送。如果资源池具有相同的资源池索引,则可以认为资源池的时频资源是完全重合的。
在SL-U中,由于频带是由多种形式的设备共享的,如SL设备与Wi-Fi设备、蓝牙设备在相同的频带上传输。因此,SL资源池还可以理解为:可以用于SL传输的资源集合。在本实施例中,资源池还可以称作一个或者多个RB集合(RB set)、一个或者多个信道(channel)、一个或者多个工作信道(Operating channel)、一个或者多个名义信道(Nominal Channel Bandwidth)带宽(bandwith)。其中,信道和RB集合的含义可以互相替换。即资源池、信道、带宽、RB集合均用于表示可以用于SL传输的资源集合。
在Rel-16中,在频域上连续的RB组成子信道。在SL-U中,资源的频域既可以连续的RB(contiguous RB)也可以是交错的RB(interlaced RB)。例如,频域资源分配的基本单位是子信道,其中,子信道由连续的RB或者交错的RB组成。再例如,频域资源分配的基本单位是子信道或者交错,其中子信道由连续的RB组成,交错由交错的RB组成。示例性的,如图1D示出了交错的一种示例。
10、Sidelink参数集
R16NR SL支持的子载波间隔和对应的CP长度如表1所示。为了降低设备实现复杂度,在一个侧行载波上,仅配置一种CP长度类型和一种子载波间隔。在不同的最大传输带宽内,不同的SCS下,RB数如表2所示。
在CP-OFDM的架构下,单个OFDM符号上的单个子载波是时频资源的最小单位,协议中称之为资源元素(resource element,RE)。一个RB指的是由12个连续的子载波组成的频域资源单位。调度的最小单位也可以为RB,如PSFCH的调度单位为时域上是1个符号,频域上是一个RB。上文提及PSCCH/PSSCH的调度的频域粒度为子信道或交错,1个子信道由{10,12,15,20,25,50,75,100}个PRB组成,具体值由RRC信令指示或者预配置。
表1在不同频率范围内支持的子载波间隔
表2最大传输带宽内的RB数
资源池的带宽可以是{5,10,15,20,25,30,40,50,60,70,80,90,100}MHz中的至少其中一种。不同的SCS下,最大传输带宽对应不同的RB数,详见表2。RB集合与信道具有相同的含义,为COT的频域单位。例如COT在频域上包括M1个RB集合,M={1,2,3,4,5}。
下面解释资源池与RB集合的关系。资源池包括一个或者多个RB集合。资源池内可以传输 一个或者多个COT。例如图1C所示,RB集合0传输的COT1、RB集合1和RB集合2传输的COT2。COT的频域单位为一个或者多个RB集合。其中,RB集合还可以称为信道。
资源池的带宽为C*20Mhz,C为正整数,如C={1,2,3,4,5}。资源池中有至少一个信道。例如,资源池包括一个信道,信道带宽为20MHz,资源池带宽为20MHz。再例如,资源池包括2个信道,信道带宽为20MHz,资源池带宽为40MHz。再例如,资源池包括5个信道,信道带宽为20MHz,资源池带宽为100MHz。
RB set的频域带宽为20MHz。资源池的带宽为C*20Mhz或者C*20+C2Mhz,C为正整数,如C={1,2,3,4,5}。例如,资源池的带宽为20MHz,资源池包含1个RB set。再例如,资源池的带宽为50MHz,资源池包含2个RB set,这两个RB set可以在频域相邻或者不相邻。
设备在资源池中,可以在1个RB集合上传输PSCCH和/或PSSCH。以设备在A个交错上传输PSCCH、在B个交错上传输PSSCH为例。A个交错中最小索引的RB与B个交错中最小索引的RB为相同的RB。例如,A=1,B=4。
设备在资源池中,可以在相邻的D个RB集合上传输PSCCH和/或PSSCH。设备在RB集合索引最小的RB集合上,在A个交错上传输PSCCH;设备在D个RB集合上,总共在B个交错上传输PSSCH。例如,A=1,B=4,D=2,RB集合索引分别为0和1,则设备在索引为0的RB集合上传输PSCCH。
资源池中还可以包括保护带,如1C阴影所示。每个RB集合之间有5、6或者7个RB组成的保护带。以1C、表3中100MHz传输带宽、30kHz SCS为例,在100MHz的传输带宽中,总共有273个RB。其中,RB集合0至RB集合4分别包括50、50、49、50、50个RB,每个RB集合之间有6个RB的保护带宽。保护带宽用于避免不同设备在相邻RB集合上传输的彼此干扰。
表3宽带传输的RB集合及保护带
COT的频域包括一个或者多个RB集合。对于COT的频域包括多个RB集合,COT也包括该多个RB集合中间的保护带。例如1C所示的COT1,COT1包括RB集合0中的资源,不包括与RB集合相邻的保护带中的资源。又例如1C所示的COT2,COT2包括RB集合1和RB集合2中的资源,也包括RB集合1和RB集合2之间的保护带中的资源。
11、交错(interlace或Interlaced resource blocks)
协议定义了多个交错的资源块(Multiple interlaces of resource blocks),以下简称交错。交错m由公共资源块(CRB,common resource block){m,M+m,2M+m,3M+m,…}组成。其中M为交错数,且有m∈{0,1,…,M-1}。可选地,M的取值与SCS有关。例如,在μ=0(即子载波间隔为15kHz)时,M取值为10。再例如,在μ=1(即子载波间隔为30kHz)时,M取值为5。
CRB与交错资源块、BWP i和交错m的关系满足: 其中,其中表示BWP开始的公共资源块,是相对于公共资源块0的CBR个数。当没有混淆的风险时,索引μ可省略。设备期望BWP i包含的交错中的公共资源块的数量不小于10。为了便于表述,公共资源块CRB可以理解为RB。
资源分配方式包括连续的和交错的两种方式。其中,交错还可以记作交织、隔行、逐行、梳齿。1个交错包括N个不连续的RB,传输带宽中包含M个交错。可选地,交错内的RB之间的间隔可以相同或者不同。例如,1个交错内,RB的间隔可以为M个RB。例如1D所示,横轴代表频域,单位为RB,纵轴代表时域,单位为符号。在20MHz频率带宽内,30KHz子载波 间隔下,共有51个资源块(RB),即51个彩色格子。这51个资源块中,10个或者11个等间隔的资源块组成一个交错,共计有5个交错。11个黄色的RB对应交错0,10个绿色、蓝色、红色、紫色的RB分别对应交错1、交错2、交错3、交错4。另外,RB还可以称为PRB(physical resource block),即物理资源块。
以20MHz传输带宽为例,表中列举了交错个数M和交错里的PRB个数N。可以根据配置或者预配置确定至少一个交错个数M和交错里的RB个数N的组合。
表4 20MHz传输带宽时,不同SCS下交错个数M和交错里的PRB个数N的组合
子信道也可以是连续RB(CRB,contiguous RB-based)组成的。
12、优先级
设备的业务优先级具体而言是设备发送优先级(transmission priority)。
优先级,还可以称为业务优先级、L1优先级(L1priority)、物理层优先级、SCI中携带的优先级、一阶SCI中携带的优先级、SCI 2-C中携带的优先级、SCI关联的PSSCH对应的优先级、发送优先级、发送PSSCH的优先级、用于选择资源的优先级、逻辑信道的优先级、逻辑信道的最高等级的优先级。
其中优先级等级与优先级数值具有某种对应关系,例如优先级等级越高对应的优先级数值越低,或者优先级等级越低对应的优先级数值越低。以优先级等级越高对应的优先级数值越低为例,优先级数值取值范围可以为1-8的整数或者0-7的整数。若以优先级数值取值范围为1-8,则优先级的值为1时代表最高等级的优先级。
在非授权频谱中,有CAPC这一概念。CAPC还可以译为通道访问优先级类。CAPC关联SL信息的重要程度,用于第一类型LBT。例如,CAPC是第一类型LBT中的优先级p。可选地,CAPC终端设备也可以用于确定第二SL信息是否在由第一SL信息关联的CAPC初始的COT内传输。
其中CAPC等级与CAPC值具有某种对应关系,例如CAPC等级越高对应的CAPC值越低,或者CAPC等级越低对应的CAPC值越低。CAPC值取值范围可以为1-4的整数。当更低的CAPC值代表更高等级的CAPC时,则CAPC的值为1时代表最高等级的CAPC。当更低的CAPC值代表更低等级的CAPC时,则CAPC的值为1时代表最低等级的CAPC。
在本申请中,优先级既可以指业务优先级也可以指信道接入优先级CAPC。
13、时间单元、频域单元
时域资源包括符号(symbol)、时隙(slot)、迷你时隙(mini-slot)、部分时隙(partial slot)、子帧(sub-frame)、无线帧(frame)、感知时隙(sensing slot)等。
频域资源包括资源单元(resource element,RE)、资源块(resource block,RB)、RB集合(RB set)、子信道(subchannel)、资源池(resource pool)、带宽部分(bandwidth part,BWP)、载波(carrier)、信道(channel)、交错(interlace)等。
为了便于描述,本文以时域资源为时隙、频域资源为子信道或交错描述传输PSCCH/PSSCH的资源。
14、非授权频谱(Unlicensed Spectrum)或共享频谱(Shared Spectrum)
根据《中华人民共和国无线电频率划分规定》为了充分、合理、有效地利用无线电频谱资 源,保证无线电业务的正常运行,防止各种无线电业务、无线电台站和系统之间的相互干扰对频段进行了划分。2/3/4/4G等技术使用是授权频谱,需要由电信运营商申请才能使用,干扰小,安全。
WiFi、蓝牙、Zigbee等技术使用的是非授权频谱,目的是作为运营商增强其服务提供的补充工具。无需申请就能使用授权频谱通信,并且免费。在非授权频谱上通信需要遵守某些规定,例如先听后说(LBT:Listen-Before-Talk)和OCB(Occupied Channel Bandwidth)要求,用于保证在该频谱上运行的各类设备之间的接入公平性。在非授权频谱上,多种NR-U、SL-U、WiFi、蓝牙、Zigbee等多种技术都可以在该频谱上传输。因此,非授权频谱还可以称为共享频谱。在本专利中“非授权频谱”和“共享频谱”的含义相同,可以互相替换。
在非授权频谱上的SL通信称为SL-U。其中,Wi-Fi设备、蓝牙设备、Zigbee设备中的任意一项对于SL设备可以简称异系统设备(说明书需要定义“异系统装置”)。
15、CO和COT
信道占用(CO,channel occupancy)是指设备在执行信道接入过程后在一个或者多个信道上的传输。
设备执行Type1信道接入后在一段连续的时间内占用信道传输,称为信道占用时间(COT,Channel Occupancy Time)。COT的频域单元为信道,时域单元为ms或者时隙。在本专利中,COT可以是一个时间概念,即SL传输的时间;也可是一个资源的概念,即SL传输所占的时频资源。在本发明中,若不做进一步区分,COT和CO为同一概念。设备可以在相邻或者不相邻的多个信道传输。在本发明中,设备在多个信道传输可以理解成:设备的传输占用了1个COT,COT在频域上占用了多个信道;或者,设备的传输占用了多个COT,每个COT在频域上占用了1个信道。
网络设备或终端设备基于Type1 LBT接入信道成功后在COT内传输。这个COT可以称为该网络设备或终端设备初始的COT。第一类型LBT是以不同的CAPC执行的,该COT也可以称为基于CAPC=p初始的COT。其中,初始即为initiated、initial、initialization或者initiate。初始的COT还可以译为创建的COT。
COT可以共享用于设备之间的传输(COT sharing)。初始COT的设备可以把COT共享给其他设备,即用于其他设备的SL传输。初始COT的设备和共享COT的设备在一段连续的时间内占用信道传输COT共享需要满足相应条件,如初始COT的设备为共享COT的设备的接收设备或者发送设备,再如初始COT的设备和共享COT的设备为同一个组内的组员。
设备的传输不能超过最大信道占用时间的限制(MCOT,Maximum Channel Occupancy Time),记为Tcot,p。对于不同的CAPC,Tcot,p的值不同,如表5或表6所示。对于1个设备接入信道并在COT内传输,传输时间不超过最大信道占用时间Tcot,p。对于多个设备在COT内传输,初始COT的设备和共享COT的设备的传输时间不超过最大信道占用时间Tcot,p。p为初始COT的设备的CAPC;或者,p为在COT传输的设备中CAPC值最小的CAPC。
16、信道接入过程
在非授权频谱上接入需要进行先听后说(listen before talk,LBT)。即确定在一段时间内信道空闲,则设备才能够在信道内传输。在NR-U中有两种信道接入模式,分别是动态(dynamic)的信道接入和半静态(semiStatic)的信道接入。设备基于配置或者预配置确定采用动态或者半静态的信道接入方法。动态的信道接入还可以称为FBE(Frame Based Equipment)信道接入。或者还可以理解为:FBE通过动态接入模式接入信道。半静态的信道接入还可以称为LBE(Load Based Equipment)信道接入。或者还可以理解为:LBE通过半静态接入模式接入信道。在SL-U中,应该也会沿用这两种(或者其中之一)信道接入方法。
16.1、动态的信道接入
动态的信道接入适用于SL终端和异系统终端在非授权频谱上传输的场景。动态的信道接入包括两种信道接入类型,分别是Type1信道接入和Type2信道接入。其中,type1 LBT是基于回退的LBT,回退的时间与CAPC有关,需要信道空闲较长时间才能接入。Type 2信道接入包含三种类型,Type 2A、Type 2B、Type 2C。Type2 LBT仅需要信道空闲较短的时间(如16us或者25us)设备就可以接入信道。主要在COT共享时使用,并有相应的执行条件,如初始COT的设备和共享COT的设备主要有收发关系。
16.2、Type 1信道接入(Type 1channel access或者Type 1SL channel access)
Type 1信道接入还可以称为Type1 LBT。包括2个部分:长度为Td的信道感知(defer duration)和循环感知。
长度为Td的信道感知由一个Tf=16us和后续连续的mp个Tsl=9us组成,即Td=Tf+mp*Tsl。其中,Tf的感知时间在最开始的9us,当Td的所有感知时间都空闲后进入循环感知。mp的取值参见表5或表6,其中CWmin,p≤CWp≤CWmax,p为竞争窗(Contention window),Tcot,p为COT的最大长度。CWmin,p为CAPC为p时的竞争窗口的最小取值,CWmax,p为CAPC为p时的竞争窗口的最大取值。
其中,信道空闲还是繁忙是根据信道检测门限确定的。例如,接收功率(detected power)大于能量检测门限XThresh,则信道繁忙。再例如,接收功率(detected power)小于能量检测门限XThresh,则信道空闲。
循环感知是基于计数器N的循环过程,包括以下步骤:
步骤1:令N=Ninit,其中Ninit是取值范围为0到CWp的随机数。然后进入步骤4;
步骤2:如果N>0,UE决定减小计数器值,令N=N-1;
步骤3:在感知时隙(an additional sensing slot duration)内感知信道(sense the channel),如果感知结果为空闲(idle),进入步骤4;否则,进入步骤5;
步骤4:如果N=0,停止;否则,进入步骤2;
步骤5:感知信道直到感知到Td中有一个感知时隙(sensing slot)为繁忙(busy),或者直到Td中所有感知时隙均为空闲;
步骤6:如果Td中所有感知时隙均为空闲,进入步骤4;否则进入步骤5。
在上述步骤1之前选择CWmin,p和CWmax,p,mp、CWmin,p和CWmax,p是基于与网络装置或设备传输相关联的CAPC(记为p)确定的,如表5或者表6所示:
表5 Type 1信道接入相关参数值-例1
表6 Type 1信道接入相关参数值-例2
网络设备或终端设备维护竞争窗口值CWp,并在步骤1之前根据以下步骤调整CWp的取值:
对于表中的每个优先级,设置该优先级对应的CWp=CWmin,p。
网络设备或终端设备在参考子帧k中发送的数据所对应的反馈HARQ-ACK值中,如果至少80%的数据被反馈否定应答(negative acknowledgment,NACK),则将每个优先级所对应的CWp值增加到下一个较高的允许值,在步骤2中使用;否则,执行步骤1。其中,参考子帧k是网络设备或终端设备在信道上最近一次数据传输的起始子帧。
16.3、Type 2信道接入(Type 2 channel access或者Type 2 SL channel access)
Type 2信道接入包含三种类型,Type 2A、Type 2B、Type 2C。Type2 LBT仅需要信道空闲 较短的时间(如16us或者25us)UE就可以接入信道。主要在COT共享时使用,并有相应的执行条件,如初始COT的UE和共享COT的UE主要有收发关系。
·Type 2A信道接入:UE在至少感知到感知间隔Tshort=25us内信道空闲后立即传输。具体地,Tshort=25us由1个Tf=16us的感知时隙和1个Tsl=9us的感知时隙组成。如果这两个感知时隙均为空闲,则认为信道空闲。
·Type 2B信道接入:UE在感知到Tf=16us内信道空闲后立即传输。具体的,信道感知发生在Tf的最后9us,信道感知时间不小于5us,如果有4us以上感知信道空闲,则认为信道空闲。
·Type 2C信道接入:UE不进行信道感知即可传输,传输时间最多584us。
16.4、半静态的信道接入
半静态的信道接入适用于非授权频谱上仅有SL终端传输的场景。半静态的信道接入中,基站或者设备在每两个连续的无线帧中以Tx为周期占用信道。占用开始的时间点为偶数索引的无线帧的i·Tx处或者i·Tx+offset处。占用信道的时长最多为0.95Tx。在周期Tx内的最后max(0.05Tx,100us)时长为该周期的空闲时间(idle duration)。基站或者设备不在该空闲时间传输。其中,Tx为配置或者预配置的,例如为{1,2,2.5,4,5,10}ms中的至少任意一种;
17、重传预留和周期预留:
在NR的机制中,SCI中频域资源指示(Frequency resource assignment)、时域资源指示(Time resource assignment)、资源预留周期(Resource reservation period)三个字段可以指示资源预留,用于重传和/或周期性传输。如图1E所示,频域指示字段指示初传和重传的子信道个数和频域位置,如R1资源上的SCI指示R1、R2和R3的子信道个数和频域位置。时域指示字段指示重传资源与初传资源的时间间隔,如R1资源上的SCI指示R1时隙结束位置到R2时隙结束位置的时间间隔和R1时隙结束位置到R3时隙结束位置的时间间隔。资源预留周期字段指示资源预留周期,如图1E中R1和R4的时间间隔、R2和R5的时间间隔、R3和R6的时间间隔。
以SCI中指示3个资源(Nmax=3)举例,通过频域资源分配和频域资源分配可以表示3个资源的时域、频域、子信道信息。其中第一个资源为当前发送PSCCH/PSSCH所在位置的资源,后两个资源为预留给重传的资源。另外,由于SCI中的资源预留周期字段,UE还可以周期性预留上述3个资源的周期资源。在本发明中,“SCI指示的资源”,既可以是当前发送PSCCH/PSSCH的资源、也可以是重传预留资源、或者周期预留资源。图1E示出了重传预留资源与周期预留资源的示例。
如图1E所示,在UE在R1资源上检测到SCI(实线表示),并预留了即将用于资源传输的资源(虚线表示)。SCI中的时域资源指示和频域资源指示两个字段指示了R1、R2和R3这3个资源(Nmax=3),其中R2和R3为重传预留资源。SCI中的预留周期(或预留间隔)字段指示了R4这1个资源,R4为R1的周期预留资源。由于周期预留的频域资源相同,时域资源为周期的整数倍,相当于R2周期预留了R5,R3周期预留了R6。即虽然检测到R1上的SCI时R4还未用于侧行传输,也可以视作R4预留了R5和R6。以上过程称为链式预留。
18、源标识、目的地标识
层2源标识(Source Layer-2 ID或source L2 ID)为24bit。其中层2源标识的低8位(LSB part(8bits))称为层1源标识,即为NR的SCI中指示的源ID(source ID);高16位(MSB part(16bits))称为SRC,在MAC CE的MAC头中指示。控制信息中的源标识可以指NR的SCI中指示的源ID、MAC头中的SRC、层2源标识。
层2目的地标识(Destination Layer-2 ID或destination L2 ID)为24bit。其中层2目的地标识的低16位(LSB part(16bits))称为层1目的地标识,即为NR的SCI中指示的目的地ID(destination ID);高8位(MSB part(8bits))称为DST,在MAC CE的MAC头中指示。控制信息中的目的地标识可以指SCI中指示的目的地ID、MAC头中的DST、层2目的地标识。
另外,在协议中destination还可以泛指。具体而言,对于单播来说,destination代表层2源标识和层2目的地标识对;对于广播和组播来说,destination代表层2目的地标识。
19、NR-U的CWp调整
在进行type1 LBT需要确定CWp值。NR-U标准化了UL和DL确定CWp的过程。在本发明中,“确定竞争窗CWp”还可以理解为“维护竞争窗CWp”、“更新竞争窗CWp”、“调整竞争窗CWp”,以上概念可以同义互换。
19.1、以下为UL确定CWp的过程:
UE使用type1 LBT信道接入方法传输,其中CAPC=p。UE在type1 LBT的步骤1之前通过以下方法调整竞争窗CWp。在本发明中,“调整竞争窗CWp”还可以理解为“维护竞争窗CWp”、“更新竞争窗CWp”。
步骤1:对每个CAPC=p(p∈{1,2,3,4}),令CWp=CWmin,p,其中;
步骤2:如果在上次CWp更新之后有HARQ-ACK反馈,进入步骤3。否则,如果与上次CWp更新之后的Type 1 LBT之后的传输不包括重传,或者,最早的UL信道占用对应的参考持续时间(reference duration)之后的Tw内进行了传输,进入步骤5;否则进入步骤4;
步骤3:根据最近的UL信道占用的参考持续时间内的PUSCH相对应的HARQ-ACK反馈确定:PUSCH的HARQ-ACK反馈信息中,如果基于TB的反馈信息至少有一个是ACK,或者如果基于CBG的反馈信息中至少有10%的反馈是ACK,那么进入步骤1;否则进入步骤4;
步骤4:对每个CAPC=p(p∈{1,2,3,4}),增加CWp到下一个更大的候选值;
步骤5:对每个CAPC=p(p∈{1,2,3,4}),保持CWp,进入步骤2。
如果CWp=CWmax,p,且CWp=CWmax,p已经连续采用K次作为Ninit的生成值,那么其将被重置为相应等级的CWmin,p。其中,K是一个由{1,2,…,8}中为每个CAPC=p选取的值。
19.2、以下为DL确定CWp的过程:
网络装置使用type1 LBT信道接入方法传输PDSCH,其中CAPC=p。UE在type1 LBT的步骤1之前通过以下方法调整竞争窗CWp。其中“调整竞争窗CWp”还可以理解为“维护竞争窗CWp”、“更新竞争窗CWp”。
步骤1:对每个CAPC=p(p∈{1,2,3,4}),令CWp=CWmin,p,其中;
步骤2:如果在上次CWp更新之后有HARQ-ACK反馈,进入步骤3;否则,如果与上次CWp更新之后的最早的DL信道占用对应的参考持续时间之后的Tw内,没有进行重传或者进行了传输,进入步骤5;否则进入步骤4;
步骤3:根据最近的DL信道占用的参考持续时间内的PDSCH相对应的HARQ-ACK反馈信息确定:PDSCH的HARQ-ACK反馈信息中,如果基于TB的反馈信息至少有一个是ACK,或者如果基于CBG的反馈信息中至少有10%的反馈是ACK,那么进入步骤1;否则进入步骤4;
步骤4:对每个CAPC=p(p∈{1,2,3,4}),增加CWp到下一个更大的候选值;
步骤5:对每个CAPC=p(p∈{1,2,3,4}),保持CWp,进入步骤2。
如果CWp=CWmax,p,且CWp=CWmax,p已经连续采用K次作为Ninit的生成值,那么其将被重置为相应等级的CWmin,p。其中,K是一个由{1,2,…,8}中为每个CAPC=p选取的值。
UL和DL的CWp调整步骤2如图1F所示。UL和DL的CWp调整步骤3如图1G所示。
本申请实施例的技术方案可应用于蜂窝通信,车联网,终端直连通信(比如侧行链路(sidelink,SL)通信),无线保真(wireless fidelity,Wi-Fi)通信系统或其他系统中。可选地,蜂窝通信系统包括但不限于新空口(new radio,NR)通信系统,长期演进(long term evolution,LTE)系统,后续演进的通信系统(比如6G通信系统等)。
示例性的,图2A示出了本申请实施例适用的通信系统的一种架构。该系统可包括终端(比如设备1-3)。终端与周围终端之间可以进行建立直连通信链路,实现直连通信,如:设备1与设备2之间可以直连通信。
可选地,本申请的各实施例中,终端还可以替换为终端设备、设备、终端装置、设备等。
示例性的,终端与终端间建立的直连通信链路可以被定义为SL,终端与周围终端直连通信的接口可以称为PC5口。
可选地,图2A所示通信系统还可以包括网络设备。终端可以采用网络设备中转的方式向对端终端发送消息,如:设备1可以将消息(比如车与任何事物通信(vehicle-to-everything,V2X)消息)发送给网络设备,由网络设备将消息发送给设备2。
示例性的,终端向网络设备发送信息的通信链路可以被定义为上行链路(uplink,UL),终 端从网络设备接收信息的通信链路可以被定义为下行链路(downlink,DL),终端与网络设备之间的接口可以称为Uu接口。
可选地,图2A所示网络架构仅为示例性架构图,本申请实施例不限定图2A所示通信系统包括的设备的数量。此外,虽然未示出,但除图2A所示功能实体外,图2A所示网络还可以包括其他功能实体,如:应用服务器(application server)、核心网设备等,不予限制。
图2A中的网络设备可用于实现无线物理控制功能、资源调度和无线资源管理、无线接入控制以及移动性管理等功能。该网络设备可以为接入网(access network,AN)/无线接入网(radio access network,RAN)设备,还可以为由多个5G-AN/5G-RAN节点组成的设备,又可以为者基站(nodeB,NB)、演进型基站(evolution nodeB,eNB)、下一代基站(generation nodeB,gNB)、收发点(transmission receive point,TRP)、传输点(transmission point,TP)以及某种其它接入节点中的任一节点。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例描述本申请实施例提供的技术方案。
上述终端为接入上述通信系统,且具有无线收发功能的终端或可设置于该终端的芯片。示例性的,终端可以为车辆,车辆不限定于为汽车、自行车、电动车、飞机、船舶、火车、高铁等任一类型的车辆,该车辆可以包括能够与其他设备直连通信的车载设备,该车载设备可以称为用户设备(user equipment,设备)或者终端(terminal)。
该终端也可以是用户装置、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。比如,本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、混合现实(mixed reality,MR)终端、车辆用户设备(vehicle user equipment,V设备)、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的RSU等。本申请的终端还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的通信方法。
图2B示出了本申请实施例适用的通信系统的另一种示例,该通信系统中的终端可以为车辆或车载设备等。车辆或车载设备之间,网络设备与车辆之间可以根据本申请实施例提供的通信方法进行通信。
图2C示出了本申请实施例适用的通信系统的另一种示例,该通信系统中的终端可以为AR/VR/MR设备、处理设备/显示设备(手机、电脑、平板等)等。AR/VR/MR设备与处理设备/显示设备之间可以根据本申请实施例提供的通信方法进行通信。
图2D示出了本申请实施例适用的通信系统的另一种示例,该通信系统可以为Wi-Fi系统。网络设备(比如路由器)与终端之间,终端之间可以根据本申请实施例提供的通信方法进行通信。
本申请实施例中,用于实现终端的功能的装置可以是终端本身,也可以是能够支持终端实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请描述的系统架构及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对于本申请提供的技术方案的唯一限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
可选地,本申请实施例中的终端或网络设备可以通过具有图3所描述结构的通信设备来实现。图3所示为本申请实施例提供的通信设备的硬件结构示意图。该通信设备400包括至少一个处理器401,存储器403以及至少一个通信接口404。其中,存储器403还可以包括于处理器401中。
处理器401可以由一个或多个处理单元构成,处理单元可以是中央处理器(central processing unit,CPU),特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个 用于控制本申请方案程序执行的集成电路。
在上述组件之间存在通信线路,用于在各组件之间传送信息。
通信接口404,用于与其他设备通信。在本申请实施例中,通信接口可以是模块、电路、接口或者其它能实现通信功能的装置,用于与其他设备通信。可选地,该通信接口可以为独立设置的发送器,该发送器可用于向其他设备发送信息,该通信接口也可以为独立设置的接收器,用于从其他设备接收信息。该通信接口也可以是将发送、接收信息功能集成在一起的部件,本申请实施例对通信接口的具体实现不做限制。
存储器403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的存储模块,随机存取存储器(random access memory,RAM)或者可动态存储信息和指令的其他类型的存储模块,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、光盘、磁盘或者其他磁存储设备。存储器可以是独立存在,通过通信线路与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储计算机执行指令,计算机执行指令可以由处理器401中的一个或多个处理单元调用以执行下述实施例提供的各个方法中的相应步骤。
可选地,本申请实施例中的计算机执行指令也可以称之为应用程序代码、指令、计算机程序或者其它名称,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,通信设备400可以包括多个处理器,例如图3中的处理器401和处理器407。这些处理器中的每一个可以是一个单核处理器,也可以是一个多核处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
如图3所示为通信设备的示例性结构图。应该理解的是,图示通信设备仅是一个范例,并且在实际应用中通信设备可以具有比图3中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。
上述的通信设备400可以是一个通用设备或者是一个专用设备,本申请实施例不限定通信设备400的类型。终端可以为具有图3类似结构的设备。
以下结合附图说明本申请实施例提供的通信方法。
实施例一
参见图4,本申请实施例提供的通信方法包括如下步骤:
S101、第一设备初始化第一COT。
第一设备执行信道接入过程后,可以初始化一个第一COT,该COT具有一定的时长。第一COT可以共享用于eNB/gNB/设备(s)之间的传输。
第一COT内的第一个时隙上占用的频域资源为第二频域资源,第三设备在初始化的第二COT的第一个时隙上占用的频域资源为第三频域资源。所述第二频域资源与所述第三频域资源之间可以频分复用,或者第二频域资源与第三频域资源不频分复用。如下按照第二频域资源与第三频域资源是否频分复用分情况介绍:
情况1:第二频域资源与第三频域资源之间频分复用
本申请实施例中主要以第二设备包括设备3、第三设备为设备2为例,但第二设备不限于是设备3,第三设备不限于为设备2,在不额外说明的情况下,设备3与第二设备含义相同,或者,设备3为第二设备的一个举例。设备2与第三设备含义相同,或者,设备2为第三设备的一个举例。
示例性的,如图5A,以第一设备为设备1,第三设备为设备2为例,设备1初始化第一COT,第一COT包括时隙1-时隙3。设备2初始化第二COT,第二COT包括时隙1、时隙2。设备1在第一COT内的第一个时隙(时隙1)上占用的频域资源(索引为2的频域资源)与设备2在第二COT内的第一个时隙(时隙1)上占用的频域资源(索引为1的频域资源)之间频分复用。
在频分复用情况下,设备1、设备2的频域资源可以跨多个信道,或者在一个信道内跨多个子信道。示例性的,如图5B的(a),设备1、设备2的频域资源均在信道#1中。如图5B的(b),设备1的频域资源在信道#1中,设备2的频域资源在信道#2中。如图5B的(c),设备1的频域资源包括信道#1中的一个或多个子信道,以及信道#2中的一个或多个子信道。设备2的频域资源包括信道#1中的一个或多个子信道,以及信道#2中的一个或多个子信道。本申请实施例并不限制设备1、设备2的频域资源的具体位置。
本申请实施例中,可以将已初始化COT的设备称为初始设备。比如,上述初始化第一COT的第一设 备、初始化第二COT的第二设备均可称为初始设备。
情况2:第二频域资源与第三频域资源之间不频分复用
示例性的,如图6的(a),仍以第一设备为设备1,第三设备为设备2为例,设备1初始化第一COT,第一COT包括时隙1-时隙3。设备2初始化第二COT,第二COT包括时隙1、时隙2。设备1在第一COT内的第一个时隙(时隙1)上占用的频域资源(索引为2的频域资源)与设备2在第二COT内的第一个时隙(时隙3)上占用的频域资源(索引为1的频域资源)之间未频分复用。
再示例性的,如图6的(b),设备1在第一COT内的第一个时隙(时隙1)上占用的频域资源(索引为2的频域资源)与设备2在第二COT内的第一个时隙(时隙4)上占用的频域资源(索引为1的频域资源)之间未频分复用。
S102、第一设备向第二设备发送第一共享指示信息。
其中,所述第一共享指示信息包括第一频域资源内的部分或全部频域资源的信息,所述部分或全部频域资源用于共享给所述第二设备进行传输。所述第一频域资源为所述第一设备在所述第一COT内占用的频域资源;或者所述第一频域资源为所述第一COT包括的频域资源。
可以理解,第一设备初始化第一COT之后,可以通过第一共享指示信息指示将第一COT内的资源共享给其他设备进行传输。本申请实施例中,从其他设备接收共享指示信息,并使用共享指示信息指示的共享资源的设备,可以称为共享设备或响应设备。
本申请实施例中,所述第一设备向第二设备发送第一共享指示信息,所述第一共享指示信息包括第一频域资源内的部分或全部频域资源的信息,即第一设备具有权限共享COT内的资源,可以理解为如下至少一种方式:
1.第一设备可以向第二设备指示共享资源,该资源为至少一个第一频域资源内的部分频域资源。
2.所述第一COT的频域范围是第一频域资源。
3.第一设备有权限共享的频域范围是第一频域资源。
4.第一设备不期望共享第一频域资源以外的频域资源给其他设备(比如第二设备)。
5.第二设备不期望接收到设备1共享至少一个第一频域资源以外的频域资源。
根据共享频域资源与初始设备在COT内占用的频域资源之间的关系,以及初始设备的资源之间是否形成FDM,本申请实施例的资源共享情况可以分为如下四种情况:
情况1:共享设备包括的共享频域资源小于或等于一个初始设备占用的频域资源
示例性的,如图7,初始设备为设备1,设备1没有与其他设备形成FDM。设备1可以将自己在COT所占用频域资源中的频域资源共享给设备3(共享设备)。如图7的(a),设备1占用信道#1的子信道1,设备1可以将子信道1共享给设备3,设备3可以在子信道1上进行传输。如图7的(b),设备1占用信道#1的子信道1、2,设备1可以将子信道1、2中的部分或全部子信道共享给设备3。如图7的(c),设备1占用信道#1的子信道1以及信道#2的子信道1,设备1可以将所占子信道中的部分或全部子信道共享给设备3。
情况2:共享设备包含的共享频域资源大于一个初始设备占用的频域资源
示例性的,如图8,初始设备为设备1,设备1没有与其他设备形成FDM。设备1可以将COT包括的部分或全部频域资源共享给设备3。如图8的(a),设备1初始的COT包括信道#1的子信道1、2,设备1可以将子信道1、2(包括设备1在COT内占用的子信道以及未占用的子信道)中的部分或全部子信道共享给设备3。如图8的(b),设备1初始的COT包括信道#1的子信道1、2以及信道#2的子信道1、2,设备1可以将这四个子信道中的部分或全部子信道共享给设备3。如图8的(c),设备1初始的COT包括信道#1的子信道1、2以及信道#2的子信道2,设备1可以将这四个子信道中的部分或全部子信道共享给设备3。
情况3:共享设备包含的共享频域资源小于或等于多个初始设备占用的频域资源,多个初始设备的资源之间FDM
示例性的,如图9A,初始设备1与设备2的资源之间FDM。设备1、设备2可以将各自在COT所占用频域资源中的频域资源共享给设备3(共享设备)。如图9A的(a),设备1占用信道#1的子信道1,设备1可以将子信道1共享给设备3。类似的,设备2占用信道#1的子信道2,设备2可以将子信道2共享给设备3。如图9A的(b),设备1占用信道#1的子信道1、2,设备1可以将子信道1、2中的部分或全部子信道共享给设备3。设备2占用信道#2的子信道2,设备2可以将子信道2共享给设备3。如图9A的(c),设备1占用信道#1的子信道1以及信道#2的子信道1,设备1可以将所占子信道中的部分或全部子 信道共享给设备3。设备2占用信道#1的子信道2以及信道#2的子信道2,设备2可以将所占子信道中的部分或全部子信道共享给设备3。
情况4:共享设备包含的共享频域资源大于多个初始设备占用的频域资源
假设所述第一设备在所述第一COT内占用的频域资源为所述第四频域资源,第三设备在初始化的第二COT内占用的频域资源为第五频域资源;所述第四频域资源和所述第五频域资源包括在第六频域资源中;所述第六频域资源用于所述第二设备进行传输;所述第六频域资源还包括第七频域资源,其中,所述第七频域资源与所述第四频域资源、所述第五频域资源位于相同信道(信道)且与所述第四频域资源、所述第五频域资源不同。
情况4的示例可参见图9B,初始设备为设备1、设备2,设备1(第一设备)与设备2(第三设备)形成FDM。设备1、设备2可以将各自COT内包括的部分或全部频域资源共享给设备3。如图9B的(a),设备1初始的COT包括信道#1的子信道1、2、3,设备1可以将子信道1、2、3(包括设备1在第一COT内占用的子信道2(第四频域资源)以及未占用的子信道1、3)中的部分或全部子信道共享给设备3。类似的,设备2也可以将其初始化的COT内的全部或部分频域资源(包括设备2在第二COT内占用的子信道3(第五频域资源)以及未占用的子信道1、2)共享给设备3。如图9B的(a),设备3的共享资源(第六频域资源)除了包括第四频域资源和第五频域资源之外,还包括第七频域资源(COT内未被占用的子信道1)。
图9B的(b)、图9B的(c)的原理类似,设备1、设备2均有权限向设备3共享各自COT内的全部或部分频域资源。
结合上述四种情况,本申请实施例提供三种共享资源的方法。当然,本申请实施例的方法所适用的场景或情况不限于上述四种情况,还可以为其他场景或情况。类似的,本申请的任一实施例的任一方法,可以适用于可能的其他场景或情况,不限于列举的场景或情况。
如下,对第一设备通过第一共享指示信息共享资源的各方法进行介绍:
方法1:第一设备向其他设备指示COT共享时,仅指示共享自己在初始的第一COT内所占用频域资源中的部分或全部频域资源。
可选地,所述第一设备在所述第一COT内占用的频域资源可以是所述第一设备在所述第一COT内的第一个时隙占用的频域资源;或者是所述第一设备在所述第一COT内的最后一个时隙占用的频域资源;或者是所述第一设备在所述第一COT内占用的频域资源数量最少的时隙上占用的频域资源;或者是所述第一设备在所述第一COT内占用的频域资源数量最多的时隙上占用的频域资源;或者是第一设备在第一COT内占用的频域资源。
可选地,所述占用,还可以是预留、选择、使用、用于传输等任一。
本申请实施例中,第一设备选择的资源可用于第一设备进行本次传输,第一设备预留的资源可用于第一设备进行下一次传输。
或者,第一设备在第一COT内占用的频域资源不限于此,这里不再穷举所有可能情况。
示例性的,如图11,初始设备1在初始COT的第一个时隙(时隙1)上占用子信道1、2、4,初始设备1可以将子信道1、2、4中的全部或部分频域资源共享给其他终端。
再示例性的,仍如图9C,设备1在COT内占用子信道最少的时隙为时隙9、时隙10(均占用两个子信道)。其中,设备1在时隙9上占用子信道2、4,在时隙10上占用子信道1、4。设备1可以将子信道2、4(一组子信道)中的部分或全部频域资源共享给其他设备。或者,设备1可以将子信道1、4(一组子信道)中的部分或全部频域资源共享给其他设备。或者,设备1可以根据这两组子信道确定用于共享给其他设备的频域资源。
再示例性的,仍如图9C,设备1在COT内占用子信道最少的时隙为时隙2(占用四个子信道)。设备1可以将这四个子信道中的部分或全部频域资源共享给其他设备。
可选地,方法1可以适用于但不限于诸如图7、图8或类似的非FDM,或适用于诸如图9A、图9B或类似的FDM场景。如下,以图7-图9B的情况1-4为例分别进行介绍:
以诸如图7、图8所示的情况1、2(不涉及FDM)为例:当设备1通过共享指示信息指示允许COT共享时,设备3可以尝试在指示的共享资源上,通过LBT type2接入信道和传输,以提升设备3接入信道的成功率。也即,当设备3接收到设备1的COT共享指示信息,允许使用共享资源,则设备3可以尝试在指示的共享资源上,通过LBT type2接入信道和传输。如图7,在不涉及FDM的场景中,设备1仅可以将自己在COT内占用的频域资源共享给设备3。如图8,在不涉及FDM的场景中,设备1可以将COT内 的全部或部分频域资源共享给设备3,如此,某些场景中,共享资源可以多于或等于设备1在COT内占用的频域资源。
可选地,本申请的各实施例中,第一共享指示信息可以为COT共享指示信息。
否则,若设备1没有将COT内的资源共享给设备3,或不允许设备3使用共享资源,则设备3可以执行LBT type1以接入信道,或者设备3可以进行资源重选。也即,如果设备3没有接收到设备1的COT共享指示信息,或者,收到COT共享指示信息指示不允许使用共享资源,则设备3可以执行LBT type1以接入信道,或者设备3可以进行资源重选。
以诸如图9A所示的情况3(共享资源包括不同初始设备占用的频域资源)为例,当初始设备1和初始设备2都通过共享指示信息指示允许COT共享时,设备3可以使用共享资源,尝试执行LBT type2以接入信道和传输。也即,如果设备3同时接收到初始设备1和初始设备2的共享指示信息指示允许使用共享资源时,设备3可以使用共享资源,尝试执行LBT type2以接入信道和传输。否则设备3执行LBT type1以接入或者进行资源重选。
比如,如图9A的(a),设备1将自身在COT内占用的子信道1共享给设备3,设备2将自身在COT内占用的子信道2共享给设备3,设备3可以在子信道1、2上进行传输。
可选地,多个初始设备中至少一个初始设备指示允许COT共享则共享设备可以按照允许COT共享的初始设备的共享指示信息,确定共享资源。也即,如果设备3接收到初始设备1和初始设备2的共享指示信息指示允许使用共享资源时,设备3可以使用共享资源,尝试执行LBT type2以接入信道和传输。
以诸如图9B的情况4为例,可以在标准中规定:设备不期望出现这种情况,因为初始设备在COT内占用的资源少于共享设备实际需要的资源。
或者,如果出现诸如图9B所示的情况4,共享设备(比如设备3)进行资源重选。
或者,如果出现诸如图9B所示的情况4,设备1和/或设备2可以认为不满足COT共享的条件,或者认为没有COT共享的权限,设备1和/或设备2不会通过共享指示信息将COT内的资源共享给设备3。
或者,如果出现诸如图9B所示的情况4,当设备1和设备2都指示允许COT共享时,设备3可以收到来自设备1和设备2的共享指示信息,那么,设备3可以尝试LBT type2信道接入和传输,否则使用LBT type1接入或者进行资源重选。如此,在某些场景中,多个初始设备(比如设备1、设备2)可以通过联合指示,将COT内没有被占用的子信道共享给设备3,以增加设备3使用的共享资源的数量,提升设备3的通信性能。
可选地,COT共享指示信息,包括如下至少一项信息:共享的时域资源,共享的频域资源,第二设备的标识信息(包括设备ID,source ID,destination ID中的至少一项)。
可选地,第一设备可以指示频域资源所在的信道的信息,和/或,指示频域资源所在的子信道信息。可选地,可以通过指示信道的位置信息和/或子信道的位置信息来指示频域资源的信息。其中所述位置信息可以包括以下至少一种:索引、数量、起始位置、结束位置、偏移值。其中,所述索引、起始位置、结束位置可以是物理时隙概念上索引或位置,或者逻辑时隙概念上的索引或位置。偏移值可以是相对于COT起始时隙或者占用的资源的起始时隙的偏移值。
可选地,索引可以通过FRIV、bitmap、比特信息(二进制状态值)等方式任一来指示。
可选地,第一设备共享的时域资源在第一设备自己的COT范围内(比如标准上的COT最大长度,比如10ms)内,或者,共享的时域资源在第一设备选择或预留的资源范围内。比如,第一设备初始第一COT之后,最多可以占用10ms进行传输,但是第一设备可能没有较多的传输需求,则第一设备可以只选择或预留诸如5ms的时域资源,并可以将该时域资源(总时长为5ms)共享给第二设备。
可选地,第一设备自己共享给其他设备的频域资源小于或等于自己在第一COT内占用的频域资源。第一设备占用的资源,可以指用于第一设备自己进行传输的频域资源,或者,用于共享给其他设备的资源。比如,在一些场景中,第一设备占用的资源可以是自己选择或预留的资源。
方法2:可以根据初始设备确定归属设备,归属设备具有所述COT共享的权限。
本申请的各实施例中,归属设备可以是主导设备,或者不限定名字。所述归属设备的含义是,只有该设备具有COT的共享权限。可选地,只有归属设备可以发送COT共享指示信息,或者,共享只根据归属设备的指示确定是否能够共享和/或共享的资源。
该方法可适用于多个初始设备(比如FDM)的场景,也可以适用于单个初始设备的场景。当存在多个初始设备时,可以根据以下规则中的至少一项(第一条件)确定归属设备。
归属设备为多个初始设备中最先预留资源的初始设备;
所述归属设备是所述多个初始设备中最先按照多连续时隙传输(multi-consecutive slots transmission,MCSt)方式预留资源的设备;此种方式,考虑到设备预留较多的时隙时,可能有将资源共享给其他设备的需求,因此可以将预留或选择较多时隙的设备作为归属设备;
所述归属设备是所述多个初始设备中预留资源在时域上持续时间最长(比如但不限于MCSt持续时长最长)的设备;
所述归属设备是通过共享标识信息指示允许将资源共享给其他设备;例如,用于指示该设备在预留的资源中允许COT共享或者打算进行COT共享(共享给其他设备)(允许共享不表示实际共享);该共享标识信息可以在预留资源时指示。
所述归属设备是所述多个初始设备中信道接入优先级CAPC最低的设备;
所述归属设备是所述多个初始设备中COT最长的设备;如此,将COT共享的权限给此种设备,共享设备可以获取更多的时域资源(比如10ms),并直接在10ms内完成传输,无需通过类型1接入,便于最大化COT共享的收益。
所述归属设备是所述多个初始设备中占用资源最多的设备;
所述归属设备是所述多个初始设备中最早预留初始时隙资源的初始设备;
所述归属设备是所述多个初始设备中占用子信道(sub-channel)的索引最低的设备;此种方式中,可选地,如果初始设备占用了多个子信道,则可以以占用的子信道中索引最低的子信道为准。
所述第一设备是所述多个初始设备中CPE最长的设备;
所述归属设备是所述多个初始设备中占有最多子信道(比如在COT内占用最多子信道)的设备;
所述归属设备是所述多个初始设备中在COT的第一个时隙上占用最多子信道)的设备;
所述归属设备是所述多个初始设备中L1优先级或CAPC最高的设备;
当存在多个初始设备时,多个初始设备中的归属终端有权限共享COT内的部分或全部资源。比如,所述归属设备有权限将除自己使用的、其他一同初始的初始设备使用的资源以外,COT内全部其他的资源共享给其他设备。例如,可以共享所述全部其他资源中的部分或全部资源。多个初始设备中除归属设备之外的设备,不具有共享资源的权限,只能使用自己在COT内占用的资源。
可选地,可以由初始COT的初始设备(比如设备1和设备2)来判断归属设备。例如,只有归属设备需要发送共享指示信息。或者,由共享COT的共享设备(比如设备3、设备4、设备5)来判断归属设备。例如,初始设备(比如设备1和设备2)都发送共享指示信息,共享设备(设备3、设备4、设备5)确定归属设备,并按照归属设备的指示确定是否允许COT共享和/或共享资源。
可选地,初始设备发送的共享指示信息包括:共享的时域资源,共享的频域资源,第二设备的标识信息(设备ID,source ID,destination ID中的至少一项)。
其中,时域资源、频域资源的指示方式等可参见其他实施例,这里不再赘述。
可选地,方法1可以适用于诸如图7、图8或类似的非FDM,或适用于诸如图9A、图9B或类似的FDM场景。如下,以图7-图9B的情况1-4为例分别进行介绍:
以诸如图7、图8所示的情况1、2为例,当设备1指示允许COT共享时,设备3可以尝试LBT type2接入和传输,否则使用LBT type1接入或者进行资源重选。也即,当设备3接收到设备1的COT共享指示信息,允许使用共享资源,则设备3可以尝试在指示的共享资源上,通过LBT type2接入信道和传输。在不涉及FDM的场景中,设备1可以将COT内的全部或部分频域资源共享给设备3。如此,比如诸如图8所示的某些场景中,共享资源可以多于或等于设备1在COT内占用的频域资源,比如诸如图7所示的某些场景中,共享资源可以小于或等于设备1在COT内占用的频域资源。
以诸如图9A所示的情况3为例:当设备1和设备2都指示允许COT共享时,设备3可以判断归属设备(比如为设备1),意味着只有设备1具有共享COT内资源的权限,则设备3可以按照设备1的指示,在共享资源上尝试LBT type2接入和传输。也即,当设备3接收到设备1和设备2的COT共享指示信息,允许使用共享资源,则设备3可以尝试在指示的共享资源上,通过LBT type2接入信道和传输。或者,设备1或设备2中的归属设备(比如设备1)指示允许COT共享,设备3按照设备1的指示,在共享资源上尝试LBT type2接入和传输。也即,当设备3接收到设备1或设备2中的归属设备(比如设备1)的COT共享指示信息,允许使用共享资源,则设备3可以尝试在指示的共享资源上,通过LBT type2接入信道和传输。否则,设备3无法获取共享资源时,使用LBT type1接入或者进行资源重选
以诸如图9B所示的情况4为例:当设备1和设备2都指示允许COT共享时,设备3收到设备1和设备2的共享指示信息,或者,归属终端指示可以共享COT内的资源时,设备3可以按照归属终端的指 示,在共享资源上尝试LBT type2接入和传输。也即,当设备3接收到设备1和设备2的COT共享指示信息,允许使用共享资源,则设备3可以尝试在指示的共享资源上,通过LBT type2接入信道和传输。否则,设备3无法获取共享资源时,使用LBT type1接入或者进行资源重选
方法3:第一设备向其他设备指示COT共享时,可以指示共享第一COT内的部分或全部频域资源(包括第一设备自己在第一COT内占用的频域资源和/或自己在第一COT内未占用的频域资源)。
可选地,上述共享资源可以是第一设备占用的资源所在的信道(信道)内的部分或全部频域资源。
该方法可适用于FDM场景或非FDM场景。
可选地,初始设备(比如设备1和/或设备2)发送的共享指示信息,包括:共享的时域资源,共享的频域资源,第二设备的标识信息(设备ID,source ID,destination ID中的至少一项)。
可选地,以诸如图7、图8所示的情况1、2(不涉及FDM)为例:当设备1指示允许COT共享时,设备3可以尝试LBT type2接入和传输,否则使用LBT type1接入或者进行资源重选。
以诸如图9A、图9B所示的情况3、4为例:当设备1和设备2中任意一个指示允许COT共享时,设备3可以尝试LBT type2接入和传输,否则使用LBT type1接入或者进行资源重选。也即,当设备3接收到设备1和设备2中任意一个的COT共享指示信息,允许使用共享资源,则设备3可以尝试在指示的共享资源上,通过LBT type2接入信道和传输,否则使用LBT type1接入或者进行资源重选。
或者,可选地,如果设备1不指示将COT内资源共享给设备3或者不希望将COT资源共享给设备3,设备1在资源选择或预留时,可以排除设备3的时频资源,或者排除时频资源所在的时隙上的全部频域资源,或者排除时频资源所在的时隙上的时频资源所在信道内的全部频域资源,不在设备3的资源上传输。比如,可以选择设备3所在时隙的其他频域资源进行传输。
示例性的,如图9A的(a),设备2在上次资源预留时,指示将COT内的资源(斜线标注的资源)共享给设备3。假设在设备1的上一次资源预留时,不打算共享资源给设备3,则设备1可以排除设备3的资源(斜线标注的资源)。如此以来,后续,设备3可以按照设备2的指示,在斜线标注的资源上,尝试使用type2接入并传输,而设备1由于排除掉了该资源,不会在该资源上传输,因此,在斜线标注的资源上,设备3不会与设备1发生资源冲突。
以诸如图9A、图9B所示的情况3、4为例:仅当多个初始设备(比如设备1、2)均指示COT共享时,才允许将COT内的资源共享给其他设备(比如设备3)。如此,能够避免初始设备之间指示不一致导致的资源冲突问题。
可选地,如果设备1不共享资源给设备3,设备1在资源选择或预留时,无需排除设备3的时频资源,可以选择设备3的时频资源进行传输。
对于上述方法1、方法2、方法3:
可选地,当设备2选择或预留资源时,根据感知获取到设备1选择或预留的资源,如果设备2需要选择与设备1的资源FDM的资源,则设备2选择或预留的资源中的第一个时隙应与设备1选择或预留的资源的第一个时隙对齐。如此,设备2和设备1可以一起初始COT,或者称设备1和设备2的资源在频域上构成初始FDM。
示例性的,如图5A,设备2选择或预留的资源的第一个时隙(时隙1)与设备1选择或预留的资源的第一个时隙对齐。如此,设备2可以尝试LBT type2接入。否则,若设备2选择或预留的资源的第一个时隙(时隙1)与设备1选择或预留的资源的第一个时隙没有对齐,则设备2能否接入信道主要取决于设备1是否共享资源给它,若设备1不将资源共享给设备2,设备2只能尝试LBT type2接入,接入信道的成功率较低。
可选地,如果设备1和设备2的COT长度不同,或者,占用的资源的时域持续时间不同,则对于两者在时域资源不重叠的资源,这部分频域资源的COT共享权限属于时域资源更多的终端。
示例性的,如图5A,所述设备1的第一COT包含的时域资源为第一时域资源(时隙1、2、3),所述设备2的第二COT包含的时域资源为第二时域资源(时隙1、2,所述第一时域资源的持续时长大于所述第二时域资源的持续时长。所述第一时域资源与所述第二时域资源在时域上不重叠的资源为所述第三时域资源(时隙3)。第三时域资源(时隙3)上的任意频域资源可被所述设备1(第一设备)共享给所述设备3等共享设备(第二设备)。
可选地,满足第二条件时,初始设备发送所述共享指示信息。
所述第二条件包括如下至少一项条件:
所述第二设备的信道接入优先级高于所述第一设备和/或所述第三设备;
所述第二设备的播类型为组播或广播,且目标设备包括所述第一设备和所述第三设备;
所述第二设备的目标设备包括所述第一设备和所述第三设备中的至少一个;
所述第二设备的接入信道优先级高于所述归属设备;
所述第二设备的目标设备包括所述归属设备。
其中,所述第一设备、第三设备的CAPC可以指:第一设备、第三设备初始COT的CAPC,或者COT指示信息中指示的CAPC。
可选地,所述方法1-方法3可以适用于如下任意场景:
资源池配置了允许(初始)FDM,实际发生了初始FDM,传输没有占满整个信道(有可能发生FDM)。否则,设备1初始的COT的频域范围为整个信道(占满整个信道),也就是,整个信道内的资源都属于设备1,其可以使用或共享给其他终端。
通过上述方法,第一设备可以确定COT共享时的共享资源范围,如此,第一设备可以将共享资源范围内的部分或全部资源共享给第二设备,一方面,能够提高系统的资源利用效率,一方面,能够提升第二设备接入信道的成功率以及通信性能。
在一些实施例中,COT共享的机制可能为:
机制1:设备3先进行资源预留,预留资源用于自己的传输;设备1和/或设备2(初始COT的设备)进行资源选择时,根据设备3的预留资源进行资源选择,并可以确定设备3是否满足COT共享条件以及是否将资源共享给设备3。
可选地,如果设备1或设备确定将资源共享给设备3,则设备1和/或设备2选择/预留的资源在时域上的起始位置在设备3的资源之前。
可选地,设备1和/或设备2进行资源选择时,选择的资源中可以包含共享给设备3的资源。如果共享,则设备1和/或设备2可以不排除设备3预留的资源。如果不共享,则设备1和/或设备2可以排除设备3预留的资源。
可选地,设备1和/或设备2进行资源选择时,选择的资源中可以不包含共享给设备3的资源。可选地,设备1和/或设备2排除设备3预留的资源。
机制2:设备1和/或设备2(初始COT的设备)先进行资源预留;设备3进行资源选择时,可以预留在设备1和/或设备2预留的资源的下一个时隙,或者,预留与设备1和/或设备2预留的资源FDM的资源,以便设备1和/或设备2可以共享给设备3。
可选地,设备3预留的资源位于设备1和/或设备2初始的COT内。
实施例二
本实施例可以提供配置CPE的方法,以使得两个传输之间的实际间隔满足LBT时长,并使得使用FDM资源进行的传输之间不发生LBT blocking。如图9D,该方法包括:
S301、第一设备确定CPE信息。
可选地,所述CPE信息,可以指CPE长度,或者,CPE起始位置。例如,(预)配置CPE长度或CPE起始位置。
本实施例可以提供配置CPE的方法,如下对各方法进行介绍:
方法1:针对不同的情况,可以为设备配置或预配置不同的CPE和/或LBT type。
所述第一设备确定CPE信息,包括:所述第一设备获取第一信息,所述第一信息用于确定CPE信息。不同接入类型关联不同的第一信息,和/或,不同时隙关联不同的第一信息。
可选地,所述CPE信息包括与时隙(per slot)关联的CPE。换言之,在资源池内不同时隙上传输的终端可以有不同的CPE。比如图10所示,设备1在时隙1上传输时的CPE为50us,在时隙2上传输时的CPE为60us。
可选地,type 1 LBT(对应初始COT的设备(初始设备))和type 2 LBT(对应共享COT的设备(共享设备)或连续传输的设备)的CPE可以分别配置或预配置。比如,设备1执行type 1 LBT,初始化COT,并将COT内的资源共享给设备3。那么,可以分别配置设备1的CPE与设备3的CPE。可选地,设备1、设备3的CPE可以被配置为相同或不同。
可选地,type 1 LBT的CPE、第一type 2 LBT的CPE(对应使用COT共享资源的设备或传输)和第二type 2 LBT的CPE(对应初始COT的设备在COT内进行的传输,即COT内初始设备的传输中除第一个时隙之外的时隙上的传输,需要执行信道接入时使用的CPE)可以分别配置或预配置。
本申请的各实施例中,分别配置或预配置,可以指分别由不同的参数进行配置或预配置。但是配置或 预配置的结果可以是相同或不同的。
示例性的,设备1初始化COT,并将COT内的资源共享给设备3,且设备1在多个时隙上传输。可选地,所述多个时隙为连续的。那么,可以分别配置设备1在Type1 LBT的传输之前使用的CPE、设备1在COT内除了第一个时隙之外其他时隙上传输使用的CPE、设备3的CPE。可选地,这三个CPE可以被配置为完全相同或不同,或部分相同或不同。比如,设备1初始化的COT在时域上包括时隙1-时隙3,配置设备1在Type1 LBT的传输之前使用时长为T1的CPE,设备1在COT内传输时使用时长为T2的CPE,设备3的CPE时长为T3。
如此,能够针对不同的情况(比如不同的时域pattern或type1/type2)灵活地为设备配置不同的CPE,进而能够降低设备之间产生资源碰撞的概率,增加不同设备或不同传输之间采取不同的CPE和/或对应的LBT type的灵活性。
上述以配置CPE为例,在另一些实施例中,还可以配置LBT type,设备可以根据LBT type确定CPE。比如,一个符号的时长为72us,假设配置25us的LBT,则设备可以推知CPE为72-25=47us。可选地,设备可以根据CPE来确定相应的LBT type。
方法2:满足条件时不使用配置或预配置的CPE,否则使用配置或预配置的CPE
所述第一设备确定CPE信息,包括:满足第一条件中的至少一项时,所述第一CPE根据第二信息确定,所述第二信息为配置或预配置的,所述第一条件包括:所述第一传输为CG传输;或所述第一传输为初次传输;或资源池内不允许FDM;或所述第一传输的资源所在时隙上的其他频域资源上没有其他传输;或第一传输的资源包括信道内的全部频域资源(意味着不与其他设备的资源形成FDM)。
其中,初次传输指的是本次传输前没有过资源预留的传输,或者该传输使用的资源在先并没有被所述终端预留过。资源池内不允许FDM,可以通过配置或预配置实现。所述第一传输的资源所在时隙上的其他频域资源上没有其他传输,可以指所述时隙上没有FDM的传输,或者,所述第一传输的资源所在时隙上只有所述第一传输。
可选地,所述FDM的约束是在第一传输资源所在的信道(信道)内。也即在该时隙上,如果第一传输没有使用的其他信道上有其他传输不认为是FDM。
方法3:初始设备动态指示CPE和/或LBT type
在一些实施例中,初始设备确定并在预留下一次传输的资源时指示CPE。如此,其他初始设备或共享设备能够根据该初始设备的指示确定CPE,以便进行将自己的CPE与该初始设备的CPE对齐,进而能够提升接入信道的成功率。
所述第一设备确定CPE信息,包括:所述第一设备接收第三信息和/或第四信息;所述第一设备根据所述第三信息和/或第四信息确定所述CPE信息;所述第三信息用于第二设备指示CPE信息,所述第四信息用于第三设备指示CPE信息。
可选地,所述第三信息指示的CPE信息,为适用于所述第二设备初始的COT或者第二设备预留的资源的CPE,或者,所述CPE信息包括:与所述第二设备初始的COT或者第二设备预留的资源内的时隙关联的CPE。
可选地,所述第四信息指示的CPE信息,为适用于所述第三设备初始的COT或者第三设备预留的资源的CPE,或者,所述CPE信息包括与所述第三设备初始的COT或者第三设备预留的资源内的时隙关联的CPE。可选地,每个时隙分别指示CPE,可以相同或不同。
可选地,可以每个时隙分别指示CPE信息,可以相同或不同。
可选地,所述第三信息承载于所述第二设备的第一级SCI或第二级SCI,和/或,所述第四信息承载于所述第三设备的第一级SCI或第二级SCI。
可选地,第三信息承载于第一COT共享指示信息,所述第一COT共享指示信息用于共享所述第二设备初始的COT内的资源。
可选地,第四信息承载于第二COT共享指示信息,所述第二COT共享指示信息用于共享所述第三设备初始的COT内的资源。
对于第三信息和/或第四信息,可选地,资源预留时指示下一次传输的COT的CPE,或者,初始COT并传输时在第一个时隙或多个时隙中指示当前COT的CPE。
对于第三信息和/或第四信息,可选地,所述COT共享指示信息,还可以叫COT指示信息,COT共享信息,COT结构信息等。
可选地,本实施例中的方法可以与实施例一相应的方法结合使用。
S302、所述第一设备根据所述CPE信息确定传输的起始位置和/或信道接入类型。
可选地,所述第一设备根据上述方法1-方法3中至少一种方法确定CPE,并根据CPE确定传输的起始位置和/或CPE的长度和/或CPE的起始位置。
或者,所述第一设备根据归属设备指示的CPE信息,确定传输的起始位置和/或CPE的长度和/或CPE的起始位置。归属设备的定义可以参考实施例一中的S101。
S303、所述第一设备根据所述传输的起始位置和/或信道接入类型进行信道接入。
S304、发送第一传输。
如下内容适用于S301-S304的过程/步骤/方法:
在某个初始设备已指示CPE的情况下,该初始设备使用自己确定和指示的CPE进行传输。在一些场景中,若其他初始设备与该初始设备形成初始FDM,则其他初始设备的CPE需要与该初始设备的CPE进行对齐。另一些场景中,若其他设备(初始设备或共享设备)与初始设备形成COT内FDM,则该其他设备的CPE也需要与该初始设备的CPE进行对齐。
示例性的,如图11,设备1初始化COT,并通过共享指示信息指示初始CPE的时长为T1。设备2初始化,并与设备1的资源形成初始FDM。为了避免被设备1阻塞或阻塞设备1,设备2的CPE需要与设备1的CPE对齐。具体的,设备2确定自己的初始CPE(CPE4)的时长为T1。如此,设备1的初始CPE与设备2的初始CPE的时长相同,可避免因不同设备的CPE时长不同导致的阻塞接入(CPE短的设备无法接入),提升设备接入信道的成功概率。
再示例性的,仍如图11,设备1还可以通过共享指示信息指示COT内CPE的时长T2。设备2初始化,并在COT内与设备1的资源形成COT内FDM。为了避免被设备1阻塞或阻塞设备1,设备2确定自己在COT内的CPE(CPE5)时长也为T2。
再示例性的,如图12,设备1可以通过共享指示信息指示COT内CPE的时长T2,并通过共享指示信息指示将COT内的部分资源共享给设备3。为了避免被设备1阻塞或阻塞设备1,设备3确定自己在COT内的CPE(CPE3)时长也为T2。
可以理解,在某个初始设备已指示CPE的情况下,共享设备可以根据该指示确定自己的CPE,或者,共享设备可以不根据该指示确定自己的CPE。如下分两种情况分别介绍:
情况1:共享设备按照初始设备指示的CPE
此种情况下,COT内的全部共享设备均可以根据初始设备的指示确定统一的CPE,共享设备之间的CPE对齐,使得共享设备之间不至于因CPE不同而阻塞接入。
可选地,初始设备指示CPE的粒度为基于每个信道占用时间(per COT)指示。
或者,初始设备指示CPE的粒度为per slot。如此,能够在不同时隙指示不同的CPE,提升指示的灵活性。
可选地,如果存在多个初始设备,多个初始设备中仅一个初始设备通过共享指示信息指示了COT共享,则共享设备按照该初始设备指示的CPE和/或LBT type进行传输。如果多个初始设备中两个以及以上初始设备指示了COT共享,则共享设备按照归属设备的指示确定CPE。
可选地,从多个初始设备中确定归属设备的方法可参见前述实施例,这里不再赘述。
示例性的,初始设备为设备1、设备2,其中,设备1和设备2均通过共享指示信息指示将COT内的资源共享给设备3和设备4,其中,共享指示信息携带CPE和/或LBT type。设备3、设备4均可按照归属设备(比如设备2)的指示确定CPE。
情况2:共享设备不根据初始设备的指示确定CPE,共享设备可以自己确定CPE
可选地,共享设备可以在资源选择或资源预留时确定CPE。
可选地,为了避免FDM的多个设备之间互相阻塞接入,共享设备的CPE应与在先预留资源的设备的CPE一致。比如,如图13,设备3先选择或预留资源。共享设备4在选择或预留资源时,若想要选择或预留与设备3形成频分复用的资源,则需要与设备3的CPE进行对齐,否则将可能被设备3阻塞接入。在一个示例中,在选择或预留资源时,设备4侦听设备3的资源指示信息,并根据资源指示信息(可指示CPE),与设备3的CPE对齐。可选地,在确定CPE之后,设备4可以通过资源指示信息指示CPE。后续,其他设备可以侦听设备4的资源指示信息,以便获知设备选择或预留的资源,以及获知设备4的CPE。
如此,共享设备在资源选择或预留时,可以根据从其他设备(比如共享设备)侦听到的资源指示信息进行设备之间的CPE对齐,使得设备之间不因CPE不同而导致接入阻塞,提升了设备接入信道的成功率。
可选地,设备在资源池中进行传输,需要遵循如下条件中至少一项:
当资源池使能连续传输取消GAP时,不允许FDM或COT共享。当取消GAP时,没有留给其他设备进行LBT的时间,其他设备无法接入成功。因此通过约束,如果取消了GAP,就不支持/不允许FDM,可以使得其他设备选择资源时,排除整个时隙。
或者,当资源池使能允许FDM或实际发生FDM或COT共享时,设备在传输时保留时隙中最后一个GAP符号。可选地,所述实际发生FDM可以理解为,所述第一传输的资源所在时隙上的其他频域资源上没有其他传输,或者,所述时隙上没有FDM的传输,或者,所述第一传输的资源所在时隙上只有所述第一传输。如此,在FDM场景中,不取消GAP,以免FDM的设备信道接入无法成功。
或者,在共享的传输的起始时隙或FDM传输的时隙的前一个时隙,设备在传输时保留时隙中最后一个GAP符号,或者,不允许取消GAP,或者不取消GAP,或保留GAP。如此,至少对于FDM的时隙,在前一个时隙末尾保留GAP符号,以便为该设备预留FDM时间,或者,为共享设备预留执行信道接入的时间。
或者,设备保留多个连续时隙传输的最后一个时隙传输的最后一个GAP符号。如此,能够至少可以进行COT共享,其他设备可以选择下一个时隙,从而接入。
可选地,对于当资源池使能连续传输取消GAP时,不允许FDM或COT共享。可选地,当设备进行资源选择或资源排除时,排除其他设备预留的资源所在的时隙上的全部资源,或者,排除进行多连续时隙传输或多连续时隙资源预留的其他设备预留的资源所在的时隙上的全部资源。
本申请的各实施例中,排除预留的资源,还可以表述为:排除与所述预留资源重叠的候选资源。
本申请的各实施例中,除了保护的资源排除条件外,可选地,还需要满足以下条件至少一项才进行资源排除:
所述预留资源的物理层优先级高于资源选择的物理层优先级(或,所述预留资源的物理层优先级的值小于资源选择的物理层优先级的值);所述预留资源的RSRP或RSSI高于第一阈值。(第一阈值为配置或预配置的)。
示例性的,如图12,设备1将COT的时隙2内的部分频域资源共享给设备3。传输2(共享的传输的起始位置)的前一个时隙(时隙1)内不允许取消GAP。如此,设备3可以在该GAP内执行LBT,以便接入信道。在接入信道后,设备3可以使用共享的时频域资源发送传输2以及后续传输。
如此,设备(比如设备1)在连续多个时隙中传输的场景中,多个时隙中最后一个时隙的GAP不能取消,以便其他设备(比如共享设备3)可以通过该GAP执行LBT,提升其他设备接入信道的成功率。
上述方案,通过对CPE进行对齐,从而能够降低LBT阻塞的概率,能够保证FDM场景中的传输,提升通信性能和系统效率。
实施例三
本实施例的技术方案可适用于IRB场景或其他场景。
设备在COT内传输S-SSB,或者,设备在选择的或预留的资源内传输S-SSB时,S-SSB可能对其他设备产生干扰。本实施例可以有如下几种解决方案。如下以传输S-SSB的设备为设备1为例对各方案进行介绍。
图14示出了本申请实施例提供的一种通信方法的流程,该方法包括:
S401、第一设备初始第一COT。
所述发送第一S-SSB之前,确定满足以下条件中的至少一项:
方式1(条件1):所述第一设备选择或预留的资源包括信道中的全部频域资源。
也就意味着,当设备1的资源未与其他设备的资源形成FDM时,允许设备1在资源上发送S-SSB。如此,由于整个信道内不存在与设备1之间FDM的其他设备,因此不会对其他设备造成干扰。
方式2(条件2):所述第一设备所在的资源池(预)配置不允许FDM时,或不允许初始COT内的第一个时隙FDM。
方式3(条件3):所述第一设备的传输在COT或预留的资源内任何一个时隙上没有实际发生FDM时,或COT或预留的资源的第一个时隙没有发生FDM时,或没有发生不同设备在同样时域资源FDM,或所述传输的资源所在时隙上的其他频域资源上没有其他传输;或传输的资源包括信道内的全部频域资源(意味着不与其他设备的资源形成FDM)。
在一种可能的设计中,所述第一设备进行资源选择的候选资源的频域资源,或者预留的资源的频域资源,为COT内任意传输需要使用的最多的频域资源数量或最大的频域范围,或者, 为S-SSB需要使用的频域资源数,或者,为信道内的全部频域资源,比如为信道内的全部子信道。
可选地,所述候选资源或所述预留的资源,其所在的时隙为用于发送所述S-SSB的时隙。
可选地,如果设备1准备在选择或预留的资源中,或者在根据选择或预留的资源初始的COT中,发送S-SSB,那么设备1进行资源选择或资源预留时,至少在发送S-SSB的时隙上,按照S-SSB需要使用的频域资源进行预留。如此,设备1在选择或预留资源时,选择或预留至少S-SSB所在的时隙,则其他设备在选择或预留资源时,将排除S-SSB所在时隙,即其他设备不在S-SSB所在时隙进行传输。这样一来,设备1的S-SSB的资源与其他设备的资源不会产生碰撞,可避免设备1对其他设备的干扰。
或者,可选地,按S-SSB需要使用的子信道进行预留。比如,假设S-SSB在每个时隙占用的频域资源一样,S-SSB需要使用2个子信道,则设备1可以选择或预留2个子信道。后续,设备1可以在这2个子信道上传输S-SSB,或者,在COT(根据选择或预留的2个子信道初始化该COT)内传输S-SSB。
或者,可选地,设备1可以按照COT内任意传输需要使用的最多的频域资源(或最大的频域范围)进行资源预留,尽可能多的为S-SSB预留资源。
示例性的,COT存在传输1-5,其中传输5需要使用的频域资源最多(假设为5个子信道1-5),则设备1可以选择或预留5个子信道,以便能够尽可能多的为S-SSB预留资源。
或者,可选地,设备1预留整个信道内的全部子信道。
或者,可选地,S-SSB需要占用连续频域资源,则设备1可以将S-SSB占用资源所在的全部子信道进行预留。可选地,资源分配方式或资源占用方式为IRB。
S402、所述第一设备在第二资源上发送第一S-SSB。
可选地,第二资源为第一设备选择或预留的资源,或者为第一设备在根据选择或预留的资源初始的COT。
针对IRB的PSSCH/PSCCH资源占用方式的场景,考虑到某些传输(比如S-SSB传输)可能会占用连续资源,导致一些子信道或interlace不可用,本申请实施例中,通过资源选择或预留过程,可以排除彼此冲突的资源,如此,能够保证本设备S-SSB的正常传输,并尽可能避免其他设备的频繁资源重选,提升系统的同步性能和通信性能。
本申请实施例还提供一种通信方法,第二设备可以排除第一资源,以免与第一设备产生资源碰撞。如图15,该方法包括:
S501、第二设备确定第三资源,所述第三资源与第一资源不重叠,或者,该第三资源与排除第一资源所在的时隙上的全部资源不重叠。
其中,所述第一资源为第一设备选择或预留用于传输的任意时频资源,和/或,第一设备选择或预留用于发送S-SSB的时频资源,和/或,第一设备选择或预留用于传输的时域上第一个资源的时频资源。选择或预留,还可以替换为用于传输、占用等。
可选地,第二设备排除第一资源,或者,排除第一资源所在的时隙上的全部资源还包括:从所述第一设备接收第一指示信息,并根据第一指示信息进行资源排除,所述第一指示信息用于指示以下至少一项:
1bit标识信息,用于指示不允许其他设备选择与自己的资源FDM,或者,用于指示将在所述资源或所述COT范围内发送S-SSB;
所述第一设备发送S-SSB的时域资源和/或频域资源信息。
示例性的,以第一设备为设备1为例,如果设备1准备在选择或预留的资源中,或者在根据选择或预留的资源初始的COT中,发送S-SSB,那么,其他设备可以通过资源选择或预留来避免与设备1的S-SSB发生冲突。
可选地,其他设备进行资源选择或预留时,排除设备1选择或预留的用于传输的任意时频资源(包括用于传输数据和S-SSB的资源),和/或,排除设备1选择或预留的用于发送S-SSB(只排除S-SSB的资源)的时频资源,和/或,排除设备1选择或预留的用于传输的时域上第一个资源(比如第一个时隙)的时频资源,其他时隙的时频资源无需排除。
或者,其他设备进行资源预留或资源选择时,排除设备1选择或预留的用于传输的任意资源所在的时隙,和/或,排除设备1选择或预留的用于发送S-SSB的资源所在的时隙,和/或,排 除设备1选择或预留的用于传输的时域上第一个资源所在的时隙(第一个时隙)。
如此,能够避免设备1与其他设备的资源之间形成FDM,进而降低设备之间的资源碰撞与干扰。
或者,可选地,其他设备进行资源选择或预留时,排除上述时隙在所在信道内的全部资源,或者,排除上述各时隙在资源池内的全部资源。
或者,可选地,其他设备进行资源预留或资源选择时,选择或预留的资源所在的第一个时隙与设备1选择或预留的用于传输的资源所在的第一个时隙不相同。
可选地,如果其他设备通过重评估,发现不满足上述资源选择或预留条件,则可以进行资源重选。如此,可以避免与设备的S-SSB进行资源碰撞。
在一些实施例中,设备1可以通过消息指示会在/将在选择或预留用于传输的资源内,或者根据选择或预留的资源初始的COT内传输S-SSB。
可选地,设备1进行资源选择或预留时,在第一级侧行控制信息(sidelink control information,SCI)或第二级SCI中指示以下中至少一项;或者,设备1在选择或预留的第一个时隙,或在根据选择或预留的资源初始的COT的第一个时隙中的第一级SCI或第二级SCI中指示以下信息中至少一项信息:
不允许其他设备选择或预留的资源与自己的资源FDM(比如通过1bit指示);
将在上述资源或上述COT范围内发送S-SSB(比如通过1bit指示);
发送S-SSB的时域资源和/或频域资源的信息。
可选地,可以通过时域资源指示值(time resource indication val设备,TRIV)、频域资源指示值(freq设备ncy resource indication val设备,FRIV)、位图(bitmap)中至少一种方式指示时域资源和/或频域资源的信息。
可选地,指示时域资源时,可以指示时域资源在物理时隙(系统帧)中的位置,或者在逻辑时隙中的位置,或者在选择或预留资源中的位置。可选地,所述位置可以为索引。比如,10个时隙中给SL-U配置0、8、10号时隙,这三个时隙的逻辑索引可以是0、1、2。其中,逻辑索引为0、1的时隙被分配给设备1用于发送S-SSB。再比如,设备1预留了10个时隙,并指示第3-5个时隙用于发送S-SSB。
可选地,频域资源的信息包括所在信道(信道)、所在子信道中至少一项。
可选地,频域资源还可以是(预)配置的。如此,能够避免在频域上盲检。
在一些实施例中,当其他设备进行资源选择或预留时,若进行资源选择的业务的CAPC(或物理层优先级)低于设备1的任意资源,或设备1的S-SSB,或设备1的各资源的整体(根据全部资源可得到一个综合的优先级),或设备1在时域上第一个资源的CAPC(或物理层优先级)时,才排除设备1的相应资源,否则不排除设备1的相应资源。换言之,如果其他设备的相应业务的优先级比设备1的相应资源关联的优先级更高,那么,其他设备可以占用设备1已选择或预留的资源进行传输,以满足高优先级业务的传输需求。反之,若其他设备的相应业务的优先级较低,则其他设备不能抢占设备的资源。可以理解,优先级越高,优先级值越小。
和/或,可选地,当设备1的任意资源(每个资源的优先级可以不同)、或设备1的S-SSB、或设备1的资源的整体、或设备1在时域上第一个资源的参考信号接收功率(reference signal received power,RSRP)或接收信号强度指示(received signal strength indication/indicator,RSSI)高于第一阈值时,其他设备才排除设备1的相应资源,否则不排除设备1的相应资源。
换言之,设备1已经选择或预留了资源,且其他设备检测到设备1的信号强度较高时,认为设备1对自身的影响大,因此,其他设备需要排除设备1的资源,以免与设备1产生碰撞,影响自身的传输性能。反之,若其他设备检测到设备1的信号强度较低,意味着,设备1对自身的影响小,则其他设备可以不排除设备1的资源。如此,在某些场景中,其他设备可以占用设备1的资源进行传输,且不会受设备1的干扰,或者,受设备1的干扰程度较低,能够保证正常传输。
S502、所述第一设备在第三资源上发送S-SSB。
所述第二设备在第三资源上接收S-SSB。
可选地,在所述第二设备在第三资源上传输之前,需要执行信道接入(LBT)。
前述主要以设备1发送S-SSB的场景中,其他设备通过资源排除、资源选择避免与设备1 发生冲突(设备1传输SSB,其他设备避开)。对于需要传输S-SSB的设备1,该设备1也可以通过资源选择、排除流程,避免与已预留资源的设备(发送或不发送S-SSB)产生冲突(其他设备传输,设备1传输SSB时需要避开其他设备的资源)。具体实现方式可参见上述实施例,这里不在赘述。
可选地,对于S401、S402和S501、S502等任一种方式:
可选地,如果发生了资源碰撞的情况,设备可以进行资源重选。
可选地,由不发送S-SSB的设备进行资源重选,或者,由发送S-SSB的设备进行资源重选,或者,由CAPC较低的设备进行资源重选,或者,由物理层优先级较低的设备进行资源重选。
可选地,上述S-SSB为additional S-SSB,或者动态的S-SSB,或者设备-specific S-SSB。
可选地,PSSCH/PSCCH的传输基于IRB,或者,资源池使能了基于IRB的PSSCH/PSCCH传输,或者,资源分配方式或资源占用方式为IRB。
可选地,S-SSB的传输方式包括以下中的至少一种:“PSBCH interlace传输,S-PSS/S-SSS连续传输”,“S-SSB(PSBCH和S-PSS/S-SSS)频域重复传输,或者,S-SSB频域连续传输”。
可选地,设备选择或预留的上述资源可以用于PSSCH/PSCCH、S-SSB、PSFCH中的至少一项的传输。
可选地,设备的S-SSB传输在初始的COT内最后一个时隙进行传输,或者,在所述设备预留的资源中的最后一个时隙传输。
可选地,设备在第一级或第二级SCI中指示一下中的至少一项:发送S-SSB的时域位置(时隙索引,包括物理时隙索引、逻辑时隙索引、在COT内或预留的资源内的相对索引中任一)、频域位置(RB set索引或信道索引)、本COT内或预留资源内是否发送S-SSB(1bit)、COT位置(COT总长度、COT起始位置、COT结束位置、COT剩余时长中任一)、预留的资源时域位置(时域起始位置、时域结束位置、时隙数中任一)。
可选地,所述SCI位于COT或预留资源的第一个时隙上(用于指示当前COT的S-SSB或下一次传输/预留中的S-SSB),或者,位于COT或预留资源的最后一个时隙上。
如此,在最后一个时隙传输S-SSB,在多RB set场景中,可以避免仅在一个RB set上传输S-SSB导致其他RB set的COT丢失/中断。
实施例四
本实施例涉及S-SSB OCB和信道丢失,可以与其他实施例解耦合,可以与其他实施例结合使用,或者也可以单独使用。如图16,该方法可包括:
S801、第一设备初始第一COT。
S802、第一设备在第四资源上发送S-SSB。
相应的,第二设备在第四资源上接收S-SSB。
在一种可能的设计中,对于多信道场景,如果第一时隙为(预)配置的S-SSB时隙,且位于COT内,所述第一时隙位于资源池外,则第一设备通过如下至少一种方式确定用于发送S-SSB的第四资源:
可选地,如果设备打算在第一时隙发送S-SSB,则在除了(预)配置的S-SSB频域位置所在的信道外,用于数据传输的每个信道上或者在资源池内每个信道上独立发送S-SSB。
可选地,如果设备打算在第一时隙接收S-SSB,则设备放弃该第一时隙的S-SSB的接收。
可选地,设备将用于数据传输的每个信道上该第一时隙的部分或全部频域资源共享给其他设备,或者用于自己的数据传输。可选地,如果打算在第一时隙不发送也不接收S-SSB,则可以在用于数据传输的每个信道上发送S-SSB。
在一种可能的设计中,对于多信道场景,如果第一时隙为(预)配置的S-SSB时隙,且位于COT内,所述第一时隙位于资源池内,则第一设备通过如下至少一种方式确定用于发送S-SSB的第四资源:
可选地,如果设备打算在第一时隙发送S-SSB,则在除了(预)配置的S-SSB频域位置所在的信道外,用于数据传输的每个信道上或者在资源池内每个信道上,独立发送S-SSB或者发送数据。
可选地,如果设备打算在第一时隙接收S-SSB。可选地,设备将除了(预)配置的S-SSB频域位置所在的信道之外的,用于数据传输的每个信道上该时隙的部分或全部频域资源共享给其 他设备。可选地,如果打算在第一时隙不发送也不接收S-SSB,则应在用于数据传输的每个信道上发送S-SSB、或发送数据、或将每个信道上该时隙的部分或全部频域资源共享给其他设备。
如此,在多信道场景中,保证每个信道上都有数据/S-SSB的发送或接收,以避免COT中断。
在一种可能的设计中,将11RB的频域扩展为12RB,其中,最高或最低的1个RB中填零(set to zero),其他11RB按照现有结构发送(参考下表7);
可选地,所述方式适用于PSBCH、S-PSS、S-SSS中的至少一项。可选地,在11RB的基础上频域额外扩展3个RE(则共11*12+3=134RE刚好满足15kHz下的2MHz),所述3个RE与现有结构11RB的最高频域一端相邻,或与最低频域的一端相邻,并将所述3个RE填零。可选地,所述方式适用于PSBCH、S-PSS、S-SSS中的至少一项。
可选地,PSBCH interlace传输,S-PSS/S-SSS连续传输;或者,S-SSB适用于临时豁免。
当子载波间隔为15kHz时,相比于“PSBCH interlace传输,S-PSS/S-SSS连续传输”这一OCB方案中S-PSS/S-SSS,或者频域连续传输的S-SSB(PSBCH/S-PSS/S-SSS),在非授权频谱上的带宽都小于2MHz,不满足OCB要求。通过上述方法可以使得PSBCH、S-PSS、S-SSS满足OCB的2MHz带宽要求。
表7
实施例五
当参考持续时间内有多种传播类型和/或多种使能信息的传输时,设备可以根据其中的相应传播类型和/或相应使能信息调整CWp。具体的,如图17,该方法包括如下步骤:
S201、根据第一传播类型和/或第一使能信息确定信道接入的参数。
可选地,步骤S201可由第一设备执行。
可选地,S201前还可以包括S200、确定第一传播类型和/或第一使能信息(未在图中示出)。
可选地,步骤S200可由第一设备执行。
相应地,第二设备是第一设备的接收设备,和/或,第一设备是第二设备的接收设备。
其中,第一传播类型为第一侧行信息关联的传播类型,和/或,第一使能信息为第一侧行信息关联的使能信息。可选地,第一传播类型的侧行传输为第一设备传输(比如发送)的。可选地,第一侧行信息为第一传播类型的侧行传输的重传、周期传输、周期传输的重传中的至少任意一种。第一侧行信息是接入信道后在信道上发送的首个侧行信息。
在一些实施例中,信道接入的参数包括LBT类型、信道接入优先级CAPC、竞争窗CWp、竞争窗的最小值CWmin,p、竞争窗的最大值CWmax,p、LBT循环数N、LBT循环数初始值Ninit、Td、Tsl、Tf、mp、最大信道占用时间Tulmcot,p、竞争窗CWp候选取值列表中的至少任意一种。
第一设备根据第一传播类型和/或第一使能信息确定上述信道接入参数中的至少任意一种。根据所传输侧行信息的特性适应性调整信道接入参数。其中,信道接入参数的值与信道接入的难易程度有关。
以信道接入参数为竞争窗CWp为例,调整CWp是为了避免与其他设备碰撞。例如信道条件差,则增大CWp的值,多监听一段时间信道是否空闲。再例如,信道条件好,则减少CWp的值,少监听一段时间信道是否空闲。再例如,不知道上次调整CWp之后信道条件有没有改变,则不改变CWp的值。
以信道接入参数为LBT类型为例,类型1 LBT(Type1 LBT)需要更长的信道接入时间,但是比较不容易和其他设备资源碰撞。类型2 LBT(Type2 LBT)仅需要非常短的信道接入时间,但是有适用条件的限制。进一步,类型2A LBT、类型2B LBT、类型2B LBT对应的信道监听时长均不相同。根据第一传播类型和/或第一使能信息确定具体的LBT类型可以进一步保证设备接入信道的灵活性和可靠性。
在本实施中,CW和CWp均可以指代竞争窗,或者,CW和CWp均表示竞争窗的值。其中,CW表示竞争窗的值,CWp表示对于CAPC=p的竞争窗的值CWp。若无额外说明,CW和CWp可以同义替换。
可选地,传播类型可以包括:单播、基于ACK/NACK的组播(还称为组播option 2或组播opt2)、仅基于NACK的组播(还称为组播option 1或组播opt1)、仅基于ACK的组播、广播。
可选地,使能信息可以包括:HARQ使能、HARQ去使能、冲突指示使能、冲突指示去使能。对于HARQ使能,第二设备传输第一反馈信息(ACK和/或NACK)给第一设备,或者,第一设备传输第一反馈信息(ACK和/或NACK)给第二设备。对于HARQ去使能,第二设备不传输第一反馈信息(比如ACK和/或NACK)给第一设备;或者,第一设备不传输第一反馈信息(比如ACK和/或NACK)给第二设备。对于冲突指示使能,第一设备能够接收冲突指示,或者,第二设备能够接收冲突指示。对于冲突指示去使能,第一设备不能够接收冲突指示,或者,第二设备不能够接收冲突指示。
可选地,第一传播类型为第一侧行信息关联的传播类型,还可以理解为:第一传播类型由第一侧行信息的第一SCI指示。其中,第一传播类型可以为单播、基于ACK/NACK的组播(还称为组播option 2或组播opt2)、仅基于NACK的组播(还称为组播option 1或组播opt1)、仅基于ACK的组播、广播中的至少任意一种。可选地,第一SCI可以为一阶SCI、二阶SCI、MAC CE中的至少任意一种。
可选地,第一使能信息为第一侧行信息关联的使能信息,还可以理解为:第一使能信息由第一侧行信息的第二SCI指示。其中,第一使能信息可以为HARQ使能、HARQ去使能、冲突指示使能、冲突指示去使能中的至少任意一种。其中,第二SCI可以为一阶SCI、二阶SCI、MAC CE中的至少任意一种。
示例性的,如图18A所示,第一设备为传输第一侧行信息执行Type1信道接入。
如图18A,第一设备如果传输第一侧行信息(例如第一COT内传输第一侧行信息),则需要先确定信道接入的参数,并根据信道接入的参数(比如包括竞争窗的值CWp等)执行LBT,以接入信道。在接入信道后,第一设备可以在初始化的第一COT内传输侧行信息(包括首个侧行信息,即第一侧行信息)。其中,第一侧行信息关联的传播类型为第一传播类型,和/或第一侧行信息关联的使能信息为第一使能信息。第一设备可以根据第一传播类型和/或第一使能信息确定信道接入的参数。
在一些实施例中,第一侧行信息是接入信道后在信道上发送的首个侧行信息。
第一设备使用第一侧行信息关联的参数接入信道,或者,第一设备使用第一侧行信息关联的参数初始第一COT。也就是说,第一设备基于第一侧行信息关联的参数确定信道接入参数。这可以让第一设备根据所传输的第一侧行信息的特性适应性调整信道接入参数。
可选地,第一侧行信息满足以下情况中的至少任意一种:第一侧行信息为第一设备接入信道所在的时隙上的传输,和/或,第一侧行信息为第一设备接入信道后首个时隙上的传输,和/或,第一侧行信息为第一设备接入信道后第二个时隙上的传输。
可选地,第一侧行信息是在第一COT内传输的,第一侧行信息满足以下情况中的至少任意一种:
第一侧行信息为第一COT的首个时隙上的传输,和/或,第一侧行信息为第一COT的第二个时隙上的传输,和/或,第一侧行信息为该第一COT内发送的首个TB,和/或,第一侧行信息为该第一COT内的首个HARQ使能的TB。在一些示例中,第一侧行信息还可以理解为第一TB,两者可以同义替换。
在一些实施例中,参考持续时间内有至少一个传输,至少一个传输关联至少一种传播类型;根据至少一个传播类型中的第一播类型确定信道接入的参数;和/或,参考持续时间内有至少一个传输,至少一个传输关联至少一种使能信息;根据至少一个使能信息中的第一使能信息确定 信道接入的参数。
第一设备确定信道接入参数前(例如确定竞争窗CWp),参考持续时间内有至少一个传输,这些传输关联至少一种传播类型和/或使能信息。不同的传播类型的传输的确定的CWp值可能相同也可能不同。同理,不同的使能信息的传输的确定的CWp值可能相同也可能不同。因此,需要一种统一的确定CWp的方法。第一设备根据第一COT的首个传输(即第一侧行信息)的传播类型确定CWp是简单直接的方法。即,第一侧行信息的传播类型是什么,就按照这个传播类型确定CWp。
作为一种可能的实现方式,如图18B,根据第一传播类型和/或第一使能信息确定信道接入的参数,可以实现为:S201a、根据第一传播类型和/或第一使能信息确定第一反馈信息,S201b、根据第一反馈信息确定信道接入的参数。第一反馈信息是参考持续时间内的至少一个传输中第二侧行信息关联的反馈信息。
在一些实施例中,第二侧行信息与第一侧行信息满足以下中的至少任意一项:
第二侧行信息关联的第二传播类型与第一侧行信息的第一传播类型相同;
第二侧行信息关联的第二使能信息与第一侧行信息的第一使能信息相同;
第二侧行信息的第二源标识ID与第一侧行信息的第一源ID相同;
第二侧行信息的第二目的ID与第一侧行信息的第一目的ID相同;
第二侧行信息的第二HARQ进程与第一侧行信息的第一HARQ进程相同;
第一侧行信息为第二侧行信息的重传、周期传输、周期传输的重传中的至少任意一种;
第一侧行信息为第二侧行信息的重传预留传输、周期预留传输、周期预留的重传预留传输中的至少任意一种;
第二侧行信息的侧行控制信息指示的预留资源传输第一侧行信息;
第二侧行信息与第一侧行信息都是第一设备传输的。
反馈信息可以反映信道条件的好坏。例如,如果第一设备收到了ACK,则说明第一设备的接收设备可以译码接收到的数据,这代表了信道条件较好。再例如,如果第一设备收到了NACK,则说明第一设备的接收设备不能正确译码接收到的数据,这代表了信道条件较差。再例如,上次调整CWp之后第一设备没收到任何HARQ信息,则第一设备无法判断信道条件有没有改变,则不改变CWp的值。
根据以上条件中的至少任意一种,可以确定与第一侧行信息关联的第二侧行信息。使用该第二侧行信息关联的第一反馈信息调整CWp更为准确。更能反映当前业务是否更容易接入信道。可以更好的避免与资源池中其他设备的传输的碰撞。
在另一些实施例中,第二侧行信息是在第二COT内传输的,第二侧行信息满足以下情况中的至少任意一种:第二侧行信息为第二COT的首个时隙上的传输,和/或,第二侧行信息为第二COT的第二个时隙上的传输,和/或,第二侧行信息为第二COT的任意时隙上的传输,和/或,第二侧行信息为该第二COT内发送的首个TB,和/或,第二侧行信息为该第二COT内的任意TB,第二侧行信息为该第二COT内的首个HARQ使能的TB。在一些示例中,第二侧行信息还可以理解为第二TB,两者可以同义替换。
“第二侧行信息为第二COT内首个TB”,还可以理解为第一设备根据前一个具有相同传播类型的COT内的第二侧行信息关联的反馈调整CWp。其中,前一个具有相同传播类型的COT为第二COT。
可选地,第一设备根据参考持续时间里的第二侧行信息关联的第一反馈信息确定信道接入的参数;或者,第一设备根据参考持续时间里的第二侧行信息关联的反馈的信息确定信道接入的参数。
例如,第一设备在参考持续时间内发送至少1个第二侧行信息;和/或,第一设备在参考持续时间内接收至少1个第二侧行信息。相应地,第一设备可以接收该第二侧行信息关联的第一反馈信息;和/或,第一设备可以传输该第二侧行信息关联的第一反馈信息。第一设备根据该第一反馈信息确定信道接入的参数。其中,该侧行信息可以是PSCCH/PSSCH。该侧行信息可以是PSFCH,例如为ACK、NACK、冲突指示中的至少任意一种。其中,第一反馈信息在时域上可以属于第二时间内。信道接入的参数例如可以是竞争窗口的值CWp或者信道接入类型。其中,第二侧行信息是第一设备发送给第二设备的,第一反馈信息是第二设备发送给第一设备的;或 者,第二侧行信息是第二设备发送给第一设备的,第一反馈信息是第一设备发送给第二设备的。
可选地,参考持续时间是在上次调整信道接入参数后的一段时间,和/或,参考持续时间是S201中确定信道接入参数前的一段时间。例如参考持续时间可以是M个时隙。其中M为整数,例如M={1,2,3,4,5}中的任意一个。
以根据第一传播类型和第一使能信息确定信道接入的参数为例,示例性的,如图19,参考持续时间内包括至少一个传输TB1-TB5,其中,TB1、TB4的传播类型与第一侧行信息的传播类型相同(均为单播(第一传播类型的一个示例)),且TB1、TB4的使能信息与第一侧行信息的使能信息相同(均为HARQ使能(第一使能信息的一个示例)),则第一设备可以将参考持续时间内的TB1、TB4视为第二侧行信息。TB1、TB4关联的反馈信息即第二时间内的第一个、第四个HARQ(第一反馈信息)。第一设备可以根据第二时间内的第一个、第四个HARQ确定信道接入的参数(比如竞争窗口的值CWP)。其中,TB5为单播且HARQ去使能(与第一侧行信息的使能信息不一致),则第一设备不根据TB5关联的反馈信息调整CWp。TB2为组播opt1且HARQ使能,则第一设备不根据TB2关联的反馈信息调整CWp。TB3为组播opt2且HARQ使能,则第一设备不根据TB3关联的反馈信息调整CWp。
再示例性的,参考持续时间内包括至少一个传输TB1-TB5,其中,TB1的目的标识与第一侧行信息的目的标识相同,且TB1的源标识与第一侧行信息的源标识相同,则第一设备可以将参考持续时间内的TB1视为第二侧行信息。TB1关联的反馈信息即第一反馈信息。第一设备可以根据第一反馈信息确定信道接入的参数。
再示例性的,第二侧行信息为参考持续时间内的TB1,其中第二侧行信息的第二目的ID与第一侧行信息的第一目的ID相同,第一设备根据TB1关联的反馈信息调整CWp。参考持续时间内TB5承载的第五侧行信息的第五目的ID与第一侧行信息的第一目的ID不同,第一设备不根据TB5关联的反馈信息调整CWp。
可选地,反馈信息可以是ACK、NACK、冲突指示中的至少任意一种。第一反馈信息可以是ACK、NACK、冲突指示中的至少任意一种。
可选地,参考持续时间内的第二侧行信息为第一设备发送的,第一设备根据接收的第一反馈信息确定CWp。例如,根据第二时间内接收的第一反馈信息确定CWp。其中第一反馈信息为第二侧行信息关联的反馈信息。其中,第二侧行信息可以是一个或者多个。相应的,第二侧行信息关联的第一反馈信息可以是一个或者多个。可选地,第一侧行信息为第一设备发送的侧行数据信息和/或侧行控制信息,第一设备根据接收的第一反馈信息确定CWp。
可选地,参考持续时间内的第二侧行信息为第一设备接收的,第一设备根据发送的反馈信息确定CWp。例如,根据第二时间内发送的第一反馈信息确定CWp。其中反馈信息为第二侧行信息关联的反馈信息。其中,第二侧行信息可以是一个或者多个。相应的,第一反馈信息可以是一个或者多个。可选地,第一侧行信息为第一设备发送的侧行反馈信息,第一设备根据发送的第一反馈信息确定CWp。
可选地,反馈信息还可以替换为“反馈的信息”,反馈的信息例如但不限于为反馈信息的比例。第一设备可以根据反馈信息的比例确定CWp。其中,反馈信息在时域上属于第二时长内。
可选地,第一反馈信息还可以替换为“第一反馈的信息”,第一反馈的信息例如但不限于为第一反馈信息的比例。第一设备可以根据第一反馈信息的比例确定CWp。其中,第一反馈信息在时域上属于第二时长内。
可选地,第二传播类型为第二侧行信息关联的传播类型,还可以理解为:第二传播类型可以由第二侧行信息的SCI指示。其中,第二传播类型可以为单播、基于ACK/NACK的组播(还称为组播option 2或组播opt2)、仅基于NACK的组播(还称为组播option 1或组播opt1)、仅基于ACK的组播、广播中的至少任意一种。可选地,第二侧行信息的该SCI可以为一阶SCI、二阶SCI、MAC CE中的至少任意一种。
在一些实施例中,参考持续时间是根据第二COT确定的,用于初始第二COT的第二CAPC大于或等于第一CPAC,其中,第一CAPC是第一侧行信息关联的CAPC。其中,第一CAPC的值为p。第一设备可以确定第一CAPC关联的CWp。第一设备可以根据第一CAPC初始第一COT,该第一COT承载第一侧行信息。
CAPC关联了信道接入的难以程度,例如CAPC的值小,则较容易接入信道;CAPC的值 大,则较难接入信道。或者,CAPC的值小,则较短时间就可以接入信道;CAPC的值大,则需要较长的时间才能接入信道。基于与第一侧行信息相同的CAPC初始的COT,更能反映当前CAPC是否更容易接入信道,CWp调整更准确。可以更好的避免与资源池中其他设备的传输的碰撞。
可选地,满足以下条件中的至少一项,第一设备根据参考持续时间内第二侧行信息关联的第一反馈信息调整CWp:第一CAPC等于第二CAPC,第一CAPC大于第二CAPC第一CAPC小于第二CAPC。其中,第一CAPC是第一侧行信息关联的CAPC。其中,第一CAPC的值为p。第一设备可以确定第一CAPC关联的CWp。第一设备可以根据第一CAPC初始第一COT,该第一COT承载第一侧行信息。
其中,第二CAPC是第二侧行信息关联的CAPC。第二CAPC的值为p。该第二CAPC可以由第二侧行信的侧行控制信息指示,也可以由第二COT的COT指示信息指示。例如,第一设备可以根据第二CAPC初始第二COT,该第二COT承载第二侧行信息。再例如,第一设备可以共享其他设备根据第二CAPC初始第二COT,该第二COT承载第二侧行信息。再例如,第一设备可以共享其他设备初始第二COT,该第二COT承载第二侧行信息。
或者,可选地,第二COT所在时域属于参考持续时间(比如第二COT的时长小于参考持续时长);或者,参考持续时间属于第二COT所在时域;或者,第二COT的全部或者部分时域属于参考持续时间。
可选地,第一侧行信息的第一侧行控制信息指示第一CAPC。
可选地,第二侧行信息的第二侧行控制信息可以指示第二CAPC,或者,第二COT的COT指示信息指示第二CAPC,或者,第二COT的COT共享信息指示第二CAPC。
示例性的,如图20所示,初始第一COT的CAPC=2,则用CAPC=2初始的第二COT属于参考持续时间,第一设备可以根据第二COT中第二侧行信息关联的第一反馈信息调整CWp。
可选地,第二CAPC还可以小于第一CAPC。
S202、在信道上传输第一侧行信息。
可选地,步骤S202可由第一设备执行。
可以理解,S201中确定的信道接入参数用于接入信道。
可以理解的是,第一设备传输第一侧行信息给第二设备,相应地,第二设备接收第一侧行信息。
可以理解,当LBT成功时,第一设备成功接入信道,并在信道上传输第一侧行信息。当LBT失败时,第一设备接入失败,不传输第一侧行信息。
本申请实施例还提供一种通信方法,当存在多个第二侧行信息,根据多个第二侧行信息各自的调整结果确定最终用于接入信道的参数。
在一些示例中,多个第二侧行信息关联的第一反馈信息确定的CWp不同;例如多个第二侧行信息包括第三侧行信息、第四侧行信息;方法包括步骤S701和S702,其中,如图21,根据条件的不同,第一设备执行S701中的S701a或S701b或S701c:
S701a、第三侧行信息对应的调整结果为将竞争窗的值调整为最小值,第四侧行信息对应的调整结果为保持竞争窗的值,确定将竞争窗的值调整为最小值。
示例性的,第三侧行信息比如为参考持续时间内的第一个第二侧行信息,第四侧行信息比如为参考持续时间内的第二个第二侧行信息。
S701b、第三侧行信息对应的调整结果为将竞争窗的值调整为最小值,第四侧行信息对应的调整结果为将竞争窗的值增加到更大的候选值,确定将竞争窗的值调整为最小值。
S701c、第三侧行信息对应的调整结果为将保持竞争窗的值,第四侧行信息对应的调整结果为将竞争窗的值增加到更大的候选值,确定保持竞争窗的值。
可选地,S701前还可以包括S200、确定第一传播类型和/或第一使能信息。
其中,将竞争窗的值调整为最小值还可以理解为对每个CAPC=p(p∈{1,2,3,4}),令CWp=CWmin,p。保持竞争窗的值可以理解为对每个CAPC=p(p∈{1,2,3,4}),保持CWp(即不调整CWp)。将竞争窗的值增加到更大的候选值还可以理解为对每个CAPC=p(p∈{1,2,3,4}),增加CWp到下一个更大的候选值。
换言之,根据至少任意一个第二侧行信息关联的反馈信息(例如第一反馈信息)确定CWp 的结果为以下更新CWp结果中的任意一种:
调整结果1:对每个CAPC=p(p∈{1,2,3,4}),令CWp=CWmin,p。CWmin,p为最小值。
调整结果2:对每个CAPC=p(p∈{1,2,3,4}),保持CWp(即不调整CWp)。
调整结果3:对每个CAPC=p(p∈{1,2,3,4}),增加CWp到下一个更大的候选值。
可选地,调整结果的优先顺序为调整结果1、调整结果2、调整结果3。例如,第三侧行信息关联的反馈信息确定CWp的结果为调整结果1,第四侧行信息关联的反馈信息确定CWp的结果为调整结果2,则第一设备根据调整结果1确定CWp。再例如,第三侧行信息关联的反馈信息确定CWp的结果为调整结果1,第四侧行信息关联的反馈信息确定CWp的结果为调整结果3,则第一设备根据调整结果1确定CWp。再例如,第三侧行信息关联的反馈信息确定CWp的结果为调整结果2,第四侧行信息关联的反馈信息确定CWp的结果为调整结果3,则第一设备根据调整结果2确定CWp。
可选地,调整结果的顺序为调整结果3、调整结果2、调整结果1。例如,第三侧行信息关联的反馈信息确定CWp的结果为调整结果1,第四侧行信息关联的反馈信息确定CWp的结果为调整结果2,则第一设备根据调整结果2确定CWp。再例如,第三侧行信息关联的反馈信息确定CWp的结果为调整结果1,第四侧行信息关联的反馈信息确定CWp的结果为调整结果3,则第一设备根据调整结果3确定CWp。再例如,第三侧行信息关联的反馈信息确定CWp的结果为调整结果2,第四侧行信息关联的反馈信息确定CWp的结果为调整结果3,则第一设备根据调整结果3确定CWp。
可选地,调整结果还可以称为更新结果。
可选地,参考持续时间内有多个第二侧行信息,多个第二侧行信息关联的第一反馈信息确定的CWp不同。第一设备按照参考持续时间中最后的第二侧行信息关联的第一反馈信息确定的CWp,或者,按照第二时间内时间上最后的第一反馈信息确定CWp,或者,按照参考持续时间上最前的第二侧行信息关联的第一反馈信息确定的CWp,或者,按照第二时间内时间上最前的第一反馈信息确定CWp。其中,第二时间内时间上最后的第一反馈信息可能有一个或者多个,第二时间内时间上最前的第一反馈信息可能有一个或者多个。
S702、接入信道成功,传输第一侧行信息。
可选地,步骤S702可由第一设备执行。可以理解,S701中的S701a或S701b或S701c中确定的信道接入参数用于接入信道。
可以理解的是,第一设备传输第一侧行信息给第二设备,相应地,第二设备接收第一侧行信息。
可以理解,当LBT成功时,第一设备成功接入信道,并在信道上传输第一侧行信息。当LBT失败时,第一设备接入失败,不传输第一侧行信息。
本申请实施例还提供一种通信方法,如图22,该方法包括:
S601、满足如下第三条件时,根据网络设备配置给第一设备的值确定信道接入的参数,或者,根据预配置给第一设备的值确定信道接入的参数,或者,根据预定义的值确定信道接入的参数,或者,不调整信道接入的参数。
可选地,S601前还可以包括S200、确定第一传播类型和/或第一使能信息。
可选地,步骤S601可由第一设备执行。
第三条件包括如下至少一项条件:在参考持续时间内没检测到侧行信息;在参考持续时间内没检测到第二侧行信息;在第二时间内没检测到第一反馈信息;在第二时间内没发送第一反馈信息;在参考持续时间内的侧行信息的传播类型不是第一传播类型;在参考持续时间内的侧行信息的使能信息不是第一使能信息;在第二时间内的第一反馈信息不是第一传播类型的传输对应的反馈信息;在第二时间内的第一反馈信息不是第一使能信息的传输对应的反馈信息;上次更新CWp之后没有第一传播类型的传输;和/或,上次更新CWp之后没有第一使能信息的传输;和/或,没有第一传播类型的传输对应的反馈信息传输。
可选地,不调整信道接入的参数例如可以是不调整CWp。
没有检测到信息,还可以理解为没有收到相应信息,或者,没有成功译码相应信息。
可选地,配置、预配置或者预定义的值包括如下表8、表9中的部分或者全部值。
表8 Type 1信道接入相关参数值-例1
表9 Type 1信道接入相关参数值-例2
S602、接入信道成功,传输第一侧行信息。
可选地,步骤S602可由第一设备执行。
可以理解,S601中确定的信道接入参数用于接入信道。
可以理解的是,第一设备传输第一侧行信息给第二设备,相应地,第二设备接收第一侧行信息。
可以理解,当LBT成功时,第一设备成功接入信道,并在信道上传输第一侧行信息。当LBT失败时,第一设备接入失败,不传输第一侧行信息。
本申请实施例还提供一种通信方法,当存在多个第二侧行信息,根据多个第二侧行信息的传播类型和/或使能信息的优先级确定CWp。
可选地,第一传播类型的优先级最高。也就是说,第二侧行信息关联的传播类型与第一侧行信息关联的第一传播类型相同,根据第一传播类型确定CWp;或者,优先按照第一传播类型确定CWp。第一传播类型的优先级最高还可以理解为,根据传播类型为第一传播类型的第二侧行信息的第一反馈信息确定CWp。
可选地,第一使能信息的优先级最高。也就是说,第二侧行信息关联的使能信息与第一侧行信息关联的第一使能信息相同,根据第一使能信息确定CWp;或者,优先按照第一使能信息确定CWp。第一使能信息的优先级最高还可以理解为,根据使能信息为第一使能信息的第二侧行信息的第一反馈信息确定CWp。
可选地,根据基于ACK/NACK的组播确定CWp优先于根据单播确定CWp;和/或,根据单播确定CWp优先于仅基于NACK的组播确定CWp;和/或,根据单播确定CWp优先于根据反馈去使能的侧行信息确定CWp;和/或,根据仅基于NACK的组播确定CWp优先于根据反馈去使能的侧行信息确定CWp。根据基于ACK/NACK的组播确定CWp还可以理解为,根据基于ACK/NACK的组播的第二侧行信息的第一反馈信息确定CWp。根据基于单播确定CWp还可以理解为,根据基于单播的第二侧行信息的第一反馈信息确定CWp。根据仅基于NACK的组播确定CWp还可以理解为,根据仅基于NACK的组播的第二侧行信息的第一反馈信息确定CWp。
可选地,本实施例各实施例的任一方法结合或独立使用。以结合实施例一与实施例二中的方法为例,可以在执行图9D所示的S301-S303之后,执行图4所示的S101、S102,即先采用实施例二的方法接入信道,之后采用实施例一的方法初始化第一COT,并共享第一COT内的资源。以结合实施例三与实施例一相应的方法为例,第一设备可以执行图14所示的S401、S402发送S-SSB,并且,第一设备可以执行图4所示的S102,向其他设备共享第一COT内的资源。再比如,S601、S602中的至少一个步骤可以是和其他实施例的步骤结合实施。比如,S601、S602中的至少一个步骤可以与S201和/或S401等结合。或者,S601、S602可以单独实施。各实施例的任意方法之间的组合不限于此,各种组合形成的方法均在本申请实施例的保护范围内。
本申请的各实施例中,预配置或(预)配置,可以指预定义、RRC配置、DCI指示、SCI指示中的一种或多种。
可选地,上述任一方案或者彼此结合形成的方案中,初始设备(比如设备1、2)可以为多连续时隙传输(Multi-consecutive slots transmission,MCSt)或非多连续时隙传输;或者,初始设备用于自己传输的时隙为一个或多个;或者,初始设备每个时隙使用的频域资源的数量与位置相同或不同。
可选地,本申请实施例对消息、信令的承载方式不做限制。
需要说明的是,可以对上述多个实施例进行组合,并实施组合后的方案。可选的,各方法实施例的流程中的一些操作任选地被组合,并且/或者一些操作的顺序任选地被改变。并且,各流程的步骤之间的执行顺序仅是示例性的,并不构成对步骤之间执行顺序的限制,各步骤之间还可以是其他执行顺序。并非旨在表明执行次序是可以执行这些操作的唯一次序。本领域的普通技术人员会想到多种方式来对本文的操作进行重新排序。另外,应当指出的是,本文某个实施例涉及的过程细节同样以类似的方式适用于其他实施例,或者,不同实施例之间可以组合使用。
此外,方法实施例中的某些步骤可等效替换成其他可能的步骤。或者,方法实施例中的某些步骤可以是可选的,在某些使用场景中可以删除。或者,可以在方法实施例中增加其他可能的步骤。
并且,上述各方法实施例之间可以单独实施,或结合起来实施。
可以理解的是,本申请实施例中的设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对通信设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
本申请另一些实施例提供了一种装置,该装置可以是上述第一设备或第二设备或第三设备或相应组件。该装置可以包括:存储器和一个或多个处理器。该存储器和处理器耦合。该存储器用于存储计算机程序代码,该计算机程序代码包括计算机指令。当处理器执行计算机指令时,设备可执行上述方法实施例中第一设备或第二设备或第三设备执行的各个功能或者步骤。该设备的结构可以参考图2A所示的设备的结构。
其中,该设备的核心结构可以表示为图23所示的结构,设备包括:处理模块1301、存储模块1303。
处理模块1301,可包括中央处理器(CPU)、应用处理器(Application Processor,AP)或通信处理器(Communication Processor,CP)中的至少一个。处理模块1301可执行与用户通信设备的其他元件中的至少一个的控制和/或通信相关的操作或数据处理。
存储模块1303,可包括易失性存储器和/或非易失性存储器。存储模块用于存储设备的其他模块中的至少一个相关的指令或数据。
可选的,还包括通信模块1305,用于支持设备(通过通信网络)与其他设备通信。例如,通信模块可经由无线通信或有线通信连接到网络,以与其他设备进行通信。无线通信可采用蜂窝通信协议中的至少一个,诸如,长期演进(LTE)、高级长期演进(LTE-A)、码分多址(CDMA)、宽带码分多址(WCDMA)、通用移动通信系统(UMTS)、无线宽带(WiBro)或全球移动通信系统(GSM)。无线通信可包括例如短距通信。短距通信可包括无线保真(Wi-Fi)、蓝牙、近场通信(NFC)、磁条传输(MST)或GNSS中的至少一个。
本申请实施例还提供一种芯片系统,如图24所示,该芯片系统包括至少一个处理器1401和至少一个接口电路1402。处理器1401和接口电路1402可通过线路互联。例如,接口电路1402可用于从其它装置(例如通信设备的存储器)接收信号。又例如,接口电路1402可用于向其它装置(例如处理器1401)发送信号。示例性的,接口电路1402可读取存储器中存储的指令,并将该指令发送给处理器1401。当所述指令被处理器1401执行时,可使得通信设备执行上述实施例中的各个步骤。当然,该芯片系统还可以包含其他分立器件,本申请实施例对此不作具体限定。
本申请实施例还提供一种计算机存储介质,该计算机存储介质包括计算机指令,当所述计算机指令在上述通信设备上运行时,使得该通信设备执行上述方法实施例中手机执行的各个功能或者步骤。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行上述方法实施例中手机执行的各个功能或者步骤。
通过以上实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述 各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种通信方法,其特征在于,所述的方法包括:
    第一设备初始化第一信道占用时间COT;
    所述第一设备向第二设备发送第一共享指示信息,所述第一共享指示信息用于指示第一频域资源内的部分或全部频域资源,所述部分或全部频域资源用于共享给所述第二设备,其中,所述第一频域资源为所述第一设备在所述第一COT内占用的频域资源;或者所述第一频域资源为所述第一COT包括的频域资源。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备在所述第一COT内占用的频域资源是所述第一设备在所述第一COT内的第一个时隙占用的频域资源;或者是所述第一设备在所述第一COT内占用的频域资源数量最少的时隙上占用的频域资源;或者是所述第一设备在所述第一COT内占用的频域资源数量最多的时隙上占用的频域资源。
  3. 根据权利要求1或2所述的方法,其特征在于,第二频域资源是所述第一设备在所述第一COT内的第一个时隙上占用的频域资源,第三频域资源是第三设备在初始化的第二COT的第一个时隙上占用的频域资源,所述第二频域资源与所述第三频域资源之间频分复用。
  4. 根据权利要求3所述的方法,其特征在于,
    第四频域资源是所述第一设备在所述第一COT内占用的频域资源,第五频域资源是第三设备在初始化的第二COT内占用的频域资源;
    所述第四频域资源和所述第五频域资源包括在第六频域资源中;所述第六频域资源用于所述第二设备进行传输;
    和/或所述第六频域资源还包括第七频域资源,其中,所述第七频域资源与所述第四频域资源、所述第五频域资源位于相同信道且与所述第四频域资源、所述第五频域资源不同。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述的方法还包括:当满足如下条件中至少一项时,允许所述第二设备使用共享的资源进行传输:
    所述第一设备与所述第三设备都通过共享指示信息指示所述第二设备使用共享的资源进行传输;或者,
    所述第一设备与所述第三设备中的任意一个通过共享指示信息指示所述第二设备使用共享的资源进行传输;或者,
    所述第一设备通过共享指示信息指示所述第二设备使用共享的资源进行传输。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一设备满足如下至少一项第一条件:
    所述第一设备是多个初始设备中最先预留资源的设备,所述第一设备是所述多个初始设备中最先按照多连续时隙传输MCSt方式预留资源的设备,所述第一设备是所述多个初始设备中预留资源在时域上持续时间最长的设备,所述第一设备是允许将资源共享给其他设备的设备;
    其中,所述多个初始设备包括所述第一设备和所述第三设备。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一设备通过共享指示信息指示所述第二设备使用共享的资源进行传输,所述第一设备在资源选择时不排除所述第二设备的时频域资源。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,向第二设备发送第一共享指示信息,包括:
    满足第二条件时,发送所述第一共享指示信息;
    所述第二条件包括如下至少一项条件:
    所述第二设备的信道接入优先级高于所述第一设备和/或所述第三设备;
    所述第二设备的播类型为组播或广播,且目标设备包括所述第一设备和所述第三设备;
    所述第二设备的目标设备包括所述第一设备和所述第三设备中的至少一个;
    所述第二设备的接入信道优先级高于所述第一设备;
    所述第二设备的目标设备包括所述第一设备。
  9. 根据权利要求3-8任一项所述的方法,其特征在于,所述第一COT包含的时域资源为第一时域资源,所述第二COT包含的时域资源为第二时域资源,所述第一时域资源的持续时长大于所述第二时域资源的持续时长,第三时域资源上的任意频域资源可被所述第一设备共享给所述第二设备,其中,所述第三时域资源为所述第一时域资源与所述第二时域资源在时域上不重叠的资源。
  10. 一种通信方法,其特征在于,所述的方法包括:
    第二设备接收来自第一设备的第一共享指示信息,所述第一共享指示信息用于指示第一频域资源内的部分或全部频域资源;其中,所述第一频域资源为所述第一设备在所述第一COT内占用的频域资源;或者所述第一频域资源为所述第一COT包括的频域资源;
    所述第二设备根据所述第一共享指示信息确定所述第一频域资源内的部分或全部资源;
    所述第二设备在所述部分或全部资源上发送侧行信息。
  11. 根据权利要求10所述的方法,其特征在于,所述第一设备在所述第一COT内占用的频域资源是所述第一设备在所述第一COT内的第一个时隙占用的频域资源;或者是所述第一设备在所述第一COT内占用的频域资源数量最少的时隙上占用的频域资源;或者是所述第一设备在所述第一COT内占用的频域资源数量最多的时隙上占用的频域资源。
  12. 根据权利要求10或11所述的方法,其特征在于,第二频域资源是所述第一设备在所述第一COT内的第一个时隙上占用的频域资源,第三频域资源是第三设备在初始化的第二COT的第一个时隙上占用的频域资源,所述第二频域资源与所述第三频域资源之间频分复用。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    第二设备从第一设备接收第二共享指示信息;第二共享指示信息包括第四频域资源的信息,所述第四频域资源是所述第一设备在所述第一COT内占用的频域资源,
    第二设备从第三设备接收第三共享指示信息;第三共享指示信息包括第五频域资源的信息,第五频域资源是第三设备在初始化的第二COT内占用的频域资源;
    第二设备在所述第四频域资源以及所述第五频域资源上进行传输。
  14. 根据权利要求13所述的方法,其特征在于,所述第四频域资源和所述第五频域资源包括在第六频域资源中;所述第六频域资源用于所述第二设备进行传输;和/或所述第六频域资源还包括第七频域资源,其中,所述第七频域资源与所述第四频域资源、所述第五频域资源位于相同信道且与所述第四频域资源、所述第五频域资源不同。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,当满足如下条件中至少一项时,允许所述第二设备使用共享的资源进行传输:
    从所述第一设备与所述第三设备接收共享指示信息,所述共享指示信息均用于指示所述第二设备使用共享的资源进行传输;
    从所述第一设备与所述第三设备中的任意一个接收共享指示信息;
    从所述第一设备接收共享指示信息。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一设备满足如下至少一项第一条件:
    所述第一设备是多个初始设备中最先预留资源的设备,所述第一设备是所述多个初始设备中最先按照多连续时隙传输MCSt方式预留资源的设备,所述第一设备是所述多个初始设备中预留资源在时域上持续时间最长的设备,所述第一设备是允许将资源共享给其他设备的设备;
    其中,所述多个初始设备包括所述第一设备和所述第三设备。
  17. 一种通信方法,其特征在于,应用于第一设备,所述的方法包括:
    根据第一传播类型和/或所述第一使能信息确定信道接入的参数;所述第一传播类型为第一侧行信息关联的传播类型,和/或,所述第一使能信息为所述第一侧行信息关联的使能信息;
    在所述信道上传输所述第一侧行信息。
  18. 根据权利要求17所述的方法,其特征在于,
    参考持续时间内有至少一个传输,所述至少一个传输关联至少一种传播类型;根据至少一个传播类型中的第一播类型确定信道接入的参数;和/或,参考持续时间内有至少一个传输,所述至少一个传输关联至少一种使能信息;根据至少一个使能信息中的第一使能信息确定信道接入的参数。
  19. 根据权利要求17或18所述的方法,其特征在于,所述信道接入的参数包括竞争窗的值CWp或先听后说LBT类型。
  20. 根据权利要求17-19任一项所述的方法,其特征在于,所述第一侧行信息是接入所述信道后在所述信道上发送的首个侧行信息。
  21. 根据权利要求17-20任一项所述的方法,其特征在于,根据第一传播类型和/或所述第一使能信息确定信道接入的参数,包括:
    根据所述第一传播类型和/或所述第一使能信息确定第一反馈信息;
    根据所述第一反馈信息确定所述信道接入的参数,所述第一反馈信息是参考持续时间内的至少一个传输中第二侧行信息关联的反馈信息,所述第二侧行信息与所述第一侧行信息满足以下中的至少任意一项:
    所述第二侧行信息是第一设备传输的;
    所述第二侧行信息的传播类型与所述第一侧行信息的传播类型相同;
    所述第二侧行信息的使能信息与所述第一侧行信息的使能信息相同;
    所述第二侧行信息的第二源标识ID与所述第一侧行信息的第一源ID相同;
    所述第二侧行信息的第二目的ID与所述第一侧行信息的第一目的ID相同。
  22. 根据权利要求21所述的方法,其特征在于,所述第二侧行信息为多个,所述多个第二侧行信息包括第三侧行信息、第四侧行信息;所述方法还包括:
    所述第三侧行信息对应的调整结果为将竞争窗的值调整为最小值,所述第四侧行信息对应的调整结果为保持竞争窗的值,确定将竞争窗的值调整为最小值;或者,所述第三侧行信息对应的调整结果为将竞争窗的值调整为最小值,所述第四侧行信息对应的调整结果为将竞争窗的值增加到更大的候选值,确定将竞争窗的值调整为最小值;或者,所述第三侧行信息对应的调整结果为将保持竞争窗的值,所述第四侧行信息对应的调整结果为将竞争窗的值增加到更大的候选值,确定保持竞争窗的值。
  23. 根据权利要求21或22所述的方法,其特征在于,所述参考持续时间是根据第二信道占用时间COT确定的,用于初始所述第二COT的信道接入优先级CAPC大于或等于第一CAPC,其中,所述第一CAPC是所述第一侧行信息关联的CAPC。
  24. 根据权利要求17-23任一项所述的方法,其特征在于,所述的方法还包括:满足如下第三条件时,根据网络设备配置给所述第一设备的值确定所述信道接入的参数,或者,根据预配置给所述第一设备的值确定所述信道接入的参数,或者,根据预定义的值确定所述信道接入的参数,或者,不调整信道接入的参数;
    所述第三条件包括如下至少一项条件:在参考持续时间内没检测到侧行信息;在参考持续时间内没检测到第二侧行信息;没检测到第一反馈信息;在参考持续时间内的侧行信息的传播类型不是所述第一传播类型;在参考持续时间内的侧行信息的使能信息不是所述第一使能信息。
  25. 一种通信设备,其特征在于,所述通信设备包括存储器和一个或多个处理器;所述存储器和所述处理器耦合;所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述处理器执行所述计算机指令时,使所述一个或多个所述处理器执行如权利要求1至9任一项所述的方法,或使所述一个或多个所述处理器执行如权利要求10至24任一项所述的方法。
  26. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,其特征在于,当所述指令在终端上运行时,使得所述终端执行如权利要求1至9中任一项所述的方法,或使得所述终端执行如权利要求10至24中任一项所述的方法。
  27. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述装置执行如权利要求1至9中任一项所述的方法,或以使得所述装置执行如权利要求10至24中任一项所述的方法。
  28. 根据权利要求27所述的装置,其特征在于,所述装置还包括所述存储器和/或通信接口,所述通信接口与所述处理器耦合,
    所述通信接口,用于输入和/或输出信息。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至9中任一项所述的方法的指令,或所述计算机程序产品包括用于执行如权利要求10至24中任一项所述的方法的指令。
  30. 一种装置,其特征在于,包括处理单元和收发单元,所述收发单元用于执行如权利要求1至9中任一项所述的发送的动作;所述处理单元用于执行如权利要求1至9中任一项所述的发送以外的动作;或者,
    所述收发单元用于执行如权利要求10至24中任一项所述的发送/或接收的动作;所述处理单元用于执行如权利要求10至24中任一项所述的发送/或接收以外的动作。
  31. 一种装置,其特征在于,包括处理单元和收发单元,所述处理单元用于初始化第一信道占用时间COT;所述收发单元用于向第二设备发送第一共享指示信息,所述第一共享指示信息用于指示第一频域资源内的部分或全部频域资源,所述部分或全部频域资源用于共享给所述第二设备,其中,所述第一频域资源为所述第一设备在所述第一COT内占用的频域资源;或者所述第一频域资源为所述第一COT包括的频域资源。
  32. 一种装置,其特征在于,包括处理单元和收发单元,所述收发单元用于接收来自第一设备的第一共享指示信息,所述第一共享指示信息用于指示第一频域资源内的部分或全部频域资源;其中,所述第一频域资源为所述第一设备在所述第一COT内占用的频域资源;或者所述第一频域资源为所述第一COT包括的频域资源;
    所述处理单元用于根据所述第一共享指示信息确定所述第一频域资源内的部分或全部资源;
    所述收发单元还用于在所述部分或全部资源上发送侧行信息。
PCT/CN2023/125480 2022-11-04 2023-10-19 通信方法及装置 WO2024093685A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211379740.1 2022-11-04
CN202211379740.1A CN117998661A (zh) 2022-11-04 2022-11-04 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024093685A1 true WO2024093685A1 (zh) 2024-05-10

Family

ID=90892324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125480 WO2024093685A1 (zh) 2022-11-04 2023-10-19 通信方法及装置

Country Status (2)

Country Link
CN (1) CN117998661A (zh)
WO (1) WO2024093685A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314615A (zh) * 2018-09-21 2019-02-05 北京小米移动软件有限公司 竞争窗口大小的调整方法及装置、数据发送设备
WO2021087699A1 (zh) * 2019-11-04 2021-05-14 Oppo广东移动通信有限公司 用先听后说类型1共享信道占用时间的方法及相关装置
CN113396633A (zh) * 2019-02-14 2021-09-14 索尼集团公司 用户设备、网络侧设备、无线通信方法和存储介质
WO2021208031A1 (en) * 2020-04-16 2021-10-21 Qualcomm Incorporated Cyclic prefix (cp) extension in channel occupancy time (cot) sharing for sidelink communication
WO2022061754A1 (en) * 2020-09-25 2022-03-31 Nokia Shanghai Bell Co., Ltd. Channel occupancy time for sidelink communication in unlicensed band
CN114424640A (zh) * 2019-09-25 2022-04-29 高通股份有限公司 用于侧行链路的信道占用时间(cot)共享
WO2022165702A1 (en) * 2021-02-04 2022-08-11 Lenovo (Beijing) Limited Apparatus and method of channel access priority determination for sidelink transmission

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314615A (zh) * 2018-09-21 2019-02-05 北京小米移动软件有限公司 竞争窗口大小的调整方法及装置、数据发送设备
CN113396633A (zh) * 2019-02-14 2021-09-14 索尼集团公司 用户设备、网络侧设备、无线通信方法和存储介质
CN114424640A (zh) * 2019-09-25 2022-04-29 高通股份有限公司 用于侧行链路的信道占用时间(cot)共享
WO2021087699A1 (zh) * 2019-11-04 2021-05-14 Oppo广东移动通信有限公司 用先听后说类型1共享信道占用时间的方法及相关装置
WO2021208031A1 (en) * 2020-04-16 2021-10-21 Qualcomm Incorporated Cyclic prefix (cp) extension in channel occupancy time (cot) sharing for sidelink communication
WO2022061754A1 (en) * 2020-09-25 2022-03-31 Nokia Shanghai Bell Co., Ltd. Channel occupancy time for sidelink communication in unlicensed band
WO2022165702A1 (en) * 2021-02-04 2022-08-11 Lenovo (Beijing) Limited Apparatus and method of channel access priority determination for sidelink transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (OPPO): "FL summary #4 for AI 9.4.1.1: SL-U channel access mechanism", 3GPP DRAFT; R1-2205183, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 21 May 2022 (2022-05-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052191823 *

Also Published As

Publication number Publication date
CN117998661A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US11229062B2 (en) Methods, apparatus and systems for performing a random access procedure in a wireless communication
JP7404388B2 (ja) Nr-u広帯域強化
US11722915B2 (en) V2X communication performance method performed by V2X terminal in wireless communication system, and terminal using the method
CN106465138B (zh) 用于通过载波侦听在共享频谱中发送lte波形的方法和装置
CN112136286B (zh) 在非许可频段中发送harq反馈信息的方法和设备
US20190110177A1 (en) Method for selecting resource to be used for performing v2x communication within range satisfying latency requirement in wireless communication system, and terminal using same
CN112335323B (zh) 上行控制数据传输涉及的用户设备和基站
EP4132191A1 (en) Method and apparatus for urllc in unlicensed band
JP2020532189A (ja) スケジュールされたueと共存するときに自律ul送信を制御すること
EP3787357B1 (en) Communication method and communication apparatus
KR20220054109A (ko) 무선 통신 시스템에서 자원을 선택하는 방법 및 장치
US20230156670A1 (en) Partial sensing method and device for device-to-device communication in wireless communication system
EP4055976B1 (en) Two-step rach transmissions using guard band in unlicensed spectrum
WO2024093685A1 (zh) 通信方法及装置
KR102488493B1 (ko) 비면허 대역을 위한 nr 시스템에서 발견 신호를 송수신하는 방법 및 그 장치
KR20200137980A (ko) 비면허 대역에서 상향링크 통신을 위한 방법 및 장치
KR20200010025A (ko) 비면허 대역에서 상향링크 채널을 전송하는 방법 및 장치
WO2023208227A1 (en) Method related to sidelink operation in unlicensed bands, user equipment, and base station
EP4271073A1 (en) Method and apparatus for performing sidelink communication in wireless communication system
EP4383870A1 (en) Terminal and communication method
WO2024032548A1 (zh) 信息传输的方法和装置
KR20240020526A (ko) 무선 통신 시스템에서 사이드링크 통신을 수행하는 방법 및 장치
KR20230149992A (ko) 무선 통신 시스템에서 사이드링크 통신을 수행하는 방법 및 장치
KR20210018050A (ko) 비면허 대역 통신에서 단말의 전력 소모 감소 방법 및 이를 위한 장치
WO2024097471A1 (en) Reference duration definition and contention window adjustment in sidelink-unlicensed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884617

Country of ref document: EP

Kind code of ref document: A1